Science.gov

Sample records for lamotrigine extends lifespan

  1. Lamotrigine

    MedlinePlus

    ... certain types of seizures in patients who have epilepsy. All types of lamotrigine tablets (tablets, orally disintegrating ... medications to treat seizures in people who have epilepsy or Lennox-Gastaut syndrome (a disorder that causes ...

  2. Mammalian models of extended healthy lifespan

    PubMed Central

    Selman, Colin; Withers, Dominic J.

    2011-01-01

    Over the last two centuries, there has been a significant increase in average lifespan expectancy in the developed world. One unambiguous clinical implication of getting older is the risk of experiencing age-related diseases including various cancers, dementia, type-2 diabetes, cataracts and osteoporosis. Historically, the ageing process and its consequences were thought to be intractable. However, over the last two decades or so, a wealth of empirical data has been generated which demonstrates that longevity in model organisms can be extended through the manipulation of individual genes. In particular, many pathological conditions associated with the ageing process in model organisms, and importantly conserved from nematodes to humans, are attenuated in long-lived genetic mutants. For example, several long-lived genetic mouse models show attenuation in age-related cognitive decline, adiposity, cancer and glucose intolerance. Therefore, these long-lived mice enjoy a longer period without suffering the various sequelae of ageing. The greatest challenge in the biology of ageing is to now identify the mechanisms underlying increased healthy lifespan in these model organisms. Given that the elderly are making up an increasingly greater proportion of society, this focused approach in model organisms should help identify tractable interventions that can ultimately be translated to humans. PMID:21115536

  3. Nicotinamide extends replicative lifespan of human cells.

    PubMed

    Kang, Hyun Tae; Lee, Hyung Il; Hwang, Eun Seong

    2006-10-01

    We found that an ongoing application of nicotinamide to normal human fibroblasts not only attenuated expression of the aging phenotype but also increased their replicative lifespan, causing a greater than 1.6-fold increase in the number of population doublings. Although nicotinamide by itself does not act as an antioxidant, the cells cultured in the presence of nicotinamide exhibited reduced levels of reactive oxygen species (ROS) and oxidative damage products associated with cellular senescence, and a decelerated telomere shortening rate without a detectable increase in telomerase activity. Furthermore, in the treated cells growing beyond the original Hayflick limit, the levels of p53, p21WAF1, and phospho-Rb proteins were similar to those in actively proliferating cells. The nicotinamide treatment caused a decrease in ATP levels, which was stably maintained until the delayed senescence point. Nicotinamide-treated cells also maintained high mitochondrial membrane potential but a lower respiration rate and superoxide anion level. Taken together, in contrast to its demonstrated pro-aging effect in yeast, nicotinamide extends the lifespan of human fibroblasts, possibly through reduction in mitochondrial activity and ROS production.

  4. An Engineering Approach to Extending Lifespan in C. elegans

    PubMed Central

    Sagi, Dror; Kim, Stuart K.

    2012-01-01

    We have taken an engineering approach to extending the lifespan of Caenorhabditis elegans. Aging stands out as a complex trait, because events that occur in old animals are not under strong natural selection. As a result, lifespan can be lengthened rationally using bioengineering to modulate gene expression or to add exogenous components. Here, we engineered longer lifespan by expressing genes from zebrafish encoding molecular functions not normally present in worms. Additionally, we extended lifespan by increasing the activity of four endogenous worm aging pathways. Next, we used a modular approach to extend lifespan by combining components. Finally, we used cell- and worm-based assays to analyze changes in cell physiology and as a rapid means to evaluate whether multi-component transgenic lines were likely to have extended longevity. Using engineering to add novel functions and to tune endogenous functions provides a new framework for lifespan extension that goes beyond the constraints of the worm genome. PMID:22737090

  5. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration.

    PubMed

    Lin, Su-Ju; Kaeberlein, Matt; Andalis, Alex A; Sturtz, Lori A; Defossez, Pierre-Antoine; Culotta, Valeria C; Fink, Gerald R; Guarente, Leonard

    2002-07-18

    Calorie restriction (CR) extends lifespan in a wide spectrum of organisms and is the only regimen known to lengthen the lifespan of mammals. We established a model of CR in budding yeast Saccharomyces cerevisiae. In this system, lifespan can be extended by limiting glucose or by reducing the activity of the glucose-sensing cyclic-AMP-dependent kinase (PKA). Lifespan extension in a mutant with reduced PKA activity requires Sir2 and NAD (nicotinamide adenine dinucleotide). In this study we explore how CR activates Sir2 to extend lifespan. Here we show that the shunting of carbon metabolism toward the mitochondrial tricarboxylic acid cycle and the concomitant increase in respiration play a central part in this process. We discuss how this metabolic strategy may apply to CR in animals.

  6. Lutein extends the lifespan of Drosophila melanogaster.

    PubMed

    Zhang, Zesheng; Han, Shunkai; Wang, Hao; Wang, Tingting

    2014-01-01

    Lutein is one of the major carotenoids in most fruits and vegetables. The effect of lutein on the lifespan of Drosophila melanogaster was investigated. Results revealed that 0.1mg lutein/ml diet could prolong their mean lifespan from 49.0 to 54.6 days. This was consistent with a significant reduction in malonyldialdehyde (MDA) level and increase in antioxidant enzyme activities of the flies fed with lutein-treated diet compared with those fed with basal diet. Paraquat (PQ) and H2O2 treatment tests demonstrated that lutein could prolong the survival time of the flies. Real-time polymerase chain reaction (RT-PCR) analysis indicated the gene expression of superoxide dismutase (SOD; SOD1 and SOD2), and catalase (CAT) in the lutein-treated group was up-regulated relative to that of the control group. It was concluded that the lifespan-prolonging activity of lutein was partially by up-regulation of endogenous antioxidant enzymes.

  7. Enhancing S-adenosyl-methionine catabolism extends Drosophila lifespan

    PubMed Central

    Obata, Fumiaki; Miura, Masayuki

    2015-01-01

    Methionine restriction extends the lifespan of various model organisms. Limiting S-adenosyl-methionine (SAM) synthesis, the first metabolic reaction of dietary methionine, extends longevity in Caenorhabditis elegans but accelerates pathology in mammals. Here, we show that, as an alternative to inhibiting SAM synthesis, enhancement of SAM catabolism by glycine N-methyltransferase (Gnmt) extends the lifespan in Drosophila. Gnmt strongly buffers systemic SAM levels by producing sarcosine in either high-methionine or low-sams conditions. During ageing, systemic SAM levels in flies are increased. Gnmt is transcriptionally induced in a dFoxO-dependent manner; however, this is insufficient to suppress SAM elevation completely in old flies. Overexpression of gnmt suppresses this age-dependent SAM increase and extends longevity. Pro-longevity regimens, such as dietary restriction or reduced insulin signalling, attenuate the age-dependent SAM increase, and rely at least partially on Gnmt function to exert their lifespan-extending effect in Drosophila. Our study suggests that regulation of SAM levels by Gnmt is a key component of lifespan extension. PMID:26383889

  8. Malate and Fumarate Extend Lifespan in Caenorhabditis elegans

    PubMed Central

    Edwards, Clare B.; Copes, Neil; Brito, Andres G.; Canfield, John; Bradshaw, Patrick C.

    2013-01-01

    Malate, the tricarboxylic acid (TCA) cycle metabolite, increased lifespan and thermotolerance in the nematode C. elegans. Malate can be synthesized from fumarate by the enzyme fumarase and further oxidized to oxaloacetate by malate dehydrogenase with the accompanying reduction of NAD. Addition of fumarate also extended lifespan, but succinate addition did not, although all three intermediates activated nuclear translocation of the cytoprotective DAF-16/FOXO transcription factor and protected from paraquat-induced oxidative stress. The glyoxylate shunt, an anabolic pathway linked to lifespan extension in C. elegans, reversibly converts isocitrate and acetyl-CoA to succinate, malate, and CoA. The increased longevity provided by malate addition did not occur in fumarase (fum-1), glyoxylate shunt (gei-7), succinate dehydrogenase flavoprotein (sdha-2), or soluble fumarate reductase F48E8.3 RNAi knockdown worms. Therefore, to increase lifespan, malate must be first converted to fumarate, then fumarate must be reduced to succinate by soluble fumarate reductase and the mitochondrial electron transport chain complex II. Reduction of fumarate to succinate is coupled with the oxidation of FADH2 to FAD. Lifespan extension induced by malate depended upon the longevity regulators DAF-16 and SIR-2.1. Malate supplementation did not extend the lifespan of long-lived eat-2 mutant worms, a model of dietary restriction. Malate and fumarate addition increased oxygen consumption, but decreased ATP levels and mitochondrial membrane potential suggesting a mild uncoupling of oxidative phosphorylation. Malate also increased NADPH, NAD, and the NAD/NADH ratio. Fumarate reduction, glyoxylate shunt activity, and mild mitochondrial uncoupling likely contribute to the lifespan extension induced by malate and fumarate by increasing the amount of oxidized NAD and FAD cofactors. PMID:23472183

  9. Mitochondrial stress extends lifespan in C. elegans through neuronal hormesis.

    PubMed

    Maglioni, Silvia; Schiavi, Alfonso; Runci, Alessandra; Shaik, Anjumara; Ventura, Natascia

    2014-08-01

    Progressive neuronal deterioration accompanied by sensory functions decline is typically observed during aging. On the other hand, structural or functional alterations of specific sensory neurons extend lifespan in the nematode Caenorhabditis elegans. Hormesis is a phenomenon by which the body benefits from moderate stress of various kinds which at high doses are harmful. Several studies indicate that different stressors can hormetically extend lifespan in C. elegans and suggest that hormetic effects could be exploited as a strategy to slow down aging and the development of age-associated (neuronal) diseases in humans. Mitochondria play a central role in the aging process and hormetic-like bimodal dose-response effects on C. elegans lifespan have been observed following different levels of mitochondrial stress. Here we tested the hypothesis that mitochondrial stress may hormetically extend C. elegans lifespan through subtle neuronal alterations. In support of our hypothesis we find that life-lengthening dose of mitochondrial stress reduces the functionality of a subset of ciliated sensory neurons in young animals. Notably, the same pro-longevity mitochondrial treatments rescue the sensory deficits in old animals. We also show that mitochondrial stress extends C. elegans lifespan acting in part through genes required for the functionality of those neurons. To our knowledge this is the first study describing a direct causal connection between sensory neuron dysfunction and extended longevity following mitochondrial stress. Our work supports the potential anti-aging effect of neuronal hormesis and open interesting possibility for the development of therapeutic strategy for age-associated neurodegenerative disorders.

  10. Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae.

    PubMed

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2014-10-01

    Natural products with anti-aging property have drawn great attention recently but examples of such compounds are exceedingly scarce. By applying a high-throughput assay based on yeast chronological lifespan measurement, we screened the anti-aging activity of 144 botanical materials and found that dried roots of Salvia miltiorrhiza Bunge have significant anti-aging activity. Tanshinones isolated from the plant including cryptotanshione, tanshinone I, and tanshinone IIa, are the active components. Among them, cryptotanshinone can greatly extend the budding yeast Saccharomyces cerevisiae chronological lifespan (up to 2.5 times) in a dose- and the-time-of-addition-dependent manner at nanomolar concentrations without disruption of cell growth. We demonstrate that cryptotanshinone prolong chronological lifespan via a nutrient-dependent regime, especially essential amino acid sensing, and three conserved protein kinases Tor1, Sch9, and Gcn2 are required for cryptotanshinone-induced lifespan extension. In addition, cryptotanshinone significantly increases the lifespan of SOD2-deleted mutants. Altogether, those data suggest that cryptotanshinone might be involved in the regulation of, Tor1, Sch9, Gcn2, and Sod2, these highly conserved longevity proteins modulated by nutrients from yeast to humans.

  11. Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan

    PubMed Central

    Scialò, Filippo; Sriram, Ashwin; Fernández-Ayala, Daniel; Gubina, Nina; Lõhmus, Madis; Nelson, Glyn; Logan, Angela; Cooper, Helen M.; Navas, Plácido; Enríquez, Jose Antonio; Murphy, Michael P.; Sanz, Alberto

    2016-01-01

    Summary Increased production of reactive oxygen species (ROS) has long been considered a cause of aging. However, recent studies have implicated ROS as essential secondary messengers. Here we show that the site of ROS production significantly contributes to their apparent dual nature. We report that ROS increase with age as mitochondrial function deteriorates. However, we also demonstrate that increasing ROS production specifically through respiratory complex I reverse electron transport extends Drosophila lifespan. Reverse electron transport rescued pathogenesis induced by severe oxidative stress, highlighting the importance of the site of ROS production in signaling. Furthermore, preventing ubiquinone reduction, through knockdown of PINK1, shortens lifespan and accelerates aging; phenotypes that are rescued by increasing reverse electron transport. These results illustrate that the source of a ROS signal is vital in determining its effects on cellular physiology and establish that manipulation of ubiquinone redox state is a valid strategy to delay aging. PMID:27076081

  12. Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan.

    PubMed

    Scialò, Filippo; Sriram, Ashwin; Fernández-Ayala, Daniel; Gubina, Nina; Lõhmus, Madis; Nelson, Glyn; Logan, Angela; Cooper, Helen M; Navas, Plácido; Enríquez, Jose Antonio; Murphy, Michael P; Sanz, Alberto

    2016-04-12

    Increased production of reactive oxygen species (ROS) has long been considered a cause of aging. However, recent studies have implicated ROS as essential secondary messengers. Here we show that the site of ROS production significantly contributes to their apparent dual nature. We report that ROS increase with age as mitochondrial function deteriorates. However, we also demonstrate that increasing ROS production specifically through respiratory complex I reverse electron transport extends Drosophila lifespan. Reverse electron transport rescued pathogenesis induced by severe oxidative stress, highlighting the importance of the site of ROS production in signaling. Furthermore, preventing ubiquinone reduction, through knockdown of PINK1, shortens lifespan and accelerates aging; phenotypes that are rescued by increasing reverse electron transport. These results illustrate that the source of a ROS signal is vital in determining its effects on cellular physiology and establish that manipulation of ubiquinone redox state is a valid strategy to delay aging.

  13. Chemical activation of a food deprivation signal extends lifespan.

    PubMed

    Lucanic, Mark; Garrett, Theo; Yu, Ivan; Calahorro, Fernando; Asadi Shahmirzadi, Azar; Miller, Aaron; Gill, Matthew S; Hughes, Robert E; Holden-Dye, Lindy; Lithgow, Gordon J

    2016-10-01

    Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on multiple metrics. This indicates that pharmacological treatments that mimic the effects of DR could improve health in humans. To find new chemical structures that extend lifespan, we screened 30 000 synthetic, diverse drug-like chemicals in Caenorhabditis elegans and identified several structurally related compounds that acted through DR mechanisms. The most potent of these NP1 impinges upon a food perception pathway by promoting glutamate signaling in the pharynx. This results in the overriding of a GPCR pathway involved in the perception of food and which normally acts to decrease glutamate signals. Our results describe the activation of a dietary restriction response through the pharmacological masking of a novel sensory pathway that signals the presence of food. This suggests that primary sensory pathways may represent novel targets for human pharmacology. PMID:27220516

  14. Rapamycin extends murine lifespan but has limited effects on aging

    PubMed Central

    Neff, Frauke; Flores-Dominguez, Diana; Ryan, Devon P.; Horsch, Marion; Schröder, Susanne; Adler, Thure; Afonso, Luciana Caminha; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Garrett, Lillian; Hans, Wolfgang; Hettich, Moritz M.; Holtmeier, Richard; Hölter, Sabine M.; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Rathkolb, Birgit; Rozman, Jan; Naton, Beatrix; Ordemann, Rainer; Adamski, Jerzy; Beckers, Johannes; Bekeredjian, Raffi; Busch, Dirk H.; Ehninger, Gerhard; Graw, Jochen; Höfler, Heinz; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Stypmann, Jörg; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabe de Angelis, Martin; Ehninger, Dan

    2013-01-01

    Aging is a major risk factor for a large number of disorders and functional impairments. Therapeutic targeting of the aging process may therefore represent an innovative strategy in the quest for novel and broadly effective treatments against age-related diseases. The recent report of lifespan extension in mice treated with the FDA-approved mTOR inhibitor rapamycin represented the first demonstration of pharmacological extension of maximal lifespan in mammals. Longevity effects of rapamycin may, however, be due to rapamycin’s effects on specific life-limiting pathologies, such as cancers, and it remains unclear if this compound actually slows the rate of aging in mammals. Here, we present results from a comprehensive, large-scale assessment of a wide range of structural and functional aging phenotypes, which we performed to determine whether rapamycin slows the rate of aging in male C57BL/6J mice. While rapamycin did extend lifespan, it ameliorated few studied aging phenotypes. A subset of aging traits appeared to be rescued by rapamycin. Rapamycin, however, had similar effects on many of these traits in young animals, indicating that these effects were not due to a modulation of aging, but rather related to aging-independent drug effects. Therefore, our data largely dissociate rapamycin’s longevity effects from effects on aging itself. PMID:23863708

  15. Uncoupling reproduction from metabolism extends chronological lifespan in yeast.

    PubMed

    Nagarajan, Saisubramanian; Kruckeberg, Arthur L; Schmidt, Karen H; Kroll, Evgueny; Hamilton, Morgan; McInnerney, Kate; Summers, Ryan; Taylor, Timothy; Rosenzweig, Frank

    2014-04-15

    Studies of replicative and chronological lifespan in Saccharomyces cerevisiae have advanced understanding of longevity in all eukaryotes. Chronological lifespan in this species is defined as the age-dependent viability of nondividing cells. To date this parameter has only been estimated under calorie restriction, mimicked by starvation. Because postmitotic cells in higher eukaryotes often do not starve, we developed a model yeast system to study cells as they age in the absence of calorie restriction. Yeast cells were encapsulated in a matrix consisting of calcium alginate to form ∼3 mm beads that were packed into bioreactors and fed ad libitum. Under these conditions cells ceased to divide, became heat shock and zymolyase resistant, yet retained high fermentative capacity. Over the course of 17 d, immobilized yeast cells maintained >95% viability, whereas the viability of starving, freely suspended (planktonic) cells decreased to <10%. Immobilized cells exhibited a stable pattern of gene expression that differed markedly from growing or starving planktonic cells, highly expressing genes in glycolysis, cell wall remodeling, and stress resistance, but decreasing transcription of genes in the tricarboxylic acid cycle, and genes that regulate the cell cycle, including master cyclins CDC28 and CLN1. Stress resistance transcription factor MSN4 and its upstream effector RIM15 are conspicuously up-regulated in the immobilized state, and an immobilized rim15 knockout strain fails to exhibit the long-lived, growth-arrested phenotype, suggesting that altered regulation of the Rim15-mediated nutrient-sensing pathway plays an important role in extending yeast chronological lifespan under calorie-unrestricted conditions. PMID:24706810

  16. Uncoupling reproduction from metabolism extends chronological lifespan in yeast.

    PubMed

    Nagarajan, Saisubramanian; Kruckeberg, Arthur L; Schmidt, Karen H; Kroll, Evgueny; Hamilton, Morgan; McInnerney, Kate; Summers, Ryan; Taylor, Timothy; Rosenzweig, Frank

    2014-04-15

    Studies of replicative and chronological lifespan in Saccharomyces cerevisiae have advanced understanding of longevity in all eukaryotes. Chronological lifespan in this species is defined as the age-dependent viability of nondividing cells. To date this parameter has only been estimated under calorie restriction, mimicked by starvation. Because postmitotic cells in higher eukaryotes often do not starve, we developed a model yeast system to study cells as they age in the absence of calorie restriction. Yeast cells were encapsulated in a matrix consisting of calcium alginate to form ∼3 mm beads that were packed into bioreactors and fed ad libitum. Under these conditions cells ceased to divide, became heat shock and zymolyase resistant, yet retained high fermentative capacity. Over the course of 17 d, immobilized yeast cells maintained >95% viability, whereas the viability of starving, freely suspended (planktonic) cells decreased to <10%. Immobilized cells exhibited a stable pattern of gene expression that differed markedly from growing or starving planktonic cells, highly expressing genes in glycolysis, cell wall remodeling, and stress resistance, but decreasing transcription of genes in the tricarboxylic acid cycle, and genes that regulate the cell cycle, including master cyclins CDC28 and CLN1. Stress resistance transcription factor MSN4 and its upstream effector RIM15 are conspicuously up-regulated in the immobilized state, and an immobilized rim15 knockout strain fails to exhibit the long-lived, growth-arrested phenotype, suggesting that altered regulation of the Rim15-mediated nutrient-sensing pathway plays an important role in extending yeast chronological lifespan under calorie-unrestricted conditions.

  17. Uncoupling reproduction from metabolism extends chronological lifespan in yeast

    PubMed Central

    Nagarajan, Saisubramanian; Kruckeberg, Arthur L.; Schmidt, Karen H.; Kroll, Evgueny; Hamilton, Morgan; McInnerney, Kate; Summers, Ryan; Taylor, Timothy; Rosenzweig, Frank

    2014-01-01

    Studies of replicative and chronological lifespan in Saccharomyces cerevisiae have advanced understanding of longevity in all eukaryotes. Chronological lifespan in this species is defined as the age-dependent viability of nondividing cells. To date this parameter has only been estimated under calorie restriction, mimicked by starvation. Because postmitotic cells in higher eukaryotes often do not starve, we developed a model yeast system to study cells as they age in the absence of calorie restriction. Yeast cells were encapsulated in a matrix consisting of calcium alginate to form ∼3 mm beads that were packed into bioreactors and fed ad libitum. Under these conditions cells ceased to divide, became heat shock and zymolyase resistant, yet retained high fermentative capacity. Over the course of 17 d, immobilized yeast cells maintained >95% viability, whereas the viability of starving, freely suspended (planktonic) cells decreased to <10%. Immobilized cells exhibited a stable pattern of gene expression that differed markedly from growing or starving planktonic cells, highly expressing genes in glycolysis, cell wall remodeling, and stress resistance, but decreasing transcription of genes in the tricarboxylic acid cycle, and genes that regulate the cell cycle, including master cyclins CDC28 and CLN1. Stress resistance transcription factor MSN4 and its upstream effector RIM15 are conspicuously up-regulated in the immobilized state, and an immobilized rim15 knockout strain fails to exhibit the long-lived, growth-arrested phenotype, suggesting that altered regulation of the Rim15-mediated nutrient-sensing pathway plays an important role in extending yeast chronological lifespan under calorie-unrestricted conditions. PMID:24706810

  18. Crosstalk between cellular compartments protects against proteotoxicity and extends lifespan

    PubMed Central

    Perić, Matea; Dib, Peter Bou; Dennerlein, Sven; Musa, Marina; Rudan, Marina; Lovrić, Anita; Nikolić, Andrea; Šarić, Ana; Sobočanec, Sandra; Mačak, Željka; Raimundo, Nuno; Kriško, Anita

    2016-01-01

    In cells living under optimal conditions, protein folding defects are usually prevented by the action of chaperones. Here, we investigate the cell-wide consequences of loss of chaperone function in cytosol, mitochondria or the endoplasmic reticulum (ER) in budding yeast. We find that the decline in chaperone activity in each compartment results in loss of respiration, demonstrating the dependence of mitochondrial activity on cell-wide proteostasis. Furthermore, each chaperone deficiency triggers a response, presumably via the communication among the folding environments of distinct cellular compartments, termed here the cross-organelle stress response (CORE). The proposed CORE pathway encompasses activation of protein conformational maintenance machineries, antioxidant enzymes, and metabolic changes simultaneously in the cytosol, mitochondria, and the ER. CORE induction extends replicative and chronological lifespan in budding yeast, highlighting its protective role against moderate proteotoxicity and its consequences such as the decline in respiration. Our findings accentuate that organelles do not function in isolation, but are integrated in a functional crosstalk, while also highlighting the importance of organelle communication in aging and age-related diseases. PMID:27346163

  19. Basic and clinical pharmacology contribution to extend anthelmintic molecules lifespan.

    PubMed

    Lanusse, Carlos; Lifschitz, Adrian; Alvarez, Luis

    2015-08-15

    The correct use of pharmacology-based information is critical to design successful strategies for the future of parasite control in livestock animals. Integrated pharmaco-parasitological research approaches have greatly contributed to optimize drug activity. In an attempt to manage drug resistance in helminths of ruminants, combinations of two or more anthelmintics are being used or promoted, based on the fact that individual worms may have a lower degree of resistance to a multiple component formulation, when each chemical has a different mode of action compared to that observed when a single compound is used. However, as emphasized in the current review, the occurrence of potential pharmacokinetic and/or pharmacodynamic interactions between drug components highlights the need for deeper and integrated research to identify the advantages or disadvantages associated with the use of combined drug preparations. This review article provides integrated pharmacokinetic/pharmacodynamic and clinical pharmacology information pertinent to preserve the traditional and modern active ingredients as practical tools for parasite control. Novel pharmacological data on derquantel and monepantel, as representatives of modern anthelmintics for use in livestock, is summarized here. The article also summarizes the pharmaco-parasitological knowledge considered critical to secure and/or extend the lifespan of the recently available novel molecules. PMID:26220023

  20. Basic and clinical pharmacology contribution to extend anthelmintic molecules lifespan.

    PubMed

    Lanusse, Carlos; Lifschitz, Adrian; Alvarez, Luis

    2015-08-15

    The correct use of pharmacology-based information is critical to design successful strategies for the future of parasite control in livestock animals. Integrated pharmaco-parasitological research approaches have greatly contributed to optimize drug activity. In an attempt to manage drug resistance in helminths of ruminants, combinations of two or more anthelmintics are being used or promoted, based on the fact that individual worms may have a lower degree of resistance to a multiple component formulation, when each chemical has a different mode of action compared to that observed when a single compound is used. However, as emphasized in the current review, the occurrence of potential pharmacokinetic and/or pharmacodynamic interactions between drug components highlights the need for deeper and integrated research to identify the advantages or disadvantages associated with the use of combined drug preparations. This review article provides integrated pharmacokinetic/pharmacodynamic and clinical pharmacology information pertinent to preserve the traditional and modern active ingredients as practical tools for parasite control. Novel pharmacological data on derquantel and monepantel, as representatives of modern anthelmintics for use in livestock, is summarized here. The article also summarizes the pharmaco-parasitological knowledge considered critical to secure and/or extend the lifespan of the recently available novel molecules.

  1. Crosstalk between cellular compartments protects against proteotoxicity and extends lifespan.

    PubMed

    Perić, Matea; Dib, Peter Bou; Dennerlein, Sven; Musa, Marina; Rudan, Marina; Lovrić, Anita; Nikolić, Andrea; Šarić, Ana; Sobočanec, Sandra; Mačak, Željka; Raimundo, Nuno; Kriško, Anita

    2016-01-01

    In cells living under optimal conditions, protein folding defects are usually prevented by the action of chaperones. Here, we investigate the cell-wide consequences of loss of chaperone function in cytosol, mitochondria or the endoplasmic reticulum (ER) in budding yeast. We find that the decline in chaperone activity in each compartment results in loss of respiration, demonstrating the dependence of mitochondrial activity on cell-wide proteostasis. Furthermore, each chaperone deficiency triggers a response, presumably via the communication among the folding environments of distinct cellular compartments, termed here the cross-organelle stress response (CORE). The proposed CORE pathway encompasses activation of protein conformational maintenance machineries, antioxidant enzymes, and metabolic changes simultaneously in the cytosol, mitochondria, and the ER. CORE induction extends replicative and chronological lifespan in budding yeast, highlighting its protective role against moderate proteotoxicity and its consequences such as the decline in respiration. Our findings accentuate that organelles do not function in isolation, but are integrated in a functional crosstalk, while also highlighting the importance of organelle communication in aging and age-related diseases. PMID:27346163

  2. Who wants to live forever? Three arguments against extending the human lifespan.

    PubMed

    Pijnenburg, Martien A M; Leget, Carlo

    2007-10-01

    The wish to extend the human lifespan has a long tradition in many cultures. Optimistic views of the possibility of achieving this goal through the latest developments in medicine feature increasingly in serious scientific and philosophical discussion. The authors of this paper argue that research with the explicit aim of extending the human lifespan is both undesirable and morally unacceptable. They present three serious objections, relating to justice, the community and the meaning of life. PMID:17906056

  3. Dairy Propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system.

    PubMed

    Kwon, Gayeung; Lee, Jiyun; Lim, Young-Hee

    2016-01-01

    Dairy Propionibacterium freudenreichii is a candidate non-lactic acid probiotic. However, little information is available on the effect of P. freudenreichii on lifespan extension in humans. The aim of this study was to evaluate the effects of P. freudenreichii on lifespan extension and to elucidate the mechanism of P. freudenreichii-dependent lifespan extension in Caenorhabditis elegans. The results showed that P. freudenreichii significantly (p < 0.05) extended the lifespan of C. elegans compared with Escherichia coli OP50, a standard food for the worm. Analysis of age-related biomarkers showed that P. freudenreichii retards ageing. Moreover, P. freudenreichii increased resistance against a human pathogen, Salmonella typhimurium, through the activation of skn-1, which is involved in pathogen resistance in C. elegans. Furthermore, P. freudenreichii-fed daf-16, jnk-1, skn-1 or daf-7 loss-of-function mutants showed an extended mean lifespan compared with E. coli OP50-fed worms. However, the increase in lifespan was not observed in pmk-1, sek-1, mek-1, dbl-1, daf-12 or daf-2 mutants, which suggests potential roles for these genes in P. freudenreichii-induced longevity in C. elegans. In conclusion, P. freudenreichii extends the lifespan of C. elegans via the p38 MAPK pathway involved in stress response and the TGF-β pathways associated with anti-inflammation processes in the immune system. PMID:27531646

  4. Dairy Propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system.

    PubMed

    Kwon, Gayeung; Lee, Jiyun; Lim, Young-Hee

    2016-08-17

    Dairy Propionibacterium freudenreichii is a candidate non-lactic acid probiotic. However, little information is available on the effect of P. freudenreichii on lifespan extension in humans. The aim of this study was to evaluate the effects of P. freudenreichii on lifespan extension and to elucidate the mechanism of P. freudenreichii-dependent lifespan extension in Caenorhabditis elegans. The results showed that P. freudenreichii significantly (p < 0.05) extended the lifespan of C. elegans compared with Escherichia coli OP50, a standard food for the worm. Analysis of age-related biomarkers showed that P. freudenreichii retards ageing. Moreover, P. freudenreichii increased resistance against a human pathogen, Salmonella typhimurium, through the activation of skn-1, which is involved in pathogen resistance in C. elegans. Furthermore, P. freudenreichii-fed daf-16, jnk-1, skn-1 or daf-7 loss-of-function mutants showed an extended mean lifespan compared with E. coli OP50-fed worms. However, the increase in lifespan was not observed in pmk-1, sek-1, mek-1, dbl-1, daf-12 or daf-2 mutants, which suggests potential roles for these genes in P. freudenreichii-induced longevity in C. elegans. In conclusion, P. freudenreichii extends the lifespan of C. elegans via the p38 MAPK pathway involved in stress response and the TGF-β pathways associated with anti-inflammation processes in the immune system.

  5. Dairy Propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system

    PubMed Central

    Kwon, Gayeung; Lee, Jiyun; Lim, Young-Hee

    2016-01-01

    Dairy Propionibacterium freudenreichii is a candidate non-lactic acid probiotic. However, little information is available on the effect of P. freudenreichii on lifespan extension in humans. The aim of this study was to evaluate the effects of P. freudenreichii on lifespan extension and to elucidate the mechanism of P. freudenreichii-dependent lifespan extension in Caenorhabditis elegans. The results showed that P. freudenreichii significantly (p < 0.05) extended the lifespan of C. elegans compared with Escherichia coli OP50, a standard food for the worm. Analysis of age-related biomarkers showed that P. freudenreichii retards ageing. Moreover, P. freudenreichii increased resistance against a human pathogen, Salmonella typhimurium, through the activation of skn-1, which is involved in pathogen resistance in C. elegans. Furthermore, P. freudenreichii-fed daf-16, jnk-1, skn-1 or daf-7 loss-of-function mutants showed an extended mean lifespan compared with E. coli OP50-fed worms. However, the increase in lifespan was not observed in pmk-1, sek-1, mek-1, dbl-1, daf-12 or daf-2 mutants, which suggests potential roles for these genes in P. freudenreichii-induced longevity in C. elegans. In conclusion, P. freudenreichii extends the lifespan of C. elegans via the p38 MAPK pathway involved in stress response and the TGF-β pathways associated with anti-inflammation processes in the immune system. PMID:27531646

  6. The lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans.

    PubMed

    Zhuang, Ziheng; Lv, Ting; Li, Min; Zhang, Yusi; Xue, Ting; Yang, Linsong; Liu, Hui; Zhang, Weiming

    2014-12-01

    Nymphaea hybrid, a water lily from the Nymphaeaceae family, has been found to exhibit some in vivo beneficial effects. In the present study we investigated the lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans. We found that Nymphaea hybrid root extract significantly extended the lifespan of C.elegans and improved its locomotion during aging. Moreover, Nymphaea hybrid root extract increased the resistance of C.elegans to both heat stress and oxidative stress. We found that the ability of Nymphaea hybrid root extract to increase lifespan was independent of its antimicrobial effects and was probably associated with its effects on the reproduction of C.elegans. In addition, the lifespan-extending effects of Nymphaea hybrid root extract were found to be dependent on the insulin/IGF signaling pathway. We also found that total flavones of Nymphaea hybrid could increase survival of C.elegans in both normal and adverse conditions, indicating that total flavones comprise the major fractions with lifespan-extending effects. Therefore, Nymphaea hybrid root extract has lifespan-extending effects in C.elegans and could be developed as a functional food.

  7. The lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans.

    PubMed

    Zhuang, Ziheng; Lv, Ting; Li, Min; Zhang, Yusi; Xue, Ting; Yang, Linsong; Liu, Hui; Zhang, Weiming

    2014-12-01

    Nymphaea hybrid, a water lily from the Nymphaeaceae family, has been found to exhibit some in vivo beneficial effects. In the present study we investigated the lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans. We found that Nymphaea hybrid root extract significantly extended the lifespan of C.elegans and improved its locomotion during aging. Moreover, Nymphaea hybrid root extract increased the resistance of C.elegans to both heat stress and oxidative stress. We found that the ability of Nymphaea hybrid root extract to increase lifespan was independent of its antimicrobial effects and was probably associated with its effects on the reproduction of C.elegans. In addition, the lifespan-extending effects of Nymphaea hybrid root extract were found to be dependent on the insulin/IGF signaling pathway. We also found that total flavones of Nymphaea hybrid could increase survival of C.elegans in both normal and adverse conditions, indicating that total flavones comprise the major fractions with lifespan-extending effects. Therefore, Nymphaea hybrid root extract has lifespan-extending effects in C.elegans and could be developed as a functional food. PMID:25367047

  8. Rapamycin Extends Maximal Lifespan in Cancer-Prone Mice

    PubMed Central

    Anisimov, Vladimir N.; Zabezhinski, Mark A.; Popovich, Irina G.; Piskunova, Tatiana S.; Semenchenko, Anna V.; Tyndyk, Margarita L.; Yurova, Maria N.; Antoch, Marina P.; Blagosklonny, Mikhail V.

    2010-01-01

    Aging is associated with obesity and cancer. Calorie restriction both slows down aging and delays cancer. Evidence has emerged that the nutrient-sensing mammalian target of rapamycin (mTOR) pathway is involved in cellular and organismal aging. Here we show that the mTOR inhibitor rapamycin prevents age-related weight gain, decreases rate of aging, increases lifespan, and suppresses carcinogenesis in transgenic HER-2/neu cancer-prone mice. Rapamycin dramatically delayed tumor onset as well as decreased the number of tumors per animal and tumor size. We suggest that, by slowing down organismal aging, rapamycin delays cancer. PMID:20363920

  9. Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans

    PubMed Central

    Chandler-Brown, Devon; Choi, Haeri; Park, Shirley; Ocampo, Billie R.; Chen, Shiwen; Le, Anna; Sutphin, George L.; Shamieh, Lara S.; Smith, Erica D.; Kaeberlein, Matt

    2015-01-01

    The response to osmotic stress is a highly conserved process for adapting to changing environmental conditions. Prior studies have shown that hyperosmolarity by addition of sorbitol to the growth medium is sufficient to increase both chronological and replicative lifespan in the budding yeast, Saccharomyces cerevisiae. Here we report a similar phenomenon in the nematode Caenorhabditis elegans. Addition of sorbitol to the nematode growth medium induces an adaptive osmotic response and increases C. elegans lifespan by about 35%. Lifespan extension from 5% sorbitol behaves similarly to dietary restriction in a variety of genetic backgrounds, increasing lifespan additively with mutation of daf-2(e1370) and independently of daf-16(mu86), sir-2.1(ok434), aak-2(ok524), and hif-1(ia04). Dietary restriction by bacterial deprivation or mutation of eat-2(ad1113) fails to further extend lifespan in the presence of 5% sorbitol. Two mutants with constitutive activation of the osmotic response, osm-5(p813) and osm-7(n1515), were found to be long-lived, and lifespan extension from sorbitol required the glycerol biosynthetic enzymes GPDH-1 and GPDH-2. Taken together, these observations demonstrate that exposure to sorbitol at levels sufficient to induce an adaptive osmotic response extends lifespan in worms and define the osmotic stress response pathway as a longevity pathway conserved between yeast and nematodes. PMID:26579191

  10. Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans.

    PubMed

    Chandler-Brown, Devon; Choi, Haeri; Park, Shirley; Ocampo, Billie R; Chen, Shiwen; Le, Anna; Sutphin, George L; Shamieh, Lara S; Smith, Erica D; Kaeberlein, Matt

    2015-01-01

    The response to osmotic stress is a highly conserved process for adapting to changing environmental conditions. Prior studies have shown that hyperosmolarity by addition of sorbitol to the growth medium is sufficient to increase both chronological and replicative lifespan in the budding yeast, Saccharomyces cerevisiae. Here we report a similar phenomenon in the nematode Caenorhabditis elegans. Addition of sorbitol to the nematode growth medium induces an adaptive osmotic response and increases C. elegans lifespan by about 35%. Lifespan extension from 5% sorbitol behaves similarly to dietary restriction in a variety of genetic backgrounds, increasing lifespan additively with mutation of daf-2(e1370) and independently of daf-16(mu86), sir-2.1(ok434), aak-2(ok524), and hif-1(ia04). Dietary restriction by bacterial deprivation or mutation of eat-2(ad1113) fails to further extend lifespan in the presence of 5% sorbitol. Two mutants with constitutive activation of the osmotic response, osm-5(p813) and osm-7(n1515), were found to be long-lived, and lifespan extension from sorbitol required the glycerol biosynthetic enzymes GPDH-1 and GPDH-2. Taken together, these observations demonstrate that exposure to sorbitol at levels sufficient to induce an adaptive osmotic response extends lifespan in worms and define the osmotic stress response pathway as a longevity pathway conserved between yeast and nematodes.

  11. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera).

    PubMed

    Snell, Terry W; Johnston, Rachel K; Rabeneck, Brett; Zipperer, Cody; Teat, Stephanie

    2014-04-01

    The TOR kinase pathway is central in modulating aging in a variety of animal models. The target of rapamycin (TOR) integrates a complex network of signals from growth conditions, nutrient availability, energy status, and physiological stresses and matches an organism's growth rate to the resource environment. Important remaining problems are the identification of the pathways that interact with TOR and their characterization as additive or synergistic. One of the most versatile stress sensors in metazoans is the Jun-N-terminal kinase (JNK) signaling pathway. JNK is an evolutionarily conserved stress-activated protein kinase that is induced by a range of stressors, including UV irradiation, reactive oxygen species, DNA damage, heat, and bacterial antigens. JNK is thought to interact with the TOR pathway, but its effects on TOR are poorly understood. We used the rotifer Brachionus manjavacas as a model animal to probe the regulation of TOR and JNK pathways and explore their interaction. The effect of various chemical inhibitors was examined in life table and stressor challenge experiments. A survey of 12 inhibitors revealed two, rapamycin and JNK inhibitor, that significantly extended lifespan of B. manjavacas. At 1 μM concentration, exposure to rapamycin or JNK inhibitor extended mean rotifer lifespan by 35% and maximum lifespan by 37%. Exposure to both rapamycin and JNK inhibitor simultaneously extended mean rotifer lifespan by 65% more than either alone. Exposure to a combination of rapamycin and JNK inhibitors conveyed greater protection to starvation, UV and osmotic stress than either inhibitor alone. RNAi knockdown of TOR and JNK gene expression was investigated for its ability to extend rotifer lifespan. RNAi knockdown of the TOR gene resulted in 29% extension of the mean lifespan compared to control and knockdown of the JNK gene resulted in 51% mean lifespan extension. In addition to the lifespan, we quantified mitochondria activity using the fluorescent

  12. Green Tea Polyphenols Extend the Lifespan of Male Drosophila melanogaster While Impairing Reproductive Fitness

    PubMed Central

    Lopez, Terry; Schriner, Samuel E.; Okoro, Michael; Lu, David; Chiang, Beatrice T.; Huey, Jocelyn

    2014-01-01

    Abstract Green tea is a popular beverage believed to have many health benefits, including a reduction in the risks of heart disease and cancer. Rich in polyphenolic compounds known as catechins, green tea and its components have been shown to increase the lifespan of various animal models, including Drosophila melanogaster. Here, we investigated the gender-specific effects of green tea on the lifespan of fruit flies and observed that green tea extended the lifespan of male flies only. This effect was found to be independent of typical aging interventions, such as dietary restriction, modulation of oxidative energy metabolism, and improved tolerance to environmental stresses. The one exception was that green tea did protect male flies against iron toxicity. Since there is an inverse correlation between lifespan and reproduction, the impact of green tea on male reproductive fitness was also investigated. We found that green tea negatively impacted male fertility as shown by a reduced number of offspring produced and increased mating latency. We further identified that the lifespan extension properties of green tea was only observed in the presence of females which alludes to a reproductive (or mating) dependent mechanism. Our findings suggest that green tea extends the lifespan of male flies by inhibiting reproductive potential, possibly by limiting iron uptake. To our knowledge, our study is the first to report the negative impact of green tea on Drosophila male reproduction. Our results also support previous studies that suggest that green tea might have a negative effect on reproductive fitness in humans. PMID:25058464

  13. Green tea polyphenols extend the lifespan of male drosophila melanogaster while impairing reproductive fitness.

    PubMed

    Lopez, Terry; Schriner, Samuel E; Okoro, Michael; Lu, David; Chiang, Beatrice T; Huey, Jocelyn; Jafari, Mahtab

    2014-12-01

    Green tea is a popular beverage believed to have many health benefits, including a reduction in the risks of heart disease and cancer. Rich in polyphenolic compounds known as catechins, green tea and its components have been shown to increase the lifespan of various animal models, including Drosophila melanogaster. Here, we investigated the gender-specific effects of green tea on the lifespan of fruit flies and observed that green tea extended the lifespan of male flies only. This effect was found to be independent of typical aging interventions, such as dietary restriction, modulation of oxidative energy metabolism, and improved tolerance to environmental stresses. The one exception was that green tea did protect male flies against iron toxicity. Since there is an inverse correlation between lifespan and reproduction, the impact of green tea on male reproductive fitness was also investigated. We found that green tea negatively impacted male fertility as shown by a reduced number of offspring produced and increased mating latency. We further identified that the lifespan extension properties of green tea was only observed in the presence of females which alludes to a reproductive (or mating) dependent mechanism. Our findings suggest that green tea extends the lifespan of male flies by inhibiting reproductive potential, possibly by limiting iron uptake. To our knowledge, our study is the first to report the negative impact of green tea on Drosophila male reproduction. Our results also support previous studies that suggest that green tea might have a negative effect on reproductive fitness in humans.

  14. Osh6 overexpression extends the lifespan of yeast by increasing vacuole fusion.

    PubMed

    Gebre, Senetibeb; Connor, Richard; Xia, Yufeng; Jawed, Sanaa; Bush, John M; Bard, Martin; Elsalloukh, Hassan; Tang, Fusheng

    2012-06-01

    In yeast cells, the vacuole divides and fuses in each round of cell cycle. While mutants defective in vacuole fusion are "wild type" for vegetative growth, most have shortened replicative lifespans under caloric restriction (CR) condition, a manipulation that extends lifespan in wild type cells. To explore whether vacuole fusion extends lifespan, we screened for genes that can complement the fusion defect of selected mutants (erg6Δ, a sterol mutant; nyv1Δ,  a mutant involved in the vacuolar SNARE complex and vac8Δ, a vacuolar membrane protein mutant). This screen revealed that Osh6, a member of the oxysterol-binding protein family, can complement the vacuole fusion defect of nyv1Δ, but not erg6Δ or vac8Δ, suggesting that Osh6's function in vacuole fusion is partly dependent on membrane ergosterol and Vac8. To measure the effect of OSH6 on lifespan, we replaced the endogenous promoter of OSH6 with a shorter version of the ERG6 promoter to obtain PERG6-OSH6. This mutant construct significantly extended the replicative lifespan in a wild type background and in a nyv1Δ mutant. Interestingly, PERG6-OSH6 cells were more sensitive to drugs that inhibit the activity of the TOR complex 1 (TORC1) than wild type cells. Moreover, a PERG6-OSH6 tor1Δ double mutant demonstrated a greatly shortened lifespan, suggesting a genetic interaction between Osh6 and Tor1. Since active TORC1 stimulates vacuole scission and CR downregulates TORC1, Osh6 may link these two pathways by adjusting vacuolar membrane organization to extend lifespan.

  15. Dietary restriction depends on nutrient composition to extend chronological lifespan in budding yeast Saccharomyces cerevisiae.

    PubMed

    Wu, Ziyun; Liu, Shao Quan; Huang, Dejian

    2013-01-01

    The traditional view on dietary restriction has been challenged with regard to extending lifespan of the fruit fly Drosophila melanogaster. This is because studies have shown that changing the balance of dietary components without reduction of dietary intake can increase lifespan, suggesting that nutrient composition other than dietary restriction play a pivotal role in regulation of longevity. However, this opinion has not been reflected in yeast aging studies. Inspired by this new finding, response surface methodology was applied to evaluate the relationships between nutrients (glucose, amino acids and yeast nitrogen base) and lifespan as well as biomass production in four Saccharomyces cerevisiae strains (wild-type BY4742, sch9Δ, tor1Δ, and sir2Δ mutants) using a high throughput screening assay. Our results indicate that lifespan extension by a typical dietary restriction regime was dependent on the nutrients in media and that nutrient composition was a key determinant for yeast longevity. Four different yeast strains were cultured in various media, which showed similar response surface trends in biomass production and viability at day two but greatly different trends in lifespan. The pH of aging media was dependent on glucose concentration and had no apparent correlation with lifespan under conditions where amino acids and YNB were varied widely, and simply buffering the pH of media could extend lifespan significantly. Furthermore, the results showed that strain sch9Δ was more responsive in nutrient-sensing than the other three strains, suggesting that Sch9 (serine-threonine kinase pathway) was a major nutrient-sensing factor that regulates cell growth, cell size, metabolism, stress resistance and longevity. Overall, our findings support the notion that nutrient composition might be a more effective way than simple dietary restriction to optimize lifespan and biomass production from yeast to other organisms.

  16. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins.

    PubMed

    Smith, Daniel L; McClure, Julie M; Matecic, Mirela; Smith, Jeffrey S

    2007-10-01

    Calorie restriction (CR) extends the mean and maximum lifespan of a wide variety of organisms ranging from yeast to mammals, although the molecular mechanisms of action remain unclear. For the budding yeast Saccharomyces cerevisiae reducing glucose in the growth medium extends both the replicative and chronological lifespans (CLS). The conserved NAD(+)-dependent histone deacetylase, Sir2p, promotes replicative longevity in S. cerevisiae by suppressing recombination within the ribosomal DNA locus and has been proposed to mediate the effects of CR on aging. In this study, we investigated the functional relationships of the yeast Sirtuins (Sir2p, Hst1p, Hst2p, Hst3p and Hst4p) with CLS and CR. SIR2, HST2, and HST4 were not major regulators of CLS and were not required for the lifespan extension caused by shifting the glucose concentration from 2 to 0.5% (CR). Deleting HST1 or HST3 moderately shortened CLS, but did not prevent CR from extending lifespan. CR therefore works through a Sirtuin-independent mechanism in the chronological aging system. We also show that low temperature or high osmolarity additively extends CLS when combined with CR, suggesting that these stresses and CR act through separate pathways. The CR effect on CLS was not specific to glucose. Restricting other simple sugars such as galactose or fructose also extended lifespan. Importantly, growth on nonfermentable carbon sources that force yeast to exclusively utilize respiration extended lifespan at nonrestricted concentrations and provided no additional benefit when restricted, suggesting that elevated respiration capacity is an important determinant of chronological longevity.

  17. Rhodiola rosea extends lifespan and improves stress tolerance in silkworm, Bombyx mori.

    PubMed

    Chen, Cong; Song, Jiangbo; Chen, Min; Li, Zhiquan; Tong, Xiaoling; Hu, Hai; Xiang, Zhonghuai; Lu, Cheng; Dai, Fangyin

    2016-04-01

    The root of Rhodiola rosea is widely used in Traditional Chinese Medicine. The extract from R. rosea is reported to extend the lifespan of yeast, nematode, and fruit fly. However, the molecular mechanism is not fully understood. Here, we tested whether R. rosea extends the lifespan of the silkworm. An aqueous extract of R. rosea significantly prolonged the lifespan of the silkworm, without affecting its daily food intake, body weight, or fecundity, suggesting that R. rosea did not exhibit obvious side effects. Rhodiola rosea extract also enhanced the stress resistance in the silkworm, against heat stress (37 °C) and starvation. The R. rosea extract increased the activity of the major antioxidant enzymes, glutathione S-transferase and catalase, and altered the content of glutathione and malondialdehyde. Rhodiola rosea increased the expression of BmFoxO, which is a downstream regulator of insulin/IGF-1 signaling (IIS) pathway in the silkworm. Our results showed that R. rosea extends lifespan, in which IIS pathway might be involved, and enhances stress resistance in the silkworm. Thus, the silkworm might be used as a novel animal model for lifespan study and efficacy evaluation of Traditional Chinese Medicines.

  18. Procyanidins from apples (Malus pumila Mill.) extend the lifespan of Caenorhabditis elegans.

    PubMed

    Sunagawa, Tadahiro; Shimizu, Takahiko; Kanda, Tomomasa; Tagashira, Motoyuki; Sami, Manabu; Shirasawa, Takuji

    2011-01-01

    Apple polyphenols (AP) mainly consist of procyanidins (PC), which are composed of (-)-epicatechins and (+)-catechins. In order to investigate the antiageing effects of PC, we measured the lifespan of CAENORHABDITIS ELEGANS worms treated with PC. Treatment with 65 µg/mL PC extended the mean lifespan of wild-type N2 and FEM-1 worms by 12.1 % and 8.4 %, respectively, i.e., to a similar extent as resveratrol. In addition, treatment with 100 µg/mL AP also significantly prolonged the mean lifespan of the same worms by 12.0 % and 5.3 %, respectively, i.e., to a similar extent as PC. In contrast, treatment with (-)-epicatechin did not extend the lifespan of the worms. PC did not modify the growth, food intake, or fecundity of C. elegans. Treatment with PC did not extend the lifespan of MEV-1 worms, which show excessive oxidative stress, indicating that PC had no antioxidant ability in the MEV-1 mutant. Moreover, treatment with PC had no effect on the longevity of SIR-2.1 worms, which lack the activity of SIR-2, a member of the sirtuin family of NAD (+)-dependent protein deacetylases. These results indicated that PC has SIR-2.1-dependent antiageing effects on C. elegans.

  19. Rhodiola rosea extends lifespan and improves stress tolerance in silkworm, Bombyx mori.

    PubMed

    Chen, Cong; Song, Jiangbo; Chen, Min; Li, Zhiquan; Tong, Xiaoling; Hu, Hai; Xiang, Zhonghuai; Lu, Cheng; Dai, Fangyin

    2016-04-01

    The root of Rhodiola rosea is widely used in Traditional Chinese Medicine. The extract from R. rosea is reported to extend the lifespan of yeast, nematode, and fruit fly. However, the molecular mechanism is not fully understood. Here, we tested whether R. rosea extends the lifespan of the silkworm. An aqueous extract of R. rosea significantly prolonged the lifespan of the silkworm, without affecting its daily food intake, body weight, or fecundity, suggesting that R. rosea did not exhibit obvious side effects. Rhodiola rosea extract also enhanced the stress resistance in the silkworm, against heat stress (37 °C) and starvation. The R. rosea extract increased the activity of the major antioxidant enzymes, glutathione S-transferase and catalase, and altered the content of glutathione and malondialdehyde. Rhodiola rosea increased the expression of BmFoxO, which is a downstream regulator of insulin/IGF-1 signaling (IIS) pathway in the silkworm. Our results showed that R. rosea extends lifespan, in which IIS pathway might be involved, and enhances stress resistance in the silkworm. Thus, the silkworm might be used as a novel animal model for lifespan study and efficacy evaluation of Traditional Chinese Medicines. PMID:26497336

  20. Overexpression of Atg5 in mice activates autophagy and extends lifespan

    PubMed Central

    Pyo, Jong-Ok; Yoo, Seung-Min; Ahn, Hye-Hyun; Nah, Jihoon; Hong, Se-Hoon; Kam, Tae-In; Jung, Sunmin; Jung, Yong-Keun

    2013-01-01

    Autophagy has been implicated in the ageing process, but whether autophagy activation extends lifespan in mammals is unknown. Here we show that ubiquitous overexpression of Atg5, a protein essential for autophagosome formation, extends median lifespan of mice by 17.2%. We demonstrate that moderate overexpression of Atg5 in mice enhances autophagy, and that Atg5 transgenic mice showed anti-ageing phenotypes, including leanness, increased insulin sensitivity and improved motor function. Furthermore, mouse embryonic fibroblasts cultured from Atg5 transgenic mice are more tolerant to oxidative damage and cell death induced by oxidative stress, and this tolerance was reversible by treatment with an autophagy inhibitor. Our observations suggest that the leanness and lifespan extension in Atg5 transgenic mice may be the result of increased autophagic activity. PMID:23939249

  1. The metabolite alpha-ketoglutarate extends lifespan by inhibiting the ATP synthase and TOR

    PubMed Central

    Chin, Randall M.; Fu, Xudong; Pai, Melody Y.; Vergnes, Laurent; Hwang, Heejun; Deng, Gang; Diep, Simon; Lomenick, Brett; Meli, Vijaykumar S.; Monsalve, Gabriela C.; Hu, Eileen; Whelan, Stephen A.; Wang, Jennifer X.; Jung, Gwanghyun; Solis, Gregory M.; Fazlollahi, Farbod; Kaweeteerawat, Chitrada; Quach, Austin; Nili, Mahta; Krall, Abby S.; Godwin, Hilary A.; Chang, Helena R.; Faull, Kym F.; Guo, Feng; Jiang, Meisheng; Trauger, Sunia A.; Saghatelian, Alan; Braas, Daniel; Christofk, Heather R.; Clarke, Catherine F.; Teitell, Michael A.; Petrascheck, Michael; Reue, Karen; Jung, Michael E.; Frand, Alison R.; Huang, Jing

    2014-01-01

    Metabolism and ageing are intimately linked. Compared to ad libitum feeding, dietary restriction (DR) or calorie restriction (CR) consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms1,2. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits3,4. Recently, several metabolites have been identified that modulate ageing5,6 with largely undefined molecular mechanisms. Here we show that the tricarboxylic acid (TCA) cycle intermediate α-ketoglutarate (α-KG) extends the lifespan of adult C. elegans. ATP synthase subunit beta is identified as a novel binding protein of α-KG using a small-molecule target identification strategy called DARTS (drug affinity responsive target stability)7. The ATP synthase, also known as Complex V of the mitochondrial electron transport chain (ETC), is the main cellular energy-generating machinery and is highly conserved throughout evolution8,9. Although complete loss of mitochondrial function is detrimental, partial suppression of the ETC has been shown to extend C. elegans lifespan10–13. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit beta and is dependent on the target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased upon starvation and α-KG does not extend the lifespan of DR animals, indicating that α-KG is a key metabolite that mediates longevity by DR. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator, and DR in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases. PMID:24828042

  2. The Nestor Effect: Extending Evolutionary Developmental Psychology to a Lifespan Perspective

    ERIC Educational Resources Information Center

    Greve, Werner; Bjorklund, David F.

    2009-01-01

    We extend an evolutionary perspective of development to the lifespan, proposing that human longevity may be related to the experience, knowledge, and wisdom provided by older members of human groups. In addition to the assistance in childcare provided by grandmothers to their daughters, the experience of wise elders could have served to benefit…

  3. Antioxidants can extend lifespan of Brachionus manjavacas (Rotifera), but only in a few combinations.

    PubMed

    Snell, Terry W; Fields, Allison M; Johnston, Rachel K

    2012-06-01

    Animal cells are protected from oxidative damage by an antioxidant network operating as a coordinated system, with strong synergistic interactions. Lifespan studies with whole animals are expensive and laborious, so there has been little investigation of which antioxidant interactions might be useful for life extension. Animals in the phylum Rotifera are particularly promising models for aging studies because they are small (0.1-1 mm), have short, two-week lifespan, display typical patterns of animal aging, and have well characterized, easy to measure phenotypes of aging and senescence. One class of interventions that has consistently produced significant rotifer life extension is antioxidants. Although the mechanism of antioxidant effects on animal aging remains controversial, the ability of some antioxidant supplements to extend rotifer lifespan was unequivocal. We found that exposing rotifers to certain combinations of antioxidant supplements can produce up to about 20% longer lifespan, but that most antioxidants have no effect. We performed life table tests with 20 single antioxidants and none yielded significant rotifer life extension. We tested 60 two-way combinations of selected antioxidants and only seven (12%) produced significant rotifer life extension. None of the 20 three- and four-way antioxidant combinations tested yielded significant rotifer life extension. These observations suggest that dietary exposure of antioxidants can extend rotifer lifespan, but most antioxidants do not. We observed significant rotifer life extension only when antioxidants were paired with trolox, N-acetyl cysteine, L: -carnosine, or EUK-8. This illustrates that antioxidant treatments capable of rotifer life extension are patchily distributed in the parameter space, so large regions must be searched to find them. It furthermore underscores the value of the rotifer model to conduct rapid, facile life table experiments with many treatments, which makes such a search feasible

  4. Reevaluation of whether a soma–to–germ-line transformation extends lifespan in Caenorhabditis elegans

    PubMed Central

    Knutson, Andrew Kekūpa'a; Rechtsteiner, Andreas; Strome, Susan

    2016-01-01

    The germ lineage is considered to be immortal. In the quest to extend lifespan, a possible strategy is to drive germ-line traits in somatic cells, to try to confer some of the germ lineage’s immortality on the somatic body. Notably, a study in Caenorhabditis elegans suggested that expression of germ-line genes in the somatic cells of long-lived daf-2 mutants confers some of daf-2’s long lifespan. Specifically, mRNAs encoding components of C. elegans germ granules (P granules) were up-regulated in daf-2 mutant worms, and knockdown of individual P-granule and other germ-line genes in daf-2 young adults modestly reduced their lifespan. We investigated the contribution of a germ-line program to daf-2’s long lifespan and also tested whether other mutants known to express germ-line genes in their somatic cells are long-lived. Our key findings are as follows. (i) We could not detect P-granule proteins in the somatic cells of daf-2 mutants by immunostaining or by expression of a P-granule transgene. (ii) Whole-genome transcript profiling of animals lacking a germ line revealed that germ-line transcripts are not up-regulated in the soma of daf-2 worms compared with the soma of control worms. (iii) Simultaneous removal of multiple P-granule proteins or the entire germ-line program from daf-2 worms did not reduce their lifespan. (iv) Several mutants that robustly express a broad spectrum of germ-line genes in their somatic cells are not long-lived. Together, our findings argue against the hypothesis that acquisition of a germ-cell program in somatic cells increases lifespan and contributes to daf-2’s long lifespan. PMID:26976573

  5. Reevaluation of whether a soma-to-germ-line transformation extends lifespan in Caenorhabditis elegans.

    PubMed

    Knutson, Andrew Kekūpa'a; Rechtsteiner, Andreas; Strome, Susan

    2016-03-29

    The germ lineage is considered to be immortal. In the quest to extend lifespan, a possible strategy is to drive germ-line traits in somatic cells, to try to confer some of the germ lineage's immortality on the somatic body. Notably, a study in Caenorhabditis elegans suggested that expression of germ-line genes in the somatic cells of long-lived daf-2 mutants confers some of daf-2's long lifespan. Specifically, mRNAs encoding components of C. elegans germ granules (P granules) were up-regulated in daf-2 mutant worms, and knockdown of individual P-granule and other germ-line genes in daf-2 young adults modestly reduced their lifespan. We investigated the contribution of a germ-line program to daf-2's long lifespan and also tested whether other mutants known to express germ-line genes in their somatic cells are long-lived. Our key findings are as follows. (i) We could not detect P-granule proteins in the somatic cells of daf-2 mutants by immunostaining or by expression of a P-granule transgene. (ii) Whole-genome transcript profiling of animals lacking a germ line revealed that germ-line transcripts are not up-regulated in the soma of daf-2 worms compared with the soma of control worms. (iii) Simultaneous removal of multiple P-granule proteins or the entire germ-line program from daf-2 worms did not reduce their lifespan. (iv) Several mutants that robustly express a broad spectrum of germ-line genes in their somatic cells are not long-lived. Together, our findings argue against the hypothesis that acquisition of a germ-cell program in somatic cells increases lifespan and contributes to daf-2's long lifespan.

  6. Autophagy induction extends lifespan and reduces lipid content in response to frataxin silencing in C. elegans

    PubMed Central

    Schiavi, Alfonso; Torgovnick, Alessandro; Kell, Alison; Megalou, Evgenia; Castelein, Natascha; Guccini, Ilaria; Marzocchella, Laura; Gelino, Sara; Hansen, Malene; Malisan, Florence; Condò, Ivano; Bei, Roberto; Rea, Shane L.; Braeckman, Bart P.; Tavernarakis, Nektarios; Testi, Roberto; Ventura, Natascia

    2013-01-01

    Severe mitochondria deficiency leads to a number of devastating degenerative disorders, yet, mild mitochondrial dysfunction in different species, including the nematode Caenorhabditis elegans, can have pro-longevity effects. This apparent paradox indicates that cellular adaptation to partial mitochondrial stress can induce beneficial responses, but how this is achieved is largely unknown. Complete absence of frataxin, the mitochondrial protein defective in patients with Friedreich's ataxia, is lethal in C. elegans, while its partial deficiency extends animal lifespan in a p53 dependent manner. In this paper we provide further insight into frataxin control of C. elegans longevity by showing that a substantial reduction of frataxin protein expression is required to extend lifespan, affect sensory neurons functionality, remodel lipid metabolism and trigger autophagy. We find that Beclin and p53 genes are required to induce autophagy and concurrently reduce lipid storages and extend animal lifespan in response to frataxin suppression. Reciprocally, frataxin expression modulates autophagy in the absence of p53. Human Friedreich ataxia-derived lymphoblasts also display increased autophagy, indicating an evolutionarily conserved response to reduced frataxin expression. In sum, we demonstrate a causal connection between induction of autophagy and lifespan extension following reduced frataxin expression, thus providing the rationale for investigating autophagy in the pathogenesis and treatment of Friedreich's ataxia and possibly other human mitochondria-associated disorders. PMID:23247094

  7. Glycerol extends lifespan of Brachionus manjavacas (Rotifera) and protects against stressors.

    PubMed

    Snell, Terry W; Johnston, Rachel K

    2014-09-01

    Diet has profound effects on animal longevity and manipulation of nutrient sensing pathways is one of the primary interventions capable of lifespan extension. This often is done through caloric restriction (CR) and a variety of CR mimics have been identified that produce life extending effects without adhering to the rigorous CR dietary regimen. Glycerol is a dietary supplement capable mimicking CR by shifting metabolism away from glycolysis and towards oxidative phosphorylation. Glycerol supplementation has a number of beneficial effects, including lifespan extension, improved stress resistance, and enhanced locomotory and mitochondria activity in older age classes. Using rotifers as a model, we show that supplements of 150-300mM glycerol produced 40-50% extension of mean lifespan. This effect was produced by raising glycerol concentration only three times higher than its baseline concentration in rotifer tissues. Glycerol supplementation decreased rotifer reliance on glycolysis and reduced the pro-aging effects of glucose. Glycerol also acted as a chemical chaperone, mitigating damage by protein aggregation. Glycerol treatment improved rotifer swimming performance in older age classes and maintained more mitochondrial activity. Glycerol treatment provided increased resistance to starvation, heat, oxidation, and osmotic stress, but not UV stress. When glycerol was co-administered with the hexokinase inhibitor 2-deoxyglucose, the lifespan extending effect of glycerol was enhanced. Co-administration of glycerol with inhibitors like 2-deoxyglucose can lower their efficacious doses, thereby reducing their toxic side effects.

  8. Lifespan Extending and Stress Resistant Properties of Vitexin from Vigna angularis in Caenorhabditis elegans.

    PubMed

    Lee, Eun Byeol; Kim, Jun Hyeong; Cha, Youn-Soo; Kim, Mina; Song, Seuk Bo; Cha, Dong Seok; Jeon, Hoon; Eun, Jae Soon; Han, Sooncheon; Kim, Dae Keun

    2015-11-01

    Several theories emphasize that aging is closely related to oxidative stress and disease. The formation of excess ROS can lead to DNA damage and the acceleration of aging. Vigna angularis is one of the important medicinal plants in Korea. We isolated vitexin from V. angularis and elucidated the lifespan-extending effect of vitexin using the Caenorhabditis elegans model system. Vitexin showed potent lifespan extensive activity and it elevated the survival rates of nematodes against the stressful environments including heat and oxidative conditions. In addition, our results showed that vitexin was able to elevate antioxidant enzyme activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner. These studies demonstrated that the increased stress tolerance of vitexin-mediated nematode could be attributed to increased expressions of stress resistance proteins such as superoxide dismutase (SOD-3) and heat shock protein (HSP-16.2). In this work, we also studied whether vitexin-mediated longevity activity was associated with aging-related factors such as progeny, food intake, growth and movement. The data revealed that these factors were not affected by vitexin treatment except movement. Vitexin treatment improved the body movement of aged nematode, suggesting vitexin affects healthspan as well as lifespan of nematode. These results suggest that vitexin might be a probable candidate which could extend the human lifespan.

  9. Lifespan Extending and Stress Resistant Properties of Vitexin from Vigna angularis in Caenorhabditis elegans

    PubMed Central

    Lee, Eun Byeol; Kim, Jun Hyeong; Cha, Youn-Soo; Kim, Mina; Song, Seuk Bo; Cha, Dong Seok; Jeon, Hoon; Eun, Jae Soon; Han, Sooncheon; Kim, Dae Keun

    2015-01-01

    Several theories emphasize that aging is closely related to oxidative stress and disease. The formation of excess ROS can lead to DNA damage and the acceleration of aging. Vigna angularis is one of the important medicinal plants in Korea. We isolated vitexin from V. angularis and elucidated the lifespan-extending effect of vitexin using the Caenorhabditis elegans model system. Vitexin showed potent lifespan extensive activity and it elevated the survival rates of nematodes against the stressful environments including heat and oxidative conditions. In addition, our results showed that vitexin was able to elevate antioxidant enzyme activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner. These studies demonstrated that the increased stress tolerance of vitexin-mediated nematode could be attributed to increased expressions of stress resistance proteins such as superoxide dismutase (SOD-3) and heat shock protein (HSP-16.2). In this work, we also studied whether vitexin-mediated longevity activity was associated with aging-related factors such as progeny, food intake, growth and movement. The data revealed that these factors were not affected by vitexin treatment except movement. Vitexin treatment improved the body movement of aged nematode, suggesting vitexin affects healthspan as well as lifespan of nematode. These results suggest that vitexin might be a probable candidate which could extend the human lifespan. PMID:26535084

  10. rBTI extends Caenorhabditis elegans lifespan by mimicking calorie restriction.

    PubMed

    Li, Jiao; Cui, Xiaodong; Wang, Zhuanhua; Li, Yuying

    2015-07-01

    Buckwheat trypsin inhibitor (BTI) is a low molecular weight polypeptide extracted from buckwheat. This study examined the effects of BTI on the lifespan of Caenorhabditis elegans (C. elegans) and investigated the mechanism involved. Our results showed that recombinant BTI (rBTI) extended life expectancy by mimicking calorie restriction (CR) in C. elegans. rBTI promoted formation of reactive oxygen species (ROS) via increasing respiration, induced activities of ROS defense enzymes by activating DAF-16, and increased oxidative stress resistance and survival rates. The inhibition of ROS signal by antioxidants reduced rBTI-mediated longevity by up to 65%. Moreover, it was shown that the disruption of daf-2 abolished the extension of the lifespan and the increased ROS. Taken together, these data indicate that rBTI-mediated longevity mimics CR by down-regulating insulin/IGF-1 signaling (IIS) pathway, implying that BTI has the potential to be a novel anti-aging drug. PMID:25959406

  11. Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan.

    PubMed

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2016-02-10

    Compartmentalization of the gastrointestinal (GI) tract of metazoans is critical for health. GI compartments contain specific microbiota, and microbiota dysbiosis is associated with intestinal dysfunction. Dysbiosis develops in aging intestines, yet how this relates to changes in GI compartmentalization remains unclear. The Drosophila GI tract is an accessible model to address this question. Here we show that the stomach-like copper cell region (CCR) in the middle midgut controls distribution and composition of the microbiota. We find that chronic activation of JAK/Stat signaling in the aging gut induces a metaplasia of the gastric epithelium, CCR decline, and subsequent commensal dysbiosis and epithelial dysplasia along the GI tract. Accordingly, inhibition of JAK/Stat signaling in the CCR specifically prevents age-related metaplasia, commensal dysbiosis and functional decline in old guts, and extends lifespan. Our results establish a mechanism by which age-related chronic inflammation causes the decline of intestinal compartmentalization and microbiota dysbiosis, limiting lifespan. PMID:26867182

  12. Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan.

    PubMed

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2016-02-10

    Compartmentalization of the gastrointestinal (GI) tract of metazoans is critical for health. GI compartments contain specific microbiota, and microbiota dysbiosis is associated with intestinal dysfunction. Dysbiosis develops in aging intestines, yet how this relates to changes in GI compartmentalization remains unclear. The Drosophila GI tract is an accessible model to address this question. Here we show that the stomach-like copper cell region (CCR) in the middle midgut controls distribution and composition of the microbiota. We find that chronic activation of JAK/Stat signaling in the aging gut induces a metaplasia of the gastric epithelium, CCR decline, and subsequent commensal dysbiosis and epithelial dysplasia along the GI tract. Accordingly, inhibition of JAK/Stat signaling in the CCR specifically prevents age-related metaplasia, commensal dysbiosis and functional decline in old guts, and extends lifespan. Our results establish a mechanism by which age-related chronic inflammation causes the decline of intestinal compartmentalization and microbiota dysbiosis, limiting lifespan.

  13. Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53+/- mice.

    PubMed

    Komarova, Elena A; Antoch, Marina P; Novototskaya, Liliya R; Chernova, Olga B; Paszkiewicz, Geraldine; Leontieva, Olga V; Blagosklonny, Mikhail V; Gudkov, Andrei V

    2012-10-01

    TOR (Target of Rapamycin) pathway accelerates cellular and organismal aging. Similar to rapamycin, p53 can inhibit the mTOR pathway in some mammalian cells. Mice lacking one copy of p53 (p53+/- mice) have an increased cancer incidence and a shorter lifespan. We hypothesize that rapamycin can delay cancer in heterozygous p53+/- mice. Here we show that rapamycin (given in a drinking water) extended the mean lifespan of p53+/- mice by 10% and when treatment started early in life (at the age less than 5 months) by 28%. In addition, rapamycin decreased the incidence of spontaneous tumors. This observation may have applications in management of Li-Fraumeni syndrome patients characterized by heterozygous mutations in the p53 gene.

  14. Genetic perturbation of key central metabolic genes extends lifespan in Drosophila and affects response to dietary restriction.

    PubMed

    Talbert, Matthew E; Barnett, Brittany; Hoff, Robert; Amella, Maria; Kuczynski, Kate; Lavington, Erik; Koury, Spencer; Brud, Evgeny; Eanes, Walter F

    2015-09-22

    There is a connection between nutrient inputs, energy-sensing pathways, lifespan variation and aging. Despite the role of metabolic enzymes in energy homeostasis and their metabolites as nutrient signals, little is known about how their gene expression impacts lifespan. In this report, we use P-element mutagenesis in Drosophila to study the effect on lifespan of reductions in expression of seven central metabolic enzymes, and contrast the effects on normal diet and dietary restriction. The major observation is that for five of seven genes, the reduction of gene expression extends lifespan on one or both diets. Two genes are involved in redox balance, and we observe that lower activity genotypes significantly extend lifespan. The hexokinases also show extension of lifespan with reduced gene activity. Since both affect the ATP/ADP ratio, this connects with the role of AMP-activated protein kinase as an energy sensor in regulating lifespan and mediating caloric restriction. These genes possess significant expression variation in natural populations, and our experimental genotypes span this level of natural activity variation. Our studies link the readout of energy state with the perturbation of the genes of central metabolism and demonstrate their effect on lifespan.

  15. A New Schizosaccharomyces pombe Chronological Lifespan Assay Reveals that Caloric Restriction Promotes Efficient Cell Cycle Exit and Extends Longevity

    PubMed Central

    Chen, Bo-Ruei; Runge, Kurt W.

    2009-01-01

    We describe a new chronological lifespan (CLS) assay for the yeast Schizosaccharomyces pombe. Yeast CLS assays monitor the loss of cell viability in a culture over time, and this new assay shows a continuous decline in viability without detectable regrowth until all cells in the culture are dead. Thus, the survival curve is not altered by the generation of mutants that can grow during the experiments, and one can monitor the entire lifespan of a strain until the number of viable cells has decreased over 106-fold. This CLS assay recapitulates the evolutionarily conserved features of lifespan shortening by over nutrition, lifespan extension by caloric restriction, increased stress resistance of calorically restricted cells and lifespan control by the AKT kinases. Both S. pombe AKT kinase orthologs regulate CLS: loss of sck1+ extended lifespan in over nutrition conditions, loss of sck2+ extended lifespan under both normal and over nutrition conditions, and loss of both genes showed that sck1+ and sck2+ control different longevity pathways. The longest-lived S. pombe cells showed the most efficient cell cycle exit, demonstrating that caloric restriction links these two processes. This new S. pombe CLS assay will provide a valuable tool for aging research. PMID:19409973

  16. New nanoformulation of rapamycin Rapatar extends lifespan in homozygous p53-/- mice by delaying carcinogenesis.

    PubMed

    Comas, Maria; Toshkov, Ilia; Kuropatwinski, Karen K; Chernova, Olga B; Polinsky, Alexander; Blagosklonny, Mikhail V; Gudkov, Andrei V; Antoch, Marina P

    2012-10-01

    The nutrient-sensing mTOR (mammalian Target of Rapamycin) pathway regulates cellular metabolism, growth functions, and proliferation and is involved in age-related diseases including cancer, type 2 diabetes, neurodegeneration and cardiovascular disease. The inhibition of mTOR by rapamycin, or calorie restriction, has been shown to extend lifespan and delays tumorigenesis in several experimental models suggesting that rapamycin may be used for cancer prevention. This requires continuous long-term treatment making oral formulations the preferred choice of administration route. However, rapamycin by itself has very poor water solubility and low absorption rate. Here we describe pharmacokinetic and biological properties of novel nanoformulated micelles of rapamycin, Rapatar. Micelles of Rapatar were rationally designed to increase water solubility of rapamycin to facilitate oral administration and to enhance its absorption. As a result, bioavailability of Rapatar was significantly increased (up to 12%) compared to unformulated rapamycin, which concentration in the blood following oral administration remained below level of detection. We also demonstrated that the new formulation does not induce toxicity during lifetime administration. Most importantly, Rapatar extended the mean lifespan by 30% and delayed tumor development in highly tumor-prone p53-/- mice. Our data demonstrate that water soluble Rapatar micelles represent safe, convenient and efficient form of rapamycin suitable for a long-term treatment and that Rapatar may be considered for tumor prevention.

  17. Pediatric ingestion of lamotrigine.

    PubMed

    Zidd, Andrea G; Hack, Jason B

    2004-07-01

    A 3-year-old female presented to the emergency department after ingesting forty-six 25-mg tablets of lamotrigine that resulted in sedation, rash, and transient elevation of liver function tests. Her initial physical examination was significant for marked somnolence and a lacy reticular blanching rash. Laboratory studies were all within normal limits except for mildly elevated liver function tests. Initial plasma lamotrigine level was found to be elevated above adult therapeutic levels (25.3 microg/mL). Treatment consisted of gastric lavage followed by activated charcoal. The patient was subsequently observed in the pediatric intensive care unit where symptoms and laboratory abnormalities promptly resolved, and she was discharged 24 hours later without further complication. This case report describes the largest single ingestion of lamotrigine ever reported in a pediatric patient. The patient exhibited significant somnolence, rash, and liver function test abnormalities with only a slight elevation of serum level of lamotrigine above adult therapeutic levels. More research is required to investigate the toxic profile of lamotrigine in pediatric patients.

  18. Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality

    PubMed Central

    Rangaraju, Sunitha; Solis, Gregory M; Thompson, Ryan C; Gomez-Amaro, Rafael L; Kurian, Leo; Encalada, Sandra E; Niculescu, Alexander B; Salomon, Daniel R; Petrascheck, Michael

    2015-01-01

    Longevity mechanisms increase lifespan by counteracting the effects of aging. However, whether longevity mechanisms counteract the effects of aging continually throughout life, or whether they act during specific periods of life, preventing changes that precede mortality is unclear. Here, we uncover transcriptional drift, a phenomenon that describes how aging causes genes within functional groups to change expression in opposing directions. These changes cause a transcriptome-wide loss in mRNA stoichiometry and loss of co-expression patterns in aging animals, as compared to young adults. Using Caenorhabditis elegans as a model, we show that extending lifespan by inhibiting serotonergic signals by the antidepressant mianserin attenuates transcriptional drift, allowing the preservation of a younger transcriptome into an older age. Our data are consistent with a model in which inhibition of serotonergic signals slows age-dependent physiological decline and the associated rise in mortality levels exclusively in young adults, thereby postponing the onset of major mortality. DOI: http://dx.doi.org/10.7554/eLife.08833.001 PMID:26623667

  19. PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan.

    PubMed

    Guo, Linlin; Karpac, Jason; Tran, Susan L; Jasper, Heinrich

    2014-01-16

    Interactions between commensals and the host impact the metabolic and immune status of metazoans. Their deregulation is associated with age-related pathologies like chronic inflammation and cancer, especially in barrier epithelia. Maintaining a healthy commensal population by preserving innate immune homeostasis in such epithelia thus promises to promote health and longevity. Here, we show that, in the aging intestine of Drosophila, chronic activation of the transcription factor Foxo reduces expression of peptidoglycan recognition protein SC2 (PGRP-SC2), a negative regulator of IMD/Relish innate immune signaling, and homolog of the anti-inflammatory molecules PGLYRP1-4. This repression causes deregulation of Rel/NFkB activity, resulting in commensal dysbiosis, stem cell hyperproliferation, and epithelial dysplasia. Restoring PGRP-SC2 expression in enterocytes of the intestinal epithelium, in turn, prevents dysbiosis, promotes tissue homeostasis, and extends lifespan. Our results highlight the importance of commensal control for lifespan of metazoans and identify SC-class PGRPs as longevity-promoting factors.

  20. The absence of a mitochondrial genome in rho0 yeast cells extends lifespan independently of retrograde regulation.

    PubMed

    Woo, Dong Kyun; Poyton, Robert O

    2009-01-01

    The absence of mtDNA in rho0 yeast cells affects both respiration and mitochondrial-nuclear communication (e.g., retrograde regulation, intergenomic signaling, or pleiotropic drug resistance). Previously, it has been reported that some rho0 strains have increased replicative lifespans, attributable to the lack of respiration and retrograde regulation. Here, we have been able to confirm that rho0 cells exhibit increased replicative lifespans but have found that this is not associated with the lack of respiration or reduced oxidative stress but instead, is related to the lack of mtDNA per se in rho0 cells. Also, we find no correlation between the strength of retrograde regulation and lifespan. Furthermore, we find that pdr3- or rtg2- mutations are not responsible for lifespan extension in rho0 cells, ruling out a specific role for PDR3-pleiotropic drug resistance or RGT2-retrograde regulation pathways in the extended lifespans of rho0 cells. Surprisingly, Rtg3p, which acts downstream of Rtg2p, is required for lifespan increase in rho0 cells. Together, these findings indicate that the loss of mtDNA per se and not the lack of respiration lead to extended longevity in rho0 cells. They also suggest that Rtg3p, acting independently of retrograde regulation, mediates this effect, possibly via intergenomic signaling.

  1. Resveratrol extends lifespan and preserves glia but not neurons of the Nothobranchius guentheri optic tectum.

    PubMed

    Genade, T; Lang, D M

    2013-02-01

    Resveratrol is reported as having neuroprotective properties, however, much of this reputation has come from research using disease and injury models of neurodegeneration and not neurodegenerative-ageing. The results published here pertain to the affect resveratrol has on neurodegenerative-ageing. Resveratrol had previously been used to extend the lifespan of Nothobranchius furzeri wherein it preserved cognition and reduced ageing-associated neurodegeneration. No cell-type specific antibodies were then identified which could be used to investigate the nature of the neurodegeneration or resveratrols effect on CNS cells. Using wholemounts stained with SMI31 anti-phospho-neurolament, GA-5 and DAKO Z0334 anti-GFAP antibodies, E587 antiserum against NCAMs and anti-tenascin-R antibodies we determined what cellular changes occurred with age in the optic tectum of Nothobranchius guentheri. We show that resveratrol-treatment extended the lifespan of N. guentheri but did not preserve neuron density of the optic tectum stratum griseum superciale even though it did reduce the proportion of degenerate (SMI31 antigen accumulating) neurons in the optic tectum. Resveratrol-treatment did prevent the ageing-dependent loss of radial glia lining the optic tectum of N. guentheri. The ageing-related loss of NCAM expression and tenascin-R expressing perineuronal nets was also prevented by resveratrol-treatment. Glial and perineuronal density as well as NCAM expression appear to correlate well with age. These results suggest that the anti-ageing properties of resveratrol in vertebrates may be unrelated to the protection of neurons.

  2. Debris-covered glaciers extend the lifespan of water supplies in the European Alps

    NASA Astrophysics Data System (ADS)

    Lardeux, Pierre; Glasser, Neil; Holt, Tom; Hubbard, Bryn

    2016-04-01

    Debris-covered glaciers have a slower melting rate than clean-ice glaciers due to the insulating effect of their debris layer. In the European Alps, debris-covered glaciers have received little attention due to their small contribution to sea-level rise. However, glaciers provide water supplies for the five main watersheds draining the European Alps (Danube, Rhine, Rhone, Po and Adige, in order of size), an area inhabited by more than 145 million people (20% of Europe's population). It is unclear what volume of ice (and so quantity of potential meltwater) is affected by a debris layer, and what the effect of this layer is for water resources in the Alps. Combining the Randolph Glacier Inventory (RGI) and online imagery services, we calculated that more than 40% of ice volume in the Alps is influenced by debris cover. In this presentation, we will show the different elements leading to this number, including our evaluation of the RGI, the volume calculation method and what percentage of ice is actually covered (0.6 to 99% of glacier surface area). Our analysis has allowed a comprehensive understanding of the debris-covered glaciers in each watershed by revealing their distribution (i.e. where they will extend water supply lifespan), and hypsometry and equilibrium line altitude (how sensitive they are to climate change). The prolonged lifespan of water supply is visible at the scale of an individual debris-covered glacier: comparing the evolution of Glacier Noir and Glacier Blanc (France) over the last 150 years indicates that Glacier Noir (debris covered) has retained 2.5 times more ice than Glacier Blanc (clean-ice) under the same climatic conditions. The number of debris-covered glaciers will increase as the >1°C rise in temperature in the European Alps since the start of the 20th Century increases the instability of rock faces and scree slopes. The evolution of these glaciers is therefore likely to have a major impact on human populations. This work shows that

  3. Extending the lifespan and efficacies of immune cells used in adoptive transfer for cancer immunotherapies–A review

    PubMed Central

    Nayar, Sandeep; Dasgupta, Prokar; Galustian, Christine

    2015-01-01

    Cells used in adoptive cell-transfer immunotherapies against cancer include dendritic cells (DCs), natural-killer cells, and CD8+ T-cells. These cells may have limited efficacy due to their lifespan, activity, and immunosuppressive effects of tumor cells. Therefore, increasing longevity and activity of these cells may boost their efficacy. Four cytokines that can extend immune effector-cell longevity are IL-2, IL-7, IL-21, and IL-15. This review will discuss current knowledge on effector-cell lifespans and the mechanisms by which IL-2, IL-7, IL-15, and IL-21 can extend effector-cell longevity. We will also discuss how lifespan and efficacy of these cells can be regulated to allow optimal clinical benefits. PMID:26155387

  4. Moderately lower temperatures greatly extend the lifespan of Brachionus manjavacas (Rotifera): Thermodynamics or gene regulation?

    PubMed

    Johnston, Rachel K; Snell, Terry W

    2016-06-01

    Environmental temperature greatly affects lifespan in a wide variety of animals, but the exact mechanisms underlying this effect are still largely unknown. A moderate temperature decrease from 22°C to 16°C extends the lifespan of the monogonont rotifer Brachionus manjavacas by up to 163%. Thermodynamic effects on metabolism contribute to this increase in longevity, but are not the only cause. When rotifers are exposed to 16°C for four days and then transfered to 22°C, they survive until day 13 at nearly identical rates as rotifers maintained at 16°C continuously. This persistence of the higher survival for nine days after transfer to 22°C suggests that low temperature exposure alters the expression of genes that affect the rate of aging. The relative persistence of the gene regulation effect suggests that it may play an even larger role in slowing aging than the thermodynamic effects. The life extending effects of these short-term low temperature treatments are largest when the exposure happens early in the life cycle, demonstrating the importance of early development. There is no advantage to lowering the temperature below 16°C to 11° or 5°C. Rotifers exposed to 16°C also displayed increased resistance to heat, starvation, oxidative and osmotic stress. Reproductive rates at 16°C were lower than those at 22°C, but because they reproduce longer, there is no significant change in the lifetime fecundity of females. To investigate which genes contribute to these effects, the expression of specific temperature sensing genes was knocked down using RNAi. Of 12 genes tested, RNAi knockdown of four eliminated the survival enhancing effects of the four-day cold treatment: TRP7, forkhead box C, Y-box factor, and ribosomal protein S6. This demonstrates that active gene regulation is an important factor in temperature mediated life extension, and that these particular genes play an integral role in these pathways. As a thermoresponsive sensor, TRP7 may be

  5. Moderately lower temperatures greatly extend the lifespan of Brachionus manjavacas (Rotifera): Thermodynamics or gene regulation?

    PubMed

    Johnston, Rachel K; Snell, Terry W

    2016-06-01

    Environmental temperature greatly affects lifespan in a wide variety of animals, but the exact mechanisms underlying this effect are still largely unknown. A moderate temperature decrease from 22°C to 16°C extends the lifespan of the monogonont rotifer Brachionus manjavacas by up to 163%. Thermodynamic effects on metabolism contribute to this increase in longevity, but are not the only cause. When rotifers are exposed to 16°C for four days and then transfered to 22°C, they survive until day 13 at nearly identical rates as rotifers maintained at 16°C continuously. This persistence of the higher survival for nine days after transfer to 22°C suggests that low temperature exposure alters the expression of genes that affect the rate of aging. The relative persistence of the gene regulation effect suggests that it may play an even larger role in slowing aging than the thermodynamic effects. The life extending effects of these short-term low temperature treatments are largest when the exposure happens early in the life cycle, demonstrating the importance of early development. There is no advantage to lowering the temperature below 16°C to 11° or 5°C. Rotifers exposed to 16°C also displayed increased resistance to heat, starvation, oxidative and osmotic stress. Reproductive rates at 16°C were lower than those at 22°C, but because they reproduce longer, there is no significant change in the lifetime fecundity of females. To investigate which genes contribute to these effects, the expression of specific temperature sensing genes was knocked down using RNAi. Of 12 genes tested, RNAi knockdown of four eliminated the survival enhancing effects of the four-day cold treatment: TRP7, forkhead box C, Y-box factor, and ribosomal protein S6. This demonstrates that active gene regulation is an important factor in temperature mediated life extension, and that these particular genes play an integral role in these pathways. As a thermoresponsive sensor, TRP7 may be

  6. 10-Hydroxy-2-decenoic Acid, the Major Lipid Component of Royal Jelly, Extends the Lifespan of Caenorhabditis elegans through Dietary Restriction and Target of Rapamycin Signaling.

    PubMed

    Honda, Yoko; Araki, Yoko; Hata, Taketoshi; Ichihara, Kenji; Ito, Masafumi; Tanaka, Masashi; Honda, Shuji

    2015-01-01

    Royal jelly (RJ) produced by honeybees has been reported to possess diverse health-beneficial properties and has been implicated to have a function in longevity across diverse species as well as honeybees. 10-Hydroxy-2-decenoic acid (10-HDA), the major lipid component of RJ produced by honeybees, was previously shown to increase the lifespan of Caenorhabditis elegans. The objective of this study is to elucidate signaling pathways that are involved in the lifespan extension by 10-HDA. 10-HDA further extended the lifespan of the daf-2 mutants, which exhibit long lifespan through reducing insulin-like signaling (ILS), indicating that 10-HDA extended lifespan independently of ILS. On the other hand, 10-HDA did not extend the lifespan of the eat-2 mutants, which show long lifespan through dietary restriction caused by a food-intake defect. This finding indicates that 10-HDA extends lifespan through dietary restriction signaling. We further found that 10-HDA did not extend the lifespan of the long-lived mutants in daf-15, which encodes Raptor, a target of rapamycin (TOR) components, indicating that 10-HDA shared some longevity control mechanisms with TOR signaling. Additionally, 10-HDA was found to confer tolerance against thermal and oxidative stress. 10-HDA increases longevity not through ILS but through dietary restriction and TOR signaling in C. elegans.

  7. Mitochondrial reactive oxygen species: Do they extend or shorten animal lifespan?

    PubMed

    Sanz, Alberto

    2016-08-01

    Testing the predictions of the Mitochondrial Free Radical Theory of Ageing (MFRTA) has provided a deep understanding of the role of reactive oxygen species (ROS) and mitochondria in the aging process. However those data, which support MFRTA are in the majority correlative (e.g. increasing oxidative damage with age). In contrast the majority of direct experimental data contradict MFRTA (e.g. changes in ROS levels do not alter longevity as expected). Unfortunately, in the past, ROS measurements have mainly been performed using isolated mitochondria, a method which is prone to experimental artifacts and does not reflect the complexity of the in vivo process. New technology to study different ROS (e.g. superoxide or hydrogen peroxide) in vivo is now available; these new methods combined with state-of-the-art genetic engineering technology will allow a deeper interrogation of, where, when and how free radicals affect aging and pathological processes. In fact data that combine these new approaches, indicate that boosting mitochondrial ROS in lower animals is a way to extend both healthy and maximum lifespan. In this review, I discuss the latest literature focused on the role of mitochondrial ROS in aging, and how these new discoveries are helping to better understand the role of mitochondria in health and disease. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26997500

  8. Growth hormone-releasing hormone disruption extends lifespan and regulates response to caloric restriction in mice

    PubMed Central

    Sun, Liou Y; Spong, Adam; Swindell, William R; Fang, Yimin; Hill, Cristal; Huber, Joshua A; Boehm, Jacob D; Westbrook, Reyhan; Salvatori, Roberto; Bartke, Andrzej

    2013-01-01

    We examine the impact of targeted disruption of growth hormone-releasing hormone (GHRH) in mice on longevity and the putative mechanisms of delayed aging. GHRH knockout mice are remarkably long-lived, exhibiting major shifts in the expression of genes related to xenobiotic detoxification, stress resistance, and insulin signaling. These mutant mice also have increased adiponectin levels and alterations in glucose homeostasis consistent with the removal of the counter-insulin effects of growth hormone. While these effects overlap with those of caloric restriction, we show that the effects of caloric restriction (CR) and the GHRH mutation are additive, with lifespan of GHRH-KO mutants further increased by CR. We conclude that GHRH-KO mice feature perturbations in a network of signaling pathways related to stress resistance, metabolic control and inflammation, and therefore provide a new model that can be used to explore links between GHRH repression, downregulation of the somatotropic axis, and extended longevity. DOI: http://dx.doi.org/10.7554/eLife.01098.001 PMID:24175087

  9. Deletion of microRNA-80 Activates Dietary Restriction to Extend C. elegans Healthspan and Lifespan

    PubMed Central

    Vora, Mehul; Shah, Mitalie; Ostafi, Silvana; Onken, Brian; Xue, Jian; Ni, Julie Zhouli; Gu, Sam; Driscoll, Monica

    2013-01-01

    Caloric/dietary restriction (CR/DR) can promote longevity and protect against age-associated disease across species. The molecular mechanisms coordinating food intake with health-promoting metabolism are thus of significant medical interest. We report that conserved Caenorhabditis elegans microRNA-80 (mir-80) is a major regulator of the DR state. mir-80 deletion confers system-wide healthy aging, including maintained cardiac-like and skeletal muscle-like function at advanced age, reduced accumulation of lipofuscin, and extended lifespan, coincident with induction of physiological features of DR. mir-80 expression is generally high under ad lib feeding and low under food limitation, with most striking food-sensitive expression changes in posterior intestine. The acetyltransferase transcription co-factor cbp-1 and interacting transcription factors daf-16/FOXO and heat shock factor-1 hsf-1 are essential for mir-80(Δ) benefits. Candidate miR-80 target sequences within the cbp-1 transcript may confer food-dependent regulation. Under food limitation, lowered miR-80 levels directly or indirectly increase CBP-1 protein levels to engage metabolic loops that promote DR. PMID:24009527

  10. Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni).

    PubMed

    Fanson, Benjamin G; Weldon, Christopher W; Pérez-Staples, Diana; Simpson, Stephen J; Taylor, Phillip W

    2009-09-01

    Caloric restriction (CR) has been widely accepted as a mechanism explaining increased lifespan (LS) in organisms subjected to dietary restriction (DR), but recent studies investigating the role of nutrients have challenged the role of CR in extending longevity. Fuelling this debate is the difficulty in experimentally disentangling CR and nutrient effects due to compensatory feeding (CF) behaviour. We quantified CF by measuring the volume of solution imbibed and determined how calories and nutrients influenced LS and fecundity in unmated females of the Queensland fruit fly, Bactocera tryoni (Diptera: Tephritidae). We restricted flies to one of 28 diets varying in carbohydrate:protein (C:P) ratios and concentrations. On imbalanced diets, flies overcame dietary dilutions, consuming similar caloric intakes for most dilutions. The response surface for LS revealed that increasing C:P ratio while keeping calories constant extended LS, with the maximum LS along C:P ratio of 21:1. In general, LS was reduced as caloric intake decreased. Lifetime egg production was maximized at a C:P ratio of 3:1. When given a choice of separate sucrose and yeast solutions, each at one of five concentrations (yielding 25 choice treatments), flies regulated their nutrient intake to match C:P ratio of 3:1. Our results (i) demonstrate that CF can overcome dietary dilutions; (ii) reveal difficulties with methods presenting fixed amounts of liquid diet; (iii) illustrate the need to measure intake to account for CF in DR studies and (iv) highlight nutrients rather than CR as a dominant influence on LS.

  11. A C-terminal truncated mutation of spr-3 gene extends lifespan in Caenorhabditis elegans.

    PubMed

    Yang, Ping; Sun, Ruilin; Yao, Minghui; Chen, Weidong; Wang, Zhugang; Fei, Jian

    2013-07-01

    The lifespan of Caenorhabditis elegans is determined by various genetic and environmental factors. In this paper, spr-3, a C. elegans homologous gene of the mammalian neural restrictive silencing factor (NRSF/REST), is reported to be an important gene regulating lifespan of C. elegans. A deletion mutation of spr-3, spr-3(ok2525), or RNAi inhibition of spr-3 expression led to the short lifespan phenotype in C. elegans. However, a nonsense mutation of spr-3, spr-3(by108), increased the lifespan by 26% when compared with that of wild-type nematode. The spr-3(by108) also showed increased resistance to environmental stress. The spr-3(by108) mutated gene encodes a C-terminal truncated protein with a structure comparable with the REST4, a splice variant of the NRSF/REST in mammalian. The long lifespan phenotype of spr-3(by108) mutant is confirmed as a gain of function and dependent on normal functions of daf-16 and glp-1. The lifespan of the spr-3(by108) can be synergistically enhanced by inducing a mutation in daf-2. Quantitative polymerase chain reaction results showed that the expression of daf-16 as well as its target gene sod-3, mtl-1, and sip-1 was up-regulated in the spr-3(by108) mutant. These results would be helpful to further understand the complex function of NRSF/REST gene in mammalian, especially in the aging process and longevity determination. PMID:23692984

  12. Extended lifespan, reduced body size and leg skeletal muscle mass, and decreased mitochondrial function in clk-1 transgenic mice.

    PubMed

    Takahashi, Kazuhide; Noda, Yoshihiro; Ohsawa, Ikuroh; Shirasawa, Takuji; Takahashi, Mayumi

    2014-10-01

    Mutational inactivation of clk-1, which encodes an enzyme necessary for the biosynthesis of coenzyme Q (CoQ), extends the lifespan of Caenorhabditis elegans. However, whether mammalian clk-1 regulates the lifespan of mice is not known because clk-1-deficiencies are embryonic lethal. Here, we investigated the lifespan of clk-1 transgenic mice (Tg96/I), which were rescued from embryonic lethality via the transgenic expression of mouse clk-1. Tg96/I mice lived longer and had smaller bodies than wild-type mice, but Tg96/I mice had CoQ levels equivalent to wild-type mice. The small-sized Tg96/I mice exhibited reduced whole-body oxygen consumption (VO2) during the dark period, and lean leg skeletal muscles with reduced mitochondrial VO2 and ATP content compared with wild-type mice. These findings indicate a close relationship between lifespan extension and decreased mitochondrial function, which was induced by the transgenic expression of clk-1, in leg skeletal muscles that exhibit high metabolic activity. PMID:25106098

  13. Mechanosensory Neuron Aging: Differential Trajectories with Lifespan-Extending Alaskan Berry and Fungal Treatments in Caenorhabditis elegans.

    PubMed

    Scerbak, Courtney; Vayndorf, Elena M; Hernandez, Alicia; McGill, Colin; Taylor, Barbara E

    2016-01-01

    Many nutritional interventions that increase lifespan are also proposed to postpone age-related declines in motor and cognitive function. Potential sources of anti-aging compounds are the plants and fungi that have adapted to extreme environments. We studied the effects of four commonly consumed and culturally relevant Interior Alaska berry and fungus species (bog blueberry, lowbush cranberry, crowberry, and chaga) on the decline in overall health and neuron function and changes in touch receptor neuron morphology associated with aging. We observed increased wild-type Caenorhabditis elegans lifespan and improved markers of healthspan upon treatment with Alaskan blueberry, lowbush cranberry, and chaga extracts. Interestingly, although all three treatments increased lifespan, they differentially affected the development of aberrant morphologies in touch receptor neurons. Blueberry treatments decreased anterior mechanosensory neuron (ALM) aberrations (i.e., extended outgrowths and abnormal cell bodies) while lowbush cranberry treatment increased posterior mechanosensory neuron (PLM) aberrations, namely process branching. Chaga treatment both decreased ALM aberrations (i.e., extended outgrowths) and increased PLM aberrations (i.e., process branching and loops). These results support the large body of knowledge positing that there are multiple cellular strategies and mechanisms for promoting health with age. Importantly, these results also demonstrate that although an accumulation of abnormal neuron morphologies is associated with aging and decreased health, not all of these morphologies are detrimental to neuronal and organismal health. PMID:27486399

  14. Mechanosensory Neuron Aging: Differential Trajectories with Lifespan-Extending Alaskan Berry and Fungal Treatments in Caenorhabditis elegans

    PubMed Central

    Scerbak, Courtney; Vayndorf, Elena M.; Hernandez, Alicia; McGill, Colin; Taylor, Barbara E.

    2016-01-01

    Many nutritional interventions that increase lifespan are also proposed to postpone age-related declines in motor and cognitive function. Potential sources of anti-aging compounds are the plants and fungi that have adapted to extreme environments. We studied the effects of four commonly consumed and culturally relevant Interior Alaska berry and fungus species (bog blueberry, lowbush cranberry, crowberry, and chaga) on the decline in overall health and neuron function and changes in touch receptor neuron morphology associated with aging. We observed increased wild-type Caenorhabditis elegans lifespan and improved markers of healthspan upon treatment with Alaskan blueberry, lowbush cranberry, and chaga extracts. Interestingly, although all three treatments increased lifespan, they differentially affected the development of aberrant morphologies in touch receptor neurons. Blueberry treatments decreased anterior mechanosensory neuron (ALM) aberrations (i.e., extended outgrowths and abnormal cell bodies) while lowbush cranberry treatment increased posterior mechanosensory neuron (PLM) aberrations, namely process branching. Chaga treatment both decreased ALM aberrations (i.e., extended outgrowths) and increased PLM aberrations (i.e., process branching and loops). These results support the large body of knowledge positing that there are multiple cellular strategies and mechanisms for promoting health with age. Importantly, these results also demonstrate that although an accumulation of abnormal neuron morphologies is associated with aging and decreased health, not all of these morphologies are detrimental to neuronal and organismal health. PMID:27486399

  15. Lithocholic acid extends longevity of chronologically aging yeast only if added at certain critical periods of their lifespan

    PubMed Central

    Burstein, Michelle T.; Kyryakov, Pavlo; Beach, Adam; Richard, Vincent R.; Koupaki, Olivia; Gomez-Perez, Alejandra; Leonov, Anna; Levy, Sean; Noohi, Forough; Titorenko, Vladimir I.

    2012-01-01

    Our studies revealed that LCA (lithocholic bile acid) extends yeast chronological lifespan if added to growth medium at the time of cell inoculation. We also demonstrated that longevity in chronologically aging yeast is programmed by the level of metabolic capacity and organelle organization that they developed before entering a quiescent state and, thus, that chronological aging in yeast is likely to be the final step of a developmental program progressing through at least one checkpoint prior to entry into quiescence. Here, we investigate how LCA influences longevity and several longevity-defining cellular processes in chronologically aging yeast if added to growth medium at different periods of the lifespan. We found that LCA can extend longevity of yeast under CR (caloric restriction) conditions only if added at either of two lifespan periods. One of them includes logarithmic and diauxic growth phases, whereas the other period exists in early stationary phase. Our findings suggest a mechanism linking the ability of LCA to increase the lifespan of CR yeast only if added at either of the two periods to its differential effects on various longevity-defining processes. In this mechanism, LCA controls these processes at three checkpoints that exist in logarithmic/diauxic, post-diauxic and early stationary phases. We therefore hypothesize that a biomolecular longevity network progresses through a series of checkpoints, at each of which (1) genetic, dietary and pharmacological anti-aging interventions modulate a distinct set of longevity-defining processes comprising the network; and (2) checkpoint-specific master regulators monitor and govern the functional states of these processes. PMID:22894934

  16. Liver specific expression of Cu/ZnSOD extends the lifespan of Sod1 null mice.

    PubMed

    Zhang, Yiqiang; Liu, Yuhong; Walsh, Michael; Bokov, Alex; Ikeno, Yuji; Jang, Young C; Perez, Viviana I; Van Remmen, Holly; Richardson, Arlan

    2016-03-01

    Genetic ablation of CuZn-superoxide dismutase (Sod1) in mice (Sod1(-/-) mice) leads to shortened lifespan with a dramatic increase in hepatocellular carcinoma and accelerated aging phenotypes, including early onset sarcopenia. To study the tissue specific effects of oxidative stress in the Sod1(-/-) mice, we generated mice that only express the human SOD1 gene specifically in the liver of Sod1(-/-) mice (Sod1(-/-)/hSOD1(alb) mice). Expression of hSOD1 in the liver of Sod1(-/-) mice improved liver function, reduced oxidative damage in liver, and partially restored the expression of several genes involved in tumorigenesis, which are abnormally expressed in the livers of the Sod1(-/-) mice. However, liver specific expression of hSOD1 did not prevent the loss of body weight and muscle mass and alterations in the structure of neuromuscular junctions. The expression of hSOD1 in the liver of Sod1(-/-) mice significantly improved the lifespan of Sod1(-/-) mice; however, the lifespan of the Sod1(-/-)/hSOD1(alb) mice was still significantly shorter than wild type mice.

  17. Management of bipolar depression with lamotrigine: an antiepileptic mood stabilizer

    PubMed Central

    Prabhavalkar, Kedar S.; Poovanpallil, Nimmy B.; Bhatt, Lokesh K.

    2015-01-01

    The efficacy of lamotrigine in the treatment of focal epilepsies have already been reported in several case reports and open studies, which is thought to act by inhibiting glutamate release through voltage-sensitive sodium channels blockade and neuronal membrane stabilization. However, recent findings have also illustrated the importance of lamotrigine in alleviating the depressive symptoms of bipolar disorder, without causing mood destabilization or precipitating mania. Currently, no mood stabilizers are available having equal efficacy in the treatment of both mania and depression, two of which forms the extreme sides of the bipolar disorder. Lamotrigine, a well established anticonvulsant has received regulatory approval for the treatment and prevention of bipolar depression in more than 30 countries worldwide. Lamotrigine, acts through several molecular targets and overcomes the major limitation of other conventional antidepressants by stabilizing mood from “below baseline” thereby preventing switches to mania or episode acceleration, thus being effective for bipolar I disorder. Recent studies have also suggested that these observations could also be extended to patients with bipolar II disorder. Thus, lamotrigine may supposedly fulfill the unmet requirement for an effective depression mood stabilizer. PMID:26557090

  18. Conditional abrogation of Atm in osteoclasts extends osteoclast lifespan and results in reduced bone mass

    PubMed Central

    Hirozane, Toru; Tohmonda, Takahide; Yoda, Masaki; Shimoda, Masayuki; Kanai, Yae; Matsumoto, Morio; Morioka, Hideo; Nakamura, Masaya; Horiuchi, Keisuke

    2016-01-01

    Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption. PMID:27677594

  19. Chlorophyll enhances oxidative stress tolerance in Caenorhabditis elegans and extends its lifespan

    PubMed Central

    Wang, Erjia

    2016-01-01

    Green vegetables are thought to be responsible for several beneficial properties such as antioxidant, anti-mutagenic, and detoxification activities. It is not known whether these effects are due to chlorophyll which exists in large amounts in many foods or result from other secondary metabolites. In this study, we used the model system Caenorhabditis elegans to investigate the anti-oxidative and anti-aging effects of chlorophyll in vivo. We found that chlorophyll significantly improves resistance to oxidative stress. It also enhances the lifespan of C. elegans by up to 25% via activation of the DAF-16/FOXO-dependent pathway. The results indicate that chlorophyll is absorbed by the worms and is thus bioavailable, constituting an important prerequisite for antioxidant and longevity-promoting activities inside the body. Our study thereby supports the view that green vegetables may also be beneficial for humans. PMID:27077003

  20. Parishin from Gastrodia elata Extends the Lifespan of Yeast via Regulation of Sir2/Uth1/TOR Signaling Pathway.

    PubMed

    Lin, Yanfei; Sun, Yujuan; Weng, Yufang; Matsuura, Akira; Xiang, Lan; Qi, Jianhua

    2016-01-01

    Parishin is a phenolic glucoside isolated from Gastrodia elata, which is an important traditional Chinese medicine; this glucoside significantly extended the replicative lifespan of K6001 yeast at 3, 10, and 30 μM. To clarify its mechanism of action, assessment of oxidative stress resistance, superoxide dismutase (SOD) activity, malondialdehyde (MDA), and reactive oxygen species (ROS) assays, replicative lifespans of sod1, sod2, uth1, and skn7 yeast mutants, and real-time quantitative PCR (RT-PCR) analysis were conducted. The significant increase of cell survival rate in oxidative stress condition was observed in parishin-treated groups. Silent information regulator 2 (Sir2) gene expression and SOD activity were significantly increased after treating parishin in normal condition. Meanwhile, the levels of ROS and MDA in yeast were significantly decreased. The replicative lifespans of sod1, sod2, uth1, and skn7 mutants of K6001 yeast were not affected by parishin. We also found that parishin could decrease the gene expression of TORC1, ribosomal protein S26A (RPS26A), and ribosomal protein L9A (RPL9A) in the target of rapamycin (TOR) signaling pathway. Gene expression levels of RPS26A and RPL9A in uth1, as well as in uth1, sir2 double mutants, were significantly lower than those of the control group. Besides, TORC1 gene expression in uth1 mutant of K6001 yeast was inhibited significantly. These results suggested that parishin exhibited antiaging effects via regulation of Sir2/Uth1/TOR signaling pathway. PMID:27429709

  1. Parishin from Gastrodia elata Extends the Lifespan of Yeast via Regulation of Sir2/Uth1/TOR Signaling Pathway

    PubMed Central

    Lin, Yanfei; Sun, Yujuan; Weng, Yufang; Xiang, Lan; Qi, Jianhua

    2016-01-01

    Parishin is a phenolic glucoside isolated from Gastrodia elata, which is an important traditional Chinese medicine; this glucoside significantly extended the replicative lifespan of K6001 yeast at 3, 10, and 30 μM. To clarify its mechanism of action, assessment of oxidative stress resistance, superoxide dismutase (SOD) activity, malondialdehyde (MDA), and reactive oxygen species (ROS) assays, replicative lifespans of sod1, sod2, uth1, and skn7 yeast mutants, and real-time quantitative PCR (RT-PCR) analysis were conducted. The significant increase of cell survival rate in oxidative stress condition was observed in parishin-treated groups. Silent information regulator 2 (Sir2) gene expression and SOD activity were significantly increased after treating parishin in normal condition. Meanwhile, the levels of ROS and MDA in yeast were significantly decreased. The replicative lifespans of sod1, sod2, uth1, and skn7 mutants of K6001 yeast were not affected by parishin. We also found that parishin could decrease the gene expression of TORC1, ribosomal protein S26A (RPS26A), and ribosomal protein L9A (RPL9A) in the target of rapamycin (TOR) signaling pathway. Gene expression levels of RPS26A and RPL9A in uth1, as well as in uth1, sir2 double mutants, were significantly lower than those of the control group. Besides, TORC1 gene expression in uth1 mutant of K6001 yeast was inhibited significantly. These results suggested that parishin exhibited antiaging effects via regulation of Sir2/Uth1/TOR signaling pathway. PMID:27429709

  2. Availability of Amino Acids Extends Chronological Lifespan by Suppressing Hyper-Acidification of the Environment in Saccharomyces cerevisiae

    PubMed Central

    Maruyama, Yo; Ito, Toshiyuki; Kodama, Hiroaki; Matsuura, Akira

    2016-01-01

    The chronological lifespan of Saccharomyces cerevisiae represents the duration of cell survival in the postdiauxic and stationary phases. Using a prototrophic strain derived from the standard auxotrophic laboratory strain BY4742, we showed that supplementation of non-essential amino acids to a synthetic defined (SD) medium increases maximal cell growth and extends the chronological lifespan. The positive effects of amino acids can be reproduced by modulating the medium pH, indicating that amino acids contribute to chronological longevity in a cell-extrinsic manner by alleviating medium acidification. In addition, we showed that the amino acid-mediated effects on extension of chronological longevity are independent of those achieved through a reduction in the TORC1 pathway, which is mediated in a cell-intrinsic manner. Since previous studies showed that extracellular acidification causes mitochondrial dysfunction and leads to cell death, our results provide a path to premature chronological aging caused by differences in available nitrogen sources. Moreover, acidification of culture medium is generally associated with culture duration and cell density; thus, further studies are required on cell physiology of auxotrophic yeast strains during the stationary phase because an insufficient supply of essential amino acids may cause alterations in environmental conditions. PMID:26991662

  3. Glucose restriction induces transient G2 cell cycle arrest extending cellular chronological lifespan.

    PubMed

    Masuda, Fumie; Ishii, Mahiro; Mori, Ayaka; Uehara, Lisa; Yanagida, Mitsuhiro; Takeda, Kojiro; Saitoh, Shigeaki

    2016-01-01

    While glucose is the fundamental source of energy in most eukaryotes, it is not always abundantly available in natural environments, including within the human body. Eukaryotic cells are therefore thought to possess adaptive mechanisms to survive glucose-limited conditions, which remain unclear. Here, we report a novel mechanism regulating cell cycle progression in response to abrupt changes in extracellular glucose concentration. Upon reduction of glucose in the medium, wild-type fission yeast cells undergo transient arrest specifically at G2 phase. This cell cycle arrest is dependent on the Wee1 tyrosine kinase inhibiting the key cell cycle regulator, CDK1/Cdc2. Mutant cells lacking Wee1 are not arrested at G2 upon glucose limitation and lose viability faster than the wild-type cells under glucose-depleted quiescent conditions, suggesting that this cell cycle arrest is required for extension of chronological lifespan. Our findings indicate the presence of a novel cell cycle checkpoint monitoring glucose availability, which may be a good molecular target for cancer therapy. PMID:26804466

  4. Overexpression of a Drosophila homolog of apolipoprotein D leads to increased stress resistance and extended lifespan.

    PubMed

    Walker, David W; Muffat, Julien; Rundel, Colin; Benzer, Seymour

    2006-04-01

    Increased Apolipoprotein D (ApoD) expression has been reported in various neurological disorders, including Alzheimer's disease, schizophrenia, and stroke, and in the aging brain . However, whether ApoD is toxic or a defense is unknown. In a screen to identify genes that protect Drosophila against acute oxidative stress, we isolated a fly homolog of ApoD, Glial Lazarillo (GLaz). In independent transgenic lines, overexpression of GLaz resulted in increased resistance to hyperoxia (100% O(2)) as well as a 29% extension of lifespan under normoxia. These flies also displayed marked improvements in climbing and walking ability after sublethal exposure to hyperoxia. Overexpression of Glaz also increased resistance to starvation without altering lipid or protein content. To determine whether GLaz might be important in protection against reperfusion injury, we subjected the flies to hypoxia, followed by recovery under normoxia. Overexpression of GLaz was protective against behavioral deficits caused in normal flies by this ischemia/reperfusion paradigm. This and the accompanying paper by Sanchez et al. (in this issue of Current Biology) are the first to manipulate the levels of an ApoD homolog in a model organism. Our data suggest that human ApoD may play a protective role and thus may constitute a therapeutic target to counteract certain neurological diseases.

  5. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+.

    PubMed

    Belenky, Peter; Racette, Frances G; Bogan, Katrina L; McClure, Julie M; Smith, Jeffrey S; Brenner, Charles

    2007-05-01

    Although NAD(+) biosynthesis is required for Sir2 functions and replicative lifespan in yeast, alterations in NAD(+) precursors have been reported to accelerate aging but not to extend lifespan. In eukaryotes, nicotinamide riboside is a newly discovered NAD(+) precursor that is converted to nicotinamide mononucleotide by specific nicotinamide riboside kinases, Nrk1 and Nrk2. In this study, we discovered that exogenous nicotinamide riboside promotes Sir2-dependent repression of recombination, improves gene silencing, and extends lifespan without calorie restriction. The mechanism of action of nicotinamide riboside is totally dependent on increased net NAD(+) synthesis through two pathways, the Nrk1 pathway and the Urh1/Pnp1/Meu1 pathway, which is Nrk1 independent. Additionally, the two nicotinamide riboside salvage pathways contribute to NAD(+) metabolism in the absence of nicotinamide-riboside supplementation. Thus, like calorie restriction in the mouse, nicotinamide riboside elevates NAD(+) and increases Sir2 function. PMID:17482543

  6. PAK1-deficiency/down-regulation reduces brood size, activates HSP16.2 gene and extends lifespan in Caenorhabditis elegans.

    PubMed

    Yanase, S; Luo, Y; Maruta, H

    2013-02-01

    There is an increasing evidence that the oncogenic kinase PAK1 is responsible not only for malignant transformation, but also for several other diseases such as inflammatory diseases (asthma and arthritis), infectious diseases including malaria, AIDS, and flu, as well as a series of neuronal diseases/disorders (neurofibromatosis, tuberous sclerosis, Alzheimer's diseases, Huntington's disease, epilepsy, depression, learning deficit, etc.) which often cause premature death. Interestingly, a few natural PAK1-blockers such as curcumin, caffeic acid (CA) and rosmarinic acid (RA) extend the lifespan of the nematode Caenorhabditis elegans or fruit flies. Here, to explore the possibility that C. elegans could provide us with a quick and inexpensive in vivo screening system for a series of more potent but safe (non-toxic) PAK1-blocking therapeutics, we examined the effects of PAK1-deficiency or down-regulation on a few selected functions of this worm, including reproduction, expression of HSP16.2 gene, and lifespan. In short, we found that PAK1 promotes reproduction, whereas it inactivates HSP16.2 gene and shortens lifespan, as do PI-3 kinase (AGE-1), TOR, and insulin-like signalling /ILS (Daf-2) in this worm. These findings not only support the "trade-off" theory on reproduction versus lifespan, but also suggest the possibility that the reduced reproduction (or HSP16.2 gene activation) of this worm could be used as the first indicator of extended lifespan for a quick in vivo screening for PAK1-blockers. PMID:23524941

  7. The NOXA–MCL1–BIM axis defines lifespan on extended mitotic arrest

    PubMed Central

    Haschka, Manuel D.; Soratroi, Claudia; Kirschnek, Susanne; Häcker, Georg; Hilbe, Richard; Geley, Stephan; Villunger, Andreas; Fava, Luca L.

    2015-01-01

    Cell death on extended mitotic arrest is considered arguably most critical for the efficacy of microtubule-targeting agents (MTAs) in anticancer therapy. While the molecular machinery controlling mitotic arrest on MTA treatment, the spindle assembly checkpoint (SAC), appears well defined, the molecular components executing cell death, as well as factors connecting both networks remain poorly understood. Here we conduct a mini screen exploring systematically the contribution of individual BCL2 family proteins at single cell resolution to death on extended mitotic arrest, and demonstrate that the mitotic phosphorylation of BCL2 and BCLX represent a priming event for apoptosis that is ultimately triggered by NOXA-dependent MCL1 degradation, enabling BIM-dependent cell death. Our findings provide a comprehensive model for the initiation of apoptosis in cells stalled in mitosis and provide a molecular basis for the increased efficacy of combinatorial treatment of cancer cells using MTAs and BH3 mimetics. PMID:25922916

  8. Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model

    PubMed Central

    Liu, Baohua; Wang, Zimei; Zhang, Le; Ghosh, Shrestha; Zheng, Huiling; Zhou, Zhongjun

    2013-01-01

    A de novo G608G mutation in LMNA gene leads to Hutchinson–Gilford progeria syndrome. Mice lacking the prelamin A-processing metalloprotease, Zmpste24, recapitulate many of the progeroid features of Hutchinson–Gilford progeria syndrome. Here we show that A-type lamins interact with SUV39H1, and prelamin A/progerin exhibits enhanced binding capacity to SUV39H1, protecting it from proteasomal degradation and, consequently, increasing H3K9me3 levels. Depletion of Suv39h1 reduces H3K9me3 levels, restores DNA repair capacity and delays senescence in progeroid cells. Remarkably, loss of Suv39h1 in Zmpste24−/− mice delays body weight loss, increases bone mineral density and extends lifespan by ∼60%. Thus, increased H3K9me3 levels, possibly mediated by enhanced Suv39h1 stability in the presence of prelamin A/progerin, compromise genome maintenance, which in turn contributes to accelerated senescence in laminopathy-based premature aging. Our study provides an explanation for epigenetic alterations in Hutchinson–Gilford progeria syndrome and a potential strategy for intervention by targeting SUV39H1-mediated heterochromatin remodelling. PMID:23695662

  9. Nordihydroguaiaretic Acid Extends the Lifespan of Drosophila and Mice, Increases Mortality-Related Tumors and Hemorrhagic Diathesis, and Alters Energy Homeostasis in Mice.

    PubMed

    Spindler, Stephen R; Mote, Patricia L; Lublin, Alex L; Flegal, James M; Dhahbi, Joseph M; Li, Rui

    2015-12-01

    Mesonordihydroguaiaretic acid (NDGA) extends murine lifespan. The studies reported here describe its dose dependence, effects on body weight, toxicity-related clinical chemistries, and mortality-related pathologies. In flies, we characterized its effects on lifespan, food consumption, body weight, and locomotion. B6C3F1 mice were fed AIN-93M diet supplemented with 1.5, 2.5, 3.5, or 4.5 g NDGA/kg diet (1.59, 2.65, 3.71 and 4.77 mg/kg body weight/day) beginning at 12 months of age. Only the 3.5 mg/kg diet produced a highly significant increase in lifespan, as judged by either the Mantel-Cox log-rank test (p = .008) or the Gehan-Breslow-Wilcoxon test (p = .009). NDGA did not alter food intake, but dose-responsively reduced weight, suggesting it decreased the absorption or increased the utilization of calories. NDGA significantly increased the incidence of liver, lung, and thymus tumors, and peritoneal hemorrhagic diathesis found at necropsy. However, clinical chemistries found little evidence for overt toxicity. While NDGA was not overtly toxic at its therapeutic dosage, its association with severe end of life pathologies does not support the idea that NDGA consumption will increase human lifespan or health-span. The less toxic derivatives of NDGA which are under development should be explored as anti-aging therapeutics.

  10. Nordihydroguaiaretic Acid Extends the Lifespan of Drosophila and Mice, Increases Mortality-Related Tumors and Hemorrhagic Diathesis, and Alters Energy Homeostasis in Mice

    PubMed Central

    Spindler, Stephen R.; Mote, Patricia L.; Lublin, Alex L.; Flegal, James M.; Dhahbi, Joseph M.; Li, Rui

    2015-01-01

    Mesonordihydroguaiaretic acid (NDGA) extends murine lifespan. The studies reported here describe its dose dependence, effects on body weight, toxicity-related clinical chemistries, and mortality-related pathologies. In flies, we characterized its effects on lifespan, food consumption, body weight, and locomotion. B6C3F1 mice were fed AIN-93M diet supplemented with 1.5, 2.5, 3.5, or 4.5g NDGA/kg diet (1.59, 2.65, 3.71 and 4.77mg/kg body weight/day) beginning at 12 months of age. Only the 3.5mg/kg diet produced a highly significant increase in lifespan, as judged by either the Mantel–Cox log-rank test (p = .008) or the Gehan–Breslow–Wilcoxon test (p = .009). NDGA did not alter food intake, but dose-responsively reduced weight, suggesting it decreased the absorption or increased the utilization of calories. NDGA significantly increased the incidence of liver, lung, and thymus tumors, and peritoneal hemorrhagic diathesis found at necropsy. However, clinical chemistries found little evidence for overt toxicity. While NDGA was not overtly toxic at its therapeutic dosage, its association with severe end of life pathologies does not support the idea that NDGA consumption will increase human lifespan or health-span. The less toxic derivatives of NDGA which are under development should be explored as anti-aging therapeutics. PMID:25380600

  11. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet.

    PubMed

    Mitchell, Sarah J; Martin-Montalvo, Alejandro; Mercken, Evi M; Palacios, Hector H; Ward, Theresa M; Abulwerdi, Gelareh; Minor, Robin K; Vlasuk, George P; Ellis, James L; Sinclair, David A; Dawson, John; Allison, David B; Zhang, Yongqing; Becker, Kevin G; Bernier, Michel; de Cabo, Rafael

    2014-03-13

    The prevention or delay of the onset of age-related diseases prolongs survival and improves quality of life while reducing the burden on the health care system. Activation of sirtuin 1 (SIRT1), an NAD(+)-dependent deacetylase, improves metabolism and confers protection against physiological and cognitive disturbances in old age. SRT1720 is a specific SIRT1 activator that has health and lifespan benefits in adult mice fed a high-fat diet. We found extension in lifespan, delayed onset of age-related metabolic diseases, and improved general health in mice fed a standard diet after SRT1720 supplementation. Inhibition of proinflammatory gene expression in both liver and muscle of SRT1720-treated animals was noted. SRT1720 lowered the phosphorylation of NF-κB pathway regulators in vitro only when SIRT1 was functionally present. Combined with our previous work, the current study further supports the beneficial effects of SRT1720 on health across the lifespan in mice.

  12. Serum from calorie-restricted animals delays senescence and extends the lifespan of normal human fibroblasts in vitro.

    PubMed

    de Cabo, Rafael; Liu, Lijuan; Ali, Ahmed; Price, Nathan; Zhang, Jing; Wang, Mingyi; Lakatta, Edward; Irusta, Pablo M

    2015-03-01

    The cumulative effects of cellular senescence and cell loss over time in various tissues and organs are considered major contributing factors to the ageing process. In various organisms, caloric restriction (CR) slows ageing and increases lifespan, at least in part, by activating nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases of the sirtuin family. Here, we use an in vitro model of CR to study the effects of this dietary regime on replicative senescence, cellular lifespan and modulation of the SIRT1 signaling pathway in normal human diploid fibroblasts. We found that serum from calorie-restricted animals was able to delay senescence and significantly increase replicative lifespan in these cells, when compared to serum from ad libitum fed animals. These effects correlated with CR-mediated increases in SIRT1 and decreases in p53 expression levels. In addition, we show that manipulation of SIRT1 levels by either over-expression or siRNA-mediated knockdown resulted in delayed and accelerated cellular senescence, respectively. Our results demonstrate that CR can delay senescence and increase replicative lifespan of normal human diploid fibroblasts in vitro and suggest that SIRT1 plays an important role in these processes.

  13. Pyrroloquinoline quinone enhances the resistance to oxidative stress and extends lifespan upon DAF-16 and SKN-1 activities in C. elegans.

    PubMed

    Wu, J Z; Huang, J H; Khanabdali, R; Kalionis, B; Xia, S J; Cai, W J

    2016-07-01

    Pyrroloquinoline quinone (PQQ) is linked to fundamental biological processes such as mitochondrial biogenesis and lipid metabolism. PQQ may also function as an essential micronutrient during animal development. Recent studies have shown the therapeutic potential of PQQ for several age-related diseases due to its antioxidant capacity. However, whether PQQ can promote longevity is unknown. Here, we investigate the effects of PQQ on oxidative stress resistance as well as lifespan modulation in Caenorhabditis elegans. We find that PQQ enhances resistance to oxidative stress and extends the lifespan of C. elegans at optimal doses. The underlying molecular mechanism involves the increased activities of the primary lifespan extension transcriptional factors DAF-16/FOXO, the conserved oxidative stress-responsive transcription factor SKN-1/Nrf2, and upregulation of daf-16, skn-1 downstream targets including sod-3, hsp16.2, gst-1 and gst-10. Our findings uncover a novel role of PQQ in longevity, supporting PQQ as a possible dietary supplement for overall health improvement.

  14. Vitamin B12 deficiency in Caenorhabditis elegans results in loss of fertility, extended life cycle, and reduced lifespan.

    PubMed

    Bito, Tomohiro; Matsunaga, Yohei; Yabuta, Yukinori; Kawano, Tsuyoshi; Watanabe, Fumio

    2013-01-01

    Vitamin B12 (B12) deficiency has been linked to developmental disorders, metabolic abnormalities, and neuropathy; however, the mechanisms involved remain poorly understood. Caenorhabditis elegans grown under B12-deficient conditions for five generations develop severe B12 deficiency associated with various phenotypes that include decreased egg-laying capacity (infertility), prolonged life cycle (growth retardation), and reduced lifespan. These phenotypes resemble the consequences of B12 deficiency in mammals, and can be induced in C. elegans in only 15 days. Thus, C. elegans is a suitable animal model for studying the biological processes induced by vitamin deficiency.

  15. Neuronal expression of a single-subunit yeast NADH-ubiquinone oxidoreductase (Ndi1) extends Drosophila lifespan.

    PubMed

    Bahadorani, Sepehr; Cho, Jaehyoung; Lo, Thomas; Contreras, Heidy; Lawal, Hakeem O; Krantz, David E; Bradley, Timothy J; Walker, David W

    2010-04-01

    The 'rate of living' theory predicts that longevity should be inversely correlated with the rate of mitochondrial respiration. However, recent studies in a number of model organisms, including mice, have reported that interventions that retard the aging process are, in fact, associated with an increase in mitochondrial activity. To better understand the relationship between energy metabolism and longevity, we supplemented the endogenous respiratory chain machinery of the fruit fly Drosophila melanogaster with the alternative single-subunit NADH-ubiquinone oxidoreductase (Ndi1) of the baker's yeast Saccharomyces cerevisiae. Here, we report that expression of Ndi1 in fly mitochondria leads to an increase in NADH-ubiquinone oxidoreductase activity, oxygen consumption, and ATP levels. In addition, exogenous Ndi1 expression results in increased CO2 production in living flies. Using an inducible gene-expression system, we expressed Ndi1 in different cells and tissues and examined the impact on longevity. In doing so, we discovered that targeted expression of Ndi1 in fly neurons significantly increases lifespan without compromising fertility or physical activity. These findings are consistent with the idea that enhanced respiratory chain activity in neuronal tissue can prolong fly lifespan.

  16. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan

    PubMed Central

    Nunes, Rodrigo Dutra; Ventura-Martins, Guilherme; Moretti, Débora Monteiro; Medeiros-Castro, Priscilla; Rocha-Santos, Carlucio; Daumas-Filho, Carlos Renato de Oliveira; Bittencourt-Cunha, Paula Rego Barros; Martins-Cardoso, Karina; Cudischevitch, Cecília Oliveira; Menna-Barreto, Rubem Figueiredo Sadok; Oliveira, José Henrique Maia; Gusmão, Desiely Silva; Alves Lemos, Francisco José; Alviano, Daniela Sales; Oliveira, Pedro Lagerblad; Lowenberger, Carl; Majerowicz, David; Oliveira, Ricardo Melo; Mesquita, Rafael Dias; Atella, Georgia Correa

    2016-01-01

    Background Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols. Results Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK). AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus. Conclusion The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses. PMID:27732590

  17. ENA-A actimineral resource A extends lifespan associated with antioxidant mechanism in SMP30 knockout mice.

    PubMed

    Han, Jung-Youn; Hwang, Meeyul; Hwa, Sung-Yong; Park, Jin-Kyu; Ki, Mi-Ran; Hong, Il-Hwa; Kim, Ah-Young; Lee, Eun-Mi; Lee, Eun-Joo; Min, Chang-Woo; Kang, Kyung-Ku; Lee, Myeong-Mi; Sung, Soo-Eun; Jeong, Kyu-Shik

    2014-06-01

    ENA-actimineral resource A (ENA-A) is an alkaline mineral water and has a few biological activities such as antioxidant activity. The aim of this study was to examine the effects of ENA-A on lifespan in mice using senescence marker protein-30 knockout mice. The present study had groups of 18-week-old mice (n = 24), 26-week-old mice (n = 12), and 46-week-old mice (n = 20). Each differently aged mice group was divided into three subgroups: a control group, a 5 % ENA-A-treated group, and a 10 % ENA-A-treated group. Mice in the 18-week-old group were treated with vitamin C drinking water 1.5 g/L. However, the mice in the 26-week-old and 46-week-old groups were not treated with vitamin C. The experiments were done for 18 weeks. All vitamin C-treated mice were alive at week 18 (100% survival rate). In the non-vitamin C group, the 10% ENA-A-treated mice were alive at week 18. The control and 5% ENA-A-treated mice died by week 15. As expected, vitamin C was not detected in the non-vitamin C-treated group. However, vitamin C levels were increased in an ENA-A dose-dependent manner in the vitamin C-treated group. In the TUNEL assay, a number of positive hepatocytes significantly decreased in an ENA-A dose-dependent manner. Periodic acid Schiff positive hepatocytes were significantly increased in an ENA-A dose-dependent manner. In addition, the expression level of CuZnSOD was increased by the ENA-A treatment. These data suggest that the intake of ENA-A has a critical role in the anti-aging mechanism and could be applied toward the lifespans of humans.

  18. Scavengers of reactive γ-ketoaldehydes extend Caenorhabditis elegans lifespan and healthspan through protein-level interactions with SIR-2.1 and ETS-7

    PubMed Central

    Nguyen, Thuy T.; Caito, Samuel W.; Zackert, William E.; West, James D.; Zhu, Shijun

    2016-01-01

    Isoketals (IsoKs) are highly reactive γ-ketoaldehyde products of lipid peroxidation that covalently adduct lysine side chains in proteins, impairing their function. Using C. elegans as a model organism, we sought to test the hypothesis that IsoKs contribute to molecular aging through adduction and inactivation of specific protein targets, and that this process can be abrogated using salicylamine (SA), a selective IsoK scavenger. Treatment with SA extends adult nematode longevity by nearly 56% and prevents multiple deleterious age-related biochemical and functional changes. Testing of a variety of molecular targets for SA's action revealed the sirtuin SIR-2.1 as the leading candidate. When SA was administered to a SIR-2.1 knockout strain, the effects on lifespan and healthspan extension were abolished. The SIR-2.1-dependent effects of SA were not mediated by large changes in gene expression programs or by significant changes in mitochondrial function. However, expression array analysis did show SA-dependent regulation of the transcription factor ets-7 and associated genes. In ets-7 knockout worms, SA's longevity effects were abolished, similar to sir-2.1 knockouts. However, SA dose-dependently increases ets-7 mRNA levels in non-functional SIR-2.1 mutant, suggesting that both are necessary for SA's complete lifespan and healthspan extension. PMID:27514077

  19. Scavengers of reactive γ-ketoaldehydes extend Caenorhabditis elegans lifespan and healthspan through protein-level interactions with SIR-2.1 and ETS-7.

    PubMed

    Nguyen, Thuy T; Caito, Samuel W; Zackert, William E; West, James D; Zhu, Shijun; Aschner, Michael; Fessel, Joshua P; Roberts, L Jackson

    2016-08-01

    Isoketals (IsoKs) are highly reactive γ-ketoaldehyde products of lipid peroxidation that covalently adduct lysine side chains in proteins, impairing their function. Using C. elegans as a model organism, we sought to test the hypothesis that IsoKs contribute to molecular aging through adduction and inactivation of specific protein targets, and that this process can be abrogated using salicylamine (SA), a selective IsoK scavenger. Treatment with SA extends adult nematode longevity by nearly 56% and prevents multiple deleterious age-related biochemical and functional changes. Testing of a variety of molecular targets for SA's action revealed the sirtuin SIR-2.1 as the leading candidate. When SA was administered to a SIR-2.1 knockout strain, the effects on lifespan and healthspan extension were abolished. The SIR-2.1-dependent effects of SA were not mediated by large changes in gene expression programs or by significant changes in mitochondrial function. However, expression array analysis did show SA-dependent regulation of the transcription factor ets-7 and associated genes. In ets-7 knockout worms, SA's longevity effects were abolished, similar to sir-2.1 knockouts. However, SA dose-dependently increases ets-7 mRNA levels in non-functional SIR-2.1 mutant, suggesting that both are necessary for SA's complete lifespan and healthspan extension.

  20. Scavengers of reactive γ-ketoaldehydes extend Caenorhabditis elegans lifespan and healthspan through protein-level interactions with SIR-2.1 and ETS-7.

    PubMed

    Nguyen, Thuy T; Caito, Samuel W; Zackert, William E; West, James D; Zhu, Shijun; Aschner, Michael; Fessel, Joshua P; Roberts, L Jackson

    2016-08-01

    Isoketals (IsoKs) are highly reactive γ-ketoaldehyde products of lipid peroxidation that covalently adduct lysine side chains in proteins, impairing their function. Using C. elegans as a model organism, we sought to test the hypothesis that IsoKs contribute to molecular aging through adduction and inactivation of specific protein targets, and that this process can be abrogated using salicylamine (SA), a selective IsoK scavenger. Treatment with SA extends adult nematode longevity by nearly 56% and prevents multiple deleterious age-related biochemical and functional changes. Testing of a variety of molecular targets for SA's action revealed the sirtuin SIR-2.1 as the leading candidate. When SA was administered to a SIR-2.1 knockout strain, the effects on lifespan and healthspan extension were abolished. The SIR-2.1-dependent effects of SA were not mediated by large changes in gene expression programs or by significant changes in mitochondrial function. However, expression array analysis did show SA-dependent regulation of the transcription factor ets-7 and associated genes. In ets-7 knockout worms, SA's longevity effects were abolished, similar to sir-2.1 knockouts. However, SA dose-dependently increases ets-7 mRNA levels in non-functional SIR-2.1 mutant, suggesting that both are necessary for SA's complete lifespan and healthspan extension. PMID:27514077

  1. HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice

    PubMed Central

    Ito, Hikaru; Fujita, Kyota; Tagawa, Kazuhiko; Chen, Xigui; Homma, Hidenori; Sasabe, Toshikazu; Shimizu, Jun; Shimizu, Shigeomi; Tamura, Takuya; Muramatsu, Shin-ichi; Okazawa, Hitoshi

    2015-01-01

    Mutant ataxin-1 (Atxn1), which causes spinocerebellar ataxia type 1 (SCA1), binds to and impairs the function of high-mobility group box 1 (HMGB1), a crucial nuclear protein that regulates DNA architectural changes essential for DNA damage repair and transcription. In this study, we established that transgenic or virus vector-mediated complementation with HMGB1 ameliorates motor dysfunction and prolongs lifespan in mutant Atxn1 knock-in (Atxn1-KI) mice. We identified mitochondrial DNA damage repair by HMGB1 as a novel molecular basis for this effect, in addition to the mechanisms already associated with HMGB1 function, such as nuclear DNA damage repair and nuclear transcription. The dysfunction and the improvement of mitochondrial DNA damage repair functions are tightly associated with the exacerbation and rescue, respectively, of symptoms, supporting the involvement of mitochondrial DNA quality control by HMGB1 in SCA1 pathology. Moreover, we show that the rescue of Purkinje cell dendrites and dendritic spines by HMGB1 could be downstream effects. Although extracellular HMGB1 triggers inflammation mediated by Toll-like receptor and receptor for advanced glycation end products, upregulation of intracellular HMGB1 does not induce such side effects. Thus, viral delivery of HMGB1 is a candidate approach by which to modify the disease progression of SCA1 even after the onset. PMID:25510912

  2. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan.

    PubMed

    Weismann, Cara M; Ferreira, Jennifer; Keeler, Allison M; Su, Qin; Qui, Linghua; Shaffer, Scott A; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-08-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal(-/-)) at 1 × 10(11) or 3 × 10(11) vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36-76% reduction in GM1-ganglioside content in the brain and 75-86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 10(11) vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 10(11) vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316-576 days) was significantly increased over controls (250-264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan.

  3. Genome-wide screen identifies Escherichia coli TCA cycle-related mutants with extended chronological lifespan dependent on acetate metabolism and the hypoxia-inducible transcription factor ArcA

    PubMed Central

    Gonidakis, Stavros; Finkel, Steven E.; Longo, Valter D.

    2010-01-01

    Summary Single-gene mutants with extended lifespan have been described in several model organisms. We performed a genome-wide screen for long-lived mutants in Escherichia coli which revealed strains lacking TCA cycle-related genes that exhibit longer stationary phase survival and increased resistance to heat stress compared to wild-type. Extended lifespan in the sdhA mutant, lacking subunit A of succinate dehydrogenase, is associated with reduced production of superoxide and increased stress resistance. On the other hand, the longer lifespan of the lipoic acid synthase mutant (lipA) is associated with reduced oxygen consumption and requires the acetate-producing enzyme pyruvate oxidase, as well as acetyl-CoA synthetase, the enzyme that converts extracellular acetate to acetyl-CoA. The hypoxia-inducible transcription factor ArcA, acting independently of acetate metabolism, is also required for maximum lifespan extension in the lipA and lpdA mutants, indicating that these mutations promote entry into a mode normally associated with a low-oxygen environment. Since analogous changes from respiration to fermentation have been observed in long-lived Saccharomyces cerevisiae and Caenorhabditis elegans strains, such metabolic alterations may represent an evolutionarily conserved strategy to extend lifespan. PMID:20707865

  4. Evolution of lifespan.

    PubMed

    Neill, David

    2014-10-01

    Present-day evolutionary theory, modern synthesis and evo-devo, appear to explain evolution. There remain however several points of contention. These include: biological time, direction, macroevolution verses microevolution, ageing and the extent of internal as opposed to external mediation. A new theoretical model for the control of biological time in vertebrates/bilaterians is introduced. Rather than biological time being controlled solely by a molecular cascade domino effect, it is suggested there is also an intracellular oscillatory clock. This clock (life's timekeeper) is synchronised across all cells in an organism and runs at a constant frequency throughout life. Slower frequencies extend lifespan, increase body/brain size and advance behaviour. They also create a time void which could aid additional evolutionary change. Faster frequencies shorten lifespan, reduce body/brain size and diminish behaviour. They are therefore less likely to mediate evolution in vertebrates/mammals. It is concluded that in vertebrates, especially mammals, there is a direction in evolution towards longer lifespan/advanced behaviour. Lifespan extension could equate with macroevolution and subsequent modifications with microevolution. As life's timekeeper controls the rate of ageing it constitutes a new genetic theory of ageing. Finally, as lifespan extension is internally mediated, this suggests a major role for internal mediation in evolution. PMID:24992233

  5. Evolution of lifespan.

    PubMed

    Neill, David

    2014-10-01

    Present-day evolutionary theory, modern synthesis and evo-devo, appear to explain evolution. There remain however several points of contention. These include: biological time, direction, macroevolution verses microevolution, ageing and the extent of internal as opposed to external mediation. A new theoretical model for the control of biological time in vertebrates/bilaterians is introduced. Rather than biological time being controlled solely by a molecular cascade domino effect, it is suggested there is also an intracellular oscillatory clock. This clock (life's timekeeper) is synchronised across all cells in an organism and runs at a constant frequency throughout life. Slower frequencies extend lifespan, increase body/brain size and advance behaviour. They also create a time void which could aid additional evolutionary change. Faster frequencies shorten lifespan, reduce body/brain size and diminish behaviour. They are therefore less likely to mediate evolution in vertebrates/mammals. It is concluded that in vertebrates, especially mammals, there is a direction in evolution towards longer lifespan/advanced behaviour. Lifespan extension could equate with macroevolution and subsequent modifications with microevolution. As life's timekeeper controls the rate of ageing it constitutes a new genetic theory of ageing. Finally, as lifespan extension is internally mediated, this suggests a major role for internal mediation in evolution.

  6. Lamotrigine Dosing for Pregnant Patients With Bipolar Disorder

    PubMed Central

    Clark, Crystal T.; Klein, Autumn M.; Perel, James M.; Helsel, Joseph; Wisner, Katherine L.

    2014-01-01

    Objective Little information is available on the need for dosage changes for lamotrigine in pregnant women with bipolar disorder. The authors present new data on serial serum levels of lamotrigine in pregnant patients on lamotrigine monotherapy. They also review the epilepsy literature on use of lamotrigine during pregnancy. Method Lamotrigine serum samples were obtained from eight mother-infant pairs at different time points during pregnancy and the postpartum period. Results All of the women were taking lamotrigine throughout pregnancy. Serum-level-to-dose ratios were lower during pregnancy than the postpartum period. Lamotrigine was taken once daily in doses ranging from 100 mg to 300 mg. Three patients had an increase of 50 mg to their daily dose across pregnancy. The change in serum lamotrigine levels in the postpartum period ranged from a 30% decrease to a 640% increase compared with the first level obtained during pregnancy. Level-to-dose ratios obtained within 4 weeks after delivery reflected a mean level 402% greater than the baseline level during gestation. Compared with the third trimester, lamotrigine serum concentration increased an average of 154% within 5 weeks after delivery. The most dramatic increase in lamotrigine serum level early after delivery occurred at 1.5 weeks. The mean infant cord level was 66% of the maternal serum level at delivery. The mean breast-fed infant serum level was 32.5% of the maternal serum levels. Conclusions The pattern of lamotrigine changes during pregnancy in these women with bipolar disorder was consistent with that described in the epilepsy literature. PMID:24185239

  7. Biopharmaceutic Risk Assessment of Brand and Generic Lamotrigine Tablets.

    PubMed

    Vaithianathan, Soundarya; Raman, Siddarth; Jiang, Wenlei; Ting, Tricia Y; Kane, Maureen A; Polli, James E

    2015-07-01

    The therapeutic equivalence of generic and brand name antiepileptic drugs has been questioned by neurologists and the epilepsy community. A potential contributor to such concerns is pharmaceutical quality. The objective was to assess the biopharmaceutic risk of brand name Lamictal 100 mg tablets and generic lamotrigine 100 mg tablets from several manufacturers. Lamotrigine was characterized in terms of the Biopharmaceutics Classification System (BCS), including aqueous solubility and Caco-2 permeability. A panel of pharmaceutical quality tests was also performed on three batches of Lamictal, three batches of Teva generic, and one batch of each of four other generics: appearance, identity, assay, impurity, uniformity of dosage units, disintegration, dissolution, friability, and loss on drying. These market surveillance results indicate that all brand name and generic lamotrigine 100 mg tablets passed all tests and showed acceptable pharmaceutical quality and low biopharmaceutic risk. Lamotrigine was classified as a BCS class IIb drug, exhibiting pH-dependent aqueous solubility and dissolution. At pH 1.2 and 4.5, lamotrigine exhibited high solubility, whereas lamotrigine exhibited low solubility at pH 6.8, including non-sink dissolution. Lamotrigine showed high Caco-2 permeability. The apparent permeability (Papp) of lamotrigine was (73.7 ± 8.7) × 10(-6) cm/s in the apical-to-basolateral (AP-BL) direction and (41.4 ± 1.6) × 10(-6) cm/s in the BL-AP direction, which were higher than metoprolol's AP-BL Papp of (21.2 ± 0.9) × 10(-6) cm/s and BL-AP Papp of (34.6 ± 4.6) × 10(-6) cm/s. Overall, lamotrigine's favorable biopharmaceutics from a drug substance perspective and favorable quality characteristics from a tablet formulation perspective suggest that multisource lamotrigine tablets exhibit a low biopharmaceutic risk.

  8. Bimodal Gastroretentive Drug Delivery Systems of Lamotrigine: Formulation and Evaluation

    PubMed Central

    Poonuru, R. R.; Gonugunta, C. S. R

    2014-01-01

    Gastroretentive bimodal drug delivery systems of lamotrigine were developed using immediate release and extended release segments incorporated in a hydroxypropyl methylcellulose capsule and in vitro and in vivo evaluations were conducted. In vivo radiographic studies were carried out for the optimized formulation in healthy human volunteers with replacement of drug polymer complex by barium sulphate and the floating time was noted. Here the immediate release segment worked as loading dose and extended release segment as maintenance dose. The results of release studies of formulations with hydrophillic matrix to formulations with dual matrix hydroxypropyl methylcellulose acetate succinate shown that as the percentage of polymer increased, the release decreased. Selected formulation F2 having F-Melt has successfully released the drug within one hour and hydrophillic matrix composing polyethylene oxide with 5% hydroxypropyl methylcellulose acetate succinate showed a lag time of one hour and then extended its release up to 12th hour with 99.59% drug release following zero order kinetics with R2 value of 0.989. The Korsmeyer-Peppas equation showed the R2 value to be 0.941 and n value was 1.606 following non-Fickian diffusion pattern with supercase II relaxation mechanism. Here from extended release tablet the drug released slowly from the matrix while floating. PMID:25593380

  9. Animal lifespan and human influence

    USGS Publications Warehouse

    Guo, Q.; Yang, S.

    2002-01-01

    Lifespan differs radically among organisms ever lived on earth, even among those roughly similar in size, shape, form, and physiology; Yet, in general, there exists a strong positive relationship between lifespan and body size. Although lifespans of humans and human-related (domestic) animals are becoming increasingly longer than that of other animals of similar sizes, the slope of the regression (lifespan-body size) line and the intercepts have been surprisingly stable over the course of the dramatic human population growth, indicating substantial depression in lifespans of many other animals probably due to shrunk and fragmented natural habitats. This article addresses two questions related to the lifespan-size relationship: (1) what caused the exceptions (e.g., a few remote human-related animals are also located above the regression line with great residuals) and why (e.g., could brain size or intelligence be a covariate in addition to body size in predicting lifespan?), and (2) whether continued human activities can eventually alter the ' natural' regression line in the future, and if so, how much. We also suggest similar research efforts to be extended to the plant world as well.

  10. Adjunctive therapy for the treatment of primary generalized tonic-clonic seizures: focus on oncedaily lamotrigine

    PubMed Central

    Steinbaugh, Linda; Szaflarski, Jerzy P

    2010-01-01

    Idiopathic generalized epilepsies are frequently encountered by neurologists, and providing an accurate diagnosis and effective treatment(s) are the necessary components of successful patient care. With the introduction of new antiepileptic medications, physicians are better equipped for this goal. The immediate-release formulation of lamotrigine (LTG-IR) has been approved for primary generalized tonic-clonic seizures since 2006. The extended-release formulation of lamotrigine (LTG-XR) was approved for adjunctive therapy in patients with primary generalized tonic-clonic seizures in 2010. Although its exact mechanism of action is not yet fully elucidated, studies have demonstrated multiple possible pathways. Although both the LTG-IR and LTG-XR formulations have similar side effects and are generally well tolerated, LTG-XR may be preferable for its ease of use, which may increase patient compliance and decrease fluctuations in serum drug levels. The ease of conversion between the formulations also makes lamotrigine an attractive treatment option for patients with primary generalized tonic-clonic seizures. LTG-IR has demonstrated efficacy in treatment-resistant idiopathic generalized epilepsies in both adults and children. Although there are still some questions regarding all possible applications of LTG-XR, as further research is being done, it is clear that LTG-XR may hold some advantages when compared with other anticonvulsants. PMID:21151621

  11. β-Guanidinopropionic acid extends the lifespan of Drosophila melanogaster via an AMP-activated protein kinase-dependent increase in autophagy.

    PubMed

    Yang, Si; Long, Li-Hong; Li, Di; Zhang, Jian-Kang; Jin, Shan; Wang, Fang; Chen, Jian-Guo

    2015-12-01

    Previous studies have demonstrated that AMP-activated protein kinase (AMPK) controls autophagy through the mammalian target of rapamycin (mTOR) and Unc-51 like kinase 1 (ULK1/Atg1) signaling, which augments the quality of cellular housekeeping, and that β-guanidinopropionic acid (β-GPA), a creatine analog, leads to a chronic activation of AMPK. However, the relationship between β-GPA and aging remains elusive. In this study, we hypothesized that feeding β-GPA to adult Drosophila produces the lifespan extension via activation of AMPK-dependent autophagy. It was found that dietary administration of β-GPA at a concentration higher than 900 mm induced a significant extension of the lifespan of Drosophila melanogaster in repeated experiments. Furthermore, we found that Atg8 protein, the homolog of microtubule-associated protein 1A/1B-light chain 3 (LC3) and a biomarker of autophagy in Drosophila, was significantly upregulated by β-GPA treatment, indicating that autophagic activity plays a role in the effect of β-GPA. On the other hand, when the expression of Atg5 protein, an essential protein for autophagy, was reduced by RNA interference (RNAi), the effect of β-GPA on lifespan extension was abolished. Moreover, we found that AMPK was also involved in this process. β-GPA treatment significantly elevated the expression of phospho-T172-AMPK levels, while inhibition of AMPK by either AMPK-RNAi or compound C significantly attenuated the expression of autophagy-related proteins and lifespan extension in Drosophila. Taken together, our results suggest that β-GPA can induce an extension of the lifespan of Drosophila via AMPK-Atg1-autophagy signaling pathway.

  12. Life-threatening overdose with lamotrigine, citalopram, and chlorpheniramine.

    PubMed

    Venkatraman, N; O'Neil, D; Hall, A P

    2008-01-01

    Lamotrigine is a commonly used agent for seizure control in epilepsy. There are limited data on the adverse effects of lamotrigine in overdose. We report a number of serious side-effects associated with a large overdose of lamotrigine. A 23-year-old female presented to the emergency department after taking an intentional overdose of 9.2 g of lamotrigine, 56 mg of chlorpheniramine, and 220 mg of citalopram. On admission, she had a reduced level of consciousness and electrocardiographic abnormalities; a widened QRS and a prolonged corrected QT (QTc) interval. Prompt treatment with early intubation, along with the use of magnesium for cardioprotection and administration of sodium bicarbonate may have aided in a quick recovery with a short intensive care stay and good outcome.

  13. N-acetylaspartate normalization in bipolar depression after lamotrigine treatment

    PubMed Central

    Croarkin, Paul E; Thomas, M Albert; Port, John D; Baruth, Joshua M; Choi, Doo-Sup; Abulseoud, Osama A; Frye, Mark A

    2015-01-01

    Objectives To examine N-acetylaspartate (NAA), a general marker of neuronal viability, and total NAA (tNAA), the combined signal of NAA and N-acetylaspartylglutamate, in bipolar depression before and after lamotrigine treatment. Given that NAA is synthesized through direct acetylation of aspartate by acetyl-coenzyme A-L-aspartate-N-acetyltransferase, we hypothesized that treatment with lamotrigine would be associated with an increase in NAA level. Methods Patients with bipolar depression underwent two-dimensional proton magnetic resonance spectroscopy of the anterior cingulate at baseline (n = 15) and after 12 weeks of lamotrigine treatment (n = 10). A group of age-matched healthy controls (n = 9) underwent scanning at baseline for comparison. Results At baseline, patients with bipolar depression had significantly lower NAA [mean standard deviation (SD) = 1.13 (0.21); p = 0.02] than controls [mean (SD) = 1.37 (0.27)]. Significant increases in NAA [mean (SD) = 1.39 (0.21); p = 0.01] and tNAA [mean (SD) = 1.61 (0.25); p = 0.02] levels were found after 12 weeks of lamotrigine treatment. Conclusions These data suggest an NAA deficit in bipolar depression that is normalized after lamotrigine treatment. Future research is warranted to evaluate whether baseline NAA level is a potential biomarker for identifying lamotrigine response patterns and whether this functional brain change has an associated clinical response. PMID:25495884

  14. Fragile lifespan expansion by dietary mitohormesis in C. elegans.

    PubMed

    Tauffenberger, Arnaud; Vaccaro, Alexandra; Parker, J Alex

    2016-01-01

    Mitochondrial function is central to longevity and an imbalance in mitonuclear protein homeostasis activates a protective response called the mitochondrial unfolded protein response (UPRmt). Toxic compounds damaging mitochondria trigger the UPRmt, but at sublethal doses these insults extend lifespan in simple animals like C. elegans. Mitochondria are the main energy suppliers in eukaryotes, but it is not known if diet influences the UPRmt. High dietary glucose reduces lifespan in worms, and we show that high dietary glucose activates the UPRmt to protect against lifespan reduction. While lifelong exposure to glucose reduces lifespan, glucose exposure restricted to developing animals extends lifespan and requires the UPRmt. However, this lifespan extension is abolished by further mitochondrial stress in adult animals. We demonstrate that dietary conditions regulate mitochondrial homeostasis, where induction of the UPRmt during development extends lifespan, but prolonged activation into adulthood reduces lifespan.

  15. Fragile lifespan expansion by dietary mitohormesis in C. elegans

    PubMed Central

    Tauffenberger, Arnaud; Vaccaro, Alexandra; Parker, J. Alex

    2016-01-01

    Mitochondrial function is central to longevity and an imbalance in mitonuclear protein homeostasis activates a protective response called the mitochondrial unfolded protein response (UPRmt). Toxic compounds damaging mitochondria trigger the UPRmt, but at sublethal doses these insults extend lifespan in simple animals like C. elegans. Mitochondria are the main energy suppliers in eukaryotes, but it is not known if diet influences the UPRmt. High dietary glucose reduces lifespan in worms, and we show that high dietary glucose activates the UPRmt to protect against lifespan reduction. While lifelong exposure to glucose reduces lifespan, glucose exposure restricted to developing animals extends lifespan and requires the UPRmt. However, this lifespan extension is abolished by further mitochondrial stress in adult animals. We demonstrate that dietary conditions regulate mitochondrial homeostasis, where induction of the UPRmt during development extends lifespan, but prolonged activation into adulthood reduces lifespan. PMID:26764305

  16. The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan.

    PubMed

    Sarup, P; Sørensen, P; Loeschcke, V

    2014-02-01

    Heat-induced hormesis, i.e. the beneficial effect of mild heat-induced stress, increases the average lifespan of many organisms. This effect, which depends on the heat shock factor, decreases the log mortality rate weeks after the stress has ceased. To identify candidate genes that mediate this lifespan-prolonging effect late in life, we treated flies with mild heat stress (34 °C for 2 h) 3 times early in life and compared the transcriptomic response in these flies versus non-heat-treated controls 10-51 days after the last heat treatment. We found significant transcriptomic changes in the heat-treated flies. Several hsp70 probe sets were up-regulated 1.7-2-fold in the mildly stressed flies weeks after the last heat treatment (P<0.01). This result was unexpected as the major Drosophila heat shock protein, Hsp70, is reported to return to normal levels of expression shortly after heat stress. We conclude that the heat shock response, and Hsp70 in particular, may be central to the heat-induced increase in the average lifespan in flies that are exposed to mild heat stress early in life.

  17. S-linolenoyl glutathione intake extends life-span and stress resistance via Sir-2.1 upregulation in Caenorhabditis elegans.

    PubMed

    Cascella, Roberta; Evangelisti, Elisa; Zampagni, Mariagioia; Becatti, Matteo; D'Adamio, Giampiero; Goti, Andrea; Liguri, Gianfranco; Fiorillo, Claudia; Cecchi, Cristina

    2014-08-01

    Oxidative stress has a prominent role in life-span regulation of living organisms. One of the endogenous free radical scavenger systems is associated with glutathione (GSH), the most abundant nonprotein thiol in mammalian cells, acting as a major reducing agent and in antioxidant defense by maintaining a tight control over redox status. We have recently designed a series of novel S-acyl-GSH derivatives capable of preventing amyloid oxidative stress and cholinergic dysfunction in Alzheimer disease models, upon an increase in GSH intake. In this study we show that the longevity of the wild-type N2 Caenorhabditis elegans strain was significantly enhanced by dietary supplementation with linolenoyl-SG (lin-SG) thioester with respect to the ethyl ester of GSH, linolenic acid, or vitamin E. RNA interference analysis and activity inhibition assay indicate that life-span extension was mediated by the upregulation of Sir-2.1, a NAD-dependent histone deacetylase ortholog of mammalian SIRT1. In particular, lin-SG-mediated overexpression of Sir-2.1 appears to be related to the Daf-16 (FoxO) pathway. Moreover, the lin-SG derivative protects N2 worms from the paralysis and oxidative stress induced by Aβ/H2O2 exposure. Overall, our findings put forward lin-SG thioester as an antioxidant supplement triggering sirtuin upregulation, thus opening new future perspectives for healthy aging or delayed onset of oxidative-related diseases.

  18. Methionine restriction and lifespan control

    PubMed Central

    Lee, Byung Cheon; Kaya, Alaattin; Gladyshev, Vadim N.

    2016-01-01

    Dietary restriction (DR) without malnutrition is associated with longevity in various organisms. However, it has also been shown that reduced calorie intake is often ineffective in extending lifespan. Selecting optimal dietary regimens for DR studies is complicated, as the same regimen may lead to different outcomes depending on genotype and environmental factors. Recent studies suggested that interventions such as moderate protein restriction with/without adequate nutrition (e.g. particular amino acids or carbohydrates) may have additional beneficial effects mediated by certain metabolic and hormonal factors implicated in the biology of aging, regardless of total calorie intake. In particular, it was shown that restriction of a single amino acid, methionine, can mimic the effects of DR and extend lifespan in various model organisms. We discuss beneficial effects of methionine-restricted (MR) diet, the molecular pathways involved, and the use of this regimen in longevity interventions. PMID:26663138

  19. Ethosuximide, Valproic Acid, and Lamotrigine in Childhood Absence Epilepsy

    PubMed Central

    Glauser, Tracy A.; Cnaan, Avital; Shinnar, Shlomo; Hirtz, Deborah G.; Dlugos, Dennis; Masur, David; Clark, Peggy O.; Capparelli, Edmund V.; Adamson, Peter C.

    2010-01-01

    BACKGROUND Childhood absence epilepsy, the most common pediatric epilepsy syndrome, is usually treated with ethosuximide, valproic acid, or lamotrigine. The most efficacious and tolerable initial empirical treatment has not been defined. METHODS In a double-blind, randomized, controlled clinical trial, we compared the efficacy, tolerability, and neuropsychological effects of ethosuximide, valproic acid, and lamotrigine in children with newly diagnosed childhood absence epilepsy. Drug doses were incrementally increased until the child was free of seizures, the maximal allowable or highest tolerable dose was reached, or a criterion indicating treatment failure was met. The primary outcome was freedom from treatment failure after 16 weeks of therapy; the secondary outcome was attentional dysfunction. Differential drug effects were determined by means of pairwise comparisons. RESULTS The 453 children who were randomly assigned to treatment with ethosuximide (156), lamotrigine (149), or valproic acid (148) were similar with respect to their demographic characteristics. After 16 weeks of therapy, the freedom-from-failure rates for ethosuximide and valproic acid were similar (53% and 58%, respectively; odds ratio with valproic acid vs. ethosuximide, 1.26; 95% confidence interval [CI], 0.80 to 1.98; P = 0.35) and were higher than the rate for lamotrigine (29%; odds ratio with ethosuximide vs. lamotrigine, 2.66; 95% CI, 1.65 to 4.28; odds ratio with valproic acid vs. lamotrigine, 3.34; 95% CI, 2.06 to 5.42; P<0.001 for both comparisons). There were no significant differences among the three drugs with regard to discontinuation because of adverse events. Attentional dysfunction was more common with valproic acid than with ethosuximide (in 49% of the children vs. 33%; odds ratio, 1.95; 95% CI, 1.12 to 3.41; P = 0.03). CONCLUSIONS Ethosuximide and valproic acid are more effective than lamotrigine in the treatment of childhood absence epilepsy. Ethosuximide is associated with

  20. A high-fat jelly diet restores bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord motor neuron loss in TDP-43A315T mutant C57BL6/J mice.

    PubMed

    Coughlan, Karen S; Halang, Luise; Woods, Ina; Prehn, Jochen H M

    2016-09-01

    Transgenic transactivation response DNA-binding protein 43 (TDP-43) mice expressing the A315T mutation under control of the murine prion promoter progressively develop motor function deficits and are considered a new model for the study of amyotrophic lateral sclerosis (ALS); however, premature sudden death resulting from intestinal obstruction halts disease phenotype progression in 100% of C57BL6/J congenic TDP-43(A315T) mice. Similar to our recent results in SOD1(G93A) mice, TDP-43(A315T) mice fed a standard pellet diet showed increased 5' adenosine monophosphate-activated protein kinase (AMPK) activation at postnatal day (P)80, indicating elevated energetic stress during disease progression. We therefore investigated the effects of a high-fat jelly diet on bioenergetic status and lifespan in TDP-43(A315T) mice. In contrast to standard pellet-fed mice, mice fed high-fat jelly showed no difference in AMPK activation up to P120 and decreased phosphorylation of acetly-CoA carboxylase (ACC) at early-stage time points. Exposure to a high-fat jelly diet prevented sudden death and extended survival, allowing development of a motor neuron disease phenotype with significantly decreased body weight from P80 onward that was characterised by deficits in Rotarod abilities and stride length measurements. Development of this phenotype was associated with a significant motor neuron loss as assessed by Nissl staining in the lumbar spinal cord. Our work suggests that a high-fat jelly diet improves the pre-clinical utility of the TDP-43(A315T) model by extending lifespan and allowing the motor neuron disease phenotype to progress, and indicates the potential benefit of this diet in TDP-43-associated ALS. PMID:27491077

  1. A high-fat jelly diet restores bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord motor neuron loss in TDP-43A315T mutant C57BL6/J mice

    PubMed Central

    Coughlan, Karen S.; Halang, Luise; Woods, Ina

    2016-01-01

    ABSTRACT Transgenic transactivation response DNA-binding protein 43 (TDP-43) mice expressing the A315T mutation under control of the murine prion promoter progressively develop motor function deficits and are considered a new model for the study of amyotrophic lateral sclerosis (ALS); however, premature sudden death resulting from intestinal obstruction halts disease phenotype progression in 100% of C57BL6/J congenic TDP-43A315T mice. Similar to our recent results in SOD1G93A mice, TDP-43A315T mice fed a standard pellet diet showed increased 5′ adenosine monophosphate-activated protein kinase (AMPK) activation at postnatal day (P)80, indicating elevated energetic stress during disease progression. We therefore investigated the effects of a high-fat jelly diet on bioenergetic status and lifespan in TDP-43A315T mice. In contrast to standard pellet-fed mice, mice fed high-fat jelly showed no difference in AMPK activation up to P120 and decreased phosphorylation of acetly-CoA carboxylase (ACC) at early-stage time points. Exposure to a high-fat jelly diet prevented sudden death and extended survival, allowing development of a motor neuron disease phenotype with significantly decreased body weight from P80 onward that was characterised by deficits in Rotarod abilities and stride length measurements. Development of this phenotype was associated with a significant motor neuron loss as assessed by Nissl staining in the lumbar spinal cord. Our work suggests that a high-fat jelly diet improves the pre-clinical utility of the TDP-43A315T model by extending lifespan and allowing the motor neuron disease phenotype to progress, and indicates the potential benefit of this diet in TDP-43-associated ALS. PMID:27491077

  2. Pharmacological Lifespan Extension of Invertebrates

    PubMed Central

    Lucanic, Mark; Lithgow, Gordon J.; Alavez, Silvestre

    2012-01-01

    There is considerable interest in identifying small, drug-like compounds that slow aging in multiple species, particularly in mammals. Such compounds may prove to be useful in treating and retarding age-related disease in humans. Just as invertebrate models have been essential in helping us understand the genetic pathways that control aging, these model organisms are also proving valuable in discovering chemical compounds that influence longevity. The nematode Caenorhabditis elegans (C. elegans) has numerous advantages for such studies including its short lifespan and has been exploited by a number of investigators to find compounds that impact aging. Here, we summarize the progress being made in identifying compounds that extend the lifespan of invertebrates, and introduce the challenges we face in translating this research into human therapies. PMID:22771382

  3. Lamotrigine monotherapy for newly diagnosed typical absence seizures in children☆

    PubMed Central

    Holmes, Gregory L.; Frank, L. Matthew; Sheth, Raj D.; Philbrook, Bryan; Wooten, John D.; Vuong, Alain; Kerls, Susan; Hammer, Anne E.; Messenheimer, John

    2008-01-01

    Summary Purpose To evaluate the efficacy, tolerability, and effects on behavior and psychosocial functioning of lamotrigine monotherapy in children with newly diagnosed typical absence seizures. Patients and methods Children meeting enrollment criteria (n = 54) received a confirmatory 24-h ambulatory electroencephalogram (EEG) and then entered a Escalation Phase of up to 20-weeks during which lamotrigine was titrated until seizures were controlled or maximum dose (10.2 mg/kg) was reached. Seizure freedom was assessed by diary review and clinic hyperventilation (clinic HV) and then confirmed by EEG with hyperventilation (HV/EEG). Patients who maintained seizure freedom for two consecutive weekly visits were entered into the Maintenance Phase (n = 30). Diary, clinic HV, and HV/EEG data were supplemented with 24-h ambulatory EEG at baseline and the ends of the Escalation and Maintenance Phases. Health outcome assessments were completed at screening and at the end of the Maintenance Phase. Results By the end of the Escalation Phase, seizure-free rates (responders) were 59% by seizure diary (n = 51), 56% by HV/EEG (n = 54) (primary endpoint), and 49% by 24-h ambulatory EEG (n = 49). During the Maintenance Phase, 89% (week 24) and 86% (week 32) remained seizure free by diary (n = 28), 78% by clinic HV (n = 27), and 81% by 24-h ambulatory EEG (n = 26). Seizure freedom was first observed beginning at the fifth week of the Escalation Phase. The most frequent adverse events were headache and cough. Health outcome scores were either improved or unchanged at the end of the Maintenance Phase. Conclusions Lamotrigine monotherapy results in complete seizure freedom in a substantial number of children with typical absence seizures. Lamotrigine was well tolerated in this study. PMID:18778916

  4. Direct photodegradation of lamotrigine (an antiepileptic) in simulated sunlight--pH influenced rates and products.

    PubMed

    Young, Robert B; Chefetz, Benny; Liu, Aiju; Desyaterik, Yury; Borch, Thomas

    2014-04-01

    Lamotrigine is an antiepileptic and mood stabilizing drug that has been detected in wastewater, groundwater, surface water and drinking water, at frequencies in surface water ranging from 47 to 97%. Because lamotrigine is a weak base (pKa = 5.7) that appears in two protonation states in natural waters, this study examined the direct photodegradation of lamotrigine (11.4 to 12.0 mg L(-1)) in simulated sunlight using liquid chromatography-UV diode array detection and buffered aqueous solutions at pH 3.3, 5.3, and 7.7. Lamotrigine's half-life varied little (100 ± 3 to 112 ± 2 h) with solution pH, but its specific light absorption rate was 12 times higher, and its reaction quantum yield was 13 times lower, at pH 7.7 versus pH 3.3. In the estimated midday, midsummer sunlight in Denver, CO, USA (latitude 39.8617 °N), lamotrigine's estimated photodegradation rate was more than twice as fast at pH 7.7 versus pH 3.3. Lamotrigine's photoproducts were detected by liquid chromatography-UV diode array detection and time-of-flight mass spectrometry. Solution pH was shown to affect the identities and relative abundances of lamotrigine's photoproducts. Some photoproducts appeared only in solutions containing protonated lamotrigine, and others appeared only in solutions containing neutral lamotrigine. As a result, different reaction mechanisms were proposed. Finally, lamotrigine's reaction quantum yield (2.51 ± 0.07 × 10(-5) mol einstein(-1) at pH 7.7) and other results suggested that lamotrigine and three photoproducts are approximately as resistant to direct photodegradation as carbamazepine, a frequently detected pharmaceutical in surface waters.

  5. Autophagy mediates caloric restriction-induced lifespan extension in Arabidopsis.

    PubMed

    Minina, Elena A; Sanchez-Vera, Victoria; Moschou, Panagiotis N; Suarez, Maria F; Sundberg, Eva; Weih, Martin; Bozhkov, Peter V

    2013-04-01

    Caloric restriction (CR) extends lifespan in various heterotrophic organisms ranging from yeasts to mammals, but whether a similar phenomenon occurs in plants remains unknown. Plants are autotrophs and use their photosynthetic machinery to convert light energy into the chemical energy of glucose and other organic compounds. As the rate of photosynthesis is proportional to the level of photosynthetically active radiation, the CR in plants can be modeled by lowering light intensity. Here, we report that low light intensity extends the lifespan in Arabidopsis through the mechanisms triggering autophagy, the major catabolic process that recycles damaged and potentially harmful cellular material. Knockout of autophagy-related genes results in the short lifespan and suppression of the lifespan-extending effect of the CR. Our data demonstrate that the autophagy-dependent mechanism of CR-induced lifespan extension is conserved between autotrophs and heterotrophs.

  6. Veratrine blocks the lamotrigine-induced swimming increase and immobility decrease in the modified forced swimming test.

    PubMed

    Codagnone, F T; Consoni, F T; Rodrigues, A L S; Vital, M A B F; Andreatini, R

    2007-08-15

    Lamotrigine exhibits an anti-immobility effect in the modified forced swimming test, increasing swimming and climbing, behaviors that are related to serotonergic and noradrenergic effects, respectively. However, these effects could be secondary to lamotrigine blockade of Na(+) sensitive channel. Thus, this study investigated the influence of veratrine (0.1 mg/kg, ip, 10 min before each lamotrigine administration), an Na(+) channel activator, in the effect of lamotrigine (20 mg/kg, ip, 24, 5, 1 h before the test session) in the modified forced swimming test. Veratrine pre-treatment blocked lamotrigine-induced immobility decrease and swimming increase but it did not change the effect of lamotrigine on climbing. These results suggest that the serotonergic effect of lamotrigine in the modified forced swimming test is dependent on Na(+) voltage sensitive channel blockade, whereas its noradrenergic effect is not.

  7. Lamotrigine in pregnancy - therapeutic drug monitoring in maternal blood, amniotic fluid, and cord blood.

    PubMed

    Paulzen, Michael; Lammertz, Sarah E; Veselinovic, Tanja; Goecke, Tamme W; Hiemke, Christoph; Gründer, Gerhard

    2015-09-01

    This study is the first to measure and correlate lamotrigine concentrations in maternal blood, amniotic fluid, and umbilical cord blood and account for distribution of the drug between these three compartments. Concentrations of lamotrigine were measured in six mother-infant pairs at the time of delivery. Daily doses of lamotrigine ranged between 200 and 650 mg. Daily doses were correlated with maternal serum and umbilical cord blood concentrations, and serum levels were correlated with levels in amniotic fluid. Lamotrigine levels in serum correlated strongly with the lamotrigine levels in amniotic fluid (r=+0.986, P<0.001) and cord blood (r=+0.928, P=0.008). The penetration ratio into amniotic fluid was in a range between 0.31 and 0.75 (mean 0.58, SD 0.17); the penetration ratio into the fetal circulation, calculated on the basis of umbilical cord blood levels, was found to be in a range between 0.48 and 1.27 (mean 0.81, SD 0.28). Lamotrigine concentrations in amniotic fluid provided evidence that maternally administered lamotrigine is accessible to the fetus in a manner not previously appreciated. Furthermore, the penetration ratio into umbilical cord blood calculated here is in line with the largest study carried out so far to explore transplacental transfer.

  8. Report of Severe Menorrhagia Following the Maximum Amount of Lamotrigine Overdose

    PubMed Central

    Hajiali, Farid; Nassiri-Asl, Marjan

    2015-01-01

    Lamotrigine is an antiepileptic drug used as a treatment for partial and generalised seizures as well as for bipolar disorder type I. Till date, very few cases of lamotrigine overdose have been reported. The spectra of clinical effects of lamotrigine in acute overdose are not well established. In severe cases of poisoning, serious effects such as coma, respiratory depression, recurrent seizures and intraventricular conduction disturbances have been noted. Here, we report a case of lamotrigine overdose in a 26-year-old divorcee with paradoxical seizure activity and coma. On admission, the patient had a reduced level of consciousness. Serum evaluation revealed high lamotrigine levels without any other aetiology for mental dysfunction. To the best of our knowledge, this is the first report to describe a patient overdosed with 40 g of lamotrigine alone, which is the highest amount of lamotrigine overdose reported so far. During hospitalisation, the patient’s haemoglobin level reduced from 12.9 to 7.7 g/dl and potassium level decreased repeatedly. More importantly, severe menorrhagia was noted. Following prompt supportive treatment with early intubation, along with the use of potassium chloride for hypokalaemia and administration of sodium bicarbonate, the patient’s conditions improved and she was discharged from the hospital after 13 days. PMID:26664399

  9. Modeling time variant distributions of cellular lifespans: increases in circulating reticulocyte lifespans following double phlebotomies in sheep

    PubMed Central

    Freise, Kevin J.; Widness, John A.; Schmidt, Robert L.

    2009-01-01

    Many pharmacodynamic (PD) models of cellular response assume a single and time invariant lifespan of all cells, despite the existence of a true underlying distribution of cellular lifespans and known changes in the lifespan distributions with time. To account for these features of cellular populations, a time variant cellular lifespan distribution PD model was formulated and theoretical aspects of modeling cellular populations presented. The model extends prior work assuming time variant “point distributions” of cellular lifespans (Freise et al. J Pharmacokinet Pharmacodyn 34:519–547, 2007) and models assuming a time invariant lifespan distribution (Krzyzanski et al. J Pharmacokinet Pharmacodyn 33:125–166, 2006). The formulated time variant lifespan distribution model was fitted to endogenous plasma erythropoietin (EPO), reticulocyte, and red blood cell (RBC) concentrations in sheep phlebotomized on two occasions, 8 days apart. The time variant circulating reticulocyte lifespan was modeled as a truncated and scaled Weibull distribution, with the location parameter of the distribution non-parametrically represented by an end constrained quadratic spline function. The formulated time variant lifespan distribution model was compared to the identical time invariant distribution, time variant “point distribution”, and time invariant “point distribution” cellular lifespan models. Parameters of the time variant lifespan distribution model were well estimated with low standard errors. The mean circulating reticulocyte lifespan was estimated at 0.304 days, which rapidly increased over 3-fold following the first phlebotomy to a maximum of 1.03 days (P = 0.009). On average, the percentage of erythrocytes being released as reticulocytes maximally increased an estimated two-fold following the phlebotomies. The primary features of immature RBC physiology were captured by the model and gave results consistent with other estimates in sheep and humans. The

  10. Lifespan Attitudes toward Death.

    ERIC Educational Resources Information Center

    Walker, Gail; Maiden, Robert

    To more fully understand how attitudes toward death and dying develop and change across the lifespan, 90 male and female subjects between the ages of 2 and 18 years and 90 male and female subjects between the ages of 18 and 97 were administered questionnaires and interviews about dying. The results revealed that children's attitudes were…

  11. Seizure freedom after lamotrigine rash: a peculiar phenomenon in epilepsy.

    PubMed

    Kakisaka, Yosuke; Jin, Kazutaka; Kato, Kazuhiro; Iwasaki, Masaki; Nakasato, Nobukazu

    2014-01-01

    A 57-year-old right-handed woman with a history of left frontal lobe stroke had experienced episodes of language-expression difficulty followed by paraphasia lasting for approximately 30 seconds two years earlier. She was diagnosed with left frontal lobe epilepsy, and a lamotrigine regimen was initiated. This treatment had to be stopped five weeks after initiation because she developed a rash, and her drug lymphocyte stimulation test result was positive. Interestingly, she has since remained seizure free without requiring any antiepileptic medications. This adult case with a peculiar clinical course provides support for the hypothesis of immunomodulation process involvement in epilepsy, a phenomenon that was previously mainly seen in pediatric patients.

  12. Measurement of lifespan in Drosophila melanogaster.

    PubMed

    Linford, Nancy J; Bilgir, Ceyda; Ro, Jennifer; Pletcher, Scott D

    2013-01-01

    Aging is a phenomenon that results in steady physiological deterioration in nearly all organisms in which it has been examined, leading to reduced physical performance and increased risk of disease. Individual aging is manifest at the population level as an increase in age-dependent mortality, which is often measured in the laboratory by observing lifespan in large cohorts of age-matched individuals. Experiments that seek to quantify the extent to which genetic or environmental manipulations impact lifespan in simple model organisms have been remarkably successful for understanding the aspects of aging that are conserved across taxa and for inspiring new strategies for extending lifespan and preventing age-associated disease in mammals. The vinegar fly, Drosophila melanogaster, is an attractive model organism for studying the mechanisms of aging due to its relatively short lifespan, convenient husbandry, and facile genetics. However, demographic measures of aging, including age-specific survival and mortality, are extraordinarily susceptible to even minor variations in experimental design and environment, and the maintenance of strict laboratory practices for the duration of aging experiments is required. These considerations, together with the need to practice careful control of genetic background, are essential for generating robust measurements. Indeed, there are many notable controversies surrounding inference from longevity experiments in yeast, worms, flies and mice that have been traced to environmental or genetic artifacts(1-4). In this protocol, we describe a set of procedures that have been optimized over many years of measuring longevity in Drosophila using laboratory vials. We also describe the use of the dLife software, which was developed by our laboratory and is available for download (http://sitemaker.umich.edu/pletcherlab/software). dLife accelerates throughput and promotes good practices by incorporating optimal experimental design, simplifying

  13. Dietary adenine controls adult lifespan via adenosine nucleotide biosynthesis and AMPK, and regulates the longevity benefit of caloric restriction

    PubMed Central

    Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.

    2012-01-01

    SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286

  14. The African Turquoise Killifish Genome Provides Insights into Evolution and Genetic Architecture of Lifespan.

    PubMed

    Valenzano, Dario Riccardo; Benayoun, Bérénice A; Singh, Param Priya; Zhang, Elisa; Etter, Paul D; Hu, Chi-Kuo; Clément-Ziza, Mathieu; Willemsen, David; Cui, Rongfeng; Harel, Itamar; Machado, Ben E; Yee, Muh-Ching; Sharp, Sabrina C; Bustamante, Carlos D; Beyer, Andreas; Johnson, Eric A; Brunet, Anne

    2015-12-01

    Lifespan is a remarkably diverse trait ranging from a few days to several hundred years in nature, but the mechanisms underlying the evolution of lifespan differences remain elusive. Here we de novo assemble a reference genome for the naturally short-lived African turquoise killifish, providing a unique resource for comparative and experimental genomics. The identification of genes under positive selection in this fish reveals potential candidates to explain its compressed lifespan. Several aging genes are under positive selection in this short-lived fish and long-lived species, raising the intriguing possibility that the same gene could underlie evolution of both compressed and extended lifespans. Comparative genomics and linkage analysis identify candidate genes associated with lifespan differences between various turquoise killifish strains. Remarkably, these genes are clustered on the sex chromosome, suggesting that short lifespan might have co-evolved with sex determination. Our study provides insights into the evolutionary forces that shape lifespan in nature.

  15. The African Turquoise Killifish Genome Provides Insights into Evolution and Genetic Architecture of Lifespan.

    PubMed

    Valenzano, Dario Riccardo; Benayoun, Bérénice A; Singh, Param Priya; Zhang, Elisa; Etter, Paul D; Hu, Chi-Kuo; Clément-Ziza, Mathieu; Willemsen, David; Cui, Rongfeng; Harel, Itamar; Machado, Ben E; Yee, Muh-Ching; Sharp, Sabrina C; Bustamante, Carlos D; Beyer, Andreas; Johnson, Eric A; Brunet, Anne

    2015-12-01

    Lifespan is a remarkably diverse trait ranging from a few days to several hundred years in nature, but the mechanisms underlying the evolution of lifespan differences remain elusive. Here we de novo assemble a reference genome for the naturally short-lived African turquoise killifish, providing a unique resource for comparative and experimental genomics. The identification of genes under positive selection in this fish reveals potential candidates to explain its compressed lifespan. Several aging genes are under positive selection in this short-lived fish and long-lived species, raising the intriguing possibility that the same gene could underlie evolution of both compressed and extended lifespans. Comparative genomics and linkage analysis identify candidate genes associated with lifespan differences between various turquoise killifish strains. Remarkably, these genes are clustered on the sex chromosome, suggesting that short lifespan might have co-evolved with sex determination. Our study provides insights into the evolutionary forces that shape lifespan in nature. PMID:26638078

  16. Changes in Regenerative Capacity through Lifespan

    PubMed Central

    Yun, Maximina H.

    2015-01-01

    Most organisms experience changes in regenerative abilities through their lifespan. During aging, numerous tissues exhibit a progressive decline in homeostasis and regeneration that results in tissue degeneration, malfunction and pathology. The mechanisms responsible for this decay are both cell intrinsic, such as cellular senescence, as well as cell-extrinsic, such as changes in the regenerative environment. Understanding how these mechanisms impact on regenerative processes is essential to devise therapeutic approaches to improve tissue regeneration and extend healthspan. This review offers an overview of how regenerative abilities change through lifespan in various organisms, the factors that underlie such changes and the avenues for therapeutic intervention. It focuses on established models of mammalian regeneration as well as on models in which regenerative abilities do not decline with age, as these can deliver valuable insights for our understanding of the interplay between regeneration and aging. PMID:26512653

  17. Changes in Regenerative Capacity through Lifespan.

    PubMed

    Yun, Maximina H

    2015-01-01

    Most organisms experience changes in regenerative abilities through their lifespan. During aging, numerous tissues exhibit a progressive decline in homeostasis and regeneration that results in tissue degeneration, malfunction and pathology. The mechanisms responsible for this decay are both cell intrinsic, such as cellular senescence, as well as cell-extrinsic, such as changes in the regenerative environment. Understanding how these mechanisms impact on regenerative processes is essential to devise therapeutic approaches to improve tissue regeneration and extend healthspan. This review offers an overview of how regenerative abilities change through lifespan in various organisms, the factors that underlie such changes and the avenues for therapeutic intervention. It focuses on established models of mammalian regeneration as well as on models in which regenerative abilities do not decline with age, as these can deliver valuable insights for our understanding of the interplay between regeneration and aging. PMID:26512653

  18. Lamotrigine augmentation in schizophrenia and schizoaffective patients with obsessive-compulsive symptoms.

    PubMed

    Poyurovsky, M; Glick, I; Koran, L M

    2010-06-01

    Obsessive-compulsive symptoms (OCS) are clinically important phenomena in schizophrenia patients. Lamotrigine has a modulating effect on glutamatergic neurotransmission relevant to pathophysiology of both schizophrenia and OCD. Efficacy and tolerability of lamotrigine in schizophrenia and schizoaffective patients with comorbid OCS were evaluated. In an 8-week, open-label trial, lamotrigine (25 mg/day for 1 week, 50 mg for 2 weeks, 100 mg for 2 weeks, 200 mg for 3 weeks) was added to ongoing psychotropic drug regimens in schizophrenia (N = 5) and schizoaffective disorder (N = 6) patients with clinically significant OCS [Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) score > 16]. The Y-BOCS score for nine completers decreased significantly from baseline to week 8 (22.9 +/- 6.1 vs 17.4 +/- 3.6; t = 2.33, df = 1, P = 0.033). Five patients, all with schizoaffective disorder, were responders (>or=35% decrease in Y-BOCS score). No significant changes were detected in schizophrenia symptom severity. Depressive symptoms, assessed with the Calgary Depression Rating Scale, improved significantly (6.4 +/- 1.5 vs 4.0 +/- 2.5; t = 3.19, df = 1, P = 0.013); this change positively correlated with OCS improvement (r = 0.69, P = 0.04). Lamotrigine was safe and well tolerated. Explicit evaluation of therapeutic efficacy of adjunctive lamotrigine in schizoaffective disorder patients with comorbid OCS merits further investigation.

  19. Dual monoamine modulation for the antidepressant-like effect of lamotrigine in the modified forced swimming test.

    PubMed

    Consoni, Fernando T; Vital, Maria A B F; Andreatini, Roberto

    2006-08-01

    Lamotrigine is an anticonvulsant drug that exhibits a clinical antidepressant effect. However, few studies have been conducted with lamotrigine in animal models of depression and its mechanism of antidepressant action is still unclear. The present study evaluates the effect of lamotrigine (5-20mg/kg, i.p.) in the modified forced swimming test and compare its behavior pattern in the test with those of paroxetine (20mg/kg, i.p.), nortriptyline (20mg/kg, i.p.) and dizolcipine-MK-801 (0.1mg/kg, i.p.). The effect of lamotrigine on locomotor activity and memory was also studied in order to exclude false-positive results. At low doses, lamotrigine (10mg/kg) decreased immobility and increased climbing scores, a similar pattern to nortriptyline. A higher lamotrigine dose (20mg/kg) also increased swimming scores. Lamotrigine neither changed locomotion in the open-field test nor impaired habituation. Paroxetine and dizolcipine decreased immobility and increased swimming. Dizolcipine also decreased climbing. However, although the effects of paroxetine and nortriptyline were seen without effect on locomotor activity, dizolcipine increased locomotor activity. The present study indicates that the antidepressant-like effect of lamotrigine is probably related to noradrenergic/serotonergic systems.

  20. Lamotrigine Induced Whole Body Tics: A Case Report and Literature Review.

    PubMed

    Centorino, Michael B; Catalano, Glenn; Catalano, Maria C

    2016-01-01

    Lamotrigine is an anticonvulsant medication that also has utility in the treatment of bipolar disorder. It has been associated with many side effects, including rashes that can progress to Stevens-Johnson syndrome or toxic epidermal necrolysis. It has also been associated with the development of motor tics, most commonly in the head, neck, and shoulders. We will now present the case of a 45-year-old woman who developed tics that involved the entire left side of her body after her dose of lamotrigine was increased from 200 mg daily (2.0 mg/kg/day) to 225 mg daily (2.3 mg/kg/day). We will review the prior cases of lamotrigine induced tics, and compare them to the circumstances surrounding our patient. We will also discuss the neurobiology of tics and make suggestions to improve the tics, based on the reported cases.

  1. Lamotrigine use in pregnancy and risk of orofacial cleft and other congenital anomalies

    PubMed Central

    Wang, Hao; Loane, Maria; Morris, Joan; Garne, Ester; Addor, Marie-Claude; Arriola, Larraitz; Bakker, Marian; Barisic, Ingeborg; Doray, Berenice; Gatt, Miriam; Kallen, Karin; Khoshnood, Babak; Klungsoyr, Kari; Lahesmaa-Korpinen, Anna-Maria; Latos-Bielenska, Anna; Mejnartowicz, Jan P.; Nelen, Vera; Neville, Amanda; O'Mahony, Mary; Pierini, Anna; Rißmann, Anke; Tucker, David; Wellesley, Diana; Wiesel, Awi; de Jong-van den Berg, Lolkje T.W.

    2016-01-01

    Objective: To test previous signals of a risk of orofacial cleft (OC) and clubfoot with exposure to the antiepileptic lamotrigine, and to investigate risk of other congenital anomalies (CA). Methods: This was a population-based case–malformed control study based on 21 EUROCAT CA registries covering 10.1 million births (1995–2011), including births to 2005 in which the clubfoot signal was generated and a subsequent independent study population of 6.3 million births. A total of 226,806 babies with CA included livebirths, stillbirths, and terminations of pregnancy following prenatal diagnosis. First-trimester lamotrigine monotherapy exposure in OC cases and clubfoot cases was compared to other nonchromosomal CA (controls). Odds ratios (OR) were adjusted for registry. An exploratory analysis compared the proportion of each standard EUROCAT CA subgroup among all babies with nonchromosomal CA exposed to lamotrigine monotherapy with non-AED exposed pregnancies. Results: There were 147 lamotrigine monotherapy-exposed babies with nonchromosomal CA. For all OC, ORadj was 1.31 (95% confidence interval [CI] 0.73–2.33), isolated OC 1.45 (95% CI 0.80–2.63), isolated cleft palate 1.69 (95% CI 0.69–4.15). Overall ORadj for clubfoot was 1.83 (95% CI 1.01–3.31) and 1.43 (95% CI 0.66–3.08) in the independent study population. No other specific CA were significantly associated with lamotrigine monotherapy. Conclusions: The risk of OC was not significantly raised and we estimate the excess risk of OC to be less than 1 in every 550 exposed babies. We have not found strong independent evidence of a risk of clubfoot subsequent to our original signal. Our study cannot assess the general malformation risk among lamotrigine-exposed pregnancies. PMID:27053714

  2. Revisiting the Lamotrigine-Mediated Effect on Hippocampal GABAergic Transmission

    PubMed Central

    Huang, Yu-Yin; Liu, Yu-Chao; Lee, Cheng-Ta; Lin, Yen-Chu; Wang, Mong-Lien; Yang, Yi-Ping; Chang, Kaung-Yi; Chiou, Shih-Hwa

    2016-01-01

    Lamotrigine (LTG) is generally considered as a voltage-gated sodium (Nav) channel blocker. However, recent studies suggest that LTG can also serve as a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel enhancer and can increase the excitability of GABAergic interneurons (INs). Perisomatic inhibitory INs, predominantly fast-spiking basket cells (BCs), powerfully inhibit granule cells (GCs) in the hippocampal dentate gyrus. Notably, BCs express abundant Nav channels and HCN channels, both of which are able to support sustained action potential generation. Using whole-cell recording in rat hippocampal slices, we investigated the net LTG effect on BC output. We showed that bath application of LTG significantly decreased the amplitude of evoked compound inhibitory postsynaptic currents (IPSCs) in GCs. In contrast, simultaneous paired recordings from BCs to GCs showed that LTG had no effect on both the amplitude and the paired-pulse ratio of the unitary IPSCs, suggesting that LTG did not affect GABA release, though it suppressed cell excitability. In line with this, LTG decreased spontaneous IPSC (sIPSC) frequency, but not miniature IPSC frequency. When re-examining the LTG effect on GABAergic transmission in the cornus ammonis region 1 (CA1) area, we found that LTG markedly inhibits both the excitability of dendrite-targeting INs in the stratum oriens and the concurrent sIPSCs recorded on their targeting pyramidal cells (PCs) without significant hyperpolarization-activated current (Ih) enhancement. In summary, LTG has no effect on augmenting Ih in GABAergic INs and does not promote GABAergic inhibitory output. The antiepileptic effect of LTG is likely through Nav channel inhibition and the suppression of global neuronal network activity. PMID:27455251

  3. Brief Communication: SIR-2.1-dependent lifespan extension of Caenorhabditis elegans by oxyresveratrol and resveratrol.

    PubMed

    Lee, Jiyun; Kwon, Gayeung; Park, Jieun; Kim, Jeong-Keun; Lim, Young-Hee

    2016-10-01

    Resveratrol (RES) has been studied for its effects on the lifespan extension of Caenorhabditis elegans, but controversy still remains on its mechanism related with SIR-2. In this study, longevity assay was performed to confirm SIR-2-dependent lifespan extension of C. elgeans with RES and oxyresveratrol (OXY), an isomer of hydroxylated RES using loss-of-function mutants of C. elegans including sir-2.1 mutant. The results showed that OXY and RES significantly (P < 0.05) extended the lifespan of C. elegans compared with the control. OXY and RES also significantly (P < 0.05) increased the mRNA expression levels of sir-2.1 and aak-2 in a dose-dependent manner and increased the protein expression levels of SIR-2.1. OXY and RES treatment extended the lifespan in daf-16 loss-of-function mutants, which suggested that lifespan extension was not occurring via the activation of DAF-16. However, OXY and RES failed to extend the lifespan in loss-of-function mutants of sir-2.1 and aak-2 Therefore, OXY and RES extend the lifespan of C. elegans by overexpression of SIR-2.1, which is related to lifespan extension through calorie restriction and the AMP-activated protein kinase (AMPK) pathway, although this process is independent of the FOXO/DAF-16 pathway.

  4. The effects of lamotrigine on the acquisition and expression of morphine-induced place preference in mice.

    PubMed

    Tehrani, S Pournaghash; Daryaafzoon, M; Bakhtiarian, A; Ejtemaeemehr, S; Sahraei, H

    2009-01-01

    The purpose of the present study is to determine the effects of the anticonvulsant drug, lamotrigine, on the acquisition and expression of morphine-induced place preference in mice. Lamotrigine prevents the release of glutamate from presynaptic neurons and inhibits action potential in postsynaptic area by inhibiting presynaptic sodium and calcium channels. Because of such properties, lamotrigine is used for reducing craving for and use of cocaine, alcohol and abused inhalant. So, to determine the effects of lamotrigine on opiates; specifically morphine, 180 male Swiss-Webster mice (20-35 g) were used in this study. Conditioned place preference, was assessed using a biased place conditioning paradigm. In a pilot study the effects of various doses of morphine (2.5, 5 and 10 mg kg(-1)), alone, or in combination with lamotrigine (1, 5 and 25 mg kg(-1)) on the place conditioning paradigm were examined. Animals were injected with the aforementioned doses of lamotrigine 60 min either prior to each morphine injections (acquisition) or prior to the start of the expression on the test day (expression). Administration of different doses of morphine (2.5, 5 and 10 mg kg(-1)) induced conditioned place preference whereas the administration of different doses of lamotrigine (1, 5 and 25 mg kg(-1)) failed to induce place preference. Acquisition and expression of morphine-induced CPP were reduced by lamotrigine at doses of 1, 5 and 25 mg kg(-1) and 5 and 25 mg kg(-1), respectively. Physiological mechanisms of action of lamotrigine and its potential therapeutic use in the treatment of drug-dependence are discussed.

  5. Effect of hydroalcoholic extract of ginger on the liver of epileptic female rats treated with lamotrigine

    PubMed Central

    Poorrostami, Ameneh; Farokhi, Farah; Heidari, Reza

    2014-01-01

    Objective: Lamotrigine is an antiepileptic drug, widely used in the treatment of epilepsy; long-term use of this drug can cause hepatotoxicity. Zingiber officinale Roscoe (ginger) possesses antioxidant properties. In present research, the effect ofhydroalcoholic extract of ginger (HEG) on the liver of lamotrigine-treated epileptic rats was investigated Material and Methods: Forty-eight female Wistar rats were selected and allocated to 8 groups of 6 each. Group 1: Negative controls were treated with normal saline. Group 2: Positive controls were treated with lamotrigine (LTG) (10 mg/kg) daily by gavages for 4 consecutive weeks. Epilepsy was induced in treatment groups by i.p. injection of pentylenetetrazol (PTZ) (40 mg/kg). Group 3: Epileptic group received normal saline (10 ml/kg). Group 4: Epileptic group was treated with LTG (10 mg/kg). Groups 5 and 6: Epileptic groups received HEG (50 and 100 mg/kg). Groups 7 and 8: Epileptic groups received LTG and HEG (50 and 100 mg/kg). At the end of 28 days, blood samples were drawn and their livers were processed for light microscopy. Results: The mean values of TG, CHOL, AST, and ALT activity significantly rose (p<0.01) in groups 2, 3, and 4, while in rats treated with HEG (groups 5, 6, 7, and 8), the levels of liver enzymes significantly decreased (p<0.05) compared with epileptic group treated with lamotrigine (group 4). Histopathological changes of liver samples were comparable with respective control. Conclusion: These results suggest that hydroalcoholic extract of ginger improves liver function in lamotrigine-induced hepatotoxicity. PMID:25068142

  6. Drug reaction with eosinophilia and systemic symptoms syndrome probably induced by a lamotrigine-ginseng drug interaction.

    PubMed

    Myers, Amy P; Watson, Troy A; Strock, Steven B

    2015-03-01

    The likelihood of a drug reaction with lamotrigine is increased by dose escalation that is too rapid or drug interactions that increase the concentration of lamotrigine. There is a well-documented interaction between valproic acid and lamotrigine in which lamotrigine levels are increased, subsequently increasing the risk of a drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome. This syndrome is characterized by fever, lymphadenopathy, diffuse maculopapular rash, multivisceral involvement, eosinophilia, and atypical lymphocytes and has a mortality rate of 10-40%. We describe the first case, to our knowledge, of DRESS syndrome that was probably induced by a drug interaction between lamotrigine and ginseng. A 44-year-old white man presented to the emergency department after experiencing a possible seizure. His medical history included two other lifetime events concerning for seizures at ages 14 and 29 years old. After referral to the neurology clinic, he was diagnosed with generalized tonic-clonic seizure disorder, and lamotrigine was started with up-titration according to the drug's package insert to a goal dosage of 150 mg twice/day. The patient had also been taking deer antler velvet and ginseng that he continued during his lamotrigine therapy. On day 43 of therapy, the patient presented to the emergency department with a pruritic rash that had started on his extremities and spread to his torso. He was thought to have experienced a drug reaction to lamotrigine, and the drug was discontinued. Thirteen days later, the patient was admitted from the acute care clinic for inpatient observation due to laboratory abnormalities in the setting of continued rash, headache, and myalgias. His admission laboratory results on that day were remarkable for leukocytosis, with a white blood cell count up to 17.6 × 10(3) /mm(3) , with a prominent eosinophilia of 3.04 × 10(3) /mm(3) ; his liver enzyme levels were also elevated, with an aspartate

  7. Drug reaction with eosinophilia and systemic symptoms syndrome probably induced by a lamotrigine-ginseng drug interaction.

    PubMed

    Myers, Amy P; Watson, Troy A; Strock, Steven B

    2015-03-01

    The likelihood of a drug reaction with lamotrigine is increased by dose escalation that is too rapid or drug interactions that increase the concentration of lamotrigine. There is a well-documented interaction between valproic acid and lamotrigine in which lamotrigine levels are increased, subsequently increasing the risk of a drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome. This syndrome is characterized by fever, lymphadenopathy, diffuse maculopapular rash, multivisceral involvement, eosinophilia, and atypical lymphocytes and has a mortality rate of 10-40%. We describe the first case, to our knowledge, of DRESS syndrome that was probably induced by a drug interaction between lamotrigine and ginseng. A 44-year-old white man presented to the emergency department after experiencing a possible seizure. His medical history included two other lifetime events concerning for seizures at ages 14 and 29 years old. After referral to the neurology clinic, he was diagnosed with generalized tonic-clonic seizure disorder, and lamotrigine was started with up-titration according to the drug's package insert to a goal dosage of 150 mg twice/day. The patient had also been taking deer antler velvet and ginseng that he continued during his lamotrigine therapy. On day 43 of therapy, the patient presented to the emergency department with a pruritic rash that had started on his extremities and spread to his torso. He was thought to have experienced a drug reaction to lamotrigine, and the drug was discontinued. Thirteen days later, the patient was admitted from the acute care clinic for inpatient observation due to laboratory abnormalities in the setting of continued rash, headache, and myalgias. His admission laboratory results on that day were remarkable for leukocytosis, with a white blood cell count up to 17.6 × 10(3) /mm(3) , with a prominent eosinophilia of 3.04 × 10(3) /mm(3) ; his liver enzyme levels were also elevated, with an aspartate

  8. The C. elegans Lifespan Machine

    PubMed Central

    Stroustrup, Nicholas; Ulmschneider, Bryne E.; Nash, Zachary M.; López Moyado, Isaac F.; Apfeld, Javier; Fontana, Walter

    2013-01-01

    The measurement of lifespan pervades aging research. Because lifespan results from complex interactions between genetic, environmental and stochastic factors, it varies widely even among isogenic individuals. The action of molecular mechanisms on lifespan is therefore visible only through their statistical effects on populations. Survival assays in C. elegans provided critical insights into evolutionarily conserved determinants of aging. To enable the rapid acquisition of survival curves at arbitrary statistical resolution, we developed a scalable imaging and analysis platform to observe nematodes over multiple weeks across square meters of agar surface at 8 μm resolution. The method generates a permanent visual record of individual deaths from which survival curves are constructed and validated, producing data consistent with the manual method for several mutants in both standard and stressful environments. Our approach allows rapid, detailed reverse-genetic and chemical screens for effects on survival and enables quantitative investigations into the statistical structure of aging. PMID:23666410

  9. The role of MAP4K3 in lifespan regulation of Caenorhabditiselegans

    SciTech Connect

    Khan, Maruf H.; Hart, Matthew J.; Rea, Shane L.

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Inhibition of MAP4K3 by RNAi leads to increased mean lifespan in Caenorhabditis elegans. Black-Right-Pointing-Pointer Mutation in the citron homology domain of MAP4K3 leads to increased mean lifespan. Black-Right-Pointing-Pointer Mutation in the kinase domain of MAP4K3 has no significant effect on mean lifespan. -- Abstract: The TOR pathway is a kinase signaling pathway that regulates cellular growth and proliferation in response to nutrients and growth factors. TOR signaling is also important in lifespan regulation - when this pathway is inhibited, either naturally, by genetic mutation, or by pharmacological means, lifespan is extended. MAP4K3 is a Ser/Thr kinase that has recently been found to be involved in TOR activation. Unexpectedly, the effect of this protein is not mediated via Rheb, the more widely known TOR activation pathway. Given the role of TOR in growth and lifespan control, we looked at how inhibiting MAP4K3 in Caenorhabditiselegans affects lifespan. We used both feeding RNAi and genetic mutants to look at the effect of MAP4K3 deficiency. Our results show a small but significant increase in mean lifespan in MAP4K3 deficient worms. MAP4K3 thus represents a new target in the TOR pathway that can be targeted for pharmacological intervention to control lifespan.

  10. HIF-1 Modulates Dietary Restriction-Mediated Lifespan Extension via IRE-1 in Caenorhabditis elegans

    PubMed Central

    Chen, Di; Thomas, Emma Lynn; Kapahi, Pankaj

    2009-01-01

    Dietary restriction (DR) extends lifespan in various species and also slows the onset of age-related diseases. Previous studies from flies and yeast have demonstrated that the target of rapamycin (TOR) pathway is essential for longevity phenotypes resulting from DR. TOR is a conserved protein kinase that regulates growth and metabolism in response to nutrients and growth factors. While some of the downstream targets of TOR have been implicated in regulating lifespan, it is still unclear whether additional targets of this pathway also modulate lifespan. It has been shown that the hypoxia inducible factor-1 (HIF-1) is one of the targets of the TOR pathway in mammalian cells. HIF-1 is a transcription factor complex that plays key roles in oxygen homeostasis, tumor formation, glucose metabolism, cell survival, and inflammatory response. Here, we describe a novel role for HIF-1 in modulating lifespan extension by DR in Caenorhabditis elegans. We find that HIF-1 deficiency results in extended lifespan, which overlaps with that by inhibition of the RSKS-1/S6 kinase, a key component of the TOR pathway. Using a modified DR method based on variation of bacterial food concentrations on solid agar plates, we find that HIF-1 modulates longevity in a nutrient-dependent manner. The hif-1 loss-of-function mutant extends lifespan under rich nutrient conditions but fails to show lifespan extension under DR. Conversely, a mutation in egl-9, which increases HIF-1 activity, diminishes the lifespan extension under DR. This deficiency is rescued by tissue-specific expression of egl-9 in specific neurons and muscles. Increased lifespan by hif-1 or DR is dependent on the endoplasmic reticulum (ER) stress regulator inositol-requiring protein-1 (IRE-1) and is associated with lower levels of ER stress. Therefore, our results demonstrate a tissue-specific role for HIF-1 in the lifespan extension by DR involving the IRE-1 ER stress pathway. PMID:19461873

  11. An audit of lamotrigine, levetiracetam and topiramate usage for epilepsy in a district general hospital.

    PubMed

    Chappell, Brian; Crawford, Pamela

    2005-09-01

    The aim of this audit was to ascertain outcomes for people who had taken or who were still taking three "new generation" broad-spectrum antiepileptic drugs (AEDs), namely lamotrigine, levetiracetam and topiramate. Thirteen percent of people became seizure free and approximately, one-third had a reduction of greater than 50% in their seizures. Two-thirds of people were still taking their audit AED. In addition, approximately one-third of people with a learning disability derived substantial benefit, although the rate of seizure freedom was lower. All three AEDs were most successful at treating primary generalised epilepsy and least successful with symptomatic generalised epilepsy. With some reservations the data suggests that levetiracetam and topiramate are the most efficacious AEDs, but topiramate is the least well tolerated. These results mean consideration of a "general prescribing policy" is important when using and choosing these AEDs. We conclude that lamotrigine, levetiracetam and topiramate are useful additions to the armamentarium of AEDs.

  12. Ethosuximide, Valproic Acid and Lamotrigine in Childhood Absence Epilepsy: Initial Monotherapy Outcomes at 12 months

    PubMed Central

    Glauser, Tracy A.; Cnaan, Avital; Shinnar, Shlomo; Hirtz, Deborah G.; Dlugos, Dennis; Masur, David; Clark, Peggy O.; Adamson, Peter C.

    2012-01-01

    Purpose Determine the optimal initial monotherapy for children with newly diagnosed childhood absence epilepsy based on 12 months of double blind therapy. Methods A double-blind, randomized controlled clinical trial compared the efficacy, tolerability and neuropsychological effects of ethosuximide, valproic acid and lamotrigine in children with newly diagnosed childhood absence epilepsy. Study medications were titrated to clinical response and subjects remained in the trial unless they reached a treatment failure criterion. Maximal target doses were ethosuximide 60 mg/kg/day or 2000 mg/day, valproic acid 60 mg/kg/day or 3000 mg/day and lamotrigine 12 mg/kg/day or 600 mg/day. Original primary outcome was at 16–20 weeks and included a video EEG assessment. For this report, the main effectiveness outcome was the freedom from failure rate 12 months after randomization and included a video EEG assessment; differential drug effects were determined by pairwise comparisons. The main cognitive outcome was the percentage of subjects experiencing attentional dysfunction at the Month 12 visit. Key Findings A total of 453 children were enrolled and randomized; seven were deemed ineligible and 446 subjects comprised the overall efficacy cohort. There were no demographic differences between the three cohorts. By 12 months after starting therapy, only 37% of all enrolled subjects were free from treatment failure on their first medication. At the Month 12 visit, the freedom-from-failure rates for ethosuximide and valproic acid were similar (45% and 44%, respectively; odds ratio with valproic acid vs. ethosuximide, 0.94; 95% confidence interval [CI], 0.60 to 1.48; P = 0.82) and were higher than the rate for lamotrigine (21%; odds ratio with ethosuximide vs. lamotrigine, 3.09; 95% CI, 1.86 to 5.13; odds ratio with valproic acid vs. lamotrigine, 2.90; 95% CI, 1.74 to 4.83; P<0.001 for both comparisons). The frequency of treatment failures due to lack of seizure control (p < 0

  13. Determination of Lamotrigine in Pharmaceutical Preparations by Adsorptive Stripping Voltammetry Using Screen Printed Electrodes

    PubMed Central

    Domínguez-Renedo, Olga; Calvo, M. Encarnación Burgoa; Arcos-Martínez, M. Julia

    2008-01-01

    This paper describes a procedure that has been optimized for the determination of lamotrigine by Differential Pulse Adsorptive Stripping Voltammetry (DPAdSV) using carbon screen-printed electrodes (CSPE) and mercury coated carbon screen-printed electrodes. Selection of the experimental parameters was made using experimental design methodology. The detection limit found was 5.0 × 10-6 M and 2.0 × 10-6 M for the non modified and Hg modified CSPE, respectively. In terms of reproducibility, the precision of the above mentioned methods was calculated in %RSD values at 9.83% for CSPE and 2.73% for Hg-CSPE. The Hg-coated CSPEs developed in this work were successfully applied in the determination of lamotrigine in pharmaceutical preparations.

  14. Lamotrigine reverses masseter overactivity caused by stress maybe via Glu suppression.

    PubMed

    Song, Fang; Li, Qiang; Wan, Zhong-Yuan; Zhao, Ya-Juan; Huang, Fei; Yang, Qi; Zhao, Wen-Feng; Zhang, Min; Chen, Yong-Jin

    2014-10-01

    Experimental and non-experimental stress significantly increase masseter muscle tone, which has been linked to the symptoms and pathogenesis of several stomatognathic system diseases. Until now, the mechanism underlying this phenomenon has remained unclear. The current study was performed to determine the mechanism of the stress-induced increase in masseter muscle tone and to investigate the effect of lamotrigine on this change. Animals challenged by repeated restraint stress received either saline as a vehicle or lamotrigine in doses of 20, 30 or 40 mg/kg body weight, whereas control animals received saline without stress treatment. Masseter muscle tone was assessed using electromyography. The activity of glutamate-related metabolic enzymes (glutaminase and glutamine synthetase) in the trigeminal motor nucleus was also investigated. Our results showed an interesting phenomenon: masseter muscle activity increased concurrently with the upregulation of the glutamate concentration after stress treatment. The activities of glutaminase and glutamine synthetase in the trigeminal motor nucleus were also upregulated and downregulated, respectively, when the rats were challenged by prolonged stress. The animals treated with lamotrigine at moderate and high doses had significantly decreased masseter muscle tone compared with stressed animals treated with vehicle. These results suggested that increased glutaminase activity and decreased glutamine synthetase activity increased glutamate production and decreased glutamate decomposition, causing an increase in glutamate levels in the trigeminal motor nucleus and eventually increasing masseter muscle tone. The administration of lamotrigine at doses of 30 or 40 mg/kg body weight effectively mitigated the adverse effects of stress on masseter muscle tone via inhibition of glutamate release.

  15. Degradation pathways of lamotrigine under advanced treatment by direct UV photolysis, hydroxyl radicals, and ozone.

    PubMed

    Keen, Olya S; Ferrer, Imma; Michael Thurman, E; Linden, Karl G

    2014-12-01

    Lamotrigine is recently recognized as a persistent pharmaceutical in the water environment and wastewater effluents. Its degradation was studied under UV and ozone advanced oxidation treatments with reaction kinetics of lamotrigine with ozone (≈4 M(-1)s(-1)), hydroxyl radical [(2.1 ± 0.3) × 10(9)M(-1)s(-1)] and by UV photolysis with low and medium pressure mercury vapor lamps [quantum yields ≈0 and (2.7 ± 0.4)× 10(-4) respectively] determined. All constants were measured at pH 6 and at temperature ≈20°C. The results indicate that lamotrigine is slow to respond to direct photolysis or oxidation by ozone and no attenuation of the contaminant is expected in UV or ozone disinfection applications. The compound reacts rapidly with hydroxyl radicals indicating that advanced oxidation processes would be effective for its treatment. Degradation products were identified under each treatment process using accurate mass time-of-flight spectrometry and pathways of decay were proposed. The main transformation pathways in each process were: dechlorination of the benzene ring during direct photolysis; hydroxyl group addition to the benzene ring during the reaction with hydroxyl radicals; and triazine ring opening after reaction with ozone. Different products that form in each process may be to a varying degree less environmentally stable than the parent lamotrigine. In addition, a novel method of ozone quenching without addition of salts is presented. The new quenching method would allow subsequent mass spectrometry analysis without a solid phase extraction clean-up step. The method involves raising the pH of the sample to approximately 10 for a few seconds and lowering it back and is therefore limited to applications for which temporary pH change is not expected to affect the outcome of the analysis.

  16. Lamotrigine reverses masseter overactivity caused by stress maybe via Glu suppression.

    PubMed

    Song, Fang; Li, Qiang; Wan, Zhong-Yuan; Zhao, Ya-Juan; Huang, Fei; Yang, Qi; Zhao, Wen-Feng; Zhang, Min; Chen, Yong-Jin

    2014-10-01

    Experimental and non-experimental stress significantly increase masseter muscle tone, which has been linked to the symptoms and pathogenesis of several stomatognathic system diseases. Until now, the mechanism underlying this phenomenon has remained unclear. The current study was performed to determine the mechanism of the stress-induced increase in masseter muscle tone and to investigate the effect of lamotrigine on this change. Animals challenged by repeated restraint stress received either saline as a vehicle or lamotrigine in doses of 20, 30 or 40 mg/kg body weight, whereas control animals received saline without stress treatment. Masseter muscle tone was assessed using electromyography. The activity of glutamate-related metabolic enzymes (glutaminase and glutamine synthetase) in the trigeminal motor nucleus was also investigated. Our results showed an interesting phenomenon: masseter muscle activity increased concurrently with the upregulation of the glutamate concentration after stress treatment. The activities of glutaminase and glutamine synthetase in the trigeminal motor nucleus were also upregulated and downregulated, respectively, when the rats were challenged by prolonged stress. The animals treated with lamotrigine at moderate and high doses had significantly decreased masseter muscle tone compared with stressed animals treated with vehicle. These results suggested that increased glutaminase activity and decreased glutamine synthetase activity increased glutamate production and decreased glutamate decomposition, causing an increase in glutamate levels in the trigeminal motor nucleus and eventually increasing masseter muscle tone. The administration of lamotrigine at doses of 30 or 40 mg/kg body weight effectively mitigated the adverse effects of stress on masseter muscle tone via inhibition of glutamate release. PMID:24955497

  17. Life-Span Learning: A Developmental Perspective

    ERIC Educational Resources Information Center

    Thornton, James E.

    2003-01-01

    The article discusses learning as embedded processes of development and aging, and as social activity over the life course. The concept of life-span learning is proposed and outlined to discuss these processes as aspects of and propositions in life-span development and aging theory. Life-span learning processes arise and continuously develop in a…

  18. Extension of lifespan in C. elegans by naphthoquinones that act through stress hormesis mechanisms.

    PubMed

    Hunt, Piper R; Son, Tae Gen; Wilson, Mark A; Yu, Quian-Sheng; Wood, William H; Zhang, Yongqing; Becker, Kevin G; Greig, Nigel H; Mattson, Mark P; Camandola, Simonetta; Wolkow, Catherine A

    2011-01-01

    Hormesis occurs when a low level stress elicits adaptive beneficial responses that protect against subsequent exposure to severe stress. Recent findings suggest that mild oxidative and thermal stress can extend lifespan by hormetic mechanisms. Here we show that the botanical pesticide plumbagin, while toxic to C. elegans nematodes at high doses, extends lifespan at low doses. Because plumbagin is a naphthoquinone that can generate free radicals in vivo, we investigated whether it extends lifespan by activating an adaptive cellular stress response pathway. The C. elegans cap'n'collar (CNC) transcription factor, SKN-1, mediates protective responses to oxidative stress. Genetic analysis showed that skn-1 activity is required for lifespan extension by low-dose plumbagin in C. elegans. Further screening of a series of plumbagin analogs identified three additional naphthoquinones that could induce SKN-1 targets in C. elegans. Naphthazarin showed skn-1dependent lifespan extension, over an extended dose range compared to plumbagin, while the other naphthoquinones, oxoline and menadione, had differing effects on C. elegans survival and failed to activate ARE reporter expression in cultured mammalian cells. Our findings reveal the potential for low doses of naturally occurring naphthoquinones to extend lifespan by engaging a specific adaptive cellular stress response pathway.

  19. Peripheral Circadian Clocks Mediate Dietary Restriction-Dependent Changes in Lifespan and Fat Metabolism in Drosophila.

    PubMed

    Katewa, Subhash D; Akagi, Kazutaka; Bose, Neelanjan; Rakshit, Kuntol; Camarella, Timothy; Zheng, Xiangzhong; Hall, David; Davis, Sonnet; Nelson, Christopher S; Brem, Rachel B; Ramanathan, Arvind; Sehgal, Amita; Giebultowicz, Jadwiga M; Kapahi, Pankaj

    2016-01-12

    Endogenous circadian clocks orchestrate several metabolic and signaling pathways that are known to modulate lifespan, suggesting clocks as potential targets for manipulation of metabolism and lifespan. We report here that the core circadian clock genes, timeless (tim) and period (per), are required for the metabolic and lifespan responses to DR in Drosophila. Consistent with the involvement of a circadian mechanism, DR enhances the amplitude of cycling of most circadian clock genes, including tim, in peripheral tissues. Mass-spectrometry-based lipidomic analysis suggests a role of tim in cycling of specific medium chain triglycerides under DR. Furthermore, overexpression of tim in peripheral tissues improves its oscillatory amplitude and extends lifespan under ad libitum conditions. Importantly, effects of tim on lifespan appear to be mediated through enhanced fat turnover. These findings identify a critical role for specific clock genes in modulating the effects of nutrient manipulation on fat metabolism and aging. PMID:26626459

  20. Peripheral Circadian Clocks Mediate Dietary Restriction-Dependent Changes in Lifespan and Fat Metabolism in Drosophila.

    PubMed

    Katewa, Subhash D; Akagi, Kazutaka; Bose, Neelanjan; Rakshit, Kuntol; Camarella, Timothy; Zheng, Xiangzhong; Hall, David; Davis, Sonnet; Nelson, Christopher S; Brem, Rachel B; Ramanathan, Arvind; Sehgal, Amita; Giebultowicz, Jadwiga M; Kapahi, Pankaj

    2016-01-12

    Endogenous circadian clocks orchestrate several metabolic and signaling pathways that are known to modulate lifespan, suggesting clocks as potential targets for manipulation of metabolism and lifespan. We report here that the core circadian clock genes, timeless (tim) and period (per), are required for the metabolic and lifespan responses to DR in Drosophila. Consistent with the involvement of a circadian mechanism, DR enhances the amplitude of cycling of most circadian clock genes, including tim, in peripheral tissues. Mass-spectrometry-based lipidomic analysis suggests a role of tim in cycling of specific medium chain triglycerides under DR. Furthermore, overexpression of tim in peripheral tissues improves its oscillatory amplitude and extends lifespan under ad libitum conditions. Importantly, effects of tim on lifespan appear to be mediated through enhanced fat turnover. These findings identify a critical role for specific clock genes in modulating the effects of nutrient manipulation on fat metabolism and aging.

  1. Voluntary alcohol consumption and plasma beta-endorphin levels in alcohol preferring rats chronically treated with lamotrigine.

    PubMed

    Zalewska-Kaszubska, Jadwiga; Bajer, Bartosz; Gorska, Dorota; Andrzejczak, Dariusz; Dyr, Wanda; Bieńkowski, Przemysław

    2015-02-01

    Several recent studies have indicated that lamotrigine, similarly to other antiepileptic drugs, may be useful in the therapy of alcohol dependence. The rationale for using lamotrigine in the treatment of alcohol addiction is based on its multiple mechanisms of action which include inhibition of voltage-sensitive sodium channels, modulation voltage-gated calcium currents and transient potassium outward current. However, the known mechanism of lamotrigine does not fully explain its efficacy in alcohol addiction therapy. For this reason we have decided to examine the effect of lamotrigine on the opioid system. Our previous studies showed that topiramate and levetiracetam (antiepileptic drugs) as well as the most effective drugs in alcohol addiction therapy i.e. naltrexone and acamprosate, when given repeatedly, all increased plasma beta endorphin (an endogenous opioid peptide) level, despite operating through different pharmacological mechanisms. It is known that low beta-endorphin level is often associated with alcohol addiction and also that alcohol consumption elevates the level of this peptide. This study aims to assess the effect of repeated treatment with lamotrigine on voluntary alcohol intake and beta-endorphin plasma level in alcohol preferring rats (Warsaw high preferring (WHP) rats). We observed a decrease in alcohol consumption in rats treated with lamotrigine. However we didn't observe significant changes in beta-endorphin level during withdrawal of alcohol, which may indicate that the drug does not affect the opioid system. We suppose that lamotrigine may be useful in alcohol dependence therapy and presents a potential area for further study. PMID:25449391

  2. Elimination of Unfit Cells Maintains Tissue Health and Prolongs Lifespan

    PubMed Central

    Merino, Marisa M.; Rhiner, Christa; Lopez-Gay, Jesus M.; Buechel, David; Hauert, Barbara; Moreno, Eduardo

    2015-01-01

    Summary Viable yet damaged cells can accumulate during development and aging. Although eliminating those cells may benefit organ function, identification of this less fit cell population remains challenging. Previously, we identified a molecular mechanism, based on “fitness fingerprints” displayed on cell membranes, which allows direct fitness comparison among cells in Drosophila. Here, we study the physiological consequences of efficient cell selection for the whole organism. We find that fitness-based cell culling is naturally used to maintain tissue health, delay aging, and extend lifespan in Drosophila. We identify a gene, azot, which ensures the elimination of less fit cells. Lack of azot increases morphological malformations and susceptibility to random mutations and accelerates tissue degeneration. On the contrary, improving the efficiency of cell selection is beneficial for tissue health and extends lifespan. PMID:25601460

  3. Sphingolipid metabolism regulates development and lifespan in Caenorhabditis elegans.

    PubMed

    Cutler, Roy G; Thompson, Kenneth W; Camandola, Simonetta; Mack, Kendra T; Mattson, Mark P

    2014-12-15

    Sphingolipids are a highly conserved lipid component of cell membranes involved in the formation of lipid raft domains that house many of the receptors and cell-to-cell signaling factors involved in regulating cell division, maturation, and terminal differentiation. By measuring and manipulating sphingolipid metabolism using pharmacological and genetic tools in Caenorhabditis elegans, we provide evidence that the synthesis and remodeling of specific ceramides (e.g., dC18:1-C24:1), gangliosides (e.g., GM1-C24:1), and sphingomyelins (e.g., dC18:1-C18:1) influence development rate and lifespan. We found that the levels of fatty acid chain desaturation and elongation in many sphingolipid species increased during development and aging, with no such changes in developmentally-arrested dauer larvae or normal adults after food withdrawal (an anti-aging intervention). Pharmacological inhibitors and small interfering RNAs directed against serine palmitoyl transferase and glucosylceramide synthase acted to slow development rate, extend the reproductive period, and increase lifespan. In contrast, worms fed an egg yolk diet rich in sphingolipids exhibited accelerated development and reduced lifespan. Our findings demonstrate that sphingolipid accumulation and remodeling are critical events that determine development rate and lifespan in the nematode model, with both development rate and aging being accelerated by the synthesis of sphingomyelin, and its metabolism to ceramides and gangliosides. PMID:25437839

  4. Sphingolipid metabolism regulates development and lifespan in Caenorhabditis elegans

    PubMed Central

    Cutler, Roy G.; Thompson, Kenneth W.; Camandola, Simonetta; Mack, Kendra T.; Mattson, Mark P.

    2015-01-01

    Sphingolipids are a highly conserved lipid component of cell membranes involved in the formation of lipid raft domains that house many of the receptors and cell-to-cell signaling factors involved in regulating cell division, maturation, and terminal differentiation. By measuring and manipulating sphingolipid metabolism using pharmacological and genetic tools in Caenorhabditis elegans, we provide evidence that the synthesis and remodeling of specific ceramides (e.g., dC18:1–C24:1), gangliosides (e.g., GM1–C24:1), and sphingomyelins (e.g., dC18:1–C18:1) influence development rate and lifespan. We found that the levels of fatty acid chain desaturation and elongation in many sphingolipid species increased during development and aging, with no such changes in developmentally-arrested dauer larvae or normal adults after food withdrawal (an anti-aging intervention). Pharmacological inhibitors and small interfering RNAs directed against serine palmitoyl transferase and glucosylceramide synthase acted to slow development rate, extend the reproductive period, and increase lifespan. In contrast, worms fed an egg yolk diet rich in sphingolipids exhibited accelerated development and reduced lifespan. Our findings demonstrate that sphingolipid accumulation and remodeling are critical events that determine development rate and lifespan in the nematode model, with both development rate and aging being accelerated by the synthesis of sphingomyelin, and its metabolism to ceramides and gangliosides. PMID:25437839

  5. Density functional theory, restricted Hartree - Fock simulations and FTIR, FT-Raman and UV-Vis spectroscopic studies on lamotrigine

    NASA Astrophysics Data System (ADS)

    Ramya, T.; Gunasekaran, S.; Ramkumaar, G. R.

    2013-10-01

    The Fourier Transform Infrared (FTIR) and FT Raman spectra of lamotrigine have been recorded in the region 4000-450 cm-1 and 4000-50 cm-1, respectively. The title compound is used as Antiepileptic drug. The optimized geometry, frequency, and intensities of the vibrational bands of the lamotrigine were obtained by Density Functional Theory (DFT) using B3LYP/631G** basis set and ab initio method at the restricted Hartree Fock/6-31** level. The harmonic vibrational frequencies, Natural population analysis, HOMO-LUMO energy gap, infra red intensities and Raman scattering activities, force constant were calculated by DFT and RHF methods. The quality of lamotrigine under different storage containers were analyzed using UV-Vis spectral technique.

  6. Elucidating the Mechanism of Weissella-dependent Lifespan Extension in Caenorhabditis elegans.

    PubMed

    Lee, Jiyun; Kwon, Gayeung; Lim, Young-Hee

    2015-11-25

    The mechanism whereby lactic acid bacteria extend the lifespan of Caenorhabditis elegans has previously been elucidated. However, the role of Weissella species has yet not been studied. We show that Weissella koreensis and Weissella cibaria significantly (p < 0.05) extend the lifespan of C. elegans compared with Escherichia coli OP50 and induce the expression of several genes related to lifespan extension (daf-16, aak-2, jnk-1, sod-3 and hif-1). Oral administration of Weissella altered reactive oxygen species (ROS) production and lowered the accumulation of lipofuscin and increased locomotor activity (which translates to a delay in ageing). Moreover, Weissella-fed C. elegans had decreased body sizes, brood sizes, ATP levels and pharyngeal pumping rates compared with E. coli OP50-fed worms. Furthermore, mutations in sod-3, hif-1 or skn-1 did not alter lifespan extension compared with wild-type C. elegans. However, C. elegans failed to display lifespan extension in loss-of-function mutants of daf-16, aak-2 and jnk-1, which highlights the potential role of these genes in Weissella-induced longevity in C. elegans. Weissella species extend C. elegans lifespan by activating DAF-16 via the c-Jun N-terminal kinase (JNK) pathway, which is related to stress response, and the AMP-activated protein kinase (AMPK)-pathway that is activated by dietary restriction.

  7. Elucidating the Mechanism of Weissella-dependent Lifespan Extension in Caenorhabditis elegans

    PubMed Central

    Lee, Jiyun; Kwon, Gayeung; Lim, Young-Hee

    2015-01-01

    The mechanism whereby lactic acid bacteria extend the lifespan of Caenorhabditis elegans has previously been elucidated. However, the role of Weissella species has yet not been studied. We show that Weissella koreensis and Weissella cibaria significantly (p < 0.05) extend the lifespan of C. elegans compared with Escherichia coli OP50 and induce the expression of several genes related to lifespan extension (daf-16, aak-2, jnk-1, sod-3 and hif-1). Oral administration of Weissella altered reactive oxygen species (ROS) production and lowered the accumulation of lipofuscin and increased locomotor activity (which translates to a delay in ageing). Moreover, Weissella-fed C. elegans had decreased body sizes, brood sizes, ATP levels and pharyngeal pumping rates compared with E. coli OP50-fed worms. Furthermore, mutations in sod-3, hif-1 or skn-1 did not alter lifespan extension compared with wild-type C. elegans. However, C. elegans failed to display lifespan extension in loss-of-function mutants of daf-16, aak-2 and jnk-1, which highlights the potential role of these genes in Weissella-induced longevity in C. elegans. Weissella species extend C. elegans lifespan by activating DAF-16 via the c-Jun N-terminal kinase (JNK) pathway, which is related to stress response, and the AMP-activated protein kinase (AMPK)-pathway that is activated by dietary restriction. PMID:26601690

  8. Lamotrigine Augmentation Versus Placebo in Serotonin Reuptake Inhibitors-Resistant Obsessive-Compulsive Disorder: A Randomized Controlled Trial

    PubMed Central

    Khalkhali, Mohammadrasoul; Zarrabi, Homa; Kafie, Moosa; Heidarzadeh, Abtin

    2016-01-01

    Objective: Serotonin reuptake inhibitors are frequently used in first-line treatments for patients with obsessive-compulsive disorder. Nevertheless, many of these patients do not respond well to initial therapy. The hypothesis of glutamatergic dysfunction in specific brain regions has been proposed in the pathophysiology of obsessive-compulsive disorder. This study was designed to evaluate the possible efficacy of lamotrigine, a glutamatergic agent in Serotonin reuptake inhibitors-resistant patients with obsessive-compulsive disorder. Method: This study was a 12-week, double blind, randomized, placebo-controlled trial of adjunctive fixed-doses of lamotrigine (100 mg) to Serotonin reuptake inhibitors therapy in obsessive-compulsive disorder. Eligible subjects who had a total Y-BOCS of 21 or above were randomly assigned to receive adjunctive treatment with either lamotrigine (n = 26), or placebo (n = 27). Response to lamotrigine was defined as clinical improvement (>25% decrease in the total Y-BOCS score), which was administered at weeks 0, 8 and 12. Results: At the endpoint (week 12), significant differences were observed in obsession, compulsion, and total Y-BOCS scores comparing lamotrigine to placebo (P = 0.01, 0.005 and 0.007 respectively). The mean reduction in obsession, compulsion and total scores in lamotrigine group was about 4.15, 4.50 and 8.73, respectively. Similarly, the mean reductions in the placebo group were 2.52, 2.56 and 5.07. Effect sizes for efficacy measureswerecalculatedbyCohen’sd, and it was calculated as 0.54 for the total YBOCS. Conclusion: Our findings provide evidence that this augmentation is well tolerated and may be an effective strategy for patients with refractory obsessive-compulsive disorder. PMID:27437007

  9. Multisite, open-label, prospective trial of lamotrigine for geriatric bipolar depression: a preliminary report

    PubMed Central

    Sajatovic, Martha; Gildengers, Ariel; Jurdi, Rayan K Al; Gyulai, Laszlo; Cassidy, Kristin A; Greenberg, Rebecca L; Bruce, Martha L; Mulsant, Benoit H; Have, Thomas Ten; Young, Robert C

    2013-01-01

    Aims This is a multisite, 12-week, open-label trial of lamotrigine augmentation in 57 older adults (≥ 60 years; mean ± SD age = 66.5 ± 6.7 years) with either type I or type II bipolar depression. Methods Primary outcome measure was change from baseline on the Montgomery-Åsberg Depression Rating Scale (MADRS). Secondary outcome measures included Hamilton Depression Rating Scale (HAM-D), Clinical Global Impression-Bipolar version (CGI-BP), and the WHO-Disability Assessment Schedule II (WHO-DAS II). The Udvalg for Kliniske Undersøgelser (UKU) was used to assess side effects. Results A total of 77.2% of the study subjects had bipolar I disorder. The mean (SD) lamotrigine dose was 150.9 (68.5) mg/day. There was significant improvement in the MADRS, HAM-D, CGI-BP, and in most domains on the WHO-DAS II. For patients for whom final MADRS score was available: 31 (57.4%) met remission criteria and 35 (64.8%) met response criteria. There were 19/57 (33.3%) who dropped out of the study prematurely, with 6 dropouts due to adverse events (4 cases of rash, 1 manic switch, and 1 hyponatremia). Two cases of rash were possibly drug related and were resolved with drug discontinuation. The most common UKU adverse effects were reduced sleep duration (n = 14, 24.6%), weight loss (n = 12, 21.1%), increased dream activity (n = 12, 21.1%), polyuria/polydipsia (n = 11, 19.3%), weight gain (n = 9, 15.8%), diminished sexual desire (n = 9, 15.8%), increased sleep (n = 9, 15.8%), lassitude/fatigue (n = 8, 14%), and unsteady gait (n = 8, 14%). No significant changes in electrocardiogram or laboratory tests were observed. Conclusions In bipolar depressed elders, lamotrigine was associated with improvement in depression, psychopathology, and functional status. There was a moderate number of adverse events, although relationship of adverse events (particularly falls) to study medication could not be clearly determined in this uncontrolled trial. Controlled studies are needed to further

  10. Clinical Usefulness of Aripiprazole and Lamotrigine in Schizoaffective Presentation of Tuberous Sclerosis

    PubMed Central

    Lee, Seung-Yup; Min, Jung-Ah; Lee, In Goo; Kim, Jung Jin

    2016-01-01

    Tuberous sclerosis is not as rare as once thought and has high psychiatric comorbidities. However, bipolar or psychotic features associated with tuberous sclerosis have been rarely reported. This report first presents a tuberous sclerosis patient, resembling a schizoaffective disorder of bipolar type. A patient with known tuberous sclerosis displayed mood fluctuation and psychotic features. Her symptoms did not remit along with several psychiatric medications. After hospitalization, the patient responded well with lamotrigine and aripiprazole without exacerbation. As demonstrated in this case, tuberous sclerosis may also encompass bipolar affective or psychotic features. We would like to point out the necessity to consider bipolarity in evaluating and treating tuberous sclerosis. PMID:27489387

  11. The evolution of senescence and post-reproductive lifespan in guppies (Poecilia reticulata).

    PubMed

    Reznick, David; Bryant, Michael; Holmes, Donna

    2006-01-01

    The study of post-reproductive lifespan has been of interest primarily with regard to the extended post-menopausal lifespan seen in humans. This unusual feature of human demography has been hypothesized to have evolved because of the "grandmother" effect, or the contributions that post-reproductive females make to the fitness of their children and grandchildren. While some correlative analyses of human populations support this hypothesis, few formal, experimental studies have addressed the evolution of post-reproductive lifespan. As part of an ongoing study of life history evolution in guppies, we compared lifespans of individual guppies derived from populations that differ in their extrinsic mortality rates. Some of these populations co-occur with predators that increase mortality rate, whereas other nearby populations above barrier waterfalls are relatively free from predation. Theory predicts that such differences in extrinsic mortality will select for differences in the age at maturity, allocation of resources to reproduction, and patterns of senescence, including reproductive declines. As part of our evaluation of these predictions, we quantified differences among populations in post-reproductive lifespan. We present here the first formal, comparative study of the evolution of post-reproductive lifespan as a component of the evolution of the entire life history. Guppies that evolved with predators and that experienced high extrinsic mortality mature at an earlier age but also have longer lifespans. We divided the lifespan into three non-overlapping components: birth to age at first reproduction, age at first reproduction to age at last reproduction (reproductive lifespan), and age at last reproduction to age at death (post-reproductive lifespan). Guppies from high-predation environments live longer because they have a longer reproductive lifespan, which is the component of the life history that can make a direct contribution to individual fitness. We found no

  12. The evolution of senescence and post-reproductive lifespan in guppies (Poecilia reticulata).

    PubMed

    Reznick, David; Bryant, Michael; Holmes, Donna

    2006-01-01

    The study of post-reproductive lifespan has been of interest primarily with regard to the extended post-menopausal lifespan seen in humans. This unusual feature of human demography has been hypothesized to have evolved because of the "grandmother" effect, or the contributions that post-reproductive females make to the fitness of their children and grandchildren. While some correlative analyses of human populations support this hypothesis, few formal, experimental studies have addressed the evolution of post-reproductive lifespan. As part of an ongoing study of life history evolution in guppies, we compared lifespans of individual guppies derived from populations that differ in their extrinsic mortality rates. Some of these populations co-occur with predators that increase mortality rate, whereas other nearby populations above barrier waterfalls are relatively free from predation. Theory predicts that such differences in extrinsic mortality will select for differences in the age at maturity, allocation of resources to reproduction, and patterns of senescence, including reproductive declines. As part of our evaluation of these predictions, we quantified differences among populations in post-reproductive lifespan. We present here the first formal, comparative study of the evolution of post-reproductive lifespan as a component of the evolution of the entire life history. Guppies that evolved with predators and that experienced high extrinsic mortality mature at an earlier age but also have longer lifespans. We divided the lifespan into three non-overlapping components: birth to age at first reproduction, age at first reproduction to age at last reproduction (reproductive lifespan), and age at last reproduction to age at death (post-reproductive lifespan). Guppies from high-predation environments live longer because they have a longer reproductive lifespan, which is the component of the life history that can make a direct contribution to individual fitness. We found no

  13. Calorie restriction does not elicit a robust extension of replicative lifespan in Saccharomyces cerevisiae.

    PubMed

    Huberts, Daphne H E W; González, Javier; Lee, Sung Sik; Litsios, Athanasios; Hubmann, Georg; Wit, Ernst C; Heinemann, Matthias

    2014-08-12

    Calorie restriction (CR) is often described as the most robust manner to extend lifespan in a large variety of organisms. Hence, considerable research effort is directed toward understanding the mechanisms underlying CR, especially in the yeast Saccharomyces cerevisiae. However, the effect of CR on lifespan has never been systematically reviewed in this organism. Here, we performed a meta-analysis of replicative lifespan (RLS) data published in more than 40 different papers. Our analysis revealed that there is significant variation in the reported RLS data, which appears to be mainly due to the low number of cells analyzed per experiment. Furthermore, we found that the RLS measured at 2% (wt/vol) glucose in CR experiments is partly biased toward shorter lifespans compared with identical lifespan measurements from other studies. Excluding the 2% (wt/vol) glucose experiments from CR experiments, we determined that the average RLS of the yeast strains BY4741 and BY4742 is 25.9 buds at 2% (wt/vol) glucose and 30.2 buds under CR conditions. RLS measurements with a microfluidic dissection platform produced identical RLS data at 2% (wt/vol) glucose. However, CR conditions did not induce lifespan extension. As we excluded obvious methodological differences, such as temperature and medium, as causes, we conclude that subtle method-specific factors are crucial to induce lifespan extension under CR conditions in S. cerevisiae. PMID:25071164

  14. Bmk-1 regulates lifespan in Caenorhabditis elegans by activating hsp-16.

    PubMed

    Qian, Hong; Xu, Xiangru; Niklason, Laura E

    2015-08-01

    The genetics of aging is typically concerned with lifespan determination that is associated with alterations in expression levels or mutations of particular genes. Previous reports in C. elegans have shown that the bmk-1 gene has important functions in chromosome segregation, and this has been confirmed with its mammalian homolog, KIF11. However, this gene has never been implicated in aging or lifespan regulation. Here we show that the bmk-1 gene is an important lifespan regulator in worms. We show that reducing bmk-1 expression using RNAi shortens worm lifespan by 32%, while over-expression of bmk-1 extends worm lifespan by 25%, and enhances heat-shock stress resistance. Moreover, bmk-1 over-expression increases the level of hsp-16 and decreases ced-3 in C. elegans. Genetic epistasis analysis reveals that hsp-16 is essential for the lifespan extension by bmk-1. These findings suggest that bmk-1 may act through enhanced hsp-16 function to protect cells from stress and inhibit the apoptosis pathway, thereby conferring worm longevity. Though it remains unclear whether this is a distinct function from chromosomal segregation, bmk-1 is a potential new target for extension of lifespan and enhancement of healthspan.

  15. Extending the lifespan of nuclear power plant structures

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.

    1995-04-01

    By the end of this decade, 63 of the 111 commercial nuclear power plants in the United States will be more than 20 years old, with some nearing the end of their 40-year operating license term. Faced with the prospect of having to replace lost generating capacity from other sources and substantial shutdown and decommissioning costs, many utilities are expected to apply to continue the service of their plants past the initial licensing period. In support of such applications, evidence should be provided that the capacity of the safety-related systems and structures to mitigate potential extreme events has not deteriorated unacceptably due to either aging or environmental stressor effects during the previous service history.

  16. Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide.

    PubMed

    Schmeisser, Kathrin; Mansfeld, Johannes; Kuhlow, Doreen; Weimer, Sandra; Priebe, Steffen; Heiland, Ines; Birringer, Marc; Groth, Marco; Segref, Alexandra; Kanfi, Yariv; Price, Nathan L; Schmeisser, Sebastian; Schuster, Stefan; Pfeiffer, Andreas F H; Guthke, Reinhard; Platzer, Matthias; Hoppe, Thorsten; Cohen, Haim Y; Zarse, Kim; Sinclair, David A; Ristow, Michael

    2013-11-01

    Sirtuins, a family of histone deacetylases, have a fiercely debated role in regulating lifespan. In contrast with recent observations, here we find that overexpression of sir-2.1, the ortholog of mammalian SirT1, does extend Caenorhabditis elegans lifespan. Sirtuins mandatorily convert NAD(+) into nicotinamide (NAM). We here find that NAM and its metabolite, 1-methylnicotinamide (MNA), extend C. elegans lifespan, even in the absence of sir-2.1. We identify a previously unknown C. elegans nicotinamide-N-methyltransferase, encoded by a gene now named anmt-1, to generate MNA from NAM. Disruption and overexpression of anmt-1 have opposing effects on lifespan independent of sirtuins, with loss of anmt-1 fully inhibiting sir-2.1-mediated lifespan extension. MNA serves as a substrate for a newly identified aldehyde oxidase, GAD-3, to generate hydrogen peroxide, which acts as a mitohormetic reactive oxygen species signal to promote C. elegans longevity. Taken together, sirtuin-mediated lifespan extension depends on methylation of NAM, providing an unexpected mechanistic role for sirtuins beyond histone deacetylation.

  17. Role of Sirtuins in Lifespan Regulation is Linked to Methylation of Nicotinamide

    PubMed Central

    Schmeisser, Kathrin; Mansfeld, Johannes; Kuhlow, Doreen; Weimer, Sandra; Priebe, Steffen; Heiland, Ines; Birringer, Marc; Groth, Marco; Segref, Alexandra; Kanfi, Yariv; Price, Nathan L.; Schmeisser, Sebastian; Schuster, Stefan; Pfeiffer, Andreas; Guthke, Reinhard; Platzer, Matthias; Hoppe, Thorsten; Cohen, Haim Y.; Zarse, Kim; Sinclair, David A.; Ristow, Michael

    2014-01-01

    Sirtuins, a family of histone deacetylases, have a fiercely debated role in regulating lifespan. Contrasting recent observations, we here find that overexpression of sir-2.1, the orthologue of mammalian SirT1, does extend C. elegans lifespan. Sirtuins mandatorily convert NAD+ into nicotinamide (NAM). We here find that NAM and its metabolite, 1-methylnicotinamide (MNA), extend C. elegans lifespan, even in the absence of sir-2.1. We identify anmt-1 to encode a C. elegans orthologue of nicotinamide-N-methyltransferase (NNMT), the enzyme that methylates NAM to generate MNA. Disruption and overexpression of anmt-1 have opposing effects on lifespan independent of sirtuins, with loss of anmt-1 fully inhibiting sir-2.1-mediated lifespan extension. MNA serves as a substrate for a newly identified aldehyde oxidase, GAD-3, to generate hydrogen peroxide acting as a mitohormetic ROS signal to promote C. elegans longevity. Taken together, sirtuin-mediated lifespan extension depends on methylation of NAM, providing an unexpected mechanistic role for sirtuins beyond histone deacetylation. PMID:24077178

  18. Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension

    PubMed Central

    Schmeisser, Sebastian; Schmeisser, Kathrin; Weimer, Sandra; Groth, Marco; Priebe, Steffen; Fazius, Eugen; Kuhlow, Doreen; Pick, Denis; Einax, Jürgen W; Guthke, Reinhard; Platzer, Matthias; Zarse, Kim; Ristow, Michael

    2013-01-01

    Arsenite is one of the most toxic chemical substances known and is assumed to exert detrimental effects on viability even at lowest concentrations. By contrast and unlike higher concentrations, we here find that exposure to low-dose arsenite promotes growth of cultured mammalian cells. In the nematode C. elegans, low-dose arsenite promotes resistance against thermal and chemical stressors and extends lifespan of this metazoan, whereas higher concentrations reduce longevity. While arsenite causes a transient increase in reactive oxygen species (ROS) levels in C. elegans, co-exposure to ROS scavengers prevents the lifespan-extending capabilities of arsenite, indicating that transiently increased ROS levels act as transducers of arsenite effects on lifespan, a process known as mitohormesis. This requires two transcription factors, namely DAF-16 and SKN-1, which employ the metallothionein MTL-2 as well as the mitochondrial transporter TIN-9.1 to extend lifespan. Taken together, low-dose arsenite extends lifespan, providing evidence for nonlinear dose-response characteristics of toxin-mediated stress resistance and longevity in a multicellular organism. PMID:23534459

  19. Genotype effect on lifespan following vitellogenin knockdown.

    PubMed

    Ihle, Kate E; Fondrk, M Kim; Page, Robert E; Amdam, Gro V

    2015-01-01

    Honey bee workers display remarkable flexibility in the aging process. This plasticity is closely tied to behavioral maturation. Workers who initiate foraging behavior at earlier ages have shorter lifespans, and much of the variation in total lifespan can be explained by differences in pre-foraging lifespan. Vitellogenin (Vg), a yolk precursor protein, influences worker lifespan both as a regulator of behavioral maturation and through anti-oxidant and immune functions. Experimental reduction of Vg mRNA, and thus Vg protein levels, in wild-type bees results in precocious foraging behavior, decreased lifespan, and increased susceptibility to oxidative damage. We sought to separate the effects of Vg on lifespan due to behavioral maturation from those due to immune and antioxidant function using two selected strains of honey bees that differ in their phenotypic responsiveness to Vg gene knockdown. Surprisingly, we found that lifespans lengthen in the strain described as behaviorally and hormonally insensitive to Vg reduction. We then performed targeted gene expression analyses on genes hypothesized to mediate aging and lifespan: the insulin-like peptides (Ilp1 and 2) and manganese superoxide dismutase (mnSOD). The two honey bee Ilps are the most upstream components in the insulin-signaling pathway, which influences lifespan in Drosophila melanogaster and other organisms, while manganese superoxide dismutase encodes an enzyme with antioxidant functions in animals. We found expression differences in the llps in fat body related to behavior (llp1 and 2) and genetic background (Ilp2), but did not find strain by treatment effects. Expression of mnSOD was also affected by behavior and genetic background. Additionally, we observed a differential response to Vg knockdown in fat body expression of mnSOD, suggesting that antioxidant pathways may partially explain the strain-specific lifespan responses to Vg knockdown.

  20. [Characteristics of hypersensitivity syndrome to lamotrigine: review of one case reported in the Regional Center of Pharmacovigilance of Nantes].

    PubMed

    Veyrac, G; Marcade, G; Chiffoleau, A; Bourin, M; Jolliet, P

    2002-01-01

    Drug-induced hypersensitivity syndrome is an uncommon but potentially life-threatening idiosyncratic drug reaction. In the literature, about five cases have been reported concerning hypersensitivity syndrome with lamotrigine. Most cases concern aromatic anticonvulsants but we report a case induced by lamotrigine which is a non aromatic anticonvulsant. A 73-year-old man was treated with lamotrigine for epilepsy due to a cerebrovascular stroke for 5 weeks. After 2 weeks with a single oral dose of 50 mg lamotrigine, the patient received 100 mg. Quickly thereafter fever, erythema and edema involving the periorbital area appeared. He was then admitted to hospital and lamotrigine was immediately discontinued. He developed acute hepatic and renal failure. During his hospital stay, he was treated with systemic and topical corticosteroids. After slow improvement, he was discharged 4 weeks later. Concerning this typical case, we review the characteristics of hypersensitivity syndrome and the different etiopathogenesis. The hypersensitivity syndrome typically develops two to six weeks after a drug is first administered, later than most other serious skin reactions. This syndrome manifests as rash, fever, tender lymphadenopathy, hepatitis and eosinophilia. The mechanism of hypersensitivity syndrome is unknown. Several theories have been proposed. The reaction is secondary to circulating antibodies or concerns toxic metabolities. On the other hand, association of human herpes virus 6 infection may play a role in the development of hypersensitivity syndrome. Hypersensitivity reactions to the aromatic antiepileptic drugs appear to have an immune etiology much like lamotrigine: bioactivation, detoxification, covalent adduct formation, processing and presentation of antigen to the immune system, and consequent formation of antibody and T-cell immune effectors. Another theory involves toxic metabolites; the aromatic antiepileptic agents are metabolised by cytochrome P-450 to an

  1. Lifespan of mice and primates correlates with immunoproteasome expression

    PubMed Central

    Pickering, Andrew M.; Lehr, Marcus; Miller, Richard A.

    2015-01-01

    There is large variation in lifespan among different species, and there is evidence that modulation of proteasome function may contribute to longevity determination. Comparative biology provides a powerful tool for identifying genes and pathways that control the rate of aging. Here, we evaluated skin-derived fibroblasts and demonstrate that among primate species, longevity correlated with an elevation in proteasomal activity as well as immunoproteasome expression at both the mRNA and protein levels. Immunoproteasome enhancement occurred with a concurrent increase in other elements involved in MHC class I antigen presentation, including β-2 microglobulin, (TAP1), and TAP2. Fibroblasts from long-lived primates also appeared more responsive to IFN-γ than cells from short-lived primate species, and this increase in IFN-γ responsiveness correlated with elevated expression of the IFN-γ receptor protein IFNGR2. Elevation of immunoproteasome and proteasome activity was also observed in the livers of long-lived Snell dwarf mice and in mice exposed to drugs that have been shown to extend lifespan, including rapamycin, 17-α-estradiol, and nordihydroguaiaretic acid. This work suggests that augmented immunoproteasome function may contribute to lifespan differences in mice and among primate species. PMID:25866968

  2. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    SciTech Connect

    Kamei, Yuka; Tamura, Takayuki; Yoshida, Ryo; Ohta, Shinji; Fukusaki, Eiichiro; Mukai, Yukio

    2011-04-01

    Highlights: {yields}We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. {yields} Deletion of the UGA1 or GAD1 genes extends replicative lifespan. {yields} Addition of GABA to wild-type cultures has no effect on lifespan. {yields} Intracellular GABA levels do not differ in longevity mutants and wild-type cells. {yields} Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for {gamma}-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The {Delta}uga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for {Delta}uga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of {sup 1}H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan

  3. Carbon dioxide sensing modulates lifespan and physiology in Drosophila.

    PubMed

    Poon, Peter C; Kuo, Tsung-Han; Linford, Nancy J; Roman, Gregg; Pletcher, Scott D

    2010-04-20

    For nearly all life forms, perceptual systems provide access to a host of environmental cues, including the availability of food and mates as well as the presence of disease and predators. Presumably, individuals use this information to assess the current and future states of the environment and to enact appropriate developmental, behavioral, and regulatory decisions. Recent work using the nematode worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster, has established that aging is subject to modulation through neurosensory systems and that this regulation is evolutionarily conserved. To date, sensory manipulations shown to impact Drosophila aging have involved general loss of function or manipulation of complex stimuli. We therefore know little about the specific inputs, sensors, or associated neural circuits that affect these life and death decisions. We find that a specialized population of olfactory neurons that express receptor Gr63a (a component of the olfactory receptor for gaseous phase CO(2)) affects fly lifespan and physiology. Gr63a loss of function leads to extended lifespan, increased fat deposition, and enhanced resistance to some (but not all) environmental stresses. Furthermore, we find that the reduced lifespan that accompanies exposure to odors from live yeast is dependent on Gr63a. Together these data implicate a specific sensory cue (CO(2)) and its associated receptor as having the ability to modulate fly lifespan and alter organism stress response and physiology. Because Gr63a is expressed in a well-defined population of neurons, future work may now be directed at dissecting more complex neurosensory and neuroendocrine circuits that modulate aging in Drosophila.

  4. Sexes suffer from suboptimal lifespan because of genetic conflict in a seed beetle

    PubMed Central

    Berg, Elena C.; Maklakov, Alexei A.

    2012-01-01

    Males and females have different routes to successful reproduction, resulting in sex differences in lifespan and age-specific allocation of reproductive effort. The trade-off between current and future reproduction is often resolved differently by males and females, and both sexes can be constrained in their ability to reach their sex-specific optima owing to intralocus sexual conflict. Such genetic antagonism may have profound implications for evolution, but its role in ageing and lifespan remains unresolved. We provide direct experimental evidence that males live longer and females live shorter than necessary to maximize their relative fitness in Callosobruchus maculatus seed beetles. Using artificial selection in a genetically heterogeneous population, we created replicate long-life lines where males lived on average 27 per cent longer than in short-life lines. As predicted by theory, subsequent assays revealed that upward selection on male lifespan decreased relative male fitness but increased relative female fitness compared with downward selection. Thus, we demonstrate that lifespan-extending genes can help one sex while harming the other. Our results show that sexual antagonism constrains adaptive life-history evolution, support a novel way of maintaining genetic variation for lifespan and argue for better integration of sex effects into applied research programmes aimed at lifespan extension. PMID:22915670

  5. Formulation Development and evaluation of fast disintegrating tablets of Lamotrigine using liqui-solid technique

    PubMed Central

    Koteswari, Poluri; Sunium, Suvarnala; Srinivasababu, Puttugunta; Babu, Govada Kishore; Nithya, Pinnamraju Durga

    2014-01-01

    Introduction: Epilepsy is a serious neurological disorder. Lamotrigine is an alternative to lithium for the treatment of epilepsy, and its oral bioavailability is 98%; however, its poor aqueous solubility hinders its oral absorption. Among the techniques available to enhance the solubility, dissolution rate and bio availability of poorly soluble drugs, liqui-solid technique is a novel and promising approach. The objectives of the investigation are to formulate, optimize lamotrigine liqui-solid compacts using 23 factorial experiments, validate experimental designs statistically and to compare with the marketed tablets using similarity and difference factors. Materials and Methods: Based on solubility studies tween 20 as nonvolatile liquid, avicel pH 101 as a carrier and aerosil 200 as a coating material were used. Liquid load factor other flow and compression characteristics were determined for different ratios of carrier and coat materials. Suitable quantities of carrier and coat materials were taken, according to the experimental designs other excipients were added, liqui-solid tablets were prepared by direct compression and evaluated. Drug excipient compatibility was determined using Fourier transform infrared spectroscopy (FTIR) analysis. The hardness, disintegration time and T75% were considered for validation of experimental designs. Results: The physicochemical properties of tablets such as hardness (1.5 ± 0.8–4.95 ± 0.96 kg), in vitro disintegration time (40 ± 20–320 ± 25 s) and Friability (0.39 ± 0.5–1.45 ± 0.2% also <1%) possess all the Indian pharmacopoeal requirements. The T75% was calculated and found to be 6.62–22.8 min. The rate of drug release followed first order kinetics. f1 and f2 values indicated the similarity in dissolution profiles between marketed and the optimized formulation and 63.64% similar with that of the marketed fast disintegrating tablets. FTIR studies revealed the absence of drug excipient incompatibility. PMID

  6. Calendar life-span versus fission life-span of Paramecium aurelia.

    PubMed

    Smith-Sonneborn, J; Reed, J C

    1976-01-01

    The hypothesis that paramecia use fissions, not days, to measure length of cell life-span was investigated. Parallel cell lines were grown at 27 C and at 24 C. The daily fission rate of the cells at 24 C was lower than at 27 C. If the cells count fissions, not days, the life-span in fissions should remain unchanged, whereas the cell life-span in days should increase in the lines with reduced daily fission rate. The results showed a significant increase in cell life-span in days when the cells were cultivated for 70-100% of their life cycle at 24 C. The life-span as measured by fissions, however, remained unchanged regardless of the time of the life cycle when cells were shifted to 24 C. The data indicate that, as a model system for cellular aging, paramecia are comparable to cells which use cell doublings to measure life-span. PMID:1244399

  7. Hormonal Programming Across the Lifespan

    PubMed Central

    Tobet, Stuart A; Lara, Hernan E; Lucion, Aldo B; Wilson, Melinda E; Recabarren, Sergio E; Paredes, Alfonso H

    2013-01-01

    Hormones influence countless biological processes across the lifespan, and during developmental sensitive periods hormones have the potential to cause permanent tissue-specific alterations in anatomy and physiology. There are numerous critical periods in development wherein different targets are affected. This review outlines the proceedings of the Hormonal Programming in Development session at the US-South American Workshop in Neuroendocrinology in August 2011. Here we discuss how gonadal hormones impact various biological processes within the brain and gonads during early development and describe the changes that take place in the aging female ovary. At the cellular level, hormonal targets in the brain include neurons, glia, or vasculature. On a genomic/epigenomic level, transcription factor signaling and epigenetic changes alter the expression of hormone receptor genes across development and following ischemic brain insult. In addition, organizational hormone exposure alters epigenetic processes in specific brain nuclei and may be a mediator of sexual differentiation of the neonatal brain. During development of the ovary, exposure to excess gonadal hormones leads to polycystic ovarian syndrome (PCOS). Exposure to excess androgens during fetal development also has a profound effect on the development of the male reproductive system. In addition, increased sympathetic nerve activity and stress during early life have been linked to PCOS symptomology in adulthood. Finally, we describe how age-related decreases in fertility are linked to high levels of nerve growth factor (NGF), which enhances sympathetic nerve activity and alters ovarian function. PMID:22700441

  8. Aneuploidy shortens replicative lifespan in Saccharomyces cerevisiae.

    PubMed

    Sunshine, Anna B; Ong, Giang T; Nickerson, Daniel P; Carr, Daniel; Murakami, Christopher J; Wasko, Brian M; Shemorry, Anna; Merz, Alexey J; Kaeberlein, Matt; Dunham, Maitreya J

    2016-04-01

    Aneuploidy and aging are correlated; however, a causal link between these two phenomena has remained elusive. Here, we show that yeast disomic for a single native yeast chromosome generally have a decreased replicative lifespan. In addition, the extent of this lifespan deficit correlates with the size of the extra chromosome. We identified a mutation in BUL1 that rescues both the lifespan deficit and a protein trafficking defect in yeast disomic for chromosome 5. Bul1 is an E4 ubiquitin ligase adaptor involved in a protein quality control pathway that targets membrane proteins for endocytosis and destruction in the lysosomal vacuole, thereby maintaining protein homeostasis. Concurrent suppression of the aging and trafficking phenotypes suggests that disrupted membrane protein homeostasis in aneuploid yeast may contribute to their accelerated aging. The data reported here demonstrate that aneuploidy can impair protein homeostasis, shorten lifespan, and may contribute to age-associated phenotypes.

  9. miR-124/ATF-6, a novel lifespan extension pathway of Astragalus polysaccharide in Caenorhabditis elegans.

    PubMed

    Wang, Ning; Liu, Jing; Xie, Fang; Gao, Xu; Ye, Jian-Han; Sun, Lu-Yao; Wei, Ran; Ai, Jing

    2015-02-01

    MicroRNAs (miRNAs), especially evolutionarily conserved miRNAs play critical roles in regulating various biological process. However, the functions of conserved miRNAs in longevity are still largely unknown. Astragalus polysaccharide (APS) was recently shown to extend lifespan of Caenorhabditis elegans, but its molecular mechanisms have not been fully understood. In the present study, we characterize that microRNA mediated a novel longevity pathway of APS in C. elegans. We found that APS markedly extended the lifespan of C. elegans at the second and the fourth stages. A highly conserved miRNA miR-124 was significantly upregulated in APS-treated C. elegans. Overexpression miR-124 caused the lifespan extension of C. elegans and vice versa, indicating miR-124 regulates the longevity of C. elegans. Using luciferase assay, atf-6 was established as a target gene of miR-124 which acting on three binding sites at atf-6 3'UTR. Consistently, agomir-cel-miR-124 was also shown to inhibit ATF-6 expression in C. elegans. APS-treated C. elegans showed the down-regulation of atf-6 at protein level. Furthermore, the knockdown of atf-6 by RNAi extended the lifespan of C. elegans, indicating atf-6 regulated by miR-124 contributes to lifespan extension. Taken together, miR-124 regulating ATF-6 is a new potential longevity signal pathway, which underlies the lifespan-extending effects of APS in C. elegans.

  10. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomyces cerevisiae.

    PubMed

    Kamei, Yuka; Tamura, Takayuki; Yoshida, Ryo; Ohta, Shinji; Fukusaki, Eiichiro; Mukai, Yukio

    2011-04-01

    Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for γ-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomyces cerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The Δuga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for Δuga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of (1)H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan extension. These results strongly suggest reduced activity of the GABA-metabolizing enzymes extends lifespan by shifting carbon metabolism toward respiration, as calorie restriction does.

  11. Respiratory and TCA cycle activities affect S. cerevisiae lifespan, response to caloric restriction and mtDNA stability.

    PubMed

    Tahara, Erich B; Cezário, Kizzy; Souza-Pinto, Nadja C; Barros, Mario H; Kowaltowski, Alicia J

    2011-10-01

    We studied the importance of respiratory fitness in S. cerevisiae lifespan, response to caloric restriction (CR) and mtDNA stability. Mutants harboring mtDNA instability and electron transport defects do not respond to CR, while tricarboxylic acid cycle mutants presented extended lifespans due to CR. Interestingly, mtDNA is unstable in cells lacking dihydrolipoyl dehydrogenase under CR conditions, and cells lacking aconitase under standard conditions (both enzymes are components of the TCA and mitochondrial nucleoid). Altogether, our data indicate that respiratory integrity is required for lifespan extension by CR and that mtDNA stability is regulated by nucleoid proteins in a glucose-sensitive manner.

  12. Dance Talent Development across the Lifespan: A Review of Current Research

    ERIC Educational Resources Information Center

    Chua, Joey

    2014-01-01

    The aim of this study is to compile and synthesize empirically based articles published between 2000 and 2012 about the critical issues of developing dance talents across the lifespan of children, adolescents and adults. The present article updates and extends a review article related to the identification and development in dance written by…

  13. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer.

    PubMed

    Strong, Randy; Miller, Richard A; Antebi, Adam; Astle, Clinton M; Bogue, Molly; Denzel, Martin S; Fernandez, Elizabeth; Flurkey, Kevin; Hamilton, Karyn L; Lamming, Dudley W; Javors, Martin A; de Magalhães, João Pedro; Martinez, Paul Anthony; McCord, Joe M; Miller, Benjamin F; Müller, Michael; Nelson, James F; Ndukum, Juliet; Rainger, G Ed; Richardson, Arlan; Sabatini, David M; Salmon, Adam B; Simpkins, James W; Steegenga, Wilma T; Nadon, Nancy L; Harrison, David E

    2016-10-01

    The National Institute on Aging Interventions Testing Program (ITP) evaluates agents hypothesized to increase healthy lifespan in genetically heterogeneous mice. Each compound is tested in parallel at three sites, and all results are published. We report the effects of lifelong treatment of mice with four agents not previously tested: Protandim, fish oil, ursodeoxycholic acid (UDCA) and metformin - the latter with and without rapamycin, and two drugs previously examined: 17-α-estradiol and nordihydroguaiaretic acid (NDGA), at doses greater and less than used previously. 17-α-estradiol at a threefold higher dose robustly extended both median and maximal lifespan, but still only in males. The male-specific extension of median lifespan by NDGA was replicated at the original dose, and using doses threefold lower and higher. The effects of NDGA were dose dependent and male specific but without an effect on maximal lifespan. Protandim, a mixture of botanical extracts that activate Nrf2, extended median lifespan in males only. Metformin alone, at a dose of 0.1% in the diet, did not significantly extend lifespan. Metformin (0.1%) combined with rapamycin (14 ppm) robustly extended lifespan, suggestive of an added benefit, based on historical comparison with earlier studies of rapamycin given alone. The α-glucosidase inhibitor, acarbose, at a concentration previously tested (1000 ppm), significantly increased median longevity in males and 90th percentile lifespan in both sexes, even when treatment was started at 16 months. Neither fish oil nor UDCA extended lifespan. These results underscore the reproducibility of ITP longevity studies and illustrate the importance of identifying optimal doses in lifespan studies.

  14. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer.

    PubMed

    Strong, Randy; Miller, Richard A; Antebi, Adam; Astle, Clinton M; Bogue, Molly; Denzel, Martin S; Fernandez, Elizabeth; Flurkey, Kevin; Hamilton, Karyn L; Lamming, Dudley W; Javors, Martin A; de Magalhães, João Pedro; Martinez, Paul Anthony; McCord, Joe M; Miller, Benjamin F; Müller, Michael; Nelson, James F; Ndukum, Juliet; Rainger, G Ed; Richardson, Arlan; Sabatini, David M; Salmon, Adam B; Simpkins, James W; Steegenga, Wilma T; Nadon, Nancy L; Harrison, David E

    2016-10-01

    The National Institute on Aging Interventions Testing Program (ITP) evaluates agents hypothesized to increase healthy lifespan in genetically heterogeneous mice. Each compound is tested in parallel at three sites, and all results are published. We report the effects of lifelong treatment of mice with four agents not previously tested: Protandim, fish oil, ursodeoxycholic acid (UDCA) and metformin - the latter with and without rapamycin, and two drugs previously examined: 17-α-estradiol and nordihydroguaiaretic acid (NDGA), at doses greater and less than used previously. 17-α-estradiol at a threefold higher dose robustly extended both median and maximal lifespan, but still only in males. The male-specific extension of median lifespan by NDGA was replicated at the original dose, and using doses threefold lower and higher. The effects of NDGA were dose dependent and male specific but without an effect on maximal lifespan. Protandim, a mixture of botanical extracts that activate Nrf2, extended median lifespan in males only. Metformin alone, at a dose of 0.1% in the diet, did not significantly extend lifespan. Metformin (0.1%) combined with rapamycin (14 ppm) robustly extended lifespan, suggestive of an added benefit, based on historical comparison with earlier studies of rapamycin given alone. The α-glucosidase inhibitor, acarbose, at a concentration previously tested (1000 ppm), significantly increased median longevity in males and 90th percentile lifespan in both sexes, even when treatment was started at 16 months. Neither fish oil nor UDCA extended lifespan. These results underscore the reproducibility of ITP longevity studies and illustrate the importance of identifying optimal doses in lifespan studies. PMID:27312235

  15. Lifespan extension of rotifers by treatment with red algal extracts

    PubMed Central

    Snare, David J.; Fields, Allison M.; Snell, Terry W.; Kubanek, Julia

    2013-01-01

    Aging results from an accumulation of damage to macromolecules inhibiting cellular replication, repair, and other necessary functions. Damage may be due to environmental stressors such as metal toxicity, oxidative stress caused by imperfections in electron transfer reactions, or other metabolic processes. In an effort to discover medical treatments that counteract this damage, we initiated a search for small molecule drugs from natural sources using life table experiments which, through their unbiased approach, present the opportunity to discover first-in-class molecules. We have identified marine red algae as a source of natural products that slow aging of the invertebrate rotifer Brachionus manjavacas. Rotifers are a promising model organism for life extension studies as they maintain a short, measurable lifespan while also having an extensive literature related to aging. Rotifer lifespan was increased 9–14% by exposure to three of a total of 200 screened red algal extracts. Bioassay guided fractionation led to semi-purified extracts composed primarily of lipids responsible for rotifer life extension. The life extending mixture from the red alga Acanthophora spicifera contained eicosanoic, octadecanoic, and hexadecanoic acids as well as several unidentified unsaturated fatty acids. The life extending effects of these small molecule mixtures are not a result of their direct antioxidant capacity; other unknown mechanisms of action are likely involved. An understanding of how these natural products interact with their molecular targets could lead to selective and effective treatments for slowing aging and reducing age related diseases. PMID:24120568

  16. Lifespan extension of rotifers by treatment with red algal extracts.

    PubMed

    Snare, David J; Fields, Allison M; Snell, Terry W; Kubanek, Julia

    2013-12-01

    Aging results from an accumulation of damage to macromolecules inhibiting cellular replication, repair, and other necessary functions. Damage may be due to environmental stressors such as metal toxicity, oxidative stress caused by imperfections in electron transfer reactions, or other metabolic processes. In an effort to discover medical treatments that counteract this damage, we initiated a search for small molecule drugs from natural sources using life table experiments which, through their unbiased approach, present the opportunity to discover first-in-class molecules. We have identified marine red algae as a source of natural products that slow aging of the invertebrate rotifer Brachionus manjavacas. Rotifers are a promising model organism for life extension studies as they maintain a short, measurable lifespan while also having an extensive literature related to aging. Rotifer lifespan was increased 9-14% by exposure to three of a total of 200 screened red algal extracts. Bioassay guided fractionation led to semi-purified extracts composed primarily of lipids responsible for rotifer life extension. The life extending mixture from the red alga Acanthophora spicifera contained eicosanoic, octadecanoic, and hexadecanoic acids as well as several unidentified unsaturated fatty acids. The life extending effects of these small molecule mixtures are not a result of their direct antioxidant capacity; other unknown mechanisms of action are likely involved. An understanding of how these natural products interact with their molecular targets could lead to selective and effective treatments for slowing aging and reducing age related diseases.

  17. Fate of carbamazepine, its metabolites, and lamotrigine in soils irrigated with reclaimed wastewater: Sorption, leaching and plant uptake.

    PubMed

    Paz, Anat; Tadmor, Galit; Malchi, Tomer; Blotevogel, Jens; Borch, Thomas; Polubesova, Tamara; Chefetz, Benny

    2016-10-01

    Irrigation with reclaimed wastewater may result in the ubiquitous presence of pharmaceutical compounds (PCs) and their metabolites in the agroecosystem. In this study, we focused on two highly persistent anticonvulsant drugs, lamotrigine and carbamazepine and two of its metabolites (EP-CBZ and DiOH-CBZ), aiming to elucidate their behavior in agricultural ecosystem using batch and lysimeter experiments. Sorption of the studied compounds by soils was found to be governed mainly by the soil organic matter level. Sorption affinity of compounds to soils followed the order lamotrigine > carbamazepine > EP-CBZ > DiOH-CBZ. Sorption was reversible, and no competition between sorbates in bi-solute systems was observed. The results of the lysimeter studies were in accordance with batch experiment findings, demonstrating accumulation of lamotrigine and carbamazepine in top soil layers enriched with organic matter. Detection of carbamazepine and one of its metabolites in rain-fed wheat previously irrigated with reclaimed wastewater, indicates reversibility of their sorption, resulting in their potential leaching and their availability for plant uptake. This study demonstrates the long-term implication of introduction of PCs to the agroecosystem. PMID:27351902

  18. Fate of carbamazepine, its metabolites, and lamotrigine in soils irrigated with reclaimed wastewater: Sorption, leaching and plant uptake.

    PubMed

    Paz, Anat; Tadmor, Galit; Malchi, Tomer; Blotevogel, Jens; Borch, Thomas; Polubesova, Tamara; Chefetz, Benny

    2016-10-01

    Irrigation with reclaimed wastewater may result in the ubiquitous presence of pharmaceutical compounds (PCs) and their metabolites in the agroecosystem. In this study, we focused on two highly persistent anticonvulsant drugs, lamotrigine and carbamazepine and two of its metabolites (EP-CBZ and DiOH-CBZ), aiming to elucidate their behavior in agricultural ecosystem using batch and lysimeter experiments. Sorption of the studied compounds by soils was found to be governed mainly by the soil organic matter level. Sorption affinity of compounds to soils followed the order lamotrigine > carbamazepine > EP-CBZ > DiOH-CBZ. Sorption was reversible, and no competition between sorbates in bi-solute systems was observed. The results of the lysimeter studies were in accordance with batch experiment findings, demonstrating accumulation of lamotrigine and carbamazepine in top soil layers enriched with organic matter. Detection of carbamazepine and one of its metabolites in rain-fed wheat previously irrigated with reclaimed wastewater, indicates reversibility of their sorption, resulting in their potential leaching and their availability for plant uptake. This study demonstrates the long-term implication of introduction of PCs to the agroecosystem.

  19. [Treatment of bipolar disorder with lamotrigine -- relapse rate and suicidal behaviour during 6 month follow-up].

    PubMed

    Rihmer, Zoltán; Gonda, Xénia; Kálmán, János

    2015-03-01

    The present paper describes a 8-month prospective, observational, non-intervention multicentric study in 969 bipolar patients, where data were obtained on changes during lamotrigine treatment with special focus rates of relapse, suicidal behaviour and adverse events. 969 patients entered the study and 961 patients (99%) completed the study. Patients received lamotrigine mostly as an add-on treatment in addition to ongoing antidepressant and/or antipsychotic medication. By the end of the six-month treatment period 38% of patients achieved remission and rate of relapse after three months was 24%. Rate of adverse events was very low (1%) and they in no case led o termination of therapy. At baseline 17% of patients had clinically significant suicide risk which gradually decreased to 2.1% during the 6-month study period. No suicide attempt or completed suicide occurred during the study period. Results indicate that lamotrigine is an effective and well-tolerated treatment for the acute and long-term treatment of bipolar patients.

  20. The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans

    SciTech Connect

    Fierro-Gonzalez, Juan Carlos; Gonzalez-Barrios, Maria; Miranda-Vizuete, Antonio

    2011-03-18

    Highlights: {yields} First in vivo data for thioredoxin in dietary-restriction-(DR)-induced longevity. {yields} Thioredoxin (trx-1) loss suppresses longevity of eat-2 mutant, a genetic DR model. {yields} trx-1 overexpression extends wild-type longevity, but not that of eat-2 mutant. {yields} Longevity by dietary deprivation (DD), a non-genetic DR model, requires trx-1. {yields} trx-1 expression in ASJ neurons of aging adults is increased in response to DD. -- Abstract: Dietary restriction (DR) is the only environmental intervention known to extend adult lifespan in a wide variety of animal models. However, the genetic and cellular events that mediate the anti-aging programs induced by DR remain elusive. Here, we used the nematode Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) regulates adult lifespan extension induced by DR. We found that deletion of the gene trx-1 completely suppressed the lifespan extension caused by mutation of eat-2, a genetic surrogate of DR in the worm. However, trx-1 deletion only partially suppressed the long lifespan caused by mutation of the insulin-like receptor gene daf-2 or by mutation of the sensory cilia gene osm-5. A trx-1::GFP translational fusion expressed from its own promoter in ASJ neurons (Ptrx-1::trx-1::GFP) rescued the trx-1 deletion-mediated suppression of the lifespan extension caused by mutation of eat-2. This rescue was not observed when trx-1::GFP was expressed from the ges-1 promoter in the intestine. In addition, overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type, but not in eat-2 mutants. trx-1 deletion almost completely suppressed the lifespan extension induced by dietary deprivation (DD), a non-genetic, nutrient-based model of DR in the worm. Moreover, DD upregulated the expression of a trx-1 promoter-driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of aging adults, but not that of control Pgpa-9::GFP (which is also expressed in ASJ neurons). We propose

  1. Models for the red blood cell lifespan.

    PubMed

    Shrestha, Rajiv P; Horowitz, Joseph; Hollot, Christopher V; Germain, Michael J; Widness, John A; Mock, Donald M; Veng-Pedersen, Peter; Chait, Yossi

    2016-06-01

    The lifespan of red blood cells (RBCs) plays an important role in the study and interpretation of various clinical conditions. Yet, confusion about the meanings of fundamental terms related to cell survival and their quantification still exists in the literature. To address these issues, we started from a compartmental model of RBC populations based on an arbitrary full lifespan distribution, carefully defined the residual lifespan, current age, and excess lifespan of the RBC population, and then derived the distributions of these parameters. For a set of residual survival data from biotin-labeled RBCs, we fit models based on Weibull, gamma, and lognormal distributions, using nonlinear mixed effects modeling and parametric bootstrapping. From the estimated Weibull, gamma, and lognormal parameters we computed the respective population mean full lifespans (95 % confidence interval): 115.60 (109.17-121.66), 116.71 (110.81-122.51), and 116.79 (111.23-122.75) days together with the standard deviations of the full lifespans: 24.77 (20.82-28.81), 24.30 (20.53-28.33), and 24.19 (20.43-27.73). We then estimated the 95th percentiles of the lifespan distributions (a surrogate for the maximum lifespan): 153.95 (150.02-158.36), 159.51 (155.09-164.00), and 160.40 (156.00-165.58) days, the mean current ages (or the mean residual lifespans): 60.45 (58.18-62.85), 60.82 (58.77-63.33), and 57.26 (54.33-60.61) days, and the residual half-lives: 57.97 (54.96-60.90), 58.36 (55.45-61.26), and 58.40 (55.62-61.37) days, for the Weibull, gamma, and lognormal models respectively. Corresponding estimates were obtained for the individual subjects. The three models provide equally excellent goodness-of-fit, reliable estimation, and physiologically plausible values of the directly interpretable RBC survival parameters.

  2. Extension of Drosophila Lifespan by Rhodiola rosea Depends on Dietary Carbohydrate and Caloric Content in a Simplified Diet.

    PubMed

    Schriner, Samuel E; Coskun, Volkan; Hogan, Sean P; Nguyen, Cindy T; Lopez, Terry E; Jafari, Mahtab

    2016-03-01

    The root and rhizome extract of Rhodiola rosea has been extensively used in traditional medicine to improve physical and mental performance and to protect against stress. We, and others, have reported that R. rosea can extend lifespan in flies, worms, and yeast. We also previously found that the extract can act independently of dietary restriction (DR), a treatment that can extend lifespan in a range of model organisms. In flies, DR is implemented through a reduction in dietary yeast content. Here, we report that the ability of R. rosea extract to extend lifespan in flies is dependent on the carbohydrate and caloric content when supplemented with a simplified diet composed of yeast and sucrose. R. rosea extract elevated the sugar content in flies and down-regulated hexokinase expression, suggesting that it perturbs carbohydrate metabolism in flies. In our previous studies, bananas, barley malt, and corn syrup provided dietary carbohydrates, and R. rosea extract could extend lifespan with a range of caloric levels. We conclude that the lifespan-extending effect of R. rosea extract in flies is dependent on dietary carbohydrate and caloric contents coupled with an interaction with complex dietary components present in bananas, barley, or corn.

  3. Extension of Drosophila Lifespan by Rhodiola rosea Depends on Dietary Carbohydrate and Caloric Content in a Simplified Diet.

    PubMed

    Schriner, Samuel E; Coskun, Volkan; Hogan, Sean P; Nguyen, Cindy T; Lopez, Terry E; Jafari, Mahtab

    2016-03-01

    The root and rhizome extract of Rhodiola rosea has been extensively used in traditional medicine to improve physical and mental performance and to protect against stress. We, and others, have reported that R. rosea can extend lifespan in flies, worms, and yeast. We also previously found that the extract can act independently of dietary restriction (DR), a treatment that can extend lifespan in a range of model organisms. In flies, DR is implemented through a reduction in dietary yeast content. Here, we report that the ability of R. rosea extract to extend lifespan in flies is dependent on the carbohydrate and caloric content when supplemented with a simplified diet composed of yeast and sucrose. R. rosea extract elevated the sugar content in flies and down-regulated hexokinase expression, suggesting that it perturbs carbohydrate metabolism in flies. In our previous studies, bananas, barley malt, and corn syrup provided dietary carbohydrates, and R. rosea extract could extend lifespan with a range of caloric levels. We conclude that the lifespan-extending effect of R. rosea extract in flies is dependent on dietary carbohydrate and caloric contents coupled with an interaction with complex dietary components present in bananas, barley, or corn. PMID:26987024

  4. Pharmacological evidence for the involvement of the NMDA receptor and nitric oxide pathway in the antidepressant-like effect of lamotrigine in the mouse forced swimming test.

    PubMed

    Ostadhadi, Sattar; Ahangari, Mohammad; Nikoui, Vahid; Norouzi-Javidan, Abbas; Zolfaghari, Samira; Jazaeri, Farahnaz; Chamanara, Mohsen; Akbarian, Reyhaneh; Dehpour, Ahmad-Reza

    2016-08-01

    Lamotrigine is an anticonvulsant agent that shows clinical antidepressant properties. The aim of the present study was to investigate the involvement of N-methyl-d-aspartate (NMDA) receptors and nitric oxide-cyclic guanosine monophosphate (NO-cGMP) synthesis in possible antidepressant-like effect of lamotrigine in forced swimming test (FST) in mice. Intraperitoneal administration of lamotrigine (10mg/kg) decreased the immobility time in the FST (P<0.01) without any effect on locomotor activity in the open-field test (OFT), while higher dose of lamotrigine (30mg/kg) reduced the immobility time in the FST (P<0.001) as well as the number of crossings in the OFT. Pretreatment of animals with NMDA (75mg/kg), l-arginine (750mg/kg, a substrate for nitric oxide synthase [NOS]) or sildenafil (5mg/kg, a phosphodiesterase [PDE] 5 inhibitor) reversed the antidepressant-like effect of lamotrigine (10mg/kg) in the FST. Injection of l-nitroarginine methyl ester (l-NAME, 10mg/kg, a non-specific NOS inhibitor), 7-nitroindazole (30mg/kg, a neuronal NOS inhibitor), methylene blue (20mg/kg, an inhibitor of both NOS and soluble guanylate cyclase [sGC]), or MK-801 (0.05mg/kg), ketamine (1mg/kg), and magnesium sulfate (10mg/kg) as NMDA receptor antagonists in combination with a sub-effective dose of lamotrigine (5mg/kg) diminished the immobility time of animals in the FST compared with either drug alone. None of the drugs produced significant effects on the locomotor activity in the OFT. Based on our findings, it is suggested that the antidepressant-like effect of lamotrigine might mediated through inhibition of either NMDA receptors or NO-cGMP synthesis. PMID:27470415

  5. C. elegans lifespan extension by osmotic stress requires FUdR, base excision repair, FOXO, and sirtuins.

    PubMed

    Anderson, Edward N; Corkins, Mark E; Li, Jia-Cheng; Singh, Komudi; Parsons, Sadé; Tucey, Tim M; Sorkaç, Altar; Huang, Huiyan; Dimitriadi, Maria; Sinclair, David A; Hart, Anne C

    2016-03-01

    Moderate stress can increase lifespan by hormesis, a beneficial low-level induction of stress response pathways. 5'-fluorodeoxyuridine (FUdR) is commonly used to sterilize Caenorhabditis elegans in aging experiments. However, FUdR alters lifespan in some genotypes and induces resistance to thermal and proteotoxic stress. We report that hypertonic stress in combination with FUdR treatment or inhibition of the FUdR target thymidylate synthase, TYMS-1, extends C. elegans lifespan by up to 30%. By contrast, in the absence of FUdR, hypertonic stress decreases lifespan. Adaptation to hypertonic stress requires diminished Notch signaling and loss of Notch co-ligands leads to lifespan extension only in combination with FUdR. Either FUdR treatment or TYMS-1 loss induced resistance to acute hypertonic stress, anoxia, and thermal stress. FUdR treatment increased expression of DAF-16 FOXO and the osmolyte biosynthesis enzyme GPDH-1. FUdR-induced hypertonic stress resistance was partially dependent on sirtuins and base excision repair (BER) pathways, while FUdR-induced lifespan extension under hypertonic stress conditions requires DAF-16, BER, and sirtuin function. Combined, these results demonstrate that FUdR, through inhibition of TYMS-1, activates stress response pathways in somatic tissues to confer hormetic resistance to acute and chronic stress. C. elegans lifespan studies using FUdR may need re-interpretation in light of this work.

  6. The role of the ribosome in the regulation of longevity and lifespan extension.

    PubMed

    MacInnes, Alyson W

    2016-01-01

    The most energy-consuming process that a cell must undertake to stay viable is the continuous biogenesis of ribosomes for the translation of RNA into protein. Given the inextricable links between energy consumption and cellular lifespan, it is not surprising that mutations and environmental cues that reduce ribosome biogenesis result in an extension of eukaryotic lifespan. This review goes into detail describing recent discoveries of different and often unexpected elements that play a role in the regulation of longevity by virtue of their ribosome biogenesis functions. These roles include controlling the transcription and processing of ribosomal RNA (rRNA), the translation of ribosomal protein (RP) genes, and the number of ribosomes overall. Together these findings suggest that a fundamental mechanism across eukaryotic species for extending lifespan is to slow down or halt the expenditure of cellular energy that is normally absorbed by the manufacturing and assembly of new ribosomes. PMID:26732699

  7. Regulation of Drosophila lifespan by JNK signaling

    PubMed Central

    Biteau, Benoit; Karpac, Jason; Hwangbo, DaeSung; Jasper, Heinrich

    2010-01-01

    Cellular responses to extrinsic and intrinsic insults have to be carefully regulated to properly coordinate cytoprotection, repair processes, cell proliferation and apoptosis. Stress signaling pathways, most prominently the Jun-N-terminal Kinase (JNK) pathway, are critical regulators of such cellular responses and have accordingly been implicated in the regulation of lifespan in various organisms. JNK signaling promotes cytoprotective gene expression, but also interacts with the Insulin signaling pathway to influence growth, metabolism, stress tolerance and regeneration. Here, we review recent studies in Drosophila that elucidate the tissue-specific and systemic consequences of JNK activation that ultimately impact lifespan of the organism. PMID:21111799

  8. FET proteins regulate lifespan and neuronal integrity

    PubMed Central

    Therrien, Martine; Rouleau, Guy A.; Dion, Patrick A.; Parker, J. Alex

    2016-01-01

    The FET protein family includes FUS, EWS and TAF15 proteins, all of which have been linked to amyotrophic lateral sclerosis, a fatal neurodegenerative disease affecting motor neurons. Here, we show that a reduction of FET proteins in the nematode Caenorhabditis elegans causes synaptic dysfunction accompanied by impaired motor phenotypes. FET proteins are also involved in the regulation of lifespan and stress resistance, acting partially through the insulin/IGF-signalling pathway. We propose that FET proteins are involved in the maintenance of lifespan, cellular stress resistance and neuronal integrity. PMID:27117089

  9. Rifampicin reduces advanced glycation end products and activates DAF-16 to increase lifespan in Caenorhabditis elegans.

    PubMed

    Golegaonkar, Sandeep; Tabrez, Syed S; Pandit, Awadhesh; Sethurathinam, Shalini; Jagadeeshaprasad, Mashanipalya G; Bansode, Sneha; Sampathkumar, Srinivasa-Gopalan; Kulkarni, Mahesh J; Mukhopadhyay, Arnab

    2015-06-01

    Advanced glycation end products (AGEs) are formed when glucose reacts nonenzymatically with proteins; these modifications are implicated in aging and pathogenesis of many age-related diseases including type II diabetes, atherosclerosis, and neurodegenerative disorders. Thus, pharmaceutical interventions that can reduce AGEs may delay age-onset diseases and extend lifespan. Using LC-MS(E), we show that rifampicin (RIF) reduces glycation of important cellular proteins in vivo and consequently increases lifespan in Caenorhabditis elegans by up to 60%. RIF analog rifamycin SV (RSV) possesses similar properties, while rifaximin (RMN) lacks antiglycation activity and therefore fails to affect lifespan positively. The efficacy of RIF and RSV as potent antiglycating agents may be attributed to the presence of a p-dihydroxyl moiety that can potentially undergo spontaneous oxidation to yield highly reactive p-quinone structures, a feature absent in RMN. We also show that supplementing rifampicin late in adulthood is sufficient to increase lifespan. For its effect on longevity, rifampicin requires DAF-18 (nematode PTEN) as well as JNK-1 and activates DAF-16, the FOXO homolog. Interestingly, the drug treatment modulates transcription of a different subset of DAF-16 target genes, those not controlled by the conserved Insulin-IGF-1-like signaling pathway. RIF failed to increase the lifespan of daf-16 null mutant despite reducing glycation, showing thereby that DAF-16 may not directly affect AGE formation. Together, our data suggest that the dual ability to reduce glycation in vivo and activate prolongevity processes through DAF-16 makes RIF and RSV effective lifespan-extending interventions. PMID:25720500

  10. Rifampicin reduces advanced glycation end products and activates DAF-16 to increase lifespan in Caenorhabditis elegans

    PubMed Central

    Golegaonkar, Sandeep; Tabrez, Syed S; Pandit, Awadhesh; Sethurathinam, Shalini; Jagadeeshaprasad, Mashanipalya G; Bansode, Sneha; Sampathkumar, Srinivasa-Gopalan; Kulkarni, Mahesh J; Mukhopadhyay, Arnab

    2015-01-01

    Advanced glycation end products (AGEs) are formed when glucose reacts nonenzymatically with proteins; these modifications are implicated in aging and pathogenesis of many age-related diseases including type II diabetes, atherosclerosis, and neurodegenerative disorders. Thus, pharmaceutical interventions that can reduce AGEs may delay age-onset diseases and extend lifespan. Using LC-MSE, we show that rifampicin (RIF) reduces glycation of important cellular proteins in vivo and consequently increases lifespan in Caenorhabditis elegans by up to 60%. RIF analog rifamycin SV (RSV) possesses similar properties, while rifaximin (RMN) lacks antiglycation activity and therefore fails to affect lifespan positively. The efficacy of RIF and RSV as potent antiglycating agents may be attributed to the presence of a p-dihydroxyl moiety that can potentially undergo spontaneous oxidation to yield highly reactive p-quinone structures, a feature absent in RMN. We also show that supplementing rifampicin late in adulthood is sufficient to increase lifespan. For its effect on longevity, rifampicin requires DAF-18 (nematode PTEN) as well as JNK-1 and activates DAF-16, the FOXO homolog. Interestingly, the drug treatment modulates transcription of a different subset of DAF-16 target genes, those not controlled by the conserved Insulin-IGF-1-like signaling pathway. RIF failed to increase the lifespan of daf-16 null mutant despite reducing glycation, showing thereby that DAF-16 may not directly affect AGE formation. Together, our data suggest that the dual ability to reduce glycation in vivo and activate prolongevity processes through DAF-16 makes RIF and RSV effective lifespan-extending interventions. PMID:25720500

  11. Rifampicin reduces advanced glycation end products and activates DAF-16 to increase lifespan in Caenorhabditis elegans.

    PubMed

    Golegaonkar, Sandeep; Tabrez, Syed S; Pandit, Awadhesh; Sethurathinam, Shalini; Jagadeeshaprasad, Mashanipalya G; Bansode, Sneha; Sampathkumar, Srinivasa-Gopalan; Kulkarni, Mahesh J; Mukhopadhyay, Arnab

    2015-06-01

    Advanced glycation end products (AGEs) are formed when glucose reacts nonenzymatically with proteins; these modifications are implicated in aging and pathogenesis of many age-related diseases including type II diabetes, atherosclerosis, and neurodegenerative disorders. Thus, pharmaceutical interventions that can reduce AGEs may delay age-onset diseases and extend lifespan. Using LC-MS(E), we show that rifampicin (RIF) reduces glycation of important cellular proteins in vivo and consequently increases lifespan in Caenorhabditis elegans by up to 60%. RIF analog rifamycin SV (RSV) possesses similar properties, while rifaximin (RMN) lacks antiglycation activity and therefore fails to affect lifespan positively. The efficacy of RIF and RSV as potent antiglycating agents may be attributed to the presence of a p-dihydroxyl moiety that can potentially undergo spontaneous oxidation to yield highly reactive p-quinone structures, a feature absent in RMN. We also show that supplementing rifampicin late in adulthood is sufficient to increase lifespan. For its effect on longevity, rifampicin requires DAF-18 (nematode PTEN) as well as JNK-1 and activates DAF-16, the FOXO homolog. Interestingly, the drug treatment modulates transcription of a different subset of DAF-16 target genes, those not controlled by the conserved Insulin-IGF-1-like signaling pathway. RIF failed to increase the lifespan of daf-16 null mutant despite reducing glycation, showing thereby that DAF-16 may not directly affect AGE formation. Together, our data suggest that the dual ability to reduce glycation in vivo and activate prolongevity processes through DAF-16 makes RIF and RSV effective lifespan-extending interventions.

  12. Effect of lamotrigine and environmental enrichment on spatial memory and other behavioral functions in rats.

    PubMed

    Nowakowska, Elzbieta; Czubak, Anna; Kus, Krzysztof; Metelska, Jana; Burda, Kinga; Nowakowska, Anna

    2010-01-01

    Epileptic patients are at risk of experiencing cognitive deficits as a result of pharmacotherapy as well as etiology of epilepsy. Antiepileptic drugs increase inhibitory neurotransmission and reduce the responsiveness of neurons, and thereby may have a negative impact on memory. The enriched environment intensifies exploration of the new area behavior, which may have a positive impact on spatial memory in rats. Depression is among the most common affective disorders in epileptic patients, and using antidepressant drugs together with antiepileptics brings about the risk of interactions and intensifying side effects, The aim of the study was to assess the effects of lamotrigine (CAS 84057-84-1, LTG) (10 mg/kg i.p.), a new anticonvulsant with antidepresssant and neuroprotective properties, for memory and other behavioral functions in rats in standard and enriched environments (EE). LTG improved spatial memory upon repeated administration of the drug both in the rats housed in standard conditions and those housed in EE. Exposure to an enriched environmentsignificantly improved spatial learning. LTG showed antidepressant effect on the forced swimming test both in the rats housed in standard conditions and those housed in EE. In rats housed in EE the antidepressant effect occurred earlier. LTG had a low profile of adverse effects (activity meter, chimney test).

  13. Effects of folic acid and lamotrigine therapy in some rodent models of epilepsy and behaviour.

    PubMed

    Ali, Atif; Pillai, K K; Pal, Shanthi N

    2003-03-01

    It has been suggested that a folic acid (FA) deficiency induced by antiepileptic drugs might be the basis for the neuropsychiatric toxicity associated with these drugs. In the present study, lamotrigine (LTG), one of the newer antiepileptic drugs, was evaluated for its effect on epilepsy, mood and memory in mice. Further, the effect of the addition of FA to LTG therapy was also investigated. The increasing current electroshock seizure test was used to evaluate the anticonvulsant effect of drugs, while the forced swimming test (FST) and spontaneous alternation behaviour (SAB) models were employed for assessing the effects on mood and memory, respectively. LTG exhibited a dose-dependent increase in seizure threshold, whereas FA did not have any effect. LTG did not affect, whereas FA decreased, behavioural depression in the FST in mice. Neither LTG nor FA affected memory scores in the SAB test. The combination of LTG and FA significantly reduced depression while enhancing the effects on memory and seizure threshold. The present observations have confirmed the antiepileptic action of LTG in yet another rodent model of epilepsy. Further, the results clearly demonstrate the additional benefits on epilepsy, mood and memory brought about by the inclusion of FA in the LTG regimen.

  14. Valproic Acid versus Lamotrigine as First-line Monotherapy in Newly Diagnosed Idiopathic Generalized Tonic –Clonic Seizures in Adults – A Randomized Controlled Trial

    PubMed Central

    Giri, Om Prakash; Khan, Farhan Ahmad; Kumar, Narendra; Kumar, Ajay; Haque, Ataul

    2016-01-01

    Introduction Idiopathic Generalized Tonic-Clonic Seizures (GTCS) are frequently encountered in adults. Their successful control is necessary to improve the quality of life of these patients. Valproic acid is a simple branched-chain carboxylic acid and lamotrigine is a phenyltriazine derivative. Opinions differ in regards to their effectiveness in idiopathic GTCS. Aim To compare the effectiveness of valproic acid and lamotrigine in newly diagnosed adults with idiopathic generalized tonic-clonic seizures. Materials and Methods The present prospective randomized study was conducted on 60 patients suffering from idiopathic GTCS. Thirty patients received valproic acid and rest 30 patients received lamotrigine. All patients were followed regularly monthly for one year for treatment response and adverse effects. Results After 12 months follow-up, 76.67% patients taking valproic acid and 56.67% patients taking lamotrigine were seizure-free. Common adverse effects recorded were nausea, dyspepsia, headache and skin rash. Conclusion Valproic acid is more effective than lamotrigine as first-line drug in the treatment of adults with newly diagnosed idiopathic generalized tonic-clonic seizures.

  15. Valproic Acid versus Lamotrigine as First-line Monotherapy in Newly Diagnosed Idiopathic Generalized Tonic –Clonic Seizures in Adults – A Randomized Controlled Trial

    PubMed Central

    Giri, Om Prakash; Khan, Farhan Ahmad; Kumar, Narendra; Kumar, Ajay; Haque, Ataul

    2016-01-01

    Introduction Idiopathic Generalized Tonic-Clonic Seizures (GTCS) are frequently encountered in adults. Their successful control is necessary to improve the quality of life of these patients. Valproic acid is a simple branched-chain carboxylic acid and lamotrigine is a phenyltriazine derivative. Opinions differ in regards to their effectiveness in idiopathic GTCS. Aim To compare the effectiveness of valproic acid and lamotrigine in newly diagnosed adults with idiopathic generalized tonic-clonic seizures. Materials and Methods The present prospective randomized study was conducted on 60 patients suffering from idiopathic GTCS. Thirty patients received valproic acid and rest 30 patients received lamotrigine. All patients were followed regularly monthly for one year for treatment response and adverse effects. Results After 12 months follow-up, 76.67% patients taking valproic acid and 56.67% patients taking lamotrigine were seizure-free. Common adverse effects recorded were nausea, dyspepsia, headache and skin rash. Conclusion Valproic acid is more effective than lamotrigine as first-line drug in the treatment of adults with newly diagnosed idiopathic generalized tonic-clonic seizures. PMID:27630862

  16. Inositol Hexakisphosphate Kinase 3 Regulates Metabolism and Lifespan in Mice

    PubMed Central

    Moritoh, Yusuke; Oka, Masahiro; Yasuhara, Yoshitaka; Hozumi, Hiroyuki; Iwachidow, Kimihiko; Fuse, Hiromitsu; Tozawa, Ryuichi

    2016-01-01

    Inositol hexakisphosphate kinase 3 (IP6K3) generates inositol pyrophosphates, which regulate diverse cellular functions. However, little is known about its own physiological role. Here, we show the roles of IP6K3 in metabolic regulation. We detected high levels of both mouse and human IP6K3 mRNA in myotubes and muscle tissues. In human myotubes, IP6K3 was upregulated by dexamethasone treatment, which is known to inhibit glucose metabolism. Furthermore, Ip6k3 expression was elevated under diabetic, fasting, and disuse conditions in mouse skeletal muscles. Ip6k3−/− mice demonstrated lower blood glucose, reduced circulating insulin, deceased fat mass, lower body weight, increased plasma lactate, enhanced glucose tolerance, lower glucose during an insulin tolerance test, and reduced muscle Pdk4 expression under normal diet conditions. Notably, Ip6k3 deletion extended animal lifespan with concomitant reduced phosphorylation of S6 ribosomal protein in the heart. In contrast, Ip6k3−/− mice showed unchanged skeletal muscle mass and no resistance to the effects of high fat diet. The current observations suggest novel roles of IP6K3 in cellular regulation, which impact metabolic control and lifespan. PMID:27577108

  17. Inositol Hexakisphosphate Kinase 3 Regulates Metabolism and Lifespan in Mice.

    PubMed

    Moritoh, Yusuke; Oka, Masahiro; Yasuhara, Yoshitaka; Hozumi, Hiroyuki; Iwachidow, Kimihiko; Fuse, Hiromitsu; Tozawa, Ryuichi

    2016-01-01

    Inositol hexakisphosphate kinase 3 (IP6K3) generates inositol pyrophosphates, which regulate diverse cellular functions. However, little is known about its own physiological role. Here, we show the roles of IP6K3 in metabolic regulation. We detected high levels of both mouse and human IP6K3 mRNA in myotubes and muscle tissues. In human myotubes, IP6K3 was upregulated by dexamethasone treatment, which is known to inhibit glucose metabolism. Furthermore, Ip6k3 expression was elevated under diabetic, fasting, and disuse conditions in mouse skeletal muscles. Ip6k3(-/-) mice demonstrated lower blood glucose, reduced circulating insulin, deceased fat mass, lower body weight, increased plasma lactate, enhanced glucose tolerance, lower glucose during an insulin tolerance test, and reduced muscle Pdk4 expression under normal diet conditions. Notably, Ip6k3 deletion extended animal lifespan with concomitant reduced phosphorylation of S6 ribosomal protein in the heart. In contrast, Ip6k3(-/-) mice showed unchanged skeletal muscle mass and no resistance to the effects of high fat diet. The current observations suggest novel roles of IP6K3 in cellular regulation, which impact metabolic control and lifespan. PMID:27577108

  18. Siglec receptors impact mammalian lifespan by modulating oxidative stress.

    PubMed

    Schwarz, Flavio; Pearce, Oliver M T; Wang, Xiaoxia; Samraj, Annie N; Läubli, Heinz; Garcia, Javier O; Lin, Hongqiao; Fu, Xiaoming; Garcia-Bingman, Andrea; Secrest, Patrick; Romanoski, Casey E; Heyser, Charles; Glass, Christopher K; Hazen, Stanley L; Varki, Nissi; Varki, Ajit; Gagneux, Pascal

    2015-01-01

    Aging is a multifactorial process that includes the lifelong accumulation of molecular damage, leading to age-related frailty, disability and disease, and eventually death. In this study, we report evidence of a significant correlation between the number of genes encoding the immunomodulatory CD33-related sialic acid-binding immunoglobulin-like receptors (CD33rSiglecs) and maximum lifespan in mammals. In keeping with this, we show that mice lacking Siglec-E, the main member of the CD33rSiglec family, exhibit reduced survival. Removal of Siglec-E causes the development of exaggerated signs of aging at the molecular, structural, and cognitive level. We found that accelerated aging was related both to an unbalanced ROS metabolism, and to a secondary impairment in detoxification of reactive molecules, ultimately leading to increased damage to cellular DNA, proteins, and lipids. Taken together, our data suggest that CD33rSiglecs co-evolved in mammals to achieve a better management of oxidative stress during inflammation, which in turn reduces molecular damage and extends lifespan. PMID:25846707

  19. Life-Span Development of Affective Relationships.

    ERIC Educational Resources Information Center

    Takahashi, Keiko

    This paper presents a model of affective relationships and a review of a number of empirical studies based on the model. The fundamental aim of the model is to describe the life-span development of affective relationships, which are measured in terms of an individual's representation of a variety of significant interpersonal relationships. These…

  20. Interdisciplinary Handbook of Adult Lifespan Learning.

    ERIC Educational Resources Information Center

    Sinnott, Jan D., Ed.

    This book is divided into three parts: theories and models, learning in specific life contexts, and the influence of aging on learning. Chapters include: "Chaos Theory as a Framework for Understanding Adult Lifespan Learning" (John C. Cavanaugh, Lisa C. McGuire); "The Future Impact of the Communication Revolution" (Lynn Johnson); "The Educated…

  1. A Lifespan Perspective on Embodied Cognition.

    PubMed

    Loeffler, Jonna; Raab, Markus; Cañal-Bruland, Rouwen

    2016-01-01

    Since its infancy embodied cognition research has fundamentally changed our understanding of how action, perception, and cognition relate to and interact with each other. Ideas from different schools of thought have led to controversial theories and a unifying framework is still being debated. In this perspective paper, we argue that in order to improve our understanding of embodied cognition and to take significant steps toward a comprehensive framework, a lifespan approach is mandatory. Given that most established theories have been developed and tested in the adult population, which is characterized by relatively robust and stable sensorimotor and cognitive abilities, we deem it questionable whether embodied cognition effects found in this population are representative for different life stages such as childhood or the elderly. In contrast to adulthood, childhood is accompanied by a rapid increase of sensorimotor and cognitive skills, and the old age by a decline of such capacities. Hence, sensorimotor and cognitive capacities, as well as their interactions, are more fragile at both extremes of the lifespan, thereby offering a unique window into the emergence of embodied cognition effects and age-related differences therein. A lifespan approach promises to make a major contribution toward a unifying and comprehensive theory of embodied cognition that is valid across the lifespan and 'gets better with age.' PMID:27313562

  2. A Lifespan Perspective on Embodied Cognition

    PubMed Central

    Loeffler, Jonna; Raab, Markus; Cañal-Bruland, Rouwen

    2016-01-01

    Since its infancy embodied cognition research has fundamentally changed our understanding of how action, perception, and cognition relate to and interact with each other. Ideas from different schools of thought have led to controversial theories and a unifying framework is still being debated. In this perspective paper, we argue that in order to improve our understanding of embodied cognition and to take significant steps toward a comprehensive framework, a lifespan approach is mandatory. Given that most established theories have been developed and tested in the adult population, which is characterized by relatively robust and stable sensorimotor and cognitive abilities, we deem it questionable whether embodied cognition effects found in this population are representative for different life stages such as childhood or the elderly. In contrast to adulthood, childhood is accompanied by a rapid increase of sensorimotor and cognitive skills, and the old age by a decline of such capacities. Hence, sensorimotor and cognitive capacities, as well as their interactions, are more fragile at both extremes of the lifespan, thereby offering a unique window into the emergence of embodied cognition effects and age-related differences therein. A lifespan approach promises to make a major contribution toward a unifying and comprehensive theory of embodied cognition that is valid across the lifespan and ‘gets better with age.’ PMID:27313562

  3. Incidental Sequence Learning across the Lifespan

    ERIC Educational Resources Information Center

    Weiermann, Brigitte; Meier, Beat

    2012-01-01

    The purpose of the present study was to investigate incidental sequence learning across the lifespan. We tested 50 children (aged 7-16), 50 young adults (aged 20-30), and 50 older adults (aged >65) with a sequence learning paradigm that involved both a task and a response sequence. After several blocks of practice, all age groups slowed down…

  4. A Lifespan Perspective on Embodied Cognition.

    PubMed

    Loeffler, Jonna; Raab, Markus; Cañal-Bruland, Rouwen

    2016-01-01

    Since its infancy embodied cognition research has fundamentally changed our understanding of how action, perception, and cognition relate to and interact with each other. Ideas from different schools of thought have led to controversial theories and a unifying framework is still being debated. In this perspective paper, we argue that in order to improve our understanding of embodied cognition and to take significant steps toward a comprehensive framework, a lifespan approach is mandatory. Given that most established theories have been developed and tested in the adult population, which is characterized by relatively robust and stable sensorimotor and cognitive abilities, we deem it questionable whether embodied cognition effects found in this population are representative for different life stages such as childhood or the elderly. In contrast to adulthood, childhood is accompanied by a rapid increase of sensorimotor and cognitive skills, and the old age by a decline of such capacities. Hence, sensorimotor and cognitive capacities, as well as their interactions, are more fragile at both extremes of the lifespan, thereby offering a unique window into the emergence of embodied cognition effects and age-related differences therein. A lifespan approach promises to make a major contribution toward a unifying and comprehensive theory of embodied cognition that is valid across the lifespan and 'gets better with age.'

  5. Body size, energy metabolism and lifespan.

    PubMed

    Speakman, John R

    2005-05-01

    Bigger animals live longer. The scaling exponent for the relationship between lifespan and body mass is between 0.15 and 0.3. Bigger animals also expend more energy, and the scaling exponent for the relationship of resting metabolic rate (RMR) to body mass lies somewhere between 0.66 and 0.8. Mass-specific RMR therefore scales with a corresponding exponent between -0.2 and -0.33. Because the exponents for mass-specific RMR are close to the exponents for lifespan, but have opposite signs, their product (the mass-specific expenditure of energy per lifespan) is independent of body mass (exponent between -0.08 and 0.08). This means that across species a gram of tissue on average expends about the same amount of energy before it dies regardless of whether that tissue is located in a shrew, a cow, an elephant or a whale. This fact led to the notion that ageing and lifespan are processes regulated by energy metabolism rates and that elevating metabolism will be associated with premature mortality--the rate of living theory. The free-radical theory of ageing provides a potential mechanism that links metabolism to ageing phenomena, since oxygen free radicals are formed as a by-product of oxidative phosphorylation. Despite this potential synergy in these theoretical approaches, the free-radical theory has grown in stature while the rate of living theory has fallen into disrepute. This is primarily because comparisons made across classes (for example, between birds and mammals) do not conform to the expectations, and even within classes there is substantial interspecific variability in the mass-specific expenditure of energy per lifespan. Using interspecific data to test the rate of living hypothesis is, however, confused by several major problems. For example, appeals that the resultant lifetime expenditure of energy per gram of tissue is 'too variable' depend on the biological significance rather than the statistical significance of the variation observed. Moreover, maximum

  6. Extension of Drosophila lifespan by cinnamon through a sex-specific dependence on the insulin receptor substrate chico.

    PubMed

    Schriner, Samuel E; Kuramada, Steven; Lopez, Terry E; Truong, Stephanie; Pham, Andrew; Jafari, Mahtab

    2014-12-01

    Cinnamon is a spice commonly used worldwide to flavor desserts, fruits, cereals, breads, and meats. Numerous health benefits have been attributed to its consumption, including the recent suggestion that it may decrease blood glucose levels in people with diabetes. Insulin signaling is an integral pathway regulating the lifespan of laboratory organisms, such as worms, flies, and mice. We posited that if cinnamon truly improved the clinical signs of diabetes in people that it would also act on insulin signaling in laboratory organisms and increase lifespan. We found that cinnamon did extend lifespan in the fruit fly, Drosophila melanogaster. However, it had no effect on the expression levels of the 3 aging-related Drosophila insulin-like peptides nor did it alter sugar, fat, or soluble protein levels, as would be predicted. In addition, cinnamon exhibited no protective effects in males against oxidative challenges. However, in females it did confer a protective effect against paraquat, but sensitized them to iron. Cinnamon provided no protective effect against desiccation and starvation in females, but sensitized males to both. Interestingly, cinnamon protected both sexes against cold, sensitized both to heat, and elevated HSP70 expression levels. We also found that cinnamon required the insulin receptor substrate to extend lifespan in males, but not females. We conclude that cinnamon does not extend lifespan by improving stress tolerance in general, though it does act, at least in part, through insulin signaling.

  7. Effects of phenytoin and lamotrigine treatment on serum BDNF levels in offsprings of epileptic rats.

    PubMed

    Soysal, Handan; Doğan, Zümrüt; Kamışlı, Özden

    2016-04-01

    The role of brain-derived neurotrophic factor (BDNF) is to promote and modulate neuronal responses across neurotransmitter systems in the brain. Therefore, abnormal BDNF signaling may be associated with the pathophysiology of schizophrenia. Low BDNF levels have been reported in brains and serums of patients with psychotic disorders. In the present study, we investigated the effects of antiepileptic drugs on BDNF in developing rats. Pregnant rats were treated with phenytoin (PHT), lamotrigine (LTG) and folic acid for long-term, all through their gestational periods. Experimental epilepsy (EE) model was applied in pregnant rats. Epileptic seizures were determined with electroencephalography. After birth, serum BDNF levels were measured in 136 newborn rats on postnatal day (PND) 21 and postnatal day 38. In postnatal day 21, serum BDNF levels of experimental epilepsy group were significantly lower compared with PHT group. This decrease is statistically significant. Serum BDNF levels increased in the group LTG. This increase compared with LTG+EE group was statistically significant. In the folic acid (FA) group, levels of serum BDNF decreased statistically significantly compared to the PHT group. On postnatal day 38, no significant differences were found among the groups for serum BDNF levels. We concluded that, the passed seizures during pregnancy adversely affect fetal brain development, lowering of serum BDNF levels. PHT use during pregnancy prevents seizure-induced injury by increasing the levels of BDNF. About the increase level of BDNF, LTG is much less effective than PHT, the positive effect of folic acid on serum BDNF levels was not observed. LTG increase in BDNF is much less effective than PHT, folic acid did not show a positive effect on serum BDNF levels. Epilepsy affects fetal brain development during gestation in pregnant rats, therefore anti-epileptic therapy should be continued during pregnancy. PMID:26706181

  8. Carbamazepine, but not valproate, displays pharmacoresistance in lamotrigine-resistant amygdala kindled rats.

    PubMed

    Srivastava, Ajay K; White, H Steve

    2013-03-01

    The voltage gated sodium channel (VGSC) blocker lamotrigine (LTG), when administered during kindling acquisition, leads to the development of resistance to LTG. The present study aimed to assess whether LTG-resistant amygdala-kindled rats display subsequent resistance to the VGSC blocker carbamazepine (CBZ) and the broad-spectrum antiepileptic drug (AED) sodium valproate (VPA). Two groups of male Sprague Dawley rats received either 0.5% methylcellulose (MC) or LTG (5mg/kg, i.p.) 1h before each amygdala kindling stimulation. Treatments were stopped once both the groups were fully kindled. Two days later, both groups were challenged with a higher dose of LTG (15mg/kg, i.p.) to verify LTG-resistance in the experimental group (i.e., LTG-pretreated rats). The efficacy of CBZ and VPA was then evaluated in both groups. A higher dose of LTG blocked fully kindled seizures in the vehicle-treated rats but not seizures in the LTG-treated group. The mean seizure score, of the control group (1.2±0.3) was significantly lower (P<.05) than that of the LTG-treated population (3.5±0.7; n=8). A lower percent of the population in the control group was observed to display a generalized stage 4-5 seizure compared to the experimental group (i.e., those that received LTG during kindling acquisition) (28.5% vs. 62%, respectively). Interestingly, CBZ (10, 20, and 40mg/kg) displayed a dose-dependent anticonvulsant effect in the vehicle-kindled group, but was less effective in LTG-treated animals. In contrast, VPA (300mg/kg) effectively blocked the behavioral seizure and decreased the afterdischarge duration (ADD) in both vehicle and LTG groups. These findings suggest that the LTG-resistant, amygdala-kindled rat may represent a novel model of pharmacoresistant epilepsy.

  9. Carbamazepine, But Not Valproate, Displays Pharmacoresistance In Lamotrigine-Resistant Amygdala Kindled Rats

    PubMed Central

    Srivastava, Ajay K.; White, H. Steve

    2013-01-01

    The voltage gated sodium channel (VGSC) blocker lamotrigine (LTG), when administered during kindling acquisition, leads to the development of resistance to LTG. The present study aimed to assess whether LTG-resistant amygdala-kindled rats display subsequent resistance to the VGSC blocker carbamazepine (CBZ) and the broad-spectrum antiepileptic drug (AED) sodium valproate (VPA). Two groups of male Sprague Dawley rats received either 0.5% methylcellulose (MC) or LTG (5mg/kg, i.p.) one hour before each amygdala kindling stimulation. Treatments were stopped once both the groups were fully kindled. Two days later, both groups were challenged with a higher dose of LTG (15 mg/kg, i.p.) to verify LTG-resistance in the experimental group (i.e., LTG-pretreated rats). The efficacy of CBZ and VPA was then evaluated in both groups. A higher dose of LTG blocked fully kindled seizures in the vehicle-treated rats but not seizures in the LTG-treated group. The mean seizure score, of the control group (1.2 ± 0.3) was significantly lower (p <.05) than that of the LTG-treated population (3.5±0.7; n=8). A lower percent of the population in the control group was observed to display a generalized stage 4-5 seizure compared to the experimental group (i.e., those that received LTG during kindling acquisition) (28.5% vs 62% respectively). Interestingly, CBZ (10, 20, and 40 mg/kg) displayed a dose-dependent anticonvulsant effect in the vehicle-kindled group, but was less effective in LTG-treated animals. In contrast, VPA (300 mg/kg) effectively blocked the behavioral seizure and decreased the afterdischarge duration (ADD) in both vehicle and LTG groups. These findings suggest that the LTG-resistant, amygdala-kindled rat may represent a novel model of pharmacoresistant epilepsy. PMID:23158096

  10. Ontogenetic patterns in the dreams of women across the lifespan.

    PubMed

    Dale, Allyson; Lortie-Lussier, Monique; De Koninck, Joseph

    2015-12-01

    The present study supports and extends previous research on the developmental differences in women's dreams across the lifespan. The participants included 75 Canadian women in each of 5 age groups from adolescence to old age including 12-17, 18-24, 25-39, 40-64, and 65-85, totaling 375 women. One dream per participant was scored by two independent judges using the method of content analysis. Trend analysis was used to determine the ontogenetic pattern of the dream content categories. Results demonstrated significant ontogenetic decreases (linear trends) for female and familiar characters, activities, aggression, and friendliness. These patterns of dream imagery reflect the waking developmental patterns as proposed by social theories and recognized features of aging as postulated by the continuity hypothesis. Limitations and suggestions for future research including the examining of developmental patterns in the dreams of males are discussed.

  11. Ontogenetic patterns in the dreams of women across the lifespan.

    PubMed

    Dale, Allyson; Lortie-Lussier, Monique; De Koninck, Joseph

    2015-12-01

    The present study supports and extends previous research on the developmental differences in women's dreams across the lifespan. The participants included 75 Canadian women in each of 5 age groups from adolescence to old age including 12-17, 18-24, 25-39, 40-64, and 65-85, totaling 375 women. One dream per participant was scored by two independent judges using the method of content analysis. Trend analysis was used to determine the ontogenetic pattern of the dream content categories. Results demonstrated significant ontogenetic decreases (linear trends) for female and familiar characters, activities, aggression, and friendliness. These patterns of dream imagery reflect the waking developmental patterns as proposed by social theories and recognized features of aging as postulated by the continuity hypothesis. Limitations and suggestions for future research including the examining of developmental patterns in the dreams of males are discussed. PMID:26433930

  12. Vitellogenin family gene expression does not increase Drosophila lifespan or fecundity.

    PubMed

    Ren, Yingxue; Hughes, Kimberly A

    2014-01-01

    One of the most striking patterns in comparative biology is the negative correlation between lifespan and fecundity observed in comparisons among species. This pattern is consistent with the idea that organisms need to allocate a fixed energy budget among competing demands of growth, development, reproduction and somatic maintenance. However, exceptions to this pattern have been observed in many social insects, including ants, bees, and termites.  In honey bees ( Apis mellifera), Vitellogenin ( Vg), a yolk protein precursor, has been implicated in mediating the long lifespan and high fecundity of queen bees. To determine if Vg-like proteins can regulate lifespan in insects generally, we examined the effects of expression of Apis Vg and Drosophila CG31150 (a Vg-like gene recently identified as cv-d) on Drosophila melanogaster lifespan and fecundity using the RU486-inducible GeneSwitch system. For all genotypes tested, overexpression of Vg and CG31150 decreased Drosophila lifespan and did not affect total or age-specific fecundity. We also detected an apparent effect of the GeneSwitch system itself, wherein RU486 exposure (or the GAL4 expression it induces) led to a significant increase in longevity and decrease in fecundity in our fly strains. This result is consistent with the pattern reported in a recent meta-analysis of Drosophila aging studies, where transgenic constructs of the UAS/GAL4 expression system that should have no effect (e.g. an uninduced GeneSwitch) significantly extended lifespan in some genetic backgrounds. Our results suggest that Vg-family genes are not major regulators of Drosophila life history traits, and highlight the importance of using appropriate controls in aging studies. PMID:25110583

  13. Dietary protein and lifespan across the metamorphic boundary: protein-restricted larvae develop into short-lived adults.

    PubMed

    Runagall-McNaull, A; Bonduriansky, R; Crean, A J

    2015-06-29

    Restriction of nutrients in the adult diet extends lifespan across a diverse range of species, but less is known about the long-term effects of developmental dietary restriction. In particular, it is not known whether adult lifespan is influenced by developmental caloric restriction or macronutrient balance. We used the nutritional geometry approach to independently manipulate protein and carbohydrate contents of the larval diet in the neriid fly, Telostylinus angusticollis, and measured adult lifespan. We found that adult male and female lifespan was shortest when larvae were fed a protein restricted diet. Thus, protein restriction in the larval diet has the opposite effect of protein restriction in the adult diet (which prolongs life in this species and across a wide range of taxa). Adult lifespan was unaffected by larval dietary carbohydrate. These patterns persisted after controlling for larval diet effects on adult body size. We propose that larval and adult protein sources are used for distinct metabolic tasks: during development, dietary protein is used to build a durable soma that enhances adult lifespan, although excessive protein consumption partially reverses this effect.

  14. Sex differences and stress across the lifespan

    PubMed Central

    Bale, Tracy L; Epperson, C Neill

    2015-01-01

    Sex differences in stress responses can be found at all stages of life and are related to both the organizational and activational effects of gonadal hormones and to genes on the sex chromosomes. As stress dysregulation is the most common feature across neuropsychiatric diseases, sex differences in how these pathways develop and mature may predict sex-specific periods of vulnerability to disruption and increased disease risk or resilience across the lifespan. The aging brain is also at risk to the effects of stress, where the rapid decline of gonadal hormones in women combined with cellular aging processes promote sex biases in stress dysregulation. In this Review, we discuss potential underlying mechanisms driving sex differences in stress responses and their relevance to disease. Although stress is involved in a much broader range of diseases than neuropsychiatric ones, we highlight here this area and its examples across the lifespan. PMID:26404716

  15. Cognition through the lifespan: mechanisms of change.

    PubMed

    Craik, Fergus I M; Bialystok, Ellen

    2006-03-01

    Cognitive abilities rise steeply from infancy to young adulthood and then are either maintained or decline to old age, depending on the specific ability. This pattern suggests corresponding continuities of mechanism and process, but it is striking that the fields of cognitive development and cognitive aging make little contact with each other's methods and theories. In this review we examine reasons for this cultural separation, and show how recent findings from both areas fit a framework couched in terms of cognitive representation and control. These two broad factors have very different lifespan trajectories; consideration of their relative growth and decline makes it clear that cognitive aging is not simply 'development in reverse'. This framework is offered in light of recent interest in finding greater continuity throughout the lifespan and creating a more comprehensive explanation of cognitive function and cognitive change.

  16. A Mitochondrial ATP synthase Subunit Interacts with TOR Signaling to Modulate Protein Homeostasis and Lifespan in Drosophila

    PubMed Central

    Sun, Xiaoping; Wheeler, Charles T.; Yolitz, Jason; Laslo, Mara; Alberico, Thomas; Sun, Yaning; Song, Qisheng; Zou, Sige

    2014-01-01

    SUMMARY Diet composition is a critical determinant of lifespan and nutrient imbalance is detrimental health. However, how nutrients interact with genetic factors to modulate lifespan remains elusive. We investigated how diet composition influences mitochondrial ATP synthase subunit d (ATPsyn-d) in modulating lifespan in Drosophila. ATPsyn-d knockdown extended lifespan in females fed low carbohydrate-to-protein (C:P) diets, but not the high C:P ratio diet. This extension was associated with increased resistance to oxidative stress, transcriptional changes in metabolism, proteostasis and immune genes, reduced protein damage and aggregation, and reduced phosphorylation of S6K and ERK in TOR and MAPK signaling, respectively. ATPsyn-d knockdown did not extend lifespan in females with reduced TOR signaling induced genetically by Tsc2 overexpression or pharmacologically by rapamycin. Our data reveal a link among diet, mitochondria, MAPK and TOR signaling in aging and stresses the importance of considering genetic background and diet composition in implementing interventions for promoting healthy aging. PMID:25220459

  17. Stress resistance and lifespan are increased in C. elegans but decreased in S. cerevisiae by mafr-1/maf1 deletion.

    PubMed

    Cai, Ying; Wei, Yue-Hua

    2016-03-01

    Maf1 is a conserved effector of the mechanistic target of rapamycin (mTOR), an aging promoting kinase. However, whether Maf1 is required for lifespan extension caused by mTOR inhibition, such as dietary restriction (DR) or calorie restriction (CR) remains elusive. Here we show that deletion of maf1 in the budding yeast S. cerevisiae but not mafr-1 in C. elegans prevents DR or CR to extend lifespan. Interestingly, mafr-1 deletion increases stress tolerance and extends lifespan. MAFR-1 is phosphorylated in a mTOR-dependent manner and mafr-1 deletion alleviates the inhibition of tRNA synthesis caused by reduced mTOR activity. We find that the opposite effect of mafr-1 deletion on lifespan is due to an enhancement of stress response, including oxidative stress response, mitochondrial unfolded protein response (UPRmt) and autophagy. mafr-1 deletion also attenuates the paralysis of a C. elegans model of Alzheimer's disease. Our study reveals distinct mechanisms of lifespan regulation by Maf1 and MAFR-1.

  18. Stress resistance and lifespan are increased in C. elegans but decreased in S. cerevisiae by mafr-1/maf1 deletion.

    PubMed

    Cai, Ying; Wei, Yue-Hua

    2016-03-01

    Maf1 is a conserved effector of the mechanistic target of rapamycin (mTOR), an aging promoting kinase. However, whether Maf1 is required for lifespan extension caused by mTOR inhibition, such as dietary restriction (DR) or calorie restriction (CR) remains elusive. Here we show that deletion of maf1 in the budding yeast S. cerevisiae but not mafr-1 in C. elegans prevents DR or CR to extend lifespan. Interestingly, mafr-1 deletion increases stress tolerance and extends lifespan. MAFR-1 is phosphorylated in a mTOR-dependent manner and mafr-1 deletion alleviates the inhibition of tRNA synthesis caused by reduced mTOR activity. We find that the opposite effect of mafr-1 deletion on lifespan is due to an enhancement of stress response, including oxidative stress response, mitochondrial unfolded protein response (UPRmt) and autophagy. mafr-1 deletion also attenuates the paralysis of a C. elegans model of Alzheimer's disease. Our study reveals distinct mechanisms of lifespan regulation by Maf1 and MAFR-1. PMID:26934328

  19. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster

    PubMed Central

    Wagner, Anika E.; Piegholdt, Stefanie; Rabe, Doerte; Baenas, Nieves; Schloesser, Anke; Eggersdorfer, Manfred; Stocker, Achim; Rimbach, Gerald

    2015-01-01

    In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies. PMID:26375250

  20. Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans.

    PubMed

    Zhang, Jiaolong; Lu, Lulu; Zhou, Lijun

    2015-12-25

    Oleanolic acid (OA) is an active ingredient in natural plants. It has been reported to possess a variety of pharmacological activities, but very little is known about its effects of anti-aging. We investigate here whether OA has an impact on longevity in vivo, and more specifically, we have examined effects of OA on the lifespan and stress tolerance in Caenorhabditis elegans (C. elegans). Our results showed that OA could extend the lifespan, increase its stress resistance and reduce the intracellular reactive oxygen species (ROS) in wild-type worms. Moreover, we have found that OA-induced longevity may not be associated with the calorie restriction (CR) mechanism. Our mechanistic studies using daf-16 loss-of-function mutant strains (GR1307) indicated that the extension of lifespan by OA requires daf-16. In addition, OA treatment could also modulate the nuclear localization, and the quantitative real-time PCR results revealed that up-regulation of daf-16 target genes such as sod-3, hsp-16.2 and ctl-1 could prolong lifespan and increase stress response in C. elegans. This study overall uncovers the longevity effect of OA and its underpinning mechanisms.

  1. Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans.

    PubMed

    Harrington, L A; Harley, C B

    1988-04-01

    Vitamin E extends the lifespan of many animals, including the nematode Caenorhabditis elegans. Our results confirm previous studies that 200 micrograms/ml vitamin E significantly prolonged C. elegans survival (17-23%, P less than 0.05) when added from hatching to day 3, while continuous exposure, either at hatching or from 4 days prior to hatching, had little additional effect. Treatment with 100 or 400 micrograms/ml vitamin E, or with other antioxidants (80 micrograms/ml vitamin C, either alone or in combination with vitamin E, or 120 micrograms/ml N,N'-diphenyl-1,4-diphenylenediamine (DPPD] did not significantly affect lifespan. All treatments with 200 micrograms/ml vitamin E moderately reduced fecundity (total progeny) and increased the mean day of reproduction. At 400 micrograms/ml, vitamin E had severe effects, while DPPD, vitamin C, and 100 micrograms/ml vitamin E had slight effects on both these parameters of reproduction. These data suggest that vitamin E increases lifespan in C. elegans in part by slowing development in the same manner that metabolic-depressant or mildly cytotoxic drugs increase lifespan, decrease fecundity, and delay the timing of reproduction.

  2. Growth hormone signaling is necessary for lifespan extension by dietary methionine.

    PubMed

    Brown-Borg, Holly M; Rakoczy, Sharlene G; Wonderlich, Joseph A; Rojanathammanee, Lalida; Kopchick, John J; Armstrong, Vanessa; Raasakka, Debbie

    2014-12-01

    Growth hormone significantly impacts lifespan in mammals. Mouse longevity is extended when growth hormone (GH) signaling is interrupted but markedly shortened with high-plasma hormone levels. Methionine metabolism is enhanced in growth hormone deficiency, for example, in the Ames dwarf, but suppressed in GH transgenic mice. Methionine intake affects also lifespan, and thus, GH mutant mice and respective wild-type littermates were fed 0.16%, 0.43%, or 1.3% methionine to evaluate the interaction between hormone status and methionine. All wild-type and GH transgenic mice lived longer when fed 0.16% methionine but not when fed higher levels. In contrast, animals without growth hormone signaling due to hormone deficiency or resistance did not respond to altered levels of methionine in terms of lifespan, body weight, or food consumption. Taken together, our results suggest that the presence of growth hormone is necessary to sense dietary methionine changes, thus strongly linking growth and lifespan to amino acid availability.

  3. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster.

    PubMed

    Wagner, Anika E; Piegholdt, Stefanie; Rabe, Doerte; Baenas, Nieves; Schloesser, Anke; Eggersdorfer, Manfred; Stocker, Achim; Rimbach, Gerald

    2015-10-13

    In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies.

  4. The novel dipeptide Tyr-Ala (TA) significantly enhances the lifespan and healthspan of Caenorhabditis elegans.

    PubMed

    Zhang, Z; Zhao, Y; Wang, X; Lin, R; Zhang, Y; Ma, H; Guo, Y; Xu, L; Zhao, B

    2016-04-01

    Food-derived bioactive peptides may have various physiological modulatory and regulatory functions and are now being studied extensively. Recently, the novel dipeptide Tyr-Ala was isolated from hydrolyzed maize protein. Tyr-Ala significantly prolonged the lifespan of wild-type Caenorhabditis elegans and extended the nematode healthspan and lifespan during heat/oxidative stress. Compared with its constituent amino acids, Tyr-Ala was more efficient in enhancing stress resistance. Further studies demonstrated that the significant longevity-extending effects of Tyr-Ala on Caenorhabditis elegans were attributed to its in vitro and in vivo free radical-scavenging effects, in addition to its ability to up-regulate stress resistance-related proteins, such as SOD (Superoxide Dismutase)-3 and HSP (Heat Shock Protein)-16.2. Real-time PCR results showed that the up-regulation of aging-associated genes, such as daf-16, sod-3, hsp-16.2 and skn-1, also contributed to the stress-resistance effect of Tyr-Ala. These results indicate that the novel dipeptide Tyr-Ala can protect against external stress and thus extend the lifespan and healthspan of Caenorhabditis elegans. Thereby, Tyr-Ala could be used as a potential medicine in anti-aging research. PMID:26987062

  5. A Life-Span, Relational, Public Health Model of Self-Regulation: Impact on Individual and Community Health

    ERIC Educational Resources Information Center

    Maniar, Swapnil; Zaff, Jonathan F.

    2011-01-01

    In this chapter, the authors extend the ideas around the development of self-regulation and its impact on development by proposing a life-span, relational, public health model. They propose that the role of self-regulation should be understood across transitions from childhood to adulthood and through an individual and community perspective,…

  6. Neurodevelopmental origins of lifespan changes in brain and cognition.

    PubMed

    Walhovd, Kristine B; Krogsrud, Stine K; Amlien, Inge K; Bartsch, Hauke; Bjørnerud, Atle; Due-Tønnessen, Paulina; Grydeland, Håkon; Hagler, Donald J; Håberg, Asta K; Kremen, William S; Ferschmann, Lia; Nyberg, Lars; Panizzon, Matthew S; Rohani, Darius A; Skranes, Jon; Storsve, Andreas B; Sølsnes, Anne Elisabeth; Tamnes, Christian K; Thompson, Wesley K; Reuter, Chase; Dale, Anders M; Fjell, Anders M

    2016-08-16

    Neurodevelopmental origins of functional variation in older age are increasingly being acknowledged, but identification of how early factors impact human brain and cognition throughout life has remained challenging. Much focus has been on age-specific mechanisms affecting neural foundations of cognition and their change. In contrast to this approach, we tested whether cerebral correlates of general cognitive ability (GCA) in development could be extended to the rest of the lifespan, and whether early factors traceable to prenatal stages, such as birth weight and parental education, may exert continuous influences. We measured the area of the cerebral cortex in a longitudinal sample of 974 individuals aged 4-88 y (1,633 observations). An extensive cortical region was identified wherein area related positively to GCA in development. By tracking area of the cortical region identified in the child sample throughout the lifespan, we showed that the cortical change trajectories of higher and lower GCA groups were parallel through life, suggesting continued influences of early life factors. Birth weight and parental education obtained from the Norwegian Mother-Child Cohort study were identified as such early factors of possible life-long influence. Support for a genetic component was obtained in a separate twin sample (Vietnam Era Twin Study of Aging), but birth weight in the child sample had an effect on cortical area also when controlling for possible genetic differences in terms of parental height. Our results provide novel evidence for stability in brain-cognition relationships throughout life, and indicate that early life factors impact brain and cognition for the entire life course. PMID:27432992

  7. Lifespan extension and cancer prevention in HER-2/neu transgenic mice treated with low intermittent doses of rapamycin

    PubMed Central

    Popovich, Irina G; Anisimov, Vladimir N; Zabezhinski, Mark A; Semenchenko, Anna V; Tyndyk, Margarita L; Yurova, Maria N; Blagosklonny, Mikhail V

    2014-01-01

    Target of Rapamycin (TOR) is involved in cellular and organismal aging. Rapamycin extends lifespan and delays cancer in mice. It is important to determine the minimum effective dose and frequency of its administration that still extends lifespan and prevents cancer. Previously we tested 1.5 mg/kg of rapamycin given subcutaneously 6 times per two weeks followed by a two-week break (1.5 × 6/bi-weekly schedule: total of 6 injections during a 4-week period). This intermittent treatment prolonged lifespan and delayed cancer in cancer-prone female FVB/N HER-2/neu mice. Here, the dose was decreased from 1.5 mg/kg to 0.45 mg/kg per injection. This treatment was started at the age of 2 months (group Rap-2), 4 months (Rap-4), and 5 months (Rap-5). Three control groups received the solvent from the same ages. Rapamycin significantly delayed cancer and decreased tumor burden in Rap-2 and Rap-5 groups, increased mean lifespan in Rap-4 and Rap-5 groups, and increased maximal lifespan in Rap-2 and Rap-5 groups. In Rap-4 group, mean lifespan extension was achieved without significant cancer prevention. The complex relationship between life-extension and cancer-prevention depends on both the direct effect of rapamycin on cancer cells and its anti-aging effect on the organism, which in turn prevents cancer indirectly. We conclude that total doses of rapamycin that are an order of magnitude lower than standard total doses can detectably extend life span in cancer-prone mice. PMID:24556924

  8. Maternal and Fetal Outcomes After Lamotrigine Use in Pregnancy: A Retrospective Analysis from an Urban Maternal Mental Health Centre in New Zealand

    PubMed Central

    Prakash, Chandni; Hatters-Friedman, Susan; Moller-Olsen, Charmian; North, Abigail

    2016-01-01

    Introduction Pregnancy is a vulnerable period for recurrence of bipolar disorder. Discontinuation of mood stabilisers during pregnancy and the postpartum period can significantly increase the risk of recurrence of bipolar disorder. Lamotrigine is an anti-epileptic drug that has been approved for the maintenance treatment of bipolar disorder. Epilepsy literature has indicated that lamotrigine has a reassuring safety profile in pregnancy but there is little information on its effectiveness and safety in pregnant women with mental disorders. Method We conducted a retrospective review of all pregnant women who presented to an urban maternal mental health centre in Auckland, New Zealand between 2012 and 2014 and were treated with antipsychotics and/or mood stabilisers. Pregnancy outcome, obstetric and perinatal complications, congenital malformations and maternal mental health in the postnatal period were considered. Results Here, we present the outcomes in the subset of six women who were treated with lamotrigine 100–400 mg/day for the entire pregnancy. Five were diagnosed with bipolar disorder and one with major depression. Three women received additional psychotropic medication during pregnancy. No women needed psychiatric hospitalisation. All babies were live birth after 36 weeks gestation. Two babies had low birth weight and required NICU admissions. Two women required lower segment caesarean section and the other 4 were induced. A trachea-esophageal fistula was noted in one baby. Four babies who were breastfed while their mothers received uninterrupted treatment with lamotrigine, experienced no complications. Discussion This naturalistic study indicates that lamotrigine can be an effective treatment option for maintenance of bipolar illness in women of childbearing age.

  9. Genotype-dependent lifespan effects in peptone deprived Caenorhabditis elegans.

    PubMed

    Stastna, Jana J; Snoek, L Basten; Kammenga, Jan E; Harvey, Simon C

    2015-11-05

    Dietary restriction appears to act as a general non-genetic mechanism that can robustly prolong lifespan. There have however been reports in many systems of cases where restricted food intake either shortens, or does not affect, lifespan. Here we analyze lifespan and the effect of food restriction via deprived peptone levels on lifespan in wild isolates and introgression lines (ILs) of the nematode Caenorhabditis elegans. These analyses identify genetic variation in lifespan, in the effect of this variation in diet on lifespan and also in the likelihood of maternal, matricidal, hatching. Importantly, in the wild isolates and the ILs, we identify genotypes in which peptone deprivation mediated dietary restriction reduces lifespan. We also identify, in recombinant inbred lines, a locus that affects maternal hatching, a phenotype closely linked to dietary restriction in C. elegans. These results indicate that peptone deprivation mediated dietary restriction affects lifespan in C. elegans in a genotype-dependent manner, reducing lifespan in some genotypes. This may operate by a mechanism similar to dietary restriction.

  10. Genotype-dependent lifespan effects in peptone deprived Caenorhabditis elegans

    PubMed Central

    Stastna, Jana J.; Snoek, L. Basten; Kammenga, Jan E.; Harvey, Simon C.

    2015-01-01

    Dietary restriction appears to act as a general non-genetic mechanism that can robustly prolong lifespan. There have however been reports in many systems of cases where restricted food intake either shortens, or does not affect, lifespan. Here we analyze lifespan and the effect of food restriction via deprived peptone levels on lifespan in wild isolates and introgression lines (ILs) of the nematode Caenorhabditis elegans. These analyses identify genetic variation in lifespan, in the effect of this variation in diet on lifespan and also in the likelihood of maternal, matricidal, hatching. Importantly, in the wild isolates and the ILs, we identify genotypes in which peptone deprivation mediated dietary restriction reduces lifespan. We also identify, in recombinant inbred lines, a locus that affects maternal hatching, a phenotype closely linked to dietary restriction in C. elegans. These results indicate that peptone deprivation mediated dietary restriction affects lifespan in C. elegans in a genotype-dependent manner, reducing lifespan in some genotypes. This may operate by a mechanism similar to dietary restriction. PMID:26539794

  11. A Novel Physiology-Based Mathematical Model to Estimate Red Blood Cell Lifespan in Different Human Age Groups.

    PubMed

    An, Guohua; Widness, John A; Mock, Donald M; Veng-Pedersen, Peter

    2016-09-01

    Direct measurement of red blood cell (RBC) survival in humans has improved from the original accurate but limited differential agglutination technique to the current reliable, safe, and accurate biotin method. Despite this, all of these methods are time consuming and require blood sampling over several months to determine the RBC lifespan. For situations in which RBC survival information must be obtained quickly, these methods are not suitable. With the exception of adults and infants, RBC survival has not been extensively investigated in other age groups. To address this need, we developed a novel, physiology-based mathematical model that quickly estimates RBC lifespan in healthy individuals at any age. The model is based on the assumption that the total number of RBC recirculations during the lifespan of each RBC (denoted by N max) is relatively constant for all age groups. The model was initially validated using the data from our prior infant and adult biotin-labeled red blood cell studies and then extended to the other age groups. The model generated the following estimated RBC lifespans in 2-year-old, 5-year-old, 8-year-old, and 10-year-old children: 62, 74, 82, and 86 days, respectively. We speculate that this model has useful clinical applications. For example, HbA1c testing is not reliable in identifying children with diabetes because HbA1c is directly affected by RBC lifespan. Because our model can estimate RBC lifespan in children at any age, corrections to HbA1c values based on the model-generated RBC lifespan could improve diabetes diagnosis as well as therapy in children.

  12. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span.

    PubMed

    Kumar, Sandeep; Dietrich, Nicholas; Kornfeld, Kerry

    2016-02-01

    Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabditis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new

  13. Advances in asthma 2015: Across the lifespan.

    PubMed

    Liu, Andrew H; Anderson, William C; Dutmer, Cullen M; Searing, Daniel A; Szefler, Stanley J

    2016-08-01

    In 2015, progress in understanding asthma ranged from insights to asthma inception, exacerbations, and severity to advancements that will improve disease management throughout the lifespan. 2015's insights to asthma inception included how the intestinal microbiome affects asthma expression with the identification of specific gastrointestinal bacterial taxa in early infancy associated with less asthma risk, possibly by promoting regulatory immune development at a critical early age. The relevance of epigenetic mechanisms in regulating asthma-related gene expression was strengthened. Predicting and preventing exacerbations throughout life might help to reduce progressive lung function decrease and disease severity in adulthood. Although allergy has long been linked to asthma exacerbations, a mechanism through which IgE impairs rhinovirus immunity and underlies asthma exacerbations was demonstrated and improved by anti-IgE therapy (omalizumab). Other key molecular pathways underlying asthma exacerbations, such as cadherin-related family member 3 (CDHR3) and orosomucoid like 3 (ORMDL3), were elucidated. New anti-IL-5 therapeutics, mepolizumab and reslizumab, were US Food and Drug Administration approved for the treatment of patients with severe eosinophilic asthma. In a clinical trial the novel therapeutic inhaled GATA3 mRNA-specific DNAzyme attenuated early- and late-phase allergic responses to inhaled allergen. These current findings are significant steps toward addressing unmet needs in asthma prevention, severity modification, disparities, and lifespan outcomes. PMID:27497278

  14. Turner Syndrome: Four Challenges Across the Lifespan

    PubMed Central

    Sutton, Erica J; McInerney-Leo, Aideen; Bondy, Carolyn A; Gollust, Sarah E; King, Donnice; Biesecker, Barbara

    2008-01-01

    Turner syndrome (TS) is a sex chromosome condition that occurs in approximately 1/2500 live female births. Despite the prevalence of this chromosomal condition, the challenges these women face throughout their lives are not fully understood. This qualitative research study aimed to characterize the subjective experiences of individuals with Turner syndrome throughout their lifespan, to investigate their concerns and obstacles, and to offer insight into the strengths and weaknesses of health care delivery, as they perceived them. Ninety-seven girls and women with TS and 21 parents consented to participate in this interview study. Interviews were semi-structured and open-ended in design. Questions sought to elicit responses relating to existing concerns associated with their condition and positive and negative health care experiences. Participants were divided into four age categories (childhood, adolescence, adulthood, and mature adulthood) to facilitate a comparative analysis across the age spectrum. Regardless of age, infertility was the most frequently cited concern followed closely by short stature. Sexual development and function and general health were also viewed as challenges by a number of participants in each age group. Although the relative weight of these four concerns tended to shift based upon the individual’s age and life experiences, all four issues remained significant throughout the lifespan. Enhanced awareness of the evolving physical and psychological challenges faced by girls and women with TS may help health care providers improve the quality of life for these individuals. PMID:16252273

  15. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan

    PubMed Central

    Baker, Darren J.; Childs, Bennett G.; Durik, Matej; Wijers, Melinde E.; Sieben, Cynthia J.; Zhong, Jian; Saltness, Rachel; Jeganathan, Karthik B.; Versoza, Grace C.; Pezeshki, Abdul-Mohammad; Khazaie, Khashayarsha; Miller, Jordan D.; van Deursen, Jan M.

    2016-01-01

    Cellular senescence, a stress-induced irreversible growth arrest often characterized by p16Ink4a expression and a distinctive secretory phenotype, prevents the proliferation of preneoplastic cells and has beneficial roles in tissue remodelling during embryogenesis and wound healing. Senescent cells accumulate in various tissues and organs over time and have been speculated to play a role in aging. To explore the physiological relevance and consequences of naturally occurring senescent cells, we used a previously established transgene, INK-ATTAC, to induce apoptosis in p16Ink4a-expressing cells of wild-type mice by injection of AP20187 twice a week starting at one year of age. Here we show that compared to vehicle alone, AP20187 treatment extended median lifespan in both male and female mice of two distinct genetic backgrounds. Clearance of p16Ink4a-positive cells delayed tumorigenesis and attenuated age-related deterioration of several organs without apparent side effects, including kidney, heart and fat, where clearance preserved the functionality of glomeruli, cardio-protective KATP channels, and adipocytes, respectively. Thus, p16Ink4a-positive cells that accumulate during adulthood negatively influence lifespan and promote age-dependent changes in multiple organs, and their therapeutic removal may be an attractive approach to extend healthy lifespan. PMID:26840489

  16. [Microdevice for the investigation of high-glucose induced lifespan and the protective effect of polydatin in C. elegans].

    PubMed

    Zhu, Guoli; Yin, Fangchao; Wang, Li; Zhang, Min; Jiang, Lei; Qin, Jianhua

    2016-02-01

    Caenorhabditis elegans (C. elegans) has been widely used as a model organism for biomedical research due to its sufficient homology with human at molecular or genomic level. In this work, we describe a microfluidic device not only to investigate the response of C. elegans including lifespan and oxidative stress, but also to evaluate the protective effect of polydatin induced by high-glucose condition. It was found that the mean lifespan of worms was significantly reduced and the oxidative stress protein GST-4 was increased in worms that are subjected to high glucose. However, a certain dose of polydatin could weaken the increased oxidative stress induced by high-glucose and extend the lifespan, indicating the protective effect of polydatin against the toxic of high-glucose. The established approach is simple to operate, easy for realtime imaging and multiparatemer evaluations in parallel, providing a potential platform for drug evaluation/screening in a high throughput format at single animal resolution. PMID:27382717

  17. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction

    PubMed Central

    Miller, Richard A; Harrison, David E; Astle, Clinton M; Fernandez, Elizabeth; Flurkey, Kevin; Han, Melissa; Javors, Martin A; Li, Xinna; Nadon, Nancy L; Nelson, James F; Pletcher, Scott; Salmon, Adam B; Sharp, Zelton Dave; Van Roekel, Sabrina; Winkleman, Lynn; Strong, Randy

    2014-01-01

    Rapamycin, an inhibitor of mTOR kinase, increased median lifespan of genetically heterogeneous mice by 23% (males) to 26% (females) when tested at a dose threefold higher than that used in our previous studies; maximal longevity was also increased in both sexes. Rapamycin increased lifespan more in females than in males at each dose evaluated, perhaps reflecting sexual dimorphism in blood levels of this drug. Some of the endocrine and metabolic changes seen in diet-restricted mice are not seen in mice exposed to rapamycin, and the pattern of expression of hepatic genes involved in xenobiotic metabolism is also quite distinct in rapamycin-treated and diet-restricted mice, suggesting that these two interventions for extending mouse lifespan differ in many respects. PMID:24341993

  18. Extending the viability of acute brain slices

    PubMed Central

    Buskila, Yossi; Breen, Paul P.; Tapson, Jonathan; van Schaik, André; Barton, Matthew; Morley, John W.

    2014-01-01

    The lifespan of an acute brain slice is approximately 6–12 hours, limiting potential experimentation time. We have designed a new recovery incubation system capable of extending their lifespan to more than 36 hours. This system controls the temperature of the incubated artificial cerebral spinal fluid (aCSF) while continuously passing the fluid through a UVC filtration system and simultaneously monitoring temperature and pH. The combination of controlled temperature and UVC filtering maintains bacteria levels in the lag phase and leads to the dramatic extension of the brain slice lifespan. Brain slice viability was validated through electrophysiological recordings as well as live/dead cell assays. This system benefits researchers by monitoring incubation conditions and standardizing this artificial environment. It further provides viable tissue for two experimental days, reducing the time spent preparing brain slices and the number of animals required for research. PMID:24930889

  19. [Sense and sensibility: bipolar affective disorder as a battlefield of cognitions and emotions--lamotrigine therapy as a peacekeeper].

    PubMed

    Kálmán, János; Kálmán, János

    2010-06-01

    The cortico-limbic dysregulation theory of bipolar affective disorder (BAD) is supported by ample of recent research evidences. This concept is based on the dysharmonic regulation of prefrontal and anterior limbic structures manifested in a strong interaction of cognitive and affective symptoms. The major aim of the present review is to characterize the BAD specific cognitive profile and to describe the cognitive syndrome of BAD during the natural course of the disorder, based on recent findings in neurobiology, neuropathology, neuroradiology, cognitive psychology and neurogenetics. The authors recommend that BAD-associated cognitive symptoms should always be considered during the recognition, follow up and treatment phases of the disorder. The importance of the cognitive syndrome is also emphasized from the aspects of outcome and existing therapeutic regimens of the disorder. The cognitive syndrome-associated perspective of BAD could therefore provide new approaches regarding the long-term management issues of patients. Evidence from recent clinical trials is also summarized regarding the interactions of existing BAD treatment options with cognitive symptoms of the disorder, since all of the recommended antipsychotics and antiepileptics have a certain degree of cognitive toxicity. Based on the overview of the existing clinical trials, it was concluded that lamotrigine has the smallest cognitive toxicity among the mood stabilizers used for the treatment of BAD type-2. Therefore, as far as the cognitive toxicity profile is concerned, lamotrigine is recommended as the most promising therapeutic approach both for the treatment of bipolar depressive phases and relapse prevention. In addition, neuroprotective properties of the same molecule might also be beneficial regarding the proposed pathomechanism of BAD.

  20. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice.

    PubMed

    Bitto, Alessandro; Ito, Takashi K; Pineda, Victor V; LeTexier, Nicolas J; Huang, Heather Z; Sutlief, Elissa; Tung, Herman; Vizzini, Nicholas; Chen, Belle; Smith, Kaleb; Meza, Daniel; Yajima, Masanao; Beyer, Richard P; Kerr, Kathleen F; Davis, Daniel J; Gillespie, Catherine H; Snyder, Jessica M; Treuting, Piper M; Kaeberlein, Matt

    2016-01-01

    The FDA approved drug rapamycin increases lifespan in rodents and delays age-related dysfunction in rodents and humans. Nevertheless, important questions remain regarding the optimal dose, duration, and mechanisms of action in the context of healthy aging. Here we show that 3 months of rapamycin treatment is sufficient to increase life expectancy by up to 60% and improve measures of healthspan in middle-aged mice. This transient treatment is also associated with a remodeling of the microbiome, including dramatically increased prevalence of segmented filamentous bacteria in the small intestine. We also define a dose in female mice that does not extend lifespan, but is associated with a striking shift in cancer prevalence toward aggressive hematopoietic cancers and away from non-hematopoietic malignancies. These data suggest that a short-term rapamycin treatment late in life has persistent effects that can robustly delay aging, influence cancer prevalence, and modulate the microbiome. PMID:27549339

  1. Pomegranate Juice Enhances Healthy Lifespan in Drosophila melanogaster: An Exploratory Study.

    PubMed

    Balasubramani, Subramani Paranthaman; Mohan, Jayaram; Chatterjee, Arunita; Patnaik, Esha; Kukkupuni, Subrahmanya Kumar; Nongthomba, Upendra; Venkatasubramanian, Padmavathy

    2014-01-01

    Exploring innovative ways to ensure healthy aging of populations is a pre-requisite to contain rising healthcare costs. Scientific research into the principles and practices of traditional medicines can provide new insights and simple solutions to lead a healthy life. Rasayana is a dedicated branch of Ayurveda (an Indian medicine) that deals with methods to increase vitality and delay aging through the use of diet, herbal supplements, and other lifestyle practices. The life-span and health-span enhancing actions of the fruits of pomegranate (Punica granatum L.), a well-known Rasayana, were tested on Drosophila melanogaster (fruitfly) model. Supplementation of standard corn meal with 10% (v/v) pomegranate juice (PJ) extended the life-span of male and female flies by 18 and 8%, respectively. When male and female flies were mixed and reared together, there was 19% increase in the longevity of PJ fed flies, as assessed by MSD, the median survival day (24.8). MSD for control and resveratrol (RV) groups was at 20.8 and 23.1 days, respectively. A two-fold enhancement in fecundity, improved resistance to oxidative stress (H2O2 and paraquat induced) and to Candida albicans infection were observed in PJ fed flies. Further, the flies in the PJ fed group were physically active over an extended period of time, as assessed by the climbing assay. PJ thus outperformed both control and RV groups in the life-span and health-span parameters tested. This study provides the scope to explore the potential of PJ as a nutraceutical to improve health span and lifespan in human beings. PMID:25566518

  2. Pomegranate Juice Enhances Healthy Lifespan in Drosophila melanogaster: An Exploratory Study

    PubMed Central

    Balasubramani, Subramani Paranthaman; Mohan, Jayaram; Chatterjee, Arunita; Patnaik, Esha; Kukkupuni, Subrahmanya Kumar; Nongthomba, Upendra; Venkatasubramanian, Padmavathy

    2014-01-01

    Exploring innovative ways to ensure healthy aging of populations is a pre-requisite to contain rising healthcare costs. Scientific research into the principles and practices of traditional medicines can provide new insights and simple solutions to lead a healthy life. Rasayana is a dedicated branch of Ayurveda (an Indian medicine) that deals with methods to increase vitality and delay aging through the use of diet, herbal supplements, and other lifestyle practices. The life-span and health-span enhancing actions of the fruits of pomegranate (Punica granatum L.), a well-known Rasayana, were tested on Drosophila melanogaster (fruitfly) model. Supplementation of standard corn meal with 10% (v/v) pomegranate juice (PJ) extended the life-span of male and female flies by 18 and 8%, respectively. When male and female flies were mixed and reared together, there was 19% increase in the longevity of PJ fed flies, as assessed by MSD, the median survival day (24.8). MSD for control and resveratrol (RV) groups was at 20.8 and 23.1 days, respectively. A two-fold enhancement in fecundity, improved resistance to oxidative stress (H2O2 and paraquat induced) and to Candida albicans infection were observed in PJ fed flies. Further, the flies in the PJ fed group were physically active over an extended period of time, as assessed by the climbing assay. PJ thus outperformed both control and RV groups in the life-span and health-span parameters tested. This study provides the scope to explore the potential of PJ as a nutraceutical to improve health span and lifespan in human beings. PMID:25566518

  3. Pomegranate Juice Enhances Healthy Lifespan in Drosophila melanogaster: An Exploratory Study.

    PubMed

    Balasubramani, Subramani Paranthaman; Mohan, Jayaram; Chatterjee, Arunita; Patnaik, Esha; Kukkupuni, Subrahmanya Kumar; Nongthomba, Upendra; Venkatasubramanian, Padmavathy

    2014-01-01

    Exploring innovative ways to ensure healthy aging of populations is a pre-requisite to contain rising healthcare costs. Scientific research into the principles and practices of traditional medicines can provide new insights and simple solutions to lead a healthy life. Rasayana is a dedicated branch of Ayurveda (an Indian medicine) that deals with methods to increase vitality and delay aging through the use of diet, herbal supplements, and other lifestyle practices. The life-span and health-span enhancing actions of the fruits of pomegranate (Punica granatum L.), a well-known Rasayana, were tested on Drosophila melanogaster (fruitfly) model. Supplementation of standard corn meal with 10% (v/v) pomegranate juice (PJ) extended the life-span of male and female flies by 18 and 8%, respectively. When male and female flies were mixed and reared together, there was 19% increase in the longevity of PJ fed flies, as assessed by MSD, the median survival day (24.8). MSD for control and resveratrol (RV) groups was at 20.8 and 23.1 days, respectively. A two-fold enhancement in fecundity, improved resistance to oxidative stress (H2O2 and paraquat induced) and to Candida albicans infection were observed in PJ fed flies. Further, the flies in the PJ fed group were physically active over an extended period of time, as assessed by the climbing assay. PJ thus outperformed both control and RV groups in the life-span and health-span parameters tested. This study provides the scope to explore the potential of PJ as a nutraceutical to improve health span and lifespan in human beings.

  4. The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial

    PubMed Central

    Marson, Anthony G; Al-Kharusi, Asya M; Alwaidh, Muna; Appleton, Richard; Baker, Gus A; Chadwick, David W; Cramp, Celia; Cockerell, Oliver C; Cooper, Paul N; Doughty, Julie; Eaton, Barbara; Gamble, Carrol; Goulding, Peter J; Howell, Stephen J L; Hughes, Adrian; Jackson, Margaret; Jacoby, Ann; Kellett, Mark; Lawson, Geoffrey R; Leach, John Paul; Nicolaides, Paola; Roberts, Richard; Shackley, Phil; Shen, Jing; Smith, David F; Smith, Philip E M; Smith, Catrin Tudur; Vanoli, Alessandra; Williamson, Paula R

    2007-01-01

    Summary Background Carbamazepine is widely accepted as a drug of first choice for patients with partial onset seizures. Several newer drugs possess efficacy against these seizure types but previous randomised controlled trials have failed to inform a choice between these drugs. We aimed to assess efficacy with regards to longer-term outcomes, quality of life, and health economic outcomes. Methods SANAD was an unblinded randomised controlled trial in hospital-based outpatient clinics in the UK. Arm A recruited 1721 patients for whom carbamazepine was deemed to be standard treatment, and they were randomly assigned to receive carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate. Primary outcomes were time to treatment failure, and time to 12-months remission, and assessment was by both intention to treat and per protocol. This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN38354748. Findings For time to treatment failure, lamotrigine was significantly better than carbamazepine (hazard ratio [HR] 0·78 [95% CI 0·63–0·97]), gabapentin (0·65 [0·52–0·80]), and topiramate (0·64 [0·52–0·79]), and had a non-significant advantage compared with oxcarbazepine (1·15 [0·86–1·54]). For time to 12-month remission carbamazepine was significantly better than gabapentin (0·75 [0·63–0·90]), and estimates suggest a non-significant advantage for carbamazepine against lamotrigine (0·91 [0·77–1·09]), topiramate (0·86 [0·72–1·03]), and oxcarbazepine (0·92 [0·73–1·18]). In a per-protocol analysis, at 2 and 4 years the difference (95% CI) in the proportion achieving a 12-month remission (lamotrigine-carbamazepine) is 0 (−8 to 7) and 5 (−3 to 12), suggesting non-inferiority of lamotrigine compared with carbamazepine. Interpretation Lamotrigine is clinically better than carbamazepine, the standard drug treatment, for time to treatment failure outcomes and is therefore a cost

  5. A Motivational Theory of Life-Span Development

    ERIC Educational Resources Information Center

    Heckhausen, Jutta; Wrosch, Carsten; Schulz, Richard

    2010-01-01

    This article had four goals. First, the authors identified a set of general challenges and questions that a life-span theory of development should address. Second, they presented a comprehensive account of their Motivational Theory of Life-Span Development. They integrated the model of optimization in primary and secondary control and the…

  6. Minority Stress across the Career-Lifespan Trajectory

    ERIC Educational Resources Information Center

    Dispenza, Franco; Brown, Colton; Chastain, Taylor E.

    2016-01-01

    Sexual minority persons (e.g., lesbian, gay, bisexual, and queer) are likely to encounter "minority stress", such as discrimination, concealment, expectation of rejection, and internalized heterosexism. Minority stress occurs alongside one's lifespan and has considerable implications in the context of the career lifespan trajectory.…

  7. The Path to Competence: A Lifespan Developmental Perspective on Reading

    ERIC Educational Resources Information Center

    Alexander, Patricia A.

    2012-01-01

    The purpose of this document is to present a developmental model of reading that encompasses changes across the lifespan. The need for such a lifespan orientation toward reading within our educational institutions is great. Until we adopt this lifelong perspective, we continue to run the risk of turning out undeveloped, unmotivated, and uncritical…

  8. Incidental sequence learning across the lifespan.

    PubMed

    Weiermann, Brigitte; Meier, Beat

    2012-06-01

    The purpose of the present study was to investigate incidental sequence learning across the lifespan. We tested 50 children (aged 7-16), 50 young adults (aged 20-30), and 50 older adults (aged >65) with a sequence learning paradigm that involved both a task and a response sequence. After several blocks of practice, all age groups slowed down when the training sequences were removed, providing indirect evidence for sequence learning. This performance slowing was comparable between groups, indicating no age-related differences. However, when explicit sequence knowledge was considered, age effects were found. For both children and older adults with no or only little explicit knowledge, incidental sequence learning was largely reduced and statistically not significant. In contrast, young adults showed sequence learning irrespective of the amount of explicit knowledge. These results indicate that different learning processes are involved in incidental sequence learning depending on age.

  9. Mitochondrial and Cytoplasmic ROS Have Opposing Effects on Lifespan

    PubMed Central

    Schaar, Claire E.; Dues, Dylan J.; Spielbauer, Katie K.; Machiela, Emily; Cooper, Jason F.; Senchuk, Megan; Hekimi, Siegfried; Van Raamsdonk, Jeremy M.

    2015-01-01

    Reactive oxygen species (ROS) are highly reactive, oxygen-containing molecules that can cause molecular damage within the cell. While the accumulation of ROS-mediated damage is widely believed to be one of the main causes of aging, ROS also act in signaling pathways. Recent work has demonstrated that increasing levels of superoxide, one form of ROS, through treatment with paraquat, results in increased lifespan. Interestingly, treatment with paraquat robustly increases the already long lifespan of the clk-1 mitochondrial mutant, but not other long-lived mitochondrial mutants such as isp-1 or nuo-6. To genetically dissect the subcellular compartment in which elevated ROS act to increase lifespan, we deleted individual superoxide dismutase (sod) genes in clk-1 mutants, which are sensitized to ROS. We find that only deletion of the primary mitochondrial sod gene, sod-2 results in increased lifespan in clk-1 worms. In contrast, deletion of either of the two cytoplasmic sod genes, sod-1 or sod-5, significantly decreases the lifespan of clk-1 worms. Further, we show that increasing mitochondrial superoxide levels through deletion of sod-2 or treatment with paraquat can still increase lifespan in clk-1;sod-1 double mutants, which live shorter than clk-1 worms. The fact that mitochondrial superoxide can increase lifespan in worms with a detrimental level of cytoplasmic superoxide demonstrates that ROS have a compartment specific effect on lifespan – elevated ROS in the mitochondria acts to increase lifespan, while elevated ROS in the cytoplasm decreases lifespan. This work also suggests that both ROS-dependent and ROS-independent mechanisms contribute to the longevity of clk-1 worms. PMID:25671321

  10. Mitochondrial and cytoplasmic ROS have opposing effects on lifespan.

    PubMed

    Schaar, Claire E; Dues, Dylan J; Spielbauer, Katie K; Machiela, Emily; Cooper, Jason F; Senchuk, Megan; Hekimi, Siegfried; Van Raamsdonk, Jeremy M

    2015-02-01

    Reactive oxygen species (ROS) are highly reactive, oxygen-containing molecules that can cause molecular damage within the cell. While the accumulation of ROS-mediated damage is widely believed to be one of the main causes of aging, ROS also act in signaling pathways. Recent work has demonstrated that increasing levels of superoxide, one form of ROS, through treatment with paraquat, results in increased lifespan. Interestingly, treatment with paraquat robustly increases the already long lifespan of the clk-1 mitochondrial mutant, but not other long-lived mitochondrial mutants such as isp-1 or nuo-6. To genetically dissect the subcellular compartment in which elevated ROS act to increase lifespan, we deleted individual superoxide dismutase (sod) genes in clk-1 mutants, which are sensitized to ROS. We find that only deletion of the primary mitochondrial sod gene, sod-2 results in increased lifespan in clk-1 worms. In contrast, deletion of either of the two cytoplasmic sod genes, sod-1 or sod-5, significantly decreases the lifespan of clk-1 worms. Further, we show that increasing mitochondrial superoxide levels through deletion of sod-2 or treatment with paraquat can still increase lifespan in clk-1;sod-1 double mutants, which live shorter than clk-1 worms. The fact that mitochondrial superoxide can increase lifespan in worms with a detrimental level of cytoplasmic superoxide demonstrates that ROS have a compartment specific effect on lifespan - elevated ROS in the mitochondria acts to increase lifespan, while elevated ROS in the cytoplasm decreases lifespan. This work also suggests that both ROS-dependent and ROS-independent mechanisms contribute to the longevity of clk-1 worms.

  11. Effect of dose on the frequency of major birth defects following fetal exposure to lamotrigine monotherapy in an international observational study.

    PubMed

    Cunnington, Marianne; Ferber, Sandy; Quartey, George

    2007-06-01

    Data from the International Lamotrigine Pregnancy Registry were analyzed to examine the effect of maximal first-trimester maternal dose of lamotrigine monotherapy on the risk of major birth defects (MBDs). Among 802 exposures, the frequency of MBDs was 2.7% (95% confidence interval [CI] 1.8-4.2%). The distribution of dose did not differ between infants with and those without MBDs (mean 248.3 milligrams per day [mg/day] and 278.9 mg/day, respectively, median 200 mg/day for both groups). A logistic regression analysis showed no difference in the risk of MBDs as a continuous function of dose (summary odds ratio [OR] per 100 mg increase =0.999, 95% CI 0.996-1.001). There was also no effect of dose, up to 400 mg/day, on the frequency of MBDs. PMID:17381445

  12. The Brain Metabolome of Male Rats across the Lifespan

    PubMed Central

    Zheng, Xiaojiao; Chen, Tianlu; Zhao, Aihua; Wang, Xiaoyan; Xie, Guoxiang; Huang, Fengjie; Liu, Jiajian; Zhao, Qing; Wang, Shouli; Wang, Chongchong; Zhou, Mingmei; Panee, Jun; He, Zhigang; Jia, Wei

    2016-01-01

    Comprehensive and accurate characterization of brain metabolome is fundamental to brain science, but has been hindered by technical limitations. We profiled the brain metabolome in male Wistar rats at different ages (day 1 to week 111) using high-sensitivity and high-resolution mass spectrometry. Totally 380 metabolites were identified and 232 of them were quantitated. Compared with anatomical regions, age had a greater effect on variations in the brain metabolome. Lipids, fatty acids and amino acids accounted for the largest proportions of the brain metabolome, and their concentrations varied across the lifespan. The levels of polyunsaturated fatty acids were higher in infancy (week 1 to week 3) compared with later ages, and the ratio of omega-6 to omega-3 fatty acids increased in the aged brain (week 56 to week 111). Importantly, a panel of 20 bile acids were quantitatively measured, most of which have not previously been documented in the brain metabolome. This study extends the breadth of the mammalian brain metabolome as well as our knowledge of functional brain development, both of which are critically important to move the brain science forward. PMID:27063670

  13. Effects of mutagens on the clonal lifespan of Paramecium tetraurelia.

    PubMed

    Fukushima, S; Ogawa, H; Sasagawa, S

    1992-01-01

    There has been interest in the phenomenon that a cell cannot undergo unlimited reproduction under adequate conditions and undergoes senescence. In holotrichous ciliates, Paramecium has a limit of vegetative reproduction without sexual reproduction but Tetrahymena does not always have a limited lifespan. Comparing the two species would increase our knowledge of the mechanism of cellular clonal aging. We previously showed that mutations induced by X-rays shorten clonal lifespan. In this study, we examined whether mutagens shorten the clonal lifespan of Paramecium tetraurelia. P. tetraurelia was exposed to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), 0.045 mg/ml, for 30 min. The animal was exposed to MNNG 6 times in total while young (under 80 divisions from the start of a clonal life cycle) or 4 times during the senescent stage. MNNG shortened the clonal lifespan as expressed by the decrease in fission number from 186 +/- 55 (4 cell lines) to 136 +/- 21 (6 cell lines) with the first two treatments but with further exposures the lifespan increased to 182 +/- 15 (5 cell lines). MNNG had no effect when administered at the older age. Exposure of P. tetraurelia to 4-nitroquinoline-N-oxide at 0.021 mg/ml twice for 12 and 15 min at the younger age reduced the mean clonal lifespan from 143 +/- 28 to 125 +/- 21 and the maximum lifespan from 263 +/- 33 to 175 +/- 25. PMID:1372686

  14. Analysis of lifespan-promoting effect of garlic extract by an integrated metabolo-proteomics approach.

    PubMed

    Huang, Chun-Hao; Hsu, Fang-Yu; Wu, Yuan-Heng; Zhong, Linda; Tseng, Mu-Yun; Kuo, Chao-Jen; Hsu, Ao-Lin; Liang, Shih-Shin; Chiou, Shyh-Horng

    2015-08-01

    The beneficial effects of garlic (Allium sativum) consumption in treating human diseases have been reported worldwide over a long period of human history. The strong antioxidant effect of garlic extract (GE) has also recently been claimed to prevent cancer, thrombus formation, cardiovascular disease and some age-related maladies. Using Caenorhabditis elegans as a model organism, aqueous GE was herein shown to increase the expression of longevity-related FOXO transcription factor daf-16 and extend lifespan by 20%. By employing microarray and proteomics analysis on C. elegans treated with aqueous GE, we have systematically mapped 229 genes and 46 proteins with differential expression profiles, which included many metabolic enzymes and yolky egg vitellogenins. To investigate the garlic components functionally involved in longevity, an integrated metabolo-proteomics approach was employed to identify metabolites and protein components associated with treatment of aqueous GE. Among potential lifespan-promoting substances, mannose-binding lectin and N-acetylcysteine were found to increase daf-16 expression. Our study points to the fact that the lifespan-promoting effect of aqueous GE may entail the DAF-16-mediated signaling pathway. The result also highlights the utility of metabolo-proteomics for unraveling the complexity and intricacy involved in the metabolism of natural products in vivo. PMID:25940980

  15. Bicarbonate-sensitive calcification and lifespan of klotho-deficient mice.

    PubMed

    Leibrock, Christina B; Voelkl, Jakob; Kohlhofer, Ursula; Quintanilla-Martinez, Leticia; Kuro-O, Makoto; Lang, Florian

    2016-01-01

    Klotho, a protein counteracting aging, is a powerful inhibitor of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] formation and regulator of mineral metabolism. In klotho hypomorphic (kl/kl) mice, excessive 1,25(OH)2D3 formation leads to hypercalcemia, hyperphosphatemia and vascular calcification, severe growth deficits, accelerated aging and early death. Kl/kl mice further suffer from extracellular volume depletion and hypotension, leading to the stimulation of antidiuretic hormone and aldosterone release. A vitamin D-deficient diet, restriction of dietary phosphate, inhibition of mineralocorticoid receptors with spironolactone, and dietary NaCl all extend the lifespan of kl/kl mice. Kl/kl mice suffer from acidosis. The present study explored whether replacement of tap drinking water by 150 mM NaHCO3 affects the growth, tissue calcification, and lifespan of kl/kl mice. As a result, NaHCO3 administration to kl/kl mice did not reverse the growth deficit but substantially decreased tissue calcification and significantly increased the average lifespan from 78 to 127 days. NaHCO3 did not significantly affect plasma concentrations of 1,25(OH)2D3 and Ca(2+) but significantly decreased plasma phosphate concentration and plasma aldosterone concentration. The present study reveals a novel effect of bicarbonate, i.e., a favorable influence on vascular calcification and early death of klotho-deficient mice. PMID:26538435

  16. Analysis of lifespan-promoting effect of garlic extract by an integrated metabolo-proteomics approach.

    PubMed

    Huang, Chun-Hao; Hsu, Fang-Yu; Wu, Yuan-Heng; Zhong, Linda; Tseng, Mu-Yun; Kuo, Chao-Jen; Hsu, Ao-Lin; Liang, Shih-Shin; Chiou, Shyh-Horng

    2015-08-01

    The beneficial effects of garlic (Allium sativum) consumption in treating human diseases have been reported worldwide over a long period of human history. The strong antioxidant effect of garlic extract (GE) has also recently been claimed to prevent cancer, thrombus formation, cardiovascular disease and some age-related maladies. Using Caenorhabditis elegans as a model organism, aqueous GE was herein shown to increase the expression of longevity-related FOXO transcription factor daf-16 and extend lifespan by 20%. By employing microarray and proteomics analysis on C. elegans treated with aqueous GE, we have systematically mapped 229 genes and 46 proteins with differential expression profiles, which included many metabolic enzymes and yolky egg vitellogenins. To investigate the garlic components functionally involved in longevity, an integrated metabolo-proteomics approach was employed to identify metabolites and protein components associated with treatment of aqueous GE. Among potential lifespan-promoting substances, mannose-binding lectin and N-acetylcysteine were found to increase daf-16 expression. Our study points to the fact that the lifespan-promoting effect of aqueous GE may entail the DAF-16-mediated signaling pathway. The result also highlights the utility of metabolo-proteomics for unraveling the complexity and intricacy involved in the metabolism of natural products in vivo.

  17. Edible bird's nest enhances antioxidant capacity and increases lifespan in Drosophila Melanogaster.

    PubMed

    Hu, Q; Li, G; Yao, H; He, S; Li, H; Liu, S; Wu, Y; Lai, X

    2016-01-01

    In this study, we aims to investigate the effects of edible bird's nest (EBN) on anti-aging efficacy. In order to investigate lifespan and mortality rate of flies, we treated flies with various doses of EBN. Besides, fecundity, water content and food are determined and heat-stress test is conducted after flies treating with different medium. Effects of EBN on total antioxidant activity (T-AOC), super-oxide dismutase activity (SOD), catalase activity (CAT), and malondialdehyde (MDA) were examined in drosophila melanogaster. Results indicated that flies in EBN treated group illustrated significantly lower mortality rates and longer median and maximum lifespan compared to control group (P<0.05). The fecundity in EBN-treated group was increased compared to control group. SOD levels and CAT activity were significantly increased, and MDA levels decreased in EBN-treated group compared to control group (P<0.01). In conclusion, EBN can extend lifespan, decrease mortality rate and increase survival rate in heat-stress test, and which can also promote SOD and CAT activity and reduce MDA levels. EBN is able to delay drosophila melanogaster aging, attributing to the increasing antioxidant enzyme activities and decreasing content of lipid peroxidation products in drosophila melanogaster. PMID:27188745

  18. Water sensor ppk28 modulates Drosophila lifespan and physiology through AKH signaling

    PubMed Central

    Waterson, Michael J.; Chung, Brian Y.; Harvanek, Zachary M.; Ostojic, Ivan; Alcedo, Joy; Pletcher, Scott D.

    2014-01-01

    Sensory perception modulates lifespan across taxa, presumably due to alterations in physiological homeostasis after central nervous system integration. The coordinating circuitry of this control, however, remains unknown. Here, we used the Drosophila melanogaster gustatory system to dissect one component of sensory regulation of aging. We found that loss of the critical water sensor, pickpocket 28 (ppk28), altered metabolic homeostasis to promote internal lipid and water stores and extended healthy lifespan. Additionally, loss of ppk28 increased neuronal glucagon-like adipokinetic hormone (AKH) signaling, and the AKH receptor was necessary for ppk28 mutant effects. Furthermore, activation of AKH-producing cells alone was sufficient to enhance longevity, suggesting that a perceived lack of water availability triggers a metabolic shift that promotes the production of metabolic water and increases lifespan via AKH signaling. This work provides an example of how discrete gustatory signals recruit nutrient-dependent endocrine systems to coordinate metabolic homeostasis, thereby influencing long-term health and aging. PMID:24821805

  19. Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant Drosophila.

    PubMed

    Afschar, Sonita; Toivonen, Janne M; Hoffmann, Julia Marianne; Tain, Luke Stephen; Wieser, Daniela; Finlayson, Andrew John; Driege, Yasmine; Alic, Nazif; Emran, Sahar; Stinn, Julia; Froehlich, Jenny; Piper, Matthew D; Partridge, Linda

    2016-02-01

    Lifespan of laboratory animals can be increased by genetic, pharmacological, and dietary interventions. Increased expression of genes involved in xenobiotic metabolism, together with resistance to xenobiotics, are frequent correlates of lifespan extension in the nematode worm Caenorhabditis elegans, the fruit fly Drosophila, and mice. The Green Theory of Aging suggests that this association is causal, with the ability of cells to rid themselves of lipophilic toxins limiting normal lifespan. To test this idea, we experimentally increased resistance of Drosophila to the xenobiotic dichlordiphenyltrichlorethan (DDT), by artificial selection or by transgenic expression of a gene encoding a cytochrome P450. Although both interventions increased DDT resistance, neither increased lifespan. Furthermore, dietary restriction increased lifespan without increasing xenobiotic resistance, confirming that the two traits can be uncoupled. Reduced activity of the insulin/Igf signaling (IIS) pathway increases resistance to xenobiotics and extends lifespan in Drosophila, and can also increase longevity in C. elegans, mice, and possibly humans. We identified a nuclear hormone receptor, DHR96, as an essential mediator of the increased xenobiotic resistance of IIS mutant flies. However, the IIS mutants remained long-lived in the absence of DHR96 and the xenobiotic resistance that it conferred. Thus, in Drosophila IIS mutants, increased xenobiotic resistance and enhanced longevity are not causally connected. The frequent co-occurrence of the two traits may instead have evolved because, in nature, lowered IIS can signal the presence of pathogens. It will be important to determine whether enhanced xenobiotic metabolism is also a correlated, rather than a causal, trait in long-lived mice.

  20. Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant Drosophila

    PubMed Central

    Afschar, Sonita; Toivonen, Janne M.; Tain, Luke Stephen; Wieser, Daniela; Finlayson, Andrew John; Driege, Yasmine; Alic, Nazif; Emran, Sahar; Stinn, Julia; Froehlich, Jenny; Piper, Matthew D.; Partridge, Linda

    2016-01-01

    Lifespan of laboratory animals can be increased by genetic, pharmacological, and dietary interventions. Increased expression of genes involved in xenobiotic metabolism, together with resistance to xenobiotics, are frequent correlates of lifespan extension in the nematode worm Caenorhabditis elegans, the fruit fly Drosophila, and mice. The Green Theory of Aging suggests that this association is causal, with the ability of cells to rid themselves of lipophilic toxins limiting normal lifespan. To test this idea, we experimentally increased resistance of Drosophila to the xenobiotic dichlordiphenyltrichlorethan (DDT), by artificial selection or by transgenic expression of a gene encoding a cytochrome P450. Although both interventions increased DDT resistance, neither increased lifespan. Furthermore, dietary restriction increased lifespan without increasing xenobiotic resistance, confirming that the two traits can be uncoupled. Reduced activity of the insulin/Igf signaling (IIS) pathway increases resistance to xenobiotics and extends lifespan in Drosophila, and can also increase longevity in C. elegans, mice, and possibly humans. We identified a nuclear hormone receptor, DHR96, as an essential mediator of the increased xenobiotic resistance of IIS mutant flies. However, the IIS mutants remained long-lived in the absence of DHR96 and the xenobiotic resistance that it conferred. Thus, in Drosophila IIS mutants, increased xenobiotic resistance and enhanced longevity are not causally connected. The frequent co-occurrence of the two traits may instead have evolved because, in nature, lowered IIS can signal the presence of pathogens. It will be important to determine whether enhanced xenobiotic metabolism is also a correlated, rather than a causal, trait in long-lived mice. PMID:26787908

  1. Brain iron deposits and lifespan cognitive ability.

    PubMed

    Del C Valdés Hernández, Maria; Ritchie, Stuart; Glatz, Andreas; Allerhand, Mike; Muñoz Maniega, Susana; Gow, Alan J; Royle, Natalie A; Bastin, Mark E; Starr, John M; Deary, Ian J; Wardlaw, Joanna M

    2015-10-01

    Several studies have reported associations between brain iron deposits and cognitive status, and cardiovascular and neurodegenerative diseases in older individuals, but the mechanisms underlying these associations remain unclear. We explored the associations between regional brain iron deposits and different factors of cognitive ability (fluid intelligence, speed and memory) in a large sample (n = 662) of individuals with a mean age of 73 years. Brain iron deposits in the corpus striatum were extracted automatically. Iron deposits in other parts of the brain (i.e., white matter, thalamus, brainstem and cortex), brain tissue volume and white matter hyperintensities (WMH) were assessed separately and semi-automatically. Overall, 72.8 % of the sample had iron deposits. The total volume of iron deposits had a small but significant negative association with all three cognitive ability factors in later life (mean r = -0.165), but no relation to intelligence in childhood (r = 0.043, p = 0.282). Regression models showed that these iron deposit associations were still present after control for a variety of vascular health factors, and were separable from the association of WMH with cognitive ability. Iron deposits were also associated with cognition across the lifespan, indicating that they are relevant for cognitive ability only at older ages. Iron deposits might be an indicator of small vessel disease that affects the neuronal networks underlying higher cognitive functioning.

  2. Docosahexaenoic Acid and Cognition throughout the Lifespan

    PubMed Central

    Weiser, Michael J.; Butt, Christopher M.; Mohajeri, M. Hasan

    2016-01-01

    Docosahexaenoic acid (DHA) is the predominant omega-3 (n-3) polyunsaturated fatty acid (PUFA) found in the brain and can affect neurological function by modulating signal transduction pathways, neurotransmission, neurogenesis, myelination, membrane receptor function, synaptic plasticity, neuroinflammation, membrane integrity and membrane organization. DHA is rapidly accumulated in the brain during gestation and early infancy, and the availability of DHA via transfer from maternal stores impacts the degree of DHA incorporation into neural tissues. The consumption of DHA leads to many positive physiological and behavioral effects, including those on cognition. Advanced cognitive function is uniquely human, and the optimal development and aging of cognitive abilities has profound impacts on quality of life, productivity, and advancement of society in general. However, the modern diet typically lacks appreciable amounts of DHA. Therefore, in modern populations, maintaining optimal levels of DHA in the brain throughout the lifespan likely requires obtaining preformed DHA via dietary or supplemental sources. In this review, we examine the role of DHA in optimal cognition during development, adulthood, and aging with a focus on human evidence and putative mechanisms of action. PMID:26901223

  3. Gene expression defines natural changes in mammalian lifespan

    PubMed Central

    Fushan, Alexey A; Turanov, Anton A; Lee, Sang-Goo; Kim, Eun Bae; Lobanov, Alexei V; Yim, Sun Hee; Buffenstein, Rochelle; Lee, Sang-Rae; Chang, Kyu-Tae; Rhee, Hwanseok; Kim, Jong-So; Yang, Kap-Seok; Gladyshev, Vadim N

    2015-01-01

    Mammals differ more than 100-fold in maximum lifespan, which can be altered in either direction during evolution, but the molecular basis for natural changes in longevity is not understood. Divergent evolution of mammals also led to extensive changes in gene expression within and between lineages. To understand the relationship between lifespan and variation in gene expression, we carried out RNA-seq-based gene expression analyses of liver, kidney, and brain of 33 diverse species of mammals. Our analysis uncovered parallel evolution of gene expression and lifespan, as well as the associated life-history traits, and identified the processes and pathways involved. These findings provide direct insights into how nature reversibly adjusts lifespan and other traits during adaptive radiation of lineages. PMID:25677554

  4. Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans.

    PubMed

    Lashmanova, Ekaterina; Proshkina, Ekaterina; Zhikrivetskaya, Svetlana; Shevchenko, Oksana; Marusich, Elena; Leonov, Sergey; Melerzanov, Alex; Zhavoronkov, Alex; Moskalev, Alexey

    2015-10-01

    The pharmacological activation of stress-defense mechanisms is one of the perspective ways to increase human lifespan. The goal of the present study was to study the effects on lifespan of Drosophila melanogaster and Caenorhabditis elegans of two carotenoids: ß-carotene and fucoxanthin, which are bioactive natural substances in human diet. In addition, the effects of carotenoids on the flies survival were studied under stress conditions, including starvation, thermal stress (35°C), oxidative stress (20 mM paraquat), as well as locomotor activity, fecundity, and genes expression level. Our results demonstrated lifespan extension of flies by both carotenoids. However, the positive effects on the lifespan of C. elegans were revealed only for fucoxanthin. In presence of carotenoids decreased flies' fecundity, increased spontaneous locomotor activity and resistance to oxidative stress were detected.

  5. A Motivational Theory of Life-Span Development

    PubMed Central

    Heckhausen, Jutta; Wrosch, Carsten; Schulz, Richard

    2010-01-01

    This article had four goals. First, the authors identified a set of general challenges and questions that a life-span theory of development should address. Second, they presented a comprehensive account of their Motivational Theory of Life-Span Development. They integrated the model of optimization in primary and secondary control and the action-phase model of developmental regulation with their original life-span theory of control to present a comprehensive theory of development. Third, they reviewed the relevant empirical literature testing key propositions of the Motivational Theory of Life-Span Development. Finally, because the conceptual reach of their theory goes far beyond the current empirical base, they pointed out areas that deserve further and more focused empirical inquiry. PMID:20063963

  6. The association between intelligence and lifespan is mostly genetic

    PubMed Central

    Arden, Rosalind; Deary, Ian J; Reynolds, Chandra A; Pedersen, Nancy L; Plassman, Brenda L; McGue, Matt; Christensen, Kaare; Visscher, Peter M

    2016-01-01

    Background: Several studies in the new field of cognitive epidemiology have shown that higher intelligence predicts longer lifespan. This positive correlation might arise from socioeconomic status influencing both intelligence and health; intelligence leading to better health behaviours; and/or some shared genetic factors influencing both intelligence and health. Distinguishing among these hypotheses is crucial for medicine and public health, but can only be accomplished by studying a genetically informative sample. Methods: We analysed data from three genetically informative samples containing information on intelligence and mortality: Sample 1, 377 pairs of male veterans from the NAS-NRC US World War II Twin Registry; Sample 2, 246 pairs of twins from the Swedish Twin Registry; and Sample 3, 784 pairs of twins from the Danish Twin Registry. The age at which intelligence was measured differed between the samples. We used three methods of genetic analysis to examine the relationship between intelligence and lifespan: we calculated the proportion of the more intelligent twins who outlived their co-twin; we regressed within-twin-pair lifespan differences on within-twin-pair intelligence differences; and we used the resulting regression coefficients to model the additive genetic covariance. We conducted a meta-analysis of the regression coefficients across the three samples. Results: The combined (and all three individual samples) showed a small positive phenotypic correlation between intelligence and lifespan. In the combined sample observed r = .12 (95% confidence interval .06 to .18). The additive genetic covariance model supported a genetic relationship between intelligence and lifespan. In the combined sample the genetic contribution to the covariance was 95%; in the US study, 84%; in the Swedish study, 86%, and in the Danish study, 85%. Conclusions: The finding of common genetic effects between lifespan and intelligence has important implications for public

  7. Distribution of lifespan gain from primary prevention intervention

    PubMed Central

    Finegold, Judith A; Shun-Shin, Matthew J; Cole, Graham D; Zaman, Saman; Maznyczka, Annette; Zaman, Sameer; Al-Lamee, Rasha; Ye, Siqin; Francis, Darrel P

    2016-01-01

    Objective When advising patients about possible initiation of primary prevention treatment, clinicians currently do not have information on expected impact on lifespan, nor how much this increment differs between individuals. Methods First, UK cardiovascular and non-cardiovascular mortality data were used to calculate the mean lifespan gain from an intervention (such as a statin) that reduces cardiovascular mortality by 30%. Second, a new method was developed to calculate the probability distribution of lifespan gain. Third, we performed a survey in three UK cities on 11 days between May–June 2014 involving 396 participants (mean age 40 years, 55% male) to assess how individuals evaluate potential benefit from primary prevention therapies. Results Among numerous identical patients, the lifespan gain, from an intervention that reduces cardiovascular mortality by 30%, is concentrated within an unpredictable minority. For example, men aged 50 years with national average cardiovascular risk have mean lifespan gain of 7 months. However, 93% of these identical individuals gain no lifespan, while the remaining 7% gain a mean of 99 months. Many survey respondents preferred a chance of large lifespan gain to the equivalent life expectancy gain given as certainty. Indeed, 33% preferred a 2% probability of 10 years to fivefold more gain, expressed as certainty of 1 year. Conclusions People who gain lifespan from preventative therapy gain far more than the average for their risk stratum, even if perfectly defined. This may be important in patient decision-making. Looking beyond mortality reduction alone from preventative therapy, the benefits are likely to be even larger. PMID:27042321

  8. Influence of uridine diphosphate glucuronosyltransferase inducers and inhibitors on the plasma lamotrigine concentration in pediatric patients with refractory epilepsy.

    PubMed

    Yamamoto, Yoshiaki; Takahashi, Yukitoshi; Imai, Katsumi; Ikeda, Hiroko; Takahashi, Masaaki; Nakai, Masahiko; Inoue, Yushi; Kagawa, Yoshiyuki

    2015-06-01

    This study evaluated the influence of concomitant antiepileptic drugs (AEDs) on the plasma concentration of lamotrigine (LTG) in pediatric patients with epilepsy. We retrospectively reviewed 1653 plasma samples from 709 patients (aged 6 months to 16 years) and compared the concentration-to-dose ratio (CD ratio) of LTG among different AED regimens. The median CD ratio of patients receiving LTG monotherapy was 1.25 μg/mL/mg/kg. In patients receiving LTG plus VPA, the CD ratio was increased by about 140%. The CD ratio was elevated from a low VPA concentration (<40 μg/mL) and the increase was VPA concentration-dependent. In contrast, the median CD ratio of patients treated with LTG plus the inducers phenytoin, phenobarbital, and carbamazepine was 0.42, 0.63, and 0.66, respectively, and phenytoin significantly reduced the CD ratio in comparison with phenobarbital or carbamazepine (p < 0.001). Pediatric patients of all ages beyond infancy showed similar susceptibility to VPA or inducers, but infants had higher CD ratios compared with the other age groups. Among other AEDs, topiramate, ethosuximide, and rufinamide reduced the CD ratio. These findings should be useful for estimating interactions between LTG and concomitant AEDs. PMID:25825021

  9. Simultaneous Quantitation of Lamotrigine, Levetiracetam, 10-Hydroxycarbazepine, Topiramate, and Zonisamide in Serum Using HPLC-MS/MS.

    PubMed

    Carlow, Dean C; Shi, Heng; Schofield, Ryan C

    2016-01-01

    Antiepileptic drugs (AEDs) are a diverse group of pharmacological agents used in the treatment of epileptic seizures. Over the past several decades some new AEDs, including lamotrigine (LTG), levetiracetam (LVA), oxcarbazepine (OXC), topiramate (TOP), and zonisamide (ZNS), have become widely used. This chapter describes a very simple and rapid liquid chromatography-tandem mass spectrometry method for simultaneous quantitation of LVA, ZNS, LTG, TOP, and MHD in human serum. The method requires a very small amount of serum (50 μL) for multiple drug measurements and has a total analysis time of 4 min that makes it well suited for routine clinical analysis of several drugs simultaneously. The imprecision (CVs) measured at various concentrations across the analytical measurement range (AMR) are less than 7% for all analytes. The AMR for each analyte is as follows: LVA (1-100 μg/mL), ZNS (0.8-80 μg/mL), TOP (0.5-50 μg/mL), and 0.6-60 μg/mL for LTG and MHD. PMID:26660171

  10. Lamotrigine attenuates deficits in synaptic plasticity and accumulation of amyloid plaques in APP/PS1 transgenic mice.

    PubMed

    Zhang, Mao-Ying; Zheng, Chuan-Yi; Zou, Ming-Ming; Zhu, Jian-Wei; Zhang, Yan; Wang, Jing; Liu, Chun-Feng; Li, Qi-Fa; Xiao, Zhi-Cheng; Li, Shao; Ma, Quan-Hong; Xu, Ru-Xiang

    2014-12-01

    Hyperactivity and its compensatory mechanisms may causally contribute to synaptic and cognitive deficits in Alzheimer's disease (AD). Blocking the overexcitation of the neural network, with levetiracetam (LEV), a sodium channel blocker applied in the treatment of epilepsy, prevented synaptic and cognitive deficits in human amyloid precursor protein (APP) transgenic mice. This study has brought the potential use of antiepileptic drugs (AEDs) in AD therapy. We showed that the chronic treatment with lamotrigine (LTG), a broad-spectrum AED, suppressed abnormal spike activity, prevented the loss of spines, synaptophysin immunoreactivity, and neurons, and thus attenuated the deficits in synaptic plasticity and learning and memory in APP and presenilin 1 (PS1) mice, which express human mutant APP and PS1. In contrast with LEV, which failed to reduce the generation of amyloid β, the chronic LTG treatment reduced the cleavage of APP by β-secretase and thus the numbers and the size of amyloid plaques in the brains of APP and PS1 mice. Moreover, the levels of brain-derived neurotrophic growth factor (BDNF) and nerve growth factor (NGF) were enhanced in the brains of APP and PS1 mice by the chronic LTG treatment. Therefore, these observations demonstrate that LTG attenuates AD pathology through multiple mechanisms, including modulation of abnormal network activity, reduction of the generation of amyloid beta and upregulation of BDNF and NGF. PMID:25044076

  11. Enhancement of Solubility of Lamotrigine by Solid Dispersion and Development of Orally Disintegrating Tablets Using 32 Full Factorial Design

    PubMed Central

    Singh, Jatinderpal; Garg, Rajeev; Gupta, Ghanshyam Das

    2015-01-01

    Present investigation deals with the preparation and evaluation of orally disintegrating tablets (ODTs) of lamotrigine using β-cyclodextrin and PVP-K30 as polymers for the preparation of solid dispersion which help in enhancement of aqueous solubility of this BCS CLASS-II drug and sodium starch glycolate (SSG) and crospovidone as a superdisintegrating agent, to reduce disintegration time. The ODTs were prepared by direct compression method. Nine formulations were developed with different ratios of superdisintegrating agents. All the formulations were evaluated for disintegration time, weight variation, hardness, friability, drug content uniformity, wetting time, and in vitro drug release study. In vitro drug release study was performed using United States Pharmacopoeia (USP) type 2 dissolution test apparatus employing paddle stirrer at 50 rpm using 900 mL of 0.1 N HCl maintained at 37°C ± 0.5°C as the dissolution medium. On the basis of evaluation parameters formulations were prepared using β-CD 1 : 1 solid dispersion. Then 32 full factorial design was applied using SSG and crospovidone in different ratios suggested by using design expert 8.0.7.1 and optimized formulation was prepared using amount of SSG and crospovidone as suggested by the software. The optimized formulation prepared had disintegrating time of 15 s, wetting time of 24 s, and % friability of 0.55. PMID:26634173

  12. Simultaneous Quantitation of Lamotrigine, Levetiracetam, 10-Hydroxycarbazepine, Topiramate, and Zonisamide in Serum Using HPLC-MS/MS.

    PubMed

    Carlow, Dean C; Shi, Heng; Schofield, Ryan C

    2016-01-01

    Antiepileptic drugs (AEDs) are a diverse group of pharmacological agents used in the treatment of epileptic seizures. Over the past several decades some new AEDs, including lamotrigine (LTG), levetiracetam (LVA), oxcarbazepine (OXC), topiramate (TOP), and zonisamide (ZNS), have become widely used. This chapter describes a very simple and rapid liquid chromatography-tandem mass spectrometry method for simultaneous quantitation of LVA, ZNS, LTG, TOP, and MHD in human serum. The method requires a very small amount of serum (50 μL) for multiple drug measurements and has a total analysis time of 4 min that makes it well suited for routine clinical analysis of several drugs simultaneously. The imprecision (CVs) measured at various concentrations across the analytical measurement range (AMR) are less than 7% for all analytes. The AMR for each analyte is as follows: LVA (1-100 μg/mL), ZNS (0.8-80 μg/mL), TOP (0.5-50 μg/mL), and 0.6-60 μg/mL for LTG and MHD.

  13. Effects of UGT1A4 genetic polymorphisms on serum lamotrigine concentrations in Chinese children with epilepsy.

    PubMed

    Wang, Qiuning; Liang, Min; Dong, Yang; Yun, Wenting; Qiu, Feng; Zhao, Limei; Guo, Yingjie

    2015-06-01

    Lamotrigine (LTG) is widely used in the treatment of children with epilepsy. Genetic polymorphisms in genes encoding drug-metabolizing enzymes may be an important source of interindividual variability in LTG metabolism. The aim of this study was to evaluate the effects of genetic polymorphisms of uridine diphosphate glucuronosyltransferase (UGT) 1A4 (UGT1A4) gene on LTG serum concentrations in children with epilepsy. The UGT1A4 142T > G in the coding regions and -219C > T/-163G > A in the 5'-upstream regions were genotyped using polymerase chain reaction amplification followed by direct automated DNA sequencing in 148 patients treated with polytherapy with LTG and valproic acid (VPA). Our data showed that patients carrying the variant UGT1A4 -219C > T/-163G > A genotypes or alleles had significantly higher adjusted LTG concentrations than those carrying the wild-type genotypes or alleles. However, the significant association was abrogated after adjusted by age, body weight, and adjusted VPA concentration. No associations were detected between the UGT1A4 142T > G genotypes or alleles and adjusted LTG concentrations. Taken together, these results suggest that the -219C > T/-163G > A mutations in the 5'-upstream regions of the UGT1A4 gene affect LTG pharmacokinetics, with which is potentially interfered by age, body weight, and concomitant VPA administration. PMID:25922177

  14. What can long-lived mutants tell us about mechanisms causing aging and lifespan variation in natural environments?

    PubMed

    Briga, Michael; Verhulst, Simon

    2015-11-01

    Long-lived mutants of model organisms have brought remarkable progress in our understanding of aging mechanisms. However, long-lived mutants are usually maintained in optimal standardized laboratory environments (SLEs), and it is not obvious to what extent insights from long-lived mutants in SLEs can be generalized to more natural environments. To address this question, we reviewed experiments that compared the fitness and lifespan advantage of long-lived mutants relative to wild type controls in SLEs and more challenging environments in various model organisms such as yeast Saccharomyces cerevisiae, the nematode worm Caenorhabditis elegans, the fruitfly Drosophila melanogaster and the mouse Mus musculus. In competition experiments over multiple generations, the long-lived mutants had a lower fitness relative to wild type controls, and this disadvantage was the clearest when the environment included natural challenges such as limited food (N=6 studies). It is well known that most long-lived mutants have impaired reproduction, which provides one reason for the fitness disadvantage. However, based on 12 experiments, we found that the lifespan advantage of long-lived mutants is diminished in more challenging environments, often to the extent that the wild type controls outlive the long-lived mutants. Thus, it appears that information on aging mechanisms obtained from long-lived mutants in SLEs may be specific to such environments, because those same mechanisms do not extend lifespan in more natural environments. This suggests that different mechanisms cause variation in aging and lifespan in SLEs compared to natural populations.

  15. Diacylglycerol lipase regulates lifespan and oxidative stress response by inversely modulating TOR signaling in Drosophila and C. elegans.

    PubMed

    Lin, Yen-Hung; Chen, Yi-Chun; Kao, Tzu-Yu; Lin, Yi-Chun; Hsu, Tzu-En; Wu, Yi-Chun; Ja, William W; Brummel, Theodore J; Kapahi, Pankaj; Yuh, Chiou-Hwa; Yu, Lin-Kwei; Lin, Zhi-Han; You, Ru-Jing; Jhong, Yi-Ting; Wang, Horng-Dar

    2014-08-01

    Target of rapamycin (TOR) signaling is a nutrient-sensing pathway controlling metabolism and lifespan. Although TOR signaling can be activated by a metabolite of diacylglycerol (DAG), phosphatidic acid (PA), the precise genetic mechanism through which DAG metabolism influences lifespan remains unknown. DAG is metabolized to either PA via the action of DAG kinase or 2-arachidonoyl-sn-glycerol by diacylglycerol lipase (DAGL). Here, we report that in Drosophila and Caenorhabditis elegans, overexpression of diacylglycerol lipase (DAGL/inaE/dagl-1) or knockdown of diacylglycerol kinase (DGK/rdgA/dgk-5) extends lifespan and enhances response to oxidative stress. Phosphorylated S6 kinase (p-S6K) levels are reduced following these manipulations, implying the involvement of TOR signaling. Conversely, DAGL/inaE/dagl-1 mutants exhibit shortened lifespan, reduced tolerance to oxidative stress, and elevated levels of p-S6K. Additional results from genetic interaction studies are consistent with the hypothesis that DAG metabolism interacts with TOR and S6K signaling to affect longevity and oxidative stress resistance. These findings highlight conserved metabolic and genetic pathways that regulate aging.

  16. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan.

    PubMed

    Schroeder, Elizabeth A; Shadel, Gerald S

    2014-01-01

    Mitochondrial DNA (mtDNA) exists in multiple copies per cell and is essential for oxidative phosphorylation. Depleted or mutated mtDNA promotes numerous human diseases and may contribute to aging. Reduced TORC1 signaling in the budding yeast, Saccharomyces cerevisiae, extends chronological lifespan (CLS) in part by generating a mitochondrial ROS (mtROS) signal that epigenetically alters nuclear gene expression. To address the potential requirement for mtDNA maintenance in this response, we analyzed strains lacking the mitochondrial base-excision repair enzyme Ntg1p. Extension of CLS by mtROS signaling and reduced TORC1 activity, but not caloric restriction, was abrogated in ntg1Δ strains that exhibited mtDNA depletion without defects in respiration. The DNA damage response (DDR) kinase Rad53p, which transduces pro-longevity mtROS signals, is also activated in ntg1Δ strains. Restoring mtDNA copy number alleviated Rad53p activation and re-established CLS extension following mtROS signaling, indicating that Rad53p senses mtDNA depletion directly. Finally, DDR kinases regulate nucleus-mitochondria localization dynamics of Ntg1p. From these results, we conclude that the DDR pathway senses and may regulate Ntg1p-dependent mtDNA stability. Furthermore, Rad53p senses multiple mitochondrial stresses in a hierarchical manner to elicit specific physiological outcomes, exemplified by mtDNA depletion overriding the ability of Rad53p to transduce an adaptive mtROS longevity signal.

  17. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan

    PubMed Central

    Schroeder, Elizabeth A.; Shadel, Gerald S.

    2014-01-01

    Mitochondrial DNA (mtDNA) exists in multiple copies per cell and is essential for oxidative phosphorylation. Depleted or mutated mtDNA promotes numerous human diseases and may contribute to aging. Reduced TORC1 signaling in the budding yeast, Saccharomyces cerevisiae, extends chronological lifespan (CLS) in part by generating a mitochondrial ROS (mtROS) signal that epigenetically alters nuclear gene expression. To address the potential requirement for mtDNA maintenance in this response, we analyzed strains lacking the mitochondrial base-excision repair enzyme Ntg1p. Extension of CLS by mtROS signaling and reduced TORC1 activity, but not caloric restriction, was abrogated in ntg1Δ strains that exhibited mtDNA depletion without defects in respiration. The DNA damage response (DDR) kinase Rad53p, which transduces pro-longevity mtROS signals, is also activated in ntg1Δ strains. Restoring mtDNA copy number alleviated Rad53p activation and re-established CLS extension mtROS-mediated longevity signaling, indicating that Rad53p senses mtDNA depletion directly. Finally, DDR kinases regulate nucleus-mitochondria localization dynamics of Ntg1p. From these results, we conclude that the DDR pathway senses mtDNA instability and regulates Ntg1p in response. Furthermore, Rad53p senses multiple mitochondrial stresses in a hierarchical manner to elicit specific physiological outcomes, exemplified by mtDNA depletion overriding the ability of Rad53p to transduce an adaptive mtROS longevity signal. PMID:24373996

  18. The bright side of reactive oxygen species: lifespan extension without cellular demise

    PubMed Central

    Maiese, Kenneth

    2016-01-01

    Oxidative stress and the generation of reactive oxygen species (ROS) can lead to mitochondrial dysfunction, DNA damage, protein misfolding, programmed cell death with apoptosis and autophagy, and the promotion of aging –dependent processes. Mitochondria control the processing of redox energy that yields adenosine triphosphate (ATP) through the oxidation of glucose, pyruvate, and nicotinamide adenine dinucleotide. Ultimately, the generation of ROS occurs with the aerobic production of ATP. Although reduced levels of ROS may lead to tolerance against metabolic, mechanical, and oxidative stressors and the generation of brief periods of ROS during ischemia-reperfusion models may limit cellular injury, under most circumstances ROS and mitochondrial dysfunction can lead to apoptotic caspase activation and autophagy induction that can result in cellular demise. Yet, new work suggests that ROS generation may have a positive impact through respiratory complex I reverse electron transport that can extend lifespan. Such mechanisms may bring new insight into clinically relevant disorders that are linked to cellular senescence and aging of the body’s system. Further investigation of the potential “bright side” of ROS and mitochondrial respiration is necessary to target specific pathways, such as the mechanistic target of rapamycin, nicotinamidases, sirtuins, mRNA decoupling and protein expression, and Wnt signaling, that can impact oxidative stress-ROS mechanisms to extend lifespan and eliminate disease onset. PMID:27200181

  19. C. elegans S6K Mutants Require a Creatine Kinase-Like Effector for Lifespan Extension

    PubMed Central

    McQuary, Philip R.; Liao, Chen-Yu; Chang, Jessica T.; Kumsta, Caroline; She, Xingyu; Davis, Andrew; Chu, Chu-Chiao; Gelino, Sara; Gomez-Amaro, Rafael L.; Petrascheck, Michael; Brill, Laurence M.; Ladiges, Warren C.; Kennedy, Brian K.; Hansen, Malene

    2016-01-01

    Deficiency of S6 kinase (S6K) extends the lifespan of multiple species, but the underlying mechanisms are unclear. To discover potential effectors of S6K-mediated longevity, we performed a proteomics analysis of long-lived rsks-1/S6K C. elegans mutants compared to wild-type animals. We identified the arginine kinase ARGK-1 as the most significantly enriched protein in rsks-1/S6K mutants. ARGK-1 is an ortholog of mammalian creatine kinase, which maintains cellular ATP levels. We found that argk-1 is a selective effector of rsks-1/S6K-mediated longevity, and overexpression of ARGK-1 extends C. elegans lifespan, in part by activating the energy sensor AAK-2/AMPK. argk-1 is also required for the reduced body size and increased stress resistance observed in rsks-1/S6K mutants. Finally, creatine kinase levels are increased in the brains of S6K1 knockout mice. Our study identifies ARGK-1 as a longevity effector in C. elegans with reduced RSKS-1/S6K levels. PMID:26923601

  20. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L-Cysteine in Caenorhabditis elegans

    PubMed Central

    Oh, Seung-Il; Park, Jin-Kook; Park, Sang-Kyu

    2015-01-01

    OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV), was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors. PMID:26039957

  1. Deglycosylation is a key step in biotransformation and lifespan effects of quercetin-3-O-glucoside in Caenorhabditis elegans.

    PubMed

    Dueñas, Montserrat; Surco-Laos, Felipe; González-Manzano, Susana; González-Paramás, Ana M; Gómez-Orte, Eva; Cabello, Juan; Santos-Buelga, Celestino

    2013-10-01

    Due to their purported healthful activities, quercetin and other flavonoids are being increasingly proposed as nutraceuticals. Quercetin occurs in food as glycosides; however, most assays on its activity have been performed with the aglycone, despite glycosylation deeply affects compound bioavailability. In this work, the uptake and lifespan effects of quercetin-3-O-glucoside (Q3Glc) and quercetin have been assessed in Caenorhabditis elegans. Q3Glc was taken up by this nematode in a concentration-dependent manner and rapidly deglycosylated to quercetin, which was accumulated in the worm and partially biotransformed to conjugated metabolites. Significant mean lifespan extension up to 23% compared to controls was observed in wild type worms cultivated in the presence of low concentrations of Q3Glc (10 μM and 25 μM), whereas exposure to greater concentrations of Q3Glc (50-200 μM) caused a reduction in mean and maximum lifespan compared with the control. By contrast, treatment of klo-1 and klo-2 mutant worms lacking β-glucosidase activity with 200 μM of Q3Glc led to extended mean lifespan (up to 39%), similar to quercetin aglycone at the same concentration levels. In those mutants, Q3Glc was accumulated without important deglycosylation to quercetin was produced. Taken together, these findings indicated that Q3Glc was taken up by the nematode in greater extent than quercetin, and that deglycosylation and subsequent aglycone accumulation in the worm appeared as key points to explain the observed lifespan effects. The obtained results also suggested that facilitated absorption should be more important for the uptake of quercetin derivatives than passive diffusion.

  2. Methionine restriction and life-span control.

    PubMed

    Lee, Byung Cheon; Kaya, Alaattin; Gladyshev, Vadim N

    2016-01-01

    Dietary restriction (DR) without malnutrition is associated with longevity in various organisms. However, it has also been shown that reduced calorie intake is often ineffective in extending life span. Selecting optimal dietary regimens for DR studies is complicated, as the same regimen may lead to different outcomes depending on genotype and environmental factors. Recent studies suggested that interventions such as moderate protein restriction with or without adequate nutrition (e.g., particular amino acids or carbohydrates) may have additional beneficial effects mediated by certain metabolic and hormonal factors implicated in the biology of aging, regardless of total calorie intake. In particular, it was shown that restriction of a single amino acid, methionine, can mimic the effects of DR and extend life span in various model organisms. We discuss the beneficial effects of a methionine-restricted diet, the molecular pathways involved, and the use of this regimen in longevity interventions.

  3. Impacts of environmental factors on fine root lifespan

    PubMed Central

    McCormack, M. Luke; Guo, Dali

    2014-01-01

    The lifespan of fast-cycling roots is a critical parameter determining a large flux of plant carbon into soil through root turnover and is a biological feature regulating the capacity of a plant to capture soil water and nutrients via root-age-related physiological processes. While the importance of root lifespan to whole-plant and ecosystem processes is increasingly recognized, robust descriptions of this dynamic process and its response to changes in climatic and edaphic factors are lacking. Here we synthesize available information and propose testable hypotheses using conceptual models to describe how changes in temperature, water, nitrogen (N), and phosphorus (P) availability impact fine root lifespan within a species. Each model is based on intrinsic responses including root physiological activity and alteration of carbohydrate allocation at the whole-plant level as well as extrinsic factors including mycorrhizal fungi and pressure from pathogens, herbivores, and other microbes. Simplifying interactions among these factors, we propose three general principles describing fine root responses to complex environmental gradients. First, increases in a factor that strongly constrains plant growth (temperature, water, N, or P) should result in increased fine root lifespan. Second, increases in a factor that exceeds plant demand or tolerance should result in decreased lifespan. Third, as multiple factors interact fine root responses should be determined by the most dominant factor controlling plant growth. Moving forward, field experiments should determine which types of species (e.g., coarse vs. fine rooted, obligate vs. facultative mycotrophs) will express greater plasticity in response to environmental gradients while ecosystem models may begin to incorporate more detailed descriptions of root lifespan and turnover. Together these efforts will improve quantitative understanding of root dynamics and help to identify areas where future research should be focused

  4. Separating cause from effect: how does insulin/IGF signalling control lifespan in worms, flies and mice?

    PubMed

    Piper, M D W; Selman, C; McElwee, J J; Partridge, L

    2008-02-01

    Ageing research has been revolutionized by the use of model organisms to discover genetic alterations that can extend lifespan. In the last 5 years alone, it has become apparent that single gene mutations in the insulin and insulin-like growth-factor signalling pathways can lengthen lifespan in worms, flies and mice, implying evolutionary conservation of mechanisms. Importantly, this research has also shown that these mutations can keep the animals healthy and disease-free for longer and can alleviate specific ageing-related pathologies. These findings are striking in view of the negative effects that disruption of these signalling pathways can also produce. Here, we summarize the body of work that has lead to these discoveries and point out areas of interest for future work in characterizing the genetic, molecular and biochemical details of the mechanisms to achieving a longer and healthier life. PMID:18226095

  5. A TRPV Channel Modulates C. elegans Neurosecretion, Larval Starvation Survival, and Adult Lifespan

    PubMed Central

    Lee, Brian H.; Ashrafi, Kaveh

    2008-01-01

    For most organisms, food is only intermittently available; therefore, molecular mechanisms that couple sensation of nutrient availability to growth and development are critical for survival. These mechanisms, however, remain poorly defined. In the absence of nutrients, newly hatched first larval (L1) stage Caenorhabditis elegans halt development and survive in this state for several weeks. We isolated mutations in unc-31, encoding a calcium-activated regulator of neural dense-core vesicle release, which conferred enhanced starvation survival. This extended survival was reminiscent of that seen in daf-2 insulin-signaling deficient mutants and was ultimately dependent on daf-16, which encodes a FOXO transcription factor whose activity is inhibited by insulin signaling. While insulin signaling modulates metabolism, adult lifespan, and dauer formation, insulin-independent mechanisms that also regulate these processes did not promote starvation survival, indicating that regulation of starvation survival is a distinct program. Cell-specific rescue experiments identified a small subset of primary sensory neurons where unc-31 reconstitution modulated starvation survival, suggesting that these neurons mediate perception of food availability. We found that OCR-2, a transient receptor potential vanilloid (TRPV) channel that localizes to the cilia of this subset of neurons, regulates peptide-hormone secretion and L1 starvation survival. Moreover, inactivation of ocr-2 caused a significant extension in adult lifespan. These findings indicate that TRPV channels, which mediate sensation of diverse noxious, thermal, osmotic, and mechanical stimuli, couple nutrient availability to larval starvation survival and adult lifespan through modulation of neural dense-core vesicle secretion. PMID:18846209

  6. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span

    PubMed Central

    Kumar, Sandeep; Dietrich, Nicholas; Kornfeld, Kerry

    2016-01-01

    Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabdtitis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new

  7. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span.

    PubMed

    Kumar, Sandeep; Dietrich, Nicholas; Kornfeld, Kerry

    2016-02-01

    Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabditis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new

  8. Cisd2 mediates lifespan: is there an interconnection among Ca²⁺ homeostasis, autophagy, and lifespan?

    PubMed

    Wang, C-H; Kao, C-H; Chen, Y-F; Wei, Y-H; Tsai, T-F

    2014-09-01

    CISD2, an evolutionarily conserved novel gene, plays a crucial role in lifespan control and human disease. Mutations in human CISD2 cause type 2 Wolfram syndrome, a rare neurodegenerative and metabolic disorder associated with a shortened lifespan. Significantly, the CISD2 gene is located within a region on human chromosome 4q where a genetic component for human longevity has been mapped through a comparative genome analysis of centenarian siblings. We created Cisd2 knockout (loss-of-function) and transgenic (gain-of-function) mice to study the role of Cisd2 in development and pathophysiology, and demonstrated that Cisd2 expression affects lifespan in mammals. In the Cisd2 knockout mice, Cisd2 deficiency shortens lifespan and drives a panel of premature aging phenotypes. Additionally, an age-dependent decrease of Cisd2 expression has been detected during normal aging in mice. Interestingly, in the Cisd2 transgenic mice, we demonstrated that a persistent level of Cisd2 expression over the different stages of life gives the mice a long-lived phenotype that is linked to an extension in healthy lifespan and a delay in age-associated diseases. At the cellular level, Cisd2 deficiency leads to mitochondrial breakdown and dysfunction accompanied by cell death with autophagic features. Recent studies revealed that Cisd2 may function as an autophagy regulator involved in the Bcl-2 mediated regulation of autophagy. Furthermore, Cisd2 regulates Ca(2+) homeostasis and Ca(2+) has been proposed to have an important regulatory role in autophagy. Finally, it remains to be elucidated if and how the regulation in Ca(2+) homeostasis, autophagy and lifespan are interconnected at the molecular, cellular and organism levels.

  9. Surviving in the cold: yeast mutants with extended hibernating lifespan are oxidant sensitive

    PubMed Central

    Postma, Lucie; Lehrach, Hans; Ralser, Markus

    2009-01-01

    Metabolic activity generates oxidizing molecules throughout life, but it is still debated if the resulting damage of macromolecules is a causality, or consequence, of the aging process. This problem demands for studying growth- and longevity phenotypes separately. Here, we assayed a complete collection of haploid Saccharomyces cerevisiae knock-out strains for their capacity to endure long periods at low metabolic rates. Deletion of 93 genes, predominantly factors of primary metabolism, allowed yeast to survive for more than 58 months in the cold. The majority of these deletion strains were not resistant against oxidants or reductants, but many were hypersensitive. Hence, survival at low metabolic rates has limiting genetic components, and correlates with stress resistance inversely. Indeed, maintaining the energy consuming anti-oxidative machinery seems to be disadvantageous under coldroom conditions. PMID:20157578

  10. Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways.

    PubMed

    Kong, Li; Cai, Xue; Zhou, Xiaohong; Wong, Lily L; Karakoti, Ajay S; Seal, Sudipta; McGinnis, James F

    2011-06-01

    Cerium oxide nanoparticles, nanoceria, are inorganic antioxidants that have catalytic activities which mimic those of the neuroprotective enzymes superoxide dismutase and catalase. We have previously shown that nanoceria preserve retinal morphology and prevent loss of retinal function in a rat light damage model. In this study, the homozygous tubby mutant mouse, which exhibits inherited early progressive cochlear and retinal degeneration, was used as a model to test the ability of nanoceria to slow the progression of retinal degeneration. Tubby mice were injected systemically, intracardially, with 20 μl of 1mM nanoceria in saline, at postnatal day 10 and subsequently at P20 and P30 whereas saline injected and uninjected wild type (or heterozygous tubby) served as injected and uninjected controls, respectively. Assays for retinal function, morphology and signaling pathway gene expression were performed on P34 mice. Our data demonstrate that nanoceria protect the retina by decreasing Reactive Oxygen Species (ROS), up-regulating the expression of neuroprotection-associated genes; down-regulating apoptosis signaling pathways and/or up-regulating survival signaling pathways to slow photoreceptor degeneration. These data suggest that nanoceria have significant potential as global agents for therapeutic treatment of inherited retinal degeneration and most types of ocular diseases.

  11. Positive and negative gustatory inputs affect Drosophila lifespan partly in parallel to dFOXO signaling

    PubMed Central

    Ostojic, Ivan; Boll, Werner; Waterson, Michael J.; Chan, Tammy; Chandra, Rashmi; Pletcher, Scott D.; Alcedo, Joy

    2014-01-01

    In Caenorhabditis elegans, a subset of gustatory neurons, as well as olfactory neurons, shortens lifespan, whereas a different subset of gustatory neurons lengthens it. Recently, the lifespan-shortening effect of olfactory neurons has been reported to be conserved in Drosophila. Here we show that the Drosophila gustatory system also affects lifespan in a bidirectional manner. We find that taste inputs shorten lifespan through inhibition of the insulin pathway effector dFOXO, whereas other taste inputs lengthen lifespan in parallel to this pathway. We also note that the gustatory influence on lifespan does not necessarily depend on food intake levels. Finally, we identify the nature of some of the taste inputs that could shorten versus lengthen lifespan. Together our data suggest that different gustatory cues can modulate the activities of distinct signaling pathways, including different insulin-like peptides, to promote physiological changes that ultimately affect lifespan. PMID:24847072

  12. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice

    PubMed Central

    Bitto, Alessandro; Ito, Takashi K; Pineda, Victor V; LeTexier, Nicolas J; Huang, Heather Z; Sutlief, Elissa; Tung, Herman; Vizzini, Nicholas; Chen, Belle; Smith, Kaleb; Meza, Daniel; Yajima, Masanao; Beyer, Richard P; Kerr, Kathleen F; Davis, Daniel J; Gillespie, Catherine H; Snyder, Jessica M; Treuting, Piper M; Kaeberlein, Matt

    2016-01-01

    The FDA approved drug rapamycin increases lifespan in rodents and delays age-related dysfunction in rodents and humans. Nevertheless, important questions remain regarding the optimal dose, duration, and mechanisms of action in the context of healthy aging. Here we show that 3 months of rapamycin treatment is sufficient to increase life expectancy by up to 60% and improve measures of healthspan in middle-aged mice. This transient treatment is also associated with a remodeling of the microbiome, including dramatically increased prevalence of segmented filamentous bacteria in the small intestine. We also define a dose in female mice that does not extend lifespan, but is associated with a striking shift in cancer prevalence toward aggressive hematopoietic cancers and away from non-hematopoietic malignancies. These data suggest that a short-term rapamycin treatment late in life has persistent effects that can robustly delay aging, influence cancer prevalence, and modulate the microbiome. DOI: http://dx.doi.org/10.7554/eLife.16351.001 PMID:27549339

  13. PERK Limits Drosophila Lifespan by Promoting Intestinal Stem Cell Proliferation in Response to ER Stress

    PubMed Central

    Wang, Lifen; Ryoo, Hyung Don; Qi, Yanyan; Jasper, Heinrich

    2015-01-01

    Intestinal homeostasis requires precise control of intestinal stem cell (ISC) proliferation. In Drosophila, this control declines with age largely due to chronic activation of stress signaling and associated chronic inflammatory conditions. An important contributor to this condition is the age-associated increase in endoplasmic reticulum (ER) stress. Here we show that the PKR-like ER kinase (PERK) integrates both cell-autonomous and non-autonomous ER stress stimuli to induce ISC proliferation. In addition to responding to cell-intrinsic ER stress, PERK is also specifically activated in ISCs by JAK/Stat signaling in response to ER stress in neighboring cells. The activation of PERK is required for homeostatic regeneration, as well as for acute regenerative responses, yet the chronic engagement of this response becomes deleterious in aging flies. Accordingly, knocking down PERK in ISCs is sufficient to promote intestinal homeostasis and extend lifespan. Our studies highlight the significance of the PERK branch of the unfolded protein response of the ER (UPRER) in intestinal homeostasis and provide a viable strategy to improve organismal health- and lifespan. PMID:25945494

  14. Positive effect of porphyrans on the lifespan and vitality of Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Zhao, Tingting; Zhang, Quanbin; Qi, Huimin; Li, Zhien

    2007-10-01

    The effects of degraded porphyran (P1) and natural porphyran (P) on the lifespan and vitality of Drosophila melanogaster are studied. The porphyrans, added daily to the food medium at 0.2% and 1% concentrations, can significantly increase the lifespan in average of 55.79 and 58.23 d in 0.2% P1 diet females and 1% P1 diet_males, extending by 12.29% and 8.60% over the corresponding controls, respectively. The effects of porphyrans on D. melanogaster in heat-stress condition were also examined, and found a remarkable increase in survival time. The results which are consistently associated with the use of porphyrans are related to their free radical scavenger action. Considerable increase in vitality demonstrated that vitalities of middle-aged fly (assessed by measuring their mating capacity) was observed after porphyrans addition. Therefore, porphyrans are effective in reducing the rate of aging, and P1 in low molecular weight is better than natural P.

  15. PERK Limits Drosophila Lifespan by Promoting Intestinal Stem Cell Proliferation in Response to ER Stress.

    PubMed

    Wang, Lifen; Ryoo, Hyung Don; Qi, Yanyan; Jasper, Heinrich

    2015-05-01

    Intestinal homeostasis requires precise control of intestinal stem cell (ISC) proliferation. In Drosophila, this control declines with age largely due to chronic activation of stress signaling and associated chronic inflammatory conditions. An important contributor to this condition is the age-associated increase in endoplasmic reticulum (ER) stress. Here we show that the PKR-like ER kinase (PERK) integrates both cell-autonomous and non-autonomous ER stress stimuli to induce ISC proliferation. In addition to responding to cell-intrinsic ER stress, PERK is also specifically activated in ISCs by JAK/Stat signaling in response to ER stress in neighboring cells. The activation of PERK is required for homeostatic regeneration, as well as for acute regenerative responses, yet the chronic engagement of this response becomes deleterious in aging flies. Accordingly, knocking down PERK in ISCs is sufficient to promote intestinal homeostasis and extend lifespan. Our studies highlight the significance of the PERK branch of the unfolded protein response of the ER (UPRER) in intestinal homeostasis and provide a viable strategy to improve organismal health- and lifespan. PMID:25945494

  16. PERK Limits Drosophila Lifespan by Promoting Intestinal Stem Cell Proliferation in Response to ER Stress.

    PubMed

    Wang, Lifen; Ryoo, Hyung Don; Qi, Yanyan; Jasper, Heinrich

    2015-05-01

    Intestinal homeostasis requires precise control of intestinal stem cell (ISC) proliferation. In Drosophila, this control declines with age largely due to chronic activation of stress signaling and associated chronic inflammatory conditions. An important contributor to this condition is the age-associated increase in endoplasmic reticulum (ER) stress. Here we show that the PKR-like ER kinase (PERK) integrates both cell-autonomous and non-autonomous ER stress stimuli to induce ISC proliferation. In addition to responding to cell-intrinsic ER stress, PERK is also specifically activated in ISCs by JAK/Stat signaling in response to ER stress in neighboring cells. The activation of PERK is required for homeostatic regeneration, as well as for acute regenerative responses, yet the chronic engagement of this response becomes deleterious in aging flies. Accordingly, knocking down PERK in ISCs is sufficient to promote intestinal homeostasis and extend lifespan. Our studies highlight the significance of the PERK branch of the unfolded protein response of the ER (UPRER) in intestinal homeostasis and provide a viable strategy to improve organismal health- and lifespan.

  17. Extension of mouse lifespan by overexpression of catalase.

    PubMed

    Schriner, Samuel E; Linford, Nancy J

    2006-06-01

    The free radical theory of aging was originally proposed 50 years ago, and is arguably the most popular mechanism explaining the aging process. According to this theory, aging results from the progressive decline in organ function due to the damage generated by reactive oxygen species (ROS). These chemical species are a normal part of metabolism, and a group of enzymes exists to protect cells against their toxic effects. One of these species is hydrogen peroxide (H(2)O(2)), which can be degraded by catalase. To determine the role of hydrogen peroxide in aging and its importance in different subcellular compartments, transgenic mice were developed with increased catalase activities localized to the peroxisome (PCAT), nucleus (NCAT), or mitochondrion (MCAT). The largest effect on lifespan was found in MCAT animals, with a 20% increase in median lifespan and a 10% increase in the maximum lifespan. A more modest effect was seen in PCAT animals, and no significant change was found in NCAT animals. Upon further examination of the MCAT mice, it was found that H(2)O(2) production and H(2)O(2)-induced aconitase inactivation were attenuated, oxidative damage and the development of mitochondrial deletions were reduced, and cardiac pathology and cataract development were delayed. These results are consistent with a role of H(2)O(2) in the development of pathology and in the limitation of mouse lifespan. They also demonstrate the importance of mitochondria as a source, and possible target, of ROS.

  18. Epigenetic Contributions to Cognitive Aging: Disentangling Mindspan and Lifespan

    ERIC Educational Resources Information Center

    Spiegel, Amy M.; Sewal, Angila S.; Rapp, Peter R.

    2014-01-01

    Epigenetic modifications of chromatin structure provide a mechanistic interface for gene-environment interactions that impact the individualization of health trajectories across the lifespan. A growing body of research indicates that dysfunctional epigenetic regulation contributes to poor cognitive outcomes among aged populations. Here we review…

  19. Predicting fine root lifespan from plant functional traits in temperate trees.

    PubMed

    Luke McCormack, M; Adams, Thomas S; Smithwick, Erica A H; Eissenstat, David M

    2012-09-01

    Although linkages of leaf and whole-plant traits to leaf lifespan have been rigorously investigated, there is a limited understanding of similar linkages of whole-plant and fine root traits to root lifespan. In comparisons across species, do suites of traits found in leaves also exist for roots, and can these traits be used to predict root lifespan? We observed the fine root lifespan of 12 temperate tree species using minirhizotrons in a common garden and compared their median lifespans with fine-root and whole-plant traits. We then determined which set of combined traits would be most useful in predicting patterns of root lifespan. Median root lifespan ranged widely among species (95-336 d). Root diameter, calcium content, and tree wood density were positively related to root lifespan, whereas specific root length, nitrogen (N) : carbon (C) ratio, and plant growth rate were negatively related to root lifespan. Root diameter and plant growth rate, together (R² = 0.62) or in combination with root N : C ratio (R² = 0.76), were useful predictors of root lifespan across the 12 species. Our results highlight linkages between fine root lifespan in temperate trees and plant functional traits that may reduce uncertainty in predictions of root lifespan or turnover across species at broader spatial scales.

  20. Lifespan and Healthspan: Past, Present, and Promise.

    PubMed

    Crimmins, Eileen M

    2015-12-01

    The past century was a period of increasing life expectancy throughout the age range. This resulted in more people living to old age and to spending more years at the older ages. It is likely that increases in life expectancy at older ages will continue, but life expectancy at birth is unlikely to reach levels above 95 unless there is a fundamental change in our ability to delay the aging process. We have yet to experience much compression of morbidity as the age of onset of most health problems has not increased markedly. In recent decades, there have been some reductions in the prevalence of physical disability and dementia. At the same time, the prevalence of disease has increased markedly, in large part due to treatment which extends life for those with disease. Compressing morbidity or increasing the relative healthspan will require "delaying aging" or delaying the physiological change that results in disease and disability. While moving to life expectancies above age 95 and compressing morbidity substantially may require significant scientific breakthroughs; significant improvement in health and increases in life expectancy in the United States could be achieved with behavioral, life style, and policy changes that reduce socioeconomic disparities and allow us to reach the levels of health and life expectancy achieved in peer societies.

  1. Methionine restriction beyond life-span extension.

    PubMed

    Ables, Gene P; Hens, Julie R; Nichenametla, Sailendra N

    2016-01-01

    Dietary methionine restriction (MR) extends life span across species via various intracellular regulatory mechanisms. In rodents, MR induces resistance against adiposity, improves hepatic glucose metabolism, preserves cardiac function, and reduces body size, all of which can affect the onset of age-related diseases. Recent studies have shown that MR-affected biomarkers, such as fibroblast growth factor 21, adiponectin, leptin, cystathionine β synthase, and insulin-like growth factor 1, can potentially alter physiology. The beneficial effects of MR could be explained in part by its ability to reduce mitochondrial oxidative stress. Studies have revealed that MR can reduce reactive oxygen species that damage cells and promote cancer progression. It has been demonstrated that either MR or the targeting of specific genes in the methionine cycle could induce cell apoptosis while decreasing proliferation in several cancer models. The complete mechanism underlying the actions of MR on the cell cycle during cancer has not been fully elucidated. Epigenetic mechanisms, such as methylation and noncoding RNAs, are also possible downstream effectors of MR; future studies should help to elucidate some of these mechanisms. Despite evidence that changes in dietary methionine can affect epigenetics, it remains unknown whether epigenetics is a mechanism in MR. This review summarizes research on MR and its involvement in metabolism, cancer, and epigenetics.

  2. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents.

    PubMed

    Ryu, Dongryeol; Mouchiroud, Laurent; Andreux, Pénélope A; Katsyuba, Elena; Moullan, Norman; Nicolet-Dit-Félix, Amandine A; Williams, Evan G; Jha, Pooja; Lo Sasso, Giuseppe; Huzard, Damien; Aebischer, Patrick; Sandi, Carmen; Rinsch, Chris; Auwerx, Johan

    2016-08-01

    The biological effects of urolithins remain poorly characterized, despite wide-spread human exposure via the dietary consumption of their metabolic precursors, the ellagitannins, which are found in the pomegranate fruit, as well as in nuts and berries. We identified urolithin A (UA) as a first-in-class natural compound that induces mitophagy both in vitro and in vivo following oral consumption. In C. elegans, UA prevented the accumulation of dysfunctional mitochondria with age and extended lifespan. Likewise, UA prolonged normal activity during aging in C. elegans, including mobility and pharyngeal pumping, while maintaining mitochondrial respiratory capacity. These effects translated to rodents, where UA improved exercise capacity in two different mouse models of age-related decline of muscle function, as well as in young rats. Our findings highlight the health benefits of urolithin A and its potential application in strategies to improve mitochondrial and muscle function.

  3. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents.

    PubMed

    Ryu, Dongryeol; Mouchiroud, Laurent; Andreux, Pénélope A; Katsyuba, Elena; Moullan, Norman; Nicolet-Dit-Félix, Amandine A; Williams, Evan G; Jha, Pooja; Lo Sasso, Giuseppe; Huzard, Damien; Aebischer, Patrick; Sandi, Carmen; Rinsch, Chris; Auwerx, Johan

    2016-08-01

    The biological effects of urolithins remain poorly characterized, despite wide-spread human exposure via the dietary consumption of their metabolic precursors, the ellagitannins, which are found in the pomegranate fruit, as well as in nuts and berries. We identified urolithin A (UA) as a first-in-class natural compound that induces mitophagy both in vitro and in vivo following oral consumption. In C. elegans, UA prevented the accumulation of dysfunctional mitochondria with age and extended lifespan. Likewise, UA prolonged normal activity during aging in C. elegans, including mobility and pharyngeal pumping, while maintaining mitochondrial respiratory capacity. These effects translated to rodents, where UA improved exercise capacity in two different mouse models of age-related decline of muscle function, as well as in young rats. Our findings highlight the health benefits of urolithin A and its potential application in strategies to improve mitochondrial and muscle function. PMID:27400265

  4. A Systems Approach to Reverse Engineer Lifespan Extension by Dietary Restriction.

    PubMed

    Hou, Lei; Wang, Dan; Chen, Di; Liu, Yi; Zhang, Yue; Cheng, Hao; Xu, Chi; Sun, Na; McDermott, Joseph; Mair, William B; Han, Jing-Dong J

    2016-03-01

    Dietary restriction (DR) is the most powerful natural means to extend lifespan. Although several genes can mediate responses to alternate DR regimens, no single genetic intervention has recapitulated the full effects of DR, and no unified system is known for different DR regimens. Here we obtain temporally resolved transcriptomes during calorie restriction and intermittent fasting in Caenorhabditis elegans and find that early and late responses involve metabolism and cell cycle/DNA damage, respectively. We uncover three network modules of DR regulators by their target specificity. By genetic manipulations of nodes representing discrete modules, we induce transcriptomes that progressively resemble DR as multiple nodes are perturbed. Targeting all three nodes simultaneously results in extremely long-lived animals that are refractory to DR. These results and dynamic simulations demonstrate that extensive feedback controls among regulators may be leveraged to drive the regulatory circuitry to a younger steady state, recapitulating the full effect of DR. PMID:26959186

  5. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals "aging factors" and mechanism of lifespan asymmetry.

    PubMed

    Yang, Jing; McCormick, Mark A; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K; Li, Hao

    2015-09-22

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials ("aging factors") through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms.

  6. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals “aging factors” and mechanism of lifespan asymmetry

    PubMed Central

    Yang, Jing; McCormick, Mark A.; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K.; Li, Hao

    2015-01-01

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials (“aging factors”) through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms. PMID:26351681

  7. Epigenetic contributions to cognitive aging: disentangling mindspan and lifespan.

    PubMed

    Spiegel, Amy M; Sewal, Angila S; Rapp, Peter R

    2014-10-01

    Epigenetic modifications of chromatin structure provide a mechanistic interface for gene-environment interactions that impact the individualization of health trajectories across the lifespan. A growing body of research indicates that dysfunctional epigenetic regulation contributes to poor cognitive outcomes among aged populations. Here we review neuroepigenetic research as it relates to cognitive aging, focusing specifically on memory function mediated by the hippocampal system. Recent work that differentiates epigenetic contributions to chronological aging from influences on mindspan, or the preservation of normal cognitive abilities across the lifespan, is also highlighted. Together, current evidence indicates that while age-related memory impairment is associated with dysfunction in the coordinated regulation of chromatin modification, animal models that show individual differences in cognitive outcome underscore the enormous mechanistic complexity that surrounds epigenetic dynamics in the aged hippocampus.

  8. Lifespan trends of autobiographical remembering: episodicity and search for meaning.

    PubMed

    Habermas, Tilmann; Diel, Verena; Welzer, Harald

    2013-09-01

    Autobiographical memories of older adults show fewer episodic and more non-episodic elements than those of younger adults. This semantization effect is attributed to a loss of episodic memory ability. However the alternative explanation by an increasing proclivity to search for meaning has not been ruled out to date. To test whether a decrease in episodicity and an increase in meaning-making in autobiographical narratives are related across the lifespan, we used different instructions, one focussing on specific episodes, the other on embedding events in life, in two lifespan samples. A continuous decrease of episodic quality of memory (memory specificity, narrative quality) was confirmed. An increase of search for meaning (interpretation, life story integration) was confirmed only up to middle adulthood. This non-inverse development of episodicity and searching for meaning in older age speaks for an autonomous semantization effect that is not merely due to an increase in interpretative preferences.

  9. Epigenetic contributions to cognitive aging: disentangling mindspan and lifespan

    PubMed Central

    Spiegel, Amy M.; Sewal, Angila S.

    2014-01-01

    Epigenetic modifications of chromatin structure provide a mechanistic interface for gene–environment interactions that impact the individualization of health trajectories across the lifespan. A growing body of research indicates that dysfunctional epigenetic regulation contributes to poor cognitive outcomes among aged populations. Here we review neuroepigenetic research as it relates to cognitive aging, focusing specifically on memory function mediated by the hippocampal system. Recent work that differentiates epigenetic contributions to chronological aging from influences on mindspan, or the preservation of normal cognitive abilities across the lifespan, is also highlighted. Together, current evidence indicates that while age-related memory impairment is associated with dysfunction in the coordinated regulation of chromatin modification, animal models that show individual differences in cognitive outcome underscore the enormous mechanistic complexity that surrounds epigenetic dynamics in the aged hippocampus. PMID:25227252

  10. Lifespan maturation and degeneration of human brain white matter

    PubMed Central

    Yeatman, Jason D.; Wandell, Brian A.; Mezer, Aviv A.

    2014-01-01

    Properties of human brain tissue change across the lifespan. Here we model these changes in the living human brain by combining quantitative MRI measurements of R1 (1/T1) with diffusion MRI and tractography (N=102, ages 7–85). The amount of R1 change during development differs between white matter fascicles, but in each fascicle the rate of development and decline are mirror symmetric; the rate of R1 development as the brain approaches maturity predicts the rate of R1 degeneration in aging. Quantitative measurements of macromolecule tissue volume (MTV) confirm that R1 is an accurate index of the growth of new brain tissue. In contrast to R1, diffusion development follows an asymmetric time-course with rapid childhood changes but a slow rate of decline in old age. Together, the time-courses of R1 and diffusion changes demonstrate that multiple biological processes drive changes in white matter tissue properties over the lifespan. PMID:25230200

  11. Changes in REM-Sleep Percentage Over the Adult Lifespan

    PubMed Central

    Floyd, Judith A.; Janisse, James J.; Jenuwine, Elizabeth S.; Ager, Joel W.

    2007-01-01

    Study Objectives: To resolve inconsistencies in previously reported changes in percentage of rapid eye movement sleep (REM%) over the adult lifespan and to identify gaps in available information about adults' REM sleep. Design: A research synthesis approach specifically designed to detect nonlinear change. Cubic B smoothing splines were fitted to scatterplots generated from reported means and variance for REM%, REM minutes, and total sleep time. Participants: 382 English-language research reports provided REM% values for 4171 subjects; REM minutes values for 2722 subjects; and values of total sleep time for 5037 subjects. Samples were composed of subjects described by authors as normal or healthy. Mean ages of samples ranged from 18.0 to 91.7 years. Setting: University research center. Interventions: N/A. Measurements and Results: Two coders extracted information. Intercoder reliability was above cutoffs for excellent. Authors often failed to describe screening procedures used to determine subjects' health status. Few results were reported separately for women. The functional relationship between age and REM% was essentially linear over much of the adult lifespan, decreasing about 0.6% per decade. The best estimate of when REM% ceased its small linear decline was the mid-70s, after which time a small increase in REM% was observed due to REM minutes increasing while total sleep time declined. Conclusions: Ability to detect both linear and nonlinear change in REM%, REM minutes, and total sleep time over the lifespan was useful for resolving inconsistent findings about the existence of changes in REM% with aging. This approach to research synthesis also facilitated identification of ages for which little normative information about REM sleep was available. Citation: Floyd JA; Janisse JJ; Jenuwine ES et al. Changes in REM-sleep percentage over the adult lifespan. SLEEP 2007;30(7):829-836. PMID:17682652

  12. Effect of vitamin D3 on lifespan in Caenorhabditis elegans.

    PubMed

    Messing, Jennifer A; Heuberger, Roschelle; Schisa, Jennifer A

    2013-12-01

    Vitamin D is an essential micronutrient, necessary for human health. To determine if Caenorhabditis elegans (C. elegans) could function as an effective model to study the mechanisms of action of vitamin D, we asked if vitamin D3 affects C. elegans lifespan. Multiple factors positively impact lifespan in this system including dietary restriction and vitamin E. In addition, the C. elegans DAF-12 nuclear hormone receptor is homologous to the vitamin D receptor in humans and is therefore a candidate for a functional vitamin D receptor. It was hypothesized that vitamin D3 supplementation would increase the lifespan of C. elegans in a DAF-12-dependent manner. Dose-response curves were completed, and results indicate that exposure to 1,000 µg/ml vitamin D3 significantly increased the lifespan of wild-type worms by up to 39% (p<0.001). The daf-12 mutants exposed to 1,000 µg/ml vitamin D3 lived significantly longer than daf-12 controls exposed to 0 µg/ml (p<0.001), but among worms exposed to 1,000 µg/ml vitamin D3, wild type lived significantly longer than daf-12 (p<0.01). The data suggest that vitamin D3 can interact with multiple receptors, possibly implicating the NHR family of nuclear hormone receptors related to DAF-12. This research is the first to our knowledge to utilize C. elegans as a model to study the impact of vitamin D3 on longevity and supports the use of this model system to increase our understanding of vitamin D function at the cellular level, its role in cellular health, and its potential medicinal utility in humans.

  13. Psychological protective factors across the lifespan: implications for psychiatry.

    PubMed

    Vahia, Ipsit V; Chattillion, Elizabeth; Kavirajan, Harish; Depp, Colin A

    2011-03-01

    Although there are many challenges in operationally defining and measuring positive psychological constructs, there is accumulating evidence that optimism, resilience, positive attitudes toward aging, and spirituality are related to reduced risk for morbidity and mortality in older age. This article reviews the definition, measurement, associations, and putative mechanisms of selected positive psychological constructs on subjective and objective indicators of health with a focus on the latter half of the lifespan. PMID:21333850

  14. As different as day and night: evidence from root lifespan

    NASA Astrophysics Data System (ADS)

    Bai, W.; Xia, J.; Wan, S.; Zhang, W.; Li, L.

    2011-10-01

    Roots are key components of terrestrial ecosystem C cycling and play an important role in regulation of the response of terrestrial ecosystem to global climate warming, which occurs with greater warming magnitudes at night than during daytime across different regions on the Earth. However, there has been no detailed study to examine the effect of asymmetrical warming on root dynamics at the level of terrestrial ecosystem. To understand the effects of day and night warming on root lifespan in the semiarid temperate steppe in Northern China, a field study with a full factorial design including control, day warming, night warming and diurnal warming was conducted. The responses of root survivorship to day and night warming with modified rhizotron technique were monitored during the growing seasons of 2007-2009. We demonstrate, for the first time, that longevity of roots born in spring, summer and autumn showed different response to day, night and diurnal warming, and that day warming significantly prolonged the overall lifespan for the roots born in the growing seasons of 2007-2009 pooled as a whole, while night warning had no effect on the overall lifespan in the semi-arid grassland in Northern China. The differential response of root lifespan to day and night warming may be accounted for by the photoassimilate allocation as evidenced by that day and night warming had different effect on root non-structural carbohydrate content. This finding differed from other processes associated with ecosystem C cycle such as total ecosystem productivity, net ecosystem productivity and soil respiration. Thus our findings highlight that it is essential to incorporate the differential effects of day and night warming into the simulating and predicting the responses and feedbacks of terrestrial ecosystem C cycling to global warming.

  15. Day and night warming have different effect on root lifespan

    NASA Astrophysics Data System (ADS)

    Bai, W. M.; Xia, J. Y.; Wan, S. Q.; Zhang, W. H.; Li, L. H.

    2012-01-01

    Roots are key components of C cycling in terrestrial ecosystems and play an important role in the regulation of response of terrestrial ecosystems to global climate warming, which is predicted to occur with greater warming magnitudes at night than during daytime across different regions on the Earth. However, there has been no detailed study to investigate the effect of asymmetrical warming on root dynamics at the level of terrestrial ecosystems. To understand the effects of day and night warming on root lifespan in the semiarid temperate steppe in northern China, a field study with a full factorial design including control, day warming, night warming and continuous warming was conducted using modified rhizotron technique during three growing seasons in 2007-2009. Our results show that day, night and continuous warming had different effects on longevity of roots born in spring, summer and autumn, and that day warming significantly prolonged overall lifespan for the roots born in the three growing seasons, while night warning had no effect on overall lifespan. Day and night warming had different effects on root non-structural carbohydrate content, suggesting that allocation of photoassimilate may account for the differential responses of root lifespan to day and night warming. These results differ from other processes associated with ecosystems C cycle such as total ecosystem productivity, net ecosystem productivity and soil respiration. Our findings highlight that it is essential to incorporate the differential effects of day and night warming on root dynamics into simulating and predicting the responses and feedbacks of terrestrial ecosystems C cycling to global warming.

  16. Macronutrient balance, reproductive function, and lifespan in aging mice.

    PubMed

    Solon-Biet, Samantha M; Walters, Kirsty A; Simanainen, Ulla K; McMahon, Aisling C; Ruohonen, Kari; Ballard, John William O; Raubenheimer, David; Handelsman, David J; Le Couteur, David G; Simpson, Stephen J

    2015-03-17

    In invertebrates, reproductive output and lifespan are profoundly impacted by dietary macronutrient balance, with these traits achieving their maxima on different diet compositions, giving the appearance of a resource-based tradeoff between reproduction and longevity. For the first time in a mammal, to our knowledge, we evaluate the effects of dietary protein (P), carbohydrate (C), fat (F), and energy (E) on lifespan and reproductive function in aging male and female mice. We show that, as in invertebrates, the balance of macronutrients has marked and largely opposing effects on reproductive and longevity outcomes. Mice were provided ad libitum access to one of 25 diets differing in P, C, F, and E content, with reproductive outcomes assessed at 15 months. An optimal balance of macronutrients exists for reproductive function, which, for most measures, differs from the diets that optimize lifespan, and this response differs with sex. Maximal longevity was achieved on diets containing a P:C ratio of 1:13 in males and 1:11 for females. Diets that optimized testes mass and epididymal sperm counts (indicators of gamete production) contained a higher P:C ratio (1:1) than those that maximized lifespan. In females, uterine mass (an indicator of estrogenic activity) was also greatest on high P:C diets (1:1) whereas ovarian follicle number was greatest on P:C 3:1 associated with high-F intakes. By contrast, estrous cycling was more likely in mice on lower P:C (1:8), and the number of corpora lutea, indicative of recent ovulations, was greatest on P:C similar to those supporting greatest longevity (1:11). PMID:25733862

  17. Macronutrient balance, reproductive function, and lifespan in aging mice.

    PubMed

    Solon-Biet, Samantha M; Walters, Kirsty A; Simanainen, Ulla K; McMahon, Aisling C; Ruohonen, Kari; Ballard, John William O; Raubenheimer, David; Handelsman, David J; Le Couteur, David G; Simpson, Stephen J

    2015-03-17

    In invertebrates, reproductive output and lifespan are profoundly impacted by dietary macronutrient balance, with these traits achieving their maxima on different diet compositions, giving the appearance of a resource-based tradeoff between reproduction and longevity. For the first time in a mammal, to our knowledge, we evaluate the effects of dietary protein (P), carbohydrate (C), fat (F), and energy (E) on lifespan and reproductive function in aging male and female mice. We show that, as in invertebrates, the balance of macronutrients has marked and largely opposing effects on reproductive and longevity outcomes. Mice were provided ad libitum access to one of 25 diets differing in P, C, F, and E content, with reproductive outcomes assessed at 15 months. An optimal balance of macronutrients exists for reproductive function, which, for most measures, differs from the diets that optimize lifespan, and this response differs with sex. Maximal longevity was achieved on diets containing a P:C ratio of 1:13 in males and 1:11 for females. Diets that optimized testes mass and epididymal sperm counts (indicators of gamete production) contained a higher P:C ratio (1:1) than those that maximized lifespan. In females, uterine mass (an indicator of estrogenic activity) was also greatest on high P:C diets (1:1) whereas ovarian follicle number was greatest on P:C 3:1 associated with high-F intakes. By contrast, estrous cycling was more likely in mice on lower P:C (1:8), and the number of corpora lutea, indicative of recent ovulations, was greatest on P:C similar to those supporting greatest longevity (1:11).

  18. Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Shen, En-Zhi; Song, Chun-Qing; Lin, Yuan; Zhang, Wen-Hong; Su, Pei-Fang; Liu, Wen-Yuan; Zhang, Pan; Xu, Jiejia; Lin, Na; Zhan, Cheng; Wang, Xianhua; Shyr, Yu; Cheng, Heping; Dong, Meng-Qiu

    2014-04-01

    It has been theorized for decades that mitochondria act as the biological clock of ageing, but the evidence is incomplete. Here we show a strong coupling between mitochondrial function and ageing by in vivo visualization of the mitochondrial flash (mitoflash), a frequency-coded optical readout reflecting free-radical production and energy metabolism at the single-mitochondrion level. Mitoflash activity in Caenorhabditis elegans pharyngeal muscles peaked on adult day 3 during active reproduction and on day 9 when animals started to die off. A plethora of genetic mutations and environmental factors inversely modified the lifespan and the day-3 mitoflash frequency. Even within an isogenic population, the day-3 mitoflash frequency was negatively correlated with the lifespan of individual animals. Furthermore, enhanced activity of the glyoxylate cycle contributed to the decreased day-3 mitoflash frequency and the longevity of daf-2 mutant animals. These results demonstrate that the day-3 mitoflash frequency is a powerful predictor of C. elegans lifespan across genetic, environmental and stochastic factors. They also support the notion that the rate of ageing, although adjustable in later life, has been set to a considerable degree before reproduction ceases.

  19. DNA repair in species with extreme lifespan differences.

    PubMed

    MacRae, Sheila L; Croken, Matthew McKnight; Calder, R B; Aliper, Alexander; Milholland, Brandon; White, Ryan R; Zhavoronkov, Alexander; Gladyshev, Vadim N; Seluanov, Andrei; Gorbunova, Vera; Zhang, Zhengdong D; Vijg, Jan

    2015-12-01

    Differences in DNA repair capacity have been hypothesized to underlie the great range of maximum lifespans among mammals. However, measurements of individual DNA repair activities in cells and animals have not substantiated such a relationship because utilization of repair pathways among animals--depending on habitats, anatomical characteristics, and life styles--varies greatly between mammalian species. Recent advances in high-throughput genomics, in combination with increased knowledge of the genetic pathways involved in genome maintenance, now enable a comprehensive comparison of DNA repair transcriptomes in animal species with extreme lifespan differences. Here we compare transcriptomes of liver, an organ with high oxidative metabolism and abundant spontaneous DNA damage, from humans, naked mole rats, and mice, with maximum lifespans of ~120, 30, and 3 years, respectively, with a focus on genes involved in DNA repair. The results show that the longer-lived species, human and naked mole rat, share higher expression of DNA repair genes, including core genes in several DNA repair pathways. A more systematic approach of signaling pathway analysis indicates statistically significant upregulation of several DNA repair signaling pathways in human and naked mole rat compared with mouse. The results of this present work indicate, for the first time, that DNA repair is upregulated in a major metabolic organ in long-lived humans and naked mole rats compared with short-lived mice. These results strongly suggest that DNA repair can be considered a genuine longevity assurance system. PMID:26729707

  20. Target of rapamycin activation predicts lifespan in fruit flies

    PubMed Central

    Scialò, Filippo; Sriram, Ashwin; Naudí, Alba; Ayala, Victoria; Jové, Mariona; Pamplona, Reinald; Sanz, Alberto

    2015-01-01

    Aging and age-related diseases are one of the most important health issues that the world will confront during the 21st century. Only by understanding the proximal causes will we be able to find treatments to reduce or delay the onset of degenerative diseases associated with aging. Currently, the prevalent paradigm in the field is the accumulation of damage. However, a new theory that proposes an alternative explanation is gaining momentum. The hyperfunction theory proposes that aging is not a consequence of a wear and tear process, but a result of the continuation of developmental programs during adulthood. Here we use Drosophila melanogaster, where evidence supporting both paradigms has been reported, to identify which parameters that have been previously related with lifespan best predict the rate of aging in wild type flies cultured at different temperatures. We find that mitochondrial function and mitochondrial reactive oxygen species (mtROS) generation correlates with metabolic rate, but not with the rate of aging. Importantly, we find that activation of nutrient sensing pathways (i.e. insulin-PI3K/Target of rapamycin (Tor) pathway) correlates with lifespan, but not with metabolic rate. Our results, dissociate metabolic rate and lifespan in wild type flies and instead link nutrient sensing signaling with longevity as predicted by the hyperfunction theory. PMID:26259964

  1. Ontogeny of morningness-eveningness across the adult human lifespan

    NASA Astrophysics Data System (ADS)

    Randler, Christoph

    2016-02-01

    Sleep timing of humans can be classified alongside a continuum from early to late sleepers, with some people (larks) having an early activity, early bed, and rise times and others (owls) with a more nocturnally orientated activity. Only a few studies reported that morningness-eveningness changes significantly during the adult lifespan based on community samples. Here, I applied a different methodological approach to seek for evidence for the age-related changes in morningness-eveningness preferences by using a meta-data from all available studies. The new aspect of this cross-sectional approach is that only a few studies themselves address the age-related changes of the adult lifespan development, but that many studies are available that provide exactly the data needed. The studies came from 27 countries and included 36,939 participants. Age was highly significantly correlated with scores on the Composite Scale of Morningness ( r = 0.70). This relationship seems linear, because a linear regression explained nearly the same amount of variance compared to other models such as logarithmic, quadratic, or cubic models. The standard deviation of age correlated with the standard deviation of CSM scores ( r = 0.55), suggesting when there is much variance in age in a study; in turn, there is much variance in morningness. This meta-analytical approach shows that morningness-eveningness changes across the adult lifespan and that older age is related to higher morningness.

  2. Cranberry anthocyanin extract prolongs lifespan of fruit flies.

    PubMed

    Wang, Lijun; Li, Yuk Man; Lei, Lin; Liu, Yuwei; Wang, Xiaobo; Ma, Ka Ying; Chen, Zhen-Yu

    2015-09-01

    Cranberry is an excellent source of dietary antioxidants. The present study investigated the effect of cranberry anthocyanin (CrA) extract on the lifespan of fruit flies with focus on its interaction with aging-related genes including superoxide dismutase (SOD), catalase (CAT), methuselah (MTH), insulin receptor (InR), target of rapamycin (TOR), hemipterus (Hep), and phosphoenolpyruvate carboxykinase (PEPCK). Results showed that diet containing 20mg/mL CrA could significantly prolong the mean lifespan of fruit flies by 10% compared with the control diet. This was accompanied by up-regulation of SOD1 and down-regulation of MTH, InR, TOR and PEPCK. The stress resistance test demonstrated that CrA could reduce the mortality rate induced by H2O2 but not by paraquat. It was therefore concluded that the lifespan-prolonging activity of CrA was most likely mediated by modulating the genes of SOD1, MTH, InR, TOR and PEPCK. PMID:26159161

  3. DNA repair in species with extreme lifespan differences

    PubMed Central

    MacRae, Sheila L.; Croken, Matthew McKnight; Calder, R.B.; Aliper, Alexander; Milholland, Brandon; White, Ryan R.; Zhavoronkov, Alexander; Gladyshev, Vadim N.; Seluanov, Andrei; Gorbunova, Vera; Zhang, Zhengdong D.; Vijg, Jan

    2015-01-01

    Differences in DNA repair capacity have been hypothesized to underlie the great range of maximum lifespans among mammals. However, measurements of individual DNA repair activities in cells and animals have not substantiated such a relationship because utilization of repair pathways among animals—depending on habitats, anatomical characteristics, and life styles—varies greatly between mammalian species. Recent advances in high-throughput genomics, in combination with increased knowledge of the genetic pathways involved in genome maintenance, now enable a comprehensive comparison of DNA repair transcriptomes in animal species with extreme lifespan differences. Here we compare transcriptomes of liver, an organ with high oxidative metabolism and abundant spontaneous DNA damage, from humans, naked mole rats, and mice, with maximum lifespans of ∼120, 30, and 3 years, respectively, with a focus on genes involved in DNA repair. The results show that the longer-lived species, human and naked mole rat, share higher expression of DNA repair genes, including core genes in several DNA repair pathways. A more systematic approach of signaling pathway analysis indicates statistically significant upregulation of several DNA repair signaling pathways in human and naked mole rat compared with mouse. The results of this present work indicate, for the first time, that DNA repair is upregulated in a major metabolic organ in long-lived humans and naked mole rats compared with short-lived mice. These results strongly suggest that DNA repair can be considered a genuine longevity assurance system. PMID:26729707

  4. Lifespan behavioural and neural resilience in a social insect.

    PubMed

    Giraldo, Ysabel Milton; Kamhi, J Frances; Fourcassié, Vincent; Moreau, Mathieu; Robson, Simon K A; Rusakov, Adina; Wimberly, Lindsey; Diloreto, Alexandria; Kordek, Adrianna; Traniello, James F A

    2016-01-13

    Analyses of senescence in social species are important to understanding how group living influences the evolution of ageing in society members. Social insects exhibit remarkable lifespan polyphenisms and division of labour, presenting excellent opportunities to test hypotheses concerning ageing and behaviour. Senescence patterns in other taxa suggest that behavioural performance in ageing workers would decrease in association with declining brain functions. Using the ant Pheidole dentata as a model, we found that 120-day-old minor workers, having completed 86% of their laboratory lifespan, showed no decrease in sensorimotor functions underscoring complex tasks such as alloparenting and foraging. Collaterally, we found no age-associated increases in apoptosis in functionally specialized brain compartments or decreases in synaptic densities in the mushroom bodies, regions associated with integrative processing. Furthermore, brain titres of serotonin and dopamine--neuromodulators that could negatively impact behaviour through age-related declines--increased in old workers. Unimpaired task performance appears to be based on the maintenance of brain functions supporting olfaction and motor coordination independent of age. Our study is the first to comprehensively assess lifespan task performance and its neurobiological correlates and identify constancy in behavioural performance and the absence of significant age-related neural declines. PMID:26740614

  5. Drug Synergy Drives Conserved Pathways to Increase Fission Yeast Lifespan

    PubMed Central

    Huang, Xinhe; Leggas, Markos; Dickson, Robert C.

    2015-01-01

    Aging occurs over time with gradual and progressive loss of physiological function. Strategies to reduce the rate of functional loss and mitigate the subsequent onset of deadly age-related diseases are being sought. We demonstrated previously that a combination of rapamycin and myriocin reduces age-related functional loss in the Baker’s yeast Saccharomyces cerevisiae and produces a synergistic increase in lifespan. Here we show that the same drug combination also produces a synergistic increase in the lifespan of the fission yeast Schizosaccharomyces pombe and does so by controlling signal transduction pathways conserved across a wide evolutionary time span ranging from yeasts to mammals. Pathways include the target of rapamycin complex 1 (TORC1) protein kinase, the protein kinase A (PKA) and a stress response pathway, which in fission yeasts contains the Sty1 protein kinase, an ortholog of the mammalian p38 MAP kinase, a type of Stress Activated Protein Kinase (SAPK). These results along with previous studies in S. cerevisiae support the premise that the combination of rapamycin and myriocin enhances lifespan by regulating signaling pathways that couple nutrient and environmental conditions to cellular processes that fine-tune growth and stress protection in ways that foster long term survival. The molecular mechanisms for fine-tuning are probably species-specific, but since they are driven by conserved nutrient and stress sensing pathways, the drug combination may enhance survival in other organisms. PMID:25786258

  6. Cell resilience in species lifespans: a link to inflammation?

    PubMed Central

    Finch, CE; Morgan, TE; Longo, VD; de Magalhaes, JP

    2010-01-01

    Species differences in lifespan have been attributed to cellular survival during various stressors, designated here as ‘cell resilience’. In primary fibroblast cultures, cell resilience during exposure to free radicals, hypoglycemia, hyperthermia, and various toxins has shown generally consistent correlations with the species characteristic lifespans of birds and mammals. However, the mechanistic links of cell resilience in fibroblast cultures to different species lifespans are poorly understood. We propose that certain experimental stressors are relevant to somatic damage in vivo during inflammatory responses of innate immunity, particularly, resistance to ROS, low glucose, and hyperthermia. According to this hypothesis, somatic cell resilience determines species' differences in longevity during repeated infections and traumatic injuries in the natural environment. Infections and injury expose local fibroblasts and other cells to ROS generated by macrophages and to local temperature elevations. Systemically, acute phase immune reactions cause hypoglycemia and hyperthermia. We propose that cell resilience to somatic stressors incurred in inflammation is important in the evolution of longevity and that longer-lived species are specifically more resistant to immune-related stressors. This hypothesis further specifies Kirkwood's disposable soma theory. We suggest expanding the battery of stressors and markers used for comparative studies to additional cell types and additional parameters relevant to host defense and to their ecological specificities. PMID:20415721

  7. Dietary protein:carbohydrate balance is a critical modulator of lifespan and reproduction in Drosophila melanogaster: a test using a chemically defined diet.

    PubMed

    Lee, Kwang Pum

    2015-04-01

    Macronutrient balance is an important determinant of fitness in many animals, including insects. Previous studies have shown that altering the concentrations of yeast and sugar in the semi-synthetic media has a profound impact on lifespan in Drosophila melanogaster, suggesting that dietary protein:carbohydrate (P:C) balance is the main driver of lifespan and ageing processes. However, since yeast is rich in multiple nutrients other than proteins, this lifespan-determining role of dietary P:C balance needs to be further substantiated through trials using a chemically-defined, synthetic diet. In the present study, the effects of dietary P:C balance on lifespan and fecundity were investigated in female D. melanogaster flies fed on one of eight isocaloric synthetic diets differing in P:C ratio (0:1, 1:16, 1:8, 1:4, 1:2, 1:1, 2:1 or 4:1). Lifespan and dietary P:C ratio were related in a convex manner, with lifespan increasing to a peak at the two intermediate P:C ratios (1:2 and 1:4) and falling at the imbalanced ratios (0:1 and 4:1). Ingesting nutritionally imbalanced diets not only caused an earlier onset of senescence but also accelerated the age-dependent increase in mortality. Egg production was suppressed when flies were fed on a protein-deficient food (0:1), but increased with increasing dietary P:C ratio. Long-lived flies at the intermediate P:C ratios (1:2 and 1:4) stored a greater amount of lipids than those short-lived ones at the two imbalanced ratios (0:1 and 4:1). These findings provide a strong support to the notion that adequate dietary P:C balance is crucial for extending lifespan in D. melanogaster and offer new insights into how dietary P:C balance affects lifespan and ageing through its impacts on body composition.

  8. Extended BCDM

    NASA Astrophysics Data System (ADS)

    Occhionero, Franco; Baccigalupi, Carlo; Amendola, Luca

    1999-05-01

    We propose a new inflationary toy model that produces two episodes of phase transitions. With the first one, super-horizon-sized bubbles are nucleated, which are seen from inside as open universes, thereby reconciling inflation with the recent observations of a low Ω0. With the second transition, a distribution of sub-horizon voids, of sizes typically around 10-100 Mpc/h are generated inside the open universes. These primordial voids can be the seeds of the present large scale voids that are detected in redshift surveys, and provide a non-Gaussian signal on the microwave background. The model realizes this sequence along the same slow-rolling path, by modulating the energy difference between the vacuum states. In this model, that we call extended Bubbly CDM, openness and bubblyness, rather than flatness and homogeneity, are the main products of inflation.

  9. Organic fertilization leads to increased peach root production and lifespan.

    PubMed

    Baldi, E; Toselli, M; Eissenstat, D M; Marangoni, B

    2010-11-01

    We evaluated the effects of mineral and organic fertilizers on peach root dynamics in the growing season from 2003 to 2006 in a nectarine (Prunus persica L.) orchard, planted in 2001 and located in the Po valley, northeastern Italy. Very few studies have conducted long-term investigations of root dynamics of fruit crops. Our main objective was to determine whether organic fertilizers affect root dynamics differently than mineral fertilizers. The experiment was a completely randomized block design with four replicates of three treatments: unfertilized, mineral fertilized and composted with municipal waste. Mineral fertilizers included P (100 kg ha(-1) year(-1)) and K (200 kg ha(-1) year(-1)) applied only at planting and N (70-130 kg ha(-1) year(-1)) split into two applications, one at 40 days after full bloom (60%) and the other in September (40%) each year. The compost fertilization represented a yearly rate of 10 metric tons (t) dry weight ha(-1), which approximates (in kg ha(-1) year(-1)) 240 N, 100 P and 200 K, split similarly to that described for the mineral fertilization of N. Both root growth and survival were evaluated at 20-day intervals during the growing season by the minirhizotron technique. Compost increased the production of new roots compared with the other treatments (P < 0.01). Roots were mainly produced at a depth of 41-80 cm and from March to May and in late summer. An analysis of covariance indicated no significant effect of soil nitrate on root production (P = 0.47). The root lifespan was longer in compost-treated trees than in mineral-fertilized or unfertilized trees (P < 0.01) and it was strongly affected by time of birth; roots born later in the summer lived longer than those born in the spring. Across years and treatments, the average root lifespan was positively correlated with soil nitrate (r = 0.60; P < 0.001). Variation in root lifespan with method of fertilization could be accounted for by variation in soil

  10. Longitudinal RNA-Seq Analysis of Vertebrate Aging Identifies Mitochondrial Complex I as a Small-Molecule-Sensitive Modifier of Lifespan.

    PubMed

    Baumgart, Mario; Priebe, Steffen; Groth, Marco; Hartmann, Nils; Menzel, Uwe; Pandolfini, Luca; Koch, Philipp; Felder, Marius; Ristow, Michael; Englert, Christoph; Guthke, Reinhard; Platzer, Matthias; Cellerino, Alessandro

    2016-02-24

    Mutations and genetic variability affect gene expression and lifespan, but the impact of variations in gene expression within individuals on their aging-related mortality is poorly understood. We performed a longitudinal study in the short-lived killifish, Nothobranchius furzeri, and correlated quantitative variations in gene expression during early adult life with lifespan. Shorter- and longer-lived individuals differ in their gene expression before the onset of aging-related mortality; differences in gene expression are more pronounced early in life. We identified mitochondrial respiratory chain complex I as a hub in a module of genes whose expression is negatively correlated with lifespan. Accordingly, partial pharmacological inhibition of complex I by the small molecule rotenone reversed aging-related regulation of gene expression and extended lifespan in N. furzeri by 15%. These results support the use of N. furzeri as a vertebrate model for identifying the protein targets, pharmacological modulators, and individual-to-individual variability associated with aging.

  11. Longitudinal RNA-Seq Analysis of Vertebrate Aging Identifies Mitochondrial Complex I as a Small-Molecule-Sensitive Modifier of Lifespan.

    PubMed

    Baumgart, Mario; Priebe, Steffen; Groth, Marco; Hartmann, Nils; Menzel, Uwe; Pandolfini, Luca; Koch, Philipp; Felder, Marius; Ristow, Michael; Englert, Christoph; Guthke, Reinhard; Platzer, Matthias; Cellerino, Alessandro

    2016-02-24

    Mutations and genetic variability affect gene expression and lifespan, but the impact of variations in gene expression within individuals on their aging-related mortality is poorly understood. We performed a longitudinal study in the short-lived killifish, Nothobranchius furzeri, and correlated quantitative variations in gene expression during early adult life with lifespan. Shorter- and longer-lived individuals differ in their gene expression before the onset of aging-related mortality; differences in gene expression are more pronounced early in life. We identified mitochondrial respiratory chain complex I as a hub in a module of genes whose expression is negatively correlated with lifespan. Accordingly, partial pharmacological inhibition of complex I by the small molecule rotenone reversed aging-related regulation of gene expression and extended lifespan in N. furzeri by 15%. These results support the use of N. furzeri as a vertebrate model for identifying the protein targets, pharmacological modulators, and individual-to-individual variability associated with aging. PMID:27135165

  12. The Role of Storage Lipids in the Relation between Fecundity, Locomotor Activity, and Lifespan of Drosophila melanogaster Longevity-Selected and Control Lines

    PubMed Central

    Nasiri Moghadam, Neda; Holmstrup, Martin; Manenti, Tommaso; Brandt Mouridsen, Marie; Pertoldi, Cino; Loeschcke, Volker

    2015-01-01

    The contribution of insect fat body to multiple processes, such as development, metamorphosis, activity, and reproduction results in trade-offs between life history traits. In the present study, age-induced modulation of storage lipid composition in Drosophila melanogaster longevity-selected (L) and non-selected control (C) lines was studied and the correlation between total body fat mass and lifespan assessed. The trade-offs between fecundity, locomotor activity, and lifespan were re-evaluated from a lipid-related metabolic perspective. Fewer storage lipids in the L lines compared to the C lines supports the impact of body fat mass on extended lifespan. The higher rate of fecundity and locomotor activity in the L lines may increase the lipid metabolism and enhance the lipolysis of storage lipids, reducing fat reserves. The correlation between neutral lipid fatty acids and fecundity, as well as locomotor activity, varied across age groups and between the L and C lines. The fatty acids that correlated with egg production were different from the fatty acids that correlated with locomotor activity. The present study suggests that fecundity and locomotor activity may positively affect the lifespan of D. melanogaster through the inhibition of fat accumulation. PMID:26115349

  13. Differences in spatial and temporal root lifespan of temperate steppes across Inner Mongolia grasslands

    NASA Astrophysics Data System (ADS)

    Bai, W.-M.; Zhou, M.; Fang, Y.; Zhang, W.-H.

    2015-12-01

    Lifespan of fine roots plays important roles in regulating carbon (C) cycling in terrestrial ecosystems. Determination of root lifespan and elucidation of its regulatory mechanism in different plant communities are essential for accurate prediction of C cycling from ecosystem to regional scales. Temperate steppes in Inner Mongolia grasslands have three major types, i.e., Stipa krylovii, Stipa grandis and Stipa breviflora grasslands. There have been no studies to compare the root dynamics among the three types of grasslands. In the present study, we determined root lifespan of the three grasslands using the rhizotron. We found that root lifespan differed substantially among the three types of grasslands within the temperate steppes of Inner Mongolia, such that root lifespan of Stipa breviflora > Stipa grandis > Stipa krylovii grasslands. Root lifespan across the three types of grasslands in the Inner Mongolian temperate steppes displayed a similar temporal pattern, i.e. lifespan of the roots produced in spring and autumn was shortest and longest, respectively, whereas lifespan of summer-produced roots was between that of roots produced in spring and autumn. The spatial and temporal differences in root lifespan across the three types of grasslands were mainly determined by contents of soluble sugars in roots of the dominant species. The differences in root lifespan across the major types of grasslands and different seasons highlight the necessity to take into account these differences in the prediction of C cycling within grassland ecosystem by the simulating model.

  14. Comparative Pre-Emptive Analgesic Efficacy Study of Novel Antiepileptic Agents Lamotrigine and Topiramate in Patients Undergoing Major Surgeries at a Tertiary Care Hospital: A Randomized Double Blind Clinical Trial

    PubMed Central

    Gupta, Ankush; Bhosale, Uma A.; Shah, Priyank; Yegnanarayan, Radha; Sardesai, Shalini

    2016-01-01

    Background Central nervous sensitization, following surgical injury, leads to postoperative pain hypersensitivity due to lowered pain threshold in peripheral nociceptors and increased excitability of spinal neurons. Pre-emptive analgesia is intended to decrease pain perception and overall analgesic need by use of drug regimen, seizing CNS sensitization before exposure to painful stimuli. Few studies support pre-emptive analgesic efficacy of novel antiepileptic agent Gabapentin. Though Topiramate and Lamotrigine have been proven analgesic in animal models of chronic pain and clinical studies of Gabapentin-resistant neuropathic pain, literature search revealed scarce data on its pre-emptive analgesic efficacy. Purpose This study is designed to study and compare the pre-emptive analgesic efficacy of Lamotrigine, Topiramate, and Diclofenac sodium in postoperative pain control. Methods This randomized clinical trial included 90 patients of either sex, between 18 and 70 years undergoing major surgeries. Patients were randomly allocated to control and test groups and received respective treatment 30 min before induction of anesthesia. Aldrete's and pain scores were recorded using the Visual Analog Scale, Facial and Behavioral Rating Scale at awakening and at 1, 2, 4, 6, and 24 h. Postoperative rescue analgesic consumption for 24 h was recorded. Results Significantly higher pain scores were observed in the Topiramate group postoperatively for 2 h on all pain scales (p < 0.05), whereas in the control group it was significantly higher at 1 h (p < 0.05). Lamotrigine-treated patients were more comfortable throughout the study with significantly less (p < 0.05) postoperative analgesic requirement. Conclusions Study results strongly suggest the pre-emptive analgesic efficacy of a single oral dose of Lamotrigine over Diclofenac and Topiramate in postoperative pain control. PMID:27721585

  15. Predictive Validity of Some Common Animal Models of Bipolar Disorder Using Lithium and Lamotrigine Therapy: An Attempt towards a Battery-Based Approach for the Evaluation of Mood Stabilizers

    PubMed Central

    Kumar, Manu; Tripathi, Chakra Dhar; Verma, Veena; Padhy, Biswa Mohan; Abhilash, B

    2016-01-01

    Objective To determine the predictive validity of some of the commonly employed models of mania and depression using standard drugs i.e. lithium (70 mg/kg) and lamotrigine (5 mg/kg) in male Wistar rats. Methods The depression facet of bipolar disorder was evaluated using forced swim test, tail suspension test, and chronic mild stress test. The models used to evaluate the mania facet of bipolar disorder were isolation-induced aggression test, saccharine preference test, and morphine-sensitized hyperlocomotion test. Results The immobility time was significantly (p<0.05) reduced by lamotrigine in the tail suspension test and the forced swim test, while lithium caused significant (p<0.05) reduction only in the tail suspension test. Rats exposed to chronic mild stress showed the maximal increment of 1% sucrose consumption at the 3rd week of treatment in both the lithium (p<0.001) and lamotrigine (p<0.01) groups. In the isolation-induced aggression test, the aggressive behaviour of rats was significantly reduced by both lithium [approach (p<0.001), attack (p<0.01), and bite (p<0.01)] and lamotrigine [approach (p<0.001), and attack (p<0.05)]. Neither of the drugs were effective in the saccharine preference test. Only lithium was able to significantly (p<0.05) reduce the crossing parameter in morphine-sensitized rats. Conclusion Our study identifies the chronic mild stress test and isolation-induced aggression test of having the highest predictive validity in the depression and mania facets of bipolar disorder, respectively, and should be a part of a battery of tests used to evaluate novel mood stabilizers. PMID:27482245

  16. Menstruation during a lifespan: A qualitative study of women's experiences.

    PubMed

    Brantelid, Ida Emilie; Nilvér, Helena; Alehagen, Siw

    2014-01-01

    Menstruation is a natural phenomenon for women during their reproductive years. Our aim was to describe women's experiences of menstruation across the lifespan. Qualitative interviews with a narrative approach were conducted with 12 women between 18 and 48 years of age in Sweden. Using thematic analysis, we found menstruation to be a complex phenomenon that binds women together. It is perceived as an intimate and private matter, which makes women want to conceal the occurrence of menstrual bleeding. Over time, menstruation becomes a natural part of women's lives and gender identity. Health professionals play a central role supporting women to deal with menstruation.

  17. Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway.

    PubMed

    Williams, David S; Cash, Alan; Hamadani, Lara; Diemer, Tanja

    2009-12-01

    Reduced dietary intake increases lifespan in a wide variety of organisms. It also retards disease progression. We tested whether dietary supplementation of citric acid cycle metabolites could mimic this lifespan effect. We report that oxaloacetate supplementation increased lifespan in Caenorhabditis elegans. The increase was dependent on the transcription factor, FOXO/DAF-16, and the energy sensor, AMP-activated protein kinase, indicating involvement of a pathway that is also required for lifespan extension through dietary restriction. These results demonstrate that supplementation of the citric acid cycle metabolite, oxaloacetate, influences a longevity pathway, and suggest a tractable means of introducing the health-related benefits of dietary restriction.

  18. Reproductive Aging Drives Protein Accumulation in the Uterus and Limits Lifespan in C. elegans

    PubMed Central

    Zimmerman, Stephanie M.; Hinkson, Izumi V.; Elias, Joshua E.; Kim, Stuart K.

    2015-01-01

    Aging in Caenorhabditis elegans is characterized by widespread physiological and molecular changes, but the mechanisms that determine the rate at which these changes occur are not well understood. In this study, we identify a novel link between reproductive aging and somatic aging in C. elegans. By measuring global age-related changes in the proteome, we identify a previously uncharacterized group of secreted proteins in the adult uterus that dramatically increase in abundance with age. This accumulation is blunted in animals with an extended reproductive period and accelerated in sterile animals lacking a germline. Uterine proteins are not removed in old post-reproductive animals or in young vulvaless worms, indicating that egg-laying is necessary for their rapid removal in wild-type young animals. Together, these results suggest that age-induced infertility contributes to extracellular protein accumulation in the uterus with age. Finally, we show that knocking down multiple age-increased proteins simultaneously extends lifespan. These results provide a mechanistic example of how the cessation of reproduction contributes to detrimental changes in the soma, and demonstrate how the timing of reproductive decline can influence the rate of aging. PMID:26656270

  19. Reproductive Aging Drives Protein Accumulation in the Uterus and Limits Lifespan in C. elegans.

    PubMed

    Zimmerman, Stephanie M; Hinkson, Izumi V; Elias, Joshua E; Kim, Stuart K

    2015-12-01

    Aging in Caenorhabditis elegans is characterized by widespread physiological and molecular changes, but the mechanisms that determine the rate at which these changes occur are not well understood. In this study, we identify a novel link between reproductive aging and somatic aging in C. elegans. By measuring global age-related changes in the proteome, we identify a previously uncharacterized group of secreted proteins in the adult uterus that dramatically increase in abundance with age. This accumulation is blunted in animals with an extended reproductive period and accelerated in sterile animals lacking a germline. Uterine proteins are not removed in old post-reproductive animals or in young vulvaless worms, indicating that egg-laying is necessary for their rapid removal in wild-type young animals. Together, these results suggest that age-induced infertility contributes to extracellular protein accumulation in the uterus with age. Finally, we show that knocking down multiple age-increased proteins simultaneously extends lifespan. These results provide a mechanistic example of how the cessation of reproduction contributes to detrimental changes in the soma, and demonstrate how the timing of reproductive decline can influence the rate of aging.

  20. Proactive and Reactive Response Inhibition across the Lifespan.

    PubMed

    Smittenaar, Peter; Rutledge, Robb B; Zeidman, Peter; Adams, Rick A; Brown, Harriet; Lewis, Glyn; Dolan, Raymond J

    2015-01-01

    One expression of executive control involves proactive preparation for future events, and this contrasts with stimulus driven reactive control exerted in response to events. Here we describe findings from a response inhibition task, delivered using a smartphone-based platform, that allowed us to index proactive and reactive inhibitory self-control in a large community sample (n = 12,496). Change in stop-signal reaction time (SSRT) when participants are provided with advance information about an upcoming trial, compared to when they are not, provides a measure of proactive control while SSRT in the absence of advance information provides a measure of reactive control. Both forms of control rely on overlapping frontostriatal pathways known to deteriorate in healthy aging, an age-related decline that occurs at an accelerated rate in men compared to women. Here we ask whether these patterns of age-related decline are reflected in similar changes in proactive and reactive inhibitory control across the lifespan. As predicted, we observed a decline in reactive control with natural aging, with a greater rate of decline in men compared to women (~10 ms versus ~8 ms per decade of adult life). Surprisingly, the benefit of preparation, i.e. proactive control, did not change over the lifespan and women showed superior proactive control at all ages compared to men. Our results suggest that reactive and proactive inhibitory control partially rely on distinct neural substrates that are differentially sensitive to age-related change. PMID:26488166

  1. On the challenge of a century lifespan satellite

    NASA Astrophysics Data System (ADS)

    Gonzalo, Jesús; Domínguez, Diego; López, Deibi

    2014-10-01

    This paper provides a review of the main issues affecting satellite survivability, including a discussion on the technologies to mitigate the risks and to enhance system reliability. The feasibility of a 100-year lifespan space mission is taken as the guiding thread for the discussion. Such a mission, defined with a few preliminary requirements, could be used to deliver messages to our descendants regardless of the on-ground contingencies. After the analysis of the main threats for long endurance in space, including radiation, debris and micrometeoroids, atmospheric drag and thermal environment, the available solutions are investigated. A trade-off study analyses orbital profiles from the point of view of radiation, thermal stability and decay rate, providing best locations to maximize lifespan. Special attention is also paid to on-board power, in terms of energy harvesting and accumulation, highlighting the limitations of current assets, i.e. solar panels and batteries, and revealing possible future solutions. Furthermore, the review includes electronics, non-volatile memories and communication elements, which need extra hardening against radiation and thermal cycling if extra-long endurance is required. As a result of the analysis, a century-lifetime mission is depicted by putting together all the reviewed concepts. The satellite, equipped with reliability enhanced elements and system-level solutions such as smart hibernation policies, could provide limited but still useful performance after a 100-year flight.

  2. Homeless aging veterans in transition: a life-span perspective.

    PubMed

    Thompson, Carla J; Bridier, Nancy L

    2013-01-01

    The need for counseling and career/educational services for homeless veterans has captured political and economic venues for more than 25 years. Veterans are three times more likely to become homeless than the general population if veterans live in poverty or are minority veterans. This mixed methods study emphasized a life-span perspective approach for exploring factors influencing normative aging and life-quality of 39 homeless veterans in Alabama and Florida. Seven descriptive quantitative and qualitative research questions framed the investigation. Study participants completed a quantitative survey reflecting their preferences and needs with a subset of the sample (N = 12) also participating in individual qualitative interview sessions. Thirty-two service providers and stakeholders completed quantitative surveys. Empirical and qualitative data with appropriate triangulation procedures provided interpretive information relative to a life-span development perspective. Study findings provide evidence of the need for future research efforts to address strategies that focus on the health and economic challenges of veterans before they are threatened with the possibility of homelessness. Implications of the study findings provide important information associated with the premise that human development occurs throughout life with specific characteristics influencing the individual's passage. Implications for aging/homelessness research are grounded in late-life transitioning and human development intervention considerations. PMID:24286010

  3. Development of large-scale functional networks over the lifespan.

    PubMed

    Schlee, Winfried; Leirer, Vera; Kolassa, Stephan; Thurm, Franka; Elbert, Thomas; Kolassa, Iris-Tatjana

    2012-10-01

    The development of large-scale functional organization of the human brain across the lifespan is not well understood. Here we used magnetoencephalographic recordings of 53 adults (ages 18-89) to characterize functional brain networks in the resting state. Slow frequencies engage larger networks than higher frequencies and show different development over the lifespan. Networks in the delta (2-4 Hz) frequency range decrease, while networks in the beta/gamma frequency range (> 16 Hz) increase in size with advancing age. Results show that the right frontal lobe and the temporal areas in both hemispheres are important relay stations in the expanding high-frequency networks. Neuropsychological tests confirmed the tendency of cognitive decline with older age. The decrease in visual memory and visuoconstructive functions was strongly associated with the age-dependent enhancement of functional connectivity in both temporal lobes. Using functional network analysis this study elucidates important neuronal principles underlying age-related cognitive decline paving mental deterioration in senescence. PMID:22236372

  4. Risk Taking for Potential Reward Decreases across the Lifespan.

    PubMed

    Rutledge, Robb B; Smittenaar, Peter; Zeidman, Peter; Brown, Harriet R; Adams, Rick A; Lindenberger, Ulman; Dayan, Peter; Dolan, Raymond J

    2016-06-20

    The extent to which aging affects decision-making is controversial. Given the critical financial decisions that older adults face (e.g., managing retirement funds), changes in risk preferences are of particular importance [1]. Although some studies have found that older individuals are more risk averse than younger ones [2-4], there are also conflicting results, and a recent meta-analysis found no evidence for a consistent change in risk taking across the lifespan [5]. There has as yet been little examination of one potential substrate for age-related changes in decision-making, namely age-related decline in dopamine, a neuromodulator associated with risk-taking behavior. Here, we characterized choice preferences in a smartphone-based experiment (n = 25,189) in which participants chose between safe and risky options. The number of risky options chosen in trials with potential gains but not potential losses decreased gradually over the lifespan, a finding with potentially important economic consequences for an aging population. Using a novel approach-avoidance computational model, we found that a Pavlovian attraction to potential reward declined with age. This Pavlovian bias has been linked to dopamine, suggesting that age-related decline in this neuromodulator could lead to the observed decrease in risk taking. PMID:27265392

  5. Proactive and Reactive Response Inhibition across the Lifespan

    PubMed Central

    Smittenaar, Peter; Rutledge, Robb B.; Zeidman, Peter; Adams, Rick A.; Brown, Harriet; Lewis, Glyn; Dolan, Raymond J.

    2015-01-01

    One expression of executive control involves proactive preparation for future events, and this contrasts with stimulus driven reactive control exerted in response to events. Here we describe findings from a response inhibition task, delivered using a smartphone-based platform, that allowed us to index proactive and reactive inhibitory self-control in a large community sample (n = 12,496). Change in stop-signal reaction time (SSRT) when participants are provided with advance information about an upcoming trial, compared to when they are not, provides a measure of proactive control while SSRT in the absence of advance information provides a measure of reactive control. Both forms of control rely on overlapping frontostriatal pathways known to deteriorate in healthy aging, an age-related decline that occurs at an accelerated rate in men compared to women. Here we ask whether these patterns of age-related decline are reflected in similar changes in proactive and reactive inhibitory control across the lifespan. As predicted, we observed a decline in reactive control with natural aging, with a greater rate of decline in men compared to women (~10 ms versus ~8 ms per decade of adult life). Surprisingly, the benefit of preparation, i.e. proactive control, did not change over the lifespan and women showed superior proactive control at all ages compared to men. Our results suggest that reactive and proactive inhibitory control partially rely on distinct neural substrates that are differentially sensitive to age-related change. PMID:26488166

  6. Spectral changes in spontaneous MEG activity across the lifespan

    NASA Astrophysics Data System (ADS)

    Gómez, Carlos; Pérez-Macías, Jose M.; Poza, Jesús; Fernández, Alberto; Hornero, Roberto

    2013-12-01

    Objective. The aim of this study is to explore the spectral patterns of spontaneous magnetoencephalography (MEG) activity across the lifespan. Approach. Relative power (RP) in six frequency bands (delta, theta, alpha, beta-1, beta-2 and gamma) was calculated in a sample of 220 healthy subjects with ages ranging from 7 to 84 years. Main results. A significant RP decrease in low-frequency bands (i.e. delta and theta) and a significant increase in high bands (mainly beta-1 and beta-2) were found from childhood to adolescence. This trend was observed until the sixth decade of life, though only slight changes were found. Additionally, healthy aging was characterized by a power increase in low-frequency bands. Our results show that spectral changes across the lifespan may follow a quadratic relationship in delta, theta, alpha, beta-2 and gamma bands with peak ages being reached around the fifth or sixth decade of life. Significance. Our findings provide original insights into the definition of the ‘normal’ behavior of age-related MEG spectral patterns. Furthermore, our study can be useful for the forthcoming MEG research focused on the description of the abnormalities of different brain diseases in comparison to cognitive decline in normal aging.

  7. Homeless Aging Veterans in Transition: A Life-Span Perspective

    PubMed Central

    Thompson, Carla J.; Bridier, Nancy L.

    2013-01-01

    The need for counseling and career/educational services for homeless veterans has captured political and economic venues for more than 25 years. Veterans are three times more likely to become homeless than the general population if veterans live in poverty or are minority veterans. This mixed methods study emphasized a life-span perspective approach for exploring factors influencing normative aging and life-quality of 39 homeless veterans in Alabama and Florida. Seven descriptive quantitative and qualitative research questions framed the investigation. Study participants completed a quantitative survey reflecting their preferences and needs with a subset of the sample (N = 12) also participating in individual qualitative interview sessions. Thirty-two service providers and stakeholders completed quantitative surveys. Empirical and qualitative data with appropriate triangulation procedures provided interpretive information relative to a life-span development perspective. Study findings provide evidence of the need for future research efforts to address strategies that focus on the health and economic challenges of veterans before they are threatened with the possibility of homelessness. Implications of the study findings provide important information associated with the premise that human development occurs throughout life with specific characteristics influencing the individual's passage. Implications for aging/homelessness research are grounded in late-life transitioning and human development intervention considerations. PMID:24286010

  8. Form and Function of Sleep Spindles across the Lifespan

    PubMed Central

    Clawson, Brittany C.; Durkin, Jaclyn; Aton, Sara J.

    2016-01-01

    Since the advent of EEG recordings, sleep spindles have been identified as hallmarks of non-REM sleep. Despite a broad general understanding of mechanisms of spindle generation gleaned from animal studies, the mechanisms underlying certain features of spindles in the human brain, such as “global” versus “local” spindles, are largely unknown. Neither the topography nor the morphology of sleep spindles remains constant throughout the lifespan. It is likely that changes in spindle phenomenology during development and aging are the result of dramatic changes in brain structure and function. Across various developmental windows, spindle activity is correlated with general cognitive aptitude, learning, and memory; however, these correlations vary in strength, and even direction, depending on age and metrics used. Understanding these differences across the lifespan should further clarify how these oscillations are generated and their function under a variety of circumstances. We discuss these issues, and their translational implications for human cognitive function. Because sleep spindles are similarly affected in disorders of neurodevelopment (such as schizophrenia) and during aging (such as neurodegenerative conditions), both types of disorders may benefit from therapies based on a better understanding of spindle function. PMID:27190654

  9. Unopposed mitochondrial fission leads to severe lifespan shortening.

    PubMed

    Scheckhuber, Christian Q; Wanger, Ruth A; Mignat, Cora A; Osiewacz, Heinz D

    2011-09-15

    Mitochondrial morphology is controlled by the opposing processes of fusion and fission. Previously, in baker's yeast it was shown that reduced mitochondrial fission leads to a network-like morphology, decreased sensitivity for the induction of apoptosis and a remarkable extension of both replicative and chronological lifespan. However, the effects of reduced mitochondrial fusion on aging are so far unknown and complicated by the fact that deletion of genes encoding components of mitochondrial fusion are often lethal to higher organisms. This is also true for the mammalian OPA1 protein, which is a key regulator of mitochondrial inner membrane fusion. Baker's yeast contains an OPA1 ortholog, Mgm1p. Deletion of Mgm1 is possible in yeast due to the fact that mitochondrial function is not essential for growth on glucose-containing media. In this study, we report that absence of mitochondrial fusion in the Δmgm1 mutant leads to a striking reduction of both replicative and chronological lifespan. Concomitantly, sensitivity to apoptosis elicitation via the reactive oxygen species hydrogen peroxide is substantially increased. These results demonstrate that the unopposed mitochondrial fission as displayed by the Δmgm1 mutant strongly affects organismal aging. Moreover, our results bear important clues for translational research to intervene into age-related degenerative processes also in multicellular organisms including humans.

  10. Sex-specific Tradeoffs With Growth and Fitness Following Life-span Extension by Rapamycin in an Outcrossing Nematode, Caenorhabditis remanei.

    PubMed

    Lind, Martin I; Zwoinska, Martyna K; Meurling, Sara; Carlsson, Hanne; Maklakov, Alexei A

    2016-07-01

    Rapamycin inhibits the nutrient-sensing TOR pathway and extends life span in a wide range of organisms. Although life-span extension usually differs between the sexes, the reason for this is poorly understood. Because TOR influences growth, rapamycin likely affects life-history traits such as growth and reproduction. Sexes have different life-history strategies, and theory predicts that they will resolve the tradeoffs between growth, reproduction, and life span differently. Specifically, in taxa with female-biased sexual size dimorphism, reduced growth may have smaller effects on male fitness. We investigated the effects of juvenile, adult, or life-long rapamycin treatment on growth, reproduction, life span, and individual fitness in the outcrossing nematode Caenorhabditis remanei Life-long exposure to rapamycin always resulted in the strongest response, whereas postreproductive exposure did not affect life span. Although rapamycin resulted in longer life span and smaller size in males, male individual fitness was not affected. In contrast, size and fitness were negatively affected in females, whereas life span was only extended under high rapamycin concentrations. Our results support the hypothesis that rapamycin affects key life-history traits in a sex-specific manner. We argue that the fitness cost of life-span extension will be sex specific and propose that the smaller sex generally pay less while enjoying stronger life-span increase.

  11. Sex-specific Tradeoffs With Growth and Fitness Following Life-span Extension by Rapamycin in an Outcrossing Nematode, Caenorhabditis remanei.

    PubMed

    Lind, Martin I; Zwoinska, Martyna K; Meurling, Sara; Carlsson, Hanne; Maklakov, Alexei A

    2016-07-01

    Rapamycin inhibits the nutrient-sensing TOR pathway and extends life span in a wide range of organisms. Although life-span extension usually differs between the sexes, the reason for this is poorly understood. Because TOR influences growth, rapamycin likely affects life-history traits such as growth and reproduction. Sexes have different life-history strategies, and theory predicts that they will resolve the tradeoffs between growth, reproduction, and life span differently. Specifically, in taxa with female-biased sexual size dimorphism, reduced growth may have smaller effects on male fitness. We investigated the effects of juvenile, adult, or life-long rapamycin treatment on growth, reproduction, life span, and individual fitness in the outcrossing nematode Caenorhabditis remanei Life-long exposure to rapamycin always resulted in the strongest response, whereas postreproductive exposure did not affect life span. Although rapamycin resulted in longer life span and smaller size in males, male individual fitness was not affected. In contrast, size and fitness were negatively affected in females, whereas life span was only extended under high rapamycin concentrations. Our results support the hypothesis that rapamycin affects key life-history traits in a sex-specific manner. We argue that the fitness cost of life-span extension will be sex specific and propose that the smaller sex generally pay less while enjoying stronger life-span increase. PMID:26472877

  12. Human IGF1 Regulates Midgut Oxidative Stress and Epithelial Homeostasis to Balance Lifespan and Plasmodium falciparum resistance in Anopheles stephensi

    PubMed Central

    Drexler, Anna L.; Pietri, Jose E.; Pakpour, Nazzy; Hauck, Eric; Wang, Bo; Glennon, Elizabeth K. K.; Georgis, Martha; Riehle, Michael A.; Luckhart, Shirley

    2014-01-01

    Insulin and insulin-like growth factor signaling (IIS) regulates cell death, repair, autophagy, and renewal in response to stress, damage, and pathogen challenge. Therefore, IIS is fundamental to lifespan and disease resistance. Previously, we showed that insulin-like growth factor 1 (IGF1) within a physiologically relevant range (0.013–0.13 µM) in human blood reduced development of the human parasite Plasmodium falciparum in the Indian malaria mosquito Anopheles stephensi. Low IGF1 (0.013 µM) induced FOXO and p70S6K activation in the midgut and extended mosquito lifespan, whereas high IGF1 (0.13 µM) did not. In this study the physiological effects of low and high IGF1 were examined in detail to infer mechanisms for their dichotomous effects on mosquito resistance and lifespan. Following ingestion, low IGF1 induced phosphorylation of midgut c-Jun-N-terminal kinase (JNK), a critical regulator of epithelial homeostasis, but high IGF1 did not. Low and high IGF1 induced midgut mitochondrial reactive oxygen species (ROS) synthesis and nitric oxide (NO) synthase gene expression, responses which were necessary and sufficient to mediate IGF1 inhibition of P. falciparum development. However, increased ROS and apoptosis-associated caspase-3 activity returned to baseline levels following low IGF1 treatment, but were sustained with high IGF1 treatment and accompanied by aberrant expression of biomarkers for mitophagy, stem cell division and proliferation. Low IGF1-induced ROS are likely moderated by JNK-induced epithelial cytoprotection as well as p70S6K-mediated growth and inhibition of apoptosis over the lifetime of A. stephensi to facilitate midgut homeostasis and enhanced survivorship. Hence, mitochondrial integrity and homeostasis in the midgut, a key signaling center for IIS, can be targeted to coordinately optimize mosquito fitness and anti-pathogen resistance for improved control strategies for malaria and other vector-borne diseases. PMID:24968248

  13. Rapamycin extends life- and health span because it slows aging

    PubMed Central

    Blagosklonny, Mikhail V.

    2013-01-01

    Making headlines, a thought-provocative paper by Neff, Ehninger and coworkers claims that rapamycin extends life span but has limited effects on aging. How is that possibly possible? And what is aging if not an increase of the probability of death with age. I discuss that the JCI paper actually shows that rapamycin slows aging and also extends lifespan regardless of its direct anti-cancer activities. Aging is, in part, MTOR-driven: a purposeless continuation of developmental growth. Rapamycin affects the same processes in young and old animals: young animals' traits and phenotypes, which continuations become hyperfunctional, harmful and lethal later in life. PMID:23934728

  14. Rapamycin extends life- and health span because it slows aging.

    PubMed

    Blagosklonny, Mikhail V

    2013-08-01

    Making headlines, a thought-provocative paper by Neff, Ehninger and coworkers claims that rapamycin extends life span but has limited effects on aging. How is that possibly possible? And what is aging if not an increase of the probability of death with age. I discuss that the JCI paper actually shows that rapamycin slows aging and also extends lifespan regardless of its direct anti-cancer activities. Aging is, in part, MTOR-driven: a purposeless continuation of developmental growth. Rapamycin affects the same processes in young and old animals: young animals' traits and phenotypes, which continuations become hyperfunctional, harmful and lethal later in life.

  15. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    SciTech Connect

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.

  16. Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Curcumin is an antioxidant extracted from the root of the turmeric plant. We examined the antioxidant effect and lifespan extension of curcumin in Drosophila. To ascertain the antioxidant effects of curcumin with regard to lifespan extension and the response to reactive oxygen species, female and ma...

  17. Inbreeding removes sex differences in lifespan in a population of Drosophila melanogaster

    PubMed Central

    Green, Jared; Sepil, Irem; Pizzari, Tommaso; Wigby, Stuart

    2016-01-01

    Sex differences in ageing rates and lifespan are common in nature, and an enduring puzzle for evolutionary biology. One possibility is that sex-specific mortality rates may result from recessive deleterious alleles in ‘unguarded’ heterogametic X or Z sex chromosomes (the unguarded X hypothesis). Empirical evidence for this is, however, limited. Here, we test a fundamental prediction of the unguarded X hypothesis in Drosophila melanogaster, namely that inbreeding shortens lifespan more in females (the homogametic sex in Drosophila) than in males. To test for additional sex-specific social effects, we studied the lifespan of males and females kept in isolation, in related same-sex groups, and in unrelated same-sex groups. As expected, outbred females outlived outbred males and inbreeding shortened lifespan. However, inbreeding-mediated reductions in lifespan were stronger for females, such that lifespan was similar in inbred females and males. We also show that the social environment, independent of inbreeding, affected male, but not female lifespan. In conjunction with recent studies, the present results suggest that asymmetric inheritance mechanisms may play an important role in the evolution of sex-specific lifespan and that social effects must be considered explicitly when studying these fundamental patterns. PMID:27354712

  18. Inbreeding removes sex differences in lifespan in a population of Drosophila melanogaster.

    PubMed

    Carazo, Pau; Green, Jared; Sepil, Irem; Pizzari, Tommaso; Wigby, Stuart

    2016-06-01

    Sex differences in ageing rates and lifespan are common in nature, and an enduring puzzle for evolutionary biology. One possibility is that sex-specific mortality rates may result from recessive deleterious alleles in 'unguarded' heterogametic X or Z sex chromosomes (the unguarded X hypothesis). Empirical evidence for this is, however, limited. Here, we test a fundamental prediction of the unguarded X hypothesis in Drosophila melanogaster, namely that inbreeding shortens lifespan more in females (the homogametic sex in Drosophila) than in males. To test for additional sex-specific social effects, we studied the lifespan of males and females kept in isolation, in related same-sex groups, and in unrelated same-sex groups. As expected, outbred females outlived outbred males and inbreeding shortened lifespan. However, inbreeding-mediated reductions in lifespan were stronger for females, such that lifespan was similar in inbred females and males. We also show that the social environment, independent of inbreeding, affected male, but not female lifespan. In conjunction with recent studies, the present results suggest that asymmetric inheritance mechanisms may play an important role in the evolution of sex-specific lifespan and that social effects must be considered explicitly when studying these fundamental patterns. PMID:27354712

  19. Length of paternal lifespan is manifested in the DNA methylome of their nonagenarian progeny.

    PubMed

    Marttila, Saara; Kananen, Laura; Jylhävä, Juulia; Nevalainen, Tapio; Hervonen, Antti; Jylhä, Marja; Hurme, Mikko

    2015-10-13

    The heritability of lifespan is 20-30%, but only a few genes associated with longevity have been identified. To explain this discrepancy, the inheritance of epigenetic features, such as DNA methylation, have been proposed to contribute to the heritability of lifespan.We investigated whether parental lifespan is associated with DNA methylation profile in nonagenarians. A regression model, adjusted for differences in blood cell proportions, identified 659 CpG sites where the level of methylation was associated with paternal lifespan. However, no association was observed between maternal lifespan and DNA methylation. The 659 CpG sites associated with paternal lifespan were enriched outside of CpG islands and were located in genes associated with development and morphogenesis, as well as cell signaling. The largest difference in the level of methylation between the progeny of the shortest-lived and longest-lived fathers was identified for CpG sites mapping to CXXC5. In addition, the level of methylation in three Notch-genes (NOTCH1, NOTCH3 and NOTCH4) was also associated with paternal lifespan.There are implications for the inheritance of acquired traits via epigenetic mechanisms in mammals. Here we describe DNA methylation features that are associated with paternal lifespan, and we speculate that the identified CpG sites may represent intergenerational epigenetic inheritance.

  20. Inbreeding removes sex differences in lifespan in a population of Drosophila melanogaster.

    PubMed

    Carazo, Pau; Green, Jared; Sepil, Irem; Pizzari, Tommaso; Wigby, Stuart

    2016-06-01

    Sex differences in ageing rates and lifespan are common in nature, and an enduring puzzle for evolutionary biology. One possibility is that sex-specific mortality rates may result from recessive deleterious alleles in 'unguarded' heterogametic X or Z sex chromosomes (the unguarded X hypothesis). Empirical evidence for this is, however, limited. Here, we test a fundamental prediction of the unguarded X hypothesis in Drosophila melanogaster, namely that inbreeding shortens lifespan more in females (the homogametic sex in Drosophila) than in males. To test for additional sex-specific social effects, we studied the lifespan of males and females kept in isolation, in related same-sex groups, and in unrelated same-sex groups. As expected, outbred females outlived outbred males and inbreeding shortened lifespan. However, inbreeding-mediated reductions in lifespan were stronger for females, such that lifespan was similar in inbred females and males. We also show that the social environment, independent of inbreeding, affected male, but not female lifespan. In conjunction with recent studies, the present results suggest that asymmetric inheritance mechanisms may play an important role in the evolution of sex-specific lifespan and that social effects must be considered explicitly when studying these fundamental patterns.

  1. Coherence of Personal Narratives across the Lifespan: A Multidimensional Model and Coding Method

    ERIC Educational Resources Information Center

    Reese, Elaine; Haden, Catherine A.; Baker-Ward, Lynne; Bauer, Patricia; Fivush, Robyn; Ornstein, Peter A.

    2011-01-01

    Personal narratives are integral to autobiographical memory and to identity, with coherent personal narratives being linked to positive developmental outcomes across the lifespan. In this article, we review the theoretical and empirical literature that sets the stage for a new lifespan model of personal narrative coherence. This new model…

  2. Target of rapamycin signaling regulates metabolism, growth, and lifespan in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TOR is a major nutrition and energy sensor that regulates growth and lifespan in yeast and animals. In plants growth and lifespan are intertwined with not only nutrient acquisition but also nutrition generation and unique aspects of development and differentiation. How TOR functions in these process...

  3. Emotional Egocentricity Bias Across the Life-Span

    PubMed Central

    Riva, Federica; Triscoli, Chantal; Lamm, Claus; Carnaghi, Andrea; Silani, Giorgia

    2016-01-01

    In our daily lives, we often have to quickly estimate the emotions of our conspecifics in order to have successful social interactions. While this estimation process seems quite easy when we are ourselves in a neutral or equivalent emotional state, it has recently been shown that in case of incongruent emotional states between ourselves and the others, our judgments can be biased. This phenomenon, introduced to the literature with the term Emotional Egocentricity Bias (EEB), has been found to occur in young adults and, to a greater extent, in children. However, how the EEB changes across the life-span from adolescence to old age has been largely unexplored. In this study, we recruited 114 female participants subdivided in four cohorts (adolescents, young adults, middle-aged adults, older adults) to examine EEB age-related changes. Participants were administered with a recently developed paradigm which, by making use of visuo-tactile stimulation that elicits conflicting feelings in paired participants, allows the valid and reliable exploration of the EEB. Results highlighted a U-shape relation between age and EEB, revealing enhanced emotional egocentricity in adolescents and older adults compared to young and middle-aged adults. These results are in line with the neuroscientific literature which has recently shown that overcoming the EEB is associated with a greater activation of a portion of the parietal lobe, namely the right Supramarginal Gyrus (rSMG). This is an area that reaches full maturation by the end of adolescence and goes through an early decay. Thus, the age-related changes of the EEB could be possibly due to the life-span development of the rSMG. This study is the first one to show the quadratic relation between age and the EEB and set a milestone for further research exploring the neural correlates of the life-span development of the EEB. Future studies are needed in order to generalize these results to the male population and to explore gender

  4. Rhizome Severing Increases Root Lifespan of Leymus chinensis in a Typical Steppe of Inner Mongolia

    PubMed Central

    Bai, Wenming; Xun, Fen; Li, Yang; Zhang, Wenhao; Li, Linghao

    2010-01-01

    Background Root lifespan is an important trait that determines plants' ability to acquire and conserve soil resources. There have been several studies investigating characteristics of root lifespan of both woody and herbaceous species. However, most of the studies have focused on non-clonal plants, and there have been little data on root lifespan for clonal plants that occur widely in temperate grasslands. Methodology/Principal Findings We investigated the effects of rhizome severing on overall root lifespan of Leymus chinensis, a clonal, dominant grass species in the temperate steppe in northern China, in a 2-year field study using modified rhizotron technique. More specifically, we investigated the effects of rhizome severing on root lifespan of roots born in different seasons and distributed at different soil depths. Rhizome severing led to an increase in the overall root lifespan from 81 to 103 days. The increase in root lifespan exhibited spatial and temporal characteristics such that it increased lifespan for roots distributed in the top two soil layers and for roots born in summer and spring, but it had no effect on lifespan of roots in the deep soil layer and born in autumn. We also examined the effect of rhizome severing on carbohydrate and N contents in roots, and found that root carbohydrate and N contents were not affected by rhizome severing. Further, we found that root lifespan of Stipa krylovii and Artemisia frigida, two dominant, non-clonal species in the temperate steppe, was significantly longer (118 d) than that of L. chinensis (81 d), and this value became comparable to that of L. chinensis under rhizome severing (103 d). Conclusions/Significance We found that root lifespan in dominant, clonal L. chinensis was shorter than for the dominant, non-clonal species of S. krylovii and A. frigida. There was a substantial increase in the root lifespan of L. chinensis in response to severing their rhizomes, and this increase in root lifespan exhibited

  5. Stability of Atenolol, Clonazepam, Dexamethasone, Diclofenac Sodium, Diltiazem, Enalapril Maleate, Ketoprofen, Lamotrigine, Penicillamine-D, and Thiamine in SyrSpend SF PH4 Oral Suspensions.

    PubMed

    Polonini, Hudson C; Loures, Sharlene; Lima, Luis Claudio; Ferreira, Anderson O; Brandão, Marcos Antônio F

    2016-01-01

    The objective of this study was to evaluate the stability of 10 commonly used active pharmaceutical ingredients compounded in oral suspensions using SyrSpend SF PH4 (atenolol 1.0 and 5.0 mg/mL, clonazepam 0.2 mg/mL, dexamethasone 1.0 mg/mL, diclofenac sodium 5.0 mg/mL, diltiazem 12.0 mg/mL, enalapril maleate 1.0 mg/mL, ketoprofen 20.0 mg/mL, lamotrigine 1.0 mg/mL, penicillamine-D 50.0 mg/mL, thiamine 100 mg/m) and stored both at controlled refrigerated (2°C to 8°C) and room temperature (20°C to 25°C). Stability was assessed by means of measuring percent recovery at varying time points throughout a 90-day period. The quantification of the active pharmaceutical ingredients was performed by a stability-indicating, high-performance liquid chromatographic method. The beyond-use date of the products was found to be at least 90 days for all suspensions (except atenolol 1 mg/mL, which was stable up to 60 days), both for controlled refrigerated temperature and room temperature. This confirms that SyrSpend SF PH4 is a stable suspending vehicle for compounding with a broad range of different active pharmaceutical ingredients. PMID:27323429

  6. Stability of Atenolol, Clonazepam, Dexamethasone, Diclofenac Sodium, Diltiazem, Enalapril Maleate, Ketoprofen, Lamotrigine, Penicillamine-D, and Thiamine in SyrSpend SF PH4 Oral Suspensions.

    PubMed

    Polonini, Hudson C; Loures, Sharlene; Lima, Luis Claudio; Ferreira, Anderson O; Brandão, Marcos Antônio F

    2016-01-01

    The objective of this study was to evaluate the stability of 10 commonly used active pharmaceutical ingredients compounded in oral suspensions using SyrSpend SF PH4 (atenolol 1.0 and 5.0 mg/mL, clonazepam 0.2 mg/mL, dexamethasone 1.0 mg/mL, diclofenac sodium 5.0 mg/mL, diltiazem 12.0 mg/mL, enalapril maleate 1.0 mg/mL, ketoprofen 20.0 mg/mL, lamotrigine 1.0 mg/mL, penicillamine-D 50.0 mg/mL, thiamine 100 mg/m) and stored both at controlled refrigerated (2°C to 8°C) and room temperature (20°C to 25°C). Stability was assessed by means of measuring percent recovery at varying time points throughout a 90-day period. The quantification of the active pharmaceutical ingredients was performed by a stability-indicating, high-performance liquid chromatographic method. The beyond-use date of the products was found to be at least 90 days for all suspensions (except atenolol 1 mg/mL, which was stable up to 60 days), both for controlled refrigerated temperature and room temperature. This confirms that SyrSpend SF PH4 is a stable suspending vehicle for compounding with a broad range of different active pharmaceutical ingredients.

  7. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast.

    PubMed

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. (1)H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes.

  8. Plasticity of the Maternal Brain Across the Lifespan.

    PubMed

    Champagne, Frances A; Curley, James P

    2016-09-01

    Maternal behavior is dynamic and highly sensitive to experiential and contextual factors. In this review, this plasticity will be explored, with a focus on how experiences of females occurring from the time of fetal development through to adulthood impact maternal behavior and the maternal brain. Variation in postpartum maternal behavior is dependent on estrogen sensitivity within the medial preoptic area of the hypothalamus and activation within mesolimbic dopamine neurons. This review will discuss how experiences across the lifespan alter the function of these systems and the multigenerational consequences of these neuroendocrine and behavioral changes. These studies, based primarily on the examination of maternal behavior in laboratory rodents and nonhuman primates, provide mechanistic insights relevant to our understanding of human maternal behavior and to the mechanisms of lifelong plasticity. PMID:27589495

  9. Isolation and Caenorhabditis elegans lifespan assay of flavonoids from onion.

    PubMed

    Xue, You-Lin; Ahiko, Tomoyuki; Miyakawa, Takuya; Amino, Hisako; Hu, Fangyu; Furihata, Kazuo; Kita, Kiyoshi; Shirasawa, Takuji; Sawano, Yoriko; Tanokura, Masaru

    2011-06-01

    The main flavonoids were isolated from three selected onion cultivars. Three phenolic compounds were obtained by reverse-phase HPLC, and their structures were elucidated by multiple NMR measurements. There were two known compounds, quercetin and quercetin 3'-O-β-D-glucopyranoside (Q3'G), and one novel compound, quercetin 3-O-β-D-glucopyranoside-(4→1)-β-d-glucopyranoside (Q3M), which was identified in onion for the first time. These flavonoids were found to be more abundant in the onion peel than in the flesh or core. Their antioxidative activities were tested using the DPPH method, and their antiaging activities were evaluated using a Caenorhabditis elegans lifespan assay. No direct correlation was found between antioxidative activity and antiaging activity. Quercetin showed the highest antioxidative activity, whereas Q3M showed the strongest antiaging activity among these flavonoids, which might be related to its high hydrophilicity. PMID:21563825

  10. Multisensory Processes: A Balancing Act across the Lifespan.

    PubMed

    Murray, Micah M; Lewkowicz, David J; Amedi, Amir; Wallace, Mark T

    2016-08-01

    Multisensory processes are fundamental in scaffolding perception, cognition, learning, and behavior. How and when stimuli from different sensory modalities are integrated rather than treated as separate entities is poorly understood. We review how the relative reliance on stimulus characteristics versus learned associations dynamically shapes multisensory processes. We illustrate the dynamism in multisensory function across two timescales: one long term that operates across the lifespan and one short term that operates during the learning of new multisensory relations. In addition, we highlight the importance of task contingencies. We conclude that these highly dynamic multisensory processes, based on the relative weighting of stimulus characteristics and learned associations, provide both stability and flexibility to brain functions over a wide range of temporal scales. PMID:27282408

  11. Personality Traits Prospectively Predict Verbal Fluency in a Lifespan Sample

    PubMed Central

    Sutin, Angelina R.; Terracciano, Antonio; Kitner-Triolo, Melissa H.; Uda, Manuela; Schlessinger, David; Zonderman, Alan B.

    2011-01-01

    In a community-dwelling sample (N=4,790; age range 14–94), we examined whether personality traits prospectively predicted performance on a verbal fluency task. Open, extraverted, and emotionally stable participants had better verbal fluency. At the facet level, dispositionally happy and self-disciplined participants retrieved more words; those prone to anxiety and depression and those who were deliberative retrieved fewer words. Education moderated the association between Conscientiousness and fluency such that participants with lower education performed better on the fluency task if they were also conscientious. Age was not a moderator at the domain level, indicating that the personality-fluency associations were consistent across the lifespan. A disposition towards emotional vulnerability and being less open, less happy, and undisciplined may be detrimental to cognitive performance. PMID:21707179

  12. Linguistic Processing of Accented Speech Across the Lifespan

    PubMed Central

    Cristia, Alejandrina; Seidl, Amanda; Vaughn, Charlotte; Schmale, Rachel; Bradlow, Ann; Floccia, Caroline

    2012-01-01

    In most of the world, people have regular exposure to multiple accents. Therefore, learning to quickly process accented speech is a prerequisite to successful communication. In this paper, we examine work on the perception of accented speech across the lifespan, from early infancy to late adulthood. Unfamiliar accents initially impair linguistic processing by infants, children, younger adults, and older adults, but listeners of all ages come to adapt to accented speech. Emergent research also goes beyond these perceptual abilities, by assessing links with production and the relative contributions of linguistic knowledge and general cognitive skills. We conclude by underlining points of convergence across ages, and the gaps left to face in future work. PMID:23162513

  13. No turnover in lens lipids for the entire human lifespan.

    PubMed

    Hughes, Jessica R; Levchenko, Vladimir A; Blanksby, Stephen J; Mitchell, Todd W; Williams, Alan; Truscott, Roger J W

    2015-01-01

    Lipids are critical to cellular function and it is generally accepted that lipid turnover is rapid and dysregulation in turnover results in disease (Dawidowicz 1987; Phillips et al., 2009; Liu et al., 2013). In this study, we present an intriguing counter-example by demonstrating that in the center of the human ocular lens, there is no lipid turnover in fiber cells during the entire human lifespan. This discovery, combined with prior demonstration of pronounced changes in the lens lipid composition over a lifetime (Hughes et al., 2012), suggests that some lipid classes break down in the body over several decades, whereas others are stable. Such substantial changes in lens cell membranes may play a role in the genesis of age-related eye disorders. Whether long-lived lipids are present in other tissues is not yet known, but this may prove to be important in understanding the development of age-related diseases. PMID:25760082

  14. Transcription Errors Induce Proteotoxic Stress and Shorten Cellular Lifespan

    PubMed Central

    Vermulst, Marc; Denney, Ashley S.; Lang, Michael J.; Hung, Chao-Wei; Moore, Stephanie; Mosely, M. Arthur; Thompson, J. Will; Madden, Victoria; Gauer, Jacob; Wolfe, Katie J.; Summers, Daniel W.; Schleit, Jennifer; Sutphin, George L.; Haroon, Suraiya; Holczbauer, Agnes; Caine, Joanne; Jorgenson, James; Cyr, Douglas; Kaeberlein, Matt; Strathern, Jeffrey N.; Duncan, Mara C.; Erie, Dorothy A.

    2015-01-01

    Transcription errors occur in all living cells; however, it is unknown how these errors affect cellular health. To answer this question, we monitored yeast cells that were genetically engineered to display error-prone transcription. We discovered that these cells suffer from a profound loss in proteostasis, which sensitizes them to the expression of genes that are associated with protein-folding diseases in humans; thus, transcription errors represent a new molecular mechanism by which cells can acquire disease. We further found that the error rate of transcription increases as cells age, suggesting that transcription errors affect proteostasis particularly in aging cells. Accordingly, transcription errors accelerate the aggregation of a peptide that is implicated in Alzheimer’s disease, and shorten the lifespan of cells. These experiments reveal a novel, basic biological process that directly affects cellular health and aging. PMID:26304740

  15. How teen girls think about fertility and the reproductive lifespan. Possible implications for curriculum reform and public health policy.

    PubMed

    Littleton, Fiona Kisby

    2014-09-01

    Despite an 'epidemic' of delayed childbirth in England and Wales beyond a woman's optimally fertile years, research shows that young adults are unaware of or misunderstand the risks regarding starting or extending families that such behaviour entails. Currently, sex education syllabi in British schools neglect these issues, rendering school leavers ignorant of them.These curricula cannot be improved until more is known about adolescents' knowledge of relevant topics. In the light of this, this article describes exploratory research on how teenage girls in one English school think about the reproductive lifespan. Going beyond recent 'scientific' investigations which have mostly only tested the extent of ignorance of young adults, this qualitative enquiry used theories of the life course and emerging adulthood to analyse data gathered in interviews. It sought to understand not only what girls know, but how they apply their knowledge in relation to their assumptions about aging, motherhood, pregnancy, parenting and employment. One finding is highlighted here: that whilst "correct" knowledge about the reproductive lifespan does appear to be held by teenage girls, the ability to apply that knowledge and connect the socio-cultural with the biological domain, may not always be in place. This is relevant for curriculum developers aiming to prepare future citizens to take full control of their reproductive health, and policy makers responsible for ensuring an appropriate public health message about these concerns is available after formal schooling ends. PMID:25105323

  16. Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction

    PubMed Central

    Regan, Jennifer C; Khericha, Mobina; Dobson, Adam J; Bolukbasi, Ekin; Rattanavirotkul, Nattaphong; Partridge, Linda

    2016-01-01

    Women live on average longer than men but have greater levels of late-life morbidity. We have uncovered a substantial sex difference in the pathology of the aging gut in Drosophila. The intestinal epithelium of the aging female undergoes major deterioration, driven by intestinal stem cell (ISC) division, while lower ISC activity in males associates with delay or absence of pathology, and better barrier function, even at old ages. Males succumb to intestinal challenges to which females are resistant, associated with fewer proliferating ISCs, suggesting a trade-off between highly active repair mechanisms and late-life pathology in females. Dietary restriction reduces gut pathology in aging females, and extends female lifespan more than male. By genetic sex reversal of a specific gut region, we induced female-like aging pathologies in males, associated with decreased lifespan, but also with a greater increase in longevity in response to dietary restriction. DOI: http://dx.doi.org/10.7554/eLife.10956.001 PMID:26878754

  17. How teen girls think about fertility and the reproductive lifespan. Possible implications for curriculum reform and public health policy.

    PubMed

    Littleton, Fiona Kisby

    2014-09-01

    Despite an 'epidemic' of delayed childbirth in England and Wales beyond a woman's optimally fertile years, research shows that young adults are unaware of or misunderstand the risks regarding starting or extending families that such behaviour entails. Currently, sex education syllabi in British schools neglect these issues, rendering school leavers ignorant of them.These curricula cannot be improved until more is known about adolescents' knowledge of relevant topics. In the light of this, this article describes exploratory research on how teenage girls in one English school think about the reproductive lifespan. Going beyond recent 'scientific' investigations which have mostly only tested the extent of ignorance of young adults, this qualitative enquiry used theories of the life course and emerging adulthood to analyse data gathered in interviews. It sought to understand not only what girls know, but how they apply their knowledge in relation to their assumptions about aging, motherhood, pregnancy, parenting and employment. One finding is highlighted here: that whilst "correct" knowledge about the reproductive lifespan does appear to be held by teenage girls, the ability to apply that knowledge and connect the socio-cultural with the biological domain, may not always be in place. This is relevant for curriculum developers aiming to prepare future citizens to take full control of their reproductive health, and policy makers responsible for ensuring an appropriate public health message about these concerns is available after formal schooling ends.

  18. Neuroendocrine aging in birds: comparing lifespan differences and conserved mechanisms.

    PubMed

    Ottinger, Mary Ann

    2007-05-01

    As more comparative data become available, it is clear that the process of aging has fundamental similarities across classes of vertebrates. Birds provide a fascinating collection of species because of the considerable range in reproductive lifespan and variation in reproductive strategies that often relate to lifespan. One fascinating aspect of the comparative biology of aging in different avian species is the conserved mechanisms that appear very similar to those observed in mammals. Despite marked differences in sexual differentiation and reproductive function, including a single functional ovary and the internal testes, there appears to be remarkable similarity in elements of neuroendocrine aging and their end results. Furthermore, although beyond the scope of this review, the intense endocrine and energetic demands on many species of temperate zone birds for long migration and the accompanying seasonal alterations in endocrine responses add an additional layer of complexity in understanding aging. It is the purpose of this review to focus on neuroendocrine changes that accompany aging in a short-lived bird, with mention of some of the available data in field birds and long-lived species. Unfortunately, few neuroendocrine data are available for these long-lived avian species. It would be very interesting to determine if these long-lived birds somehow manage to delay the cascade of changes that contribute to the demise of metabolic and reproductive endocrine function. This review will also attempt to integrate the time-related events that occur in the responses of the hypothalamus and the gonads, especially relative to the neuroregulatory systems that have been implicated in the age-related decline in reproductive function. Finally, emerging areas of interest will be considered in the context of future research areas. PMID:17452025

  19. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    PubMed

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-01

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. PMID:27246738

  20. Polyhydroxy fullerenes (fullerols or fullerenols): beneficial effects on growth and lifespan in diverse biological models.

    PubMed

    Gao, Jie; Wang, Yihai; Folta, Kevin M; Krishna, Vijay; Bai, Wei; Indeglia, Paul; Georgieva, Angelina; Nakamura, Hideya; Koopman, Ben; Moudgil, Brij

    2011-01-01

    Recent toxicological studies on carbon nanomaterials, including fullerenes, have led to concerns about their safety. Functionalized fullerenes, such as polyhydroxy fullerenes (PHF, fullerols, or fullerenols), have attracted particular attention due to their water solubility and toxicity. Here, we report surprisingly beneficial and/or specific effects of PHF on model organisms representing four kingdoms, including the green algae Pseudokirchneriella subcapitata, the plant Arabidopsis thaliana, the fungus Aspergillus niger, and the invertebrate Ceriodaphnia dubia. The results showed that PHF had no acute or chronic negative effects on the freshwater organisms. Conversely, PHF could surprisingly increase the algal culture density over controls at higher concentrations (i.e., 72% increase by 1 and 5 mg/L of PHF) and extend the lifespan and stimulate the reproduction of Daphnia (e.g. about 38% by 20 mg/L of PHF). We also show that at certain PHF concentrations fungal growth can be enhanced and Arabidopsis thaliana seedlings exhibit longer hypocotyls, while other complex physiological processes remain unaffected. These findings may open new research fields in the potential applications of PHF, e.g., in biofuel production and aquaculture. These results will form the basis of further research into the mechanisms of growth stimulation and life extension by PHF.

  1. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.

    PubMed

    Mei, Szu-Chieh; Brenner, Charles

    2015-01-01

    In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell.

  2. Mitohormesis: Promoting Health and Lifespan by Increased Levels of Reactive Oxygen Species (ROS)

    PubMed Central

    Ristow, Michael; Schmeisser, Kathrin

    2014-01-01

    Increasing evidence indicates that reactive oxygen species (ROS), consisting of superoxide, hydrogen peroxide, and multiple others, do not only cause oxidative stress, but rather may function as signaling molecules that promote health by preventing or delaying a number of chronic diseases, and ultimately extend lifespan. While high levels of ROS are generally accepted to cause cellular damage and to promote aging, low levels of these may rather improve systemic defense mechanisms by inducing an adaptive response. This concept has been named mitochondrial hormesis or mitohormesis. We here evaluate and summarize more than 500 publications from current literature regarding such ROS-mediated low-dose signaling events, including calorie restriction, hypoxia, temperature stress, and physical activity, as well as signaling events downstream of insulin/IGF-1 receptors, AMP-dependent kinase (AMPK), target-of-rapamycin (TOR), and lastly sirtuins to culminate in control of proteostasis, unfolded protein response (UPR), stem cell maintenance and stress resistance. Additionally, consequences of interfering with such ROS signals by pharmacological or natural compounds are being discussed, concluding that particularly antioxidants are useless or even harmful. PMID:24910588

  3. Polyhydroxy Fullerenes (Fullerols or Fullerenols): Beneficial Effects on Growth and Lifespan in Diverse Biological Models

    PubMed Central

    Gao, Jie; Wang, Yihai; Folta, Kevin M.; Krishna, Vijay; Bai, Wei; Indeglia, Paul; Georgieva, Angelina; Nakamura, Hideya; Koopman, Ben; Moudgil, Brij

    2011-01-01

    Recent toxicological studies on carbon nanomaterials, including fullerenes, have led to concerns about their safety. Functionalized fullerenes, such as polyhydroxy fullerenes (PHF, fullerols, or fullerenols), have attracted particular attention due to their water solubility and toxicity. Here, we report surprisingly beneficial and/or specific effects of PHF on model organisms representing four kingdoms, including the green algae Pseudokirchneriella subcapitata, the plant Arabidopsis thaliana, the fungus Aspergillus niger, and the invertebrate Ceriodaphnia dubia. The results showed that PHF had no acute or chronic negative effects on the freshwater organisms. Conversely, PHF could surprisingly increase the algal culture density over controls at higher concentrations (i.e., 72% increase by 1 and 5 mg/L of PHF) and extend the lifespan and stimulate the reproduction of Daphnia (e.g. about 38% by 20 mg/L of PHF). We also show that at certain PHF concentrations fungal growth can be enhanced and Arabidopsis thaliana seedlings exhibit longer hypocotyls, while other complex physiological processes remain unaffected. These findings may open new research fields in the potential applications of PHF, e.g., in biofuel production and aquaculture. These results will form the basis of further research into the mechanisms of growth stimulation and life extension by PHF. PMID:21637768

  4. Different Temporal Patterns of Specific and General Autobiographical Memories across the Lifespan in Alzheimer's Disease

    PubMed Central

    Philippi, Nathalie; Rousseau, François; Noblet, Vincent; Botzung, Anne; Després, Olivier; Cretin, Benjamin; Kremer, Stéphane; Blanc, Frédéric; Manning, Liliann

    2015-01-01

    We compared specific (i.e., associated with a unique time and space) and general (i.e., extended or repeated events) autobiographical memories (AbM) in Alzheimer's disease (AD). The comparison aims at investigating the relationship between these two components of AbM across the lifespan and the volume of cerebral regions of interest within the temporal lobe. We hypothesized that the ability to elicit specific memories would correlate with hippocampal volume, whereas evoking general memories would be related to lateral temporal lobe. AbM was assessed using the modified Crovitz test in 18 patients with early AD and 18 matched controls. The proportions of total memories—supposed to reflect the ability to produce general memories—and specific memories retrieved were compared between AD patients and controls. Correlations to MRI volumes of temporal cortex were tested. We found different temporal patterns for specific and general memories in AD patients, with (i) relatively spared general memories, according to a temporal gradient that preserved remote memories, predominantly associated with right lateral temporal cortex volume. (ii) Conversely, the retrieval of specific AbMs was impaired for all life periods and correlated with bilateral hippocampal volumes. Our results highlight a shift from an initially episodic to a semantic nature of AbMs during AD, where the abstracted form of memories remains. PMID:26175549

  5. Different Temporal Patterns of Specific and General Autobiographical Memories across the Lifespan in Alzheimer's Disease.

    PubMed

    Philippi, Nathalie; Rousseau, François; Noblet, Vincent; Botzung, Anne; Després, Olivier; Cretin, Benjamin; Kremer, Stéphane; Blanc, Frédéric; Manning, Liliann

    2015-01-01

    We compared specific (i.e., associated with a unique time and space) and general (i.e., extended or repeated events) autobiographical memories (AbM) in Alzheimer's disease (AD). The comparison aims at investigating the relationship between these two components of AbM across the lifespan and the volume of cerebral regions of interest within the temporal lobe. We hypothesized that the ability to elicit specific memories would correlate with hippocampal volume, whereas evoking general memories would be related to lateral temporal lobe. AbM was assessed using the modified Crovitz test in 18 patients with early AD and 18 matched controls. The proportions of total memories-supposed to reflect the ability to produce general memories-and specific memories retrieved were compared between AD patients and controls. Correlations to MRI volumes of temporal cortex were tested. We found different temporal patterns for specific and general memories in AD patients, with (i) relatively spared general memories, according to a temporal gradient that preserved remote memories, predominantly associated with right lateral temporal cortex volume. (ii) Conversely, the retrieval of specific AbMs was impaired for all life periods and correlated with bilateral hippocampal volumes. Our results highlight a shift from an initially episodic to a semantic nature of AbMs during AD, where the abstracted form of memories remains.

  6. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.

    PubMed

    Mei, Szu-Chieh; Brenner, Charles

    2015-01-01

    In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell. PMID:25633578

  7. Pharmacological modulation of histone demethylase activity by a small molecule isolated from subcritical water extracts of Sasa senanensis leaves prolongs the lifespan of Drosophila melanogaster

    PubMed Central

    2012-01-01

    Background Extracts of Sasa senanensis Rehder are used in traditional Japanese medicine; however, little is known about the underlying mechanisms of their potential health benefits. Methods S. senanensis leaves were extracted with subcritical water. An active small-molecule was isolated using reversed-phase high-performance liquid chromatography (HPLC), and identified as 3,4-dihydroxybenzaldehyde (protocatechuic aldehyde or PA). The effects of PA on the activity of histone demethylase, the Drosophila melanogaster lifespan and gene expression in Drosophila S2 cells were investigated. Results PA inhibited the activity of Jumonji domain-containing protein 2A (JMJD2A) histone demethylase in a dose-dependent manner with a half-maximal inhibitory concentration (IC50) of 11.6 μM. However, there was no effect on lysine-specific demethylase 1 (LSD1), histone deacetylase 1 (HDAC1) or HDAC8. PA significantly extended the lifespan of female, but not male, Drosophila. In Drosophila S2 cells, the eukaryotic translation initiation factor 4E binding protein (4E-BP) was up-regulated by PA exposure. Conclusions Our findings provide insight into the possible relationship between the pharmacological modulation of histone demethylation and lifespan extension by PA; they might also be important in the development of alternative therapies for age-related disorders. PMID:22809229

  8. The influence of dietary fat source on liver and skeletal muscle mitochondrial modifications and lifespan changes in calorie-restricted mice

    PubMed Central

    Villalba, José Manuel; López-Domínguez, José Alberto; Chen, Yana; Khraiwesh, Husam; González-Reyes, José Antonio; del Río, Lucía Fernández; Gutiérrez-Casado, Elena; del Río, Mercedes; Calvo-Rubio, Miguel; Ariza, Julia; de Cabo, Rafael; López-Lluch, Guillermo; Navas, Plácido; Hagopian, Kevork; Burón, María Isabel; Ramsey, Jon Jay

    2015-01-01

    The Membrane Theory of Aging proposes that lifespan is inversely related to the level of unsaturation in membrane phospholipids. Calorie restriction (CR) without malnutrition extends lifespan in many model organisms, which may be related to alterations in membrane phospholipids fatty acids. During the last few years our research focused on studying how altering the predominant fat source affects the outcome of CR in mice. We have established four dietary groups: one control group fed 95% of a pre-determined ad libitum intake (in order to prevent obesity), and three CR groups fed 40% less than ad libitum intake. Lipid source for the control and one of the CR groups was soybean oil (high in n-6 PUFA) whereas the two remaining CR groups were fed diets containing fish oil (high in n-3 PUFA), or lard (high in saturated and monounsaturated fatty acids). Dietary intervention periods ranged from 1 to 18 months. We performed a longitudinal lifespan study and a cross-sectional study set up to evaluate several mitochondrial parameters which included fatty acid composition, H+ leak, activities of electron transport chain enzymes, ROS generation, lipid peroxidation, mitochondrial ultrastructure, and mitochondrial apoptotic signaling in liver and skeletal muscle. These approaches applied to different cohorts of mice have independently indicated that lard as a fat source often maximizes the effects of 40% CR on mice. These effects could be due to significant increases of monounsaturated fatty acids levels, in accordance with the Membrane Theory of Aging. PMID:25860863

  9. Defected red blood cell membranes and direct correlation with the uraemic milieu: the connection with the decreased red blood cell lifespan observed in haemodialysis patients

    NASA Astrophysics Data System (ADS)

    Stamopoulos, D.; Grapsa, E.; Manios, E.; Gogola, V.; Bakirtzi, N.

    2012-12-01

    Together with impaired production of erythropoietin and iron deficiency, the decreased lifespan of red blood cells (RBCs) is a main factor contributing to the chronic anaemia observed in haemodialysis (HD) patients. Atomic force microscopy is employed in this work to thoroughly survey the membrane of intact RBCs (iRBCs) of HD patients in comparison to those of healthy donors, aiming to obtain direct information on the structural status of RBCs that can be related to their decreased lifespan. We observed that the iRBC membrane of the HD patients is overpopulated with extended circular defects, termed ‘orifices’, that have typical dimension ranging between 0.2 and 1.0 μm. The ‘orifice’ index—that is, the mean population of ‘orifices’ per top membrane surface—exhibits a pronounced relative increase of order 54 ± 12% for the HD patients as compared to healthy donors. Interestingly, for the HD patients, the ‘orifice’ index, which relates to the structural status of the RBC membrane, correlates strongly with urea concentration, which is a basic index of the uraemic milieu. Thus, these results indicate that the uraemic milieu downgrades the structural status of the RBC membrane, possibly triggering biochemical processes that result in their premature elimination from the circulation. This process could decrease the lifespan of RBCs, as observed in HD patients.

  10. Transcriptome analysis of a long-lived natural Drosophila variant: a prominent role of stress- and reproduction-genes in lifespan extension

    PubMed Central

    2012-01-01

    Background While studying long-lived mutants has advanced our understanding of the processes involved in ageing, the mechanisms underlying natural variation in lifespan and ageing rate remain largely unknown. Here, we characterise genome-wide expression patterns of a long-lived, natural variant of Drosophila melanogaster resulting from selection for starvation resistance (SR) and compare it with normal-lived control flies (C). We do this at two time points representing middle age (90% survival) and old age (10% survival) respectively, in three adult diets (malnutrition, optimal food, and overfeeding). Results We found profound differences between Drosophila lines in their age-related expression. Most of the age-associated changes in normal-lived flies were abrogated in long-lived Drosophila. The stress-related genes, including those involved in proteolysis and cytochrome P450, were generally higher expressed in SR flies and showed a smaller increase in expression with age compared to C flies. The genes involved in reproduction showed a lower expression in middle-aged SR than in C flies and, unlike C flies, a lack of their downregulation with age. Further, we found that malnutrition strongly affected age-associated transcript patterns overriding the differences between the lines. However, under less stressful dietary conditions, line and diet affected age-dependent expression similarly. Finally, we present lists of candidate markers of ageing and lifespan extension. Conclusions Our study unveils transcriptional changes associated with lifespan extension in SR Drosophila. The results suggest that natural genetic variation for SR and lifespan can operate through similar transcriptional mechanisms as those of dietary restriction and life-extending mutations. PMID:22559237

  11. Diffusion tensor tractography findings in schizophrenia across the adult lifespan.

    PubMed

    Voineskos, Aristotle N; Lobaugh, Nancy J; Bouix, Sylvain; Rajji, Tarek K; Miranda, Dielle; Kennedy, James L; Mulsant, Benoit H; Pollock, Bruce G; Shenton, Martha E

    2010-05-01

    In healthy adult individuals, late life is a dynamic time of change with respect to the microstructural integrity of white matter tracts. Yet, elderly individuals are generally excluded from diffusion tensor imaging studies in schizophrenia. Therefore, we examined microstructural integrity of frontotemporal and interhemispheric white matter tracts in schizophrenia across the adult lifespan. Diffusion tensor imaging data from 25 younger schizophrenic patients (< or = 55 years), 25 younger controls, 25 older schizophrenic patients (> or = 56 years) and 25 older controls were analysed. Patients with schizophrenia in each group were individually matched to controls. Whole-brain tractography and clustering segmentation were employed to isolate white matter tracts. Groups were compared using repeated measures analysis of variance with 12 within-group measures of fractional anisotropy: (left and right) uncinate fasciculus, arcuate fasciculus, inferior longitudinal fasciculus, inferior occipito-frontal fasciculus, cingulum bundle, and genu and splenium of the corpus callosum. For each white matter tract, fractional anisotropy was then regressed against age in patients and controls, and correlation coefficients compared. The main effect of group (F(3,92) = 12.2, P < 0.001), and group by tract interactions (F(26,832) = 1.68, P = 0.018) were evident for fractional anisotropy values. Younger patients had significantly lower fractional anisotropy than younger controls (Bonferroni-corrected alpha = 0.0042) in the left uncinate fasciculus (t(48) = 3.7, P = 0.001) and right cingulum bundle (t(48) = 3.6, P = 0.001), with considerable effect size, but the older groups did not differ. Schizophrenic patients did not demonstrate accelerated age-related decline compared with healthy controls in any white matter tract. To our knowledge, this is the first study to examine the microstructural integrity of frontotemporal white matter tracts across the adult lifespan in schizophrenia. The

  12. Rec-8 dimorphism affects longevity, stress resistance and X-chromosome nondisjunction in C. elegans, and replicative lifespan in S. cerevisiae

    PubMed Central

    Ayyadevara, Srinivas; Tazearslan, Çagdas; Alla, Ramani; Jiang, James C.; Jazwinski, S. Michal; Shmookler Reis, Robert J.

    2014-01-01

    A quantitative trait locus (QTL) in the nematode C. elegans, “lsq4,” was recently implicated by mapping longevity genes. QTLs for lifespan and three stress-resistance traits coincided within a span of <300 kbp, later narrowed to <200 kbp. A single gene in this interval is now shown to modulate all lsq4-associated traits. Full-genome analysis of transcript levels indicates that lsq4 contains a dimorphic gene governing the expression of many sperm-specific genes, suggesting an effect on spermatogenesis. Quantitative analysis of allele-specific transcripts encoded within the lsq4 interval revealed significant, 2- to 15-fold expression differences for 10 of 33 genes. Fourteen “dual-candidate” genes, implicated by both position and expression, were tested for RNA-interference effects on QTL-linked traits. In a strain carrying the shorter-lived allele, knockdown of rec-8 (encoding a meiotic cohesin) reduced its transcripts 4-fold, to a level similar to the longer-lived strain, while extending lifespan 25–26%, whether begun before fertilization or at maturity. The short-lived lsq4 allele also conferred sensitivity to oxidative and thermal stresses, and lower male frequency (reflecting X-chromosome non-disjunction), traits reversed uniquely by rec-8 knockdown. A strain bearing the longer-lived lsq4 allele, differing from the short-lived strain at <0.3% of its genome, derived no lifespan or stress-survival benefit from rec-8 knockdown. We consider two possible explanations: high rec-8 expression may include increased “leaky” expression in mitotic cells, leading to deleterious destabilization of somatic genomes; or REC-8 may act entirely in germ-line meiotic cells to reduce aberrations such as non-disjunction, thereby blunting a stress-resistance response mediated by innate immunity. Replicative lifespan was extended 20% in haploid S. cerevisiae (BY4741) by deletion of REC8, orthologous to nematode rec-8, implying that REC8 disruption of mitotic-cell survival

  13. Rec-8 dimorphism affects longevity, stress resistance and X-chromosome nondisjunction in C. elegans, and replicative lifespan in S. cerevisiae.

    PubMed

    Ayyadevara, Srinivas; Tazearslan, Cagdas; Alla, Ramani; Jiang, James C; Jazwinski, S Michal; Shmookler Reis, Robert J

    2014-01-01

    A quantitative trait locus (QTL) in the nematode C. elegans, "lsq4," was recently implicated by mapping longevity genes. QTLs for lifespan and three stress-resistance traits coincided within a span of <300 kbp, later narrowed to <200 kbp. A single gene in this interval is now shown to modulate all lsq4-associated traits. Full-genome analysis of transcript levels indicates that lsq4 contains a dimorphic gene governing the expression of many sperm-specific genes, suggesting an effect on spermatogenesis. Quantitative analysis of allele-specific transcripts encoded within the lsq4 interval revealed significant, 2- to 15-fold expression differences for 10 of 33 genes. Fourteen "dual-candidate" genes, implicated by both position and expression, were tested for RNA-interference effects on QTL-linked traits. In a strain carrying the shorter-lived allele, knockdown of rec-8 (encoding a meiotic cohesin) reduced its transcripts 4-fold, to a level similar to the longer-lived strain, while extending lifespan 25-26%, whether begun before fertilization or at maturity. The short-lived lsq4 allele also conferred sensitivity to oxidative and thermal stresses, and lower male frequency (reflecting X-chromosome non-disjunction), traits reversed uniquely by rec-8 knockdown. A strain bearing the longer-lived lsq4 allele, differing from the short-lived strain at <0.3% of its genome, derived no lifespan or stress-survival benefit from rec-8 knockdown. We consider two possible explanations: high rec-8 expression may include increased "leaky" expression in mitotic cells, leading to deleterious destabilization of somatic genomes; or REC-8 may act entirely in germ-line meiotic cells to reduce aberrations such as non-disjunction, thereby blunting a stress-resistance response mediated by innate immunity. Replicative lifespan was extended 20% in haploid S. cerevisiae (BY4741) by deletion of REC8, orthologous to nematode rec-8, implying that REC8 disruption of mitotic-cell survival is widespread

  14. A Rapid and Sensitive HPLC-DAD Assay to Quantify Lamotrigine, Phenytoin and Its Main Metabolite in Samples of Cultured HepaRG Cells.

    PubMed

    Ferreira, Ana; Rodrigues, Márcio; Falcão, Amílcar; Alves, Gilberto

    2016-09-01

    A sensitive and fast high-performance liquid chromatography-diode-array detection assay was developed and validated for the simultaneous quantification of 5-(4-hydroxyphenyl)-5-phenylhydantoin (HPPH), phenytoin (PHT) and lamotrigine (LTG) in samples of cultured HepaRG cells. Chromatographic separation of analytes and internal standard (IS) was achieved in ∼15 min on a C18-column, at 35°C, using acetonitrile (6%), methanol (25%) and a mixture (69%) of water-triethylamine (99.7:0.3, v/v; pH 6.0), pumped at 1 mL/min. The analytes and IS were detected at 215 or 235 nm. Calibration curves were linear with regression coefficients >0.994 over the concentration ranges of 0.1-15 µg/mL for HPPH; 0.15-30 µg/mL for PHT and 0.2-20 µg/mL for LTG. The method showed to be accurate (bias value of ±10.5 or ±17.6% in the lower limit of quantification, LLOQ) and precise (coefficient variation ≤8.1 or ≤15.4% in the LLOQ), and the absolute recovery of the analytes ranged from 62.5 to 96.9%. HepaRG cells have emerged as a very promising in vitro model to evaluate metabolic, drug interaction and/or pharmacokinetic studies, and this methodology will be suitable to support subsequent studies involving the antiepileptic drugs PHT and LTG. PMID:27199444

  15. Simultaneous HPLC-UV analysis of rufinamide, zonisamide, lamotrigine, oxcarbazepine monohydroxy derivative and felbamate in deproteinized plasma of patients with epilepsy.

    PubMed

    Contin, Manuela; Mohamed, Susan; Candela, Carmina; Albani, Fiorenzo; Riva, Roberto; Baruzzi, Agostino

    2010-02-01

    We present an implementation of a method we previously reported allowing the newer antiepileptic drugs (AEDs) rufinamide (RFN) and zonisamide (ZNS) to be simultaneously determined with lamotrigine (LTG), oxcarbazepine's (OXC) main active metabolite monohydroxycarbamazepine (MHD) and felbamate (FBM) in plasma of patients with epilepsy using high performance liquid chromatography (HPLC) with UV detection. Plasma samples (250 microL) were deproteinized by 1 mL acetonitrile spiked with citalopram as internal standard (I.S.). HPLC analysis was carried out on a Synergi 4 microm Hydro-RP, 250 mm x 4.6 mm I.D. column. The mobile phase was a mixture of potassium dihydrogen phosphate buffer (50 mM, pH 4.5), acetonitrile and methanol (65:26.2:8.8, v/v/v) at an isocratic flow rate of 0.8 mL/min. The UV detector was set at 210 nm. The chromatographic run lasted 19 min. Commonly coprescribed AEDs did not interfere with the assay. Calibration curves were linear for both AEDs over a range of 2-40 microg/mL for RFN and 2-80 microg/mL for ZNS. The limit of quantitation was 2 microg/mL for both analytes and the absolute recovery ranged from 97% to 103% for RFN, ZNS and the I.S. Intra- and interassay precision and accuracy were lower than 10% at all tested concentrations. The present study describes the first simple and validated method for RFN determination in plasma of patients with epilepsy. By grouping different new AEDs in the same assay the method can be advantageous for therapeutic drug monitoring (TDM). PMID:20005185

  16. Stability and Plasticity of Auditory Brainstem Function Across the Lifespan

    PubMed Central

    Skoe, Erika; Krizman, Jennifer; Anderson, Samira; Kraus, Nina

    2015-01-01

    The human auditory brainstem is thought to undergo rapid developmental changes early in life until age ∼2 followed by prolonged stability until aging-related changes emerge. However, earlier work on brainstem development was limited by sparse sampling across the lifespan and/or averaging across children and adults. Using a larger dataset than past investigations, we aimed to trace more subtle variations in auditory brainstem function that occur normally from infancy into the eighth decade of life. To do so, we recorded auditory brainstem responses (ABRs) to a click stimulus and a speech syllable (da) in 586 normal-hearing healthy individuals. Although each set of ABR measures (latency, frequency encoding, response consistency, nonstimulus activity) has a distinct developmental profile, across all measures developmental changes were found to continue well past age 2. In addition to an elongated developmental trajectory and evidence for multiple auditory developmental processes, we revealed a period of overshoot during childhood (5–11 years old) for latency and amplitude measures, when the latencies are earlier and the amplitudes are greater than the adult value. Our data also provide insight into the capacity for experience-dependent auditory plasticity at different stages in life and underscore the importance of using age-specific norms in clinical and experimental applications. PMID:24366906

  17. Audiovisual Simultaneity Judgment and Rapid Recalibration throughout the Lifespan.

    PubMed

    Noel, Jean-Paul; De Niear, Matthew; Van der Burg, Erik; Wallace, Mark T

    2016-01-01

    Multisensory interactions are well established to convey an array of perceptual and behavioral benefits. One of the key features of multisensory interactions is the temporal structure of the stimuli combined. In an effort to better characterize how temporal factors influence multisensory interactions across the lifespan, we examined audiovisual simultaneity judgment and the degree of rapid recalibration to paired audiovisual stimuli (Flash-Beep and Speech) in a sample of 220 participants ranging from 7 to 86 years of age. Results demonstrate a surprisingly protracted developmental time-course for both audiovisual simultaneity judgment and rapid recalibration, with neither reaching maturity until well into adolescence. Interestingly, correlational analyses revealed that audiovisual simultaneity judgments (i.e., the size of the audiovisual temporal window of simultaneity) and rapid recalibration significantly co-varied as a function of age. Together, our results represent the most complete description of age-related changes in audiovisual simultaneity judgments to date, as well as being the first to describe changes in the degree of rapid recalibration as a function of age. We propose that the developmental time-course of rapid recalibration scaffolds the maturation of more durable audiovisual temporal representations.

  18. RETENTION OF HIGH TACTILE ACUITY THROUGHOUT THE LIFESPAN IN BLINDNESS

    PubMed Central

    Legge, Gordon E.; Madison, Cindee; Vaughn, Brenna N.; Cheong, Allen M.Y.; Miller, Joseph C.

    2009-01-01

    Previous studies of tactile acuity on the fingertip using passive touch have demonstrated an age-related decline in spatial resolution for both sighted and blind subjects. We have re-examined this age dependence with two newly designed tactile-acuity charts requiring active exploration of the test symbols. One chart used dot patterns similar to Braille and the other used embossed Landolt rings. Groups of blind Braille readers and sighted subjects, ranging in age from 12 to 85 years, were tested in two experiments. We replicated previous findings for sighted subjects by showing an age related decrease in tactile acuity by nearly 1% per year. Surprisingly, the blind subjects retained high acuity into old age showing no age-related decline. For the blind subjects, tactile acuity did not correlate with braille reading speed, the amount of daily reading, or the age at which braille was learned. We conclude that when measured with active touch, blind subjects retain high tactile acuity into old age, unlike their aging sighted peers. We propose that blind people's use of active touch in daily activities, not specifically Braille reading, results in preservation of tactile acuity across the lifespan. PMID:19064491

  19. Developmental aspects of synaesthesia across the adult lifespan

    PubMed Central

    Meier, Beat; Rothen, Nicolas; Walter, Stefan

    2014-01-01

    In synaesthesia, stimuli such as sounds, words or letters trigger experiences of colors, shapes or tastes and the consistency of these experiences is a hallmark of this condition. In this study we investigate for the first time whether there are age-related changes in the consistency of synaesthetic experiences. We tested a sample of more than 400 grapheme-color synaesthetes who have color experiences when they see letters and/or digits with a well-established test of consistency. Our results showed a decline in the number of consistent grapheme-color associations across the adult lifespan. We also assessed age-related changes in the breadth of the color spectrum. The results showed that the appearance of primary colors (i.e., red, blue, and green) was mainly age-invariant. However, there was a decline in the occurrence of lurid colors while brown and achromatic tones occurred more often as concurrents in older age. These shifts in the color spectrum suggest that synaesthesia does not simply fade, but rather undergoes more comprehensive changes. We propose that these changes are the result of a combination of both age-related perceptual and memory processing shifts. PMID:24653689

  20. Audiovisual Simultaneity Judgment and Rapid Recalibration throughout the Lifespan

    PubMed Central

    De Niear, Matthew; Van der Burg, Erik; Wallace, Mark T.

    2016-01-01

    Multisensory interactions are well established to convey an array of perceptual and behavioral benefits. One of the key features of multisensory interactions is the temporal structure of the stimuli combined. In an effort to better characterize how temporal factors influence multisensory interactions across the lifespan, we examined audiovisual simultaneity judgment and the degree of rapid recalibration to paired audiovisual stimuli (Flash-Beep and Speech) in a sample of 220 participants ranging from 7 to 86 years of age. Results demonstrate a surprisingly protracted developmental time-course for both audiovisual simultaneity judgment and rapid recalibration, with neither reaching maturity until well into adolescence. Interestingly, correlational analyses revealed that audiovisual simultaneity judgments (i.e., the size of the audiovisual temporal window of simultaneity) and rapid recalibration significantly co-varied as a function of age. Together, our results represent the most complete description of age-related changes in audiovisual simultaneity judgments to date, as well as being the first to describe changes in the degree of rapid recalibration as a function of age. We propose that the developmental time-course of rapid recalibration scaffolds the maturation of more durable audiovisual temporal representations. PMID:27551918

  1. Daily Physical Activity and Alcohol Use Across the Adult Lifespan

    PubMed Central

    Conroy, David E.; Ram, Nilam; Pincus, Aaron L.; Coffman, Donna L.; Lorek, Amy E.; Rebar, Amanda L.; Roche, Michael J.

    2014-01-01

    Objective In contrast to proposals that physical activity (PA) can be a substitute for alcohol use, people who engage in greater overall PA generally consume more alcohol on average than less-active peers. Acknowledging that both PA and alcohol use vary considerably from day-to-day, this study evaluated whether established associations reflect daily behavioral coupling within-person, are an artifact of procedures that aggregate behavior over time, or both. Methods A lifespan sample of 150 adults (aged 19–89 years) completed three 21-day measurement bursts of a daily diary study. At the end of each day, they reported on their PA and alcohol consumption. Data were analyzed in a negative binomial multilevel regression. Results As expected, both behaviors exhibited limited between-person variation. After controlling for age, sex, and seasonal and social calendar influences, daily deviations in PA were significantly associated with daily total alcohol use. Once the within-person process linking PA and alcohol use was controlled, usual PA and total alcohol use were not associated. Conclusions The established between-person association linking PA and alcohol use reflects the aggregation of a daily process that unfolds within-people over time. Further work is needed to identify mediators of this daily association and to evaluate causality, as well as to investigate these relations in high-risk samples. PMID:25222084

  2. No turnover in lens lipids for the entire human lifespan

    PubMed Central

    Hughes, Jessica R; Levchenko, Vladimir A; Blanksby, Stephen J; Mitchell, Todd W; Williams, Alan; Truscott, Roger JW

    2015-01-01

    Lipids are critical to cellular function and it is generally accepted that lipid turnover is rapid and dysregulation in turnover results in disease (Dawidowicz 1987; Phillips et al., 2009; Liu et al., 2013). In this study, we present an intriguing counter-example by demonstrating that in the center of the human ocular lens, there is no lipid turnover in fiber cells during the entire human lifespan. This discovery, combined with prior demonstration of pronounced changes in the lens lipid composition over a lifetime (Hughes et al., 2012), suggests that some lipid classes break down in the body over several decades, whereas others are stable. Such substantial changes in lens cell membranes may play a role in the genesis of age-related eye disorders. Whether long-lived lipids are present in other tissues is not yet known, but this may prove to be important in understanding the development of age-related diseases. DOI: http://dx.doi.org/10.7554/eLife.06003.001 PMID:25760082

  3. Neural Processing of Emotional Prosody across the Adult Lifespan

    PubMed Central

    Demenescu, Liliana Ramona; Kato, Yutaka; Mathiak, Klaus

    2015-01-01

    Emotion recognition deficits emerge with the increasing age, in particular, a decline in the identification of sadness. However, little is known about the age-related changes of emotion processing in sensory, affective, and executive brain areas. This functional magnetic resonance imaging (fMRI) study investigated neural correlates of auditory processing of prosody across adult lifespan. Unattended detection of emotional prosody changes was assessed in 21 young (age range: 18–35 years), 19 middle-aged (age range: 36–55 years), and 15 older (age range: 56–75 years) adults. Pseudowords uttered with neutral prosody were standards in an oddball paradigm with angry, sad, happy, and gender deviants (total 20% deviants). Changes in emotional prosody and voice gender elicited bilateral superior temporal gyri (STG) responses reflecting automatic encoding of prosody. At the right STG, responses to sad deviants decreased linearly with age, whereas happy events exhibited a nonlinear relationship. In contrast to behavioral data, no age by sex interaction emerged on the neural networks. The aging decline of emotion processing of prosodic cues emerges already at an early automatic stage of information processing at the level of the auditory cortex. However, top-down modulation may lead to an additional perceptional bias, for example, towards positive stimuli, and may depend on context factors such as the listener's sex. PMID:26583118

  4. Continuum percolation of long lifespan clusters in a simple fluid.

    PubMed

    Pugnaloni, Luis A; Carlevaro, Carlos M; Valluzzi, Marcos G; Vericat, Fernando

    2008-08-14

    We present results on the percolation loci for chemical clusters and physical clusters of long lifespan. Chemical clusters are defined as sets of particles connected through particle-particle bonds that last for a given time tau. Physical clusters are sets of particles that remain close together at every instant for a given period of time tau. By using molecular dynamics simulations of a Lennard-Jones system we obtain the percolation loci at different values of tau as the lines in the temperature-density plane at which the system presents a spanning cluster in 50% of the configurations. We find that the percolation loci for chemical clusters shifts rapidly toward high densities as tau is increased. For moderate values of tau this line converges to the low-density branch of the liquid-solid coexistence curve. This implies that no stable chemical clusters can be found in the fluid phase. In contrast, the percolation loci for physical clusters tend to a limiting line, as tau tends to infinity, which is far from the liquid-solid transition line.

  5. Neural Processing of Emotional Prosody across the Adult Lifespan.

    PubMed

    Demenescu, Liliana Ramona; Kato, Yutaka; Mathiak, Klaus

    2015-01-01

    Emotion recognition deficits emerge with the increasing age, in particular, a decline in the identification of sadness. However, little is known about the age-related changes of emotion processing in sensory, affective, and executive brain areas. This functional magnetic resonance imaging (fMRI) study investigated neural correlates of auditory processing of prosody across adult lifespan. Unattended detection of emotional prosody changes was assessed in 21 young (age range: 18-35 years), 19 middle-aged (age range: 36-55 years), and 15 older (age range: 56-75 years) adults. Pseudowords uttered with neutral prosody were standards in an oddball paradigm with angry, sad, happy, and gender deviants (total 20% deviants). Changes in emotional prosody and voice gender elicited bilateral superior temporal gyri (STG) responses reflecting automatic encoding of prosody. At the right STG, responses to sad deviants decreased linearly with age, whereas happy events exhibited a nonlinear relationship. In contrast to behavioral data, no age by sex interaction emerged on the neural networks. The aging decline of emotion processing of prosodic cues emerges already at an early automatic stage of information processing at the level of the auditory cortex. However, top-down modulation may lead to an additional perceptional bias, for example, towards positive stimuli, and may depend on context factors such as the listener's sex. PMID:26583118

  6. Scaffolding Across the Lifespan in History-Dependent Decision Making

    PubMed Central

    Cooper, Jessica A.; Worthy, Darrell A.; Gorlick, Marissa A.; Maddox, W. Todd

    2013-01-01

    We examined the relationship between pressure and age-related changes in decision-making using a task where currently available rewards depend upon the participant’s previous history of choices. Optimal responding in this task requires the participant to learn how their current choices affect changes in the future rewards given for each option. Building upon the scaffolding theory of aging and cognition we predicted that when additional frontal resources are available, compensatory recruitment leads to increased monitoring and increased use of heuristic-based strategies, ultimately leading to better performance. Specifically, we predicted that scaffolding would result in an age-related performance advantage under no pressure conditions. We also predicted that, while younger adults would engage in scaffolding under pressure, older adults would not have additional resources available for increased scaffolding under pressure-packed conditions, leading to an age-related performance deficit. Both predictions were supported by the data. In addition, computational models were used to evaluate decision-making strategies employed by each participant group. As expected, older adults under no pressure conditions and younger adults under pressure showed increased use of heuristic-based strategies relative to older adults under pressure and younger adults under no pressure, respectively. These results are consistent with the notion that scaffolding can occur across the lifespan in the face of an environmental challenge. PMID:23795765

  7. Alcohol Use and Abuse: Understanding Alcohol Use Across Your Lifespan | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Alcohol Use and Abuse Understanding Alcohol Use Across Your Lifespan Past Issues / Winter 2013 Table of Contents Alcohol use and the risk for alcohol-related problems ...

  8. Inhibition of peroxisome fission, but not mitochondrial fission, increases yeast chronological lifespan.

    PubMed

    Lefevre, Sophie D; Kumar, Sanjeev; van der Klei, Ida J

    2015-01-01

    Mitochondria are key players in aging and cell death. It has been suggested that mitochondrial fragmentation, mediated by the Dnm1/Fis1 organelle fission machinery, stimulates aging and cell death. This was based on the observation that Saccharomyces cerevisiae Δdnm1 and Δfis1 mutants show an enhanced lifespan and increased resistance to cell death inducers. However, the Dnm1/Fis1 fission machinery is also required for peroxisome division. Here we analyzed the significance of peroxisome fission in yeast chronological lifespan, using yeast strains in which fission of mitochondria was selectively blocked. Our data indicate that the lifespan extension caused by deletion of FIS1 is mainly due to a defect in peroxisome fission and not caused by a block in mitochondrial fragmentation. These observations are underlined by our observation that deletion of FIS1 does not lead to lifespan extension in yeast peroxisome deficient mutant cells.

  9. Hispanic-White Differences in Lifespan Variability in the United States.

    PubMed

    Lariscy, Joseph T; Nau, Claudia; Firebaugh, Glenn; Hummer, Robert A

    2016-02-01

    This study is the first to investigate whether and, if so, why Hispanics and non-Hispanic whites in the United States differ in the variability of their lifespans. Although Hispanics enjoy higher life expectancy than whites, very little is known about how lifespan variability-and thus uncertainty about length of life-differs by race/ethnicity. We use 2010 U.S. National Vital Statistics System data to calculate lifespan variance at ages 10+ for Hispanics and whites, and then decompose the Hispanic-white variance difference into cause-specific spread, allocation, and timing effects. In addition to their higher life expectancy relative to whites, Hispanics also exhibit 7 % lower lifespan variability, with a larger gap among women than men. Differences in cause-specific incidence (allocation effects) explain nearly two-thirds of Hispanics' lower lifespan variability, mainly because of the higher mortality from suicide, accidental poisoning, and lung cancer among whites. Most of the remaining Hispanic-white variance difference is due to greater age dispersion (spread effects) in mortality from heart disease and residual causes among whites than Hispanics. Thus, the Hispanic paradox-that a socioeconomically disadvantaged population (Hispanics) enjoys a mortality advantage over a socioeconomically advantaged population (whites)-pertains to lifespan variability as well as to life expectancy. Efforts to reduce U.S. lifespan variability and simultaneously increase life expectancy, especially for whites, should target premature, young adult causes of death-in particular, suicide, accidental poisoning, and homicide. We conclude by discussing how the analysis of Hispanic-white differences in lifespan variability contributes to our understanding of the Hispanic paradox.

  10. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution.

    PubMed

    Moss, David K; Ivany, Linda C; Judd, Emily J; Cummings, Patrick W; Bearden, Claire E; Kim, Woo-Jun; Artruc, Emily G; Driscoll, Jeremy R

    2016-08-17

    Mean body size in marine animals has increased more than 100-fold since the Cambrian, a discovery that brings to attention the key life-history parameters of lifespan and growth rate that ultimately determine size. Variation in these parameters is not well understood on the planet today, much less in deep time. Here, we present a new global database of maximum reported lifespan and shell growth coupled with body size data for 1 148 populations of marine bivalves and show that (i) lifespan increases, and growth rate decreases, with latitude, both across the group as a whole and within well-sampled species, (ii) growth rate, and hence metabolic rate, correlates inversely with lifespan, and (iii) opposing trends in lifespan and growth combined with high variance obviate any demonstrable pattern in body size with latitude. Our observations suggest that the proposed increase in metabolic activity and demonstrated increase in body size of organisms over the Phanerozoic should be accompanied by a concomitant shift towards faster growth and/or shorter lifespan in marine bivalves. This prediction, testable from the fossil record, may help to explain one of the more fundamental patterns in the evolutionary and ecological history of animal life on this planet. PMID:27488653

  11. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans

    PubMed Central

    Kumar, Jitendra; Barhydt, Tracy; Awasthi, Anjali; Lithgow, Gordon J.; Killilea, David W.; Kapahi, Pankaj

    2016-01-01

    Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy. PMID:27078872

  12. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans.

    PubMed

    Kumar, Jitendra; Barhydt, Tracy; Awasthi, Anjali; Lithgow, Gordon J; Killilea, David W; Kapahi, Pankaj

    2016-01-01

    Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy.

  13. Reduced lifespan and increased ageing driven by genetic drift in small populations.

    PubMed

    Lohr, Jennifer N; David, Patrice; Haag, Christoph R

    2014-09-01

    Explaining the strong variation in lifespan among organisms remains a major challenge in evolutionary biology. Whereas previous work has concentrated mainly on differences in selection regimes and selection pressures, we hypothesize that differences in genetic drift may explain some of this variation. We develop a model to formalize this idea and show that the strong positive relationship between lifespan and genetic diversity predicted by this model indeed exists among populations of Daphnia magna, and that ageing is accelerated in small populations. Additional results suggest that this is due to increased drift in small populations rather than adaptation to environments favoring faster life histories. First, the correlation between genetic diversity and lifespan remains significant after statistical correction for potential environmental covariates. Second, no trade-offs are observed; rather, all investigated traits show clear signs of increased genetic load in the small populations. Third, hybrid vigor with respect to lifespan is observed in crosses between small but not between large populations. Together, these results suggest that the evolution of lifespan and ageing can be strongly affected by genetic drift, especially in small populations, and that variation in lifespan and ageing may often be nonadaptive, due to a strong contribution from mutation accumulation.

  14. Ecology and mode-of-life explain lifespan variation in birds and mammals

    PubMed Central

    Healy, Kevin; Guillerme, Thomas; Finlay, Sive; Kane, Adam; Kelly, Seán B. A.; McClean, Deirdre; Kelly, David J.; Donohue, Ian; Jackson, Andrew L.; Cooper, Natalie

    2014-01-01

    Maximum lifespan in birds and mammals varies strongly with body mass such that large species tend to live longer than smaller species. However, many species live far longer than expected given their body mass. This may reflect interspecific variation in extrinsic mortality, as life-history theory predicts investment in long-term survival is under positive selection when extrinsic mortality is reduced. Here, we investigate how multiple ecological and mode-of-life traits that should reduce extrinsic mortality (including volancy (flight capability), activity period, foraging environment and fossoriality), simultaneously influence lifespan across endotherms. Using novel phylogenetic comparative analyses and to our knowledge, the most species analysed to date (n = 1368), we show that, over and above the effect of body mass, the most important factor enabling longer lifespan is the ability to fly. Within volant species, lifespan depended upon when (day, night, dusk or dawn), but not where (in the air, in trees or on the ground), species are active. However, the opposite was true for non-volant species, where lifespan correlated positively with both arboreality and fossoriality. Our results highlight that when studying the molecular basis behind cellular processes such as those underlying lifespan, it is important to consider the ecological selection pressures that shaped them over evolutionary time. PMID:24741018

  15. Constraints on the use of lifespan-shortening Wolbachia to control dengue fever.

    PubMed

    Schraiber, Joshua G; Kaczmarczyk, Angela N; Kwok, Ricky; Park, Miran; Silverstein, Rachel; Rutaganira, Florentine U; Aggarwal, Taruna; Schwemmer, Michael A; Hom, Carole L; Grosberg, Richard K; Schreiber, Sebastian J

    2012-03-21

    Dengue fever, a viral disease spread by the mosquito Aedes aegypti, affects 50-100 million people a year in many tropical countries. Because the virus must incubate within mosquito hosts for two weeks before being able to transmit the infection, shortening the lifespan of mosquitoes may curtail dengue transmission. We developed a continuous time reaction-diffusion model of the spatial spread of Wolbachia through a population of A. aegypti. This model incorporates the lifespan-shortening effects of Wolbachia on infected A. aegypti and the fitness advantage to infected females due to cytoplasmic incompatibility (CI). We found that local establishment of the Wolbachia infection can occur if the fitness advantage due to CI exceeds the fitness reduction due to lifespan-shortening effects, in accordance with earlier results concerning fecundity reduction. However, spatial spread is possible only if the fitness advantage due to CI is twice as great as the fitness reduction due to lifespan shortening effects. Moreover, lifespan-shortening and fecundity-reduction can have different effects on the speed of wave-retreat. Using data from the literature, we estimated all demographic parameters for infected and uninfected mosquitoes and computed the velocities of spread of infection. Our most optimistic estimates suggest that the spatial spread of lifespan-shortening Wolbachia may be so slow that efficient spatial spread would require a prohibitively large number of point releases. However, as these estimates of demographic parameters may not accurately reflect natural conditions, further research is necessary to corroborate these predictions.

  16. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution.

    PubMed

    Moss, David K; Ivany, Linda C; Judd, Emily J; Cummings, Patrick W; Bearden, Claire E; Kim, Woo-Jun; Artruc, Emily G; Driscoll, Jeremy R

    2016-08-17

    Mean body size in marine animals has increased more than 100-fold since the Cambrian, a discovery that brings to attention the key life-history parameters of lifespan and growth rate that ultimately determine size. Variation in these parameters is not well understood on the planet today, much less in deep time. Here, we present a new global database of maximum reported lifespan and shell growth coupled with body size data for 1 148 populations of marine bivalves and show that (i) lifespan increases, and growth rate decreases, with latitude, both across the group as a whole and within well-sampled species, (ii) growth rate, and hence metabolic rate, correlates inversely with lifespan, and (iii) opposing trends in lifespan and growth combined with high variance obviate any demonstrable pattern in body size with latitude. Our observations suggest that the proposed increase in metabolic activity and demonstrated increase in body size of organisms over the Phanerozoic should be accompanied by a concomitant shift towards faster growth and/or shorter lifespan in marine bivalves. This prediction, testable from the fossil record, may help to explain one of the more fundamental patterns in the evolutionary and ecological history of animal life on this planet.

  17. Lifespan anxiety is reflected in human amygdala cortical connectivity.

    PubMed

    He, Ye; Xu, Ting; Zhang, Wei; Zuo, Xi-Nian

    2016-03-01

    The amygdala plays a pivotal role in processing anxiety and connects to large-scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting-state functional MRI data from 280 healthy adults (18-83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network-specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network-specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety-connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety-connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety-gender interactions on its iFC with amygdala. Together with findings from additional vertex-wise analysis, these data clearly indicated that both low-level sensory networks and high-level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders.

  18. Interleukin-1 deficiency prolongs ovarian lifespan in mice

    PubMed Central

    Uri-Belapolsky, Shiri; Shaish, Aviv; Eliyahu, Efrat; Grossman, Hadas; Levi, Mattan; Chuderland, Dana; Ninio-Many, Lihi; Hasky, Noa; Shashar, David; Almog, Tal; Kandel-Kfir, Michal; Harats, Dror; Shalgi, Ruth; Kamari, Yehuda

    2014-01-01

    Oocyte endowment dwindles away during prepubertal and adult life until menopause occurs, and apoptosis has been identified as a central mechanism responsible for oocyte elimination. A few recent reports suggest that uncontrolled inflammation may adversely affect ovarian reserve. We tested the possible role of the proinflammatory cytokine IL-1 in the age-related exhaustion of ovarian reserve using IL-1α and IL-1β–KO mice. IL-1α–KO mice showed a substantially higher pregnancy rate and litter size compared with WT mice at advanced age. The number of secondary and antral follicles was significantly higher in 2.5-mo-old IL-1α–KO ovaries compared with WT ovaries. Serum anti-Müllerian hormone, a putative marker of ovarian reserve, was markedly higher in IL-1α–KO mice from 2.5 mo onward, along with a greater ovarian response to gonadotropins. IL-1β–KO mice displayed a comparable but more subtle prolongation of ovarian lifespan compared with IL-1α–KO mice. The protein and mRNA of both IL-1α and IL-1β mice were localized within the developing follicles (oocytes and granulosa cells), and their ovarian mRNA levels increased with age. Molecular analysis revealed decreased apoptotic signaling [higher B-cell lymphoma 2 (BCL-2) and lower BCL-2–associated X protein levels], along with a marked attenuation in the expression of genes coding for the proinflammatory cytokines IL-1β, IL-6, and TNF-α in ovaries of IL-1α–KO mice compared with WT mice. Taken together, IL-1 emerges as an important participant in the age-related exhaustion of ovarian reserve in mice, possibly by enhancing the expression of inflammatory genes and promoting apoptotic pathways. PMID:25114230

  19. Lifespan anxiety is reflected in human amygdala cortical connectivity

    PubMed Central

    He, Ye; Xu, Ting; Zhang, Wei

    2016-01-01

    Abstract The amygdala plays a pivotal role in processing anxiety and connects to large‐scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting‐state functional MRI data from 280 healthy adults (18–83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network‐specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network‐specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety–connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety–connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety–gender interactions on its iFC with amygdala. Together with findings from additional vertex‐wise analysis, these data clearly indicated that both low‐level sensory networks and high‐level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders. Hum Brain Mapp 37:1178–1193, 2016. © 2015 The Authors Human Brain Mapping

  20. Animal models in epigenetic research: institutional animal care and use committee considerations across the lifespan.

    PubMed

    Harris, Craig

    2012-01-01

    The rapid expansion and evolution of epigenetics as a core scientific discipline have raised new questions about how endogenous and environmental factors can inform the mechanisms through which biological form and function are regulated. Existing and proposed animal models used for epigenetic research have targeted a myriad of health and disease endpoints that may be acute, chronic, and transgenerational in nature. Initiating events and outcomes may extend across the entire lifespan to elicit unanticipated phenotypes that are of particular concern to institutional animal care and use committees (IACUCs). The dynamics and plasticity of epigenetic mechanisms produce effects and consequences that are manifest differentially within discreet spatial and temporal contexts, including prenatal development, stem cells, assisted reproductive technologies, production of sexual dimorphisms, senescence, and others. Many dietary and nutritional interventions have also been shown to have a significant impact on biological functions and disease susceptibilities through altered epigenetic programming. The environmental, chemical, toxic, therapeutic, and psychosocial stressors used in animal studies to elicit epigenetic changes can become extreme and should raise IACUC concerns for the well-being and proper care of all research animals involved. Epigenetics research is rapidly becoming an integral part of the search for mechanisms in every major area of biomedical and behavioral research and will foster the continued development of new animal models. From the IACUC perspective, care must be taken to acknowledge the particular needs and concerns created by superimposition of epigenetic mechanisms over diverse fields of investigation to ensure the proper care and use of animals without impeding scientific progress. PMID:23744973

  1. Propositional idea density in women's written language over the lifespan: computerized analysis.

    PubMed

    Ferguson, Alison; Spencer, Elizabeth; Craig, Hugh; Colyvas, Kim

    2014-06-01

    The informativeness of written language, as measured by Propositional Idea Density (PD), has been shown to be a sensitive predictive index of language decline with age and dementia in previous research. The present study investigated the influence of age and education on the written language of three large cohorts of women from the general community, born between 1973 and 1978, 1946-51 and 1921-26. Written texts were obtained from the Australian Longitudinal Study on Women's Health in which participants were invited to respond to an open-ended question about their health. The informativeness of written comments of 10 words or more (90% of the total number of comments) was analyzed using the Computerized Propositional Idea Density Rater 3 (CPIDR-3). Over 2.5 million words used in 37,705 written responses from 19,512 respondents were analyzed. Based on a linear mixed model approach to statistical analysis with adjustment for several factors including number of comments per respondent and number of words per comment, a small but statistically significant effect of age was identified for the older cohort with mean age 78 years. The mean PD per word for this cohort was lower than the younger and mid-aged cohorts with mean age 27 and 53 years respectively, with mean reduction in PD 95% confidence interval (CI) of .006 (.003, .008) and .009 (.008, .011) respectively. This suggests that PD for this population of women was relatively more stable over the adult lifespan than has been reported previously even in late old age. There was no statistically significant effect of education level. Computerized analyses were found to greatly facilitate the study of informativeness of this large corpus of written language. Directions for further research are discussed in relation to the need for extended investigation of the variability of the measure for potential application to the identification of acquired language pathologies.

  2. Effects of TAT-conjugated platinum nanoparticles on lifespan of mitochondrial electron transport complex I-deficient Caenorhabditis elegans, nuo-1.

    PubMed

    Sakaue, Yuri; Kim, Juewon; Miyamoto, Yusei

    2010-01-01

    Platinum nanoparticle (Pt-np) species are superoxide dismutase/catalase mimetics and also have an activity similar to that of mitochondrial electron transport complex I. To examine if this complex I-like activity functions in vivo, we studied the effects of Pt-nps on the lifespan of a mitochondrial complex I-deficient Caenorhabditis elegans mutant, nuo-1 (LB25) compared with wild-type N2. We synthesized a fusion protein of a cell-penetrating peptide, human immunodeficiency virus-1 TAT (48-60), C-terminally linked to a peptide with a high affinity to platinum (GRKKRRQRRRPPQ-DRTSTWR). Pt-nps were functionalized by conjugation with this fusion protein at a 1:1 ratio of TAT-PtBP to Pt atoms. Adult worms were treated with conjugated Pt-nps for 10 days. The mean lifespan of untreated N2 and LB25 was 19.6 ± 0.4 and 11.8 ± 0.3 days, respectively. Using 5 μM of conjugated Pt-nps, the lifespan of N2 and LB25 was maximally extended. This maximal lifespan extension of LB25 was 31.9 ± 2.6%, which was significantly greater than that of N2 (21.1 ± 1.7%, P < 0.05 by Student's t-test). Internalization of Pt into the whole body and mitochondria was similar between these two strains. Excessive accumulation of reactive oxygen species was not observed in the cytosol or mitochondria of untreated LB25. Treatment for five days with 5 μM conjugated Pt-nps decreased cytosolic and mitochondrial reactive oxygen species in N2 and LB25 to a similar extent. The ratio of [NAD(+)]/[NADH] was very low in the whole body and mitochondria of control LB25. After five days of treatment with 5 μM conjugated Pt-nps, the ratio of [NAD(+)]/[NADH] was increased in N2 and LB25. However, the degree of the increase was much higher in LB25 than in N2. Pt-nps function as NADH oxidase and recover the [NAD(+)]/[NADH] ratio in LB25, leading to effective extension of the lifespan of LB25. PMID:20957220

  3. Human ApoD, an apolipoprotein up-regulated in neurodegenerative diseases, extends lifespan and increases stress resistance in Drosophila

    PubMed Central

    Muffat, Julien; Walker, David W.; Benzer, Seymour

    2008-01-01

    Apolipoprotein D (ApoD) expression increases in several neurological disorders and in spinal cord injury. We provide a report of a physiological role for human ApoD (hApoD): Flies overexpressing hApoD are long-lived and protected against stress conditions associated with aging and neurodegeneration, including hyperoxia, dietary paraquat, and heat stress. We show that the fly ortholog, Glial Lazarillo, is strongly up-regulated in response to these extrinsic stresses and also can protect in vitro-cultured cells in situations modeling Alzheimer's disease (AD) and Parkinson's disease (PD). In adult flies, hApoD overexpression reduces age-associated lipid peroxide accumulation, suggesting a proximal mechanism of action. Similar data obtained in the mouse [Ganfornina, M.D., et al., (2008) Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell 10.1111/j.1474-9726.2008.00395.] as well as in plants (Charron et al., personal communication) suggest that ApoD and its orthologs play an evolutionarily conserved role in response to stress, possibly managing or preventing lipid peroxidation. PMID:18458334

  4. Human ApoD, an apolipoprotein up-regulated in neurodegenerative diseases, extends lifespan and increases stress resistance in Drosophila.

    PubMed

    Muffat, Julien; Walker, David W; Benzer, Seymour

    2008-05-13

    Apolipoprotein D (ApoD) expression increases in several neurological disorders and in spinal cord injury. We provide a report of a physiological role for human ApoD (hApoD): Flies overexpressing hApoD are long-lived and protected against stress conditions associated with aging and neurodegeneration, including hyperoxia, dietary paraquat, and heat stress. We show that the fly ortholog, Glial Lazarillo, is strongly up-regulated in response to these extrinsic stresses and also can protect in vitro-cultured cells in situations modeling Alzheimer's disease (AD) and Parkinson's disease (PD). In adult flies, hApoD overexpression reduces age-associated lipid peroxide accumulation, suggesting a proximal mechanism of action. Similar data obtained in the mouse [Ganfornina, M.D., et al., (2008) Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell 10.1111/j.1474-9726.2008.00395.] as well as in plants (Charron et al., personal communication) suggest that ApoD and its orthologs play an evolutionarily conserved role in response to stress, possibly managing or preventing lipid peroxidation.

  5. The longer-term cognitive effects of adjunctive antiepileptic treatment with lacosamide in comparison with lamotrigine and topiramate in a naturalistic outpatient setting.

    PubMed

    Helmstaedter, Christoph; Witt, Juri-Alexander

    2013-02-01

    In this retrospective controlled study, the impact of adjunctive lacosamide (LCM) on cognition in patients with epilepsy was evaluated and compared with that of topiramate (TPM) and lamotrigine (LTG) in a naturalistic outpatient setting. Cognition was investigated by means of objective assessment of executive functions (EpiTrack®) and verbal memory and by subjective ratings of self-perceived side effects (cognition, mood, and vegetative). Quality of life was assessed using the QOLIE-10 questionnaire. Patients underwent assessment at baseline and after a median follow-up interval of 32 weeks. Forty-four patients were treated with LCM, 11 with LTG, and 15 with TPM. Treatment arms differed with regard to the age at onset of epilepsy (LTG>TPM) and to seizure control from baseline to follow-up, which was best in patients whose seizures were treated with LTG (55% vs. 16% in patients whose seizures were treated with LCM and 13% in patients whose seizures were treated with TPM). Groups did not differ in the type of epilepsy, daily drug load or drug load change, nor in baseline seizure frequency. Repeated measures statistics controlling for epilepsy onset and seizure outcome showed deteriorated executive functions with TPM (F=7.5, p=0.001). On an individual level (reliable change indices), 53% of the patients whose seizures were treated with TPM showed losses in this domain (LCM 14%, LTG 27%) and none of the patients showed improvement (LCM 23%, LTG 27%; χ(2)=11.8, p=0.019). No differences in memory, quality of life, or mood were noted among patients in the three treatment arms. Subjective cognitive complaints increased in 5 of the 9 patients whose seizures were treated with TPM (LCM 1/9, LTG 0/9; χ(2)=11.9, p=0.025). The findings of this study demonstrate for the first time that the cognitive side effect profile of LCM is comparable to that of LTG and superior to that of TPM. This is indicated by both subjective and objective measures. Given the naturalistic setting and

  6. Leaf litter leachates have the potential to increase lifespan, body size, and offspring numbers in a clone of Moina macrocopa.

    PubMed

    Hofmann, Sylva; Timofeyev, Maxim A; Putschew, Anke; Saul, Nadine; Menzel, Ralph; Steinberg, Christian E W

    2012-03-01

    Leaf litter processing is one major pathway of the global organic carbon cycle. During this process, a variety of small reactive organic compounds are released and transported to the aquatic environment, and may directly impact aquatic organisms as natural xenobiotics. We hypothesize that different forest stockings produce different leachate qualities, which in turn, stress the aquatic communities and, eventually, separate sensitive from tolerant species. Particularly, leachates from coniferous trees are suspected to have strongly adverse impacts on sensitive species. We exposed individuals of a clone of the model organism, Moina macrocopa, to comparable concentrations (approximately 2mM) of litter leachates of Norway spruce, Picea abies, Colorado blue spruce, Picea pungens, black poplar, Populus nigra, and sessile oak, Quercus petraea. The animals were fed ad libitum. The following life trait variables were recorded: growth, lifespan, and lifetime offspring. To identify, whether or not exposure to litter leachates provokes an internal oxidative stress in the exposed animals we measured the superoxide anion radical scavenging capacity via photoluminescence. Except of P. abies, exposure to the leachates reduced this antioxidant capacity by approximately 50%. Leachate exposures, except that of Quercus, increased body size and extended lifespan; furthermore, particularly the leachates of both Picea species significantly increased the offspring numbers. This unexpected behavior of exposed Moina may be based on food supplements (e.g., high carbohydrate contents) in the leachates or on yet to be identified regulatory pathways of energy allocation. Overall, our results suggest that the potentially adverse effects of litter leachates can be overruled by either bacterial-growth supporting fractions in the leachates or an internal compensation mechanism in the Moina individuals. PMID:22115468

  7. Trajectories and phenotypes with estrogen exposures across the lifespan: What does Goldilocks have to do with it?

    PubMed Central

    Koebele, Stephanie V.; Bimonte-Nelson, Heather A.

    2015-01-01

    Estrogens impact the organization and activation of the mammalian brain in both sexes, with sex-specific critical windows. Throughout the female lifespan estrogens activate brain substrates previously organized by estrogens, and estrogens can induce non-transient brain and behavior changes into adulthood. Therefore, from early life through the transition to reproductive senescence and beyond, estrogens are potent modulators of the brain and behavior. Organizational, reorganizational, and activational hormone events likely impact the trajectory of brain profiles during aging. A “brain profile,” or quantitative brain measurement for research purposes, is typically a snapshot in time, but in life a brain profile is anything but static – it is in flux, variable, and dynamic. Akin to this, the only thing continuous and consistent about hormone exposures across a female's lifespan is that they are noncontinuous and inconsistent, building and rebuilding on past exposures to create a present brain and behavioral landscape. Thus, hormone variation is especially rich in females, and is likely the destiny for maximal responsiveness in the female brain. The magnitude and direction of estrogenic effects on the brain and its functions depend on a myriad of factors; a “Goldilocks” phenomenon exists for estrogens, whereby if the timing, dose, and regimen for an individual are just right, markedly efficacious effects present. Data indicate that exogenously-administered estrogens can bestow beneficial cognitive effects in some circumstances, especially when initiated in a window of opportunity such as the menopause transition. Could it be that the age-related reduction in efficacy of estrogens reflects the closure of a late-in-life critical window occurring around the menopause transition? Information from classic and contemporary works studying organizational/activational estrogen actions, in combination with acknowledging the tendency for maximal responsiveness to

  8. Trajectories and phenotypes with estrogen exposures across the lifespan: What does Goldilocks have to do with it?

    PubMed

    Koebele, Stephanie V; Bimonte-Nelson, Heather A

    2015-08-01

    This article is part of a Special Issue "Estradiol and cognition". Estrogens impact the organization and activation of the mammalian brain in both sexes, with sex-specific critical windows. Throughout the female lifespan estrogens activate brain substrates previously organized by estrogens, and estrogens can induce non-transient brain and behavior changes into adulthood. Therefore, from early life through the transition to reproductive senescence and beyond, estrogens are potent modulators of the brain and behavior. Organizational, reorganizational, and activational hormone events likely impact the trajectory of brain profiles during aging. A "brain profile," or quantitative brain measurement for research purposes, is typically a snapshot in time, but in life a brain profile is anything but static--it is in flux, variable, and dynamic. Akin to this, the only thing continuous and consistent about hormone exposures across a female's lifespan is that they are noncontinuous and inconsistent, building and rebuilding on past exposures to create a present brain and behavioral landscape. Thus, hormone variation is especially rich in females, and is likely the destiny for maximal responsiveness in the female brain. The magnitude and direction of estrogenic effects on the brain and its functions depend on a myriad of factors; a "Goldilocks" phenomenon exists for estrogens, whereby if the timing, dose, and regimen for an individual are just right, markedly efficacious effects present. Data indicate that exogenously-administered estrogens can bestow beneficial cognitive effects in some circumstances, especially when initiated in a window of opportunity such as the menopause transition. Could it be that the age-related reduction in efficacy of estrogens reflects the closure of a late-in-life critical window occurring around the menopause transition? Information from classic and contemporary works studying organizational/activational estrogen actions, in combination with

  9. The transcriptional repressor CTBP-1 functions in the nervous system of Caenorhabditis elegans to regulate lifespan.

    PubMed

    Reid, Anna; Yücel, Duygu; Wood, Mallory; Llamosas, Estelle; Kant, Sashi; Crossley, Merlin; Nicholas, Hannah

    2014-12-01

    C-terminal binding proteins (CtBPs) are recruited by a variety of transcription factors to mediate gene repression. Nematode CTBP-1 has previously been shown to play a role in the regulation of lifespan; Caenorhabditis elegans strains carrying a deletion in the ctbp-1 gene showed a 10-20% increase in mean and maximal lifespan compared with wild-type control strains. We set out to identify the tissues in which CTBP-1 functions to regulate lifespan in C. elegans. Our analysis of reporter genes shows that CTBP-1 is predominantly expressed in the nervous system with lower levels detectable in the hypodermis. Tissue-specific rescue experiments demonstrated that CTBP-1 functions in the nervous system to regulate lifespan. Previously, the lifespan extension in a ctbp-1 mutant was attributed, at least in part, to the misregulation of a lipase gene, lips-7. We therefore focussed on lips-7 and found that expressing CTBP-1 solely in the nervous system of a ctbp-1 mutant significantly reduced lips-7 transcription. In addition, we studied another ctbp-1 mutant allele that also displayed a long-lived phenotype. In this case, lips-7 expression was unaffected. This observation argues that, while lips-7 may play a role in lifespan, its de-repression is not essential for the extension of lifespan phenotype. We show that a prominent site of LIPS-7 expression is the hypodermis, one of the sites of fat storage in C. elegans. Interestingly, we did not observe co-localisation of CTBP-1 and lips-7 transcription in the nervous system, indicating that CTBP-1 may be acting indirectly, in a cell non-autonomous manner. In summary, our data confirm that CTBP-1 is involved in the regulation of lips-7 transcription but suggest that it may perform additional roles in the nervous system that contribute to the regulation of longevity.

  10. Reproductive cessation and post-reproductive lifespan in Asian elephants and pre-industrial humans

    PubMed Central

    2014-01-01

    Introduction Short post-reproductive lifespan is widespread across species, but prolonged post-reproductive life-stages of potential adaptive significance have been reported only in few mammals with extreme longevity. Long post-reproductive lifespan contradicts classical evolutionary predictions of simultaneous senescence in survival and reproduction, and raises the question of whether extreme longevity in mammals promotes such a life-history. Among terrestrial mammals, elephants share the features with great apes and humans, of having long lifespan and offspring with long dependency. However, little data exists on the frequency of post-reproductive lifespan in elephants. Here we use extensive demographic records on semi-captive Asian elephants (n = 1040) and genealogical data on pre-industrial women (n = 5336) to provide the first comparisons of age-specific reproduction, survival and post-reproductive lifespan in both of these long-lived species. Results We found that fertility decreased after age 50 in elephants, but the pattern differed from a total loss of fertility in menopausal women with many elephants continuing to reproduce at least until the age of 65 years. The probability of entering a non-reproductive state increased steadily in elephants from the earliest age of reproduction until age 65, with the longer living elephants continuing to reproduce until older ages, in contrast to humans whose termination probability increased rapidly after age 35 and reached 1 at 56 years, but did not depend on longevity. Post-reproductive lifespan reached 11–17 years in elephants and 26–27 years in humans living until old age (depending on method), but whereas half of human adult lifespan (of those reproductive females surviving to the age of 5% fecundity) was spent as post-reproductive, only one eighth was in elephants. Consequently, although some elephants have long post-reproductive lifespans, relatively few individuals reach such a phase and the

  11. Regulation of lifespan by chemosensory and thermosensory systems: findings in invertebrates and their implications in mammalian aging.

    PubMed

    Jeong, Dae-Eun; Artan, Murat; Seo, Keunhee; Lee, Seung-Jae

    2012-01-01

    Many environmental factors that dynamically change in nature influence various aspects of animal physiology. Animals are equipped with sensory neuronal systems that help them properly sense and respond to environmental factors. Several studies have shown that chemosensory and thermosensory neurons affect the lifespan of invertebrate model animals, including Caenorhabditis elegans and Drosophila melanogaster. Although the mechanisms by which these sensory systems modulate lifespan are incompletely understood, hormonal signaling pathways have been implicated in sensory system-mediated lifespan regulation. In this review, we describe findings regarding how sensory nervous system components elicit physiological changes to regulate lifespan in invertebrate models, and discuss their implications in mammalian aging. PMID:23087711

  12. Regional and longitudinal estimation of product lifespan distribution: a case study for automobiles and a simplified estimation method.

    PubMed

    Oguchi, Masahiro; Fuse, Masaaki

    2015-02-01

    Product lifespan estimates are important information for understanding progress toward sustainable consumption and estimating the stocks and end-of-life flows of products. Publications reported actual lifespan of products; however, quantitative data are still limited for many countries and years. This study presents regional and longitudinal estimation of lifespan distribution of consumer durables, taking passenger cars as an example, and proposes a simplified method for estimating product lifespan distribution. We estimated lifespan distribution parameters for 17 countries based on the age profile of in-use cars. Sensitivity analysis demonstrated that the shape parameter of the lifespan distribution can be replaced by a constant value for all the countries and years. This enabled a simplified estimation that does not require detailed data on the age profile. Applying the simplified method, we estimated the trend in average lifespans of passenger cars from 2000 to 2009 for 20 countries. Average lifespan differed greatly between countries (9-23 years) and was increasing in many countries. This suggests consumer behavior differs greatly among countries and has changed over time, even in developed countries. The results suggest that inappropriate assumptions of average lifespan may cause significant inaccuracy in estimating the stocks and end-of-life flows of products.

  13. Foraging strategies in trees of different root morphology: the role of root lifespan.

    PubMed

    Adams, Thomas S; McCormack, M Luke; Eissenstat, David M

    2013-09-01

    Resource exploitation of patches is influenced not simply by the rate of root production in the patches but also by the lifespan of the roots inhabiting the patches. We examined the effect of sustained localized nitrogen (N) fertilization on root lifespan in four tree species that varied widely in root morphology and presumed foraging strategy. The study was conducted in a 12-year-old common garden in central Pennsylvania using a combination of data from minirhizotron and root in-growth cores. The two fine-root tree species, Acer negundo L. and Populus tremuloides Michx., exhibited significant increases in root lifespan with local N fertilization; no significant responses were observed in the two coarse-root tree species, Sassafras albidum Nutt. and Liriodendron tulipifera L. Across species, coarse-root tree species had longer median root lifespan than fine-root tree species. Localized N fertilization did not significantly increase the N concentration or the respiration of the roots growing in the N-rich patch. Our results suggest that some plant species appear to regulate the lifespan of different portions of their root system to improve resource acquisition while other species do not. Our results are discussed in the context of different strategies of foraging of nutrient patches in species of different root morphology.

  14. Why Lifespans Are More Variable Among Blacks Than Among Whites in the United States

    PubMed Central

    Acciai, Francesco; Noah, Aggie J.; Prather, Christopher; Nau, Claudia

    2014-01-01

    Lifespans are both shorter and more variable for blacks than for whites in the United States. Because their lifespans are more variable, there is greater inequality in length of life—and thus greater uncertainty about the future—among blacks. This study is the first to decompose the black-white difference in lifespan variability in America. Are lifespans more variable for blacks because they are more likely to die of causes that disproportionately strike the young and middle-aged, or because age at death varies more for blacks than for whites among those who succumb to the same cause? We find that it is primarily the latter. For almost all causes of death, age at death is more variable for blacks than it is for whites, especially among women. Although some youthful causes of death, such as homicide and HIV/AIDS, contribute to the black-white disparity in variance, those contributions are largely offset by the higher rates of suicide and drug poisoning deaths for whites. As a result, differences in the causes of death for blacks and whites account, on net, for only about one-eighth of the difference in lifespan variance. PMID:25391224

  15. Reproductive capability is associated with lifespan and cause of death in companion dogs.

    PubMed

    Hoffman, Jessica M; Creevy, Kate E; Promislow, Daniel E L

    2013-01-01

    Reproduction is a risky affair; a lifespan cost of maintaining reproductive capability, and of reproduction itself, has been demonstrated in a wide range of animal species. However, little is understood about the mechanisms underlying this relationship. Most cost-of-reproduction studies simply ask how reproduction influences age at death, but are blind to the subjects' actual causes of death. Lifespan is a composite variable of myriad causes of death and it has not been clear whether the consequences of reproduction or of reproductive capability influence all causes of death equally. To address this gap in understanding, we compared causes of death among over 40,000 sterilized and reproductively intact domestic dogs, Canis lupus familiaris. We found that sterilization was strongly associated with an increase in lifespan, and while it decreased risk of death from some causes, such as infectious disease, it actually increased risk of death from others, such as cancer. These findings suggest that to understand how reproduction affects lifespan, a shift in research focus is needed. Beyond the impact of reproduction on when individuals die, we must investigate its impact on why individuals die, and subsequently must identify the mechanisms by which these causes of death are influenced by the physiology associated with reproductive capability. Such an approach may also clarify the effects of reproduction on lifespan in people.

  16. High transcript levels of heat-shock genes are associated with shorter lifespan of Caenorhabditis elegans.

    PubMed

    Manière, X; Krisko, A; Pellay, F X; Di Meglio, J-M; Hersen, P; Matic, I

    2014-12-01

    Individual lifespans of isogenic organisms, such as Caenorhabditis elegans nematodes, fruit flies, and mice, vary greatly even under identical environmental conditions. To study the molecular mechanisms responsible for such variability, we used an assay based on the measurement of post-reproductive nematode movements stimulated by a moderate electric field. This assay allows for the separation of individual nematodes based on their speed. We show that this phenotype could be used as a biomarker for aging because it is a better predictor of lifespan than chronological age. Fast nematodes have longer lifespans, fewer protein carbonyls, higher heat-shock resistance, and higher transcript levels of the daf-16 and hsf-1 genes, which code for the stress response transcription factors, than slow nematodes. High transcript levels of the genes coding for heat-shock proteins observed in slow nematodes correlate with lower heat-shock resistance, more protein carbonyls, and shorter lifespan. Taken together, our data suggests that shorter lifespan results from early-life damage accumulation that causes subsequent faster age-related deterioration.

  17. OXIDIZED LIPIDS DID NOT REDUCE LIFESPAN IN THE FRUIT FLY, Drosophila melanogaster.

    PubMed

    Lushchak, Oleh V; Gospodaryov, Dmytro V; Yurkevych, Ihor S; Storey, Kenneth B

    2016-01-01

    Aging is often associated with accumulation of oxidative damage in proteins and lipids. However, some studies do not support this view, raising the question of whether high levels of oxidative damage are associated with lifespan. In the current investigation, Drosophila melanogaster flies were kept on diets with 2 or 10% of either glucose or fructose. The lifespan, fecundity, and feeding as well as amounts of protein carbonyls (PC) and lipid peroxides (LOOH), activities of superoxide dismutase (SOD), catalase, glutathione-S-transferase (GST), and glutathione reductase activity of thioredoxin reductase (TrxR) were measured in "young" (10-day old) and "aged" (50-day old) flies. Flies maintained on diets with 10% carbohydrate lived longer than those on the 2% diets. However, neither lifespan nor fecundity was affected by the type of carbohydrate. The amount of PC was unaffected by diet and age, whereas flies fed on diets with 10% carbohydrate had about fivefold higher amounts of LOOH compared to flies maintained on the 2% carbohydrate diets. Catalase activity was significantly lower in flies fed on diets with 10% carbohydrates compared to flies on 2% carbohydrate diets. The activities of SOD, GST, and TrxR were not affected by the diet or age of the flies. The higher levels of LOOH in flies maintained on 10% carbohydrate did not reduce their lifespan, from which we infer that oxidative damage to only one class of biomolecules, particularly lipids, is not sufficient to influence lifespan.

  18. Cellular lifespan and senescence: a complex balance between multiple cellular pathways.

    PubMed

    Dolivo, David; Hernandez, Sarah; Dominko, Tanja

    2016-07-01

    The study of cellular senescence and proliferative lifespan is becoming increasingly important because of the promises of autologous cell therapy, the need for model systems for tissue disease and the implication of senescent cell phenotypes in organismal disease states such as sarcopenia, diabetes and various cancers, among others. Here, we explain the concepts of proliferative cellular lifespan and cellular senescence, and we present factors that have been shown to mediate cellular lifespan positively or negatively. We review much recent literature and present potential molecular mechanisms by which lifespan mediation occurs, drawing from the fields of telomere biology, metabolism, NAD(+) and sirtuin biology, growth factor signaling and oxygen and antioxidants. We conclude that cellular lifespan and senescence are complex concepts that are governed by multiple independent and interdependent pathways, and that greater understanding of these pathways, their interactions and their convergence upon specific cellular phenotypes may lead to viable therapies for tissue regeneration and treatment of age-related pathologies, which are caused by or exacerbated by senescent cells in vivo.

  19. Cellular lifespan and senescence: a complex balance between multiple cellular pathways.

    PubMed

    Dolivo, David; Hernandez, Sarah; Dominko, Tanja

    2016-07-01

    The study of cellular senescence and proliferative lifespan is becoming increasingly important because of the promises of autologous cell therapy, the need for model systems for tissue disease and the implication of senescent cell phenotypes in organismal disease states such as sarcopenia, diabetes and various cancers, among others. Here, we explain the concepts of proliferative cellular lifespan and cellular senescence, and we present factors that have been shown to mediate cellular lifespan positively or negatively. We review much recent literature and present potential molecular mechanisms by which lifespan mediation occurs, drawing from the fields of telomere biology, metabolism, NAD(+) and sirtuin biology, growth factor signaling and oxygen and antioxidants. We conclude that cellular lifespan and senescence are complex concepts that are governed by multiple independent and interdependent pathways, and that greater understanding of these pathways, their interactions and their convergence upon specific cellular phenotypes may lead to viable therapies for tissue regeneration and treatment of age-related pathologies, which are caused by or exacerbated by senescent cells in vivo. PMID:27417120

  20. Foraging strategies in trees of different root morphology: the role of root lifespan.

    PubMed

    Adams, Thomas S; McCormack, M Luke; Eissenstat, David M

    2013-09-01

    Resource exploitation of patches is influenced not simply by the rate of root production in the patches but also by the lifespan of the roots inhabiting the patches. We examined the effect of sustained localized nitrogen (N) fertilization on root lifespan in four tree species that varied widely in root morphology and presumed foraging strategy. The study was conducted in a 12-year-old common garden in central Pennsylvania using a combination of data from minirhizotron and root in-growth cores. The two fine-root tree species, Acer negundo L. and Populus tremuloides Michx., exhibited significant increases in root lifespan with local N fertilization; no significant responses were observed in the two coarse-root tree species, Sassafras albidum Nutt. and Liriodendron tulipifera L. Across species, coarse-root tree species had longer median root lifespan than fine-root tree species. Localized N fertilization did not significantly increase the N concentration or the respiration of the roots growing in the N-rich patch. Our results suggest that some plant species appear to regulate the lifespan of different portions of their root system to improve resource acquisition while other species do not. Our results are discussed in the context of different strategies of foraging of nutrient patches in species of different root morphology. PMID:24128849

  1. Diet-dependent female evolution influences male lifespan in a nuptial feeding insect.

    PubMed

    Hall, M D; Bussière, L F; Brooks, R

    2009-04-01

    Theory predicts that lifespan will depend on the dietary intake of an individual, the allocation of resources towards reproduction and the costs imposed by the opposite sex. Although females typically bear the majority of the cost of offspring production, nuptial feeding invertebrates provide an ideal opportunity to examine the extent to which reproductive interactions through gift provisioning impose a cost on males. Here we use experimental evolution in an Australian ground cricket to assess how diet influences male lifespan and how the costs of mating evolve for males. Our findings show that males had significantly shorter lifespans in populations that adapted to a low-quality diet and that this divergence is driven by evolutionary change in how females interact with males over reproduction. This suggests that the extent of sexual conflict over nuptial feeding may be under-realized by focusing solely on the consequences of reproductive interactions from the female's perspective.

  2. Extension of chronological lifespan by ScEcl1 depends on mitochondria in Saccharomyces cerevisiae.

    PubMed

    Azuma, Kenko; Ohtsuka, Hokuto; Murakami, Hiroshi; Aiba, Hirofumi

    2012-01-01

    Ecl1, a product of the YGR146C gene in Saccharomyces cerevisiae, was identified as a factor involved in chronological lifespan. In this study we found evidence that the function of Ecl1 in the extension of chronological lifespan is dependent on mitochondrial function. The respiratory activity of cells increased when Ecl1 was overexpressed or cells were grown under calorie restriction, but there was no additive effect of calorie restriction and Ecl1 overexpression on increases in respiratory activity or on the extension of chronological lifespan. Based on these results, we propose that overexpression of Ecl1 has same effect as caloric restriction and that its function also depends on mitochondria, just like caloric restriction.

  3. Response of lifespan of organisms to secularly changing environment using a new dynamical model.

    NASA Astrophysics Data System (ADS)

    Handa, Toshihiro; Tanikawa, Kiyotaka; Ito, Takashi

    A relation between lifespan of a species and its environment is studied using a dynamical model. We make a simple model of a species under single parameter environment. Our model has parameters which describe the dispersion of character taken over between a parent and a child, width of allowance to survive under a given environment, changing rate of the environment, and energy flux to support whole bodies in a species. We do not introduce any direct interaction between any individuals of any other species to focus our attention on lifespan by environment. Under linearly changing environment the population of a species grows exponentially or extinct without any limitation of reproduction. With limit of energy supply the population can be stable and optimal lifespan always exists which gives the largest population.

  4. Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans†

    PubMed Central

    Hulme, S. Elizabeth; Shevkoplyas, Sergey S.; McGuigan, Alison P.; Apfeld, Javier; Fontana, Walter

    2011-01-01

    This article describes the fabrication of a microfluidic device for the liquid culture of many individual nematode worms (Caenorhabditis elegans) in separate chambers. Each chamber houses a single worm from the fourth larval stage until death, and enables examination of a population of individual worms for their entire adult lifespans. Adjacent to the chambers, the device includes microfluidic worm clamps, which enable periodic, temporary immobilization of each worm. The device made it possible to track changes in body size and locomotion in individual worms throughout their lifespans. This ability to perform longitudinal measurements within the device enabled the identification of age-related phenotypic changes that correlate with lifespan in C. elegans. PMID:20162234

  5. Extreme lifespan of the human fish (Proteus anguinus): a challenge for ageing mechanisms

    PubMed Central

    Voituron, Yann; de Fraipont, Michelle; Issartel, Julien; Guillaume, Olivier; Clobert, Jean

    2011-01-01

    Theories of extreme lifespan evolution in vertebrates commonly implicate large size and predator-free environments together with physiological characteristics like low metabolism and high protection against oxidative damages. Here, we show that the ‘human fish’ (olm, Proteus anguinus), a small cave salamander (weighing 15–20 g), has evolved an extreme life-history strategy with a predicted maximum lifespan of over 100 years, an adult average lifespan of 68.5 years, an age at sexual maturity of 15.6 years and lays, on average, 35 eggs every 12.5 years. Surprisingly, neither its basal metabolism nor antioxidant activities explain why this animal sits as an outlier in the amphibian size/longevity relationship. This species thus raises questions regarding ageing processes and constitutes a promising model for discovering mechanisms preventing senescence in vertebrates. PMID:20659920

  6. The life-extending effect of dietary restriction requires Foxo3 in mice

    PubMed Central

    Shimokawa, Isao; Komatsu, Toshimitsu; Hayashi, Nobutaka; Kim, Sang-Eun; Kawata, Takuya; Park, Seongjoon; Hayashi, Hiroko; Yamaza, Haruyoshi; Chiba, Takuya; Mori, Ryoichi

    2015-01-01

    Forkhead box O (Foxo) transcription factors may be involved in the salutary effect of dietary restriction (DR). This study examined the role of Foxo3 in lifespan extension and cancer suppression in DR mice. Wild-type (WT) and Foxo3-knockout heterozygous (+/–) and homozygous (–/–) mice were subjected to a 30% DR regimen initiated at 12 weeks of age. Control mice were fed ad libitum (AL) throughout the study. In contrast to WT mice, DR did not significantly extend the lifespan of Foxo3+/– or Foxo3–/– mice. However, DR reduced the prevalence of tumors at death in WT, Foxo3+/–, and Foxo3–/– mice. These results indicate the necessity of Foxo3 for lifespan extension but not cancer suppression by DR. The findings in Foxo3+/– mice contrast with those in Foxo1+/– mice reported previously by our laboratory suggest differential regulation of cancer and lifespan by DR via Foxo1 and Foxo3. PMID:25808402

  7. Decreased expression of Cu-Zn superoxide dismutase 1 in ants with extreme lifespan.

    PubMed

    Parker, Joel D; Parker, Karen M; Sohal, Barbara H; Sohal, Rajindar S; Keller, Laurent

    2004-03-01

    Reactive oxygen species, the by-products of oxidative energy metabolism, are considered a main proximate cause of aging. Accordingly, overexpression of the enzyme Cu-Zn superoxide dismutase 1 (SOD1) can lengthen lifespan of Drosophila melanogaster in the laboratory. However, the role of SOD1 as a main determinant of lifespan has been challenged on the grounds that overexpression might be effective only in compromised genetic backgrounds. Moreover, interspecific comparisons show lower levels of antioxidant activities in longer-lived species, suggesting that life-span extension may evolve through less reactive oxygen species generation from the mitochondria rather than higher expression of SOD1. The tremendous variation in lifespan between ant castes, ranging over 2 orders of magnitude, coupled with the fact that all individuals share the same genome, provides a system to investigate the role of SOD1 in the wild. We used the ant Lasius niger as a model system, because queens can reach the extreme age of 28 years, whereas workers and males live only 1-2 years and a few weeks, respectively. We cloned SOD1 and found that long-lived queens have a lower level of expression than workers and males. Specific enzyme-activity assays also showed higher SOD1 activity levels in males and workers compared with queens, which had SOD1 activity levels similar to that of D. melanogaster. Altogether, these data show that increased expression of SOD1 is not required for the evolution of extreme lifespan, even in a system in which differential gene expression is the only way to express phenotypes with great lifespan differences.

  8. A Modified Carbon Monoxide Breath Test for Measuring Erythrocyte Lifespan in Small Animals

    PubMed Central

    Ma, Yong-Jian; Zhang, Hou-De; Ji, Yong-Qiang; Zhu, Guo-Liang; Huang, Jia-Liang; Du, Li-Tao; Cao, Ping; Zang, De-Yue; Du, Ji-Hui; Li, Rong; Wang, Lei

    2016-01-01

    This study was to develop a CO breath test for RBC lifespan estimation of small animals. The ribavirin induced hemolysis rabbit models were placed individually in a closed rebreath cage and air samples were collected for measurement of CO concentration. RBC lifespan was calculated from accumulated CO, blood volume, and hemoglobin concentration data. RBC lifespan was determined in the same animals with the standard biotin-labeling method. RBC lifespan data obtained by the CO breath test method for control (CON, 49.0 ± 5.9 d) rabbits, rabbits given 10 mg/kg·d−1 of ribavirin (RIB10, 31.0 ± 4.0 d), and rabbits given 20 mg/kg·d−1 of ribavirin (RIB20, 25.0 ± 2.9 d) were statistically similar (all p > 0.05) to and linearly correlated (r = 0.96, p < 0.01) with the RBC lifespan data obtained for the same rabbits by the standard biotin-labeling method (CON, 51.0 ± 2.7 d; RIB10, 33.0 ± 1.3 d; and RIB20, 27.0 ± 0.8 d). The CO breath test method takes less than 3 h to complete, whereas the standard method requires at least several weeks. In conclusion, the CO breath test method provides a simple and rapid means of estimating RBC lifespan and is feasible for use with small animal models. PMID:27294128

  9. A Modified Carbon Monoxide Breath Test for Measuring Erythrocyte Lifespan in Small Animals.

    PubMed

    Ma, Yong-Jian; Zhang, Hou-De; Ji, Yong-Qiang; Zhu, Guo-Liang; Huang, Jia-Liang; Du, Li-Tao; Cao, Ping; Zang, De-Yue; Du, Ji-Hui; Li, Rong; Wang, Lei

    2016-01-01

    This study was to develop a CO breath test for RBC lifespan estimation of small animals. The ribavirin induced hemolysis rabbit models were placed individually in a closed rebreath cage and air samples were collected for measurement of CO concentration. RBC lifespan was calculated from accumulated CO, blood volume, and hemoglobin concentration data. RBC lifespan was determined in the same animals with the standard biotin-labeling method. RBC lifespan data obtained by the CO breath test method for control (CON, 49.0 ± 5.9 d) rabbits, rabbits given 10 mg/kg·d(-1) of ribavirin (RIB10, 31.0 ± 4.0 d), and rabbits given 20 mg/kg·d(-1) of ribavirin (RIB20, 25.0 ± 2.9 d) were statistically similar (all p > 0.05) to and linearly correlated (r = 0.96, p < 0.01) with the RBC lifespan data obtained for the same rabbits by the standard biotin-labeling method (CON, 51.0 ± 2.7 d; RIB10, 33.0 ± 1.3 d; and RIB20, 27.0 ± 0.8 d). The CO breath test method takes less than 3 h to complete, whereas the standard method requires at least several weeks. In conclusion, the CO breath test method provides a simple and rapid means of estimating RBC lifespan and is feasible for use with small animal models.

  10. Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents

    PubMed Central

    Anisimov, Vladimir N.; Egorov, Maxim V.; Krasilshchikova, Marina S.; Lyamzaev, Konstantin G.; Manskikh, Vasily N.; Moshkin, Mikhail P.; Novikov, Evgeny A.; Popovich, Irina G.; Rogovin, Konstantin A.; Shabalina, Irina G.; Shekarova, Olga N.; Skulachev, Maxim V.; Titova, Tatiana V.; Vygodin, Vladimir A.; Vyssokikh, Mikhail Yu.; Yurova, Maria N.; Zabezhinsky, Mark A.; Skulachev, Vladimir P.

    2011-01-01

    The effect of the mitochondria-targeted, plastoquinone-containing antioxidant SkQ1 on the lifespan of outbred mice and of three strains of inbred mice was studied. To this end, low pathogen (LP) or specific pathogen free (SPF) vivaria in St. Petersburg, Moscow, and Stockholm were used. For comparison, we also studied mole-voles and dwarf hamsters, two wild species of small rodents kept under simulated natural conditions. It was found that substitution of a LP vivarium for a conventional (non-LP) one doubled the lifespan of female outbred mice, just as SkQ1 did in a non-LP vivarium. SkQ1 prevented age-dependent disappearance of estrous cycles of outbred mice in both LP and non-LP vivaria. In the SPF vivarium in Moscow, male BALB/c mice had shorter lifespan than females, and SkQ1 increased their lifespan to the values of the females. In the females, SkQ1 retarded development of such trait of aging as heart mass increase. Male C57Bl/6 mice housed individually in the SPF vivarium in Stockholm lived as long as females. SkQ1 increased the male lifespan, the longevity of the females being unchanged. SkQ1 did not change food intake by these mice. Dwarf hamsters and mole-voles kept in outdoor cages or under simulated natural conditions lived longer if treated with SkQ1. The effect of SkQ1 on longevity of females is assumed to mainly be due to retardation of the age-linked decline of the immune system. For males under LP or SPF conditions, SkQ1 increased the lifespan, affecting also some other system(s) responsible for aging. PMID:22166671

  11. A Modified Carbon Monoxide Breath Test for Measuring Erythrocyte Lifespan in Small Animals.

    PubMed

    Ma, Yong-Jian; Zhang, Hou-De; Ji, Yong-Qiang; Zhu, Guo-Liang; Huang, Jia-Liang; Du, Li-Tao; Cao, Ping; Zang, De-Yue; Du, Ji-Hui; Li, Rong; Wang, Lei

    2016-01-01

    This study was to develop a CO breath test for RBC lifespan estimation of small animals. The ribavirin induced hemolysis rabbit models were placed individually in a closed rebreath cage and air samples were collected for measurement of CO concentration. RBC lifespan was calculated from accumulated CO, blood volume, and hemoglobin concentration data. RBC lifespan was determined in the same animals with the standard biotin-labeling method. RBC lifespan data obtained by the CO breath test method for control (CON, 49.0 ± 5.9 d) rabbits, rabbits given 10 mg/kg·d(-1) of ribavirin (RIB10, 31.0 ± 4.0 d), and rabbits given 20 mg/kg·d(-1) of ribavirin (RIB20, 25.0 ± 2.9 d) were statistically similar (all p > 0.05) to and linearly correlated (r = 0.96, p < 0.01) with the RBC lifespan data obtained for the same rabbits by the standard biotin-labeling method (CON, 51.0 ± 2.7 d; RIB10, 33.0 ± 1.3 d; and RIB20, 27.0 ± 0.8 d). The CO breath test method takes less than 3 h to complete, whereas the standard method requires at least several weeks. In conclusion, the CO breath test method provides a simple and rapid means of estimating RBC lifespan and is feasible for use with small animal models. PMID:27294128

  12. Interaction of temperature and an environmental stressor: Moina macrocopa responds with increased body size, increased lifespan, and increased offspring numbers slightly above its temperature optimum.

    PubMed

    Engert, Antonia; Chakrabarti, Shumon; Saul, Nadine; Bittner, Michal; Menzel, Ralph; Steinberg, Christian E W

    2013-02-01

    For organisms, temperature is one of the most important environmental factors and gains increasing importance due to global warming, since increasing temperatures may pose organisms close to their environmental tolerance limits and, thus, they may become more vulnerable to environmental stressors. We analyzed the temperature-dependence of the water-soluble antioxidant capacity of the cladoceran Moina macrocopa and evaluated its life trait variables with temperature (15, 20, 25, 30°C) and humic substance (HS) concentrations (0, 0.18, 0.36, 0.90, 1.79 mM DOC) as stressors. Temperatures below and above the apparent optimum (20°C) reduced the antioxidative capacity. Additions of HSs increased body length, but decreased mean lifespan at 15 and 20°C. There was no clear HS-effect on offspring numbers at 15, 20, and 30°C. At 25°C with increasing HS-concentration, lifespan was extended and offspring numbers increased tremendously, reaching 250% of the control. Although the applied HS preparation possesses estrogenic and antiandrogenic activities, a xenohormone mechanism does not seem plausible for the reproductive increase, because comparable effects did not occur at other temperatures. A more convincing explanation appears to be the mitohormesis hypothesis which states that a certain increase of reactive oxygen production leads to improved health and longevity and, with Moina, also to increased offspring numbers. Our results suggest that at least with the eurythermic M. macrocopa, a temperature above the optimum can be beneficial for several life trait variables, even when combined with a chemical stressor. Temperatures approximately 10°C above its optimum appear to adversely affect the lifespan and reproduction of M. macrocopa. This indicates that this cladoceran species seems to be able to utilize temperature as an ecological resource in a range slightly above its thermal optimum. PMID:23211326

  13. The Impact of Endometriosis across the Lifespan of Women: Foreseeable Research and Therapeutic Prospects

    PubMed Central

    Hughes, C. L.; Foster, W. G.

    2015-01-01

    In addition to estrogen dependence, endometriosis is characterized by chronic pelvic inflammation. The impact of the chronic pelvic inflammatory state on other organ systems and women's health is unclear. Endometriosis associated chronic inflammation and potential adverse health effects across the lifespan render it imperative for renewed research vigor into the identification of novel biomarkers of disease and therapeutic options. Herei