Science.gov

Sample records for lamotrigine extends lifespan

  1. Nicotinamide extends replicative lifespan of human cells.

    PubMed

    Kang, Hyun Tae; Lee, Hyung Il; Hwang, Eun Seong

    2006-10-01

    We found that an ongoing application of nicotinamide to normal human fibroblasts not only attenuated expression of the aging phenotype but also increased their replicative lifespan, causing a greater than 1.6-fold increase in the number of population doublings. Although nicotinamide by itself does not act as an antioxidant, the cells cultured in the presence of nicotinamide exhibited reduced levels of reactive oxygen species (ROS) and oxidative damage products associated with cellular senescence, and a decelerated telomere shortening rate without a detectable increase in telomerase activity. Furthermore, in the treated cells growing beyond the original Hayflick limit, the levels of p53, p21WAF1, and phospho-Rb proteins were similar to those in actively proliferating cells. The nicotinamide treatment caused a decrease in ATP levels, which was stably maintained until the delayed senescence point. Nicotinamide-treated cells also maintained high mitochondrial membrane potential but a lower respiration rate and superoxide anion level. Taken together, in contrast to its demonstrated pro-aging effect in yeast, nicotinamide extends the lifespan of human fibroblasts, possibly through reduction in mitochondrial activity and ROS production.

  2. An Engineering Approach to Extending Lifespan in C. elegans

    PubMed Central

    Sagi, Dror; Kim, Stuart K.

    2012-01-01

    We have taken an engineering approach to extending the lifespan of Caenorhabditis elegans. Aging stands out as a complex trait, because events that occur in old animals are not under strong natural selection. As a result, lifespan can be lengthened rationally using bioengineering to modulate gene expression or to add exogenous components. Here, we engineered longer lifespan by expressing genes from zebrafish encoding molecular functions not normally present in worms. Additionally, we extended lifespan by increasing the activity of four endogenous worm aging pathways. Next, we used a modular approach to extend lifespan by combining components. Finally, we used cell- and worm-based assays to analyze changes in cell physiology and as a rapid means to evaluate whether multi-component transgenic lines were likely to have extended longevity. Using engineering to add novel functions and to tune endogenous functions provides a new framework for lifespan extension that goes beyond the constraints of the worm genome. PMID:22737090

  3. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration.

    PubMed

    Lin, Su-Ju; Kaeberlein, Matt; Andalis, Alex A; Sturtz, Lori A; Defossez, Pierre-Antoine; Culotta, Valeria C; Fink, Gerald R; Guarente, Leonard

    2002-07-18

    Calorie restriction (CR) extends lifespan in a wide spectrum of organisms and is the only regimen known to lengthen the lifespan of mammals. We established a model of CR in budding yeast Saccharomyces cerevisiae. In this system, lifespan can be extended by limiting glucose or by reducing the activity of the glucose-sensing cyclic-AMP-dependent kinase (PKA). Lifespan extension in a mutant with reduced PKA activity requires Sir2 and NAD (nicotinamide adenine dinucleotide). In this study we explore how CR activates Sir2 to extend lifespan. Here we show that the shunting of carbon metabolism toward the mitochondrial tricarboxylic acid cycle and the concomitant increase in respiration play a central part in this process. We discuss how this metabolic strategy may apply to CR in animals.

  4. Autophagy extends lifespan via vacuolar acidification

    PubMed Central

    Ruckenstuhl, Christoph; Netzberger, Christine; Entfellner, Iryna; Carmona-Gutierrez, Didac; Kickenweiz, Thomas; Stekovic, Slaven; Gleixner, Christina; Schmid, Christian; Klug, Lisa; Hajnal, Ivan; Sorgo, Alice G.; Eisenberg, Tobias; Büttner, Sabrina; Marin͂o, Guillermo; Koziel, Rafael; Magnes, Christoph; Sinner, Frank; Pieber, Thomas R.; Jansen-Dürr, Pidder; Fröhlich, Kai-Uwe; Kroemer, Guido; Madeo, Frank

    2014-01-01

    Methionine restriction (MetR) is one of the rare regimes that prolongs lifespan across species barriers. Using a yeast model, we recently demonstrated that this lifespan extension is promoted by autophagy, which in turn requires vacuolar acidification. Our study is the first to place autophagy as one of the major players required for MetR-mediated longevity. In addition, our work identifies vacuolar acidification as a key downstream element of autophagy induction under MetR, and possibly after rapamycin treatment. Unlike other amino acids, methionine plays pleiotropic roles in many metabolism-relevant pathways. For instance, methionine (i) is the N-terminal amino acid of every newly translated protein; (ii) acts as the central donor of methyl groups through S-adenosyl methionine (SAM) during methylation reactions of proteins, DNA or RNA; and (iii) provides the sulfhydryl groups for FeS-cluster formation and redox detoxification via transsulfuration to cysteine. Intriguingly, MetR causes lifespan extension, both in yeast and in rodents. We could show that in Saccharomyces cerevisiae, chronological lifespan (CLS) is increased in two specific methionine-auxotrophic strains (namely Δmet2 and Δmet15).

  5. Lutein extends the lifespan of Drosophila melanogaster.

    PubMed

    Zhang, Zesheng; Han, Shunkai; Wang, Hao; Wang, Tingting

    2014-01-01

    Lutein is one of the major carotenoids in most fruits and vegetables. The effect of lutein on the lifespan of Drosophila melanogaster was investigated. Results revealed that 0.1mg lutein/ml diet could prolong their mean lifespan from 49.0 to 54.6 days. This was consistent with a significant reduction in malonyldialdehyde (MDA) level and increase in antioxidant enzyme activities of the flies fed with lutein-treated diet compared with those fed with basal diet. Paraquat (PQ) and H2O2 treatment tests demonstrated that lutein could prolong the survival time of the flies. Real-time polymerase chain reaction (RT-PCR) analysis indicated the gene expression of superoxide dismutase (SOD; SOD1 and SOD2), and catalase (CAT) in the lutein-treated group was up-regulated relative to that of the control group. It was concluded that the lifespan-prolonging activity of lutein was partially by up-regulation of endogenous antioxidant enzymes.

  6. Design and synthesis of compounds that extend yeast replicative lifespan.

    PubMed

    Yang, Hongying; Baur, Joseph A; Chen, Allen; Miller, Christine; Adams, Jeffrey K; Kisielewski, Anne; Howitz, Konrad T; Zipkin, Robert E; Sinclair, David A

    2007-02-01

    This past decade has seen the identification of numerous conserved genes that extend lifespan in diverse species, yet the number of compounds that extend lifespan is relatively small. A class of compounds called STACs, which were identified as activators of Sir2/SIRT1 NAD+-dependent deacetylases, extend the lifespans of multiple species in a Sir2-dependent manner and can delay the onset of age-related diseases such as cancer, diabetes and neurodegeneration in model organisms. Plant-derived STACs such as fisetin and resveratrol have several liabilities, including poor stability and relatively low potency as SIRT1 activators. To develop improved STACs, stilbene derivatives with modifications at the 4' position of the B ring were synthesized using a Horner-Emmons-based synthetic route or by hydrolyzing deoxyrhapontin. Here, we describe synthetic STACs with lower toxicity toward human cells, and higher potency with respect to SIRT1 activation and lifespan extension in Saccharomyces cerevisiae. These studies show that it is possible to improve upon naturally occurring STACs based on a number of criteria including lifespan extension.

  7. A Reduction in Age-Enhanced Gluconeogenesis Extends Lifespan

    PubMed Central

    Hachinohe, Mayumi; Yamane, Midori; Akazawa, Daiki; Ohsawa, Kazuhiro; Ohno, Mayumi; Terashita, Yuzu; Masumoto, Hiroshi

    2013-01-01

    The regulation of energy metabolism, such as calorie restriction (CR), is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan. PMID:23342062

  8. Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae.

    PubMed

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2014-10-01

    Natural products with anti-aging property have drawn great attention recently but examples of such compounds are exceedingly scarce. By applying a high-throughput assay based on yeast chronological lifespan measurement, we screened the anti-aging activity of 144 botanical materials and found that dried roots of Salvia miltiorrhiza Bunge have significant anti-aging activity. Tanshinones isolated from the plant including cryptotanshione, tanshinone I, and tanshinone IIa, are the active components. Among them, cryptotanshinone can greatly extend the budding yeast Saccharomyces cerevisiae chronological lifespan (up to 2.5 times) in a dose- and the-time-of-addition-dependent manner at nanomolar concentrations without disruption of cell growth. We demonstrate that cryptotanshinone prolong chronological lifespan via a nutrient-dependent regime, especially essential amino acid sensing, and three conserved protein kinases Tor1, Sch9, and Gcn2 are required for cryptotanshinone-induced lifespan extension. In addition, cryptotanshinone significantly increases the lifespan of SOD2-deleted mutants. Altogether, those data suggest that cryptotanshinone might be involved in the regulation of, Tor1, Sch9, Gcn2, and Sod2, these highly conserved longevity proteins modulated by nutrients from yeast to humans.

  9. Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan.

    PubMed

    Scialò, Filippo; Sriram, Ashwin; Fernández-Ayala, Daniel; Gubina, Nina; Lõhmus, Madis; Nelson, Glyn; Logan, Angela; Cooper, Helen M; Navas, Plácido; Enríquez, Jose Antonio; Murphy, Michael P; Sanz, Alberto

    2016-04-12

    Increased production of reactive oxygen species (ROS) has long been considered a cause of aging. However, recent studies have implicated ROS as essential secondary messengers. Here we show that the site of ROS production significantly contributes to their apparent dual nature. We report that ROS increase with age as mitochondrial function deteriorates. However, we also demonstrate that increasing ROS production specifically through respiratory complex I reverse electron transport extends Drosophila lifespan. Reverse electron transport rescued pathogenesis induced by severe oxidative stress, highlighting the importance of the site of ROS production in signaling. Furthermore, preventing ubiquinone reduction, through knockdown of PINK1, shortens lifespan and accelerates aging; phenotypes that are rescued by increasing reverse electron transport. These results illustrate that the source of a ROS signal is vital in determining its effects on cellular physiology and establish that manipulation of ubiquinone redox state is a valid strategy to delay aging.

  10. Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan

    PubMed Central

    Scialò, Filippo; Sriram, Ashwin; Fernández-Ayala, Daniel; Gubina, Nina; Lõhmus, Madis; Nelson, Glyn; Logan, Angela; Cooper, Helen M.; Navas, Plácido; Enríquez, Jose Antonio; Murphy, Michael P.; Sanz, Alberto

    2016-01-01

    Summary Increased production of reactive oxygen species (ROS) has long been considered a cause of aging. However, recent studies have implicated ROS as essential secondary messengers. Here we show that the site of ROS production significantly contributes to their apparent dual nature. We report that ROS increase with age as mitochondrial function deteriorates. However, we also demonstrate that increasing ROS production specifically through respiratory complex I reverse electron transport extends Drosophila lifespan. Reverse electron transport rescued pathogenesis induced by severe oxidative stress, highlighting the importance of the site of ROS production in signaling. Furthermore, preventing ubiquinone reduction, through knockdown of PINK1, shortens lifespan and accelerates aging; phenotypes that are rescued by increasing reverse electron transport. These results illustrate that the source of a ROS signal is vital in determining its effects on cellular physiology and establish that manipulation of ubiquinone redox state is a valid strategy to delay aging. PMID:27076081

  11. Rapamycin extends murine lifespan but has limited effects on aging

    PubMed Central

    Neff, Frauke; Flores-Dominguez, Diana; Ryan, Devon P.; Horsch, Marion; Schröder, Susanne; Adler, Thure; Afonso, Luciana Caminha; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Garrett, Lillian; Hans, Wolfgang; Hettich, Moritz M.; Holtmeier, Richard; Hölter, Sabine M.; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Rathkolb, Birgit; Rozman, Jan; Naton, Beatrix; Ordemann, Rainer; Adamski, Jerzy; Beckers, Johannes; Bekeredjian, Raffi; Busch, Dirk H.; Ehninger, Gerhard; Graw, Jochen; Höfler, Heinz; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Stypmann, Jörg; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabe de Angelis, Martin; Ehninger, Dan

    2013-01-01

    Aging is a major risk factor for a large number of disorders and functional impairments. Therapeutic targeting of the aging process may therefore represent an innovative strategy in the quest for novel and broadly effective treatments against age-related diseases. The recent report of lifespan extension in mice treated with the FDA-approved mTOR inhibitor rapamycin represented the first demonstration of pharmacological extension of maximal lifespan in mammals. Longevity effects of rapamycin may, however, be due to rapamycin’s effects on specific life-limiting pathologies, such as cancers, and it remains unclear if this compound actually slows the rate of aging in mammals. Here, we present results from a comprehensive, large-scale assessment of a wide range of structural and functional aging phenotypes, which we performed to determine whether rapamycin slows the rate of aging in male C57BL/6J mice. While rapamycin did extend lifespan, it ameliorated few studied aging phenotypes. A subset of aging traits appeared to be rescued by rapamycin. Rapamycin, however, had similar effects on many of these traits in young animals, indicating that these effects were not due to a modulation of aging, but rather related to aging-independent drug effects. Therefore, our data largely dissociate rapamycin’s longevity effects from effects on aging itself. PMID:23863708

  12. Apple polyphenols extend the mean lifespan of Drosophila melanogaster.

    PubMed

    Peng, Cheng; Chan, Ho Yin Edwin; Huang, Yu; Yu, Hongjian; Chen, Zhen-Yu

    2011-03-09

    Apple polyphenols (AP) are an excellent source of dietary antioxidants. The present study investigated the effect of AP on the lifespan of fruit flies and their interaction with gene expressions of superoxide dismutase (SOD), catalase (CAT), methuselah (MTH), Rpn11, and cytochrome c oxidase (CcO) subunits III and VIb. Results showed the mean lifespan was significantly extended by 10% in fruit flies fed the AP diet. This was accompanied by up-regulation of genes SOD1, SOD2, and CAT and down-regulation of MTH in the aged fruit flies. Paraquat and H(2)O(2) challenge tests demonstrated that AP prolonged the survival time only for Oregon R wild type flies but not for SOD(n108) or Cat(n1) mutants, in which either SOD or CAT was knocked out. Chronic paraquat exposure could shorten the maximum lifespan from 68 to 31 days and reduce the climbing ability by 60%, whereas AP could partially reverse the paraquat-induced mortality and decline in climbing ability. AP could up-regulate Rpn11 at day 30, whereas it appeared to have no significant effect on gene expression of ubiquitinated protein, CcO subunits III and VIb. These AP-induced changes were unlikely associated with caloric restriction as the gustatory assay found no difference in average body weight and stomach redness index between the control and AP fruit flies. It was therefore concluded that the antiaging activity of AP was, at least in part, mediated by its interaction with genes SOD, CAT, MTH, and Rpn11.

  13. Sesamin extends the mean lifespan of fruit flies.

    PubMed

    Zuo, Yuanyuan; Peng, Cheng; Liang, Yintong; Ma, Ka Ying; Chan, Ho Yin Edwin; Huang, Yu; Chen, Zhen-Yu

    2013-04-01

    The present study investigated the anti-ageing activity of sesamin and its effect on gene expression of superoxide dismutase (SOD), catalase (CAT), methuselah (Mth) and Rpn11 in Drosophila melanogaster. Results demonstrated that 0.2 % sesamin in diet prolonged the mean lifespan of OR wild fruit flies by 12 %, accompanied by up-regulation of SOD1, SOD2, CAT and Rpn11. Sesamin at 0.2 % in diet also attenuated paraquat-induced neurodegeneration with up-regulation of SOD1, SOD2 and Rpn11 in OR wild fruit flies. Supplementation of 0.2 % sesamin in diet increased the survival time of OR wild type flies and Alzheimer flies Aβ42 33769 when they were challenged with paraquat. Furthermore, sesamin-induced increase in the activity and expression of antioxidant enzymes also suggests that the longevity promoting activity of sesamin are possibly due to its action as a hormetin by inducing oxidative stress response-mediated hormesis. It was concluded that sesamin extended the mean lifespan and alleviated the neurodegeneration in Drosophila melanogaster at least mediated by its interaction with genes SOD1, SOD2, CAT, and Rpn11, but not with gene Mth.

  14. Basic and clinical pharmacology contribution to extend anthelmintic molecules lifespan.

    PubMed

    Lanusse, Carlos; Lifschitz, Adrian; Alvarez, Luis

    2015-08-15

    The correct use of pharmacology-based information is critical to design successful strategies for the future of parasite control in livestock animals. Integrated pharmaco-parasitological research approaches have greatly contributed to optimize drug activity. In an attempt to manage drug resistance in helminths of ruminants, combinations of two or more anthelmintics are being used or promoted, based on the fact that individual worms may have a lower degree of resistance to a multiple component formulation, when each chemical has a different mode of action compared to that observed when a single compound is used. However, as emphasized in the current review, the occurrence of potential pharmacokinetic and/or pharmacodynamic interactions between drug components highlights the need for deeper and integrated research to identify the advantages or disadvantages associated with the use of combined drug preparations. This review article provides integrated pharmacokinetic/pharmacodynamic and clinical pharmacology information pertinent to preserve the traditional and modern active ingredients as practical tools for parasite control. Novel pharmacological data on derquantel and monepantel, as representatives of modern anthelmintics for use in livestock, is summarized here. The article also summarizes the pharmaco-parasitological knowledge considered critical to secure and/or extend the lifespan of the recently available novel molecules.

  15. Dairy Propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system

    PubMed Central

    Kwon, Gayeung; Lee, Jiyun; Lim, Young-Hee

    2016-01-01

    Dairy Propionibacterium freudenreichii is a candidate non-lactic acid probiotic. However, little information is available on the effect of P. freudenreichii on lifespan extension in humans. The aim of this study was to evaluate the effects of P. freudenreichii on lifespan extension and to elucidate the mechanism of P. freudenreichii-dependent lifespan extension in Caenorhabditis elegans. The results showed that P. freudenreichii significantly (p < 0.05) extended the lifespan of C. elegans compared with Escherichia coli OP50, a standard food for the worm. Analysis of age-related biomarkers showed that P. freudenreichii retards ageing. Moreover, P. freudenreichii increased resistance against a human pathogen, Salmonella typhimurium, through the activation of skn-1, which is involved in pathogen resistance in C. elegans. Furthermore, P. freudenreichii-fed daf-16, jnk-1, skn-1 or daf-7 loss-of-function mutants showed an extended mean lifespan compared with E. coli OP50-fed worms. However, the increase in lifespan was not observed in pmk-1, sek-1, mek-1, dbl-1, daf-12 or daf-2 mutants, which suggests potential roles for these genes in P. freudenreichii-induced longevity in C. elegans. In conclusion, P. freudenreichii extends the lifespan of C. elegans via the p38 MAPK pathway involved in stress response and the TGF-β pathways associated with anti-inflammation processes in the immune system. PMID:27531646

  16. The lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans.

    PubMed

    Zhuang, Ziheng; Lv, Ting; Li, Min; Zhang, Yusi; Xue, Ting; Yang, Linsong; Liu, Hui; Zhang, Weiming

    2014-12-01

    Nymphaea hybrid, a water lily from the Nymphaeaceae family, has been found to exhibit some in vivo beneficial effects. In the present study we investigated the lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans. We found that Nymphaea hybrid root extract significantly extended the lifespan of C.elegans and improved its locomotion during aging. Moreover, Nymphaea hybrid root extract increased the resistance of C.elegans to both heat stress and oxidative stress. We found that the ability of Nymphaea hybrid root extract to increase lifespan was independent of its antimicrobial effects and was probably associated with its effects on the reproduction of C.elegans. In addition, the lifespan-extending effects of Nymphaea hybrid root extract were found to be dependent on the insulin/IGF signaling pathway. We also found that total flavones of Nymphaea hybrid could increase survival of C.elegans in both normal and adverse conditions, indicating that total flavones comprise the major fractions with lifespan-extending effects. Therefore, Nymphaea hybrid root extract has lifespan-extending effects in C.elegans and could be developed as a functional food.

  17. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera)

    PubMed Central

    Snell, Terry W.; Johnston, Rachel K.; Rabeneck, Brett; Zipperer, Cody; Teat, Stephanie

    2014-01-01

    The TOR kinase pathway is central in modulating aging in a variety of animal models. The target of rapamycin (TOR) integrates a complex network of signals from growth conditions, nutrient availability, energy status, and physiological stresses and matches an organism’s growth rate to the resource environment. Important problems remaining are to identify the pathways that interact with TOR and characterize them as additive or synergistic. One of the most versatile stress sensors in metazoans is the Jun-N-terminal Kinase (JNK) signalling pathway. JNK is an evolutionarily conserved stress-activated protein kinase that is induced by a range of stressors, including UV irradiation, reactive oxygen species, DNA damage, heat, and bacterial antigens. JNK is thought to interact with the TOR pathway, but its effects on TOR are poorly understood. We used the rotifer Brachionus manjavacas as a model animal to probe the regulation of TOR and JNK pathways and explore their interaction. The effect of various chemical inhibitors was examined in life table and stressor challenge experiments. A survey of 12 inhibitors revealed two, rapamycin and JNK inhibitor, that significantly extended lifespan of B. manjavacas. At 1 μM concentration, exposure to rapamycin or JNK inhibitor extended mean rotifer lifespan by 35% and maximum lifespan by 37%. Exposure to both rapamycin and JNK inhibitor simultaneously extended mean rotifer lifespan 65% more than either alone. Exposure to a combination of rapamycin and JNK inhibitors conveyed greater protection to starvation, UV and osmotic stress than either inhibitor alone. RNAi knockdown of TOR and JNK gene expression was investigated for its ability to extend rotifer lifespan. RNAi knockdown of the TOR gene resulted in 29% extension of mean lifespan compared to control and knockdown of the JNK gene resulted in 51% mean lifespan extension. In addition to lifespan, we quantified mitochondria activity using the fluorescent marker Mitotracker and

  18. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera).

    PubMed

    Snell, Terry W; Johnston, Rachel K; Rabeneck, Brett; Zipperer, Cody; Teat, Stephanie

    2014-04-01

    The TOR kinase pathway is central in modulating aging in a variety of animal models. The target of rapamycin (TOR) integrates a complex network of signals from growth conditions, nutrient availability, energy status, and physiological stresses and matches an organism's growth rate to the resource environment. Important remaining problems are the identification of the pathways that interact with TOR and their characterization as additive or synergistic. One of the most versatile stress sensors in metazoans is the Jun-N-terminal kinase (JNK) signaling pathway. JNK is an evolutionarily conserved stress-activated protein kinase that is induced by a range of stressors, including UV irradiation, reactive oxygen species, DNA damage, heat, and bacterial antigens. JNK is thought to interact with the TOR pathway, but its effects on TOR are poorly understood. We used the rotifer Brachionus manjavacas as a model animal to probe the regulation of TOR and JNK pathways and explore their interaction. The effect of various chemical inhibitors was examined in life table and stressor challenge experiments. A survey of 12 inhibitors revealed two, rapamycin and JNK inhibitor, that significantly extended lifespan of B. manjavacas. At 1 μM concentration, exposure to rapamycin or JNK inhibitor extended mean rotifer lifespan by 35% and maximum lifespan by 37%. Exposure to both rapamycin and JNK inhibitor simultaneously extended mean rotifer lifespan by 65% more than either alone. Exposure to a combination of rapamycin and JNK inhibitors conveyed greater protection to starvation, UV and osmotic stress than either inhibitor alone. RNAi knockdown of TOR and JNK gene expression was investigated for its ability to extend rotifer lifespan. RNAi knockdown of the TOR gene resulted in 29% extension of the mean lifespan compared to control and knockdown of the JNK gene resulted in 51% mean lifespan extension. In addition to the lifespan, we quantified mitochondria activity using the fluorescent

  19. Green tea polyphenols extend the lifespan of male drosophila melanogaster while impairing reproductive fitness.

    PubMed

    Lopez, Terry; Schriner, Samuel E; Okoro, Michael; Lu, David; Chiang, Beatrice T; Huey, Jocelyn; Jafari, Mahtab

    2014-12-01

    Green tea is a popular beverage believed to have many health benefits, including a reduction in the risks of heart disease and cancer. Rich in polyphenolic compounds known as catechins, green tea and its components have been shown to increase the lifespan of various animal models, including Drosophila melanogaster. Here, we investigated the gender-specific effects of green tea on the lifespan of fruit flies and observed that green tea extended the lifespan of male flies only. This effect was found to be independent of typical aging interventions, such as dietary restriction, modulation of oxidative energy metabolism, and improved tolerance to environmental stresses. The one exception was that green tea did protect male flies against iron toxicity. Since there is an inverse correlation between lifespan and reproduction, the impact of green tea on male reproductive fitness was also investigated. We found that green tea negatively impacted male fertility as shown by a reduced number of offspring produced and increased mating latency. We further identified that the lifespan extension properties of green tea was only observed in the presence of females which alludes to a reproductive (or mating) dependent mechanism. Our findings suggest that green tea extends the lifespan of male flies by inhibiting reproductive potential, possibly by limiting iron uptake. To our knowledge, our study is the first to report the negative impact of green tea on Drosophila male reproduction. Our results also support previous studies that suggest that green tea might have a negative effect on reproductive fitness in humans.

  20. Green Tea Polyphenols Extend the Lifespan of Male Drosophila melanogaster While Impairing Reproductive Fitness

    PubMed Central

    Lopez, Terry; Schriner, Samuel E.; Okoro, Michael; Lu, David; Chiang, Beatrice T.; Huey, Jocelyn

    2014-01-01

    Abstract Green tea is a popular beverage believed to have many health benefits, including a reduction in the risks of heart disease and cancer. Rich in polyphenolic compounds known as catechins, green tea and its components have been shown to increase the lifespan of various animal models, including Drosophila melanogaster. Here, we investigated the gender-specific effects of green tea on the lifespan of fruit flies and observed that green tea extended the lifespan of male flies only. This effect was found to be independent of typical aging interventions, such as dietary restriction, modulation of oxidative energy metabolism, and improved tolerance to environmental stresses. The one exception was that green tea did protect male flies against iron toxicity. Since there is an inverse correlation between lifespan and reproduction, the impact of green tea on male reproductive fitness was also investigated. We found that green tea negatively impacted male fertility as shown by a reduced number of offspring produced and increased mating latency. We further identified that the lifespan extension properties of green tea was only observed in the presence of females which alludes to a reproductive (or mating) dependent mechanism. Our findings suggest that green tea extends the lifespan of male flies by inhibiting reproductive potential, possibly by limiting iron uptake. To our knowledge, our study is the first to report the negative impact of green tea on Drosophila male reproduction. Our results also support previous studies that suggest that green tea might have a negative effect on reproductive fitness in humans. PMID:25058464

  1. Procyanidins from apples (Malus pumila Mill.) extend the lifespan of Caenorhabditis elegans.

    PubMed

    Sunagawa, Tadahiro; Shimizu, Takahiko; Kanda, Tomomasa; Tagashira, Motoyuki; Sami, Manabu; Shirasawa, Takuji

    2011-01-01

    Apple polyphenols (AP) mainly consist of procyanidins (PC), which are composed of (-)-epicatechins and (+)-catechins. In order to investigate the antiageing effects of PC, we measured the lifespan of CAENORHABDITIS ELEGANS worms treated with PC. Treatment with 65 µg/mL PC extended the mean lifespan of wild-type N2 and FEM-1 worms by 12.1 % and 8.4 %, respectively, i.e., to a similar extent as resveratrol. In addition, treatment with 100 µg/mL AP also significantly prolonged the mean lifespan of the same worms by 12.0 % and 5.3 %, respectively, i.e., to a similar extent as PC. In contrast, treatment with (-)-epicatechin did not extend the lifespan of the worms. PC did not modify the growth, food intake, or fecundity of C. elegans. Treatment with PC did not extend the lifespan of MEV-1 worms, which show excessive oxidative stress, indicating that PC had no antioxidant ability in the MEV-1 mutant. Moreover, treatment with PC had no effect on the longevity of SIR-2.1 worms, which lack the activity of SIR-2, a member of the sirtuin family of NAD (+)-dependent protein deacetylases. These results indicated that PC has SIR-2.1-dependent antiageing effects on C. elegans.

  2. Rhodiola rosea extends lifespan and improves stress tolerance in silkworm, Bombyx mori.

    PubMed

    Chen, Cong; Song, Jiangbo; Chen, Min; Li, Zhiquan; Tong, Xiaoling; Hu, Hai; Xiang, Zhonghuai; Lu, Cheng; Dai, Fangyin

    2016-04-01

    The root of Rhodiola rosea is widely used in Traditional Chinese Medicine. The extract from R. rosea is reported to extend the lifespan of yeast, nematode, and fruit fly. However, the molecular mechanism is not fully understood. Here, we tested whether R. rosea extends the lifespan of the silkworm. An aqueous extract of R. rosea significantly prolonged the lifespan of the silkworm, without affecting its daily food intake, body weight, or fecundity, suggesting that R. rosea did not exhibit obvious side effects. Rhodiola rosea extract also enhanced the stress resistance in the silkworm, against heat stress (37 °C) and starvation. The R. rosea extract increased the activity of the major antioxidant enzymes, glutathione S-transferase and catalase, and altered the content of glutathione and malondialdehyde. Rhodiola rosea increased the expression of BmFoxO, which is a downstream regulator of insulin/IGF-1 signaling (IIS) pathway in the silkworm. Our results showed that R. rosea extends lifespan, in which IIS pathway might be involved, and enhances stress resistance in the silkworm. Thus, the silkworm might be used as a novel animal model for lifespan study and efficacy evaluation of Traditional Chinese Medicines.

  3. The metabolite alpha-ketoglutarate extends lifespan by inhibiting the ATP synthase and TOR

    PubMed Central

    Chin, Randall M.; Fu, Xudong; Pai, Melody Y.; Vergnes, Laurent; Hwang, Heejun; Deng, Gang; Diep, Simon; Lomenick, Brett; Meli, Vijaykumar S.; Monsalve, Gabriela C.; Hu, Eileen; Whelan, Stephen A.; Wang, Jennifer X.; Jung, Gwanghyun; Solis, Gregory M.; Fazlollahi, Farbod; Kaweeteerawat, Chitrada; Quach, Austin; Nili, Mahta; Krall, Abby S.; Godwin, Hilary A.; Chang, Helena R.; Faull, Kym F.; Guo, Feng; Jiang, Meisheng; Trauger, Sunia A.; Saghatelian, Alan; Braas, Daniel; Christofk, Heather R.; Clarke, Catherine F.; Teitell, Michael A.; Petrascheck, Michael; Reue, Karen; Jung, Michael E.; Frand, Alison R.; Huang, Jing

    2014-01-01

    Metabolism and ageing are intimately linked. Compared to ad libitum feeding, dietary restriction (DR) or calorie restriction (CR) consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms1,2. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits3,4. Recently, several metabolites have been identified that modulate ageing5,6 with largely undefined molecular mechanisms. Here we show that the tricarboxylic acid (TCA) cycle intermediate α-ketoglutarate (α-KG) extends the lifespan of adult C. elegans. ATP synthase subunit beta is identified as a novel binding protein of α-KG using a small-molecule target identification strategy called DARTS (drug affinity responsive target stability)7. The ATP synthase, also known as Complex V of the mitochondrial electron transport chain (ETC), is the main cellular energy-generating machinery and is highly conserved throughout evolution8,9. Although complete loss of mitochondrial function is detrimental, partial suppression of the ETC has been shown to extend C. elegans lifespan10–13. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit beta and is dependent on the target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased upon starvation and α-KG does not extend the lifespan of DR animals, indicating that α-KG is a key metabolite that mediates longevity by DR. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator, and DR in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases. PMID:24828042

  4. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR.

    PubMed

    Chin, Randall M; Fu, Xudong; Pai, Melody Y; Vergnes, Laurent; Hwang, Heejun; Deng, Gang; Diep, Simon; Lomenick, Brett; Meli, Vijaykumar S; Monsalve, Gabriela C; Hu, Eileen; Whelan, Stephen A; Wang, Jennifer X; Jung, Gwanghyun; Solis, Gregory M; Fazlollahi, Farbod; Kaweeteerawat, Chitrada; Quach, Austin; Nili, Mahta; Krall, Abby S; Godwin, Hilary A; Chang, Helena R; Faull, Kym F; Guo, Feng; Jiang, Meisheng; Trauger, Sunia A; Saghatelian, Alan; Braas, Daniel; Christofk, Heather R; Clarke, Catherine F; Teitell, Michael A; Petrascheck, Michael; Reue, Karen; Jung, Michael E; Frand, Alison R; Huang, Jing

    2014-06-19

    Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit β is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit β and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing

  5. The Nestor Effect: Extending Evolutionary Developmental Psychology to a Lifespan Perspective

    ERIC Educational Resources Information Center

    Greve, Werner; Bjorklund, David F.

    2009-01-01

    We extend an evolutionary perspective of development to the lifespan, proposing that human longevity may be related to the experience, knowledge, and wisdom provided by older members of human groups. In addition to the assistance in childcare provided by grandmothers to their daughters, the experience of wise elders could have served to benefit…

  6. Antioxidants can extend lifespan of Brachionus manjavacas (Rotifera), but only in a few combinations

    PubMed Central

    Fields, Allison M.; Johnston, Rachel K.

    2013-01-01

    Animal cells are protected from oxidative damage by an antioxidant network operating as a coordinated system, with strong synergistic interactions. Lifespan studies with whole animals are expensive and laborious, so there has been little investigation of which antioxidant interactions might be useful for life extension. Animals in the phylum Rotifera are particularly promising models for aging studies because they are small (0.1–1 mm), have short, two-week lifespan, display typical patterns of animal aging, and have well characterized, easy to measure phenotypes of aging and senescence. One class of interventions that has consistently produced significant rotifer life extension is antioxidants. Although the mechanism of antioxidant effects on animal aging remains controversial, the ability of some antioxidant supplements to extend rotifer lifespan was unequivocal. We found that exposing rotifers to certain combinations of antioxidant supplements can produce up to about 20% longer lifespan, but that most antioxidants have no effect. We performed life table tests with 20 single antioxidants and none yielded significant rotifer life extension. We tested 60 two-way combinations of selected antioxidants and only seven (12%) produced significant rotifer life extension. None of the 20 three- and four-way antioxidant combinations tested yielded significant rotifer life extension. These observations suggest that dietary exposure of antioxidants can extend rotifer lifespan, but most antioxidants do not. We observed significant rotifer life extension only when antioxidants were paired with trolox, N-acetyl cysteine, l-carnosine, or EUK-8. This illustrates that antioxidant treatments capable of rotifer life extension are patchily distributed in the parameter space, so large regions must be searched to find them. It furthermore underscores the value of the rotifer model to conduct rapid, facile life table experiments with many treatments, which makes such a search feasible

  7. Near-infrared light increases ATP, extends lifespan and improves mobility in aged Drosophila melanogaster

    PubMed Central

    Begum, Rana; Calaza, Karin; Kam, Jaimie Hoh; Salt, Thomas E.; Hogg, Chris; Jeffery, Glen

    2015-01-01

    Ageing is an irreversible cellular decline partly driven by failing mitochondrial integrity. Mitochondria accumulate DNA mutations and reduce ATP production necessary for cellular metabolism. This is associated with inflammation. Near-infrared exposure increases retinal ATP in old mice via cytochrome c oxidase absorption and reduces inflammation. Here, we expose fruitflies daily to 670 nm radiation, revealing elevated ATP and reduced inflammation with age. Critically, there was a significant increase in average lifespan: 100–175% more flies survived into old age following 670 nm exposure and these had significantly improved mobility. This may be a simple route to extending lifespan and improving function in old age. PMID:25788488

  8. Near-infrared light increases ATP, extends lifespan and improves mobility in aged Drosophila melanogaster.

    PubMed

    Begum, Rana; Calaza, Karin; Kam, Jaimie Hoh; Salt, Thomas E; Hogg, Chris; Jeffery, Glen

    2015-03-01

    Ageing is an irreversible cellular decline partly driven by failing mitochondrial integrity. Mitochondria accumulate DNA mutations and reduce ATP production necessary for cellular metabolism. This is associated with inflammation. Near-infrared exposure increases retinal ATP in old mice via cytochrome c oxidase absorption and reduces inflammation. Here, we expose fruitflies daily to 670 nm radiation, revealing elevated ATP and reduced inflammation with age. Critically, there was a significant increase in average lifespan: 100-175% more flies survived into old age following 670 nm exposure and these had significantly improved mobility. This may be a simple route to extending lifespan and improving function in old age.

  9. Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan12

    PubMed Central

    Deshpande, Sonali A; Yamada, Ryuichi; Mak, Christine M; Hunter, Brooke; Obando, Alina Soto; Hoxha, Sany; Ja, William W

    2015-01-01

    Background: Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. Objectives: We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. Methods: We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. Results: An acidic diet increased Drosophila gustatory responses (40–230%) and food intake (5–50%) and extended survival (10–160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5–20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. Conclusions: Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and

  10. Reevaluation of whether a soma–to–germ-line transformation extends lifespan in Caenorhabditis elegans

    PubMed Central

    Knutson, Andrew Kekūpa'a; Rechtsteiner, Andreas; Strome, Susan

    2016-01-01

    The germ lineage is considered to be immortal. In the quest to extend lifespan, a possible strategy is to drive germ-line traits in somatic cells, to try to confer some of the germ lineage’s immortality on the somatic body. Notably, a study in Caenorhabditis elegans suggested that expression of germ-line genes in the somatic cells of long-lived daf-2 mutants confers some of daf-2’s long lifespan. Specifically, mRNAs encoding components of C. elegans germ granules (P granules) were up-regulated in daf-2 mutant worms, and knockdown of individual P-granule and other germ-line genes in daf-2 young adults modestly reduced their lifespan. We investigated the contribution of a germ-line program to daf-2’s long lifespan and also tested whether other mutants known to express germ-line genes in their somatic cells are long-lived. Our key findings are as follows. (i) We could not detect P-granule proteins in the somatic cells of daf-2 mutants by immunostaining or by expression of a P-granule transgene. (ii) Whole-genome transcript profiling of animals lacking a germ line revealed that germ-line transcripts are not up-regulated in the soma of daf-2 worms compared with the soma of control worms. (iii) Simultaneous removal of multiple P-granule proteins or the entire germ-line program from daf-2 worms did not reduce their lifespan. (iv) Several mutants that robustly express a broad spectrum of germ-line genes in their somatic cells are not long-lived. Together, our findings argue against the hypothesis that acquisition of a germ-cell program in somatic cells increases lifespan and contributes to daf-2’s long lifespan. PMID:26976573

  11. Glycerol extends lifespan of Brachionus manjavacas (Rotifera) and protects against stressors

    PubMed Central

    Snell, Terry W.; Johnston, Rachel K.

    2014-01-01

    Diet has profound effects on animal longevity and manipulation of nutrient sensing pathways is one of the primary interventions capable of lifespan extension. This often is done through caloric restriction (CR) and a variety of CR mimics have been identified that produce life extending effects without adhering to the rigorous CR dietary regimen. Glycerol is a dietary supplement capable mimicking CR by shifting metabolism away from glycolysis and towards oxidative phosphorylation. Glycerol supplementation has a number of beneficial effects, including lifespan extension, improved stress resistance, and enhanced locomotory and mitochondria activity in older age classes. Using rotifers as a model, we show that supplements of 150–300 mM glycerol produced 40–50% extension of mean lifespan. This effect was produced by raising glycerol concentration only three times higher than its baseline concentration in rotifer tissues. Glycerol supplementation decreased rotifer reliance on glycolysis and reduced the pro-aging effects of glucose. Glycerol also acted as a chemical chaperone, mitigating damage by protein aggregation. Glycerol treatment improved rotifer swimming performance in older age classes and maintained more mitochondrial activity. Glycerol treatment provided increased resistance to starvation, heat, oxidation, and osmotic stress, but not UV stress. When glycerol was co-administered with the hexokinase inhibitor 2-deoxyglucose, the lifespan extending effect of glycerol was enhanced. Co-administration of glycerol with inhibitors like 2- deoxyglucose can lower their efficacious doses, thereby reducing their toxic side effects. PMID:24835191

  12. Lifespan Extending and Stress Resistant Properties of Vitexin from Vigna angularis in Caenorhabditis elegans

    PubMed Central

    Lee, Eun Byeol; Kim, Jun Hyeong; Cha, Youn-Soo; Kim, Mina; Song, Seuk Bo; Cha, Dong Seok; Jeon, Hoon; Eun, Jae Soon; Han, Sooncheon; Kim, Dae Keun

    2015-01-01

    Several theories emphasize that aging is closely related to oxidative stress and disease. The formation of excess ROS can lead to DNA damage and the acceleration of aging. Vigna angularis is one of the important medicinal plants in Korea. We isolated vitexin from V. angularis and elucidated the lifespan-extending effect of vitexin using the Caenorhabditis elegans model system. Vitexin showed potent lifespan extensive activity and it elevated the survival rates of nematodes against the stressful environments including heat and oxidative conditions. In addition, our results showed that vitexin was able to elevate antioxidant enzyme activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner. These studies demonstrated that the increased stress tolerance of vitexin-mediated nematode could be attributed to increased expressions of stress resistance proteins such as superoxide dismutase (SOD-3) and heat shock protein (HSP-16.2). In this work, we also studied whether vitexin-mediated longevity activity was associated with aging-related factors such as progeny, food intake, growth and movement. The data revealed that these factors were not affected by vitexin treatment except movement. Vitexin treatment improved the body movement of aged nematode, suggesting vitexin affects healthspan as well as lifespan of nematode. These results suggest that vitexin might be a probable candidate which could extend the human lifespan. PMID:26535084

  13. Glycerol extends lifespan of Brachionus manjavacas (Rotifera) and protects against stressors.

    PubMed

    Snell, Terry W; Johnston, Rachel K

    2014-09-01

    Diet has profound effects on animal longevity and manipulation of nutrient sensing pathways is one of the primary interventions capable of lifespan extension. This often is done through caloric restriction (CR) and a variety of CR mimics have been identified that produce life extending effects without adhering to the rigorous CR dietary regimen. Glycerol is a dietary supplement capable mimicking CR by shifting metabolism away from glycolysis and towards oxidative phosphorylation. Glycerol supplementation has a number of beneficial effects, including lifespan extension, improved stress resistance, and enhanced locomotory and mitochondria activity in older age classes. Using rotifers as a model, we show that supplements of 150-300mM glycerol produced 40-50% extension of mean lifespan. This effect was produced by raising glycerol concentration only three times higher than its baseline concentration in rotifer tissues. Glycerol supplementation decreased rotifer reliance on glycolysis and reduced the pro-aging effects of glucose. Glycerol also acted as a chemical chaperone, mitigating damage by protein aggregation. Glycerol treatment improved rotifer swimming performance in older age classes and maintained more mitochondrial activity. Glycerol treatment provided increased resistance to starvation, heat, oxidation, and osmotic stress, but not UV stress. When glycerol was co-administered with the hexokinase inhibitor 2-deoxyglucose, the lifespan extending effect of glycerol was enhanced. Co-administration of glycerol with inhibitors like 2-deoxyglucose can lower their efficacious doses, thereby reducing their toxic side effects.

  14. GDF11 administration does not extend lifespan in a mouse model of premature aging

    PubMed Central

    Freitas-Rodríguez, Sandra; Rodríguez, Francisco; Folgueras, Alicia R.

    2016-01-01

    GDF11 has recently emerged as a powerful anti-aging candidate, found in young blood, capable of rejuvenating a number of aged tissues, such as heart, skeletal muscle and brain. However, recent reports have shown contradictory data questioning its capacity to reverse age-related tissue dysfunction. The availability of a mouse model of accelerated aging, which shares most of the features occurring in physiological aging, gives us an excellent opportunity to test in vivo therapies aimed at extending lifespan both in pathological and normal aging. On this basis, we wondered whether the proposed anti-aging functions of GDF11 would have an overall effect on longevity. We first confirmed the existence of a reduction in GDF11/8 levels in our mouse model of accelerated aging compared with wild-type littermates. However, we show herein that GDF11 daily administration does not extend lifespan of premature-aged mice. PMID:27507054

  15. Preventing age-related decline of gut compartmentalization limits microbiota dysbiosis and extends lifespan

    PubMed Central

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2016-01-01

    Summary Compartmentalization of the gastrointestinal (GI) tract of metazoans is critical for health. GI compartments contain specific microbiota, and microbiota dysbiosis is associated with intestinal dysfunction. Dysbiosis develops in aging intestines, yet how this relates to changes in GI compartmentalization remains unclear. The Drosophila GI tract is an accessible model to address this question. Here we show that the stomach-like copper cell region (CCR) in the middle midgut controls distribution and composition of the microbiota. We find that chronic activation of JAK/Stat signaling in the aging gut induces a metaplasia of the gastric epithelium, CCR decline, and subsequent commensal dysbiosis and epithelial dysplasia along the GI tract. Accordingly, inhibition of JAK/Stat signaling in the CCR specifically prevents age-related metaplasia, commensal dysbiosis and functional decline in old guts, and extends lifespan. Our results establish a mechanism by which age-related chronic inflammation causes the decline of intestinal compartmentalization and microbiota dysbiosis, limiting lifespan. PMID:26867182

  16. Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan.

    PubMed

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2016-02-10

    Compartmentalization of the gastrointestinal (GI) tract of metazoans is critical for health. GI compartments contain specific microbiota, and microbiota dysbiosis is associated with intestinal dysfunction. Dysbiosis develops in aging intestines, yet how this relates to changes in GI compartmentalization remains unclear. The Drosophila GI tract is an accessible model to address this question. Here we show that the stomach-like copper cell region (CCR) in the middle midgut controls distribution and composition of the microbiota. We find that chronic activation of JAK/Stat signaling in the aging gut induces a metaplasia of the gastric epithelium, CCR decline, and subsequent commensal dysbiosis and epithelial dysplasia along the GI tract. Accordingly, inhibition of JAK/Stat signaling in the CCR specifically prevents age-related metaplasia, commensal dysbiosis and functional decline in old guts, and extends lifespan. Our results establish a mechanism by which age-related chronic inflammation causes the decline of intestinal compartmentalization and microbiota dysbiosis, limiting lifespan.

  17. Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality.

    PubMed

    Rangaraju, Sunitha; Solis, Gregory M; Thompson, Ryan C; Gomez-Amaro, Rafael L; Kurian, Leo; Encalada, Sandra E; Niculescu, Alexander B; Salomon, Daniel R; Petrascheck, Michael

    2015-12-01

    Longevity mechanisms increase lifespan by counteracting the effects of aging. However, whether longevity mechanisms counteract the effects of aging continually throughout life, or whether they act during specific periods of life, preventing changes that precede mortality is unclear. Here, we uncover transcriptional drift, a phenomenon that describes how aging causes genes within functional groups to change expression in opposing directions. These changes cause a transcriptome-wide loss in mRNA stoichiometry and loss of co-expression patterns in aging animals, as compared to young adults. Using Caenorhabditis elegans as a model, we show that extending lifespan by inhibiting serotonergic signals by the antidepressant mianserin attenuates transcriptional drift, allowing the preservation of a younger transcriptome into an older age. Our data are consistent with a model in which inhibition of serotonergic signals slows age-dependent physiological decline and the associated rise in mortality levels exclusively in young adults, thereby postponing the onset of major mortality.

  18. Genetic perturbation of key central metabolic genes extends lifespan in Drosophila and affects response to dietary restriction

    PubMed Central

    Talbert, Matthew E.; Barnett, Brittany; Hoff, Robert; Amella, Maria; Kuczynski, Kate; Lavington, Erik; Koury, Spencer; Brud, Evgeny; Eanes, Walter F.

    2015-01-01

    There is a connection between nutrient inputs, energy-sensing pathways, lifespan variation and aging. Despite the role of metabolic enzymes in energy homeostasis and their metabolites as nutrient signals, little is known about how their gene expression impacts lifespan. In this report, we use P-element mutagenesis in Drosophila to study the effect on lifespan of reductions in expression of seven central metabolic enzymes, and contrast the effects on normal diet and dietary restriction. The major observation is that for five of seven genes, the reduction of gene expression extends lifespan on one or both diets. Two genes are involved in redox balance, and we observe that lower activity genotypes significantly extend lifespan. The hexokinases also show extension of lifespan with reduced gene activity. Since both affect the ATP/ADP ratio, this connects with the role of AMP-activated protein kinase as an energy sensor in regulating lifespan and mediating caloric restriction. These genes possess significant expression variation in natural populations, and our experimental genotypes span this level of natural activity variation. Our studies link the readout of energy state with the perturbation of the genes of central metabolism and demonstrate their effect on lifespan. PMID:26378219

  19. Target of rapamycin signalling mediates the lifespan-extending effects of dietary restriction by essential amino acid alteration.

    PubMed

    Emran, Sahar; Yang, Mingyao; He, Xiaoli; Zandveld, Jelle; Piper, Matthew D W

    2014-05-01

    Dietary restriction (DR), defined as a moderate reduction in food intake short of malnutrition, has been shown to extend healthy lifespan in a diverse range of organisms, from yeast to primates. Reduced signalling through the insulin/IGF-like (IIS) and Target of Rapamycin (TOR) signalling pathways also extend lifespan. InDrosophila melanogaster the lifespan benefits of DR can be reproduced by modulating only the essential amino acids in yeast based food. Here, we show that pharmacological downregulation of TOR signalling, but not reduced IIS, modulates the lifespan response to DR by amino acid alteration. Of the physiological responses flies exhibit upon DR, only increased body fat and decreased heat stress resistance phenotypes correlated with longevity via reduced TOR signalling. These data indicate that lowered dietary amino acids promote longevity via TOR, not by enhanced resistance to molecular damage, but through modified physiological conditions that favour fat accumulation.

  20. Korean mistletoe (Viscum album coloratum) extract extends the lifespan of nematodes and fruit flies.

    PubMed

    Lee, Shin-Hae; An, Hyo-Sun; Jung, Yong Woo; Lee, Eun-Ji; Lee, Hye-Yeon; Choi, Eun-Seok; An, Seon Woo; Son, Heehwa; Lee, Seung-Jae; Kim, Jong-Bae; Min, Kyung-Jin

    2014-04-01

    Viscum album coloratum (Korean mistletoe) is a semi-parasitic plant that grows on various trees and has a variety of biological functions such as immunomodulation, apoptosis, and anti-tumor activity. In this study, we investigated the effects of Korean mistletoe extract (KME) on lifespan in experimental models using Caenorhabditis elegans and Drosophila melanogaster. Supplementation of KME at 50 μg/ml extended the mean survival time by 9.61 and 19.86 % in worms and flies, respectively. The longevity benefit of KME was not due to reduced feeding, reproduction, and/or locomotion in flies and worms. The supplementation of KME also did not increase resistance to various stresses including heat shock, oxidative, or starvation stresses. Furthermore, KME did not further extend the lifespan of flies fed a dietary restricted diet but did increase the expression of Sir2, one of the target genes of dietary restriction, suggesting that KME may function as a putative dietary restriction mimetic. These results also suggest that the longevity promoting effects of KME may be an example of mild stress-induced hormesis.

  1. PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan.

    PubMed

    Guo, Linlin; Karpac, Jason; Tran, Susan L; Jasper, Heinrich

    2014-01-16

    Interactions between commensals and the host impact the metabolic and immune status of metazoans. Their deregulation is associated with age-related pathologies like chronic inflammation and cancer, especially in barrier epithelia. Maintaining a healthy commensal population by preserving innate immune homeostasis in such epithelia thus promises to promote health and longevity. Here, we show that, in the aging intestine of Drosophila, chronic activation of the transcription factor Foxo reduces expression of peptidoglycan recognition protein SC2 (PGRP-SC2), a negative regulator of IMD/Relish innate immune signaling, and homolog of the anti-inflammatory molecules PGLYRP1-4. This repression causes deregulation of Rel/NFkB activity, resulting in commensal dysbiosis, stem cell hyperproliferation, and epithelial dysplasia. Restoring PGRP-SC2 expression in enterocytes of the intestinal epithelium, in turn, prevents dysbiosis, promotes tissue homeostasis, and extends lifespan. Our results highlight the importance of commensal control for lifespan of metazoans and identify SC-class PGRPs as longevity-promoting factors.

  2. Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality

    PubMed Central

    Rangaraju, Sunitha; Solis, Gregory M; Thompson, Ryan C; Gomez-Amaro, Rafael L; Kurian, Leo; Encalada, Sandra E; Niculescu, Alexander B; Salomon, Daniel R; Petrascheck, Michael

    2015-01-01

    Longevity mechanisms increase lifespan by counteracting the effects of aging. However, whether longevity mechanisms counteract the effects of aging continually throughout life, or whether they act during specific periods of life, preventing changes that precede mortality is unclear. Here, we uncover transcriptional drift, a phenomenon that describes how aging causes genes within functional groups to change expression in opposing directions. These changes cause a transcriptome-wide loss in mRNA stoichiometry and loss of co-expression patterns in aging animals, as compared to young adults. Using Caenorhabditis elegans as a model, we show that extending lifespan by inhibiting serotonergic signals by the antidepressant mianserin attenuates transcriptional drift, allowing the preservation of a younger transcriptome into an older age. Our data are consistent with a model in which inhibition of serotonergic signals slows age-dependent physiological decline and the associated rise in mortality levels exclusively in young adults, thereby postponing the onset of major mortality. DOI: http://dx.doi.org/10.7554/eLife.08833.001 PMID:26623667

  3. Crocus sativus L. protects against SDS‑induced intestinal damage and extends lifespan in Drosophila melanogaster.

    PubMed

    Liu, Zonglin; Chen, Yuchen; Zhang, Hong; Jin, Li Hua

    2016-12-01

    Medicinal plants are important sources of potentially therapeutic biochemical drugs. Crocus sativus L. has been used to treat various diseases in China, the Republic of Korea and Japan. The present study investigated the protective effect of C. sativus L. extract in Drosophila melanogaster intestinal immunity. Wild‑type flies were fed standard cornmeal‑yeast medium and used as controls, and flies supplemented with 1% C. sativus L. aqueous extract in standard medium were used as the experimental group. Following the ingestion of the various toxic compounds, the survival rate of the flies was determined. Cell viability and levels of reactive oxygen species (ROS) were detected using 7‑amino‑actinomycin D and dihydroethidium staining, respectively. The present study demonstrated that aqueous extracts of C. sativus L. may significantly increase the lifespan and survival rate of adult flies. Additionally, C. sativus L. may decrease epithelial cell death and ROS levels, resulting in improved intestinal morphology. These findings indicated that C. sativus L. had a protective effect against intestinal injury and may extend the lifespan of Drosophila. Therefore, the findings of the present study may improve the understanding of clinical researchers on the complex effects of C. sativus L. in intestinal disorders.

  4. Debris-covered glaciers extend the lifespan of water supplies in the European Alps

    NASA Astrophysics Data System (ADS)

    Lardeux, Pierre; Glasser, Neil; Holt, Tom; Hubbard, Bryn

    2016-04-01

    Debris-covered glaciers have a slower melting rate than clean-ice glaciers due to the insulating effect of their debris layer. In the European Alps, debris-covered glaciers have received little attention due to their small contribution to sea-level rise. However, glaciers provide water supplies for the five main watersheds draining the European Alps (Danube, Rhine, Rhone, Po and Adige, in order of size), an area inhabited by more than 145 million people (20% of Europe's population). It is unclear what volume of ice (and so quantity of potential meltwater) is affected by a debris layer, and what the effect of this layer is for water resources in the Alps. Combining the Randolph Glacier Inventory (RGI) and online imagery services, we calculated that more than 40% of ice volume in the Alps is influenced by debris cover. In this presentation, we will show the different elements leading to this number, including our evaluation of the RGI, the volume calculation method and what percentage of ice is actually covered (0.6 to 99% of glacier surface area). Our analysis has allowed a comprehensive understanding of the debris-covered glaciers in each watershed by revealing their distribution (i.e. where they will extend water supply lifespan), and hypsometry and equilibrium line altitude (how sensitive they are to climate change). The prolonged lifespan of water supply is visible at the scale of an individual debris-covered glacier: comparing the evolution of Glacier Noir and Glacier Blanc (France) over the last 150 years indicates that Glacier Noir (debris covered) has retained 2.5 times more ice than Glacier Blanc (clean-ice) under the same climatic conditions. The number of debris-covered glaciers will increase as the >1°C rise in temperature in the European Alps since the start of the 20th Century increases the instability of rock faces and scree slopes. The evolution of these glaciers is therefore likely to have a major impact on human populations. This work shows that

  5. Identification of the isomer of methionine sulfoximine that extends the lifespan of the SOD1 G93A mouse.

    PubMed

    Brusilow, William S A

    2017-04-24

    In previous studies methionine sulfoximine (MSO) significantly extended the lifespan of the SOD1 G93A mouse model for ALS. Those studies used commercially available MSO, which is a racemic mixture of the LS and LR diastereomers, leaving unanswered the question of which isomer was responsible for the therapeutic effects. In this study we tested both purified isomers and showed that the LS isomer, a well-characterized inhibitor of glutamine synthetase, extends the lifespan of these mice, but the LR isomer, which has no known activity, does not.

  6. Extending the lifespan and efficacies of immune cells used in adoptive transfer for cancer immunotherapies-A review.

    PubMed

    Nayar, Sandeep; Dasgupta, Prokar; Galustian, Christine

    2015-04-01

    Cells used in adoptive cell-transfer immunotherapies against cancer include dendritic cells (DCs), natural-killer cells, and CD8(+) T-cells. These cells may have limited efficacy due to their lifespan, activity, and immunosuppressive effects of tumor cells. Therefore, increasing longevity and activity of these cells may boost their efficacy. Four cytokines that can extend immune effector-cell longevity are IL-2, IL-7, IL-21, and IL-15. This review will discuss current knowledge on effector-cell lifespans and the mechanisms by which IL-2, IL-7, IL-15, and IL-21 can extend effector-cell longevity. We will also discuss how lifespan and efficacy of these cells can be regulated to allow optimal clinical benefits.

  7. Methyl 3,4-dihydroxybenzoate extends the lifespan of Caenorhabditis elegans, partly via W06A7.4 gene.

    PubMed

    Zhang, Wei; Cai, Liang; Geng, Hai-Ju; Su, Chao-Fen; Yan, Li; Wang, Jia-Hui; Gao, Qin; Luo, Huan-Min

    2014-12-01

    To identify and analyze the compounds that delay aging and extend the lifespan is an important aspect of the gerontology research. A number of compounds, including the ones with the antioxidant properties, have been shown to extend the lifespan of Caenorhabditis elegans. Here, we report that methyl 3,4-dihydroxybenzoate (MDHB), a small antioxidant molecule, prolongs the C. elegans' lifespan under normal as well as stress conditions, delays the age-associated decline in the pharyngeal pumping rate, and obviously enhances the abilities of scavenging intracellular reactive oxygen species (ROS). To further investigate the mechanism underlying the anti-aging action of MDHB, microarray analyses were performed, which demonstrated that 13 genes were differentially expressed in worms treated with MDHB for 48 and 144 h in common. RNA interference of W06A7.4 (NM_001269697.1), the most significantly up-regulated gene, shortened the lifespan of worms by 14%, compared with the L4440 control. Our findings demonstrate that W06A7.4 is a potentially positive determinant of the MDHB induced C. elegans' lifespan extension effect.

  8. Moderately lower temperatures greatly extend the lifespan of Brachionus manjavacas (Rotifera): Thermodynamics or gene regulation?

    PubMed

    Johnston, Rachel K; Snell, Terry W

    2016-06-01

    Environmental temperature greatly affects lifespan in a wide variety of animals, but the exact mechanisms underlying this effect are still largely unknown. A moderate temperature decrease from 22°C to 16°C extends the lifespan of the monogonont rotifer Brachionus manjavacas by up to 163%. Thermodynamic effects on metabolism contribute to this increase in longevity, but are not the only cause. When rotifers are exposed to 16°C for four days and then transfered to 22°C, they survive until day 13 at nearly identical rates as rotifers maintained at 16°C continuously. This persistence of the higher survival for nine days after transfer to 22°C suggests that low temperature exposure alters the expression of genes that affect the rate of aging. The relative persistence of the gene regulation effect suggests that it may play an even larger role in slowing aging than the thermodynamic effects. The life extending effects of these short-term low temperature treatments are largest when the exposure happens early in the life cycle, demonstrating the importance of early development. There is no advantage to lowering the temperature below 16°C to 11° or 5°C. Rotifers exposed to 16°C also displayed increased resistance to heat, starvation, oxidative and osmotic stress. Reproductive rates at 16°C were lower than those at 22°C, but because they reproduce longer, there is no significant change in the lifetime fecundity of females. To investigate which genes contribute to these effects, the expression of specific temperature sensing genes was knocked down using RNAi. Of 12 genes tested, RNAi knockdown of four eliminated the survival enhancing effects of the four-day cold treatment: TRP7, forkhead box C, Y-box factor, and ribosomal protein S6. This demonstrates that active gene regulation is an important factor in temperature mediated life extension, and that these particular genes play an integral role in these pathways. As a thermoresponsive sensor, TRP7 may be

  9. A Steroidal Saponin from Ophiopogon japonicus Extends the Lifespan of Yeast via the Pathway Involved in SOD and UTH1

    PubMed Central

    Sun, Kaiyue; Cao, Shining; Pei, Liang; Matsuura, Akira; Xiang, Lan; Qi, Jianhua

    2013-01-01

    Nolinospiroside F is a steroidal saponin isolated from Ophiopogon japonicus (O. japonicus). In this study, we found that nolinospiroside F significantly extends the replicative lifespan of K6001 yeast at doses of 1, 3 and 10 μM, indicating that it has an anti-aging effect. This may be attributed to its anti-oxidative effect, as nolinospiroside F could increase yeast survival under oxidative stress conditions and decrease the level of malondialdehyde (MDA), an oxidative stress biomarker. It could also increase anti-oxidative stress genes, SOD1 and SOD2, expression, and the activity of superoxide dismutase (SOD). It increase the activity of SIRT1, an upstream inducer of SOD2 expression. In sod1 and sod2 mutant yeast strains, nolinospiroside F failed to extend their replicative lifespan. These results indicate that SOD participates in the anti-aging effect of nolinospiroside F. Furthermore, nolinospiroside F inhibited the expression of UTH1, a yeast-aging gene that is involved in the oxidative stress of yeast, and failed to extend the replicative lifespan of uth1 or skn7 mutant yeast cells. SKN7 is the transcriptional activator of UTH1. We also demonstrate that SOD and UTH1 regulate each other’s expression. Together, these results suggest that SOD and UTH1 genes are required for and play interactive roles in nolinospiroside F-mediated yeast lifespan extension. PMID:23439553

  10. Benzimidazole derivative M084 extends the lifespan of Caenorhabditis elegans in a DAF-16/FOXO-dependent way.

    PubMed

    Ding, Ai-Jun; Wu, Gui-Sheng; Tang, Bin; Hong, Xuechuan; Zhu, Michael X; Luo, Huai-Rong

    2017-02-01

    With the growth of aging population, there is increasing demand to develop strategy to improve the aging process and aging-related diseases. Benzimidazole and its derivatives are crucial heterocyclic backbone of many drugs and compounds with diverse therapeutic applications, including alleviation of aging-related diseases. Here, we investigate if the benzimidazole derivative n-butyl-[1H]-benzimidazol-2-amine (M084), a novel inhibitor of TRPC4 and TRPC5 channels and antidepressant, could affect the lifespan of Caenorhabditis elegans (C. elegans). Our results showed that M084 could extend the lifespan of C. elegans, delay age-related decline of phenotypes, and improve stress resistance. M084 could not extend the lifespan of the loss-of-function mutants of daf-16, daf-2, pdk-1, aak-2, clk-1, isp-1, sir-2.1, and skn-1. M084 could decrease the ATP level and increase the gene expression of mitochondrial unfolded protein response factors. Thus, M084 might inhibit the mitochondrial respiration, activate mitochondrial unfolded protein response and AMPK, recruite SIR-2.1 and SKN-1, and finally through the transcription factor DAF-16, delay the aging process of C. elegans. Our findings reveal the new pharmaceutical potential of benzimidazole derivatives and provide clue for developing novel anti-aging agents.

  11. Mechanosensory Neuron Aging: Differential Trajectories with Lifespan-Extending Alaskan Berry and Fungal Treatments in Caenorhabditis elegans

    PubMed Central

    Scerbak, Courtney; Vayndorf, Elena M.; Hernandez, Alicia; McGill, Colin; Taylor, Barbara E.

    2016-01-01

    Many nutritional interventions that increase lifespan are also proposed to postpone age-related declines in motor and cognitive function. Potential sources of anti-aging compounds are the plants and fungi that have adapted to extreme environments. We studied the effects of four commonly consumed and culturally relevant Interior Alaska berry and fungus species (bog blueberry, lowbush cranberry, crowberry, and chaga) on the decline in overall health and neuron function and changes in touch receptor neuron morphology associated with aging. We observed increased wild-type Caenorhabditis elegans lifespan and improved markers of healthspan upon treatment with Alaskan blueberry, lowbush cranberry, and chaga extracts. Interestingly, although all three treatments increased lifespan, they differentially affected the development of aberrant morphologies in touch receptor neurons. Blueberry treatments decreased anterior mechanosensory neuron (ALM) aberrations (i.e., extended outgrowths and abnormal cell bodies) while lowbush cranberry treatment increased posterior mechanosensory neuron (PLM) aberrations, namely process branching. Chaga treatment both decreased ALM aberrations (i.e., extended outgrowths) and increased PLM aberrations (i.e., process branching and loops). These results support the large body of knowledge positing that there are multiple cellular strategies and mechanisms for promoting health with age. Importantly, these results also demonstrate that although an accumulation of abnormal neuron morphologies is associated with aging and decreased health, not all of these morphologies are detrimental to neuronal and organismal health. PMID:27486399

  12. Liver specific expression of Cu/ZnSOD extends the lifespan of Sod1 null mice.

    PubMed

    Zhang, Yiqiang; Liu, Yuhong; Walsh, Michael; Bokov, Alex; Ikeno, Yuji; Jang, Young C; Perez, Viviana I; Van Remmen, Holly; Richardson, Arlan

    2016-03-01

    Genetic ablation of CuZn-superoxide dismutase (Sod1) in mice (Sod1(-/-) mice) leads to shortened lifespan with a dramatic increase in hepatocellular carcinoma and accelerated aging phenotypes, including early onset sarcopenia. To study the tissue specific effects of oxidative stress in the Sod1(-/-) mice, we generated mice that only express the human SOD1 gene specifically in the liver of Sod1(-/-) mice (Sod1(-/-)/hSOD1(alb) mice). Expression of hSOD1 in the liver of Sod1(-/-) mice improved liver function, reduced oxidative damage in liver, and partially restored the expression of several genes involved in tumorigenesis, which are abnormally expressed in the livers of the Sod1(-/-) mice. However, liver specific expression of hSOD1 did not prevent the loss of body weight and muscle mass and alterations in the structure of neuromuscular junctions. The expression of hSOD1 in the liver of Sod1(-/-) mice significantly improved the lifespan of Sod1(-/-) mice; however, the lifespan of the Sod1(-/-)/hSOD1(alb) mice was still significantly shorter than wild type mice.

  13. Conditional abrogation of Atm in osteoclasts extends osteoclast lifespan and results in reduced bone mass

    PubMed Central

    Hirozane, Toru; Tohmonda, Takahide; Yoda, Masaki; Shimoda, Masayuki; Kanai, Yae; Matsumoto, Morio; Morioka, Hideo; Nakamura, Masaya; Horiuchi, Keisuke

    2016-01-01

    Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption. PMID:27677594

  14. Conditional abrogation of Atm in osteoclasts extends osteoclast lifespan and results in reduced bone mass.

    PubMed

    Hirozane, Toru; Tohmonda, Takahide; Yoda, Masaki; Shimoda, Masayuki; Kanai, Yae; Matsumoto, Morio; Morioka, Hideo; Nakamura, Masaya; Horiuchi, Keisuke

    2016-09-28

    Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption.

  15. Extending standard testing period in honeybees to predict lifespan impacts of pesticides and heavy metals using dynamic energy budget modelling

    PubMed Central

    Hesketh, H.; Lahive, E.; Horton, A. A.; Robinson, A. G.; Svendsen, C.; Rortais, A.; Dorne, J.- L.; Baas, J.; Spurgeon, D. J.; Heard, M. S.

    2016-01-01

    Concern over reported honeybee (Apis mellifera spp.) losses has highlighted chemical exposure as a risk. Current laboratory oral toxicity tests in A. mellifera spp. use short-term, maximum 96 hour, exposures which may not necessarily account for chronic and cumulative toxicity. Here, we use extended 240 hour (10 day) exposures to examine seven agrochemicals and trace environmental pollutant toxicities for adult honeybees. Data were used to parameterise a dynamic energy budget model (DEBtox) to further examine potential survival effects up to 30 day and 90 day summer and winter worker lifespans. Honeybees were most sensitive to insecticides (clothianidin > dimethoate ≫ tau-fluvalinate), then trace metals/metalloids (cadmium, arsenic), followed by the fungicide propiconazole and herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). LC50s calculated from DEBtox parameters indicated a 27 fold change comparing exposure from 48 to 720 hours (summer worker lifespan) for cadmium, as the most time-dependent chemical as driven by slow toxicokinetics. Clothianidin and dimethoate exhibited more rapid toxicokinetics with 48 to 720 hour LC50s changes of <4 fold. As effects from long-term exposure may exceed those measured in short-term tests, future regulatory tests should extend to 96 hours as standard, with extension to 240 hour exposures further improving realism. PMID:27995934

  16. Lifespan-extending caloric restriction or mTOR inhibition impair adaptive immunity of old mice by distinct mechanisms

    PubMed Central

    Goldberg, Emily L; Romero-Aleshire, Melissa J; Renkema, Kristin R; Ventevogel, Melissa S; Chew, Wade M; Uhrlaub, Jennifer L; Smithey, Megan J; Limesand, Kirsten H; Sempowski, Gregory D; Brooks, Heddwen L; Nikolich-Žugich, Janko

    2015-01-01

    Aging of the world population and a concomitant increase in age-related diseases and disabilities mandates the search for strategies to increase healthspan, the length of time an individual lives healthy and productively. Due to the age-related decline of the immune system, infectious diseases remain among the top 5–10 causes of mortality and morbidity in the elderly, and improving immune function during aging remains an important aspect of healthspan extension. Calorie restriction (CR) and more recently rapamycin (rapa) feeding have both been used to extend lifespan in mice. Preciously few studies have actually investigated the impact of each of these interventions upon in vivo immune defense against relevant microbial challenge in old organisms. We tested how rapa and CR each impacted the immune system in adult and old mice. We report that each intervention differentially altered T-cell development in the thymus, peripheral T-cell maintenance, T-cell function and host survival after West Nile virus infection, inducing distinct but deleterious consequences to the aging immune system. We conclude that neither rapa feeding nor CR, in the current form/administration regimen, may be optimal strategies for extending healthy immune function and, with it, lifespan. PMID:25424641

  17. Chlorophyll enhances oxidative stress tolerance in Caenorhabditis elegans and extends its lifespan

    PubMed Central

    Wang, Erjia

    2016-01-01

    Green vegetables are thought to be responsible for several beneficial properties such as antioxidant, anti-mutagenic, and detoxification activities. It is not known whether these effects are due to chlorophyll which exists in large amounts in many foods or result from other secondary metabolites. In this study, we used the model system Caenorhabditis elegans to investigate the anti-oxidative and anti-aging effects of chlorophyll in vivo. We found that chlorophyll significantly improves resistance to oxidative stress. It also enhances the lifespan of C. elegans by up to 25% via activation of the DAF-16/FOXO-dependent pathway. The results indicate that chlorophyll is absorbed by the worms and is thus bioavailable, constituting an important prerequisite for antioxidant and longevity-promoting activities inside the body. Our study thereby supports the view that green vegetables may also be beneficial for humans. PMID:27077003

  18. Parishin from Gastrodia elata Extends the Lifespan of Yeast via Regulation of Sir2/Uth1/TOR Signaling Pathway

    PubMed Central

    Lin, Yanfei; Sun, Yujuan; Weng, Yufang; Xiang, Lan; Qi, Jianhua

    2016-01-01

    Parishin is a phenolic glucoside isolated from Gastrodia elata, which is an important traditional Chinese medicine; this glucoside significantly extended the replicative lifespan of K6001 yeast at 3, 10, and 30 μM. To clarify its mechanism of action, assessment of oxidative stress resistance, superoxide dismutase (SOD) activity, malondialdehyde (MDA), and reactive oxygen species (ROS) assays, replicative lifespans of sod1, sod2, uth1, and skn7 yeast mutants, and real-time quantitative PCR (RT-PCR) analysis were conducted. The significant increase of cell survival rate in oxidative stress condition was observed in parishin-treated groups. Silent information regulator 2 (Sir2) gene expression and SOD activity were significantly increased after treating parishin in normal condition. Meanwhile, the levels of ROS and MDA in yeast were significantly decreased. The replicative lifespans of sod1, sod2, uth1, and skn7 mutants of K6001 yeast were not affected by parishin. We also found that parishin could decrease the gene expression of TORC1, ribosomal protein S26A (RPS26A), and ribosomal protein L9A (RPL9A) in the target of rapamycin (TOR) signaling pathway. Gene expression levels of RPS26A and RPL9A in uth1, as well as in uth1, sir2 double mutants, were significantly lower than those of the control group. Besides, TORC1 gene expression in uth1 mutant of K6001 yeast was inhibited significantly. These results suggested that parishin exhibited antiaging effects via regulation of Sir2/Uth1/TOR signaling pathway. PMID:27429709

  19. Glucose restriction induces transient G2 cell cycle arrest extending cellular chronological lifespan

    PubMed Central

    Masuda, Fumie; Ishii, Mahiro; Mori, Ayaka; Uehara, Lisa; Yanagida, Mitsuhiro; Takeda, Kojiro; Saitoh, Shigeaki

    2016-01-01

    While glucose is the fundamental source of energy in most eukaryotes, it is not always abundantly available in natural environments, including within the human body. Eukaryotic cells are therefore thought to possess adaptive mechanisms to survive glucose-limited conditions, which remain unclear. Here, we report a novel mechanism regulating cell cycle progression in response to abrupt changes in extracellular glucose concentration. Upon reduction of glucose in the medium, wild-type fission yeast cells undergo transient arrest specifically at G2 phase. This cell cycle arrest is dependent on the Wee1 tyrosine kinase inhibiting the key cell cycle regulator, CDK1/Cdc2. Mutant cells lacking Wee1 are not arrested at G2 upon glucose limitation and lose viability faster than the wild-type cells under glucose-depleted quiescent conditions, suggesting that this cell cycle arrest is required for extension of chronological lifespan. Our findings indicate the presence of a novel cell cycle checkpoint monitoring glucose availability, which may be a good molecular target for cancer therapy. PMID:26804466

  20. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+.

    PubMed

    Belenky, Peter; Racette, Frances G; Bogan, Katrina L; McClure, Julie M; Smith, Jeffrey S; Brenner, Charles

    2007-05-04

    Although NAD(+) biosynthesis is required for Sir2 functions and replicative lifespan in yeast, alterations in NAD(+) precursors have been reported to accelerate aging but not to extend lifespan. In eukaryotes, nicotinamide riboside is a newly discovered NAD(+) precursor that is converted to nicotinamide mononucleotide by specific nicotinamide riboside kinases, Nrk1 and Nrk2. In this study, we discovered that exogenous nicotinamide riboside promotes Sir2-dependent repression of recombination, improves gene silencing, and extends lifespan without calorie restriction. The mechanism of action of nicotinamide riboside is totally dependent on increased net NAD(+) synthesis through two pathways, the Nrk1 pathway and the Urh1/Pnp1/Meu1 pathway, which is Nrk1 independent. Additionally, the two nicotinamide riboside salvage pathways contribute to NAD(+) metabolism in the absence of nicotinamide-riboside supplementation. Thus, like calorie restriction in the mouse, nicotinamide riboside elevates NAD(+) and increases Sir2 function.

  1. Management of bipolar depression with lamotrigine: an antiepileptic mood stabilizer

    PubMed Central

    Prabhavalkar, Kedar S.; Poovanpallil, Nimmy B.; Bhatt, Lokesh K.

    2015-01-01

    The efficacy of lamotrigine in the treatment of focal epilepsies have already been reported in several case reports and open studies, which is thought to act by inhibiting glutamate release through voltage-sensitive sodium channels blockade and neuronal membrane stabilization. However, recent findings have also illustrated the importance of lamotrigine in alleviating the depressive symptoms of bipolar disorder, without causing mood destabilization or precipitating mania. Currently, no mood stabilizers are available having equal efficacy in the treatment of both mania and depression, two of which forms the extreme sides of the bipolar disorder. Lamotrigine, a well established anticonvulsant has received regulatory approval for the treatment and prevention of bipolar depression in more than 30 countries worldwide. Lamotrigine, acts through several molecular targets and overcomes the major limitation of other conventional antidepressants by stabilizing mood from “below baseline” thereby preventing switches to mania or episode acceleration, thus being effective for bipolar I disorder. Recent studies have also suggested that these observations could also be extended to patients with bipolar II disorder. Thus, lamotrigine may supposedly fulfill the unmet requirement for an effective depression mood stabilizer. PMID:26557090

  2. Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment.

    PubMed

    Borradaile, Nica M; Pickering, J Geoffrey

    2009-04-01

    Endothelial dysfunction is a characteristic of aging-related vascular disease and is worsened during diabetes. High glucose can impair endothelial cell (EC) function through cellular accumulation of reactive oxygen species, an insult that can also limit replicative lifespan. Nicotinamide phosphoribosyltransferase (Nampt), also known as PBEF and visfatin, is rate-limiting for NAD+ salvage from nicotinamide and confers resistance to oxidative stress via SIRT1. We therefore sought to determine if Nampt expression could resist the detrimental effects of high glucose and confer a survival advantage to human vascular EC in this pathologic environment. Human aortic EC were infected with retrovirus encoding eGFP or eGFP-Nampt, and FACS-selected to yield populations with similar, modest transgene expression. Using a chronic glucose exposure model we tracked EC populations to senescence, assessed cellular metabolism, and determined in vitro angiogenic function. Overexpression of Nampt increased proliferation and extended replicative lifespan, and did so preferentially during glucose overload. Nampt expression delayed markers of senescence and limited reactive oxygen species accumulation in high glucose through a modest increase in aerobic glycolysis. Furthermore, tube networks formed by Nampt-overexpressing EC were more extensive and glucose-resistant, in accordance with SIRT1-mediated repression of the anti-angiogenic transcription factor, FoxO1. We conclude that Nampt enables proliferating human EC to resist the oxidative stress of aging and of high glucose, and to productively use excess glucose to support replicative longevity and angiogenic activity. Enhancing endothelial Nampt activity may thus be beneficial in scenarios requiring EC-based vascular repair and regeneration during aging and hyperglycemia, such as atherosclerosis and diabetes-related vascular disease.

  3. Somatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan

    PubMed Central

    Noormohammadi, Alireza; Khodakarami, Amirabbas; Gutierrez-Garcia, Ricardo; Lee, Hyun Ju; Koyuncu, Seda; König, Tim; Schindler, Christina; Saez, Isabel; Fatima, Azra; Dieterich, Christoph; Vilchez, David

    2016-01-01

    Human embryonic stem cells can replicate indefinitely while maintaining their undifferentiated state and, therefore, are immortal in culture. This capacity may demand avoidance of any imbalance in protein homeostasis (proteostasis) that would otherwise compromise stem cell identity. Here we show that human pluripotent stem cells exhibit enhanced assembly of the TRiC/CCT complex, a chaperonin that facilitates the folding of 10% of the proteome. We find that ectopic expression of a single subunit (CCT8) is sufficient to increase TRiC/CCT assembly. Moreover, increased TRiC/CCT complex is required to avoid aggregation of mutant Huntingtin protein. We further show that increased expression of CCT8 in somatic tissues extends Caenorhabditis elegans lifespan in a TRiC/CCT-dependent manner. Ectopic expression of CCT8 also ameliorates the age-associated demise of proteostasis and corrects proteostatic deficiencies in worm models of Huntington's disease. Our results suggest proteostasis is a common principle that links organismal longevity with hESC immortality. PMID:27892468

  4. Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model.

    PubMed

    Liu, Baohua; Wang, Zimei; Zhang, Le; Ghosh, Shrestha; Zheng, Huiling; Zhou, Zhongjun

    2013-01-01

    A de novo G608G mutation in LMNA gene leads to Hutchinson-Gilford progeria syndrome. Mice lacking the prelamin A-processing metalloprotease, Zmpste24, recapitulate many of the progeroid features of Hutchinson-Gilford progeria syndrome. Here we show that A-type lamins interact with SUV39H1, and prelamin A/progerin exhibits enhanced binding capacity to SUV39H1, protecting it from proteasomal degradation and, consequently, increasing H3K9me3 levels. Depletion of Suv39h1 reduces H3K9me3 levels, restores DNA repair capacity and delays senescence in progeroid cells. Remarkably, loss of Suv39h1 in Zmpste24(-/-) mice delays body weight loss, increases bone mineral density and extends lifespan by ∼60%. Thus, increased H3K9me3 levels, possibly mediated by enhanced Suv39h1 stability in the presence of prelamin A/progerin, compromise genome maintenance, which in turn contributes to accelerated senescence in laminopathy-based premature aging. Our study provides an explanation for epigenetic alterations in Hutchinson-Gilford progeria syndrome and a potential strategy for intervention by targeting SUV39H1-mediated heterochromatin remodelling.

  5. A nutritional supplement containing lactoferrin stimulates the immune system, extends lifespan, and reduces amyloid β peptide toxicity in Caenorhabditis elegans.

    PubMed

    Martorell, Patricia; Llopis, Silvia; Gonzalez, Nuria; Ramón, Daniel; Serrano, Gabriel; Torrens, Ana; Serrano, Juan M; Navarro, Maria; Genovés, Salvador

    2017-03-01

    Lactoferrin is a highly multifunctional glycoprotein involved in many physiological functions, including regulation of iron absorption and immune responses. Moreover, there is increasing evidence for neuroprotective effects of lactoferrin. We used Caenorhabditis elegans as a model to test the protective effects, both on phenotype and transcriptome, of a nutraceutical product based on lactoferrin liposomes. In a dose-dependent manner, the lactoferrin-based product protected against acute oxidative stress and extended lifespan of C. elegans N2. Furthermore, Paralysis of the transgenic C. elegans strain CL4176, caused by Aβ1-42 aggregates, was clearly ameliorated by treatment. Transcriptome analysis in treated nematodes indicated immune system stimulation, together with enhancement of processes involved in the oxidative stress response. The lactoferrin-based product also improved the protein homeostasis processes, cellular adhesion processes, and neurogenesis in the nematode. In summary, the tested product exerts protection against aging and neurodegeneration, modulating processes involved in oxidative stress response, protein homeostasis, synaptic function, and xenobiotic metabolism. This lactoferrin-based product is also able to stimulate the immune system, as well as improving reproductive status and energy metabolism. These findings suggest that oral supplementation with this lactoferrin-based product could improve the immune system and antioxidant capacity. Further studies to understand the molecular mechanisms related with neuronal function would be of interest.

  6. Chicoric acid is an antioxidant molecule that stimulates AMP kinase pathway in L6 myotubes and extends lifespan in Caenorhabditis elegans.

    PubMed

    Schlernitzauer, Audrey; Oiry, Catherine; Hamad, Raphael; Galas, Simon; Cortade, Fabienne; Chabi, Béatrice; Casas, François; Pessemesse, Laurence; Fouret, Gilles; Feillet-Coudray, Christine; Cros, Gérard; Cabello, Gérard; Magous, Richard; Wrutniak-Cabello, Chantal

    2013-01-01

    Chicoric acid (CA) is a caffeoyl derivative previously described as having potential anti-diabetic properties. As similarities in cellular mechanism similarities between diabetes and aging have been shown, we explored on L6 myotubes the effect of CA on the modulation of intracellular pathways involved in diabetes and aging. We also determined its influence on lifespan of Caenorhabditis elegans worm (C. elegans). In L6 myotubes, CA was a potent reactive oxygen species (ROS) scavenger, reducing ROS accumulation under basal as well as oxidative stress conditions. CA also stimulated the AMP-activated kinase (AMPK) pathway and displayed various features associated with AMPK activation: CA (a) enhanced oxidative enzymatic defences through increase in glutathion peroxidase (GPx) and superoxide dismutase (SOD) activities, (b) favoured mitochondria protection against oxidative damage through up-regulation of MnSOD protein expression, (c) increased mitochondrial biogenesis as suggested by increases in complex II and citrate synthase activities, along with up-regulation of PGC-1α mRNA expression and (d) inhibited the insulin/Akt/mTOR pathway. As AMPK stimulators (e.g. the anti-diabetic agent meformin or polyphenols such as epigallocatechingallate or quercetin) were shown to extend lifespan in C. elegans, we also determined the effect of CA on the same model. A concentration-dependant lifespan extension was observed with CA (5-100 μM). These data indicate that CA is a potent antioxidant compound activating the AMPK pathway in L6 myotubes. Similarly to other AMPK stimulators, CA is able to extend C. elegans lifespan, an effect measurable even at the micromolar range. Future studies will explore CA molecular targets and give new insights about its possible effects on metabolic and aging-related diseases.

  7. Chicoric Acid Is an Antioxidant Molecule That Stimulates AMP Kinase Pathway in L6 Myotubes and Extends Lifespan in Caenorhabditis elegans

    PubMed Central

    Schlernitzauer, Audrey; Oiry, Catherine; Hamad, Raphael; Galas, Simon; Cortade, Fabienne; Chabi, Béatrice; Casas, François; Pessemesse, Laurence; Fouret, Gilles; Feillet-Coudray, Christine; Cros, Gérard; Cabello, Gérard; Magous, Richard; Wrutniak-Cabello, Chantal

    2013-01-01

    Chicoric acid (CA) is a caffeoyl derivative previously described as having potential anti-diabetic properties. As similarities in cellular mechanism similarities between diabetes and aging have been shown, we explored on L6 myotubes the effect of CA on the modulation of intracellular pathways involved in diabetes and aging. We also determined its influence on lifespan of Caenorhabditis elegans worm (C. elegans). In L6 myotubes, CA was a potent reactive oxygen species (ROS) scavenger, reducing ROS accumulation under basal as well as oxidative stress conditions. CA also stimulated the AMP-activated kinase (AMPK) pathway and displayed various features associated with AMPK activation: CA (a) enhanced oxidative enzymatic defences through increase in glutathion peroxidase (GPx) and superoxide dismutase (SOD) activities, (b) favoured mitochondria protection against oxidative damage through up-regulation of MnSOD protein expression, (c) increased mitochondrial biogenesis as suggested by increases in complex II and citrate synthase activities, along with up-regulation of PGC-1α mRNA expression and (d) inhibited the insulin/Akt/mTOR pathway. As AMPK stimulators (e.g. the anti-diabetic agent meformin or polyphenols such as epigallocatechingallate or quercetin) were shown to extend lifespan in C. elegans, we also determined the effect of CA on the same model. A concentration-dependant lifespan extension was observed with CA (5–100 μM). These data indicate that CA is a potent antioxidant compound activating the AMPK pathway in L6 myotubes. Similarly to other AMPK stimulators, CA is able to extend C. elegans lifespan, an effect measurable even at the micromolar range. Future studies will explore CA molecular targets and give new insights about its possible effects on metabolic and aging-related diseases. PMID:24244361

  8. [Therapeutic drug monitoring of lamotrigine].

    PubMed

    Bentué-Ferrer, Danièle; Tribut, Olivier; Verdier, Marie-Clémence

    2010-01-01

    Lamotrigine is a second generation anticonvulsant drug available in France since 1996. As other anticonvulsant drugs, lamotrigine is also used in type I bipolar disorders and except legal notices, in the treatment of neuropathic pains. It is mainly metabolized by the UDP-glucuronyltransferase in inactive metabolites. Its average half-life of elimination is of the order of 22 h, but it is reduced approximately at 14 h if it is associated with enzymatic inductors and increased at 70 h if lamotrigine is administered with sodium valproate. The pharmacokinetic parameters are modified at the young child's, but not in the old population. During the pregnancy, the plasmatic concentrations are lowered and re-increase strongly after the delivery, if dosages were adapted. The renal insufficiency does not require adaptation of dosage, on the other hand in case of severe hepatic insufficiency a decrease of the dose is to be considered. The correlation concentration-efficiency does not seem demonstrated, but there are not enough published studies and they included few patients. Furthermore, they were led with a methodology more pragmatic than rigorous. The correlation concentration-toxicity is better argued. The recommended therapeutic range is from 2.5 to 15 mg/L. For this molecule, the level of proof of the interest of the TDM was estimated in: possibly useful.

  9. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet

    PubMed Central

    Mitchell, Sarah J.; Martin-Montalvo, Alejandro; Mercken, Evi M.; Palacios, Hector H.; Ward, Theresa M.; Abulwerdi, Gelareh; Minor, Robin K.; Vlasuk, George P.; Ellis, James L.; Sinclair, David A.; Dawson, John; Allison, David B.; Zhang, Yongqing; Becker, Kevin G.; Bernier, Michel; de Cabo, Rafael

    2014-01-01

    The prevention or delay of the onset of age-related diseases prolongs survival and improves quality of life while reducing the burden on the health care system. Activation of sirtuin 1 (SIRT1), an NAD+ deacetylase, improves metabolism and confers protection against physiological and cognitive disturbances in old age. SRT1720 is a specific SIRT1 activator that has health and lifespan benefits in adult mice fed a high-fat diet. We found extension in lifespan, delayed onset of age-related metabolic diseases, and improved general health in mice fed a standard diet after SRT1720 supplementation. Inhibition of pro-inflammatory gene expression both in the liver and muscle of SRT1720-treated animals was noted. SRT1720 lowered phosphorylation of NF-κB pathway regulators in vitro only when SIRT1 was functionally present. Combined with our previous work, the current study further supports the beneficial effects of SRT1720 on health across the lifespan in mice. PMID:24582957

  10. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan

    PubMed Central

    Nunes, Rodrigo Dutra; Ventura-Martins, Guilherme; Moretti, Débora Monteiro; Medeiros-Castro, Priscilla; Rocha-Santos, Carlucio; Daumas-Filho, Carlos Renato de Oliveira; Bittencourt-Cunha, Paula Rego Barros; Martins-Cardoso, Karina; Cudischevitch, Cecília Oliveira; Menna-Barreto, Rubem Figueiredo Sadok; Oliveira, José Henrique Maia; Gusmão, Desiely Silva; Alves Lemos, Francisco José; Alviano, Daniela Sales; Oliveira, Pedro Lagerblad; Lowenberger, Carl; Majerowicz, David; Oliveira, Ricardo Melo; Mesquita, Rafael Dias; Atella, Georgia Correa

    2016-01-01

    Background Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols. Results Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK). AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus. Conclusion The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses. PMID:27732590

  11. Artemisinin mimics calorie restriction to extend yeast lifespan via a dual-phase mode: a conclusion drawn from global transcriptome profiling.

    PubMed

    Wang, DaTing; Wu, Ming; Li, SiMing; Gao, Qian; Zeng, QingPing

    2015-05-01

    Calorie restriction (CR) promotes longevity among distinct organisms from yeast to mammals. Although CR-prolonged lifespan is believed to associate with enhanced respiratory activity, it is apparently controversial for accelerated energy consumption regardless of insufficient nutrient intake. In reconciling the contradiction of less food supply versus much metabolite dispense, we revealed a CR-based mode of dual-phase responses that encompass a phase of mitochondrial enhancement (ME) and a phase of post-mitochondrial enhancement (PME), which can be distinguished by the expression patterns and activity dynamics of mitochondrial signatures. ME is characterized by global antioxidative activation, and PME is denoted by systemic metabolic modulation. CR-mediated aging-delaying effects are replicated by artesunate, a semi-synthetic derivative of the antimalarial artemisinin that can alkylate heme-containing proteins, suggesting artesunate-heme conjugation functionally resembles nitric oxide-heme interaction. A correlation of artesunate-heme conjugation with cytochrome c oxidase activation has been established from adduct formation and activity alteration. Exogenous hydrogen peroxide also mimics CR to trigger antioxidant responses, affect signaling cascades, and alter respiratory rhythms, implying hydrogen peroxide is engaged in lifespan extension. Conclusively, artesunate mimics CR-triggered nitric oxide and hydrogen peroxide to induce antioxidative networks for scavenging reactive oxygen species and mitigating oxidative stress, thereby directing metabolic conversion from anabolism to catabolism, maintaining essential metabolic functionality, and extending life expectancy in yeast.

  12. Scavengers of reactive γ-ketoaldehydes extend Caenorhabditis elegans lifespan and healthspan through protein-level interactions with SIR-2.1 and ETS-7

    PubMed Central

    Nguyen, Thuy T.; Caito, Samuel W.; Zackert, William E.; West, James D.; Zhu, Shijun

    2016-01-01

    Isoketals (IsoKs) are highly reactive γ-ketoaldehyde products of lipid peroxidation that covalently adduct lysine side chains in proteins, impairing their function. Using C. elegans as a model organism, we sought to test the hypothesis that IsoKs contribute to molecular aging through adduction and inactivation of specific protein targets, and that this process can be abrogated using salicylamine (SA), a selective IsoK scavenger. Treatment with SA extends adult nematode longevity by nearly 56% and prevents multiple deleterious age-related biochemical and functional changes. Testing of a variety of molecular targets for SA's action revealed the sirtuin SIR-2.1 as the leading candidate. When SA was administered to a SIR-2.1 knockout strain, the effects on lifespan and healthspan extension were abolished. The SIR-2.1-dependent effects of SA were not mediated by large changes in gene expression programs or by significant changes in mitochondrial function. However, expression array analysis did show SA-dependent regulation of the transcription factor ets-7 and associated genes. In ets-7 knockout worms, SA's longevity effects were abolished, similar to sir-2.1 knockouts. However, SA dose-dependently increases ets-7 mRNA levels in non-functional SIR-2.1 mutant, suggesting that both are necessary for SA's complete lifespan and healthspan extension. PMID:27514077

  13. HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice

    PubMed Central

    Ito, Hikaru; Fujita, Kyota; Tagawa, Kazuhiko; Chen, Xigui; Homma, Hidenori; Sasabe, Toshikazu; Shimizu, Jun; Shimizu, Shigeomi; Tamura, Takuya; Muramatsu, Shin-ichi; Okazawa, Hitoshi

    2015-01-01

    Mutant ataxin-1 (Atxn1), which causes spinocerebellar ataxia type 1 (SCA1), binds to and impairs the function of high-mobility group box 1 (HMGB1), a crucial nuclear protein that regulates DNA architectural changes essential for DNA damage repair and transcription. In this study, we established that transgenic or virus vector-mediated complementation with HMGB1 ameliorates motor dysfunction and prolongs lifespan in mutant Atxn1 knock-in (Atxn1-KI) mice. We identified mitochondrial DNA damage repair by HMGB1 as a novel molecular basis for this effect, in addition to the mechanisms already associated with HMGB1 function, such as nuclear DNA damage repair and nuclear transcription. The dysfunction and the improvement of mitochondrial DNA damage repair functions are tightly associated with the exacerbation and rescue, respectively, of symptoms, supporting the involvement of mitochondrial DNA quality control by HMGB1 in SCA1 pathology. Moreover, we show that the rescue of Purkinje cell dendrites and dendritic spines by HMGB1 could be downstream effects. Although extracellular HMGB1 triggers inflammation mediated by Toll-like receptor and receptor for advanced glycation end products, upregulation of intracellular HMGB1 does not induce such side effects. Thus, viral delivery of HMGB1 is a candidate approach by which to modify the disease progression of SCA1 even after the onset. PMID:25510912

  14. Lamotrigine

    MedlinePlus

    ... moods in patients with bipolar I disorder (manic-depressive disorder; a disease that causes episodes of depression, episodes ... attacks many different organs causing a variety of symptoms), a blood disorder, or kidney or liver disease.tell your doctor ...

  15. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan

    PubMed Central

    Weismann, Cara M.; Ferreira, Jennifer; Keeler, Allison M.; Su, Qin; Qui, Linghua; Shaffer, Scott A.; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-01-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal−/−) at 1 × 1011 or 3 × 1011 vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36–76% reduction in GM1-ganglioside content in the brain and 75–86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 1011 vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 1011 vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316–576 days) was significantly increased over controls (250–264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan. PMID:25964428

  16. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan.

    PubMed

    Weismann, Cara M; Ferreira, Jennifer; Keeler, Allison M; Su, Qin; Qui, Linghua; Shaffer, Scott A; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-08-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal(-/-)) at 1 × 10(11) or 3 × 10(11) vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36-76% reduction in GM1-ganglioside content in the brain and 75-86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 10(11) vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 10(11) vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316-576 days) was significantly increased over controls (250-264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan.

  17. Genome-wide screen identifies Escherichia coli TCA cycle-related mutants with extended chronological lifespan dependent on acetate metabolism and the hypoxia-inducible transcription factor ArcA

    PubMed Central

    Gonidakis, Stavros; Finkel, Steven E.; Longo, Valter D.

    2010-01-01

    Summary Single-gene mutants with extended lifespan have been described in several model organisms. We performed a genome-wide screen for long-lived mutants in Escherichia coli which revealed strains lacking TCA cycle-related genes that exhibit longer stationary phase survival and increased resistance to heat stress compared to wild-type. Extended lifespan in the sdhA mutant, lacking subunit A of succinate dehydrogenase, is associated with reduced production of superoxide and increased stress resistance. On the other hand, the longer lifespan of the lipoic acid synthase mutant (lipA) is associated with reduced oxygen consumption and requires the acetate-producing enzyme pyruvate oxidase, as well as acetyl-CoA synthetase, the enzyme that converts extracellular acetate to acetyl-CoA. The hypoxia-inducible transcription factor ArcA, acting independently of acetate metabolism, is also required for maximum lifespan extension in the lipA and lpdA mutants, indicating that these mutations promote entry into a mode normally associated with a low-oxygen environment. Since analogous changes from respiration to fermentation have been observed in long-lived Saccharomyces cerevisiae and Caenorhabditis elegans strains, such metabolic alterations may represent an evolutionarily conserved strategy to extend lifespan. PMID:20707865

  18. Glycation inhibitors extend yeast chronological lifespan by reducing advanced glycation end products and by back regulation of proteins involved in mitochondrial respiration.

    PubMed

    Kazi, Rubina S; Banarjee, Reema M; Deshmukh, Arati B; Patil, Gouri V; Jagadeeshaprasad, Mashanipalya G; Kulkarni, Mahesh J

    2017-03-06

    Advanced Glycation End products (AGEs) are implicated in aging process. Thus, reducing AGEs by using glycation inhibitors may help in attenuating the aging process. In this study using Saccharomyces cerevisiae yeast system, we show that Aminoguanidine (AMG), a well-known glycation inhibitor, decreases the AGE modification of proteins in non-calorie restriction (NR) (2% glucose) and extends chronological lifespan (CLS) similar to that of calorie restriction (CR) condition (0.5% glucose). Proteomic analysis revealed that AMG back regulates the expression of differentially expressed proteins especially those involved in mitochondrial respiration in NR condition, suggesting that it switches metabolism from fermentation to respiration, mimicking CR. AMG induced back regulation of differentially expressed proteins could be possibly due to its chemical effect or indirectly by glycation inhibition. To delineate this, Metformin (MET), a structural analog of AMG and a mild glycation inhibitor and Hydralazine (HYD), another potent glycation inhibitor but not structural analog of AMG were used. HYD was more effective than MET in mimicking AMG suggesting that glycation inhibition was responsible for restoration of differentially expressed proteins. Thus glycation inhibitors particularly AMG, HYD and MET extend yeast CLS by reducing AGEs, modulating the expression of proteins involved in mitochondrial respiration and possibly by scavenging glucose.

  19. Evolution of lifespan.

    PubMed

    Neill, David

    2014-10-07

    Present-day evolutionary theory, modern synthesis and evo-devo, appear to explain evolution. There remain however several points of contention. These include: biological time, direction, macroevolution verses microevolution, ageing and the extent of internal as opposed to external mediation. A new theoretical model for the control of biological time in vertebrates/bilaterians is introduced. Rather than biological time being controlled solely by a molecular cascade domino effect, it is suggested there is also an intracellular oscillatory clock. This clock (life's timekeeper) is synchronised across all cells in an organism and runs at a constant frequency throughout life. Slower frequencies extend lifespan, increase body/brain size and advance behaviour. They also create a time void which could aid additional evolutionary change. Faster frequencies shorten lifespan, reduce body/brain size and diminish behaviour. They are therefore less likely to mediate evolution in vertebrates/mammals. It is concluded that in vertebrates, especially mammals, there is a direction in evolution towards longer lifespan/advanced behaviour. Lifespan extension could equate with macroevolution and subsequent modifications with microevolution. As life's timekeeper controls the rate of ageing it constitutes a new genetic theory of ageing. Finally, as lifespan extension is internally mediated, this suggests a major role for internal mediation in evolution.

  20. Running on empty: does mitochondrial DNA mutation limit replicative lifespan in yeast?: Mutations that increase the division rate of cells lacking mitochondrial DNA also extend replicative lifespan in Saccharomyces cerevisiae.

    PubMed

    Dunn, Cory D

    2011-10-01

    Mitochondrial DNA (mtDNA) mutations escalate with increasing age in higher organisms. However, it has so far been difficult to experimentally determine whether mtDNA mutation merely correlates with age or directly limits lifespan. A recent study shows that budding yeast can also lose functional mtDNA late in life. Interestingly, independent studies of replicative lifespan (RLS) and of mtDNA-deficient cells show that the same mutations can increase both RLS and the division rate of yeast lacking the mitochondrial genome. These exciting, parallel findings imply a potential causal relationship between mtDNA mutation and replicative senescence. Furthermore, these results suggest more efficient methods for discovering genes that determine lifespan.

  1. Safety profile of lamotrigine in overdose

    PubMed Central

    Alabi, Akintunde; Todd, Adam; Husband, Andrew; Reilly, Joe

    2016-01-01

    Background: Lamotrigine is an anticonvulsant as well as a mood stabilizer. Apart from its established use in the treatment of epilepsy, there has been an expansion of its use in the treatment of mental disorders. Patients with epilepsy as well as those with mental disorders are at increased risk of deliberate drug overdoses. An evidence base for the safety profile of lamotrigine in overdose is an essential tool for prescribers. The objective of this study was to carry out a narrative synthesis of the existing evidence for the safety profile of lamotrigine in overdose. Methods: A systematic search was conducted of EMBASE (1974 to December 2015), MEDLINE (1946 to December 2015), PsycINFO (1806 to December 2015) and CINAHL (1981 to December 2015) databases. Studies were included in which there was a deliberate or accidental single drug overdose of lamotrigine, with its toxic effects described. Studies that did not involve an overdose were excluded. A narrative synthesis of the described toxic effects was carried out. Results: Out of 562 articles identified, 26 studies were included, mainly in the form of case reports and series. The most commonly described toxic effects of lamotrigine were on the central nervous system, specifically seizures, movement disorders and reduced consciousness. Other toxic effects included QTc interval and QRS complex prolongations, hypersensitivity reactions, serotonin syndrome as well as rhabdomyolysis possibly due to seizures and/or agitation. Deaths were recorded in two studies, with cardiovascular and neurological toxic effects described. Conclusions: Even though lamotrigine has been reported to be well tolerated, there is a risk of toxic effects which can be life threatening in overdose. This needs to be borne in mind when prescribing to patients at an increased risk of deliberate drug overdose. PMID:28008350

  2. Newer anticonvulsants: lamotrigine, topiramate and gabapentin.

    PubMed

    Holmes, Lewis B; Hernandez-Diaz, Sonia

    2012-08-01

    BACKGROUND The second generation antiepileptic drugs (AEDs), which include lamotrigine, topiramate, and gabapentin, have been introduced during the past 20 years. Because the newer AEDs differ in their pharmacokinetics from the first generation AEDs, it is hoped that the second generation AEDs will be less teratogenic. METHODS The findings in pregnancy cohorts and case-control studies concerning lamotrigine, topiramate and gabapentin-exposed pregnancies have been analyzed. RESULTS The rate of all malformations in lamotrigine monotherapy-exposed pregnancies has been between 2.0 and 5.6%, in comparison to baseline rates of 1.1 to 3.6% in two unexposed comparison groups. Compared to reference populations, a higher risk (0.4%) of isolated oral clefts has been observed in one cohort of 1562 lamotrigine-exposed pregnancies, but the risk was lower (0.1%) in other studies. In topiramate-exposed pregnancies, the rate of all malformations has been 4.2 to 4.9%, with an increase in oral clefts with and without other anomalies. The limited information available now for gabapentin has shown no evidence of teratogenicity. Concerning other developmental effects of these drugs, young children exposed to lamotrigine in utero have shown no deficits in cognitive function. Prenatal exposure to topiramate has been associated with an elevated frequency of small size for gestational age newborns. CONCLUSIONS The information available suggests an increased risk of oral clefts in infants exposed to topiramate, and perhaps lamotrigine, early in pregnancy, and of growth retardation for topiramate-exposed infants. Larger sample sizes are needed to clarify the questions that have been raised.

  3. Restoring the youth of aged red blood cells and extending their lifespan in circulation by remodelling membrane sialic acid.

    PubMed

    Huang, Yao-Xiong; Tuo, Wei-Wei; Wang, Di; Kang, Li-Li; Chen, Xing-Yao; Luo, Man

    2016-02-01

    Membrane sialic acid (SA) plays an important role in the survival of red blood cells (RBCs), the age-related reduction in SA content negatively impacts both the structure and function of these cells. We have therefore suggested that remodelling the SA in the membrane of aged cells would help recover cellular functions characteristic of young RBCs. We developed an effective method for the re-sialylation of aged RBCs by which the cells were incubated with SA in the presence of cytidine triphosphate (CTP) and α-2,3-sialytransferase. We found that RBCs could be re-sialylated if they had available SA-binding groups and after the re-sialylation, aged RBCs could restore their membrane SA to the level in young RBCs. Once the membrane SA was restored, the aged RBCs showed recovery of their biophysical and biochemical properties to similar levels as in young RBCs. Their life span in circulation was also extended to twofold. Our findings indicate that remodelling membrane SA not only helps restore the youth of aged RBCs, but also helps recover injured RBCs.

  4. Why genes extending lifespan in model organisms have not been consistently associated with human longevity and what it means to translation research.

    PubMed

    de Magalhães, João Pedro

    2014-01-01

    A recent paper by Deelen et al. (2014) in Human Molecular Genetics reports the largest genome-wide association study of human longevity to date. While impressive, there is a remarkable lack of association of genes known to considerably extend lifespan in rodents with human longevity, both in this latest study and in genetic association studies in general. Here, I discuss several possible explanations, such as intrinsic limitations in longevity association studies and the complex genetic architecture of longevity. Yet one hypothesis is that the lack of correlation between longevity-associated genes in model organisms and genes associated with human longevity is, at least partly, due to intrinsic limitations and biases in animal studies. In particular, most studies in model organisms are conducted in strains of limited genetic diversity which are then not applicable to human populations. This has important implications and, together with other recent results demonstrating strain-specific longevity effects in rodents due to caloric restriction, it questions our capacity to translate the exciting findings from the genetics of aging to human therapies.

  5. Influence of cirrhosis on lamotrigine pharmacokinetics

    PubMed Central

    Marcellin, P; de Bony, F; Garret, C; Altman, C; Boige, V; Castelnau, C; Laurent-Puig, P; Trinchet, J C; Rolan, P; Chen, C; Mamet, J P; Bidault, R

    2001-01-01

    Aims Lamotrigine, an antiepileptic drug, is cleared from the systemic circulation mainly by glucuronidation. The possibility of changes in the pharmacokinetics of lamotrigine in plasma owing to hepatic dysfunction has been evaluated. Methods Thirty-six subjects, including 24 patients with various degrees of liver cirrhosis and 12 healthy volunteers received a single 100 mg dose of lamotrgine. Blood samples were taken for 7 days in all subjects, except nine with severe cirrhosis, who had a 29 day blood sampling period. Results The pharmacokinetics of lamotrigine were comparable between the patients with moderate cirrhosis (corresponding to Child-Pugh grade A) and the healthy subjects. Plasma oral clearance mean ratios (90% confidence interval) in patients with severe cirrhosis without or with ascites (corresponding, respectively, to Child-Pugh grade B and C) to healthy subjects were, respectively, 60% (44%, 83%) and 36% (25%, 52%). Plasma half-life mean ratios (90% confidence interval) in these two patient groups to healthy subjects were, respectively, 204% (149%, 278%) and 287% (202%, 408%). Conclusions Lamotrigine administered as a single oral dose of 100 mg was well tolerated in all groups. Initial, escalation and maintenance doses should generally be reduced by approximately 50 or 75% in patients with Child-Pugh Grade B or C cirrhosis. Escalation and maintenance doses should be adjusted according to clinical response. PMID:11421997

  6. Animal lifespan and human influence

    USGS Publications Warehouse

    Guo, Q.; Yang, S.

    2002-01-01

    Lifespan differs radically among organisms ever lived on earth, even among those roughly similar in size, shape, form, and physiology; Yet, in general, there exists a strong positive relationship between lifespan and body size. Although lifespans of humans and human-related (domestic) animals are becoming increasingly longer than that of other animals of similar sizes, the slope of the regression (lifespan-body size) line and the intercepts have been surprisingly stable over the course of the dramatic human population growth, indicating substantial depression in lifespans of many other animals probably due to shrunk and fragmented natural habitats. This article addresses two questions related to the lifespan-size relationship: (1) what caused the exceptions (e.g., a few remote human-related animals are also located above the regression line with great residuals) and why (e.g., could brain size or intelligence be a covariate in addition to body size in predicting lifespan?), and (2) whether continued human activities can eventually alter the ' natural' regression line in the future, and if so, how much. We also suggest similar research efforts to be extended to the plant world as well.

  7. Lamotrigine administration in panic disorder with agoraphobia.

    PubMed

    Masdrakis, Vasilios G; Papadimitriou, George N; Oulis, Panagiotis

    2010-05-01

    Several anticonvulsants, although as yet not lamotrigine (LTG), have been found useful in the treatment of panic disorder with (PDA) or without agoraphobia. We administered LTG (200 mg/d) to 4 outpatients with PDA, as an augmentation therapy (3 patients with chronic and severe agoraphobia) or monotherapy (1 drug-naive patient with first-onset PDA) in a 14-week trial. The patient under LTG monotherapy improved significantly, whereas PDA symptoms in 2 of the other patients improved to some extent.

  8. Bimodal Gastroretentive Drug Delivery Systems of Lamotrigine: Formulation and Evaluation

    PubMed Central

    Poonuru, R. R.; Gonugunta, C. S. R

    2014-01-01

    Gastroretentive bimodal drug delivery systems of lamotrigine were developed using immediate release and extended release segments incorporated in a hydroxypropyl methylcellulose capsule and in vitro and in vivo evaluations were conducted. In vivo radiographic studies were carried out for the optimized formulation in healthy human volunteers with replacement of drug polymer complex by barium sulphate and the floating time was noted. Here the immediate release segment worked as loading dose and extended release segment as maintenance dose. The results of release studies of formulations with hydrophillic matrix to formulations with dual matrix hydroxypropyl methylcellulose acetate succinate shown that as the percentage of polymer increased, the release decreased. Selected formulation F2 having F-Melt has successfully released the drug within one hour and hydrophillic matrix composing polyethylene oxide with 5% hydroxypropyl methylcellulose acetate succinate showed a lag time of one hour and then extended its release up to 12th hour with 99.59% drug release following zero order kinetics with R2 value of 0.989. The Korsmeyer-Peppas equation showed the R2 value to be 0.941 and n value was 1.606 following non-Fickian diffusion pattern with supercase II relaxation mechanism. Here from extended release tablet the drug released slowly from the matrix while floating. PMID:25593380

  9. The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan.

    PubMed

    Sarup, P; Sørensen, P; Loeschcke, V

    2014-02-01

    Heat-induced hormesis, i.e. the beneficial effect of mild heat-induced stress, increases the average lifespan of many organisms. This effect, which depends on the heat shock factor, decreases the log mortality rate weeks after the stress has ceased. To identify candidate genes that mediate this lifespan-prolonging effect late in life, we treated flies with mild heat stress (34 °C for 2 h) 3 times early in life and compared the transcriptomic response in these flies versus non-heat-treated controls 10-51 days after the last heat treatment. We found significant transcriptomic changes in the heat-treated flies. Several hsp70 probe sets were up-regulated 1.7-2-fold in the mildly stressed flies weeks after the last heat treatment (P<0.01). This result was unexpected as the major Drosophila heat shock protein, Hsp70, is reported to return to normal levels of expression shortly after heat stress. We conclude that the heat shock response, and Hsp70 in particular, may be central to the heat-induced increase in the average lifespan in flies that are exposed to mild heat stress early in life.

  10. Biopharmaceutic Risk Assessment of Brand and Generic Lamotrigine Tablets.

    PubMed

    Vaithianathan, Soundarya; Raman, Siddarth; Jiang, Wenlei; Ting, Tricia Y; Kane, Maureen A; Polli, James E

    2015-07-06

    The therapeutic equivalence of generic and brand name antiepileptic drugs has been questioned by neurologists and the epilepsy community. A potential contributor to such concerns is pharmaceutical quality. The objective was to assess the biopharmaceutic risk of brand name Lamictal 100 mg tablets and generic lamotrigine 100 mg tablets from several manufacturers. Lamotrigine was characterized in terms of the Biopharmaceutics Classification System (BCS), including aqueous solubility and Caco-2 permeability. A panel of pharmaceutical quality tests was also performed on three batches of Lamictal, three batches of Teva generic, and one batch of each of four other generics: appearance, identity, assay, impurity, uniformity of dosage units, disintegration, dissolution, friability, and loss on drying. These market surveillance results indicate that all brand name and generic lamotrigine 100 mg tablets passed all tests and showed acceptable pharmaceutical quality and low biopharmaceutic risk. Lamotrigine was classified as a BCS class IIb drug, exhibiting pH-dependent aqueous solubility and dissolution. At pH 1.2 and 4.5, lamotrigine exhibited high solubility, whereas lamotrigine exhibited low solubility at pH 6.8, including non-sink dissolution. Lamotrigine showed high Caco-2 permeability. The apparent permeability (Papp) of lamotrigine was (73.7 ± 8.7) × 10(-6) cm/s in the apical-to-basolateral (AP-BL) direction and (41.4 ± 1.6) × 10(-6) cm/s in the BL-AP direction, which were higher than metoprolol's AP-BL Papp of (21.2 ± 0.9) × 10(-6) cm/s and BL-AP Papp of (34.6 ± 4.6) × 10(-6) cm/s. Overall, lamotrigine's favorable biopharmaceutics from a drug substance perspective and favorable quality characteristics from a tablet formulation perspective suggest that multisource lamotrigine tablets exhibit a low biopharmaceutic risk.

  11. Hyponatraemia associated with lamotrigine in cranial diabetes insipidus.

    PubMed

    Mewasingh, L; Aylett, S; Kirkham, F; Stanhope, R

    2000-08-19

    We report the cases of two children with cranial diabetes insipidus who were treated with lamotrigine for seizures and who had accompanying changes in desmopressin requirements. Lamotrigine is a new anticonvulsant chemically unrelated to other existing antiepileptic drugs. Studies suggest it acts at voltage-sensitive sodium channels and also decreases calcium conductance. Both of these mechanisms of action are shared by carbamazepine, which can cause hyponatraemia secondary to inappropriate secretion of antidiuretic hormone. It is possible that the effect of lamotrigine on fluid balance in the cases described is also centrally mediated.

  12. Life-threatening overdose with lamotrigine, citalopram, and chlorpheniramine.

    PubMed

    Venkatraman, N; O'Neil, D; Hall, A P

    2008-01-01

    Lamotrigine is a commonly used agent for seizure control in epilepsy. There are limited data on the adverse effects of lamotrigine in overdose. We report a number of serious side-effects associated with a large overdose of lamotrigine. A 23-year-old female presented to the emergency department after taking an intentional overdose of 9.2 g of lamotrigine, 56 mg of chlorpheniramine, and 220 mg of citalopram. On admission, she had a reduced level of consciousness and electrocardiographic abnormalities; a widened QRS and a prolonged corrected QT (QTc) interval. Prompt treatment with early intubation, along with the use of magnesium for cardioprotection and administration of sodium bicarbonate may have aided in a quick recovery with a short intensive care stay and good outcome.

  13. Methionine restriction and lifespan control

    PubMed Central

    Lee, Byung Cheon; Kaya, Alaattin; Gladyshev, Vadim N.

    2016-01-01

    Dietary restriction (DR) without malnutrition is associated with longevity in various organisms. However, it has also been shown that reduced calorie intake is often ineffective in extending lifespan. Selecting optimal dietary regimens for DR studies is complicated, as the same regimen may lead to different outcomes depending on genotype and environmental factors. Recent studies suggested that interventions such as moderate protein restriction with/without adequate nutrition (e.g. particular amino acids or carbohydrates) may have additional beneficial effects mediated by certain metabolic and hormonal factors implicated in the biology of aging, regardless of total calorie intake. In particular, it was shown that restriction of a single amino acid, methionine, can mimic the effects of DR and extend lifespan in various model organisms. We discuss beneficial effects of methionine-restricted (MR) diet, the molecular pathways involved, and the use of this regimen in longevity interventions. PMID:26663138

  14. A high-fat jelly diet restores bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord motor neuron loss in TDP-43A315T mutant C57BL6/J mice

    PubMed Central

    Coughlan, Karen S.; Halang, Luise; Woods, Ina

    2016-01-01

    ABSTRACT Transgenic transactivation response DNA-binding protein 43 (TDP-43) mice expressing the A315T mutation under control of the murine prion promoter progressively develop motor function deficits and are considered a new model for the study of amyotrophic lateral sclerosis (ALS); however, premature sudden death resulting from intestinal obstruction halts disease phenotype progression in 100% of C57BL6/J congenic TDP-43A315T mice. Similar to our recent results in SOD1G93A mice, TDP-43A315T mice fed a standard pellet diet showed increased 5′ adenosine monophosphate-activated protein kinase (AMPK) activation at postnatal day (P)80, indicating elevated energetic stress during disease progression. We therefore investigated the effects of a high-fat jelly diet on bioenergetic status and lifespan in TDP-43A315T mice. In contrast to standard pellet-fed mice, mice fed high-fat jelly showed no difference in AMPK activation up to P120 and decreased phosphorylation of acetly-CoA carboxylase (ACC) at early-stage time points. Exposure to a high-fat jelly diet prevented sudden death and extended survival, allowing development of a motor neuron disease phenotype with significantly decreased body weight from P80 onward that was characterised by deficits in Rotarod abilities and stride length measurements. Development of this phenotype was associated with a significant motor neuron loss as assessed by Nissl staining in the lumbar spinal cord. Our work suggests that a high-fat jelly diet improves the pre-clinical utility of the TDP-43A315T model by extending lifespan and allowing the motor neuron disease phenotype to progress, and indicates the potential benefit of this diet in TDP-43-associated ALS. PMID:27491077

  15. A high-fat jelly diet restores bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord motor neuron loss in TDP-43A315T mutant C57BL6/J mice.

    PubMed

    Coughlan, Karen S; Halang, Luise; Woods, Ina; Prehn, Jochen H M

    2016-09-01

    Transgenic transactivation response DNA-binding protein 43 (TDP-43) mice expressing the A315T mutation under control of the murine prion promoter progressively develop motor function deficits and are considered a new model for the study of amyotrophic lateral sclerosis (ALS); however, premature sudden death resulting from intestinal obstruction halts disease phenotype progression in 100% of C57BL6/J congenic TDP-43(A315T) mice. Similar to our recent results in SOD1(G93A) mice, TDP-43(A315T) mice fed a standard pellet diet showed increased 5' adenosine monophosphate-activated protein kinase (AMPK) activation at postnatal day (P)80, indicating elevated energetic stress during disease progression. We therefore investigated the effects of a high-fat jelly diet on bioenergetic status and lifespan in TDP-43(A315T) mice. In contrast to standard pellet-fed mice, mice fed high-fat jelly showed no difference in AMPK activation up to P120 and decreased phosphorylation of acetly-CoA carboxylase (ACC) at early-stage time points. Exposure to a high-fat jelly diet prevented sudden death and extended survival, allowing development of a motor neuron disease phenotype with significantly decreased body weight from P80 onward that was characterised by deficits in Rotarod abilities and stride length measurements. Development of this phenotype was associated with a significant motor neuron loss as assessed by Nissl staining in the lumbar spinal cord. Our work suggests that a high-fat jelly diet improves the pre-clinical utility of the TDP-43(A315T) model by extending lifespan and allowing the motor neuron disease phenotype to progress, and indicates the potential benefit of this diet in TDP-43-associated ALS.

  16. A rare case of lamotrigine-induced acute interstitial nephritis

    PubMed Central

    Matta, Atul; Assalie, Nour Abou; Gupta, Rajib K.; del Pilar Morales, Maria; Conti, Ricardo

    2016-01-01

    Medications, especially non-steroidal anti-inflammatory drugs and antimicrobials, have been most commonly associated with acute interstitial nephritis (AIN); antiepileptic drugs (AEDs) are rarely known to cause AIN. This is a case of a 27-year-old male who was recently started on treatment with lamotrigine for bipolar disorder and was found to have rapidly progressive renal failure. Renal biopsy features were suggestive of AIN. Lamotrigine-induced AIN was suspected to be the most likely cause. Discontinuation of the drug and treatment with steroids resulted in complete renal recovery. Lamotrigine use has been recently gaining popularity, not only as an AED but also as a mood stabilizer. With the use of this drug becoming more popular, it is important to emphasize that – although rare – AIN is one of its potential complications. PMID:27987281

  17. Liver dysfunction induced by systemic hypersensitivity reaction to lamotrigine: case report.

    PubMed

    Im, Sung Gyu; Yoo, Sun Hong; Park, Young Min; Lee, Sang Jin; Jang, Sun Kyung; Jeon, Dong Ok; Cho, Hyo Jin; Oh, Mi Jung

    2015-06-01

    Lamotrigine is an anticonvulsant drug used to treat partial and generalized seizure disorders. Hypersensitivity to lamotrigine usually causes mild symptoms such as fever, rash, and slight invasion of internal organs. However, a 33-year-old male patient who was admitted with Stevens-Johnson syndrome after taking lamotrigine for 15 days experienced hepatic failure and died 5 days after admission. This case demonstrates the importance of realizing that lamotrigine can lead to fatal hepatic failure, and that tests for the normal liver function should be performed when administering lamotrigine.

  18. Ethosuximide, Valproic Acid, and Lamotrigine in Childhood Absence Epilepsy

    PubMed Central

    Glauser, Tracy A.; Cnaan, Avital; Shinnar, Shlomo; Hirtz, Deborah G.; Dlugos, Dennis; Masur, David; Clark, Peggy O.; Capparelli, Edmund V.; Adamson, Peter C.

    2010-01-01

    BACKGROUND Childhood absence epilepsy, the most common pediatric epilepsy syndrome, is usually treated with ethosuximide, valproic acid, or lamotrigine. The most efficacious and tolerable initial empirical treatment has not been defined. METHODS In a double-blind, randomized, controlled clinical trial, we compared the efficacy, tolerability, and neuropsychological effects of ethosuximide, valproic acid, and lamotrigine in children with newly diagnosed childhood absence epilepsy. Drug doses were incrementally increased until the child was free of seizures, the maximal allowable or highest tolerable dose was reached, or a criterion indicating treatment failure was met. The primary outcome was freedom from treatment failure after 16 weeks of therapy; the secondary outcome was attentional dysfunction. Differential drug effects were determined by means of pairwise comparisons. RESULTS The 453 children who were randomly assigned to treatment with ethosuximide (156), lamotrigine (149), or valproic acid (148) were similar with respect to their demographic characteristics. After 16 weeks of therapy, the freedom-from-failure rates for ethosuximide and valproic acid were similar (53% and 58%, respectively; odds ratio with valproic acid vs. ethosuximide, 1.26; 95% confidence interval [CI], 0.80 to 1.98; P = 0.35) and were higher than the rate for lamotrigine (29%; odds ratio with ethosuximide vs. lamotrigine, 2.66; 95% CI, 1.65 to 4.28; odds ratio with valproic acid vs. lamotrigine, 3.34; 95% CI, 2.06 to 5.42; P<0.001 for both comparisons). There were no significant differences among the three drugs with regard to discontinuation because of adverse events. Attentional dysfunction was more common with valproic acid than with ethosuximide (in 49% of the children vs. 33%; odds ratio, 1.95; 95% CI, 1.12 to 3.41; P = 0.03). CONCLUSIONS Ethosuximide and valproic acid are more effective than lamotrigine in the treatment of childhood absence epilepsy. Ethosuximide is associated with

  19. Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells

    PubMed Central

    Kim, Ki Jung; Jeun, Seung Hyun

    2017-01-01

    Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine (5-HT)3 receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine (1~300 µM) resulted in a concentration-dependent reduction in peak amplitude of currents induced by 3 µM of 5-HT for an IC50 value of 28.2±3.6 µM with a Hill coefficient of 1.2±0.1. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, 5-HT3-mediated currents evoked by 1 mM dopamine, a partial 5-HT3 receptor agonist, were inhibited by lamotrigine co-application. The EC50 of 5-HT for 5-HT3 receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate 5-HT3 receptor desensitization, inhibited 5-HT3 receptor currents in a concentration-dependent manner. The deactivation of 5-HT3 receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of 5-HT3 receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the 5-HT3 receptor currents. These results indicate that lamotrigine inhibits 5-HT3-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization. PMID:28280410

  20. Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells.

    PubMed

    Kim, Ki Jung; Jeun, Seung Hyun; Sung, Ki-Wug

    2017-03-01

    Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine (5-HT)3 receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine (1~300 µM) resulted in a concentration-dependent reduction in peak amplitude of currents induced by 3 µM of 5-HT for an IC50 value of 28.2±3.6 µM with a Hill coefficient of 1.2±0.1. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, 5-HT3-mediated currents evoked by 1 mM dopamine, a partial 5-HT3 receptor agonist, were inhibited by lamotrigine co-application. The EC50 of 5-HT for 5-HT3 receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate 5-HT3 receptor desensitization, inhibited 5-HT3 receptor currents in a concentration-dependent manner. The deactivation of 5-HT3 receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of 5-HT3 receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the 5-HT3 receptor currents. These results indicate that lamotrigine inhibits 5-HT3-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization.

  1. Overexpression of metallothionein-I, a copper-regulating protein, attenuates intracellular copper dyshomeostasis and extends lifespan in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase-1.

    PubMed

    Tokuda, Eiichi; Okawa, Eriko; Watanabe, Shunsuke; Ono, Shin-Ichi

    2014-03-01

    Over 170 mutations in superoxide dismutase-1 (SOD1) cause familial amyotrophic lateral sclerosis (ALS), a lethal motor neuron disease. Although the molecular properties of SOD1 mutants differ considerably, we have recently shown that intracellular copper dyshomeostasis is a common pathogenic feature of different SOD1 mutants. Thus, the potentiation of endogenous copper regulation could be a therapeutic strategy. In this study, we investigated the effects of the overexpression of metallothionein-I (MT-I), a major copper-regulating protein, on the disease course of a mouse model of ALS (SOD1(G93A)). Using double transgenic techniques, we found that the overexpression of MT-I in SOD1(G93A) mice significantly extended the lifespan and slowed disease progression, but the effects on disease onset were modest. Genetically induced MT-I normalized copper dyshomeostasis in the spinal cord without influencing SOD1 enzymatic activity. The overexpression of MT-I in SOD1(G93A) mice markedly attenuated the pathological features of the mice, including the death of motor neurons, the degeneration of ventral root axons, the atrophy of skeletal muscles, and the activation of glial cells. Double transgenic mice also showed a decreased level of SOD1 aggregates within the glial cells of the spinal cord. Furthermore, the overexpression of MT-I in SOD1(G93A) mice reduced the number of spheroid-shaped astrocytes cleaved by active caspase-3. We concluded that therapeutic strategies aimed at the potentiation of copper regulation by MT-I could be of benefit in cases of ALS caused by SOD1 mutations.

  2. Assessment of Seizure Severity with Adjunctive Lamotrigine Therapy: Results from a U.S. Observational Study.

    PubMed

    Bryant-Comstock, Lynda; Scott-Lennox, Jane; Lennox, Richard

    2001-04-01

    THE ADJUNCTIVE LAMICTAL (LAMOTRIGINE) IN EPILEPSY: Response to Treatment (ALERT) study was an observational study designed to assess the safety of lamotrigine in patients with refractory partial seizures when used in a general practice setting. We measured the impact of adjunctive lamotrigine therapy for 16 weeks on the severity of seizures using the Liverpool Seizure Severity Scale (LSSS). This questionnaire was scored using a revised scoring procedure that assesses the impact of treatment on the patients "most severe seizure." Data from the LSSS were also compared with physician-rated changes of seizure severity. Patients who completed 16 weeks of lamotrigine treatment showed a significant reduction in LSSS scores when compared with patients who discontinued lamotrigine (change scores: patient's taking lamotrigine at Week 16, 9.2 +/- 23.4; patients who discontinued lamotrigine by Week 16, 0.8 +/- 23.4, P < 0.05). These findings were supported by significant reductions in physician ratings of seizure severity in patients who completed 16 weeks of lamotrigine therapy. Seizure severity is an important outcome in the study of antiepileptic medication. Data from this observational study suggest that lamotrigine is effective in reducing seizure severity when used as an adjunctive therapy in patients with refractory partial seizures.

  3. Lamotrigine monotherapy for newly diagnosed typical absence seizures in children☆

    PubMed Central

    Holmes, Gregory L.; Frank, L. Matthew; Sheth, Raj D.; Philbrook, Bryan; Wooten, John D.; Vuong, Alain; Kerls, Susan; Hammer, Anne E.; Messenheimer, John

    2008-01-01

    Summary Purpose To evaluate the efficacy, tolerability, and effects on behavior and psychosocial functioning of lamotrigine monotherapy in children with newly diagnosed typical absence seizures. Patients and methods Children meeting enrollment criteria (n = 54) received a confirmatory 24-h ambulatory electroencephalogram (EEG) and then entered a Escalation Phase of up to 20-weeks during which lamotrigine was titrated until seizures were controlled or maximum dose (10.2 mg/kg) was reached. Seizure freedom was assessed by diary review and clinic hyperventilation (clinic HV) and then confirmed by EEG with hyperventilation (HV/EEG). Patients who maintained seizure freedom for two consecutive weekly visits were entered into the Maintenance Phase (n = 30). Diary, clinic HV, and HV/EEG data were supplemented with 24-h ambulatory EEG at baseline and the ends of the Escalation and Maintenance Phases. Health outcome assessments were completed at screening and at the end of the Maintenance Phase. Results By the end of the Escalation Phase, seizure-free rates (responders) were 59% by seizure diary (n = 51), 56% by HV/EEG (n = 54) (primary endpoint), and 49% by 24-h ambulatory EEG (n = 49). During the Maintenance Phase, 89% (week 24) and 86% (week 32) remained seizure free by diary (n = 28), 78% by clinic HV (n = 27), and 81% by 24-h ambulatory EEG (n = 26). Seizure freedom was first observed beginning at the fifth week of the Escalation Phase. The most frequent adverse events were headache and cough. Health outcome scores were either improved or unchanged at the end of the Maintenance Phase. Conclusions Lamotrigine monotherapy results in complete seizure freedom in a substantial number of children with typical absence seizures. Lamotrigine was well tolerated in this study. PMID:18778916

  4. Suivi thérapeutique pharmacologique de la lamotrigine.

    PubMed

    Bentué-Ferrer, Danièle; Tribut, Olivier; Verdier, Marie-Clémence

    2010-01-01

    Lamotrigine is a second generation anticonvulsant drug available in France since 1996. As other anticonvulsant drugs, lamotrigine is also used in type I bipolar disorders and except legal notices, in the treatment of neuropathic pains. It is mainly metabolized by the UDP-glucuronyltransferase in inactive metabolites. Its average half-life of elimination is of the order of 22 h, but it is reduced approximately at 14h if it is associated with enzymatic inductors and increased at 70h if lamotrigine is administered with sodium valproate. The pharmacokinetic parameters are modified at the young child's, but not in the old population. During the pregnancy, the plasmatic concentrations are lowered and re-increase strongly after the delivery, if dosages were adapted. The renal insufficiency does not require adaptation of dosage, on the other hand in case of severe hepatic insufficiency a decrease of the dose is to be considered. The correlation concentration-efficiency does not seem demonstrated, but there are not enough published studies and they included few patients. Furthermore, they were led with a methodology more pragmatic than rigorous. The correlation concentration-toxicity is better argued. The recommended therapeutic range is from 2.5 to 15 mg/L. For this molecule, the level of proof of the interest of the TDM was estimated in: possibly useful.

  5. Lifespan Attitudes toward Death.

    ERIC Educational Resources Information Center

    Walker, Gail; Maiden, Robert

    To more fully understand how attitudes toward death and dying develop and change across the lifespan, 90 male and female subjects between the ages of 2 and 18 years and 90 male and female subjects between the ages of 18 and 97 were administered questionnaires and interviews about dying. The results revealed that children's attitudes were…

  6. Blueberry extract prolongs lifespan of Drosophila melanogaster.

    PubMed

    Peng, Cheng; Zuo, Yuanyuan; Kwan, Kin Ming; Liang, Yintong; Ma, Ka Ying; Chan, Ho Yin Edwin; Huang, Yu; Yu, Hongjian; Chen, Zhen-Yu

    2012-02-01

    Blueberry possesses greater antioxidant capacity than most other fruits and vegetables. The present study investigated the lifespan-prolonging activity of blueberry extracts in fruit flies and explored its underlying mechanism. Results revealed that blueberry extracts at 5mg/ml in diet could significantly extend the mean lifespan of fruit flies by 10%, accompanied by up-regulating gene expression of superoxide dismutase (SOD), catalase (CAT) and Rpn11 and down-regulating Methuselah (MTH) gene. Intensive H(2)O(2) and Paraquat challenge tests showed that lifespan was only extended in Oregon-R wild type flies but not in SOD(n108) or Cat(n1) mutant strains. Chronic Paraquat exposure shortened the maximum survival time from 73 to 35days and decreased the climbing ability by 60% while blueberry extracts at 5mg/ml in diet could significantly increase the survival rate and partially restore the climbing ability with up-regulating SOD, CAT, and Rpn11. Furthermore, gustatory assay demonstrated that those changes were not due to the variation of food intake between the control and the experimental diet containing 5mg/ml blueberry extracts. It was therefore concluded that the lifespan-prolonging activity of blueberry extracts was at least partially associated with its interactions with MTH, Rpn11, and endogenous antioxidant enzymes SOD and CAT.

  7. Chronic lamotrigine treatment increases rat hippocampal GABA shunt activity and elevates cerebral taurine levels.

    PubMed

    Hassel, B; Taubøll, E; Gjerstad, L

    2001-02-01

    The mechanism of action of the antiepileptic drug lamotrigine has previously been investigated only in acute experiments and is thought to involve inhibition of voltage-dependent sodium channels. However, lamotrigine is effective against more forms of epilepsies than other antiepileptic drugs that also inhibit sodium channels. We investigated whether chronic lamotrigine treatment may affect cerebral amino acid levels. Rats received lamotrigine, 10 mg/kg/day, for 90 days. The hippocampal level of GABA increased 25%, and the activities of glutamate decarboxylase and succinic semialdehyde/GABA transaminase increased 12 and 21% (p< 0.05), respectively, indicating increased GABA turnover. The uptake of GABA and glutamate into proteoliposomes remained unaltered. The level of taurine increased 27% in the hippocampus and 16% in the frontal and parietal cortices. The activities of hexokinase and alpha-ketoglutarate dehydrogenase, remained at control values. Serum lamotrigine was 41.7+/-1.5 microM (mean+/-S.E.M.), which is within the range seen in epileptic patients. Acute experiments with 5, 20 or 100 mg lamotrigine/kg, caused no changes in brain amino acid levels. The results suggest that chronic lamotrigine treatment increases GABAergic activity in the hippocampus. The cerebral increase in taurine, which has neuromodulatory properties, may contribute to the antiepileptic effect of lamotrigine.

  8. Lamotrigine Reduces Inflammatory Response and Ameliorates Executive Function Deterioration in an Alzheimer's-Like Mouse Model

    PubMed Central

    Wang, Kexin; Fernandez-Escobar, Alejandro; Han, Shuhong; Zhu, Ping

    2016-01-01

    Alzheimer's disease (AD) has been described in the literature, to be associated with impairment of executive function which develops early in the course of disease, and an effective treatment for this clinical feature remains elusive. Preclinical studies have implied that lamotrigine, an antiepileptic agent, could be a potential treatment for executive dysfunction in AD patients. Although there have been promising results in previous studies with lamotrigine, executive function has never been measured using animal models. The aim of the present study was to evaluate the effects of lamotrigine on executive function and determine whether lamotrigine can attenuate inflammatory response in an AD mouse model. Nontransgenic and transgenic mice were treated with lamotrigine (0 or 30 mg/kg/day) in a standard laboratory chow diet starting at 3 months of age. After 6 months of continuous lamotrigine administration, there was a marked improvement in executive function and a significant attenuation in the expression of proinflammatory cytokines. These results suggest that lamotrigine could ameliorate executive dysfunction and brain inflammatory response in the mouse model of AD and early lamotrigine intervention may be a promising therapeutic strategy for AD. PMID:28042572

  9. Determination of lamotrigine and its metabolites in human plasma by liquid chromatography-mass spectrometry.

    PubMed

    Beck, Olof; Ohman, Inger; Nordgren, Helena K

    2006-10-01

    A method based on electrospray ionization liquid chromatography-mass spectrometry was developed for the quantitative determination of lamotrigine and three of its reported metabolites, lamotrigine-2-N-glucuronide, lamotrigine-2-N-methyl, and lamotrigine-2-N-oxide in human blood plasma. The method utilized sample preparation by precipitation of proteins with acetonitrile, chromatographic separation on a reversed-phase system by gradient elution, and monitoring of the protonated molecular ions. Two internal standards, 3,5-diamino-6-(2-methoxyphenyl)-1,2,4-triazine and morphine-3-glucuronide-D3, were utilized to achieve precise quantification. The method validation comprised a demonstration of an agreement in the quantification of lamotrigine with that of a routine HPLC-UV method. The limits of detection were between 0.05 and 0.16 micromol/L. The method was employed for the measurement of clinical samples collected from 55 patients in steady-state prior to the dose intake (trough level). Lamotrigine and the 2-N-glucuronide were typically detected, while the N-methyl and N-oxide metabolites were detected only rarely. The median lamotrigine plasma level was 24.0 micromol/L (range, 4.3 to 64 micromol/L), the median 2-N-glucuronide level was 2.4 micromol/L (range, <0.05 to 24 micromol/L), and the median lamotrigine 2-N-glucuronide/lamotrigine ratio was 0.11 (range, <0.01 to 0.64). In conclusion, this liquid chromatographic-mass spectrometric method is suitable for simultaneous determination of lamotrigine and its metabolites in human plasma.

  10. The African turquoise killifish genome provides insights into evolution and genetic architecture of lifespan

    PubMed Central

    Valenzano, Dario Riccardo; Benayoun, Bérénice A.; Singh, Param Priya; Zhang, Elisa; Etter, Paul D.; Hu, Chi-Kuo; Clément-Ziza, Mathieu; Willemsen, David; Cui, Rongfeng; Harel, Itamar; Machado, Ben E.; Yee, Muh-Ching; Sharp, Sabrina C.; Bustamante, Carlos D.; Beyer, Andreas; Johnson, Eric A.; Brunet, Anne

    2015-01-01

    Summary Lifespan is a remarkably diverse trait ranging from a few days to several hundred years in nature, but the mechanisms underlying the evolution of lifespan differences remain elusive. Here we de novo assemble a reference genome for the naturally short-lived African turquoise killifish, providing a unique resource for comparative and experimental genomics. The identification of genes under positive selection in this fish reveals potential candidates to explain its compressed lifespan. Several aging genes are under positive selection in this short-lived fish and long-lived species, raising the intriguing possibility that the same gene could underlie evolution of both compressed and extended lifespans. Comparative genomics and linkage analysis identify candidate genes associated with lifespan differences between various turquoise killifish strains. Remarkably, these genes are clustered on the sex chromosome, suggesting that short lifespan might have co-evolved with sex determination. Our study provides insights into the evolutionary forces that shape lifespan in nature. PMID:26638078

  11. The African Turquoise Killifish Genome Provides Insights into Evolution and Genetic Architecture of Lifespan.

    PubMed

    Valenzano, Dario Riccardo; Benayoun, Bérénice A; Singh, Param Priya; Zhang, Elisa; Etter, Paul D; Hu, Chi-Kuo; Clément-Ziza, Mathieu; Willemsen, David; Cui, Rongfeng; Harel, Itamar; Machado, Ben E; Yee, Muh-Ching; Sharp, Sabrina C; Bustamante, Carlos D; Beyer, Andreas; Johnson, Eric A; Brunet, Anne

    2015-12-03

    Lifespan is a remarkably diverse trait ranging from a few days to several hundred years in nature, but the mechanisms underlying the evolution of lifespan differences remain elusive. Here we de novo assemble a reference genome for the naturally short-lived African turquoise killifish, providing a unique resource for comparative and experimental genomics. The identification of genes under positive selection in this fish reveals potential candidates to explain its compressed lifespan. Several aging genes are under positive selection in this short-lived fish and long-lived species, raising the intriguing possibility that the same gene could underlie evolution of both compressed and extended lifespans. Comparative genomics and linkage analysis identify candidate genes associated with lifespan differences between various turquoise killifish strains. Remarkably, these genes are clustered on the sex chromosome, suggesting that short lifespan might have co-evolved with sex determination. Our study provides insights into the evolutionary forces that shape lifespan in nature.

  12. Effect of lamotrigine, levetiracetam & topiramate on neurobehavioural parameters & oxidative stress in comparison with valproate in rats

    PubMed Central

    Sarangi, Sudhir Chandra; Kakkar, Ashish Kumar; Kumar, Ritesh; Gupta, Yogendra Kumar

    2016-01-01

    Background & objectives: Though newer antiepileptic drugs are considered safer than conventional antiepileptics, the effects of lamotrigine, levetiracetam and topiramate on neurobehavioural functions are yet to be established. This study evaluated neurobehavioural parameters and oxidative stress markers in brain tissue of rats treated with lamotrigine, levetiracetam and topiramate compared to sodium valproate. Methods: Five groups of male Wistar rats were treated respectively with normal saline (control), sodium valproate (370 mg/kg), lamotrigine (50 mg/kg), levetiracetam (310 mg/kg) and topiramate (100 mg/kg) for 45 days. Neurobehavioural parameters were assessed using elevated plus maze (EPM), actophotometer, rotarod, passive avoidance and Morris water maze (MWM) at baseline and at the end of treatment. Oxidative stress parameters [malondialdehyde (MDA), reduced glutathione (GSH) and superoxide dismutase (SOD)] were estimated in rat brain at the end of treatment. Results: Valproate and lamotrigine showed no significant effect on learning and memory in passive avoidance and MWM tests. However, levetiracetam and topiramate reduced retention memory significantly as compared to control (P<0.01) and lamotrigine (P<0.05) groups. Performances on EPM, rotarod and actophotometer were not significantly different between the groups. In comparison to control group, MDA was higher in the levetiracetam and topiramate (360.9 and 345.9 nmol/g of homogenized brain tissue, respectively) groups. GSH and SOD activity were significantly reduced by valproate and levetiracetam treatment. Lamotrigine did not induce significant oxidative stress. Interpretation & conclusions: Long-term and therapeutic dose treatment with levetiracetam and topiramate significantly impaired learning and memory, which was not seen with valproate and lamotrigine in rats. Levetiracetam, topiramate and valproate augmented oxidative stress, whereas lamotrigine has little effect on it. These antiepileptic drugs

  13. A Drosophila ABC Transporter Regulates Lifespan

    PubMed Central

    Huang, He; Lu-Bo, Ying; Haddad, Gabriel G.

    2014-01-01

    MRP4 (multidrug resistance-associated protein 4) is a member of the MRP/ABCC subfamily of ATP-binding cassette (ABC) transporters that are essential for many cellular processes requiring the transport of substrates across cell membranes. Although MRP4 has been implicated as a detoxification protein by transport of structurally diverse endogenous and xenobiotic compounds, including antivirus and anticancer drugs, that usually induce oxidative stress in cells, its in vivo biological function remains unknown. In this study, we investigate the biological functions of a Drosophila homolog of human MRP4, dMRP4. We show that dMRP4 expression is elevated in response to oxidative stress (paraquat, hydrogen peroxide and hyperoxia) in Drosophila. Flies lacking dMRP4 have a shortened lifespan under both oxidative and normal conditions. Overexpression of dMRP4, on the other hand, is sufficient to increase oxidative stress resistance and extend lifespan. By genetic manipulations, we demonstrate that dMRP4 is required for JNK (c-Jun NH2-terminal kinase) activation during paraquat challenge and for basal transcription of some JNK target genes under normal condition. We show that impaired JNK signaling is an important cause for major defects associated with dMRP4 mutations, suggesting that dMRP4 regulates lifespan by modulating the expression of a set of genes related to both oxidative resistance and aging, at least in part, through JNK signaling. PMID:25474322

  14. Investigation of formulation variables affecting the properties of lamotrigine nanosuspension using fractional factorial design

    PubMed Central

    B., Mishra; N., Arya; S., Tiwari

    2010-01-01

    Background and the purpose of the study Lamotrigine (LMG) undergoes extensive hepatic metabolism upon oral administration and its absorption is affected in the presence of food. This study was aimed to develop nanosuspension of LMG and investigate its formulation characteristics using L9 orthogonal array. Methods Nanosuspension was prepared using emulsification-solvent diffusion method. All the formulations were subjected to in-vitro evaluation and the statistically optimized one was used for stability, scanning electron microscopic and differential scanning calorimetric studies. Results Nanoparticles were spherical with little surface adsorbed drug. Formulation characteristics in terms of size, zeta potential, polydispersity index (PDI), entrapment efficiency (EE), drug content and in vitro drug release were consistent and within their acceptable range. All the batches provided a burst release profile during first 1 hr, followed by a controlled release extending up to 24 hrs. The values of n in Peppas model ranged between 0.2-0.4 for all the formulations indicative of Fickian release mechanism. The formulation remained reasonably stable up to 3 months. No interaction was observed among the drug and polymers. Major conclusion Results of in vitro drug release studies suggested that nanosuspension might be used as a sustained delivery vehicle for LMG. Statistical analysis revealed that size of the nanoparticles was most strongly affected by stabilizer type while EE was influenced by the drug-to-polymer ratio. PMID:22615586

  15. Variation in dose and plasma level of lamotrigine in patients discharged from a mental health trust

    PubMed Central

    Douglas-Hall, Petrina; Dzahini, Olubanke; Gaughran, Fiona; Bile, Ahmed; Taylor, David

    2016-01-01

    Background: The objectives of this study were to investigate the dose of lamotrigine when prescribed with an enzyme inhibitor or enzyme inducer in patients discharged from a mental health trust and to determine the corresponding lamotrigine plasma concentrations and the factors that may affect these. Methods: All patients discharged on lamotrigine between October 2007 and September 2012 were identified using the pharmacy dispensing database. We recorded demographic details, lamotrigine dose and plasma levels and coprescribed medication. Results: During the designated period, 187 patients were discharged on lamotrigine of whom 117 had their plasma levels recorded. The mean lamotrigine daily dose was 226.1 mg (range 12.5–800 mg) and the mean plasma level 5.9 mg/l (range 0.8–18.1 mg/l). Gender, ethnicity, diagnosis and smoking status had no significant effect on dose or plasma levels. Patients taking an enzyme-inducing drug (n = 6) had significantly lower plasma levels [mean (SD) 3.40 (1.54) mg/l] than those not taking enzyme inducers [n = 111; 6.03 (3.13) mg/l; p = 0.043]. Patients taking an enzyme-inhibiting drug (n = 23) had significantly higher levels [7.47 (3.99) mg/l] than those not taking an inhibitor [n = 94; 5.52 (2.75) mg/l; p = 0.035]. No significant difference was found between the doses of lamotrigine in patients taking an enzyme inhibitor and those not taking one (p = 0.376). No significant difference was found between the doses of lamotrigine in patients taking an enzyme-inducing drug and those not taking any (p = 0.574). Conclusions: Current dosing recommendations indicate that lamotrigine doses should be halved in individuals taking enzyme inhibitors and doubled in those on enzyme inducers. In our survey these recommendations were rarely followed with the consequence that patients received too high or too low a dose of lamotrigine, respectively. PMID:28101320

  16. Analysis of lamotrigine and its metabolites in human plasma and urine by micellar electrokinetic capillary chromatography.

    PubMed

    Pucci, Vincenzo; Bugamelli, Francesca; Baccini, Cesare; Raggi, Maria Augusta

    2005-02-01

    A reliable micellar electrokinetic capillary chromatographic method was developed and validated for the determination of lamotrigine and its metabolites in human plasma and urine. The variation of different parameters, such as pH of the background electrolyte (BGE) and Sodium dodecyl sulfate (SDS) concentration, were evaluated in order to find optimal conditions. Best separation of the analytes was achieved using a BGE composed of 10 mM borate and 50 mM SDS, pH 9.5; melatonin was selected as the internal standard. Isolation of lamotrigine and its metabolites from plasma and urine was accomplished with an original solid-phase extraction procedure using hydrophilic-lypophilic balance cartridges. Good absolute recovery data and satisfactory precision values were obtained. The calibration plots for lamotrigine and its metabolites were linear over the 1-20 microg/mL concentration range. Sensitivity was satisfactory; the limits of detection and quantitation of lamotrigine were 500 ng/mL and 1 microg/mL, respectively. The application of the method to real plasma samples from epileptic patients under therapy with lamotrigine gave good results in terms of accuracy and selectivity, and in agreement with those obtained with an high-performance liquid chromatography (HPLC) method.

  17. High-performance thin-layer chromatographic determination of lamotrigine in serum.

    PubMed

    Patil, Kuldeep M; Bodhankar, Subhash L

    2005-09-05

    A simple and rapid high-performance thin-layer chromatographic (HPTLC) determination of lamotrigine (LTG) in serum is reported. The method involves extraction of the drug by ethyl acetate followed by separation on TLC silica plates using a mixture of toluene-acetone-ammonia (7:3:0.5), as eluting solvent. Densitometric analysis was carried out at 312 nm with lamotrigine being detected at Rf of 0.54. The analytical method has excellent linearity (r=0.998) in the range of 20-300 ng/spot. This assay range is adequate for analyzing human serum, as it corresponds to lamotrigine concentrations measured in human serum from epileptic patients. The method was validated for sensitivity, selectivity, extraction efficiency, accuracy and intra and inter-day reproducibility. The limit of detection and limit of quantification were found to be 6.4 and 10.2 ng, respectively. Good accuracy is reported in the range of 92.06-97.12% and high precision with %CV in range of 0.53-2.59. The method was applied for determination of serum lamotrigine levels in epileptic patients and in pharmacokinetic study of lamotrigine administered orally to rabbits.

  18. An Open-Label Study of Lamotrigine Adjunct or Monotherapy for the Treatment of Adolescents with Bipolar Depression

    ERIC Educational Resources Information Center

    Chang, Kiki; Saxena, Kirti; Howe, Meghan

    2006-01-01

    Objective: The treatment of pediatric bipolar depression has not been well studied. The authors wished to prospectively study the efficacy of lamotrigine as adjunctive or monotherapy in adolescents with bipolar disorder who were experiencing a depressive episode. Method: This was an 8-week open-label trial of lamotrigine with 20 adolescents ages…

  19. The C. elegans Lifespan Machine

    PubMed Central

    Stroustrup, Nicholas; Ulmschneider, Bryne E.; Nash, Zachary M.; López Moyado, Isaac F.; Apfeld, Javier; Fontana, Walter

    2013-01-01

    The measurement of lifespan pervades aging research. Because lifespan results from complex interactions between genetic, environmental and stochastic factors, it varies widely even among isogenic individuals. The action of molecular mechanisms on lifespan is therefore visible only through their statistical effects on populations. Survival assays in C. elegans provided critical insights into evolutionarily conserved determinants of aging. To enable the rapid acquisition of survival curves at arbitrary statistical resolution, we developed a scalable imaging and analysis platform to observe nematodes over multiple weeks across square meters of agar surface at 8 μm resolution. The method generates a permanent visual record of individual deaths from which survival curves are constructed and validated, producing data consistent with the manual method for several mutants in both standard and stressful environments. Our approach allows rapid, detailed reverse-genetic and chemical screens for effects on survival and enables quantitative investigations into the statistical structure of aging. PMID:23666410

  20. The role of MAP4K3 in lifespan regulation of Caenorhabditiselegans

    SciTech Connect

    Khan, Maruf H.; Hart, Matthew J.; Rea, Shane L.

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Inhibition of MAP4K3 by RNAi leads to increased mean lifespan in Caenorhabditis elegans. Black-Right-Pointing-Pointer Mutation in the citron homology domain of MAP4K3 leads to increased mean lifespan. Black-Right-Pointing-Pointer Mutation in the kinase domain of MAP4K3 has no significant effect on mean lifespan. -- Abstract: The TOR pathway is a kinase signaling pathway that regulates cellular growth and proliferation in response to nutrients and growth factors. TOR signaling is also important in lifespan regulation - when this pathway is inhibited, either naturally, by genetic mutation, or by pharmacological means, lifespan is extended. MAP4K3 is a Ser/Thr kinase that has recently been found to be involved in TOR activation. Unexpectedly, the effect of this protein is not mediated via Rheb, the more widely known TOR activation pathway. Given the role of TOR in growth and lifespan control, we looked at how inhibiting MAP4K3 in Caenorhabditiselegans affects lifespan. We used both feeding RNAi and genetic mutants to look at the effect of MAP4K3 deficiency. Our results show a small but significant increase in mean lifespan in MAP4K3 deficient worms. MAP4K3 thus represents a new target in the TOR pathway that can be targeted for pharmacological intervention to control lifespan.

  1. Increased Anxiety, Akathisia, and Suicidal Thoughts in Patients with Mood Disorder on Aripiprazole and Lamotrigine

    PubMed Central

    Pondé, Milena Pereira; Freire, Antonio Carlos Cruz

    2015-01-01

    Introduction. Akathisia affects around 18% of patients with bipolar disorder treated with aripiprazole and may worsen when aripiprazole is combined with lamotrigine and antidepressants. Case. This paper reports on two clinical cases involving patients with a diagnosis of mood disorder who developed severe akathisia, anxiety, and suicidal ideation while using a combination of aripiprazole, antidepressants, and lamotrigine. Discussion. We recommend that patients with a mood disorder taking multiple drugs should begin aripiprazole therapy with low doses and be monitored for the development of akathisia, increased anxiety, or suicidal thoughts. The appearance of these limiting side effects requires discontinuation of the drug. PMID:26509095

  2. The efficacy of lamotrigine in a resistant case of depersonalization disorder.

    PubMed

    Rosagro-Escámez, Francisco; Gutiérrez-Fernández, Noelia; Gómez-Merino, Patricia; de la Vega, Irene; Carrasco, José L

    2011-01-01

    The individuals with depersonalizattion disorder suffer from a painful feeling that their body and mental experiences or the experiences of the environment seem become unreal, distant or mechanical. This phenomenon is often associated with other mental disorders, as in the case presented. Among the many psychoactive drugs studied, none of them has been shown to be the treatment of choice. Among those with which the best results are obtained are opioid receptor antagonists, the combination of selective serotonin reuptake inhibitors with lamotrigine and clorimipramine. We are presenting a resistant case that responded to lamotrigine.

  3. Effects of fluctuating temperature and food availability on reproduction and lifespan.

    PubMed

    Schwartz, Tonia S; Pearson, Phillip; Dawson, John; Allison, David B; Gohlke, Julia M

    2016-12-15

    Experimental studies on energetics and aging often remove two major factors that in part regulate the energy budget in a normal healthy individual: reproduction and fluctuating environmental conditions that challenge homeostasis. Here we use the cyclical parthenogenetic Daphnia pulex to evaluate the role of a fluctuating thermal environment on both reproduction and lifespan across six food concentrations. We test the hypotheses that (1) caloric restriction extends lifespan; (2) maximal reproduction will come with a cost of shortened lifespan; and (3) at a given food concentration, relative to a metabolically equivalent constant temperature environment a diel fluctuating thermal environment will alter the allocation of energy to reproduction and lifespan to maintain homeostasis. We did not identify a level of food concentration that extended lifespan in response to caloric restriction, and we found no cost of reproduction in terms of lifespan. Rather, the individuals at the highest food levels generally had the highest reproductive output and the longest lifespans, the individuals at the intermediate food level decreased reproduction and maintained lifespan, and the individuals at the three lower food concentrations had a decrease in reproduction and lifespan as would be predicted with increasing levels of starvation. Fluctuating temperature had no effect on lifespan at any food concentration, but delayed time to reproductive maturity and decreased early reproductive output at all food concentrations. This suggests that a fluctuating temperature regimen activates molecular pathways that alter energy allocation. The costs of fluctuating temperature on reproduction were not consistent across the lifespan. Statistical interactions for age of peak reproduction and lifetime fecundity suggest that senescence of the reproductive system may vary between temperature regimens at the different food concentrations.

  4. Revisiting the Lamotrigine-Mediated Effect on Hippocampal GABAergic Transmission

    PubMed Central

    Huang, Yu-Yin; Liu, Yu-Chao; Lee, Cheng-Ta; Lin, Yen-Chu; Wang, Mong-Lien; Yang, Yi-Ping; Chang, Kaung-Yi; Chiou, Shih-Hwa

    2016-01-01

    Lamotrigine (LTG) is generally considered as a voltage-gated sodium (Nav) channel blocker. However, recent studies suggest that LTG can also serve as a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel enhancer and can increase the excitability of GABAergic interneurons (INs). Perisomatic inhibitory INs, predominantly fast-spiking basket cells (BCs), powerfully inhibit granule cells (GCs) in the hippocampal dentate gyrus. Notably, BCs express abundant Nav channels and HCN channels, both of which are able to support sustained action potential generation. Using whole-cell recording in rat hippocampal slices, we investigated the net LTG effect on BC output. We showed that bath application of LTG significantly decreased the amplitude of evoked compound inhibitory postsynaptic currents (IPSCs) in GCs. In contrast, simultaneous paired recordings from BCs to GCs showed that LTG had no effect on both the amplitude and the paired-pulse ratio of the unitary IPSCs, suggesting that LTG did not affect GABA release, though it suppressed cell excitability. In line with this, LTG decreased spontaneous IPSC (sIPSC) frequency, but not miniature IPSC frequency. When re-examining the LTG effect on GABAergic transmission in the cornus ammonis region 1 (CA1) area, we found that LTG markedly inhibits both the excitability of dendrite-targeting INs in the stratum oriens and the concurrent sIPSCs recorded on their targeting pyramidal cells (PCs) without significant hyperpolarization-activated current (Ih) enhancement. In summary, LTG has no effect on augmenting Ih in GABAergic INs and does not promote GABAergic inhibitory output. The antiepileptic effect of LTG is likely through Nav channel inhibition and the suppression of global neuronal network activity. PMID:27455251

  5. Comparative evaluation of single and bilayered lamotrigine floating tablets

    PubMed Central

    Lakshmi, PK; Sridhar, M; Shruthi, B

    2013-01-01

    Aim: The purpose of this study was to prepare lamotrigine (LM) bilayered and single layered floating tablets and to compare their release profiles. Materials and Methods: LM floating tablets were prepared by direct compression method. Drug, hydroxy propyl methyl cellulose K4M, lactose monohydrate and polyvinylpyrrolidone K30 constitute controlled release layer components and floating layer components includes polymers and sodium bicarbonate. The prepared tablets were evaluated for physicochemical parameters such as hardness, friability, weight variation, thickness, floating lag time (FLT), floating time, in vitro buoyancy study, in vitro release studies. The drug-polymer interaction was studied by fourier transform infrared and differential scanning calorimetry. Results and Discussion: The FLT of all the formulations were within the prescribed limits (<3 min). When ethyl cellulose was used as floating layer component, tablets showed good buoyancy effect but eroded within 6-8 h. Hence it was replaced with hydroxypropyl cellulose -M hydrophilic polymer, which showed good FLT and floating duration for 16 h. Formulation LFC4 was found to be optimized with dissolution profile of zero order kinetics showing fickian diffusion. A comparative study of bilayered and single layered tablets of LM showed a highest similarity factor of 83.03, difference factor of 2.74 and t-test (P < 0.05) indicates that there is no significant difference between them. Conclusion: Though bilayered tablet possess many advantages, single layered tablet would be economical, cost-effective and reproducible for large scale production in the industry. However, the results of present study demonstrated that the in vitro development of bilayered gastro retentive floating tablets with controlled drug release profile for LM is feasible. PMID:24167788

  6. Lamotrigine XR conversion to monotherapy: first study using a historical control group.

    PubMed

    French, Jacqueline A; Temkin, Nancy R; Shneker, Bassel F; Hammer, Anne E; Caldwell, Paul T; Messenheimer, John A

    2012-01-01

    The efficacy and safety of lamotrigine extended-release tablets (LTG XR) as monotherapy for partial seizures were evaluated using the conversion-to-monotherapy design, and historical data as the control. This methodology was recently approved by the United States Food and Drug Administration, and this study is the first historical control design in epilepsy to complete enrollment. Patients ≥13 years old with uncontrolled partial epilepsy receiving monotherapy with valproate or a noninducing antiepileptic drug were converted to once-daily LTG XR (250 mg or 300 mg) as monotherapy and were followed up for 12 additional weeks. Efficacy was measured by the proportion of patients meeting predefined escape criteria for seizure worsening compared with aggregated pseudoplacebo control data from 8 previously conducted conversion-to-monotherapy trials. Nonoverlap of the 95% confidence limit for LTG XR and the 95% prediction interval of the historical control denotes efficacy. Of 226 randomized patients, 174 (93 in 300 mg/day group and 81 in 250 mg/day group) started withdrawal of the background AED and were evaluated for escape. In the historical control analysis population, the lower 95% prediction interval of the historical control (65.3%) was not overlapped by the upper 95% confidence limit of either LTG XR (300 mg/day; 37.2%) or LTG XR (250 mg/day; 43.4%). Adverse events were reported in 53% and 61% of patients receiving LTG XR (300 mg/day and 250 mg/day, respectively). LTG XR (250 mg or 300 mg once daily) is effective for conversion-to-monotherapy treatment of partial seizures in patients ≥13 years old.

  7. Lifespan Extension by Preserving Proliferative Homeostasis in Drosophila

    PubMed Central

    Supoyo, Stephen; DeGennaro, Matthew; Lehmann, Ruth; Jasper, Heinrich

    2010-01-01

    Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal epithelium of Drosophila provides an accessible model in which to test this prediction. In aging flies, the intestinal epithelium degenerates due to over-proliferation of intestinal stem cells (ISCs) and mis-differentiation of ISC daughter cells, resulting in intestinal dysplasia. Here we show that conditions that impair tissue renewal lead to lifespan shortening, whereas genetic manipulations that improve proliferative homeostasis extend lifespan. These include reduced Insulin/IGF or Jun-N-terminal Kinase (JNK) signaling activities, as well as over-expression of stress-protective genes in somatic stem cell lineages. Interestingly, proliferative activity in aging intestinal epithelia correlates with longevity over a range of genotypes, with maximal lifespan when intestinal proliferation is reduced but not completely inhibited. Our results highlight the importance of the balance between regenerative processes and strategies to prevent hyperproliferative disorders and demonstrate that promoting proliferative homeostasis in aging metazoans is a viable strategy to extend lifespan. PMID:20976250

  8. Interaction of an antiepileptic drug, lamotrigine with human serum albumin (HSA): Application of spectroscopic techniques and molecular modeling methods.

    PubMed

    Poureshghi, Fatemeh; Ghandforoushan, Parisa; Safarnejad, Azam; Soltani, Somaieh

    2017-01-01

    Lamotrigine (an epileptic drug) interaction with human serum albumin (HSA) was investigated by fluorescence, UV-Vis, FTIR, CD spectroscopic techniques, and molecular modeling methods. Binding constant (Kb) of 5.74×10(3) and number of binding site of 0.97 showed that there is a slight interaction between lamotrigine and HSA. Thermodynamic studies was constructed using the flourimetric titrations in three different temperatures and the resulted data used to calculate the parameters using Vant Hoff equation. Decreased Stern Volmer quenching constant by enhanced temperature revealed the static quenching mechanism. Negative standard enthalpy (ΔH) and standard entropy (ΔS) changes indicated that van der Waals interactions and hydrogen bonds were dominant forces which facilitate the binding of Lamotrigine to HSA, the results were confirmed by molecular docking studies which showed no hydrogen binding. The FRET studies showed that there is a possibility of energy transfer between Trp214 and lamotrigine. Also the binding of lamotrigine to HSA in the studied concentrations was not as much as many other drugs, but the secondary structure of the HSA was significantly changed following the interaction in a way that α-helix percentage was reduced from 67% to 57% after the addition of lamotrigine in the molar ratio of 4:1 to HSA. According to the docking studies, lamotrigine binds to IB site preferably.

  9. Peripheral Circadian Clocks Mediate Dietary Restriction-Dependent Changes in Lifespan and Fat Metabolism in Drosophila.

    PubMed

    Katewa, Subhash D; Akagi, Kazutaka; Bose, Neelanjan; Rakshit, Kuntol; Camarella, Timothy; Zheng, Xiangzhong; Hall, David; Davis, Sonnet; Nelson, Christopher S; Brem, Rachel B; Ramanathan, Arvind; Sehgal, Amita; Giebultowicz, Jadwiga M; Kapahi, Pankaj

    2016-01-12

    Endogenous circadian clocks orchestrate several metabolic and signaling pathways that are known to modulate lifespan, suggesting clocks as potential targets for manipulation of metabolism and lifespan. We report here that the core circadian clock genes, timeless (tim) and period (per), are required for the metabolic and lifespan responses to DR in Drosophila. Consistent with the involvement of a circadian mechanism, DR enhances the amplitude of cycling of most circadian clock genes, including tim, in peripheral tissues. Mass-spectrometry-based lipidomic analysis suggests a role of tim in cycling of specific medium chain triglycerides under DR. Furthermore, overexpression of tim in peripheral tissues improves its oscillatory amplitude and extends lifespan under ad libitum conditions. Importantly, effects of tim on lifespan appear to be mediated through enhanced fat turnover. These findings identify a critical role for specific clock genes in modulating the effects of nutrient manipulation on fat metabolism and aging.

  10. Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice.

    PubMed

    Serralheiro, Ana; Alves, Gilberto; Fortuna, Ana; Falcão, Amílcar

    2015-07-25

    Pharmacoresistance is considered one of the major causes underlying the failure of the anticonvulsant therapy, demanding the development of alternative and more effective therapeutic approaches. Due to the particular anatomical features of the nasal cavity, intranasal administration has been explored as a means of preferential drug delivery to the brain. The purpose of the present study was to assess the pharmacokinetics of lamotrigine administered by the intranasal route to mice, and to investigate whether a direct transport of the drug from nose to brain could be involved. The high bioavailability achieved for intranasally administered lamotrigine (116.5%) underscored the fact that a substantial fraction of the drug has been absorbed to the systemic circulation. Nonetheless, the heterogeneous biodistribution of lamotrigine in different brain regions, with higher concentration levels attained in the olfactory bulb comparatively to the frontal cortex and the remaining portion of the brain, strongly suggest that lamotrigine was directly transferred to the brain via the olfactory neuronal pathway, circumventing the blood-brain barrier. Therefore, it seems that intranasal route can be assumed as a suitable and valuable drug delivery strategy for the chronic treatment of epilepsy, also providing a promising alternative approach for a prospective management of pharmacoresistance.

  11. Rapid HPLC analysis of the antiepileptic lamotrigine and its metabolites in human plasma.

    PubMed

    Saracino, Maria Addolorata; Bugamelli, Francesca; Conti, Matteo; Amore, Mario; Raggi, Maria Augusta

    2007-09-01

    A liquid chromatographic method with diode array detection (DAD) has been developed for the analysis of the antiepileptic agent lamotrigine (LTG) and its metabolites, lamotrigine 2-N-glucuronide and 2-N-methylated in plasma samples. The analytes were separated on a C8 RP column, using a mobile phase composed of methanol and a 0.45 mM, pH 3.5 phosphate buffer containing 0.17% triethylamine (24:76 v/v). Melatonin was used as the internal standard (IS). The DAD detector was set at 220 nm for the detection of all the analytes. A simple protein precipitation with methanol guaranteed high extraction yield values (>90%) and good purification from matrix interference. Good linearity was obtained in the 0.1-15.0 microg/mL range for LTG and lamotrigine 2-N-glucuronide and in the 0.1-2.0 microg/mL range for lamotrigine 2-N-methylated. The analytical method was validated in terms of precision, extraction yield, and accuracy. These assays gave RSD% values for precision always lower than 4.3% and mean accuracy higher than 80%. The method seems to be suitable for the analysis of plasma samples from patients treated with Lamictal.

  12. Behavioral outcomes in children exposed prenatally to lamotrigine, valproate, or carbamazepine

    PubMed Central

    Deshmukh, Uma; Adams, Jane; Macklin, Eric A.; Dhillon, Ruby; McCarthy, Katherine D.; Dworetzky, Barbara; Klein, Autumn; Holmes, Lewis B.

    2017-01-01

    Objectives To evaluate adaptive behavior outcomes of children prenatally exposed to lamotrigine, valproate, or carbamazepine, and to determine if these outcomes were dose-dependent. Methods Data were collected from women enrolled in the North American Anti-epileptic Drug (AED) Pregnancy Registry who had taken lamotrigine, valproate, or carbamazepine monotherapies throughout pregnancy to suppress seizures. The adaptive behavior of 252 exposed children (including 104 lamotrigine-exposed, 97 carbamazepine-exposed, and 51 valproate-exposed), ages 3- to 6-years-old, was measured using the Vineland-II Adaptive Behavior Scales, administered to each mother by telephone. Mean Adaptive Behavior Composite (ABC), domain standard scores for communication, daily living, socialization and motor skills, and adaptive levels were analyzed and correlated with first trimester drug dose. Results After adjusting for maternal age, education, folate use, cigarette and alcohol exposure, gestational age, and birth weight by propensity score analysis, the mean ABC score for valproate-exposed children was 95.6 (95% CI [91, 101]), versus 100.8 (95% CI [98, 103]) and 103.5 (95% CI [101, 106]) for carbamazepine- and lamotrigine-exposed children, respectively (ANOVA; p=0.017). Significant differences were observed among the three drug groups in the ABC (p=0.017), socialization (p=0.026), and motor (p=0.018) domains, with a trend toward significance in the communication domain (p=0.053). Valproate-exposed children scored lowest and lamotrigine-exposed children scored highest in every category. Valproate-exposed children were most likely to perform at a low or moderately low adaptive level in each category. Higher valproate dose was associated with significantly lower ABC (p=0.020), socialization (p=0.009), and motor (p=0.041) scores before adjusting for confounders. After adjusting for the above variables, increasing VPA dose was associated with decreasing Vineland scores in all domains, but the

  13. Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1

    PubMed Central

    Ludewig, Andreas H.; Izrayelit, Yevgeniy; Park, Donha; Malik, Rabia U.; Zimmermann, Anna; Mahanti, Parag; Fox, Bennett W.; Bethke, Axel; Doering, Frank; Riddle, Donald L.; Schroeder, Frank C.

    2013-01-01

    Lifespan in Caenorhabditis elegans, Drosophila, and mice is regulated by conserved signaling networks, including the insulin/insulin-like growth factor 1 (IGF-1) signaling cascade and pathways depending on sirtuins, a family of NAD+-dependent deacetylases. Small molecules such as resveratrol are of great interest because they increase lifespan in many species in a sirtuin-dependent manner. However, no endogenous small molecules that regulate lifespan via sirtuins have been identified, and the mechanisms underlying sirtuin-dependent longevity are not well understood. Here, we show that in C. elegans, two endogenously produced small molecules, the dauer-inducing ascarosides ascr#2 and ascr#3, regulate lifespan and stress resistance through chemosensory pathways and the sirtuin SIR-2.1. Ascarosides extend adult lifespan and stress resistance without reducing fecundity or feeding rate, and these effects are reduced or abolished when nutrients are restricted. We found that ascaroside-mediated longevity is fully abolished by loss of SIR-2.1 and that the effect of ascr#2 requires expression of the G protein-coupled receptor DAF-37 in specific chemosensory neurons. In contrast to many other lifespan-modulating factors, ascaroside-mediated lifespan increases do not require insulin signaling via the FOXO homolog DAF-16 or the insulin/IGF-1-receptor homolog DAF-2. Our study demonstrates that C. elegans produces specific small molecules to control adult lifespan in a sirtuin-dependent manner, supporting the hypothesis that endogenous regulation of metazoan lifespan functions, in part, via sirtuins. These findings strengthen the link between chemosensory inputs and conserved mechanisms of lifespan regulation in metazoans and suggest a model for communal lifespan regulation in C. elegans. PMID:23509272

  14. Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1.

    PubMed

    Ludewig, Andreas H; Izrayelit, Yevgeniy; Park, Donha; Malik, Rabia U; Zimmermann, Anna; Mahanti, Parag; Fox, Bennett W; Bethke, Axel; Doering, Frank; Riddle, Donald L; Schroeder, Frank C

    2013-04-02

    Lifespan in Caenorhabditis elegans, Drosophila, and mice is regulated by conserved signaling networks, including the insulin/insulin-like growth factor 1 (IGF-1) signaling cascade and pathways depending on sirtuins, a family of NAD(+)-dependent deacetylases. Small molecules such as resveratrol are of great interest because they increase lifespan in many species in a sirtuin-dependent manner. However, no endogenous small molecules that regulate lifespan via sirtuins have been identified, and the mechanisms underlying sirtuin-dependent longevity are not well understood. Here, we show that in C. elegans, two endogenously produced small molecules, the dauer-inducing ascarosides ascr#2 and ascr#3, regulate lifespan and stress resistance through chemosensory pathways and the sirtuin SIR-2.1. Ascarosides extend adult lifespan and stress resistance without reducing fecundity or feeding rate, and these effects are reduced or abolished when nutrients are restricted. We found that ascaroside-mediated longevity is fully abolished by loss of SIR-2.1 and that the effect of ascr#2 requires expression of the G protein-coupled receptor DAF-37 in specific chemosensory neurons. In contrast to many other lifespan-modulating factors, ascaroside-mediated lifespan increases do not require insulin signaling via the FOXO homolog DAF-16 or the insulin/IGF-1-receptor homolog DAF-2. Our study demonstrates that C. elegans produces specific small molecules to control adult lifespan in a sirtuin-dependent manner, supporting the hypothesis that endogenous regulation of metazoan lifespan functions, in part, via sirtuins. These findings strengthen the link between chemosensory inputs and conserved mechanisms of lifespan regulation in metazoans and suggest a model for communal lifespan regulation in C. elegans.

  15. Rapid quantification of lamotrigine in human plasma by two LC systems connected with tandem MS.

    PubMed

    Shah, Hiten J; Subbaiah, Gunta; Patel, Dasharath M; Suhagia, Bhanubhai N; Patel, Chhagan N

    2010-01-01

    A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method has been developed and validated for the determination of lamotrigine in human plasma using multiplexing technique (two HPLC units connected to one MS-MS). Lamotrigine was extracted from human plasma by solid-phase extraction technique using Oasis Hydrophilic Lipophilic Balance (HLB) or N-vinylpyrrolidone and divinylbenzene cartridge. A structural analog, 3,5-diamino-6-phenyl-1,2,4-triazine, was used as an internal standard (IS). A BetaBasic C(8) column was used for the chromatographic separation of analytes. The mass transition [M+H](+) ions used for detection were m/z 256.0 --> 211.0 for lamotrigine and m/z 188.0 --> 143.0 for IS. The method involved a simple multiplexing, rapid solid-phase extraction without evaporation and reconstitution. The proposed method has been validated for a linear range of 0.025 to 10.000 microg/mL with a correlation coefficient > or = 0.9991. The limit of quantification for lamotrigine was 0.025 microg/mL, and limit of detection was 50.000 pg/mL. The intra-run and inter-run precision and accuracy were within 10.0% for intra-HPLC runs and inter-HPLC runs. The overall recoveries for lamotrigine and IS were 97.9% and 92.5%, respectively. Total MS run time was 1.4 min per sample. The validated method has been successfully used to analyze human plasma samples for applications in pharmacokinetic, bioavailability, bioequivalence, or in vitro in vivo correlation studies.

  16. Lifespan extension by cranberry supplementation partially requires SOD2 and is life stage independent.

    PubMed

    Sun, Yaning; Yolitz, Jason; Alberico, Thomas; Sun, Xiaoping; Zou, Sige

    2014-02-01

    Many nutraceuticals and pharmaceuticals have been shown to promote healthspan and lifespan. However, the mechanisms underlying the beneficial effects of prolongevity interventions and the time points at which interventions should be implemented to achieve beneficial effects are not well characterized. We have previously shown that a cranberry-containing nutraceutical can promote lifespan in worms and flies and delay age-related functional decline of pancreatic cells in rats. Here we investigated the mechanism underlying lifespan extension induced by cranberry and the effects of short-term or life stage-specific interventions with cranberry on lifespan in Drosophila. We found that lifespan extension induced by cranberry was associated with reduced phosphorylation of ERK, a component of oxidative stress response MAPK signaling, and slightly increased phosphorylation of AKT, a component of insulin-like signaling. Lifespan extension was also associated with a reduced level of 4-hydroxynonenal protein adducts, a biomarker of lipid oxidation. Moreover, lifespan extension induced by cranberry was partially suppressed by knockdown of SOD2, a major mitochondrial superoxide scavenger. Furthermore, cranberry supplementation was administered in three life stages of adult flies, health span (3-30 days), transition span (31-60 days) and senescence span (61 days to the end when all flies died). Cranberry supplementation during any of these life stages extended the remaining lifespan relative to the non-supplemented and life stage-matched controls. These findings suggest that cranberry supplementation is sufficient to promote longevity when implemented during any life stage, likely through reducing oxidative damage.

  17. Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2

    PubMed Central

    De Haes, Wouter; Frooninckx, Lotte; Van Assche, Roel; Smolders, Arne; Depuydt, Geert; Billen, Johan; Braeckman, Bart P.; Schoofs, Liliane; Temmerman, Liesbet

    2014-01-01

    The antiglycemic drug metformin, widely prescribed as first-line treatment of type II diabetes mellitus, has lifespan-extending properties. Precisely how this is achieved remains unclear. Via a quantitative proteomics approach using the model organism Caenorhabditis elegans, we gained molecular understanding of the physiological changes elicited by metformin exposure, including changes in branched-chain amino acid catabolism and cuticle maintenance. We show that metformin extends lifespan through the process of mitohormesis and propose a signaling cascade in which metformin-induced production of reactive oxygen species increases overall life expectancy. We further address an important issue in aging research, wherein so far, the key molecular link that translates the reactive oxygen species signal into a prolongevity cue remained elusive. We show that this beneficial signal of the mitohormetic pathway is propagated by the peroxiredoxin PRDX-2. Because of its evolutionary conservation, peroxiredoxin signaling might underlie a general principle of prolongevity signaling. PMID:24889636

  18. A rapid and simple assay for lamotrigine in serum/plasma by HPLC, and comparison with an immunoassay.

    PubMed

    Morgan, Phillip E; Fisher, Danielle S; Evers, Richard; Flanagan, Robert J

    2011-07-01

    Monitoring serum/plasma concentrations of lamotrigine may be useful under certain circumstances. An HPLC column packed with strong cation-exchange (SCX)-modified microparticulate silica together with a 100% methanol eluent containing an ionic modifier permits direct injection of sample extracts. An HPLC-UV method developed using this principle for the measurement of serum/plasma lamotrigine is simple, sensitive and selective. The analysis time is less than 5 min. Intra- and inter-assay precision and accuracy meet acceptance criteria, and sample stability, and potential interferences from other compounds have been evaluated. There was good agreement with consensus mean results from external quality assessment samples (n = 32). Analysis of patient samples (n = 115) using the HPLC method and the Seradyn QMS® Lamotrigine immunoassay showed that the immunoassay over-estimated lamotrigine by 21% on average.

  19. Sphingolipid metabolism regulates development and lifespan in Caenorhabditis elegans

    PubMed Central

    Cutler, Roy G.; Thompson, Kenneth W.; Camandola, Simonetta; Mack, Kendra T.; Mattson, Mark P.

    2015-01-01

    Sphingolipids are a highly conserved lipid component of cell membranes involved in the formation of lipid raft domains that house many of the receptors and cell-to-cell signaling factors involved in regulating cell division, maturation, and terminal differentiation. By measuring and manipulating sphingolipid metabolism using pharmacological and genetic tools in Caenorhabditis elegans, we provide evidence that the synthesis and remodeling of specific ceramides (e.g., dC18:1–C24:1), gangliosides (e.g., GM1–C24:1), and sphingomyelins (e.g., dC18:1–C18:1) influence development rate and lifespan. We found that the levels of fatty acid chain desaturation and elongation in many sphingolipid species increased during development and aging, with no such changes in developmentally-arrested dauer larvae or normal adults after food withdrawal (an anti-aging intervention). Pharmacological inhibitors and small interfering RNAs directed against serine palmitoyl transferase and glucosylceramide synthase acted to slow development rate, extend the reproductive period, and increase lifespan. In contrast, worms fed an egg yolk diet rich in sphingolipids exhibited accelerated development and reduced lifespan. Our findings demonstrate that sphingolipid accumulation and remodeling are critical events that determine development rate and lifespan in the nematode model, with both development rate and aging being accelerated by the synthesis of sphingomyelin, and its metabolism to ceramides and gangliosides. PMID:25437839

  20. Lamotrigine Augmentation of Serotonin Reuptake Inhibitors in Severe and Long-Term Treatment-Resistant Obsessive-Compulsive Disorder

    PubMed Central

    Arrojo-Romero, Manuel; Tajes Alonso, María; de Leon, Jose

    2013-01-01

    The treatment recommendations in obsessive-compulsive disorder (OCD) after lack of response to selective serotonin reuptake inhibitors (SSRIs) include augmentation with other drugs, particularly clomipramine, a more potent serotonin reuptake inhibitor (SRI), or antipsychotics. We present two cases of response to lamotrigine augmentation in treatment-refractory OCD; each received multiple SRI trials over a >10-year period. The first patient had eleven years of treatment with multiple combinations including clomipramine and SSRIs. She had a >50% decrease of Y-BOCS (from 29 to 14) by augmenting paroxetine (60 mg/day) with lamotrigine (100 mg/day). The second patient had 22 years of treatment with multiple combinations, including combinations of SSRIs with clomipramine and risperidone. She had an almost 50% decrease of Y-BOCS (from 30 to 16) and disappearance of tics by augmenting clomipramine (225 mg/d) with lamotrigine (200 mg/day). These two patients were characterized by lack of response to multiple treatments, making a placebo response to lamotrigine augmentation unlikely. Prospective randomized trials in treatment-resistant OCD patients who do not respond to combinations of SSRIs with clomipramine and/or antipsychotics are needed, including augmentation with lamotrigine. Until these trials are available, our cases suggest that clinicians may consider lamotrigine augmentation in such treatment-resistant OCD patients. PMID:23936714

  1. The evolution of senescence and post-reproductive lifespan in guppies (Poecilia reticulata).

    PubMed

    Reznick, David; Bryant, Michael; Holmes, Donna

    2006-01-01

    The study of post-reproductive lifespan has been of interest primarily with regard to the extended post-menopausal lifespan seen in humans. This unusual feature of human demography has been hypothesized to have evolved because of the "grandmother" effect, or the contributions that post-reproductive females make to the fitness of their children and grandchildren. While some correlative analyses of human populations support this hypothesis, few formal, experimental studies have addressed the evolution of post-reproductive lifespan. As part of an ongoing study of life history evolution in guppies, we compared lifespans of individual guppies derived from populations that differ in their extrinsic mortality rates. Some of these populations co-occur with predators that increase mortality rate, whereas other nearby populations above barrier waterfalls are relatively free from predation. Theory predicts that such differences in extrinsic mortality will select for differences in the age at maturity, allocation of resources to reproduction, and patterns of senescence, including reproductive declines. As part of our evaluation of these predictions, we quantified differences among populations in post-reproductive lifespan. We present here the first formal, comparative study of the evolution of post-reproductive lifespan as a component of the evolution of the entire life history. Guppies that evolved with predators and that experienced high extrinsic mortality mature at an earlier age but also have longer lifespans. We divided the lifespan into three non-overlapping components: birth to age at first reproduction, age at first reproduction to age at last reproduction (reproductive lifespan), and age at last reproduction to age at death (post-reproductive lifespan). Guppies from high-predation environments live longer because they have a longer reproductive lifespan, which is the component of the life history that can make a direct contribution to individual fitness. We found no

  2. Caenorhabditis elegans battling starvation stress: low levels of ethanol prolong lifespan in L1 larvae.

    PubMed

    Castro, Paola V; Khare, Shilpi; Young, Brian D; Clarke, Steven G

    2012-01-01

    The nematode Caenorhabditis elegans arrests development at the first larval stage if food is not present upon hatching. Larvae in this stage provide an excellent model for studying stress responses during development. We found that supplementing starved larvae with ethanol markedly extends their lifespan within this L1 diapause. The effects of ethanol-induced lifespan extension can be observed when the ethanol is added to the medium at any time between 0 and 10 days after hatching. The lowest ethanol concentration that extended lifespan was 1 mM (0.005%); higher concentrations to 68 mM (0.4%) did not result in increased survival. In spite of their extended survival, larvae did not progress to the L2 stage. Supplementing starved cultures with n-propanol and n-butanol also extended lifespan, but methanol and isopropanol had no measurable effect. Mass spectrometry analysis of nematode fatty acids and amino acids revealed that L1 larvae can incorporate atoms from ethanol into both types of molecules. Based on these data, we suggest that ethanol supplementation may extend the lifespan of L1 larvae by either serving as a carbon and energy source and/or by inducing a stress response.

  3. Serotonin Syndrome in the Setting of Lamotrigine, Aripiprazole, and Cocaine Use

    PubMed Central

    Kotwal, Anupam; Cutrona, Sarah L.

    2015-01-01

    Serotonin syndrome is a potentially life-threatening condition associated with increased serotonergic activity in the central nervous system. It is classically associated with the simultaneous administration of two serotonergic agents, but it can occur after initiation of a single serotonergic drug or increasing the dose of a serotonergic drug in individuals who are particularly sensitive to serotonin. We describe a case of serotonin syndrome that occurred after ingestion of higher than prescribed doses of lamotrigine and aripiprazole, in addition to cocaine abuse. The diagnosis was established based on Hunter toxicity criteria and severity was classified as mild. The features of this syndrome resolved shortly after discontinuation of the offending agents. Serotonin syndrome is characterized by mental status changes, autonomic hyperactivity, and neuromuscular abnormalities along a spectrum ranging from mild to severe. Serotonin syndrome in our patient was most likely caused by the pharmacokinetic and pharmacodynamic interactions between lamotrigine, aripiprazole, and cocaine leading to increased CNS serotonergic activity. PMID:26339247

  4. Ethosuximide, Valproic Acid and Lamotrigine in Childhood Absence Epilepsy: Initial Monotherapy Outcomes at 12 months

    PubMed Central

    Glauser, Tracy A.; Cnaan, Avital; Shinnar, Shlomo; Hirtz, Deborah G.; Dlugos, Dennis; Masur, David; Clark, Peggy O.; Adamson, Peter C.

    2012-01-01

    Purpose Determine the optimal initial monotherapy for children with newly diagnosed childhood absence epilepsy based on 12 months of double blind therapy. Methods A double-blind, randomized controlled clinical trial compared the efficacy, tolerability and neuropsychological effects of ethosuximide, valproic acid and lamotrigine in children with newly diagnosed childhood absence epilepsy. Study medications were titrated to clinical response and subjects remained in the trial unless they reached a treatment failure criterion. Maximal target doses were ethosuximide 60 mg/kg/day or 2000 mg/day, valproic acid 60 mg/kg/day or 3000 mg/day and lamotrigine 12 mg/kg/day or 600 mg/day. Original primary outcome was at 16–20 weeks and included a video EEG assessment. For this report, the main effectiveness outcome was the freedom from failure rate 12 months after randomization and included a video EEG assessment; differential drug effects were determined by pairwise comparisons. The main cognitive outcome was the percentage of subjects experiencing attentional dysfunction at the Month 12 visit. Key Findings A total of 453 children were enrolled and randomized; seven were deemed ineligible and 446 subjects comprised the overall efficacy cohort. There were no demographic differences between the three cohorts. By 12 months after starting therapy, only 37% of all enrolled subjects were free from treatment failure on their first medication. At the Month 12 visit, the freedom-from-failure rates for ethosuximide and valproic acid were similar (45% and 44%, respectively; odds ratio with valproic acid vs. ethosuximide, 0.94; 95% confidence interval [CI], 0.60 to 1.48; P = 0.82) and were higher than the rate for lamotrigine (21%; odds ratio with ethosuximide vs. lamotrigine, 3.09; 95% CI, 1.86 to 5.13; odds ratio with valproic acid vs. lamotrigine, 2.90; 95% CI, 1.74 to 4.83; P<0.001 for both comparisons). The frequency of treatment failures due to lack of seizure control (p < 0

  5. An audit of lamotrigine, levetiracetam and topiramate usage for epilepsy in a district general hospital.

    PubMed

    Chappell, Brian; Crawford, Pamela

    2005-09-01

    The aim of this audit was to ascertain outcomes for people who had taken or who were still taking three "new generation" broad-spectrum antiepileptic drugs (AEDs), namely lamotrigine, levetiracetam and topiramate. Thirteen percent of people became seizure free and approximately, one-third had a reduction of greater than 50% in their seizures. Two-thirds of people were still taking their audit AED. In addition, approximately one-third of people with a learning disability derived substantial benefit, although the rate of seizure freedom was lower. All three AEDs were most successful at treating primary generalised epilepsy and least successful with symptomatic generalised epilepsy. With some reservations the data suggests that levetiracetam and topiramate are the most efficacious AEDs, but topiramate is the least well tolerated. These results mean consideration of a "general prescribing policy" is important when using and choosing these AEDs. We conclude that lamotrigine, levetiracetam and topiramate are useful additions to the armamentarium of AEDs.

  6. Determination of Lamotrigine in Pharmaceutical Preparations by Adsorptive Stripping Voltammetry Using Screen Printed Electrodes

    PubMed Central

    Domínguez-Renedo, Olga; Calvo, M. Encarnación Burgoa; Arcos-Martínez, M. Julia

    2008-01-01

    This paper describes a procedure that has been optimized for the determination of lamotrigine by Differential Pulse Adsorptive Stripping Voltammetry (DPAdSV) using carbon screen-printed electrodes (CSPE) and mercury coated carbon screen-printed electrodes. Selection of the experimental parameters was made using experimental design methodology. The detection limit found was 5.0 × 10-6 M and 2.0 × 10-6 M for the non modified and Hg modified CSPE, respectively. In terms of reproducibility, the precision of the above mentioned methods was calculated in %RSD values at 9.83% for CSPE and 2.73% for Hg-CSPE. The Hg-coated CSPEs developed in this work were successfully applied in the determination of lamotrigine in pharmaceutical preparations. PMID:27879931

  7. Drug Reaction with Eosinophilia and Systemic Symptom Syndrome Induced by Lamotrigine

    PubMed Central

    Han, Song Hee; Hur, Min Seok; Youn, Hae Jeong; Roh, Nam Kyung; Lee, Yang Won; Choe, Yong Beom

    2017-01-01

    Drug reaction with eosinophilia and systemic symptom (DRESS) syndrome is a type of severe adverse drug-induced reaction. Dermatologists should make a quick diagnosis and provide appropriate treatment for DRESS syndrome to reduce mortality rates, which can be as high as 10%. We present the case of a 47-year-old man with schizoaffective disorder treated with lamotrigine who developed DRESS syndrome to emphasize the importance of close observation of patients with drug eruption. He was consulted for erythematous maculopapular rashes on the trunk that developed 3 weeks after starting lamotrigine. A few days later, he developed generalized influenza-like symptoms. The skin rashes spread over his entire body, and the sense of itching was rapidly aggravated within a few days. Increased liver enzyme levels and significant eosinophilia were found on laboratory test results. His condition was diagnosed as DRESS syndrome, and he was treated with systemic and topical corticosteroids for 2 weeks.

  8. The establish of the HPLC method to examine the plasma concentration of lamotrigine and oxcarbazepine.

    PubMed

    Zhu, Xue-Ping; Zhao, Yao-Dong; Cheng, Zhi; Zhao, Ning Min; Li, Hao

    2015-05-01

    To establish the HPLC method to examine plasma concentration of lamotrigine and oxcarbazepine. This study set chlorzoxazone as the internal standard, chromatographic column was Column C18 (200×4.6mm, 5um) of DIKMA company, the mobile phase was methanol, water and trifluoroacetic acid, with rate of 40: 60: 0.0005, at a flow rate of 1 mllmin(-1), the detected wavelength was 240 nm. The plasma concentrations of lamotrigine was 0.5-50ug•mL(-1), the standard curve was excellent for Y=0.5511C-0.5669, r=0.9940, average recovery was 91.40%; The plasma concentrations of oxcarbazepine was 0.5-50ugmL-1, the standard curve was good for Y=0.4026C-0.5895, r=0.9925, and the average recovery was 89.59%; The three plasma concentrations of lamotrigine were respectively 25μg•mL(-1), 10 μg•mL(-1) and 2μg•mL(-1) and its five parallel sample for injection RSD were respectively 4.01%, 6.15% and 4.64%; The three plasma concentration of oxcarbazepine were 25μg•mL(-1)-1(-1), 10μg•mL(-1)-1(-1) and 2μg•mL(-1)-1(-1), and its five parallel sample for injection RSD were respectively 3.05%, 4.27% and 9.01%. This method was easy to operate, high recovery and high precision, and was applicable to the clinical detection for plasma concentration of lamotrigine and oxcarbazepine.

  9. Degradation pathways of lamotrigine under advanced treatment by direct UV photolysis, hydroxyl radicals, and ozone.

    PubMed

    Keen, Olya S; Ferrer, Imma; Michael Thurman, E; Linden, Karl G

    2014-12-01

    Lamotrigine is recently recognized as a persistent pharmaceutical in the water environment and wastewater effluents. Its degradation was studied under UV and ozone advanced oxidation treatments with reaction kinetics of lamotrigine with ozone (≈4 M(-1)s(-1)), hydroxyl radical [(2.1 ± 0.3) × 10(9)M(-1)s(-1)] and by UV photolysis with low and medium pressure mercury vapor lamps [quantum yields ≈0 and (2.7 ± 0.4)× 10(-4) respectively] determined. All constants were measured at pH 6 and at temperature ≈20°C. The results indicate that lamotrigine is slow to respond to direct photolysis or oxidation by ozone and no attenuation of the contaminant is expected in UV or ozone disinfection applications. The compound reacts rapidly with hydroxyl radicals indicating that advanced oxidation processes would be effective for its treatment. Degradation products were identified under each treatment process using accurate mass time-of-flight spectrometry and pathways of decay were proposed. The main transformation pathways in each process were: dechlorination of the benzene ring during direct photolysis; hydroxyl group addition to the benzene ring during the reaction with hydroxyl radicals; and triazine ring opening after reaction with ozone. Different products that form in each process may be to a varying degree less environmentally stable than the parent lamotrigine. In addition, a novel method of ozone quenching without addition of salts is presented. The new quenching method would allow subsequent mass spectrometry analysis without a solid phase extraction clean-up step. The method involves raising the pH of the sample to approximately 10 for a few seconds and lowering it back and is therefore limited to applications for which temporary pH change is not expected to affect the outcome of the analysis.

  10. New high-performance liquid chromatographic method for plasma/serum analysis of lamotrigine.

    PubMed

    Croci, D; Salmaggi, A; de Grazia, U; Bernardi, G

    2001-12-01

    Lamotrigine is an anticonvulsant drug recently approved in Italy for clinical use. Therapeutic monitoring of lamotrigine is relevant for patient management and avoidance of toxicity. The authors describe a simple, sensitive, and highly selective high-performance liquid chromatography method that does not involved extraction for analysis of serum lamotrigine. Serum (20 microL) with internal standard (BW 725 C) was injected directly into a column (25 cm x 4.6 mm) with an internal surface reversed phase (ISRP). The mobile phase consisted of 0.01 mol/L potassium phosphate bibasic (pH 6.0) and acetonitrile (82:18), the flow rate was 1.0 mL/min, and UV detection was optimized at 330 nm. The overall between-run coefficient of variance ranged from 1.89% to 3.25% and the lowest limit of detection was 0.05 mg/L. High linearity (r = 0.9996) in a wide range of concentrations (0.1-20.0 mg/L) and no interference with other antiepileptic drugs, benzodiazepines, and tricyclic antidepressants were the other characteristics of the method. The innovation of this method is the use of ISRP column and the choice of detection wavelength, which allow a shorter analysis time (5-6 minutes). The possibility of direct injection of plasma samples into the column permits a reduction in reagent consumption and in analytic steps, and hence in analytic error.

  11. Treatment of seizures in subcortical laminar heterotopia with corpus callosotomy and lamotrigine.

    PubMed

    Vossler, D G; Lee, J K; Ko, T S

    1999-05-01

    Focal and generalized cortical dysgeneses are sometimes seen on the magnetic resonance images (MRI) of patients with epilepsy. Subcortical laminar heterotopia are bilateral collections of gray matter in the centrum semiovale that resemble a band or "double cortex" on MRI. We studied one male and two female patients with subcortical laminar heterotopia who had moderate to severe developmental delay, early-onset epilepsy, and medically refractory seizures. Atonic, atypical absence, tonic, myoclonic, complex partial, and generalized tonic-clonic seizures were recorded. Interictal and ictal electroencephalographic patterns were generalized and, less commonly, multifocal. Two years after corpus callosotomy, one patient was free of generalized tonic-clonic and atonic seizures, but the other patient who had undergone callosotomy had no significant reduction in seizure frequency. With lamotrigine treatment, the patient who had not had surgery had complete cessation of monthly episodes of status epilepticus and a dramatic reduction of generalized tonic-clonic seizures, and the other patient who received lamotrigine had a 50% reduction of her atonic seizures. In patients with subcortical laminar heterotopia, atonic and generalized tonic-clonic seizures can be substantially reduced or eliminated by corpus callosotomy or treatment with lamotrigine.

  12. Extending the lifespan of nuclear power plant structures

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.

    1995-04-01

    By the end of this decade, 63 of the 111 commercial nuclear power plants in the United States will be more than 20 years old, with some nearing the end of their 40-year operating license term. Faced with the prospect of having to replace lost generating capacity from other sources and substantial shutdown and decommissioning costs, many utilities are expected to apply to continue the service of their plants past the initial licensing period. In support of such applications, evidence should be provided that the capacity of the safety-related systems and structures to mitigate potential extreme events has not deteriorated unacceptably due to either aging or environmental stressor effects during the previous service history.

  13. Myc-dependent genome instability and lifespan in Drosophila.

    PubMed

    Greer, Christina; Lee, Moonsook; Westerhof, Maaike; Milholland, Brandon; Spokony, Rebecca; Vijg, Jan; Secombe, Julie

    2013-01-01

    The Myc family of transcription factors are key regulators of cell growth and proliferation that are dysregulated in a large number of human cancers. When overexpressed, Myc family proteins also cause genomic instability, a hallmark of both transformed and aging cells. Using an in vivo lacZ mutation reporter, we show that overexpression of Myc in Drosophila increases the frequency of large genome rearrangements associated with erroneous repair of DNA double-strand breaks (DSBs). In addition, we find that overexpression of Myc shortens adult lifespan and, conversely, that Myc haploinsufficiency reduces mutation load and extends lifespan. Our data provide the first evidence that Myc may act as a pro-aging factor, possibly through its ability to greatly increase genome instability.

  14. Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide.

    PubMed

    Schmeisser, Kathrin; Mansfeld, Johannes; Kuhlow, Doreen; Weimer, Sandra; Priebe, Steffen; Heiland, Ines; Birringer, Marc; Groth, Marco; Segref, Alexandra; Kanfi, Yariv; Price, Nathan L; Schmeisser, Sebastian; Schuster, Stefan; Pfeiffer, Andreas F H; Guthke, Reinhard; Platzer, Matthias; Hoppe, Thorsten; Cohen, Haim Y; Zarse, Kim; Sinclair, David A; Ristow, Michael

    2013-11-01

    Sirtuins, a family of histone deacetylases, have a fiercely debated role in regulating lifespan. In contrast with recent observations, here we find that overexpression of sir-2.1, the ortholog of mammalian SirT1, does extend Caenorhabditis elegans lifespan. Sirtuins mandatorily convert NAD(+) into nicotinamide (NAM). We here find that NAM and its metabolite, 1-methylnicotinamide (MNA), extend C. elegans lifespan, even in the absence of sir-2.1. We identify a previously unknown C. elegans nicotinamide-N-methyltransferase, encoded by a gene now named anmt-1, to generate MNA from NAM. Disruption and overexpression of anmt-1 have opposing effects on lifespan independent of sirtuins, with loss of anmt-1 fully inhibiting sir-2.1-mediated lifespan extension. MNA serves as a substrate for a newly identified aldehyde oxidase, GAD-3, to generate hydrogen peroxide, which acts as a mitohormetic reactive oxygen species signal to promote C. elegans longevity. Taken together, sirtuin-mediated lifespan extension depends on methylation of NAM, providing an unexpected mechanistic role for sirtuins beyond histone deacetylation.

  15. Role of Sirtuins in Lifespan Regulation is Linked to Methylation of Nicotinamide

    PubMed Central

    Schmeisser, Kathrin; Mansfeld, Johannes; Kuhlow, Doreen; Weimer, Sandra; Priebe, Steffen; Heiland, Ines; Birringer, Marc; Groth, Marco; Segref, Alexandra; Kanfi, Yariv; Price, Nathan L.; Schmeisser, Sebastian; Schuster, Stefan; Pfeiffer, Andreas; Guthke, Reinhard; Platzer, Matthias; Hoppe, Thorsten; Cohen, Haim Y.; Zarse, Kim; Sinclair, David A.; Ristow, Michael

    2014-01-01

    Sirtuins, a family of histone deacetylases, have a fiercely debated role in regulating lifespan. Contrasting recent observations, we here find that overexpression of sir-2.1, the orthologue of mammalian SirT1, does extend C. elegans lifespan. Sirtuins mandatorily convert NAD+ into nicotinamide (NAM). We here find that NAM and its metabolite, 1-methylnicotinamide (MNA), extend C. elegans lifespan, even in the absence of sir-2.1. We identify anmt-1 to encode a C. elegans orthologue of nicotinamide-N-methyltransferase (NNMT), the enzyme that methylates NAM to generate MNA. Disruption and overexpression of anmt-1 have opposing effects on lifespan independent of sirtuins, with loss of anmt-1 fully inhibiting sir-2.1-mediated lifespan extension. MNA serves as a substrate for a newly identified aldehyde oxidase, GAD-3, to generate hydrogen peroxide acting as a mitohormetic ROS signal to promote C. elegans longevity. Taken together, sirtuin-mediated lifespan extension depends on methylation of NAM, providing an unexpected mechanistic role for sirtuins beyond histone deacetylation. PMID:24077178

  16. Anxiolytic effects of lamotrigine and JZP-4 in the elevated plus maze and in the four plate conflict test.

    PubMed

    Foreman, Mark M; Hanania, Taleen; Eller, Mark

    2009-01-14

    JZP-4 is a novel with anticonvulsant, antidepressant and antimania effects in preclinical models. It has some structural similarity to the sodium channel blocker, lamotrigine, but it has both potent sodium and calcium channel blocking activity. In the current studies, JZP-4 was tested in comparison to lamotrigine in the four plate and elevated plus maze tests for anxiolytic activity. In the four plate test, treatment with JZP-4 (30 mg/kg i.p.) produced significant increases in the number of punished crossings. In contrast, lamotrigine produced an inverted U shaped response with a significant increase in punished crossings at 10 mg/kg i.p. but not at 3 or 30 mg/kg i.p. The increased number of punished crossings induced by JZP-4 was similar to that produced by alprazolam (0.3 mg/kg i.p.). In the elevated plus maze test, treatment with either JZP-4 or lamotrigine at 10 mg/kg i.p. produced significant increases in the distance traveled in the open arms. However, only JZP-4 (10 mg/kg i.p.) produced significant increase in the percent of time spend in the open arms. JZP-4, lamotrigine and diazepam did not produce significant changes in the total distance traveled. Indicating that at the doses tested these compounds did not have a sedative effect. These studies have provided preliminary evidence that JZP-4 could have anxiolytic effects in addition to the anticonvulsant, antidepressant and antimania effects reported earlier.

  17. Add-on Lamotrigine Treatment for Subsyndromal Depression after Manic or Mixed States in Bipolar Disorder Improved the Quality of Life

    PubMed Central

    Muneoka, Katsumasa; Kon, Katsushi; Kawabe, Masaharu; Ui, Rui; Miura, Taichi; Iimura, Touta; Kimura, Shou

    2012-01-01

    Two cases of patients experienced subsyndromal depression after manic or mixed hypomanic and depressive episodes due to bipolar I (case 1) and II (case 2) disorders prior to the use of lamotrigine. Case 1 showed episodes of mood switching induced by antidepressants and seasonal mood instability. Case 2 showed hippocampal atrophy and a persistent dull headache that preceded the use of lamotrigine. Both were successfully treated with add-on lamotrigine therapy, and the dull headache was effectively treated with olanzapine. Both patients improved in social activity and work performance after these add-on treatments. Thus, add-on treatment with lamotrigine alone or in combination with olanzapine was an effective strategy to improve the quality of life in bipolar depression. Subsyndromal depression that present after the disappearance of the manic or mixed state was suggested to be practical indication for the use of lamotrigine. PMID:23049569

  18. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    SciTech Connect

    Kamei, Yuka; Tamura, Takayuki; Yoshida, Ryo; Ohta, Shinji; Fukusaki, Eiichiro; Mukai, Yukio

    2011-04-01

    Highlights: {yields}We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. {yields} Deletion of the UGA1 or GAD1 genes extends replicative lifespan. {yields} Addition of GABA to wild-type cultures has no effect on lifespan. {yields} Intracellular GABA levels do not differ in longevity mutants and wild-type cells. {yields} Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for {gamma}-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The {Delta}uga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for {Delta}uga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of {sup 1}H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan

  19. Carbon Dioxide Sensing Modulates Lifespan and Physiology in Drosophila

    PubMed Central

    Poon, Peter C.; Kuo, Tsung-Han; Linford, Nancy J.; Roman, Gregg; Pletcher, Scott D.

    2010-01-01

    For nearly all life forms, perceptual systems provide access to a host of environmental cues, including the availability of food and mates as well as the presence of disease and predators. Presumably, individuals use this information to assess the current and future states of the environment and to enact appropriate developmental, behavioral, and regulatory decisions. Recent work using the nematode worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster, has established that aging is subject to modulation through neurosensory systems and that this regulation is evolutionarily conserved. To date, sensory manipulations shown to impact Drosophila aging have involved general loss of function or manipulation of complex stimuli. We therefore know little about the specific inputs, sensors, or associated neural circuits that affect these life and death decisions. We find that a specialized population of olfactory neurons that express receptor Gr63a (a component of the olfactory receptor for gaseous phase CO2) affects fly lifespan and physiology. Gr63a loss of function leads to extended lifespan, increased fat deposition, and enhanced resistance to some (but not all) environmental stresses. Furthermore, we find that the reduced lifespan that accompanies exposure to odors from live yeast is dependent on Gr63a. Together these data implicate a specific sensory cue (CO2) and its associated receptor as having the ability to modulate fly lifespan and alter organism stress response and physiology. Because Gr63a is expressed in a well-defined population of neurons, future work may now be directed at dissecting more complex neurosensory and neuroendocrine circuits that modulate aging in Drosophila. PMID:20422037

  20. Treatment Effects of Onion (Allium cepa) and Ginger (Zingiber officinale) on Sexual Behavior of Rat after Inducing an Antiepileptic Drug (lamotrigine)

    PubMed Central

    Khaki, Arash; Farnam, Alireza; Badie, Arash Davatgar; Nikniaz, Hussein

    2012-01-01

    Objective: The aim of the present study was to evaluate the beneficial degree of sexual behavior in male rats after inducement of onion and ginger in lamotrigine receiving groups. Material and Methods: Wistar rats (n=70) (male=35, female=35) were allocated so that males were divided into seven groups: control (n=5) and test groups (n=35). Control group used normal Saline (3 cc for each rat). Lamotrigine group were given Lamotrigine (10 mg/kg). Onion group used onion fresh juice (3 cc for each rat/daily). Ginger group was fed on ginger powder (100 mg/kg/daily). Onion & Lamotrigine group used both onion juice (3 cc fresh onion juice for each rat/day) and Lamotrigine (10 mg/kg). Ginger & Lamotrigine group used both ginger powder (100 mg/kg/day) and Lamotrigine (10 mg/kg/day). Onion, ginger & Lamortigine group jointly used ginger powder (100 mg/kg/day) and onion juice (3 cc juice for each rat) and Lamotrigine (10 mg/kg/day). All groups were given treatments orally. For sexual behaviors, Estradiolbenzoate (50 microgram) and 6 hours before test (500 microgram) progesterone was injected to the female rats subcutaneously. Then rats were viewed for erection, ejaculation and cup. Results: There was maximum Serum total testosterone level in the onion group, there was maximum malondialdehyde (MDA) in the Lamotrigine group and there was maximum total antioxidant capacity in both the onion group and ginger group (p<0.05). Conclusion: Results revealed that administration of (100 mg/kg/day) of ginger powder, and freshly prepared onion juice (3 cc for each rat), significantly lowered the adverse effects of lamotrigine, and can have beneficial effects on sexual behavior in male rat. PMID:25207007

  1. Human Metabolite Lamotrigine-N(2)-glucuronide Is the Principal Source of Lamotrigine-Derived Compounds in Wastewater Treatment Plants and Surface Water.

    PubMed

    Zonja, Bozo; Pérez, Sandra; Barceló, Damià

    2016-01-05

    Wastewater and surface water samples, extracted with four solid-phase extraction cartridges of different chemistries, were suspect-screened for the anticonvulsant lamotrigine (LMG), its metabolites, and related compounds. LMG, three human metabolites, and a LMG synthetic impurity (OXO-LMG) were detected. Preliminary results showed significantly higher concentrations of OXO-LMG in wastewater effluent, suggesting its formation in the wastewater treatment plants (WWTPs). However, biodegradation experiments with activated sludge demonstrated that LMG is resistant to degradation and that its human metabolite lamotrigine-N(2)-glucuronide (LMG-N2-G) is the actual source of OXO-LMG in WWTPs. In batch reactors, LMG-N2-G was transformed, following pseudo-first-order kinetics to OXO-LMG and LMG, but kinetic experiments suggested an incomplete mass balance. A fragment ion search applied to batch-reactor and environmental samples revealed another transformation product (TP), formed by LMG-N2-G oxidation, which was identified by high-resolution mass spectrometry. Accounting for all TPs detected, a total mass balance at two concentration levels in batch reactors was closed at 86% and 102%, respectively. In three WWTPs, the total mass balance of LMG-N2-G ranged from 71 to 102%. Finally, LMG-N2-G and its TPs were detected in surface water samples with median concentration ranges of 23-139 ng L(-1). The results of this study suggest that glucuronides of pharmaceuticals might also be sources of yet undiscovered, but environmentally relevant, transformation products.

  2. Hormonal Programming Across the Lifespan

    PubMed Central

    Tobet, Stuart A; Lara, Hernan E; Lucion, Aldo B; Wilson, Melinda E; Recabarren, Sergio E; Paredes, Alfonso H

    2013-01-01

    Hormones influence countless biological processes across the lifespan, and during developmental sensitive periods hormones have the potential to cause permanent tissue-specific alterations in anatomy and physiology. There are numerous critical periods in development wherein different targets are affected. This review outlines the proceedings of the Hormonal Programming in Development session at the US-South American Workshop in Neuroendocrinology in August 2011. Here we discuss how gonadal hormones impact various biological processes within the brain and gonads during early development and describe the changes that take place in the aging female ovary. At the cellular level, hormonal targets in the brain include neurons, glia, or vasculature. On a genomic/epigenomic level, transcription factor signaling and epigenetic changes alter the expression of hormone receptor genes across development and following ischemic brain insult. In addition, organizational hormone exposure alters epigenetic processes in specific brain nuclei and may be a mediator of sexual differentiation of the neonatal brain. During development of the ovary, exposure to excess gonadal hormones leads to polycystic ovarian syndrome (PCOS). Exposure to excess androgens during fetal development also has a profound effect on the development of the male reproductive system. In addition, increased sympathetic nerve activity and stress during early life have been linked to PCOS symptomology in adulthood. Finally, we describe how age-related decreases in fertility are linked to high levels of nerve growth factor (NGF), which enhances sympathetic nerve activity and alters ovarian function. PMID:22700441

  3. Sexes suffer from suboptimal lifespan because of genetic conflict in a seed beetle

    PubMed Central

    Berg, Elena C.; Maklakov, Alexei A.

    2012-01-01

    Males and females have different routes to successful reproduction, resulting in sex differences in lifespan and age-specific allocation of reproductive effort. The trade-off between current and future reproduction is often resolved differently by males and females, and both sexes can be constrained in their ability to reach their sex-specific optima owing to intralocus sexual conflict. Such genetic antagonism may have profound implications for evolution, but its role in ageing and lifespan remains unresolved. We provide direct experimental evidence that males live longer and females live shorter than necessary to maximize their relative fitness in Callosobruchus maculatus seed beetles. Using artificial selection in a genetically heterogeneous population, we created replicate long-life lines where males lived on average 27 per cent longer than in short-life lines. As predicted by theory, subsequent assays revealed that upward selection on male lifespan decreased relative male fitness but increased relative female fitness compared with downward selection. Thus, we demonstrate that lifespan-extending genes can help one sex while harming the other. Our results show that sexual antagonism constrains adaptive life-history evolution, support a novel way of maintaining genetic variation for lifespan and argue for better integration of sex effects into applied research programmes aimed at lifespan extension. PMID:22915670

  4. Sexes suffer from suboptimal lifespan because of genetic conflict in a seed beetle.

    PubMed

    Berg, Elena C; Maklakov, Alexei A

    2012-10-22

    Males and females have different routes to successful reproduction, resulting in sex differences in lifespan and age-specific allocation of reproductive effort. The trade-off between current and future reproduction is often resolved differently by males and females, and both sexes can be constrained in their ability to reach their sex-specific optima owing to intralocus sexual conflict. Such genetic antagonism may have profound implications for evolution, but its role in ageing and lifespan remains unresolved. We provide direct experimental evidence that males live longer and females live shorter than necessary to maximize their relative fitness in Callosobruchus maculatus seed beetles. Using artificial selection in a genetically heterogeneous population, we created replicate long-life lines where males lived on average 27 per cent longer than in short-life lines. As predicted by theory, subsequent assays revealed that upward selection on male lifespan decreased relative male fitness but increased relative female fitness compared with downward selection. Thus, we demonstrate that lifespan-extending genes can help one sex while harming the other. Our results show that sexual antagonism constrains adaptive life-history evolution, support a novel way of maintaining genetic variation for lifespan and argue for better integration of sex effects into applied research programmes aimed at lifespan extension.

  5. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans

    PubMed Central

    Apfeld, Javier; O'Connor, Greg; McDonagh, Tom; DiStefano, Peter S.; Curtis, Rory

    2004-01-01

    Although limiting energy availability extends lifespan in many organisms, it is not understood how lifespan is coupled to energy levels. We find that the AMP:ATP ratio, a measure of energy levels, increases with age in Caenorhabditis elegans and can be used to predict life expectancy. The C. elegans AMP-activated protein kinase α subunit AAK-2 is activated by AMP and functions to extend lifespan. In addition, either an environmental stressor that increases the AMP:ATP ratio or mutations that lower insulin-like signaling extend lifespan in an aak-2-dependent manner. Thus, AAK-2 is a sensor that couples lifespan to information about energy levels and insulin-like signals. PMID:15574588

  6. Clinical Usefulness of Aripiprazole and Lamotrigine in Schizoaffective Presentation of Tuberous Sclerosis

    PubMed Central

    Lee, Seung-Yup; Min, Jung-Ah; Lee, In Goo; Kim, Jung Jin

    2016-01-01

    Tuberous sclerosis is not as rare as once thought and has high psychiatric comorbidities. However, bipolar or psychotic features associated with tuberous sclerosis have been rarely reported. This report first presents a tuberous sclerosis patient, resembling a schizoaffective disorder of bipolar type. A patient with known tuberous sclerosis displayed mood fluctuation and psychotic features. Her symptoms did not remit along with several psychiatric medications. After hospitalization, the patient responded well with lamotrigine and aripiprazole without exacerbation. As demonstrated in this case, tuberous sclerosis may also encompass bipolar affective or psychotic features. We would like to point out the necessity to consider bipolarity in evaluating and treating tuberous sclerosis. PMID:27489387

  7. Dance Talent Development across the Lifespan: A Review of Current Research

    ERIC Educational Resources Information Center

    Chua, Joey

    2014-01-01

    The aim of this study is to compile and synthesize empirically based articles published between 2000 and 2012 about the critical issues of developing dance talents across the lifespan of children, adolescents and adults. The present article updates and extends a review article related to the identification and development in dance written by…

  8. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer.

    PubMed

    Strong, Randy; Miller, Richard A; Antebi, Adam; Astle, Clinton M; Bogue, Molly; Denzel, Martin S; Fernandez, Elizabeth; Flurkey, Kevin; Hamilton, Karyn L; Lamming, Dudley W; Javors, Martin A; de Magalhães, João Pedro; Martinez, Paul Anthony; McCord, Joe M; Miller, Benjamin F; Müller, Michael; Nelson, James F; Ndukum, Juliet; Rainger, G Ed; Richardson, Arlan; Sabatini, David M; Salmon, Adam B; Simpkins, James W; Steegenga, Wilma T; Nadon, Nancy L; Harrison, David E

    2016-10-01

    The National Institute on Aging Interventions Testing Program (ITP) evaluates agents hypothesized to increase healthy lifespan in genetically heterogeneous mice. Each compound is tested in parallel at three sites, and all results are published. We report the effects of lifelong treatment of mice with four agents not previously tested: Protandim, fish oil, ursodeoxycholic acid (UDCA) and metformin - the latter with and without rapamycin, and two drugs previously examined: 17-α-estradiol and nordihydroguaiaretic acid (NDGA), at doses greater and less than used previously. 17-α-estradiol at a threefold higher dose robustly extended both median and maximal lifespan, but still only in males. The male-specific extension of median lifespan by NDGA was replicated at the original dose, and using doses threefold lower and higher. The effects of NDGA were dose dependent and male specific but without an effect on maximal lifespan. Protandim, a mixture of botanical extracts that activate Nrf2, extended median lifespan in males only. Metformin alone, at a dose of 0.1% in the diet, did not significantly extend lifespan. Metformin (0.1%) combined with rapamycin (14 ppm) robustly extended lifespan, suggestive of an added benefit, based on historical comparison with earlier studies of rapamycin given alone. The α-glucosidase inhibitor, acarbose, at a concentration previously tested (1000 ppm), significantly increased median longevity in males and 90th percentile lifespan in both sexes, even when treatment was started at 16 months. Neither fish oil nor UDCA extended lifespan. These results underscore the reproducibility of ITP longevity studies and illustrate the importance of identifying optimal doses in lifespan studies.

  9. Lifespan extension of rotifers by treatment with red algal extracts

    PubMed Central

    Snare, David J.; Fields, Allison M.; Snell, Terry W.; Kubanek, Julia

    2013-01-01

    Aging results from an accumulation of damage to macromolecules inhibiting cellular replication, repair, and other necessary functions. Damage may be due to environmental stressors such as metal toxicity, oxidative stress caused by imperfections in electron transfer reactions, or other metabolic processes. In an effort to discover medical treatments that counteract this damage, we initiated a search for small molecule drugs from natural sources using life table experiments which, through their unbiased approach, present the opportunity to discover first-in-class molecules. We have identified marine red algae as a source of natural products that slow aging of the invertebrate rotifer Brachionus manjavacas. Rotifers are a promising model organism for life extension studies as they maintain a short, measurable lifespan while also having an extensive literature related to aging. Rotifer lifespan was increased 9–14% by exposure to three of a total of 200 screened red algal extracts. Bioassay guided fractionation led to semi-purified extracts composed primarily of lipids responsible for rotifer life extension. The life extending mixture from the red alga Acanthophora spicifera contained eicosanoic, octadecanoic, and hexadecanoic acids as well as several unidentified unsaturated fatty acids. The life extending effects of these small molecule mixtures are not a result of their direct antioxidant capacity; other unknown mechanisms of action are likely involved. An understanding of how these natural products interact with their molecular targets could lead to selective and effective treatments for slowing aging and reducing age related diseases. PMID:24120568

  10. Lifespan extension of rotifers by treatment with red algal extracts.

    PubMed

    Snare, David J; Fields, Allison M; Snell, Terry W; Kubanek, Julia

    2013-12-01

    Aging results from an accumulation of damage to macromolecules inhibiting cellular replication, repair, and other necessary functions. Damage may be due to environmental stressors such as metal toxicity, oxidative stress caused by imperfections in electron transfer reactions, or other metabolic processes. In an effort to discover medical treatments that counteract this damage, we initiated a search for small molecule drugs from natural sources using life table experiments which, through their unbiased approach, present the opportunity to discover first-in-class molecules. We have identified marine red algae as a source of natural products that slow aging of the invertebrate rotifer Brachionus manjavacas. Rotifers are a promising model organism for life extension studies as they maintain a short, measurable lifespan while also having an extensive literature related to aging. Rotifer lifespan was increased 9-14% by exposure to three of a total of 200 screened red algal extracts. Bioassay guided fractionation led to semi-purified extracts composed primarily of lipids responsible for rotifer life extension. The life extending mixture from the red alga Acanthophora spicifera contained eicosanoic, octadecanoic, and hexadecanoic acids as well as several unidentified unsaturated fatty acids. The life extending effects of these small molecule mixtures are not a result of their direct antioxidant capacity; other unknown mechanisms of action are likely involved. An understanding of how these natural products interact with their molecular targets could lead to selective and effective treatments for slowing aging and reducing age related diseases.

  11. [Characteristics of hypersensitivity syndrome to lamotrigine: review of one case reported in the Regional Center of Pharmacovigilance of Nantes].

    PubMed

    Veyrac, G; Marcade, G; Chiffoleau, A; Bourin, M; Jolliet, P

    2002-01-01

    Drug-induced hypersensitivity syndrome is an uncommon but potentially life-threatening idiosyncratic drug reaction. In the literature, about five cases have been reported concerning hypersensitivity syndrome with lamotrigine. Most cases concern aromatic anticonvulsants but we report a case induced by lamotrigine which is a non aromatic anticonvulsant. A 73-year-old man was treated with lamotrigine for epilepsy due to a cerebrovascular stroke for 5 weeks. After 2 weeks with a single oral dose of 50 mg lamotrigine, the patient received 100 mg. Quickly thereafter fever, erythema and edema involving the periorbital area appeared. He was then admitted to hospital and lamotrigine was immediately discontinued. He developed acute hepatic and renal failure. During his hospital stay, he was treated with systemic and topical corticosteroids. After slow improvement, he was discharged 4 weeks later. Concerning this typical case, we review the characteristics of hypersensitivity syndrome and the different etiopathogenesis. The hypersensitivity syndrome typically develops two to six weeks after a drug is first administered, later than most other serious skin reactions. This syndrome manifests as rash, fever, tender lymphadenopathy, hepatitis and eosinophilia. The mechanism of hypersensitivity syndrome is unknown. Several theories have been proposed. The reaction is secondary to circulating antibodies or concerns toxic metabolities. On the other hand, association of human herpes virus 6 infection may play a role in the development of hypersensitivity syndrome. Hypersensitivity reactions to the aromatic antiepileptic drugs appear to have an immune etiology much like lamotrigine: bioactivation, detoxification, covalent adduct formation, processing and presentation of antigen to the immune system, and consequent formation of antibody and T-cell immune effectors. Another theory involves toxic metabolites; the aromatic antiepileptic agents are metabolised by cytochrome P-450 to an

  12. The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans

    SciTech Connect

    Fierro-Gonzalez, Juan Carlos; Gonzalez-Barrios, Maria; Miranda-Vizuete, Antonio

    2011-03-18

    Highlights: {yields} First in vivo data for thioredoxin in dietary-restriction-(DR)-induced longevity. {yields} Thioredoxin (trx-1) loss suppresses longevity of eat-2 mutant, a genetic DR model. {yields} trx-1 overexpression extends wild-type longevity, but not that of eat-2 mutant. {yields} Longevity by dietary deprivation (DD), a non-genetic DR model, requires trx-1. {yields} trx-1 expression in ASJ neurons of aging adults is increased in response to DD. -- Abstract: Dietary restriction (DR) is the only environmental intervention known to extend adult lifespan in a wide variety of animal models. However, the genetic and cellular events that mediate the anti-aging programs induced by DR remain elusive. Here, we used the nematode Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) regulates adult lifespan extension induced by DR. We found that deletion of the gene trx-1 completely suppressed the lifespan extension caused by mutation of eat-2, a genetic surrogate of DR in the worm. However, trx-1 deletion only partially suppressed the long lifespan caused by mutation of the insulin-like receptor gene daf-2 or by mutation of the sensory cilia gene osm-5. A trx-1::GFP translational fusion expressed from its own promoter in ASJ neurons (Ptrx-1::trx-1::GFP) rescued the trx-1 deletion-mediated suppression of the lifespan extension caused by mutation of eat-2. This rescue was not observed when trx-1::GFP was expressed from the ges-1 promoter in the intestine. In addition, overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type, but not in eat-2 mutants. trx-1 deletion almost completely suppressed the lifespan extension induced by dietary deprivation (DD), a non-genetic, nutrient-based model of DR in the worm. Moreover, DD upregulated the expression of a trx-1 promoter-driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of aging adults, but not that of control Pgpa-9::GFP (which is also expressed in ASJ neurons). We propose

  13. Lipidome determinants of maximal lifespan in mammals.

    PubMed

    Bozek, Katarzyna; Khrameeva, Ekaterina E; Reznick, Jane; Omerbašić, Damir; Bennett, Nigel C; Lewin, Gary R; Azpurua, Jorge; Gorbunova, Vera; Seluanov, Andrei; Regnard, Pierrick; Wanert, Fanelie; Marchal, Julia; Pifferi, Fabien; Aujard, Fabienne; Liu, Zhen; Shi, Peng; Pääbo, Svante; Schroeder, Florian; Willmitzer, Lothar; Giavalisco, Patrick; Khaitovich, Philipp

    2017-12-01

    Maximal lifespan of mammalian species, even if closely related, may differ more than 10-fold, however the nature of the mechanisms that determine this variability is unresolved. Here, we assess the relationship between maximal lifespan duration and concentrations of more than 20,000 lipid compounds, measured in 669 tissue samples from 6 tissues of 35 species representing three mammalian clades: primates, rodents and bats. We identify lipids associated with species' longevity across the three clades, uncoupled from other parameters, such as basal metabolic rate, body size, or body temperature. These lipids clustered in specific lipid classes and pathways, and enzymes linked to them display signatures of greater stabilizing selection in long-living species, and cluster in functional groups related to signaling and protein-modification processes. These findings point towards the existence of defined molecular mechanisms underlying variation in maximal lifespan among mammals.

  14. C. elegans lifespan extension by osmotic stress requires FUdR, base excision repair, FOXO, and sirtuins

    PubMed Central

    Anderson, Edward N; Corkins, Mark E; Li, Jia-Cheng; Singh, Komudi; Parsons, Sadé; Tucey, Tim M; Sorkaç, Altar; Huang, Huiyan; Dimitriadi, Maria; Sinclair, David A

    2016-01-01

    Moderate stress can increase lifespan by hormesis, a beneficial low-level induction of stress response pathways. 5’-fluorodeoxyuridine (FUdR) is commonly used to sterilize Caenorhabditis elegans in aging experiments. However, FUdR alters lifespan in some genotypes and induces resistance to thermal and proteotoxic stress. We report that hypertonic stress in combination with FUdR treatment or inhibition of the FUdR target thymidylate synthase, TYMS-1, extends C. elegans lifespan by up to 30%. By contrast, in the absence of FUdR, hypertonic stress decreases lifespan. Adaptation to hypertonic stress requires diminished Notch signaling and loss of Notch co-ligands leads to lifespan extension only in combination with FUdR. Either FUdR treatment or TYMS-1 loss induced resistance to acute hypertonic stress, anoxia, and thermal stress. FUdR treatment increased expression of DAF-16 FOXO and the osmolyte biosynthesis enzyme GPDH-1. FUdR-induced hypertonic stress resistance was partially dependent on sirtuins and base excision repair (BER) pathways, while FUdR-induced lifespan extension under hypertonic stress conditions requires DAF-16, BER, and sirtuin function. Combined, these results demonstrate that FUdR, through inhibition of TYMS-1, activates stress response pathways in somatic tissues to confer hormetic resistance to acute and chronic stress. C. elegans lifespan studies using FUdR may need re-interpretation in light of this work. PMID:26854551

  15. The role of the ribosome in the regulation of longevity and lifespan extension.

    PubMed

    MacInnes, Alyson W

    2016-01-01

    The most energy-consuming process that a cell must undertake to stay viable is the continuous biogenesis of ribosomes for the translation of RNA into protein. Given the inextricable links between energy consumption and cellular lifespan, it is not surprising that mutations and environmental cues that reduce ribosome biogenesis result in an extension of eukaryotic lifespan. This review goes into detail describing recent discoveries of different and often unexpected elements that play a role in the regulation of longevity by virtue of their ribosome biogenesis functions. These roles include controlling the transcription and processing of ribosomal RNA (rRNA), the translation of ribosomal protein (RP) genes, and the number of ribosomes overall. Together these findings suggest that a fundamental mechanism across eukaryotic species for extending lifespan is to slow down or halt the expenditure of cellular energy that is normally absorbed by the manufacturing and assembly of new ribosomes.

  16. Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet.

    PubMed

    Moreno, Cesar L; Mobbs, Charles V

    2016-11-22

    Aging constitutes the central risk factor for major diseases including many forms of cancer, neurodegeneration, and cardiovascular diseases. The aging process is characterized by both global and tissue-specific changes in gene expression across taxonomically diverse species. While aging has historically been thought to entail cell-autonomous, even stochastic changes, recent evidence suggests that modulation of this process can be hierarchal, wherein manipulations of nutrient-sensing neurons (e.g., in the hypothalamus) produce peripheral effects that may modulate the aging process itself. The most robust intervention extending lifespan, plausibly impinging on the aging process, involves different modalities of dietary restriction (DR). Lifespan extension by DR is associated with broad protection against diseases (natural and engineered). Here we review potential epigenetic processes that may link lifespan to age-related diseases, particularly in the context of DR and (other) ketogenic diets, focusing on brain and hypothalamic mechanisms.

  17. Regulation of Drosophila lifespan by JNK signaling

    PubMed Central

    Biteau, Benoit; Karpac, Jason; Hwangbo, DaeSung; Jasper, Heinrich

    2010-01-01

    Cellular responses to extrinsic and intrinsic insults have to be carefully regulated to properly coordinate cytoprotection, repair processes, cell proliferation and apoptosis. Stress signaling pathways, most prominently the Jun-N-terminal Kinase (JNK) pathway, are critical regulators of such cellular responses and have accordingly been implicated in the regulation of lifespan in various organisms. JNK signaling promotes cytoprotective gene expression, but also interacts with the Insulin signaling pathway to influence growth, metabolism, stress tolerance and regeneration. Here, we review recent studies in Drosophila that elucidate the tissue-specific and systemic consequences of JNK activation that ultimately impact lifespan of the organism. PMID:21111799

  18. FET proteins regulate lifespan and neuronal integrity

    PubMed Central

    Therrien, Martine; Rouleau, Guy A.; Dion, Patrick A.; Parker, J. Alex

    2016-01-01

    The FET protein family includes FUS, EWS and TAF15 proteins, all of which have been linked to amyotrophic lateral sclerosis, a fatal neurodegenerative disease affecting motor neurons. Here, we show that a reduction of FET proteins in the nematode Caenorhabditis elegans causes synaptic dysfunction accompanied by impaired motor phenotypes. FET proteins are also involved in the regulation of lifespan and stress resistance, acting partially through the insulin/IGF-signalling pathway. We propose that FET proteins are involved in the maintenance of lifespan, cellular stress resistance and neuronal integrity. PMID:27117089

  19. A transcription elongation factor that links signals from the reproductive system to lifespan extension in Caenorhabditis elegans.

    PubMed

    Ghazi, Arjumand; Henis-Korenblit, Sivan; Kenyon, Cynthia

    2009-09-01

    In Caenorhabditis elegans and Drosophila melanogaster, the aging of the soma is influenced by the germline. When germline-stem cells are removed, aging slows and lifespan is increased. The mechanism by which somatic tissues respond to loss of the germline is not well-understood. Surprisingly, we have found that a predicted transcription elongation factor, TCER-1, plays a key role in this process. TCER-1 is required for loss of the germ cells to increase C. elegans' lifespan, and it acts as a regulatory switch in the pathway. When the germ cells are removed, the levels of TCER-1 rise in somatic tissues. This increase is sufficient to trigger key downstream events, as overexpression of tcer-1 extends the lifespan of normal animals that have an intact reproductive system. Our findings suggest that TCER-1 extends lifespan by promoting the expression of a set of genes regulated by the conserved, life-extending transcription factor DAF-16/FOXO. Interestingly, TCER-1 is not required for DAF-16/FOXO to extend lifespan in animals with reduced insulin/IGF-1 signaling. Thus, TCER-1 specifically links the activity of a broadly deployed transcription factor, DAF-16/FOXO, to longevity signals from reproductive tissues.

  20. Formulation Development and evaluation of fast disintegrating tablets of Lamotrigine using liqui-solid technique

    PubMed Central

    Koteswari, Poluri; Sunium, Suvarnala; Srinivasababu, Puttugunta; Babu, Govada Kishore; Nithya, Pinnamraju Durga

    2014-01-01

    Introduction: Epilepsy is a serious neurological disorder. Lamotrigine is an alternative to lithium for the treatment of epilepsy, and its oral bioavailability is 98%; however, its poor aqueous solubility hinders its oral absorption. Among the techniques available to enhance the solubility, dissolution rate and bio availability of poorly soluble drugs, liqui-solid technique is a novel and promising approach. The objectives of the investigation are to formulate, optimize lamotrigine liqui-solid compacts using 23 factorial experiments, validate experimental designs statistically and to compare with the marketed tablets using similarity and difference factors. Materials and Methods: Based on solubility studies tween 20 as nonvolatile liquid, avicel pH 101 as a carrier and aerosil 200 as a coating material were used. Liquid load factor other flow and compression characteristics were determined for different ratios of carrier and coat materials. Suitable quantities of carrier and coat materials were taken, according to the experimental designs other excipients were added, liqui-solid tablets were prepared by direct compression and evaluated. Drug excipient compatibility was determined using Fourier transform infrared spectroscopy (FTIR) analysis. The hardness, disintegration time and T75% were considered for validation of experimental designs. Results: The physicochemical properties of tablets such as hardness (1.5 ± 0.8–4.95 ± 0.96 kg), in vitro disintegration time (40 ± 20–320 ± 25 s) and Friability (0.39 ± 0.5–1.45 ± 0.2% also <1%) possess all the Indian pharmacopoeal requirements. The T75% was calculated and found to be 6.62–22.8 min. The rate of drug release followed first order kinetics. f1 and f2 values indicated the similarity in dissolution profiles between marketed and the optimized formulation and 63.64% similar with that of the marketed fast disintegrating tablets. FTIR studies revealed the absence of drug excipient incompatibility. PMID

  1. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol.

    PubMed

    Morselli, Eugenia; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Maiuri, Maria Chiara; Tavernarakis, Nektarios; Madeo, Frank; Kroemer, Guido

    2009-12-23

    Although autophagy has widely been conceived as a self-destructive mechanism that causes cell death, accumulating evidence suggests that autophagy usually mediates cytoprotection, thereby avoiding the apoptotic or necrotic demise of stressed cells. Recent evidence produced by our groups demonstrates that autophagy is also involved in pharmacological manipulations that increase longevity. Exogenous supply of the polyamine spermidine can prolong the lifespan of (while inducing autophagy in) yeast, nematodes and flies. Similarly, resveratrol can trigger autophagy in cells from different organisms, extend lifespan in nematodes, and ameliorate the fitness of human cells undergoing metabolic stress. These beneficial effects are lost when essential autophagy modulators are genetically or pharmacologically inactivated, indicating that autophagy is required for the cytoprotective and/or anti-aging effects of spermidine and resveratrol. Genetic and functional studies indicate that spermidine inhibits histone acetylases, while resveratrol activates the histone deacetylase Sirtuin 1 to confer cytoprotection/longevity. Although it remains elusive whether the same histones (or perhaps other nuclear or cytoplasmic proteins) act as the downstream targets of spermidine and resveratrol, these results point to an essential role of protein hypoacetylation in autophagy control and in the regulation of longevity.

  2. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol

    PubMed Central

    Morselli, Eugenia; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Maiuri, Maria Chiara; Tavernarakis, Nektarios; Madeo, Frank; Kroemer, Guido

    2009-01-01

    Although autophagy has widely been conceived as a self-destructive mechanism that causes cell death, accumulating evidence suggests that autophagy usually mediates cytoprotection, thereby avoiding the apoptotic or necrotic demise of stressed cells. Recent evidence produced by our groups demonstrates that autophagy is also involved in pharmacological manipulations that increase longevity. Exogenous supply of the polyamine spermidine can prolong the lifespan of (while inducing autophagy in) yeast, nematodes and flies. Similarly, resveratrol can trigger autophagy in cells from different organisms, extend lifespan in nematodes, and ameliorate the fitness of human cells undergoing metabolic stress. These beneficial effects are lost when essential autophagy modulators are genetically or pharmacologically inactivated, indicating that autophagy is required for the cytoprotective and/or anti-aging effects of spermidine and resveratrol. Genetic and functional studies indicate that spermidine inhibits histone acetylases, while resveratrol activates the histone deacetylase Sirtuin 1 to confer cytoprotection/longevity. Although it remains elusive whether the same histones (or perhaps other nuclear or cytoplasmic proteins) act as the downstream targets of spermidine and resveratrol, these results point to an essential role of protein hypoacetylation in autophagy control and in the regulation of longevity. PMID:20157579

  3. Inositol Hexakisphosphate Kinase 3 Regulates Metabolism and Lifespan in Mice

    PubMed Central

    Moritoh, Yusuke; Oka, Masahiro; Yasuhara, Yoshitaka; Hozumi, Hiroyuki; Iwachidow, Kimihiko; Fuse, Hiromitsu; Tozawa, Ryuichi

    2016-01-01

    Inositol hexakisphosphate kinase 3 (IP6K3) generates inositol pyrophosphates, which regulate diverse cellular functions. However, little is known about its own physiological role. Here, we show the roles of IP6K3 in metabolic regulation. We detected high levels of both mouse and human IP6K3 mRNA in myotubes and muscle tissues. In human myotubes, IP6K3 was upregulated by dexamethasone treatment, which is known to inhibit glucose metabolism. Furthermore, Ip6k3 expression was elevated under diabetic, fasting, and disuse conditions in mouse skeletal muscles. Ip6k3−/− mice demonstrated lower blood glucose, reduced circulating insulin, deceased fat mass, lower body weight, increased plasma lactate, enhanced glucose tolerance, lower glucose during an insulin tolerance test, and reduced muscle Pdk4 expression under normal diet conditions. Notably, Ip6k3 deletion extended animal lifespan with concomitant reduced phosphorylation of S6 ribosomal protein in the heart. In contrast, Ip6k3−/− mice showed unchanged skeletal muscle mass and no resistance to the effects of high fat diet. The current observations suggest novel roles of IP6K3 in cellular regulation, which impact metabolic control and lifespan. PMID:27577108

  4. Food insecurity and health across the lifespan.

    PubMed

    Lee, Jung Sun; Gundersen, Craig; Cook, John; Laraia, Barbara; Johnson, Mary Ann

    2012-09-01

    Our symposium entitled, "Food Insecurity and Health across the Lifespan" explored the latest research from the economic, medical, pediatric, geriatric, and nutrition literature concerning the measurement, prevalence, predictors, and consequences of food insecurity across the lifespan, with a focus on chronic disease, chronic disease management, and healthcare costs. Consideration of the health impacts of food insecurity is a new and timely area of research, with a considerable potential for translation of the findings into public policy surrounding alleviation of food insecurity. Although it is widely acknowledged that food insecurity and hunger are morally unacceptable, strategies to develop national policies to alleviate hunger must also approach this problem by considering the economic impact of food insecurity on health and well-being. The goals of this symposium were to: 1) learn about the prevalence and severity of food insecurity in the US across the lifespan and how this is increasing with the continued economic downturn; 2) understand the growing body of research that documents the impact of varying degrees of food insecurity on physical and mental health across the lifespan; 3) examine how food insecurity is related to chronic disease; and 4) explore research methodology to determine the impact of food insecurity on healthcare costs and utilization. Our symposium provided new and novel understandings and research initiatives directed toward alleviating food insecurity in America.

  5. Interdisciplinary Handbook of Adult Lifespan Learning.

    ERIC Educational Resources Information Center

    Sinnott, Jan D., Ed.

    This book is divided into three parts: theories and models, learning in specific life contexts, and the influence of aging on learning. Chapters include: "Chaos Theory as a Framework for Understanding Adult Lifespan Learning" (John C. Cavanaugh, Lisa C. McGuire); "The Future Impact of the Communication Revolution" (Lynn Johnson); "The Educated…

  6. Neuronal ROS signaling rather than AMPK/sirtuin-mediated energy sensing links dietary restriction to lifespan extension.

    PubMed

    Schmeisser, Sebastian; Priebe, Steffen; Groth, Marco; Monajembashi, Shamci; Hemmerich, Peter; Guthke, Reinhard; Platzer, Matthias; Ristow, Michael

    2013-01-01

    Dietary restriction (DR) extends lifespan and promotes metabolic health in evolutionary distinct species. DR is widely believed to promote longevity by causing an energy deficit leading to increased mitochondrial respiration. We here show that inhibitors of mitochondrial complex I promote physical activity, stress resistance as well as lifespan of Caenorhabditis elegans despite normal food uptake, i.e. in the absence of DR. However, complex I inhibition does not further extend lifespan in dietarily restricted nematodes, indicating that impaired complex I activity mimics DR. Promotion of longevity due to complex I inhibition occurs independently of known energy sensors, including DAF-16/FoxO, as well as AAK-2/AMPK and SIR-2.1/sirtuins, or both. Consistent with the concept of mitohormesis, complex I inhibition transiently increases mitochondrial formation of reactive oxygen species (ROS) that activate PMK-1/p38 MAP kinase and SKN-1/NRF-2. Interference with this retrograde redox signal as well as ablation of two redox-sensitive neurons in the head of the worm similarly prevents extension of lifespan. These findings unexpectedly indicate that DR extends organismal lifespan through transient neuronal ROS signaling rather than sensing of energy depletion, providing unexpected pharmacological options to promote exercise capacity and healthspan despite unaltered eating habits.

  7. Extension of Drosophila lifespan by cinnamon through a sex-specific dependence on the insulin receptor substrate chico.

    PubMed

    Schriner, Samuel E; Kuramada, Steven; Lopez, Terry E; Truong, Stephanie; Pham, Andrew; Jafari, Mahtab

    2014-12-01

    Cinnamon is a spice commonly used worldwide to flavor desserts, fruits, cereals, breads, and meats. Numerous health benefits have been attributed to its consumption, including the recent suggestion that it may decrease blood glucose levels in people with diabetes. Insulin signaling is an integral pathway regulating the lifespan of laboratory organisms, such as worms, flies, and mice. We posited that if cinnamon truly improved the clinical signs of diabetes in people that it would also act on insulin signaling in laboratory organisms and increase lifespan. We found that cinnamon did extend lifespan in the fruit fly, Drosophila melanogaster. However, it had no effect on the expression levels of the 3 aging-related Drosophila insulin-like peptides nor did it alter sugar, fat, or soluble protein levels, as would be predicted. In addition, cinnamon exhibited no protective effects in males against oxidative challenges. However, in females it did confer a protective effect against paraquat, but sensitized them to iron. Cinnamon provided no protective effect against desiccation and starvation in females, but sensitized males to both. Interestingly, cinnamon protected both sexes against cold, sensitized both to heat, and elevated HSP70 expression levels. We also found that cinnamon required the insulin receptor substrate to extend lifespan in males, but not females. We conclude that cinnamon does not extend lifespan by improving stress tolerance in general, though it does act, at least in part, through insulin signaling.

  8. Chemometric evaluation of the column classification system during the pharmaceutical analysis of lamotrigine and its related substances.

    PubMed

    Szulfer, Jarosław; Plenis, Alina; Bączek, Tomasz

    2013-08-01

    This paper investigates the performance of a column classification system developed at the Katholieke Universiteit Leuven applied to pharmaceutical chromatographic analyses. The liquid chromatography assay of lamotrigine and related compounds was carried out according to the method prescribed in the European Pharmacopoeia monograph, using 28 brands of stationary phases. A ranking was built based on the F KUL value calculated against the selected reference column, then compared with the column test performance established for the stationary phases studied. Therefore, the system suitability test prescribed by the European Pharmacopoeia in order to distinguish between suitable or unsuitable columns for this analysis was evaluated. Moreover, it was examined whether the classes of the stationary phases, determined using test parameter results, contain either suitable or unsuitable supports for the lamotrigine separation. This assay was performed using chemometric a technique, namely factor analysis.

  9. Ontogenetic patterns in the dreams of women across the lifespan.

    PubMed

    Dale, Allyson; Lortie-Lussier, Monique; De Koninck, Joseph

    2015-12-01

    The present study supports and extends previous research on the developmental differences in women's dreams across the lifespan. The participants included 75 Canadian women in each of 5 age groups from adolescence to old age including 12-17, 18-24, 25-39, 40-64, and 65-85, totaling 375 women. One dream per participant was scored by two independent judges using the method of content analysis. Trend analysis was used to determine the ontogenetic pattern of the dream content categories. Results demonstrated significant ontogenetic decreases (linear trends) for female and familiar characters, activities, aggression, and friendliness. These patterns of dream imagery reflect the waking developmental patterns as proposed by social theories and recognized features of aging as postulated by the continuity hypothesis. Limitations and suggestions for future research including the examining of developmental patterns in the dreams of males are discussed.

  10. The antiepileptic drug lamotrigine is a substrate of mouse and human breast cancer resistance protein (ABCG2).

    PubMed

    Römermann, Kerstin; Helmer, Renate; Löscher, Wolfgang

    2015-06-01

    Resistance to antiepileptic drugs (AEDs) is the major problem in the treatment of epilepsy. One hypothesis to explain AED resistance suggests that seizure-induced overexpression of efflux transporters at the blood-brain barrier (BBB) restricts AEDs to reach their brain targets. Various studies examined whether AEDs are substrates of P-glycoprotein (Pgp; MDR1; ABCB1), whereas information about the potential role of breast cancer resistance protein (BCRP; ABCG2) is scanty. We used a highly sensitive in vitro assay (concentration equilibrium transport assay; CETA) with MDCKII cells transduced with murine Bcrp1 or human BCRP to evaluate whether AEDs are substrates of this major efflux transporter. Six of 7 AEDs examined, namely phenytoin, phenobarbital, carbamazepine, levetiracetam, topiramate, and valproate, were not transported by Bcrp at therapeutic concentrations, whereas lamotrigine exhibited a marked asymmetric, Bcrp-mediated transport in the CETA, which could be almost completely inhibited with the Bcrp inhibitor Ko143. Significant but less marked transport of lamotrigine was determined in MDCK cells transfected with human BCRP. Lamotrigine is also a substrate of human Pgp, so that this drug is the first AED that has been identified as a dual substrate of the two major human efflux transporters at the BBB. Previous in vivo studies have demonstrated a synergistic or cooperative role of Pgp and Bcrp in the efflux of dual substrates at the BBB, so that transport of lamotrigine by Pgp and BCRP may be an important mechanism of pharmacoresistance in epilepsy patients in whom both transporters are overexpressed.

  11. Effects of the anticonvulsant lacosamide compared to valproate and lamotrigine on cocaine-enhanced reward in rats.

    PubMed

    Béguin, Cécile; Potter, David N; Carlezon, William A; Stöhr, Thomas; Cohen, Bruce M

    2012-10-15

    Some drugs developed as anticonvulsants (notably, valproate and lamotrigine) have therapeutic effects in bipolar and related disorders. Lacosamide, a recently approved anticonvulsant, has unique effects on sodium channels that may play a role in producing the mood-stabilizing effects of anticonvulsant drugs. We tested whether lacosamide would have effects similar to or different from valproate and lamotrigine in a model of reward and elevated mood. The intracranial self-stimulation (ICSS) test is sensitive to the function of brain reward systems. Changes in ICSS may model aspects of disorders characterized by abnormalities of reward and motivation. Cocaine elevates mood, and reduction of cocaine-induced facilitation of ICSS has been used to predict antimanic-like or mood stabilizing effects of drugs. We tested lacosamide, lamotrigine, and valproate in the rat ICSS test alone or in the presence of cocaine. A high dose of lacosamide (30 mg/kg) significantly elevated ICSS thresholds, indicating that it reduced the rewarding impact of medial forebrain bundle stimulation. Lower doses (3-10 mg/kg) did not alter ICSS, but blocked the cocaine-induced lowering of ICSS thresholds. The highest doses of valproate (300 mg/kg) and lamotrigine (30 mg/kg) also elevated ICSS thresholds, and only these high doses significantly lowered cocaine-induced effects. Of the drugs tested, only lacosamide significantly attenuated the reward-facilitating effects of cocaine at doses that had no effects on ICSS response in the absence of cocaine. Abnormalities of mood and reward are common in psychiatric disorders, and these results suggest that lacosamide deserves further study in models of these disorders.

  12. Fate of carbamazepine, its metabolites, and lamotrigine in soils irrigated with reclaimed wastewater: Sorption, leaching and plant uptake.

    PubMed

    Paz, Anat; Tadmor, Galit; Malchi, Tomer; Blotevogel, Jens; Borch, Thomas; Polubesova, Tamara; Chefetz, Benny

    2016-10-01

    Irrigation with reclaimed wastewater may result in the ubiquitous presence of pharmaceutical compounds (PCs) and their metabolites in the agroecosystem. In this study, we focused on two highly persistent anticonvulsant drugs, lamotrigine and carbamazepine and two of its metabolites (EP-CBZ and DiOH-CBZ), aiming to elucidate their behavior in agricultural ecosystem using batch and lysimeter experiments. Sorption of the studied compounds by soils was found to be governed mainly by the soil organic matter level. Sorption affinity of compounds to soils followed the order lamotrigine > carbamazepine > EP-CBZ > DiOH-CBZ. Sorption was reversible, and no competition between sorbates in bi-solute systems was observed. The results of the lysimeter studies were in accordance with batch experiment findings, demonstrating accumulation of lamotrigine and carbamazepine in top soil layers enriched with organic matter. Detection of carbamazepine and one of its metabolites in rain-fed wheat previously irrigated with reclaimed wastewater, indicates reversibility of their sorption, resulting in their potential leaching and their availability for plant uptake. This study demonstrates the long-term implication of introduction of PCs to the agroecosystem.

  13. Development and validation of a GC/MS method for the simultaneous determination of levetiracetam and lamotrigine in whole blood.

    PubMed

    Nikolaou, Panagiota; Papoutsis, Ioannis; Dona, Artemisia; Spiliopoulou, Chara; Athanaselis, Sotiris

    2015-01-01

    A sensitive and accurate gas chromatography-mass spectrometric method was developed and validated for the simultaneous determination of levetiracetam and lamotrigine in whole blood. A solid-phase extraction (SPE) procedure using HF Bond Elut C18 columns followed by derivatization using N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide (MTBSTFA) with 1% tert-butyldimethylsilyl chloride (TBDMSCl) was used. In this assay, levetiracetam-d6 was used as internal standard. Limits of detection and quantification were 0.15 and 0.50 μg/mL, respectively, for both analytes. The method was proved to be linear within the concentration range of 0.50-50.0 μg/mL (R(2) ≥ 0.992) for both analytes. Absolute recovery was found to be at least 90.0 and 97.2% for levetiracetam and lamotrigine, respectively. Intra-day and inter-day accuracy values for both analytes were ranged from -6.5 to 4.2 and -6.6 to 3.0%, respectively, whereas their respective precision values were less than 11.4 and 8.3%. The developed method was successfully used in our laboratory for quantification of levetiracetam and lamotrigine blood concentrations during the investigation of forensic cases where these antiepileptic drugs were involved. This method could also be used for therapeutic drug monitoring purposes.

  14. A randomized study of the effect of oral lamotrigine and hydromorphone on pain and hyperalgesia following heat/capsaicin sensitization.

    PubMed

    Petersen, Karin L; Maloney, Alan; Hoke, Frank; Dahl, Jørgen B; Rowbotham, Michael C

    2003-09-01

    In this randomized double-blind placebo-controlled study, the analgesic effect of oral lamotrigine (400 mg) on cutaneous sensitization induced with the heat/capsaicin sensitization model was compared with the effect of oral hydromorphone (8 mg) in healthy volunteers. In a separate session, intravenous remifentanil (0.10 microg.kg(-1).min(-1)) and placebo were administered. This session was used as an additional reference comparator. Outcome measures were the areas of secondary hyperalgesia to brush and von Frey hair stimulation and the painfulness of noxious thermal stimulation in nonsensitized skin. Compared with placebo, both intravenous remifentanil and oral hydromorphone significantly suppressed secondary hyperalgesia and acute thermal nociception. Oral lamotrigine did not reduce secondary hyperalgesia or acute thermal nociception but produced side effects of severity comparable with that of oral hydromorphone. Although lamotrigine is efficacious in the management of some types of chronic neuropathic pain, the lack of effect of this agent on human experimental pain suggests that its analgesic effects depend on nerve injury-associated abnormalities, which cannot be simulated in healthy human volunteers.

  15. Sex differences and stress across the lifespan

    PubMed Central

    Bale, Tracy L; Epperson, C Neill

    2015-01-01

    Sex differences in stress responses can be found at all stages of life and are related to both the organizational and activational effects of gonadal hormones and to genes on the sex chromosomes. As stress dysregulation is the most common feature across neuropsychiatric diseases, sex differences in how these pathways develop and mature may predict sex-specific periods of vulnerability to disruption and increased disease risk or resilience across the lifespan. The aging brain is also at risk to the effects of stress, where the rapid decline of gonadal hormones in women combined with cellular aging processes promote sex biases in stress dysregulation. In this Review, we discuss potential underlying mechanisms driving sex differences in stress responses and their relevance to disease. Although stress is involved in a much broader range of diseases than neuropsychiatric ones, we highlight here this area and its examples across the lifespan. PMID:26404716

  16. Coevolution of intelligence, behavioral repertoire, and lifespan.

    PubMed

    Ghirlanda, Stefano; Enquist, Magnus; Lind, Johan

    2014-02-01

    Across many taxa, intriguing positive correlations exist between intelligence (measured by proxy as encephalization), behavioral repertoire size, and lifespan. Here we argue, through a simple theoretical model, that such correlations arise from selection pressures for efficient learning of behavior sequences. We define intelligence operationally as the ability to disregard unrewarding behavior sequences, without trying them out, in the search for rewarding sequences. We show that increasing a species' behavioral repertoire increases the number of rewarding behavior sequences that can be performed, but also the time required to learn such sequences. This trade-off results in an optimal repertoire size that decreases rapidly with increasing sequence length. Behavioral repertoire size can be increased by increasing intelligence or lengthening the lifespan, giving rise to the observed correlations between these traits.

  17. Development and validation of a rapid column-switching high-performance liquid chromatographic method for the determination of Lamotrigine in human serum.

    PubMed

    Brunetto, María del Rosario; Contreras, Yaritza; Delgado, Yelitza; Gallignani, Máximo; Estela, José Manuel; Martin, Víctor Cerdà

    2009-07-01

    This study describes a simple and sensitive column-switching high-performance liquid chromatographic method with UV detection for the determination of Lamotrigine in 50 microL of serum. After solid-phase extraction of Lamotrigine on an Oasis HLB extraction precolumn (20 x 3.9 mm; dp: 25 microm), chromatographic separation was achieved at 30 degrees C on a Chromolith RP-18e column (50 mm x 4.6 mm i.d.) using a solution of 20% acetonitrile in 15 mM phosphate buffer (pH 7.0) as the mobile phase, at a flow-rate of 2.0 mL/min. The eluant was detected at 215 nm. The retention time for Lamotrigine was 1.28 min. The total analysis time was ca. 5 min. However, the overlap of sample preparation, analysis, and reconditioning of the precolumn increased the overall sample throughput to one injection every 3 min. The method was validated for system suitability, linearity, precision, accuracy, robustness, and limit of quantitation. The linearity of the calibration lines, expressed by the linear correlation coefficient, was better than 0.9996. Recovery studies achieved from Lamotrigine spiked plasma samples showed values greater than 93%, demonstrating the excellent extraction efficiency of the precolumn. Intra- and inter-day precision were generally acceptable; the coefficient of variation was < 2.3% in all cases. The detection limits for Lamotrigine at a signal-to-noise ratio of 3 was 0.002 microg/mL when a sample volume of 50 microL was injected. However, it was possible to enhance the sensitivity further by injecting larger volumes, up to 200 microL. The method was shown to be robust and the results were within the acceptable range. The method was successfully applied to the determination of Lamotrigine in human serum samples of patients submitted to Lamotrigine therapy.

  18. At neutral pH the chronological lifespan of Hansenula polymorpha increases upon enhancing the carbon source concentrations

    PubMed Central

    Kawałek, Adam; van der Klei, Ida J.

    2014-01-01

    Dietary restriction is generally assumed to increase the lifespan in most eukaryotes, including the simple model organism Saccharomyces cerevisiae. However, recent data questioned whether this phenomenon is indeed true for yeast. We studied the effect of reduction of the carbon source concentration on the chronological lifespan of the yeast Hansenula polymorpha using four different carbon sources. Our data indicate that reduction of the carbon source concentration has a negative (glucose, ethanol, methanol) or positive (glycerol) effect on the chronological lifespan. We show that the actual effect of carbon source concentrations largely depends on extracellular factor(s). We provide evidence that H. polymorpha acidifies the medium and that a low pH of the medium alone is sufficient to significantly decrease the chronological lifespan. However, glucose-grown cells are less sensitive to low pH compared to glycerol-grown cells, explaining why only the reduction of the glycerol-concentration (which leads to less medium acidification) has a positive effect on the chronological lifespan. Instead, the positive effect of enhancing the glucose concentrations is much larger than the negative effect of the medium acidification at these conditions, explaining the increased lifespan with increasing glucose concentrations. Importantly, at neutral pH, the chronological lifespan also decreases with a reduction in glycerol concentrations. We show that for glycerol cultures this effect is related to acidification independent changes in the composition of the spent medium. Altogether, our data indicate that in H. polymorpha at neutral pH the chronological lifespan invariably extends upon increasing the carbon source concentration. PMID:28357243

  19. Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast.

    PubMed

    Choi, Kyung-Mi; Kwon, Young-Yon; Lee, Cheol-Koo

    2013-12-01

    Caloric restriction (CR) is the best-studied intervention known to delay aging and extend lifespan in evolutionarily distant organisms ranging from yeast to mammals in the laboratory. Although the effect of CR on lifespan extension has been investigated for nearly 80years, the molecular mechanisms of CR are still elusive. Consequently, it is important to understand the fundamental mechanisms of when and how lifespan is affected by CR. In this study, we first identified the time-windows during which CR assured cellular longevity by switching cells from culture media containing 2% or 0.5% glucose to water, which allows us to observe CR and non-calorically-restricted cells under the same conditions. We also constructed time-dependent gene expression profiles and selected 646 genes that showed significant changes and correlations with the lifespan-extending effect of CR. The positively correlated genes participated in transcriptional regulation, ribosomal RNA processing and nuclear genome stability, while the negatively correlated genes were involved in the regulation of several metabolic pathways, endoplasmic reticulum function, stress response and cell cycle progression. Furthermore, we discovered major upstream regulators of those significantly changed genes, including AZF1 (YOR113W), HSF1 (YGL073W) and XBP1 (YIL101C). Deletions of two genes, AZF1 and XBP1 (HSF1 is essential and was thus not tested), were confirmed to lessen the lifespan extension mediated by CR. The absence of these genes in the tor1Δ and ras2Δ backgrounds did show non-overlapping effects with regard to CLS, suggesting differences between the CR mechanism for Tor and Ras signaling.

  20. Lifespan Extension Conferred by Endoplasmic Reticulum Secretory Pathway Deficiency Requires Induction of the Unfolded Protein Response

    PubMed Central

    Labunskyy, Vyacheslav M.; Gerashchenko, Maxim V.; Delaney, Joe R.; Kaya, Alaattin; Kennedy, Brian K.; Kaeberlein, Matt; Gladyshev, Vadim N.

    2014-01-01

    Cells respond to accumulation of misfolded proteins in the endoplasmic reticulum (ER) by activating the unfolded protein response (UPR) signaling pathway. The UPR restores ER homeostasis by degrading misfolded proteins, inhibiting translation, and increasing expression of chaperones that enhance ER protein folding capacity. Although ER stress and protein aggregation have been implicated in aging, the role of UPR signaling in regulating lifespan remains unknown. Here we show that deletion of several UPR target genes significantly increases replicative lifespan in yeast. This extended lifespan depends on a functional ER stress sensor protein, Ire1p, and is associated with constitutive activation of upstream UPR signaling. We applied ribosome profiling coupled with next generation sequencing to quantitatively examine translational changes associated with increased UPR activity and identified a set of stress response factors up-regulated in the long-lived mutants. Besides known UPR targets, we uncovered up-regulation of components of the cell wall and genes involved in cell wall biogenesis that confer resistance to multiple stresses. These findings demonstrate that the UPR is an important determinant of lifespan that governs ER stress and identify a signaling network that couples stress resistance to longevity. PMID:24391512

  1. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster.

    PubMed

    Wagner, Anika E; Piegholdt, Stefanie; Rabe, Doerte; Baenas, Nieves; Schloesser, Anke; Eggersdorfer, Manfred; Stocker, Achim; Rimbach, Gerald

    2015-10-13

    In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies.

  2. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster

    PubMed Central

    Wagner, Anika E.; Piegholdt, Stefanie; Rabe, Doerte; Baenas, Nieves; Schloesser, Anke; Eggersdorfer, Manfred; Stocker, Achim; Rimbach, Gerald

    2015-01-01

    In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies. PMID:26375250

  3. Growth hormone signaling is necessary for lifespan extension by dietary methionine.

    PubMed

    Brown-Borg, Holly M; Rakoczy, Sharlene G; Wonderlich, Joseph A; Rojanathammanee, Lalida; Kopchick, John J; Armstrong, Vanessa; Raasakka, Debbie

    2014-12-01

    Growth hormone significantly impacts lifespan in mammals. Mouse longevity is extended when growth hormone (GH) signaling is interrupted but markedly shortened with high-plasma hormone levels. Methionine metabolism is enhanced in growth hormone deficiency, for example, in the Ames dwarf, but suppressed in GH transgenic mice. Methionine intake affects also lifespan, and thus, GH mutant mice and respective wild-type littermates were fed 0.16%, 0.43%, or 1.3% methionine to evaluate the interaction between hormone status and methionine. All wild-type and GH transgenic mice lived longer when fed 0.16% methionine but not when fed higher levels. In contrast, animals without growth hormone signaling due to hormone deficiency or resistance did not respond to altered levels of methionine in terms of lifespan, body weight, or food consumption. Taken together, our results suggest that the presence of growth hormone is necessary to sense dietary methionine changes, thus strongly linking growth and lifespan to amino acid availability.

  4. Chemical genetic screen in fission yeast reveals roles for vacuolar acidification, mitochondrial fission, and cellular GMP levels in lifespan extension.

    PubMed

    Stephan, Jessica; Franke, Jacqueline; Ehrenhofer-Murray, Ann E

    2013-08-01

    The discovery that genetic mutations in several cellular pathways can increase lifespan has lent support to the notion that pharmacological inhibition of aging pathways can be used to extend lifespan and to slow the onset of age-related diseases. However, so far, only few compounds with such activities have been described. Here, we have conducted a chemical genetic screen for compounds that cause the extension of chronological lifespan of Schizosaccharomyces pombe. We have characterized eight natural products with such activities, which has allowed us to uncover so far unknown anti-aging pathways in S. pombe. The ionophores monensin and nigericin extended lifespan by affecting vacuolar acidification, and this effect depended on the presence of the vacuolar ATPase (V-ATPase) subunits Vma1 and Vma3. Furthermore, prostaglandin J₂ displayed anti-aging properties due to the inhibition of mitochondrial fission, and its effect on longevity required the mitochondrial fission protein Dnm1 as well as the G-protein-coupled glucose receptor Git3. Also, two compounds that inhibit guanosine monophosphate (GMP) synthesis, mycophenolic acid (MPA) and acivicin, caused lifespan extension, indicating that an imbalance in guanine nucleotide levels impinges upon longevity. We furthermore have identified diindolylmethane (DIM), tschimganine, and the compound mixture mangosteen as inhibiting aging. Taken together, these results reveal unanticipated anti-aging activities for several phytochemicals and open up opportunities for the development of novel anti-aging therapies.

  5. A Mitochondrial ATP synthase Subunit Interacts with TOR Signaling to Modulate Protein Homeostasis and Lifespan in Drosophila

    PubMed Central

    Sun, Xiaoping; Wheeler, Charles T.; Yolitz, Jason; Laslo, Mara; Alberico, Thomas; Sun, Yaning; Song, Qisheng; Zou, Sige

    2014-01-01

    SUMMARY Diet composition is a critical determinant of lifespan and nutrient imbalance is detrimental health. However, how nutrients interact with genetic factors to modulate lifespan remains elusive. We investigated how diet composition influences mitochondrial ATP synthase subunit d (ATPsyn-d) in modulating lifespan in Drosophila. ATPsyn-d knockdown extended lifespan in females fed low carbohydrate-to-protein (C:P) diets, but not the high C:P ratio diet. This extension was associated with increased resistance to oxidative stress, transcriptional changes in metabolism, proteostasis and immune genes, reduced protein damage and aggregation, and reduced phosphorylation of S6K and ERK in TOR and MAPK signaling, respectively. ATPsyn-d knockdown did not extend lifespan in females with reduced TOR signaling induced genetically by Tsc2 overexpression or pharmacologically by rapamycin. Our data reveal a link among diet, mitochondria, MAPK and TOR signaling in aging and stresses the importance of considering genetic background and diet composition in implementing interventions for promoting healthy aging. PMID:25220459

  6. Simultaneous extraction and quantification of lamotrigine, phenobarbital, and phenytoin in human plasma and urine samples using solidified floating organic drop microextraction and high-performance liquid chromatography.

    PubMed

    Asadi, Mohammad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Abbasi, Bijan

    2015-07-01

    A novel and simple method based on solidified floating organic drop microextraction followed by high-performance liquid chromatography with ultraviolet detection has been developed for simultaneous preconcentration and determination of phenobarbital, lamotrigine, and phenytoin in human plasma and urine samples. Factors affecting microextraction efficiency such as the type and volume of the extraction solvent, sample pH, extraction time, stirring rate, extraction temperature, ionic strength, and sample volume were optimized. Under the optimum conditions (i.e. extraction solvent, 1-undecanol (40 μL); sample pH, 8.0; temperature, 25°C; stirring rate, 500 rpm; sample volume, 7 mL; potassium chloride concentration, 5% and extraction time, 50 min), the limits of detection for phenobarbital, lamotrigine, and phenytoin were 1.0, 0.1, and 0.3 μg/L, respectively. Also, the calibration curves for phenobarbital, lamotrigine, and phenytoin were linear in the concentration range of 2.0-300.0, 0.3-200.0, and 1.0-200.0 μg/L, respectively. The relative standard deviations for six replicate extractions and determinations of phenobarbital, lamotrigine, and phenytoin at 50 μg/L level were less than 4.6%. The method was successfully applied to determine phenobarbital, lamotrigine, and phenytoin in plasma and urine samples.

  7. Valproic Acid versus Lamotrigine as First-line Monotherapy in Newly Diagnosed Idiopathic Generalized Tonic –Clonic Seizures in Adults – A Randomized Controlled Trial

    PubMed Central

    Giri, Om Prakash; Khan, Farhan Ahmad; Kumar, Narendra; Kumar, Ajay; Haque, Ataul

    2016-01-01

    Introduction Idiopathic Generalized Tonic-Clonic Seizures (GTCS) are frequently encountered in adults. Their successful control is necessary to improve the quality of life of these patients. Valproic acid is a simple branched-chain carboxylic acid and lamotrigine is a phenyltriazine derivative. Opinions differ in regards to their effectiveness in idiopathic GTCS. Aim To compare the effectiveness of valproic acid and lamotrigine in newly diagnosed adults with idiopathic generalized tonic-clonic seizures. Materials and Methods The present prospective randomized study was conducted on 60 patients suffering from idiopathic GTCS. Thirty patients received valproic acid and rest 30 patients received lamotrigine. All patients were followed regularly monthly for one year for treatment response and adverse effects. Results After 12 months follow-up, 76.67% patients taking valproic acid and 56.67% patients taking lamotrigine were seizure-free. Common adverse effects recorded were nausea, dyspepsia, headache and skin rash. Conclusion Valproic acid is more effective than lamotrigine as first-line drug in the treatment of adults with newly diagnosed idiopathic generalized tonic-clonic seizures. PMID:27630862

  8. [Case of drug-induced hypersensitivity syndrome due to lamotrigine: demonstration of sequential reactivation of herpesviruses].

    PubMed

    Sato, Tatsuharu; Kuniba, Hideo; Matsuo, Mitsuhiro; Matsuzaka, Tetsuo; Moriuchi, Hiroyuki

    2012-01-01

    Drug-induced hypersensitivity syndrome (DIHS) is a rare but severe multiorgan disorder. The reactivation of human herpesvirus-6 (HHV-6) and other human herpesviruses has been reported to be associated with its pathogenesis. We herein report a case of 14-year-old female who developed DIHS during the treatment with lamotrigine, a novel antiepileptic drug. She initially presented with fever, skin rash, cervical lymphadenopathy, leukocytosis with eosinophilia and atypical lymphocytosis, liver dysfunction and hypogammaglobulinemia. Discontinuation of the drug and administration of prednisolone led to improvement;however, tapering of prednisolone and administration of midazolam and ketamine thereafter triggered clinical deterioration. She subsequently developed hyperthyroidism followed by hypothyroidism. Herpesviral loads were determined in her peripheral blood by real-time PCR during the course of the treatment, and sequential reactivation of Epstein-Barr virus (EBV), HHV-6 and cytomegalovirus was demonstrated. EBV viremia was detected throughout the course, except for a short period when HHV-6 viremia was at the peak. HHV-6 viremia developed after the secondary deterioration. Cytomegalovirus viremia appeared transiently before the hyperthyroidic state reversed and became hypothyroidic. Although this syndrome should be regarded as a systemic reaction induced by a complex interplay among herpesviruses and the immune responses against viral infections and drugs, it remains unknown how such a sequential reactivation is related to the pathogenesis of the condition.

  9. Spectrophotometric determination of lamotrigine in pharmaceutical preparations and urine by charge-transfer complexation.

    PubMed

    Alizadeh, N; Khakinahad, R; Jabbari, A

    2008-11-01

    Rapid and sensitive spectrophotometric methods are developed for the determination of lamotrigine (LTG) in pharmaceutical dosage forms and urine samples, based on the formation of the charge-transfer (CT) complexes between LTG as an n-donor and the acceptors: bromocresol green (BCG), bromocresol purple (BCP), and chlorophenol red (CPR). These complexes are studied spectrophotometrically in chloroform solution in order to obtain some information about their stoichiometry and stability of complexation. The analytical parameters and their effects on the extraction of drug from urine samples are investigated. The reactions were extremely rapid at room temperature, and the absorbance values remained unchanged after 24 h for all reactions. Beer's law was obeyed in the concentration ranges 0.15-19.8, 0.15-19.8 and 0.05-34.1 microg x ml(-1) for CPR, BCP and BCG, respectively. The proposed methods were applied successfully for the determination of LTG in pharmaceutical formulations, and human urine samples in the presence of other antiepileptic drugs such as carbamazepine, oxcarbazepine and phenobarbital, with good accuracy and precision.

  10. Seradyn quantitative microsphere system lamotrigine immunoassay on a Hitachi 911 analyzer compared with HPLC-UV.

    PubMed

    Westley, Ian S; Morris, Raymond G

    2008-10-01

    Lamotrigine (LTG) is used currently as monotherapy or, more frequently, as add-on therapy with other antiepileptic drugs. It demonstrates efficacy against partial seizures, primary and secondary tonic clonic seizures, absence seizures, and drop attacks. LTG pharmacokinetics is complicated by coadministration with other antiepileptic drugs such as valproic acid, phenytoin, or carbamazepine. The wide interpatient variability in LTG dosage required to attain therapeutic plasma LTG concentrations for seizure control suggests that LTG is a good candidate for therapeutic drug monitoring (TDM). In this study, we compared the quantitative microsphere system (QMS) LTG immunoassay with the LTG high-performance liquid chromatography-ultra violet (HPLC-UV) assay routinely employed for TDM in our laboratory. Samples tested by these methods were patient samples presented for TDM and from a quality assurance program. Quality control material demonstrated within- and between-run (n = 6) coefficient of variation and biases of less than 10%. Patient samples demonstrated a Deming regression of QMS = 1.09 HPLC-UV - 0.17 and quality assurance program samples had a Deming regression of QMS = 1.03 HPLC-UV - 0.11. Patient samples demonstrated a mean bias of 6.1% and quality assurance program samples had a mean bias of 0.2%. The QMS LTG assay had a clinically small but significant overestimation of plasma LTG concentrations. It may be useful as a convenient alternative method that would provide TDM guidance if a chromatographic assay was not available.

  11. Guidelines for treating epilepsy in the age of felbamate, vigabatrin, lamotrigine, and gabapentin.

    PubMed Central

    Laxer, K D

    1994-01-01

    For the first time in 15 years, new antiepileptic medications are available for the treatment of patients with seizure disorders. These drugs have demonstrated efficacy in animal models of epilepsy and in controlled clinical trials. Felbamate was licensed in 1993 for use as adjunctive therapy or monotherapy in adults with partial or tonic-clonic seizures and as adjunctive therapy for children with the Lennox-Gastaut syndrome. Gabapentin was approved January 1994 as adjunctive therapy in patients 12 years or older with partial seizures, with or without secondary generalization. Lamotrigine is expected to be approved this year for the treatment of partial and tonic-clonic seizures in adults. Last, a new drug application has been filed for vigabatrin this year, with possible licensing next year. These four anticonvulsants present new options in the treatment of patients with refractory epilepsy and are not merely congeners of previously available treatments. They have unique clinical spectrums and are reported to be safer and better tolerated than conventional therapy. Trials to compare their use with that of conventional therapy have not been done, and their use in the initial treatment of patients with epilepsy is not completely clear. Images PMID:7975572

  12. Predictive markers for carbamazepine and lamotrigine-induced maculopapular exanthema in Han Chinese.

    PubMed

    Li, Li-Juan; Hu, Fa-Yun; Wu, Xin-Tong; An, Dong-Mei; Yan, Bo; Zhou, Dong

    2013-09-01

    The aims of this study were to clarify the possible associations of carbamazepine (CBZ)- and lamotrigine (LTG)-induced maculopapular exanthema (MPE) with the human leukocyte antigen (HLA) alleles in Chinese patients. A total of 249 subjects, including 40 patients with CBZ-induced MPE (CBZ-MPE), 43 patients with LTG-induced MPE (LTG-MPE), 52 CBZ-tolerant controls, 42 LTG-tolerant controls and 72 healthy controls, were included in this study. High-resolution HLA genotyping was performed by a specific kit. Differences in the allele frequencies among the groups were assessed. The allele frequencies of HLA-A*0201 and HLA-DRB1*1405 were significantly higher (P=0.033 and P=0.003, respectively), but those of HLA-B*5801 and HLA-DRB1*0301 (P=0.037 and P=0.024, respectively) were lower in the CBZ-MPE patients when compared with the CBZ-tolerant group. We also observed two significantly increased alleles of HLA-A*3001 and HLA-B*1302 (P=0.013 and P=0.013, respectively) and a decreased allele of HLA-A*3303 (P=0.048) in the LTG-MPE patients when compared with those in the LTG-tolerant group. Our results support the hypothesis that these HLA alleles contribute to the genetic susceptibility to CBZ/LTG-MPE and may be valuable as potential biomarkers for CBZ/LTG-MPE in Han Chinese.

  13. Neurodevelopmental origins of lifespan changes in brain and cognition

    PubMed Central

    Walhovd, Kristine B.; Krogsrud, Stine K.; Bartsch, Hauke; Bjørnerud, Atle; Due-Tønnessen, Paulina; Grydeland, Håkon; Hagler, Donald J.; Håberg, Asta K.; Kremen, William S.; Ferschmann, Lia; Nyberg, Lars; Panizzon, Matthew S.; Rohani, Darius A.; Skranes, Jon; Storsve, Andreas B.; Sølsnes, Anne Elisabeth; Tamnes, Christian K.; Thompson, Wesley K.; Reuter, Chase; Dale, Anders M.; Fjell, Anders M.

    2016-01-01

    Neurodevelopmental origins of functional variation in older age are increasingly being acknowledged, but identification of how early factors impact human brain and cognition throughout life has remained challenging. Much focus has been on age-specific mechanisms affecting neural foundations of cognition and their change. In contrast to this approach, we tested whether cerebral correlates of general cognitive ability (GCA) in development could be extended to the rest of the lifespan, and whether early factors traceable to prenatal stages, such as birth weight and parental education, may exert continuous influences. We measured the area of the cerebral cortex in a longitudinal sample of 974 individuals aged 4–88 y (1,633 observations). An extensive cortical region was identified wherein area related positively to GCA in development. By tracking area of the cortical region identified in the child sample throughout the lifespan, we showed that the cortical change trajectories of higher and lower GCA groups were parallel through life, suggesting continued influences of early life factors. Birth weight and parental education obtained from the Norwegian Mother–Child Cohort study were identified as such early factors of possible life-long influence. Support for a genetic component was obtained in a separate twin sample (Vietnam Era Twin Study of Aging), but birth weight in the child sample had an effect on cortical area also when controlling for possible genetic differences in terms of parental height. Our results provide novel evidence for stability in brain–cognition relationships throughout life, and indicate that early life factors impact brain and cognition for the entire life course. PMID:27432992

  14. Variable Pathogenicity Determines Individual Lifespan in Caenorhabditis elegans

    PubMed Central

    Sánchez-Blanco, Adolfo; Kim, Stuart K.

    2011-01-01

    A common property of aging in all animals is that chronologically and genetically identical individuals age at different rates. To unveil mechanisms that influence aging variability, we identified markers of remaining lifespan for Caenorhabditis elegans. In transgenic lines, we expressed fluorescent reporter constructs from promoters of C. elegans genes whose expression change with age. The expression levels of aging markers in individual worms from a young synchronous population correlated with their remaining lifespan. We identified eight aging markers, with the superoxide dismutase gene sod-3 expression being the best single predictor of remaining lifespan. Correlation with remaining lifespan became stronger if expression from two aging markers was monitored simultaneously, accounting for up to 49% of the variation in individual lifespan. Visualizing the physiological age of chronologically-identical individuals allowed us to show that a major source of lifespan variability is different pathogenicity from individual to individual and that the mechanism involves variable activation of the insulin-signaling pathway. PMID:21533182

  15. Sir2 blocks extreme life-span extension.

    PubMed

    Fabrizio, Paola; Gattazzo, Cristina; Battistella, Luisa; Wei, Min; Cheng, Chao; McGrew, Kristen; Longo, Valter D

    2005-11-18

    Sir2 is a conserved deacetylase that modulates life span in yeast, worms, and flies and stress response in mammals. In yeast, Sir2 is required for maintaining replicative life span, and increasing Sir2 dosage can delay replicative aging. We address the role of Sir2 in regulating chronological life span in yeast. Lack of Sir2 along with calorie restriction and/or mutations in the yeast AKT homolog, Sch9, or Ras pathways causes a dramatic chronological life-span extension. Inactivation of Sir2 causes uptake and catabolism of ethanol and upregulation of many stress-resistance and sporulation genes. These changes while sufficient to extend chronological life span in wild-type yeast require severe calorie restriction or additional mutations to extend life span of sir2Delta mutants. Our results demonstrate that effects of SIR2 on chronological life span are opposite to replicatve life span and suggest that the relevant activities of Sir2-like deacetylases may also be complex in higher eukaryotes.

  16. Absence of effects of Sir2 over-expression on lifespan in C. elegans and Drosophila

    PubMed Central

    Burnett, Camilla; Valentini, Sara; Cabreiro, Filipe; Goss, Martin; Somogyvári, Milán; Piper, Matthew D.; Hoddinott, Matthew; Sutphin, George L.; Leko, Vid; McElwee, Joshua J.; Vazquez, Rafael; Orfila, Anne-Marie; Ackerman, Daniel; Au, Catherine; Vinti, Giovanna; Riesen, Michèle; Howard, Ken; Neri, Christian; Bedalov, Antonio; Kaeberlein, Matt; Söti, Csaba; Partridge, Linda; Gems, David

    2011-01-01

    Over-expression of sirtuins (NAD+-dependent protein deacetylases) has been reported to increase lifespan in budding yeast, Caenorhabditis elegans and Drosophila melanogaster1-3. Studies of gene effects on ageing are vulnerable to confounding effects of genetic background4. We re-examined the reported effects of sirtuin over-expression on ageing and found that standardisation of genetic background and use of appropriate controls abolished the apparent effects in both C. elegans and Drosophila. In C. elegans, outcrossing of a line with high level sir-2.1 over-expression1 abrogated the longevity increase, but not sir-2.1 over-expression. Instead, longevity co-segregated with a second-site mutation affecting sensory neurons. Outcrossing of a line with low copy number sir-2.1 over-expression2 also abrogated longevity. A Drosophila strain with ubiquitous over-expression of dSir2 using the UAS-GAL4 system was long-lived relative to wild-type controls, as previously reported3, but not relative to the appropriate transgenic controls, and nor was a new line with stronger over-expression of dSir2. These findings underscore the importance of controlling for genetic background and the mutagenic effects of transgene insertions in studies of genetic effects on lifespan. The life extending effect of dietary restriction (DR) on ageing in Drosophila has also been reported to be dSir2 dependent3. We found that DR increased fly lifespan independently of dSir2. Our findings do not rule out a role for sirtuins in determination of metazoan lifespan, but they do cast doubt on the robustness of the previously reported effects on lifespan in C. elegans and Drosophila. PMID:21938067

  17. Adult diet affects lifespan and reproduction of the fruit-feeding butterfly Charaxes fulvescens.

    PubMed

    Molleman, Freerk; Ding, Jimin; Wang, Jane-Ling; Zwaan, Bas J; Carey, James R; Brakefield, Paul M

    2008-10-01

    Fruit-feeding butterflies are among the longest lived Lepidoptera. While the use of pollen-derived amino acids by Heliconius butterflies has been interpreted as important for the evolution of extended lifespans, very little is known about the life-history consequences of frugivory. This issue is addressed by investigating effects of four adult diets (sugar, sugar with amino acids, banana, and moistened banana) on lifespan and reproduction in the fruit-feeding butterfly Charaxes fulvescens Aurivillius (Lepidoptera: Nymphalidae). Female butterflies were collected from Kibale National Park, Uganda, and kept individually in cages near their natural habitat and data were collected on lifespan, oviposition, and hatching of eggs. Lifespan in captivity was longer for the sugar and the amino acid cohort, than for the banana cohorts. The longitudinal pattern of oviposition was erratic, with many days without oviposition and few periods with high numbers of eggs laid. Butterflies typically did not lay eggs during their 1st week in captivity and the length of the period between capture and first reproduction was significantly shorter for butterflies fed moistened banana. The length of the reproduction period (first reproduction-last reproduction in captivity) and the reproduction rate (total number of eggs/length of the reproduction period) did not differ significantly between the diet treatments. Those fed with amino acid and moistened banana had significantly higher egg hatchability than those fed with sugar and banana. We found no evidence for a lifespan cost of reproduction. Our results show that (1) female C. fulvescens can use amino acids in their diet for laying fertile eggs, (2) more wing-wear does correlate with lower survival in captivity (indicating aging in the wild), but not with intensity of reproduction (providing no evidence for reproductive aging), and (3) fruit-feeding butterflies may be dietary restricted in the field.

  18. Adult diet affects lifespan and reproduction of the fruit-feeding butterfly Charaxes fulvescens

    PubMed Central

    Molleman, Freerk; Ding, Jimin; Wang, Jane-Ling; Zwaan, Bas J.; Carey, James R.; Brakefield, Paul M.

    2009-01-01

    Fruit-feeding butterflies are among the longest lived Lepidoptera. While the use of pollen-derived amino acids by Heliconius butterflies has been interpreted as important for the evolution of extended lifespans, very little is known about the life-history consequences of frugivory. This issue is addressed by investigating effects of four adult diets (sugar, sugar with amino acids, banana, and moistened banana) on lifespan and reproduction in the fruit-feeding butterfly Charaxes fulvescens Aurivillius (Lepidoptera: Nymphalidae). Female butterflies were collected from Kibale National Park, Uganda, and kept individually in cages near their natural habitat and data were collected on lifespan, oviposition, and hatching of eggs. Lifespan in captivity was longer for the sugar and the amino acid cohort, than for the banana cohorts. The longitudinal pattern of oviposition was erratic, with many days without oviposition and few periods with high numbers of eggs laid. Butterflies typically did not lay eggs during their 1st week in captivity and the length of the period between capture and first reproduction was significantly shorter for butterflies fed moistened banana. The length of the reproduction period (first reproduction–last reproduction in captivity) and the reproduction rate (total number of eggs/length of the reproduction period) did not differ significantly between the diet treatments. Those fed with amino acid and moistened banana had significantly higher egg hatchability than those fed with sugar and banana. We found no evidence for a lifespan cost of reproduction. Our results show that (1) female C. fulvescens can use amino acids in their diet for laying fertile eggs, (2) more wing-wear does correlate with lower survival in captivity (indicating aging in the wild), but not with intensity of reproduction (providing no evidence for reproductive aging), and (3) fruit-feeding butterflies may be dietary restricted in the field. PMID:19774093

  19. Identifying the incidence of rash, Stevens-Johnson syndrome and toxic epidermal necrolysis in patients taking lamotrigine: a systematic review of 122 randomized controlled trials*

    PubMed Central

    Bloom, Romi; Amber, Kyle T.

    2017-01-01

    Lamotrigine is an antiepileptic drug used for the treatment of epilepsy, bipolar disorder and numerous off-label uses. The development of rash significantly affects its use. The most concerning of these adverse reactions is Stevens-Johnson syndrome/toxic epidermal necrolysis. We performed a systematic review of randomized controlled trials using lamotrigine as a monotherapy to quantify the incidence of cutaneous reactions, particularly Stevens-Johnson syndrome/toxic epidermal necrolysis. Of a total of 4,364 papers regarding lamotrigine, 122 studies met our inclusion and exclusion criteria. In total, 18,698 patients were included with 1,570 (8.3%) of patients experiencing an adverse dermatologic reaction. The incidence of Stevens-Johnson syndrome/toxic epidermal necrolysis was 0.04%. PMID:28225977

  20. Turner Syndrome: Four Challenges Across the Lifespan

    PubMed Central

    Sutton, Erica J; McInerney-Leo, Aideen; Bondy, Carolyn A; Gollust, Sarah E; King, Donnice; Biesecker, Barbara

    2008-01-01

    Turner syndrome (TS) is a sex chromosome condition that occurs in approximately 1/2500 live female births. Despite the prevalence of this chromosomal condition, the challenges these women face throughout their lives are not fully understood. This qualitative research study aimed to characterize the subjective experiences of individuals with Turner syndrome throughout their lifespan, to investigate their concerns and obstacles, and to offer insight into the strengths and weaknesses of health care delivery, as they perceived them. Ninety-seven girls and women with TS and 21 parents consented to participate in this interview study. Interviews were semi-structured and open-ended in design. Questions sought to elicit responses relating to existing concerns associated with their condition and positive and negative health care experiences. Participants were divided into four age categories (childhood, adolescence, adulthood, and mature adulthood) to facilitate a comparative analysis across the age spectrum. Regardless of age, infertility was the most frequently cited concern followed closely by short stature. Sexual development and function and general health were also viewed as challenges by a number of participants in each age group. Although the relative weight of these four concerns tended to shift based upon the individual’s age and life experiences, all four issues remained significant throughout the lifespan. Enhanced awareness of the evolving physical and psychological challenges faced by girls and women with TS may help health care providers improve the quality of life for these individuals. PMID:16252273

  1. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone.

    PubMed

    Speakman, J R; Mitchell, S E; Mazidi, M

    2016-12-15

    Almost exactly 100years ago Osborne and colleagues demonstrated that restricting the food intake of a small number of female rats extended their lifespan. In the 1930s experiments on the impact of diet on lifespan were extended by Slonaker, and subsequently McCay. Slonaker concluded that there was a strong impact of protein intake on lifespan, while McCay concluded that calories are the main factor causing differences in lifespan when animals are restricted (Calorie restriction or CR). Hence from the very beginning the question of whether food restriction acts on lifespan via reduced calorie intake or reduced protein intake was disputed. Subsequent work supported the idea that calories were the dominant factor. More recently, however, this role has again been questioned, particularly in studies of insects. Here we review the data regarding previous studies of protein and calorie restriction in rodents. We show that increasing CR (with simultaneous protein restriction: PR) increases lifespan, and that CR with no PR generates an identical effect. None of the residual variation in the impact of CR (with PR) on lifespan could be traced to variation in macronutrient content of the diet. Other studies show that low protein content in the diet does increase median lifespan, but the effect is smaller than the CR effect. We conclude that CR is a valid phenomenon in rodents that cannot be explained by changes in protein intake, but that there is a separate phenomenon linking protein intake to lifespan, which acts over a different range of protein intakes than is typical in CR studies. This suggests there may be a fundamental difference in the responses of insects and rodents to CR. This may be traced to differences in the physiology of these groups, or reflect a major methodological difference between 'restriction' studies performed on rodents and insects. We suggest that studies where the diet is supplied ad libitum, but diluted with inert components, should perhaps be

  2. A Novel Physiology-Based Mathematical Model to Estimate Red Blood Cell Lifespan in Different Human Age Groups.

    PubMed

    An, Guohua; Widness, John A; Mock, Donald M; Veng-Pedersen, Peter

    2016-09-01

    Direct measurement of red blood cell (RBC) survival in humans has improved from the original accurate but limited differential agglutination technique to the current reliable, safe, and accurate biotin method. Despite this, all of these methods are time consuming and require blood sampling over several months to determine the RBC lifespan. For situations in which RBC survival information must be obtained quickly, these methods are not suitable. With the exception of adults and infants, RBC survival has not been extensively investigated in other age groups. To address this need, we developed a novel, physiology-based mathematical model that quickly estimates RBC lifespan in healthy individuals at any age. The model is based on the assumption that the total number of RBC recirculations during the lifespan of each RBC (denoted by N max) is relatively constant for all age groups. The model was initially validated using the data from our prior infant and adult biotin-labeled red blood cell studies and then extended to the other age groups. The model generated the following estimated RBC lifespans in 2-year-old, 5-year-old, 8-year-old, and 10-year-old children: 62, 74, 82, and 86 days, respectively. We speculate that this model has useful clinical applications. For example, HbA1c testing is not reliable in identifying children with diabetes because HbA1c is directly affected by RBC lifespan. Because our model can estimate RBC lifespan in children at any age, corrections to HbA1c values based on the model-generated RBC lifespan could improve diabetes diagnosis as well as therapy in children.

  3. Life-Span Differences in the Uses and Gratifications of Tablets: Implications for Older Adults

    PubMed Central

    Magsamen-Conrad, Kate; Dowd, John; Abuljadail, Mohammad; Alsulaiman, Saud; Shareefi, Adnan

    2015-01-01

    This study extends Uses and Gratifications theory by examining the uses and gratifications of a new technological device, the tablet computer, and investigating the differential uses and gratifications of tablet computers across the life-span. First, we utilized a six-week tablet training intervention to adapt and extend existing measures to the tablet as a technological device. Next, we used paper-based and online surveys (N=847), we confirmed four main uses of tablets: 1) Information Seeking, 2) Relationship Maintenance, 3) Style, 4) Amusement and Killing time, and added one additional use category 5) Organization. We discovered differences among the five main uses of tablets across the life-span, with older adults using tablets the least overall. Builders, Boomers, GenX and GenY all reported the highest means for information seeking. Finally, we used a structural equation model to examine how uses and gratifications predicts hours of tablet use. The study provides limitations and suggestions for future research and marketers. In particular, this study offers insight to the relevancy of theory as it applies to particular information and communication technologies and consideration of how different periods in the life-span affect tablet motivations. PMID:26113769

  4. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan

    PubMed Central

    Baker, Darren J.; Childs, Bennett G.; Durik, Matej; Wijers, Melinde E.; Sieben, Cynthia J.; Zhong, Jian; Saltness, Rachel; Jeganathan, Karthik B.; Versoza, Grace C.; Pezeshki, Abdul-Mohammad; Khazaie, Khashayarsha; Miller, Jordan D.; van Deursen, Jan M.

    2016-01-01

    Cellular senescence, a stress-induced irreversible growth arrest often characterized by p16Ink4a expression and a distinctive secretory phenotype, prevents the proliferation of preneoplastic cells and has beneficial roles in tissue remodelling during embryogenesis and wound healing. Senescent cells accumulate in various tissues and organs over time and have been speculated to play a role in aging. To explore the physiological relevance and consequences of naturally occurring senescent cells, we used a previously established transgene, INK-ATTAC, to induce apoptosis in p16Ink4a-expressing cells of wild-type mice by injection of AP20187 twice a week starting at one year of age. Here we show that compared to vehicle alone, AP20187 treatment extended median lifespan in both male and female mice of two distinct genetic backgrounds. Clearance of p16Ink4a-positive cells delayed tumorigenesis and attenuated age-related deterioration of several organs without apparent side effects, including kidney, heart and fat, where clearance preserved the functionality of glomeruli, cardio-protective KATP channels, and adipocytes, respectively. Thus, p16Ink4a-positive cells that accumulate during adulthood negatively influence lifespan and promote age-dependent changes in multiple organs, and their therapeutic removal may be an attractive approach to extend healthy lifespan. PMID:26840489

  5. Life-Span Differences in the Uses and Gratifications of Tablets: Implications for Older Adults.

    PubMed

    Magsamen-Conrad, Kate; Dowd, John; Abuljadail, Mohammad; Alsulaiman, Saud; Shareefi, Adnan

    2015-11-01

    This study extends Uses and Gratifications theory by examining the uses and gratifications of a new technological device, the tablet computer, and investigating the differential uses and gratifications of tablet computers across the life-span. First, we utilized a six-week tablet training intervention to adapt and extend existing measures to the tablet as a technological device. Next, we used paper-based and online surveys (N=847), we confirmed four main uses of tablets: 1) Information Seeking, 2) Relationship Maintenance, 3) Style, 4) Amusement and Killing time, and added one additional use category 5) Organization. We discovered differences among the five main uses of tablets across the life-span, with older adults using tablets the least overall. Builders, Boomers, GenX and GenY all reported the highest means for information seeking. Finally, we used a structural equation model to examine how uses and gratifications predicts hours of tablet use. The study provides limitations and suggestions for future research and marketers. In particular, this study offers insight to the relevancy of theory as it applies to particular information and communication technologies and consideration of how different periods in the life-span affect tablet motivations.

  6. Autoimmune Limbic Encephalitis and Syndrome of Inappropriate Antidiuretic Hormone Secretion Associated with Lamotrigine-induced Drug Rash with Eosinophilia and Systemic Symptoms (DRESS) Syndrome.

    PubMed

    Ozisik, Lale; Tanriover, Mine Durusu; Saka, Esen

    2016-01-01

    Drug rash with eosinophilia and systemic symptoms (DRESS) is a severe drug hypersensitivity reaction characterized by rash, fever and multi-organ failure. Limbic encephalitis (LE) is a rare disorder characterized by cognitive dysfunction with memory disturbance, seizures and psychiatric symptoms. We herein present an unusual case of DRESS syndrome due to lamotrigine with reactivation of Epstein-Barr virus, which developed autoimmune LE and syndrome of inappropriate antidiuretic hormone secretion. Discontinuation of lamotrigine, administration of methylprednisolone and intravenous immunoglobulin led to improvement. The LE in this case might have been caused by an autoimmune inflammatory mechanism associated with DRESS syndrome.

  7. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction

    PubMed Central

    Miller, Richard A; Harrison, David E; Astle, Clinton M; Fernandez, Elizabeth; Flurkey, Kevin; Han, Melissa; Javors, Martin A; Li, Xinna; Nadon, Nancy L; Nelson, James F; Pletcher, Scott; Salmon, Adam B; Sharp, Zelton Dave; Van Roekel, Sabrina; Winkleman, Lynn; Strong, Randy

    2014-01-01

    Rapamycin, an inhibitor of mTOR kinase, increased median lifespan of genetically heterogeneous mice by 23% (males) to 26% (females) when tested at a dose threefold higher than that used in our previous studies; maximal longevity was also increased in both sexes. Rapamycin increased lifespan more in females than in males at each dose evaluated, perhaps reflecting sexual dimorphism in blood levels of this drug. Some of the endocrine and metabolic changes seen in diet-restricted mice are not seen in mice exposed to rapamycin, and the pattern of expression of hepatic genes involved in xenobiotic metabolism is also quite distinct in rapamycin-treated and diet-restricted mice, suggesting that these two interventions for extending mouse lifespan differ in many respects. PMID:24341993

  8. Synergistic effect of docosahexaenoic acid on anticonvulsant activity of valproic acid and lamotrigine in animal seizure models.

    PubMed

    Gavzan, Hakimeh; Sayyah, Mohammad; Sardari, Soroush; Babapour, Vahab

    2015-10-01

    Add-on therapy is a common strategy to improve efficacy and tolerability of antiepileptic drugs (AEDs). Anticonvulsant potential and appropriate safety of docosahexaenoic acid (DHA) makes it a promising candidate for combination therapy. We evaluated influence of DHA on anticonvulsant activity of AEDs phenytoin, valproate, and lamotrigine in maximal electroshock (MES), pentylenetetrazole (PTZ), and kindling models of epilepsy. The dose-response to DHA was obtained 15 min after intracerebroventricular (i.c.v.) injection in PTZ model of clonic seizures in mice, MES model of tonic seizures in mice, and kindling model of complex partial seizures in rats. The dose-response curve of valproate (30 min after i.p. injection to mice) in PTZ, phenytoin (60 min after i.p. injection to mice) in MES, and lamotrigine (60 min after i.p. injection to rats) in kindling models were obtained. Dose-response curves of the AEDs were then achieved in the presence of ED25 of DHA. DHA had no anticonvulsant effect in the MES model. However, it showed a dose-dependent protective effect against PTZ (ED50 = 0.13 μM) and kindled seizures (ED50 = 1.08 mM). DHA at ED25 caused a 3.6-fold increase in potency of valproate as its ED50 value from 117.5 (98.3-135.3) decreased to 32.5 (21.6-44.1) mg/kg. Moreover, a 4.9-fold increase in potency of lamotrigine occurred, as its ED50 value from 13.10 (11.50-14.9) decreased to 2.65 (0.8-5.6) mg/kg. CompuSyn analysis indicated synergistic anticonvulsant interaction between DHA and both valproate and lamotrigine. Co-administration strategy of the safe and inexpensive anticonvulsant compound DHA with AEDs should be favorably regarded in clinical studies of epilepsy treatment.

  9. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span.

    PubMed

    Kumar, Sandeep; Dietrich, Nicholas; Kornfeld, Kerry

    2016-02-01

    Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabditis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new

  10. Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae.

    PubMed

    Hill, Sandra Malmgren; Hao, Xinxin; Liu, Beidong; Nyström, Thomas

    2014-06-20

    Single-cell species harbor ancestral structural homologs of caspase proteases, although the evolutionary benefit of such apoptosis-related proteins in unicellular organisms is unclear. Here, we found that the yeast metacaspase Mca1 is recruited to the insoluble protein deposit (IPOD) and juxtanuclear quality-control compartment (JUNQ) during aging and proteostatic stress. Elevating MCA1 expression counteracted accumulation of unfolded proteins and aggregates and extended life span in a heat shock protein Hsp104 disaggregase- and proteasome-dependent manner. Consistent with a role in protein quality control, genetic interaction analysis revealed that MCA1 buffers against deficiencies in the Hsp40 chaperone YDJ1 in a caspase cysteine-dependent manner. Life-span extension and aggregate management by Mca1 was only partly dependent on its conserved catalytic cysteine, which suggests that Mca1 harbors both caspase-dependent and independent functions related to life-span control.

  11. Demography of Genotypes: Failure of the Limited Life-Span Paradigm in Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Curtsinger, James W.; Fukui, Hidenori H.; Townsend, David R.; Vaupel, James W.

    1992-10-01

    Experimental systems that are amenable to genetic manipulation can be used to address fundamental questions about genetic and nongenetic determinants of longevity. Analysis of large cohorts of ten genotypes of Drosophila melanogaster raised under conditions that favored extended survival has revealed variation between genotypes in both the slope and location of age-specific mortality curves. More detailed examination of a single genotype showed that the mortality trajectory was best fit by a two-stage Gompertz model, with no age-specific increase in mortality rates beyond 30 days after emergence. These results are contrary to the limited life-span paradigm, which postulates well-defined, genotype-specific limits on life-span and brief periods of intense and rapidly accelerating mortality rates at the oldest ages.

  12. Long-term efficacy and safety of lamotrigine for all types of bipolar disorder

    PubMed Central

    Watanabe, Yoshinori; Hongo, Seiji

    2017-01-01

    Background We investigated whether the long-term efficacy and safety of lamotrigine (LTG) for bipolar disorder (BP) differs between disease types (BP-I, BP-II, or BP not otherwise specified [BP-NOS]), and the efficacy of the concomitant use of antidepressants (ADs). Methods For >1 year, we observed 445 outpatients with BP (diagnosed by DSM-IV criteria) who initiated LTG treatment between July 1 and October 31, 2011, using the Himorogi Self-rating Depression (HSDS) and Anxiety Scales and the Clinical Global Impression-Improvement scale and also recorded adverse events. Results Treatment efficacy was observed at week 4, with the improved HSDS scores sustained until week 52 for all types of BP; 50% of the patients with any type of BP could be treated with LTG for 1 year, whereas ~40% could be treated for >1.5 years. However, 25% of the patients were withdrawn within the first 4 weeks. The overall incidence of adverse events was 22.9% (104/455): 34.1% (14/41) for BP-I, 22.7% (15/66) for BP-II, and 22.2% (75/338) for BP-NOS. The most common adverse event was skin rash: 22.0% for BP-I, 16.7% for BP-II, and 12.1% for BP-NOS. Limitations There was no control group. Data were collected retrospectively. Conclusion With careful and adequate titration, long-term treatment with LTG is possible for any type of BP, with BP-NOS patients, the largest population in clinical practice, responding particularly well. Symptoms can improve with or without ADs. Large-scale prospective studies of the efficacy of ADs in bipolar treatment are warranted. PMID:28360522

  13. Lamotrigine, carbamazepine and phenytoin differentially alter extracellular levels of 5-hydroxytryptamine, dopamine and amino acids.

    PubMed

    Ahmad, Shagufta; Fowler, Leslie J; Whitton, Peter S

    2005-02-01

    We have studied the effects of treatment with the anticonvulsants lamotrigine (LTG), phenytoin (PHN) and carbamazepine (CBZ) on basal and stimulated extracellular aspartate (ASP), glutamate (GLU), taurine (TAU), GABA, 5-hydroxytryptamine (5-HT) and dopamine (DA) in the hippocampus of freely moving rats using microdialysis. All of the drugs investigated have had inhibition of Na(+) channel activity implicated as their principal mechanism of action. Neither LTG (10-20 mg/kg), PHN (20-40 mg/kg) or CBZ (10-20 mg/kg) had an effect on the basal extracellular concentrations of any of the amino acids studied with the exception of glutamate, which was decreased at the highest LTG dose. However, when amino acid transmitter levels were increased with 50 microM veratridine, LTG was found to cause a dose-dependent decrease in dialysate levels of all four amino acids, with the effect being most pronounced for glutamate. In contrast, PHN decreased extracellular aspartate levels but had no effect on evoked-extracellular GLU, TAU or GABA. Somewhat unexpectedly, CBZ did not alter the stimulated increase in the excitatory amino acids, GLU and ASP, but, rather surprisingly for an antiepileptic drug, markedly decreased that of the inhibitory substances TAU and GABA. The three drugs had differing effects on basal extracellular 5-HT and DA. LTG caused a dose-dependent decrease in both, while CBZ and PHN both increased extracellular 5-HT and DA. When extracellular 5-HT and DA was evoked by veratridine LTG had no significant effect on this, while PHN but not CBZ increased stimulated extracellular 5-HT and both PHN and CBZ augmented DA. Thus, the effects of the three drugs studied seemed to depend on whether extracellular transmitter levels are evoked or basal and the particular transmitter in question. This suggests that there are marked differences in the neurochemical mechanisms of antiepileptic drug action of the three compounds studied.

  14. Studies on induction of lamotrigine metabolism in transgenic UGT1 mice.

    PubMed

    Argikar, U A; Senekeo-Effenberger, K; Larson, E E; Tukey, R H; Remmel, R P

    2009-11-01

    A transgenic 'knock-in' mouse model expressing a human UGT1 locus (Tg-UGT1) was recently developed and validated. Although these animals express mouse UGT1A proteins, UGT1A4 is a pseudo-gene in mice. Therefore, Tg-UGT1 mice serve as a 'humanized' UGT1A4 animal model. Lamotrigine (LTG) is primarily metabolized to its N-glucuronide (LTGG) by hUGT1A4. This investigation aimed at examining the impact of pregnane X receptor (PXR), constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor (PPAR) activators on LTG glucuronidation in vivo and in vitro. Tg-UGT1 mice were administered the inducers phenobarbital (CAR), pregnenolone-16alpha-carbonitrile (PXR), WY-14643 (PPAR-alpha), ciglitazone (PPAR-gamma), or L-165041 (PPAR-beta), once daily for 3 or 4 days. Thereafter, LTG was administered orally and blood samples were collected over 24 h. LTG was measured in blood and formation of LTGG was measured in pooled microsomes made from the livers of treated animals. A three-fold increase in in vivo LTG clearance was seen after phenobarbital administration. In microsomes prepared from phenobarbital-treated Tg-UGT1 animals, 13-fold higher CL(int) (Vmax/K(m)) value was observed as compared with the untreated transgenic mice. A trend toward induction of catalytic activity in vitro and in vivo was also observed following pregnenolone-16alpha-carbonitrile and WY-14643 treatment. This study demonstrates the successful application of Tg-UGT1 mice as a novel tool to study the impact of induction and regulation on metabolism of UGT1A4 substrates.

  15. Long-term monotherapy with lamotrigine in newly diagnosed epilepsy in adults.

    PubMed

    Chmielewska, B; Kamiński, M L; Kawka, Z

    2001-01-01

    Lamotrigine (LTG) as both effective against a wide range of seizure types and epileptic syndromes and well tolerated drug is being used in mono--as well as in polytherapy of pharmacoresistant epilepsy. The aim of this study was to evaluate the efficacy, safety and neuropsychological functioning after LTG (mean daily dose: 316 mg) as long-term monotherapy (12 mo) in 24 young adult out-patients (22.5 ys) with newly recognised and not-previously treated epilepsy in an open, non-comparative trial. 67% of patients were responders (above 50% reduction in seizure frequency) and 42% reported seizures remission. The best were results in patients with generalised convulsive fits (87% with remission). Adverse events in the early phase of medication in 21% of patients typically concerned CNS and gastrointestinal system (headache, asthenia, insomnia, nausea, gastric aches) and resolved spontaneously without treatment discontinuation. Biochemical examinations were normal and transient leucopenia and diminishion of MCV were clinically not significant. Neurodynamic abilities, neuropsychological examination results, memory verbal and visual tests and organic evaluation in organic triada tests did not show deterioration after LTG treatment. Slight difficulties in abstractive and operative thinking and some focal symptoms of fronto-temporal origin should be considered a result of drug but also the epilepsy per se. No significant differences in latencies and amplitudes of evoked potentials (VEP, BAEP, SEP and especially ERP-300) were measured after LTG. Preliminary results obtained in this study supported good efficacy and tolerability and especially lack of unfavourable influence of LTG on neuropsychological functioning in young previously untreated patients with epilepsy.

  16. Captopril potentiates the anticonvulsant activity of carbamazepine and lamotrigine in the mouse maximal electroshock seizure model.

    PubMed

    Lukawski, Krzysztof; Jakubus, Tomasz; Raszewski, Grzegorz; Czuczwar, Stanisław J

    2010-10-01

    Some studies suggest a higher risk of hypertension in people with epilepsy. Captopril, a potent and selective angiotensin-converting enzyme (ACE) inhibitor, is a well known antihypertensive drug. Besides the peripheral renin-angiotensin system (RAS), ACE inhibitors are also suggested to affect the brain RAS which might participate in the regulation of seizure susceptibility. The purpose of the current study was to evaluate the effect of captopril on the protective action of numerous antiepileptic drugs (carbamazepine [CBZ], phenytoin [PHT], valproate [VPA], phenobarbital [PB], oxcarbazepine [OXC], lamotrigine [LTG] and topiramate [TPM]) against maximal electroshock-induced seizures in mice. This study was accompanied by an evaluation of adverse effects of combined treatment with captopril and antiepileptic drugs in the passive avoidance task and chimney test. Captopril (25 and 50 mg/kg i.p.) did not influence the threshold for electroconvulsions. Among the tested antiepileptics, captopril (25 and 50 mg/kg i.p.) potentiated the antiseizure action of CBZ, decreasing its ED(50) value from 12.1 to 8.9 and 8.7 mg/kg, respectively. Moreover, captopril (50 mg/kg i.p.) enhanced the anticonvulsant activity of LTG. ED(50) value for LTG was lowered from 5.1 to 3.5 mg/kg. The observed interactions between captopril and CBZ or LTG were pharmacodynamic in nature as captopril did not alter plasma and total brain concentrations of these antiepileptics. The combinations of captopril with antiepileptic drugs did not lead to retention deficits in the passive avoidance task or motor impairment in the chimney test. Based on the current preclinical data, it is suggested that captopril may positively interact with CBZ and LTG in epileptic patients. The combinations of captopril with the remaining antiepileptics (PHT, VPA, PB, OXC and TPM) seem neutral.

  17. Enhanced brain delivery of lamotrigine with Pluronic® P123-based nanocarrier

    PubMed Central

    Liu, Jian-Sheng; Wang, Jian-Hong; Zhou, Jie; Tang, Xing-Hua; Xu, Lan; Shen, Teng; Wu, Xun-Yi; Hong, Zhen

    2014-01-01

    Background P-glycoprotein (P-gp) mediated drug efflux across the blood–brain barrier (BBB) is an important mechanism underlying poor brain penetration of certain antiepileptic drugs (AEDs). Nanomaterials, as drug carriers, can overcome P-gp activity and improve the targeted delivery of AEDs. However, their applications in the delivery of AEDs have not been adequately investigated. The objective of this study was to develop a nano-scale delivery system to improve the solubility and brain penetration of the antiepileptic drug lamotrigine (LTG). Methods LTG-loaded Pluronic® P123 (P123) polymeric micelles (P123/LTG) were prepared by thin-film hydration, and brain penetration capability of the nanocarrier was evaluated. Results The mean encapsulating efficiency for the optimized formulation was 98.07%; drug-loading was 5.63%, and particle size was 18.73 nm. The solubility of LTG in P123/LTG can increase to 2.17 mg/mL, making it available as a solution. The in vitro release of LTG from P123LTG presented a sustained-release property. Compared with free LTG, the LTG-incorporated micelles accumulated more in the brain at 0.5, 1, and 4 hours after intravenous administration in rats. Pretreatment with systemic verapamil increased the rapid brain penetration of free LTG but not P123/LTG. Incorporating another P-gp substrate (Rhodamine 123) into P123 micelles also showed higher efficiency in penetrating the BBB in vitro and in vivo. Conclusion These results indicated that P123 micelles have the potential to overcome the activity of P-gp expressed on the BBB and therefore show potential for the targeted delivery of AEDs. Future studies are necessary to further evaluate the appropriateness of the nanocarrier to enhance the efficacy of AEDs. PMID:25152622

  18. The transcriptional repressor Sum1p counteracts Sir2p in regulation of the actin cytoskeleton, mitochondrial quality control and replicative lifespan in Saccharomyces cerevisiae

    PubMed Central

    Higuchi-Sanabria, Ryo; Vevea, Jason D.; Charalel, Joseph K.; Sapar, Maria L.; Pon, Liza A.

    2016-01-01

    Increasing the stability or dynamics of the actin cytoskeleton can extend lifespan in C. elegans and S. cerevisiae. Actin cables of budding yeast, bundles of actin filaments that mediate cargo transport, affect lifespan control through effects on mitochondrial quality control. Sir2p, the founding member of the Sirtuin family of lifespan regulators, also affects actin cable dynamics, assembly, and function in mitochondrial quality control. Here, we obtained evidence for novel interactions between Sir2p and Sum1p, a transcriptional repressor that was originally identified through mutations that genetically suppress sir2∆ phenotypes unrelated to lifespan. We find that deletion of SUM1 in wild-type cells results in increased mitochondrial function and actin cable abundance. Furthermore, deletion of SUM1 suppresses defects in actin cables and mitochondria of sir2∆ yeast, and extends the replicative lifespan and cellular health span of sir2∆ cells. Thus, Sum1p suppresses Sir2p function in control of specific aging determinants and lifespan in budding yeast. PMID:28357337

  19. Minority Stress across the Career-Lifespan Trajectory

    ERIC Educational Resources Information Center

    Dispenza, Franco; Brown, Colton; Chastain, Taylor E.

    2016-01-01

    Sexual minority persons (e.g., lesbian, gay, bisexual, and queer) are likely to encounter "minority stress", such as discrimination, concealment, expectation of rejection, and internalized heterosexism. Minority stress occurs alongside one's lifespan and has considerable implications in the context of the career lifespan trajectory.…

  20. A cross-sectional study of male and female C57BL/6Nia mice suggests lifespan and healthspan are not necessarily correlated

    PubMed Central

    Fischer, Kathleen E.; Hoffman, Jessica M.; Sloane, Lauren B.; Gelfond, Jonathan A.L.; Soto, Vanessa Y.; Richardson, Arlan G.; Austad, Steven N.

    2016-01-01

    Lifespan provides a discrete metric that is intuitively appealing and the assumption has been that healthspan is extended concomitant with lifespan. Medicine has been more successful at extending life than preserving health during aging. Interventions that extend lifespan in model organisms do not always result in a corresponding increase in healthspan, suggesting that lifespan and healthspan may be uncoupled. To understand how interventions that extend life affect healthspan, we need measures that distinguish between young and old animals. Here we measured age-related changes in healthspan in male and female C57BL/6JNia mice assessed at 4 distinct ages (4 months, 20 months, 28 months and 32 months). Correlations between health parameters and age varied. Some parameters show consistent patterns with age across studies and in both sexes, others changed in one sex only and others showed no significant differences in mice of different ages. Few correlations existed among health assays, suggesting that physiological function in domains we assessed change independently in aging mice. With one exception, health parameters were not significantly associated with an increased probability of premature death. Our results show the need for more robust measures of murine health and suggest a potential disconnect between health and lifespan in mice. PMID:27705904

  1. Nonparametric inference on quantile lost lifespan.

    PubMed

    Balmert, Lauren; Jeong, Jong-Hyeon

    2017-03-01

    In this article, the existing concept of reversed percentile residual life, or percentile inactivity time, is recast to show that it can be used for routine analysis of time-to-event data under right censoring to summarize "life lost," which poses several advantages over the existing methods for survival analysis. An estimating equation approach is adopted to avoid estimation of the probability density function of the underlying time-to-event distribution to estimate the variance of the quantile estimator. Additionally a K-sample test statistic is proposed to test the ratio of the quantile lost lifespans. Simulation studies are performed to assess finite properties of the proposed K-sample statistic in terms of coverage probability and power. The proposed method is illustrated with a real data example from a breast cancer study.

  2. Simultaneous liquid chromatographic determination of lamotrigine, oxcarbazepine monohydroxy derivative and felbamate in plasma of patients with epilepsy.

    PubMed

    Contin, Manuela; Balboni, Monica; Callegati, Erica; Candela, Carmina; Albani, Fiorenzo; Riva, Roberto; Baruzzi, Agostino

    2005-12-15

    A very simple and fast method has been developed and validated for simultaneous determination of the new generation antiepileptic drugs (AEDs) lamotrigine (LTG), oxcarbazepine's (OXC) main active metabolite monohydroxycarbamazepine and felbamate in plasma of patients with epilepsy using high-performance liquid chromatography (HPLC) with spectrophotometric detection. Plasma sample (500 microL) pre-treatment was based on simple deproteinization by acetonitrile. Liquid chromatographic analysis was carried out on a Synergi 4 microm Hydro-RP, 150 mm x 4 mm I.D. column, using a mixture of potassium dihydrogen phosphate buffer (50mM, pH 4.5) and acetonitrile/methanol (3/1) (65:35, v/v) as the mobile phase, at a flow rate of 1.0 mL/min. The UV detector was set at 210 nm. Calibration curves were linear (mean correlation coefficient >0.999 for all the three analytes) over a range of 1-20 mg/mL for lamotrigine, 2-40 microg/mL for monohydroxycarbamazepine and 10-120 microg/mL for felbamate. Both intra and interassay precision and accuracy were lower than 7.5% for all three analytes. Absolute recoveries ranged between 100 and 104%. The present procedure describes for the first time the simultaneous determination of these three new antiepileptic drugs. The simple sample pre-treatment, combined with the fast chromatographic run permit rapid processing of a large series of patient samples.

  3. Stevens-Johnson Syndrome triggered by a combination of clobazam, lamotrigine and valproic acid in a 7-year-old child.

    PubMed

    Yapici, A K; Fidanci, M K; Kilic, S; Balamtekin, N; Mutluay Arslan, M; Yavuz, S T; Kalman, S

    2014-09-30

    Stevens-Johnson Syndrome (SJS) and toxic epidermal necrolysis (TEN) are diseases within the spectrum of severe cutaneous adverse reactions affecting skin and mucous membranes. Antiepileptic drugs (AEDs) are used in combination, leading to potential pharmacokinetic or pharmacodynamic interactions, causing more adverse effects than might occur when the AED is taken as monotherapy. Here, we report a rare case of SJS triggered by a combination of clobazam, lamotrigine and valproic acid in a 7-year-old boy. Because of inadequate seizure control, lorazepam was replaced with clobazam. Four weeks after the addition of clobazam, the patient developed SJS with a generalized rash, fever, with liver and kidney involvement, and eosinophilia one week after the initiation of treatment. All antiepileptic drugs were discontinued, and intravenous methylprednisolone, prophylactic systemic antibiotics, intravenous fluid supplement, antipyretic, special wound care, and supportive medical care for SJS were administered. He was discharged in a stable condition on the 18th day. Our case suggests that a drug-drug interaction between valproate, lamotrigine and clobazam contributed to the development of SJS. When the clobazam was added to valproic acid and lamotrigine co-medication, the lamotrigine dose should have been decreased.

  4. An aging-independent replicative lifespan in a symmetrically dividing eukaryote

    PubMed Central

    Spivey, Eric C; Jones, Stephen K; Rybarski, James R; Saifuddin, Fatema A; Finkelstein, Ilya J

    2017-01-01

    The replicative lifespan (RLS) of a cell—defined as the number of cell divisions before death—has informed our understanding of the mechanisms of cellular aging. However, little is known about aging and longevity in symmetrically dividing eukaryotic cells because most prior studies have used budding yeast for RLS studies. Here, we describe a multiplexed fission yeast lifespan micro-dissector (multFYLM) and an associated image processing pipeline for performing high-throughput and automated single-cell micro-dissection. Using the multFYLM, we observe continuous replication of hundreds of individual fission yeast cells for over seventy-five generations. Surprisingly, cells die without the classic hallmarks of cellular aging, such as progressive changes in size, doubling time, or sibling health. Genetic perturbations and drugs can extend the RLS via an aging-independent mechanism. Using a quantitative model to analyze these results, we conclude that fission yeast does not age and that cellular aging and replicative lifespan can be uncoupled in a eukaryotic cell. DOI: http://dx.doi.org/10.7554/eLife.20340.001 PMID:28139976

  5. Analysis of lifespan-promoting effect of garlic extract by an integrated metabolo-proteomics approach.

    PubMed

    Huang, Chun-Hao; Hsu, Fang-Yu; Wu, Yuan-Heng; Zhong, Linda; Tseng, Mu-Yun; Kuo, Chao-Jen; Hsu, Ao-Lin; Liang, Shih-Shin; Chiou, Shyh-Horng

    2015-08-01

    The beneficial effects of garlic (Allium sativum) consumption in treating human diseases have been reported worldwide over a long period of human history. The strong antioxidant effect of garlic extract (GE) has also recently been claimed to prevent cancer, thrombus formation, cardiovascular disease and some age-related maladies. Using Caenorhabditis elegans as a model organism, aqueous GE was herein shown to increase the expression of longevity-related FOXO transcription factor daf-16 and extend lifespan by 20%. By employing microarray and proteomics analysis on C. elegans treated with aqueous GE, we have systematically mapped 229 genes and 46 proteins with differential expression profiles, which included many metabolic enzymes and yolky egg vitellogenins. To investigate the garlic components functionally involved in longevity, an integrated metabolo-proteomics approach was employed to identify metabolites and protein components associated with treatment of aqueous GE. Among potential lifespan-promoting substances, mannose-binding lectin and N-acetylcysteine were found to increase daf-16 expression. Our study points to the fact that the lifespan-promoting effect of aqueous GE may entail the DAF-16-mediated signaling pathway. The result also highlights the utility of metabolo-proteomics for unraveling the complexity and intricacy involved in the metabolism of natural products in vivo.

  6. Edible bird's nest enhances antioxidant capacity and increases lifespan in Drosophila Melanogaster.

    PubMed

    Hu, Q; Li, G; Yao, H; He, S; Li, H; Liu, S; Wu, Y; Lai, X

    2016-04-30

    In this study, we aims to investigate the effects of edible bird's nest (EBN) on anti-aging efficacy. In order to investigate lifespan and mortality rate of flies, we treated flies with various doses of EBN. Besides, fecundity, water content and food are determined and heat-stress test is conducted after flies treating with different medium. Effects of EBN on total antioxidant activity (T-AOC), super-oxide dismutase activity (SOD), catalase activity (CAT), and malondialdehyde (MDA) were examined in drosophila melanogaster. Results indicated that flies in EBN treated group illustrated significantly lower mortality rates and longer median and maximum lifespan compared to control group (P<0.05). The fecundity in EBN-treated group was increased compared to control group. SOD levels and CAT activity were significantly increased, and MDA levels decreased in EBN-treated group compared to control group (P<0.01). In conclusion, EBN can extend lifespan, decrease mortality rate and increase survival rate in heat-stress test, and which can also promote SOD and CAT activity and reduce MDA levels. EBN is able to delay drosophila melanogaster aging, attributing to the increasing antioxidant enzyme activities and decreasing content of lipid peroxidation products in drosophila melanogaster.

  7. Effects of calorie restriction on the lifespan and healthspan of POLG mitochondrial mutator mice

    PubMed Central

    Kim, Mi-Jung; Hacker, Timothy A.; Vermulst, Marc; Weindruch, Richard; Prolla, Tomas A.

    2017-01-01

    Mitochondrial DNA (mtDNA) mutations are thought to have a causative role in age-related pathologies. We have shown previously that mitochondrial mutator mice (PolgD257A/D257A), harboring a proofreading-deficient version of the mtDNA polymerase gamma (POLG), accumulate mtDNA mutations in multiple tissues and display several features of accelerated aging. Calorie restriction (CR) is known to delay the onset of age-related diseases and to extend the lifespan of a variety of species, including rodents. In the current study we investigated the effects of CR on the lifespan and healthspan of mitochondrial mutator mice. Long-term CR did not increase the median or maximum lifespan of PolgD257A/D257A mice. Furthermore, CR did not reduce mtDNA deletions in the heart and muscle, accelerated sarcopenia, testicular atrophy, nor improve the alterations in cardiac parameters that are present in aged mitochondrial mutator mice. Therefore, our findings suggest that accumulation of mtDNA mutations may interfere with the beneficial action of CR in aging retardation. PMID:28158260

  8. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans.

    PubMed

    Vayndorf, Elena M; Lee, Siu Sylvia; Liu, Rui Hai

    2013-07-01

    Regular consumption of fruits and vegetables is associated with reduced risk of age-related functional decline and chronic diseases such as cancer and cardiovascular disease. These effects are primarily attributed to phytochemicals, plant compounds with a wide range of biological activities and health benefits. Apples, the top contributor of fruit phenolics in American diets, have high antioxidant, antiproliferative and chemopreventive activity in vitro and in vivo. However, little is known about their effects on aging. The objectives of this study were to determine the effects of whole apple phytochemical extracts on lifespan, healthspan and resistance to various stresses in vivo using C. elegans as a model. The mean and maximum lifespan of animals treated with 2.5, 5 and 10 mg/ml whole apple extracts increased significantly in a dose-dependent manner by up to 39 and 25%, respectively. Healthspan also significantly improved as indicated by improved motility and reduced lipofuscin accumulation. Animals pre-treated with whole apple extracts were more resistant to stresses such as heat, UV radiation, paraquat-induced oxidative stress, and pathogenic infection, suggesting that cellular defense and immune system functions also improved. Our findings indicate that, in C. elegans, whole apple extracts slow aging, extend lifespan, improve healthspan, and enhance resistance to stress.

  9. Protein accumulation underlying lifespan extension via ovariectomy in grasshoppers is consistent with the disposable soma hypothesis but is not due to dietary restriction.

    PubMed

    Hatle, John D; Paterson, Cathy S; Jawaid, Imran; Lentz, Colleen; Wells, Sean M; Fronstin, Raime B

    2008-10-01

    Reduced reproduction extends lifespan in many experimental animals, but the mechanism by which this occurs is unclear. The disposable soma hypothesis suggests that when reproduction is reduced, more nutrients are allocated to the soma and lifespan is extended. Alternatively, the reproductive tissues or the process of reproduction may have a direct (i.e., non-nutritional) negative effect on lifespan. We used ovariectomized grasshoppers to examine the effects of reduced reproduction throughout the lifespan at the physiological level. We focused on protein, the limiting nutrient for egg production. Ovariectomized females lived significantly longer than sham females. Because both groups ingested similar amounts, the effect was independent of dietary restriction. Despite this, ovariectomized females gained less body mass than sham females. Ovariectomized grasshoppers produced the egg yolk-precursor protein vitellogenin. At the time sham females laid their first clutch, cumulative reproductive protein was similar in ovariectomized and sham females. By advanced ages, however, ovariectomized females had produced about five-fold less cumulative reproductive protein than sham females. In contrast, old ovariectomized females had at least two-fold more hemolymph storage protein. These results are consistent with ovariectomy extending lifespan in part via enhanced protein allocation to storage at the expense of reproduction.

  10. Maternal and Fetal Outcomes After Lamotrigine Use in Pregnancy: A Retrospective Analysis from an Urban Maternal Mental Health Centre in New Zealand

    PubMed Central

    Prakash, Chandni; Hatters-Friedman, Susan; Moller-Olsen, Charmian; North, Abigail

    2016-01-01

    Introduction Pregnancy is a vulnerable period for recurrence of bipolar disorder. Discontinuation of mood stabilisers during pregnancy and the postpartum period can significantly increase the risk of recurrence of bipolar disorder. Lamotrigine is an anti-epileptic drug that has been approved for the maintenance treatment of bipolar disorder. Epilepsy literature has indicated that lamotrigine has a reassuring safety profile in pregnancy but there is little information on its effectiveness and safety in pregnant women with mental disorders. Method We conducted a retrospective review of all pregnant women who presented to an urban maternal mental health centre in Auckland, New Zealand between 2012 and 2014 and were treated with antipsychotics and/or mood stabilisers. Pregnancy outcome, obstetric and perinatal complications, congenital malformations and maternal mental health in the postnatal period were considered. Results Here, we present the outcomes in the subset of six women who were treated with lamotrigine 100–400 mg/day for the entire pregnancy. Five were diagnosed with bipolar disorder and one with major depression. Three women received additional psychotropic medication during pregnancy. No women needed psychiatric hospitalisation. All babies were live birth after 36 weeks gestation. Two babies had low birth weight and required NICU admissions. Two women required lower segment caesarean section and the other 4 were induced. A trachea-esophageal fistula was noted in one baby. Four babies who were breastfed while their mothers received uninterrupted treatment with lamotrigine, experienced no complications. Discussion This naturalistic study indicates that lamotrigine can be an effective treatment option for maintenance of bipolar illness in women of childbearing age. PMID:27738382

  11. Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant Drosophila.

    PubMed

    Afschar, Sonita; Toivonen, Janne M; Hoffmann, Julia Marianne; Tain, Luke Stephen; Wieser, Daniela; Finlayson, Andrew John; Driege, Yasmine; Alic, Nazif; Emran, Sahar; Stinn, Julia; Froehlich, Jenny; Piper, Matthew D; Partridge, Linda

    2016-02-02

    Lifespan of laboratory animals can be increased by genetic, pharmacological, and dietary interventions. Increased expression of genes involved in xenobiotic metabolism, together with resistance to xenobiotics, are frequent correlates of lifespan extension in the nematode worm Caenorhabditis elegans, the fruit fly Drosophila, and mice. The Green Theory of Aging suggests that this association is causal, with the ability of cells to rid themselves of lipophilic toxins limiting normal lifespan. To test this idea, we experimentally increased resistance of Drosophila to the xenobiotic dichlordiphenyltrichlorethan (DDT), by artificial selection or by transgenic expression of a gene encoding a cytochrome P450. Although both interventions increased DDT resistance, neither increased lifespan. Furthermore, dietary restriction increased lifespan without increasing xenobiotic resistance, confirming that the two traits can be uncoupled. Reduced activity of the insulin/Igf signaling (IIS) pathway increases resistance to xenobiotics and extends lifespan in Drosophila, and can also increase longevity in C. elegans, mice, and possibly humans. We identified a nuclear hormone receptor, DHR96, as an essential mediator of the increased xenobiotic resistance of IIS mutant flies. However, the IIS mutants remained long-lived in the absence of DHR96 and the xenobiotic resistance that it conferred. Thus, in Drosophila IIS mutants, increased xenobiotic resistance and enhanced longevity are not causally connected. The frequent co-occurrence of the two traits may instead have evolved because, in nature, lowered IIS can signal the presence of pathogens. It will be important to determine whether enhanced xenobiotic metabolism is also a correlated, rather than a causal, trait in long-lived mice.

  12. Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant Drosophila

    PubMed Central

    Afschar, Sonita; Toivonen, Janne M.; Tain, Luke Stephen; Wieser, Daniela; Finlayson, Andrew John; Driege, Yasmine; Alic, Nazif; Emran, Sahar; Stinn, Julia; Froehlich, Jenny; Piper, Matthew D.; Partridge, Linda

    2016-01-01

    Lifespan of laboratory animals can be increased by genetic, pharmacological, and dietary interventions. Increased expression of genes involved in xenobiotic metabolism, together with resistance to xenobiotics, are frequent correlates of lifespan extension in the nematode worm Caenorhabditis elegans, the fruit fly Drosophila, and mice. The Green Theory of Aging suggests that this association is causal, with the ability of cells to rid themselves of lipophilic toxins limiting normal lifespan. To test this idea, we experimentally increased resistance of Drosophila to the xenobiotic dichlordiphenyltrichlorethan (DDT), by artificial selection or by transgenic expression of a gene encoding a cytochrome P450. Although both interventions increased DDT resistance, neither increased lifespan. Furthermore, dietary restriction increased lifespan without increasing xenobiotic resistance, confirming that the two traits can be uncoupled. Reduced activity of the insulin/Igf signaling (IIS) pathway increases resistance to xenobiotics and extends lifespan in Drosophila, and can also increase longevity in C. elegans, mice, and possibly humans. We identified a nuclear hormone receptor, DHR96, as an essential mediator of the increased xenobiotic resistance of IIS mutant flies. However, the IIS mutants remained long-lived in the absence of DHR96 and the xenobiotic resistance that it conferred. Thus, in Drosophila IIS mutants, increased xenobiotic resistance and enhanced longevity are not causally connected. The frequent co-occurrence of the two traits may instead have evolved because, in nature, lowered IIS can signal the presence of pathogens. It will be important to determine whether enhanced xenobiotic metabolism is also a correlated, rather than a causal, trait in long-lived mice. PMID:26787908

  13. Docosahexaenoic Acid and Cognition throughout the Lifespan

    PubMed Central

    Weiser, Michael J.; Butt, Christopher M.; Mohajeri, M. Hasan

    2016-01-01

    Docosahexaenoic acid (DHA) is the predominant omega-3 (n-3) polyunsaturated fatty acid (PUFA) found in the brain and can affect neurological function by modulating signal transduction pathways, neurotransmission, neurogenesis, myelination, membrane receptor function, synaptic plasticity, neuroinflammation, membrane integrity and membrane organization. DHA is rapidly accumulated in the brain during gestation and early infancy, and the availability of DHA via transfer from maternal stores impacts the degree of DHA incorporation into neural tissues. The consumption of DHA leads to many positive physiological and behavioral effects, including those on cognition. Advanced cognitive function is uniquely human, and the optimal development and aging of cognitive abilities has profound impacts on quality of life, productivity, and advancement of society in general. However, the modern diet typically lacks appreciable amounts of DHA. Therefore, in modern populations, maintaining optimal levels of DHA in the brain throughout the lifespan likely requires obtaining preformed DHA via dietary or supplemental sources. In this review, we examine the role of DHA in optimal cognition during development, adulthood, and aging with a focus on human evidence and putative mechanisms of action. PMID:26901223

  14. Metacognition of agency across the lifespan.

    PubMed

    Metcalfe, Janet; Eich, Teal S; Castel, Alan D

    2010-08-01

    Metacognitions of agency were investigated using a computer task in which X's and O's streamed from the top of a computer screen, and the participants moved the mouse to get the cursor to touch the X's and avoid the O's. After each 15 s trial, participants made judgments of agency and judgments of performance. Objective control was either undistorted, or distorted by (1) Turbulence (i.e., random noise), (2) a Lag between the mouse and cursor movements (of 250 or 500 ms), or (3) 'Magic,' (i.e., an increased radius around the X's for which credit was given). In Experiment 1, college students' judgments of agency showed that they were sensitive to all three manipulations. They also indicated that they felt more in control in the Lag conditions, where there was a rule on which they could potentially capitalize, than in the matched Turbulence conditions. In Experiment 2, older adults were also sensitive to all three manipulations, but less so than the college students. They were not sensitive to the difference between the Lag and Turbulence manipulations. Finally, in Experiment 3, 8-10 year-old children were sensitive to their loss of control equally in the Lag and Turbulence conditions. However, when performance was artificially improved, in the Magic condition, children took full credit and showed no evidence that they realized that the results were due to an external variable. Together, these findings suggest that people's metacognition of agency changes in important ways across the lifespan.

  15. A Motivational Theory of Life-Span Development

    PubMed Central

    Heckhausen, Jutta; Wrosch, Carsten; Schulz, Richard

    2010-01-01

    This article had four goals. First, the authors identified a set of general challenges and questions that a life-span theory of development should address. Second, they presented a comprehensive account of their Motivational Theory of Life-Span Development. They integrated the model of optimization in primary and secondary control and the action-phase model of developmental regulation with their original life-span theory of control to present a comprehensive theory of development. Third, they reviewed the relevant empirical literature testing key propositions of the Motivational Theory of Life-Span Development. Finally, because the conceptual reach of their theory goes far beyond the current empirical base, they pointed out areas that deserve further and more focused empirical inquiry. PMID:20063963

  16. Gene expression defines natural changes in mammalian lifespan

    PubMed Central

    Fushan, Alexey A; Turanov, Anton A; Lee, Sang-Goo; Kim, Eun Bae; Lobanov, Alexei V; Yim, Sun Hee; Buffenstein, Rochelle; Lee, Sang-Rae; Chang, Kyu-Tae; Rhee, Hwanseok; Kim, Jong-So; Yang, Kap-Seok; Gladyshev, Vadim N

    2015-01-01

    Mammals differ more than 100-fold in maximum lifespan, which can be altered in either direction during evolution, but the molecular basis for natural changes in longevity is not understood. Divergent evolution of mammals also led to extensive changes in gene expression within and between lineages. To understand the relationship between lifespan and variation in gene expression, we carried out RNA-seq-based gene expression analyses of liver, kidney, and brain of 33 diverse species of mammals. Our analysis uncovered parallel evolution of gene expression and lifespan, as well as the associated life-history traits, and identified the processes and pathways involved. These findings provide direct insights into how nature reversibly adjusts lifespan and other traits during adaptive radiation of lineages. PMID:25677554

  17. Distribution of lifespan gain from primary prevention intervention

    PubMed Central

    Finegold, Judith A; Shun-Shin, Matthew J; Cole, Graham D; Zaman, Saman; Maznyczka, Annette; Zaman, Sameer; Al-Lamee, Rasha; Ye, Siqin; Francis, Darrel P

    2016-01-01

    Objective When advising patients about possible initiation of primary prevention treatment, clinicians currently do not have information on expected impact on lifespan, nor how much this increment differs between individuals. Methods First, UK cardiovascular and non-cardiovascular mortality data were used to calculate the mean lifespan gain from an intervention (such as a statin) that reduces cardiovascular mortality by 30%. Second, a new method was developed to calculate the probability distribution of lifespan gain. Third, we performed a survey in three UK cities on 11 days between May–June 2014 involving 396 participants (mean age 40 years, 55% male) to assess how individuals evaluate potential benefit from primary prevention therapies. Results Among numerous identical patients, the lifespan gain, from an intervention that reduces cardiovascular mortality by 30%, is concentrated within an unpredictable minority. For example, men aged 50 years with national average cardiovascular risk have mean lifespan gain of 7 months. However, 93% of these identical individuals gain no lifespan, while the remaining 7% gain a mean of 99 months. Many survey respondents preferred a chance of large lifespan gain to the equivalent life expectancy gain given as certainty. Indeed, 33% preferred a 2% probability of 10 years to fivefold more gain, expressed as certainty of 1 year. Conclusions People who gain lifespan from preventative therapy gain far more than the average for their risk stratum, even if perfectly defined. This may be important in patient decision-making. Looking beyond mortality reduction alone from preventative therapy, the benefits are likely to be even larger. PMID:27042321

  18. Development of psychosis in patients with epilepsy treated with lamotrigine: report of six cases and review of the literature.

    PubMed

    Brandt, Christian; Fueratsch, Nora; Boehme, Volker; Kramme, Corinna; Pieridou, Maria; Villagran, Antonia; Woermann, Friedrich; Pohlmann-Eden, Bernd

    2007-08-01

    Lamotrigine (LTG) is a generally well-tolerated antiepileptic drug (AED) with broad-spectrum efficacy in several forms of partial and generalized epilepsy and is also licensed for use in bipolar disorder in several countries. We describe six patients who developed a psychotic disorder--in most, but not all, cases schizophrenia-like in character--under treatment with LTG, within a group of about 1400 patients treated with this drug in our center. This indicates that psychosis is a rare adverse event under LTG treatment. On the background of available drug serum levels, we suggest, in particular, an intrinsic or toxic psychotogenic effect of LTG. Possible risk factors seem to be psychiatric comorbidity and temporal lobe pathology. The described phenomenon is discussed within the context of possible psychotogenic effects of other AEDs.

  19. [Sense and sensibility: bipolar affective disorder as a battlefield of cognitions and emotions--lamotrigine therapy as a peacekeeper].

    PubMed

    Kálmán, János; Kálmán, János

    2010-06-01

    The cortico-limbic dysregulation theory of bipolar affective disorder (BAD) is supported by ample of recent research evidences. This concept is based on the dysharmonic regulation of prefrontal and anterior limbic structures manifested in a strong interaction of cognitive and affective symptoms. The major aim of the present review is to characterize the BAD specific cognitive profile and to describe the cognitive syndrome of BAD during the natural course of the disorder, based on recent findings in neurobiology, neuropathology, neuroradiology, cognitive psychology and neurogenetics. The authors recommend that BAD-associated cognitive symptoms should always be considered during the recognition, follow up and treatment phases of the disorder. The importance of the cognitive syndrome is also emphasized from the aspects of outcome and existing therapeutic regimens of the disorder. The cognitive syndrome-associated perspective of BAD could therefore provide new approaches regarding the long-term management issues of patients. Evidence from recent clinical trials is also summarized regarding the interactions of existing BAD treatment options with cognitive symptoms of the disorder, since all of the recommended antipsychotics and antiepileptics have a certain degree of cognitive toxicity. Based on the overview of the existing clinical trials, it was concluded that lamotrigine has the smallest cognitive toxicity among the mood stabilizers used for the treatment of BAD type-2. Therefore, as far as the cognitive toxicity profile is concerned, lamotrigine is recommended as the most promising therapeutic approach both for the treatment of bipolar depressive phases and relapse prevention. In addition, neuroprotective properties of the same molecule might also be beneficial regarding the proposed pathomechanism of BAD.

  20. Personality and Obesity across the Adult Lifespan

    PubMed Central

    Sutin, Angelina R.; Ferrucci, Luigi; Zonderman, Alan B.; Terracciano, Antonio

    2011-01-01

    Personality traits contribute to health outcomes, in part through their association with major controllable risk factors, such as obesity. Body weight, in turn, reflects our behaviors and lifestyle and contributes to the way we perceive ourselves and others. In this study, we use data from a large (N=1,988) longitudinal study that spanned more than 50 years to examine how personality traits are associated with multiple measures of adiposity and with fluctuations in body mass index (BMI). Using 14,531 anthropometric assessments, we modeled the trajectory of BMI across adulthood and tested whether personality predicted its rate of change. Measured concurrently, participants higher on Neuroticism or Extraversion or lower on Conscientiousness had higher BMI; these associations replicated across body fat, waist, and hip circumference. The strongest association was found for the impulsivity facet: Participants who scored in the top 10% of impulsivity weighed, on average, 11Kg more than those in the bottom 10%. Longitudinally, high Neuroticism and low Conscientiousness, and the facets of these traits related to difficulty with impulse control, were associated with weight fluctuations, measured as the variability in weight over time. Finally, low Agreeableness and impulsivity-related traits predicted a greater increase in BMI across the adult lifespan. BMI was mostly unrelated to change in personality traits. Personality traits are defined by cognitive, emotional, and behavioral patterns that likely contribute to unhealthy weight and difficulties with weight management. Such associations may elucidate the role of personality traits in disease progression and may help to design more effective interventions. PMID:21744974

  1. An oxidative fluctuation hypothesis of aging generated by imaging H₂O₂ levels in live Caenorhabditis elegans with altered lifespans.

    PubMed

    Fu, Xinmiao; Tang, Yan; Dickinson, Bryan C; Chang, Christopher J; Chang, Zengyi

    2015-03-20

    Reactive oxygen species (ROS) are important factors mediating aging according to the free radical theory of aging. Few studies have systematically measured ROS levels in relationship to aging, partly due to the lack of tools for detection of specific ROS in live animals. By using the H₂O₂-specific fluorescence probe Peroxy Orange 1, we assayed the H₂O₂ levels of live Caenorhabditis elegans with 41 aging-related genes being individually knocked down by RNAi. Knockdown of 14 genes extends the lifespan but increases H₂O₂ level or shortens the lifespan but decreases H₂O₂ level, contradicting the free radical theory of aging. Strikingly, a significant inverse correlation between lifespan and the normalized standard deviation of H₂O₂ levels was observed (p < 0.0001). Such inverse correlation was also observed in worms cultured under heat shock conditions. An oxidative fluctuation hypothesis of aging is thus proposed and suggests that the ability of animals to homeostatically maintain the ROS levels within a narrow range is more important for lifespan extension than just minimizing the ROS levels though the latter still being crucial.

  2. Diacylglycerol lipase regulates lifespan and oxidative stress response by inversely modulating TOR signaling in Drosophila and C. elegans.

    PubMed

    Lin, Yen-Hung; Chen, Yi-Chun; Kao, Tzu-Yu; Lin, Yi-Chun; Hsu, Tzu-En; Wu, Yi-Chun; Ja, William W; Brummel, Theodore J; Kapahi, Pankaj; Yuh, Chiou-Hwa; Yu, Lin-Kwei; Lin, Zhi-Han; You, Ru-Jing; Jhong, Yi-Ting; Wang, Horng-Dar

    2014-08-01

    Target of rapamycin (TOR) signaling is a nutrient-sensing pathway controlling metabolism and lifespan. Although TOR signaling can be activated by a metabolite of diacylglycerol (DAG), phosphatidic acid (PA), the precise genetic mechanism through which DAG metabolism influences lifespan remains unknown. DAG is metabolized to either PA via the action of DAG kinase or 2-arachidonoyl-sn-glycerol by diacylglycerol lipase (DAGL). Here, we report that in Drosophila and Caenorhabditis elegans, overexpression of diacylglycerol lipase (DAGL/inaE/dagl-1) or knockdown of diacylglycerol kinase (DGK/rdgA/dgk-5) extends lifespan and enhances response to oxidative stress. Phosphorylated S6 kinase (p-S6K) levels are reduced following these manipulations, implying the involvement of TOR signaling. Conversely, DAGL/inaE/dagl-1 mutants exhibit shortened lifespan, reduced tolerance to oxidative stress, and elevated levels of p-S6K. Additional results from genetic interaction studies are consistent with the hypothesis that DAG metabolism interacts with TOR and S6K signaling to affect longevity and oxidative stress resistance. These findings highlight conserved metabolic and genetic pathways that regulate aging.

  3. What can long-lived mutants tell us about mechanisms causing aging and lifespan variation in natural environments?

    PubMed

    Briga, Michael; Verhulst, Simon

    2015-11-01

    Long-lived mutants of model organisms have brought remarkable progress in our understanding of aging mechanisms. However, long-lived mutants are usually maintained in optimal standardized laboratory environments (SLEs), and it is not obvious to what extent insights from long-lived mutants in SLEs can be generalized to more natural environments. To address this question, we reviewed experiments that compared the fitness and lifespan advantage of long-lived mutants relative to wild type controls in SLEs and more challenging environments in various model organisms such as yeast Saccharomyces cerevisiae, the nematode worm Caenorhabditis elegans, the fruitfly Drosophila melanogaster and the mouse Mus musculus. In competition experiments over multiple generations, the long-lived mutants had a lower fitness relative to wild type controls, and this disadvantage was the clearest when the environment included natural challenges such as limited food (N=6 studies). It is well known that most long-lived mutants have impaired reproduction, which provides one reason for the fitness disadvantage. However, based on 12 experiments, we found that the lifespan advantage of long-lived mutants is diminished in more challenging environments, often to the extent that the wild type controls outlive the long-lived mutants. Thus, it appears that information on aging mechanisms obtained from long-lived mutants in SLEs may be specific to such environments, because those same mechanisms do not extend lifespan in more natural environments. This suggests that different mechanisms cause variation in aging and lifespan in SLEs compared to natural populations.

  4. Extension of Drosophila lifespan by Rosa damascena associated with an increased sensitivity to heat.

    PubMed

    Schriner, Samuel E; Katoozi, Niki S; Pham, Kevin Q; Gazarian, Maral; Zarban, Asghar; Jafari, Mahtab

    2012-04-01

    Rosa damascena, or Damask rose, is a rose hybrid commonly harvested for rose oil used in perfumery and for rose water used to flavor food. The petal extract of R. damascena was recently found to decrease Drosophila melanogaster mortality without impairing reproductive fitness or metabolic rate. Here, we report that R. damascena extended both mean and maximum lifespan of the fly. The extract also protected against oxidative stress in flies, predominantly in females. However, it did not alter mitochondrial respiration or content, superoxide production, or the major antioxidant defenses, superoxide dismutase and catalase. The extract increased survival in both sexes when exposed to reduced iron, though surprisingly, it sensitized both sexes to heat stress (survival at 37°C), and appeared to down-regulate the major heat shock protein HSP70 and the small mitochondrial heat shock protein HSP22, at 25°C and after heat shock (4 h at 37°C). We hypothesize that R. damascena extends lifespan by protecting against iron, which concomitantly leads to decreased HSP expression and compromising heat tolerance.

  5. A Regulated Response to Impaired Respiration Slows Behavioral Rates and Increases Lifespan in Caenorhabditis elegans

    PubMed Central

    Cristina, David; Cary, Michael; Lunceford, Adam; Clarke, Catherine; Kenyon, Cynthia

    2009-01-01

    When mitochondrial respiration or ubiquinone production is inhibited in Caenorhabditis elegans, behavioral rates are slowed and lifespan is extended. Here, we show that these perturbations increase the expression of cell-protective and metabolic genes and the abundance of mitochondrial DNA. This response is similar to the response triggered by inhibiting respiration in yeast and mammalian cells, termed the “retrograde response”. As in yeast, genes switched on in C. elegans mitochondrial mutants extend lifespan, suggesting an underlying evolutionary conservation of mechanism. Inhibition of fstr-1, a potential signaling gene that is up-regulated in clk-1 (ubiquinone-defective) mutants, and its close homolog fstr-2 prevents the expression of many retrograde-response genes and accelerates clk-1 behavioral and aging rates. Thus, clk-1 mutants live in “slow motion” because of a fstr-1/2–dependent pathway that responds to ubiquinone. Loss of fstr-1/2 does not suppress the phenotypes of all long-lived mitochondrial mutants. Thus, although different mitochondrial perturbations activate similar transcriptional and physiological responses, they do so in different ways. PMID:19360127

  6. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L-Cysteine in Caenorhabditis elegans

    PubMed Central

    Oh, Seung-Il; Park, Jin-Kook; Park, Sang-Kyu

    2015-01-01

    OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV), was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors. PMID:26039957

  7. Effects of WIN 55,212-2 mesylate on the anticonvulsant action of lamotrigine, oxcarbazepine, pregabalin and topiramate against maximal electroshock-induced seizures in mice.

    PubMed

    Luszczki, Jarogniew J; Wlaz, Aleksandra; Karwan, Slawomir; Florek-Luszczki, Magdalena; Czuczwar, Stanislaw J

    2013-11-15

    The aim of this study was to determine the effect of WIN 55,212-2 mesylate (WIN - a non-selective cannabinoid CB1 and CB2 receptor agonist) on the protective action of four second-generation antiepileptic drugs (lamotrigine, oxcarbazepine, pregabalin and topiramate) in the mouse maximal electroshock seizure model. Tonic hind limb extension (seizure activity) was evoked in adult male albino Swiss mice by a current (sine-wave, 25 mA, 500 V, 50 Hz, 0.2s stimulus duration) delivered via auricular electrodes. Drug-related adverse effects were ascertained by use of the chimney test (evaluating motor performance), the step-through passive avoidance task (assessing long-term memory) and the grip-strength test (evaluating skeletal muscular strength). Total brain concentrations of antiepileptic drugs were measured by high-pressure liquid chromatography to ascertain any pharmacokinetic contribution to the observed antiseizure effect. Results indicate that WIN (5mg/kg, i.p.) significantly enhanced the anticonvulsant action of lamotrigine (P<0.05), pregabalin (P<0.001) and topiramate (P<0.05), but not that of oxcarbazepine in the maximal electroshock-induced tonic seizure test in mice. Furthermore, none of the investigated combinations of WIN with antiepileptic drugs were associated with any concurrent adverse effects with regards to motor performance, long-term memory or muscular strength. Pharmacokinetic characterization revealed that WIN had no impact on total brain concentrations of lamotrigine, oxcarbazepine, pregabalin and topiramate in mice. These preclinical data would suggest that WIN in combination with lamotrigine, pregabalin and topiramate is associated with beneficial anticonvulsant pharmacodynamic interactions in the maximal electroshock-induced tonic seizure test.

  8. Deglycosylation is a key step in biotransformation and lifespan effects of quercetin-3-O-glucoside in Caenorhabditis elegans.

    PubMed

    Dueñas, Montserrat; Surco-Laos, Felipe; González-Manzano, Susana; González-Paramás, Ana M; Gómez-Orte, Eva; Cabello, Juan; Santos-Buelga, Celestino

    2013-10-01

    Due to their purported healthful activities, quercetin and other flavonoids are being increasingly proposed as nutraceuticals. Quercetin occurs in food as glycosides; however, most assays on its activity have been performed with the aglycone, despite glycosylation deeply affects compound bioavailability. In this work, the uptake and lifespan effects of quercetin-3-O-glucoside (Q3Glc) and quercetin have been assessed in Caenorhabditis elegans. Q3Glc was taken up by this nematode in a concentration-dependent manner and rapidly deglycosylated to quercetin, which was accumulated in the worm and partially biotransformed to conjugated metabolites. Significant mean lifespan extension up to 23% compared to controls was observed in wild type worms cultivated in the presence of low concentrations of Q3Glc (10 μM and 25 μM), whereas exposure to greater concentrations of Q3Glc (50-200 μM) caused a reduction in mean and maximum lifespan compared with the control. By contrast, treatment of klo-1 and klo-2 mutant worms lacking β-glucosidase activity with 200 μM of Q3Glc led to extended mean lifespan (up to 39%), similar to quercetin aglycone at the same concentration levels. In those mutants, Q3Glc was accumulated without important deglycosylation to quercetin was produced. Taken together, these findings indicated that Q3Glc was taken up by the nematode in greater extent than quercetin, and that deglycosylation and subsequent aglycone accumulation in the worm appeared as key points to explain the observed lifespan effects. The obtained results also suggested that facilitated absorption should be more important for the uptake of quercetin derivatives than passive diffusion.

  9. Impacts of environmental factors on fine root lifespan

    PubMed Central

    McCormack, M. Luke; Guo, Dali

    2014-01-01

    The lifespan of fast-cycling roots is a critical parameter determining a large flux of plant carbon into soil through root turnover and is a biological feature regulating the capacity of a plant to capture soil water and nutrients via root-age-related physiological processes. While the importance of root lifespan to whole-plant and ecosystem processes is increasingly recognized, robust descriptions of this dynamic process and its response to changes in climatic and edaphic factors are lacking. Here we synthesize available information and propose testable hypotheses using conceptual models to describe how changes in temperature, water, nitrogen (N), and phosphorus (P) availability impact fine root lifespan within a species. Each model is based on intrinsic responses including root physiological activity and alteration of carbohydrate allocation at the whole-plant level as well as extrinsic factors including mycorrhizal fungi and pressure from pathogens, herbivores, and other microbes. Simplifying interactions among these factors, we propose three general principles describing fine root responses to complex environmental gradients. First, increases in a factor that strongly constrains plant growth (temperature, water, N, or P) should result in increased fine root lifespan. Second, increases in a factor that exceeds plant demand or tolerance should result in decreased lifespan. Third, as multiple factors interact fine root responses should be determined by the most dominant factor controlling plant growth. Moving forward, field experiments should determine which types of species (e.g., coarse vs. fine rooted, obligate vs. facultative mycotrophs) will express greater plasticity in response to environmental gradients while ecosystem models may begin to incorporate more detailed descriptions of root lifespan and turnover. Together these efforts will improve quantitative understanding of root dynamics and help to identify areas where future research should be focused

  10. Expression of human uncoupling protein-3 in Drosophila insulin-producing cells increases insulin-like peptide (DILP) levels and shortens lifespan.

    PubMed

    Humphrey, Dickon M; Toivonen, Janne M; Giannakou, Maria; Partridge, Linda; Brand, Martin D

    2009-05-01

    Uncoupling proteins (UCPs) can dissipate mitochondrial protonmotive force by increasing the proton conductance of the inner membrane and through this effect could decrease ROS production, ameliorate oxidative stress and extend lifespan. We investigated whether ubiquitous, pan-neuronal or neurosecretory cell-specific expression of human UCP3 (hUCP3) in adult Drosophila melanogaster affected lifespan. Low, ubiquitous expression of hUCP3 at levels found in rodent skeletal muscle mitochondria did not affect proton conductance in mitochondria isolated from whole flies, but high pan-neuronal expression of hUCP3 increased the proton conductance of mitochondria isolated from fly heads. Expression of hUCP3 at moderate levels in adult neurons led to a marginal lifespan-extension in males. However, high expression of hUCP3 in neuronal tissue shortened lifespan. The life-shortening effect was replicated when hUCP3 was expressed specifically in median neurosecretory cells (mNSC), which express three of the Drosophila insulin-like peptides (DILPs). Expression of hUCP3 in the mNSC did not alter expression of dilp2, dilp3 or dilp5 mRNA, but led to increased amounts of DILP2 in fly heads. These data suggest that lowering mitochondrial coupling by high expression of hUCP3 alters mNSC function in a way that appears to increase DILP-levels in fly heads and lead to a concomitant decrease in lifespan.

  11. Lamotrigine as add-on treatment to lithium and divalproex: lessons learned from a double-blind, placebo-controlled trial in rapid-cycling bipolar disorder

    PubMed Central

    Kemp, David E; Gao, Keming; Fein, Elizabeth B; Chan, Philip K; Conroy, Carla; Obral, Sarah; Ganocy, Stephen J; Calabrese, Joseph R

    2013-01-01

    Objectives A substantial portion of the morbidity associated with rapid-cycling bipolar disorder (RCBD) stems from refractory depression. This study assessed the antidepressant effects of lamotrigine as compared with placebo when used as add-on therapy for rapid-cycling bipolar depression non-responsive to the combination of lithium plus divalproex. Methods During Phase 1 of this trial, hypomanic, manic, mixed, and/or depressed outpatients (n = 133) aged 18–65 with DSM-IV RCBD type I or II were initially treated with the open combination of lithium and divalproex for up to 16 weeks. During Phase 2, subjects who did not meet the criteria for stabilization (n = 49) (i.e., remained or cycled into the depressed phase) were randomly assigned to double-blind, adjunctive lamotrigine (n = 23) or adjunctive placebo (n = 26). The primary endpoint was the mean change in depression symptom severity from the beginning of Phase 2 to the end of Phase 2 (week 12) on the Montgomery-Åsberg Depression Rating Scale (MADRS) total score. Data were analyzed by analysis of covariance with last observation carried forward and a mixed-models analysis. Results During Phase 1, a high rate of study discontinuations occurred due to intolerable side effects (13/133; 10%) and study non-adherence (22/133; 17%). Only 14% (19/133) stabilized on the open combination of lithium and divalproex. Among the 49 (37%) patients randomized to the double-blind adjunctive treatment phase, mean ± standard error change from baseline on the MADRS total score was −8.5 ± 1.7 points for lamotrigine and −9.1 ± 1.5 points for placebo (p = NS; mixed-models analysis). No significant differences were observed in the rates of response, remission, or bimodal response between lamotrigine and placebo. Conclusions The poor tolerability, lack of efficacy, and high rate of early discontinuation with the combination of lithium and divalproex suggests this regimen was ineffective for the majority of patients with RCBD

  12. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending lifespan

    PubMed Central

    Pearson, Kevin J.; Baur, Joseph A.; Lewis, Kaitlyn N.; Peshkin, Leonid; Price, Nathan L.; Labinskyy, Nazar; Swindell, William R.; Kamara, Davida; Minor, Robin K.; Perez, Evelyn; Jamieson, Hamish A.; Zhang, Yongqing; Dunn, Stephen R.; Sharma, Kumar; Pleshko, Nancy; Woollett, Laura A.; Csiszar, Anna; Ikeno, Yuji; Le Couteur, David; Elliott, Peter J.; Becker, Kevin G.; Navas, Placido; Ingram, Donald K.; Wolf, Norman S.; Ungvari, Zoltan; Sinclair, David A.; de Cabo, Rafael

    2008-01-01

    SUMMARY A small molecule that safely mimics the ability of dietary restriction (DR) to delay age-related diseases in laboratory animals is greatly sought after. We and others have shown that resveratrol mimics effects of DR in lower organisms. In mice, we find that resveratrol induces gene expression patterns in multiple tissues that parallel those induced by DR and every-other-day feeding. Moreover, resveratrol-fed elderly mice show a marked reduction in signs of aging including reduced albuminuria, decreased inflammation and apoptosis in the vascular endothelium, increased aortic elasticity, greater motor coordination, reduced cataract formation, and preserved bone mineral density. However, mice fed a standard diet did not live longer when treated with resveratrol beginning at 12 months of age. Our findings indicate that resveratrol treatment has a range of beneficial effects in mice but does not increase the longevity of ad libitum-fed animals when started mid-life. PMID:18599363

  13. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice

    PubMed Central

    Bitto, Alessandro; Ito, Takashi K; Pineda, Victor V; LeTexier, Nicolas J; Huang, Heather Z; Sutlief, Elissa; Tung, Herman; Vizzini, Nicholas; Chen, Belle; Smith, Kaleb; Meza, Daniel; Yajima, Masanao; Beyer, Richard P; Kerr, Kathleen F; Davis, Daniel J; Gillespie, Catherine H; Snyder, Jessica M; Treuting, Piper M; Kaeberlein, Matt

    2016-01-01

    The FDA approved drug rapamycin increases lifespan in rodents and delays age-related dysfunction in rodents and humans. Nevertheless, important questions remain regarding the optimal dose, duration, and mechanisms of action in the context of healthy aging. Here we show that 3 months of rapamycin treatment is sufficient to increase life expectancy by up to 60% and improve measures of healthspan in middle-aged mice. This transient treatment is also associated with a remodeling of the microbiome, including dramatically increased prevalence of segmented filamentous bacteria in the small intestine. We also define a dose in female mice that does not extend lifespan, but is associated with a striking shift in cancer prevalence toward aggressive hematopoietic cancers and away from non-hematopoietic malignancies. These data suggest that a short-term rapamycin treatment late in life has persistent effects that can robustly delay aging, influence cancer prevalence, and modulate the microbiome. DOI: http://dx.doi.org/10.7554/eLife.16351.001 PMID:27549339

  14. PERK Limits Drosophila Lifespan by Promoting Intestinal Stem Cell Proliferation in Response to ER Stress.

    PubMed

    Wang, Lifen; Ryoo, Hyung Don; Qi, Yanyan; Jasper, Heinrich

    2015-05-01

    Intestinal homeostasis requires precise control of intestinal stem cell (ISC) proliferation. In Drosophila, this control declines with age largely due to chronic activation of stress signaling and associated chronic inflammatory conditions. An important contributor to this condition is the age-associated increase in endoplasmic reticulum (ER) stress. Here we show that the PKR-like ER kinase (PERK) integrates both cell-autonomous and non-autonomous ER stress stimuli to induce ISC proliferation. In addition to responding to cell-intrinsic ER stress, PERK is also specifically activated in ISCs by JAK/Stat signaling in response to ER stress in neighboring cells. The activation of PERK is required for homeostatic regeneration, as well as for acute regenerative responses, yet the chronic engagement of this response becomes deleterious in aging flies. Accordingly, knocking down PERK in ISCs is sufficient to promote intestinal homeostasis and extend lifespan. Our studies highlight the significance of the PERK branch of the unfolded protein response of the ER (UPRER) in intestinal homeostasis and provide a viable strategy to improve organismal health- and lifespan.

  15. Fitness benefits of prolonged post-reproductive lifespan in women.

    PubMed

    Lahdenperä, Mirkka; Lummaa, Virpi; Helle, Samuli; Tremblay, Marc; Russell, Andrew F

    2004-03-11

    Most animals reproduce until they die, but in humans, females can survive long after ceasing reproduction. In theory, a prolonged post-reproductive lifespan will evolve when females can gain greater fitness by increasing the success of their offspring than by continuing to breed themselves. Although reproductive success is known to decline in old age, it is unknown whether women gain fitness by prolonging lifespan post-reproduction. Using complete multi-generational demographic records, we show that women with a prolonged post-reproductive lifespan have more grandchildren, and hence greater fitness, in pre-modern populations of both Finns and Canadians. This fitness benefit arises because post-reproductive mothers enhance the lifetime reproductive success of their offspring by allowing them to breed earlier, more frequently and more successfully. Finally, the fitness benefits of prolonged lifespan diminish as the reproductive output of offspring declines. This suggests that in female humans, selection for deferred ageing should wane when one's own offspring become post-reproductive and, correspondingly, we show that rates of female mortality accelerate as their offspring terminate reproduction.

  16. Families and Drugs: A Life-Span Research Approach.

    ERIC Educational Resources Information Center

    Glynn, Thomas J.

    The study of human development and behavior from a life-span perspective is an area of growing interest, and the family is a natural laboratory for this study. Research in the area of drug abuse demonstrates that drug use is not limited to any one population segment or age group, but is pervasive across population subgroups. More and more evidence…

  17. Epigenetic Contributions to Cognitive Aging: Disentangling Mindspan and Lifespan

    ERIC Educational Resources Information Center

    Spiegel, Amy M.; Sewal, Angila S.; Rapp, Peter R.

    2014-01-01

    Epigenetic modifications of chromatin structure provide a mechanistic interface for gene-environment interactions that impact the individualization of health trajectories across the lifespan. A growing body of research indicates that dysfunctional epigenetic regulation contributes to poor cognitive outcomes among aged populations. Here we review…

  18. Extremely short lifespan in the annual fish Nothobranchius furzeri.

    PubMed Central

    Valdesalici, Stefano; Cellerino, Alessandro

    2003-01-01

    Evolutionary theories of senescence postulate that lifespan is determined by the age-dependent decrease in the effects of natural selection. Factors that influence survival and reproduction at early life stages have a larger impact on fitness than factors that influence later life stages. According to these views, selection for rapid sexual maturation and a steep age-dependent decrease in fitness drive the evolution of short lifespans. Here, we report on the survival trajectory of Nothobranchius furzeri (Pisces: Ciprinodontidae): a member of a group of annual species found in temporary bodies of water whose life expectancy in the wild is limited to a few months. We find that maximum survival of N. furzeri in the laboratory is less than 12 weeks. The temporal trajectory of survival shows an age-dependent increase in the mortality rate that is typical of organisms with defined lifespans. The lifespan of N. furzeri is exceptionally short for a vertebrate: owing to its small size and the possibility of propagation in captivity, N. furzeri could be used as a convenient model for ageing research. PMID:14667379

  19. Haploinsufficiency of Akt1 Prolongs the Lifespan of Mice

    PubMed Central

    Nojima, Aika; Yamashita, Masakatsu; Yoshida, Yohko; Shimizu, Ippei; Ichimiya, Harumi; Kamimura, Naomi; Kobayashi, Yoshio; Ohta, Shigeo; Ishii, Naoaki; Minamino, Tohru

    2013-01-01

    There is increasing evidence that nutrient-sensing machinery is critically involved in the regulation of aging. The insulin/insulin-like growth factor-1 signaling pathway is the best-characterized pathway with an influence on longevity in a variety of organisms, ranging from yeast to rodents. Reduced expression of the receptor for this pathway has been reported to prolong the lifespan; however, the underlying mechanisms are largely unknown. Here we show that haploinsufficiency of Akt1 leads to an increase of the lifespan in mice. Akt1+/– mice had a lower body weight than their littermates with less fat mass and normal glucose metabolism. Ribosomal biogenesis and the mitochondrial DNA content were significantly reduced in these mice, along with a decrease of oxidative stress. Consistent with the results obtained in mice, inhibition of Akt-1 promoted longevity in nematodes (Caenorhabditis elegans), whereas activation of Akt-1 shortened the lifespan. Inhibition of Akt-1 led to a decrease of ribosomal gene expression and the mitochondrial DNA content in both human cells and nematodes. Moreover, deletion of ribosomal gene expression resulted in a decrease of the mitochondrial DNA content and normalized the lifespan shortened by Akt-1 activation in nematodes. These results suggest that an increase of mitochondrial amount and energy expenditure associated with enhanced protein synthesis accelerates both aging and the onset of age-associated diseases. PMID:23935948

  20. Genetics and gene-environment interactions on longevity and lifespan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Longevity is a complex trait and highly associated with healthspan – lifespan without major diseases. In human populations there is a large amount of variation in longevity, which can be attributed to genetics, environment, and interactions between them. The genetic contribution to longevity is abou...

  1. Reproductive Market Values Explain Post-reproductive Lifespans in Men.

    PubMed

    Vinicius, Lucio; Migliano, Andrea Bamberg

    2016-03-01

    Post-reproductive lifespans (PRLSs) of men vary across traditional societies. We argue that if sexual selection operates on male age-dependent resource availability (or 'reproductive market values') the result is variation in male late-life reproduction across subsistence systems. This perspective highlights the uniqueness of PRLS in both women and men.

  2. Developmental outcomes at preschool age after fetal exposure to valproic acid and lamotrigine: cognitive, motor, sensory and behavioral function.

    PubMed

    Rihtman, Tanya; Parush, Shula; Ornoy, Asher

    2013-11-01

    This prospective, observational study assessed the development of preschool children aged 3-6 years, 11 months (n=124) after in-utero anti-epileptic drug (AED) monotherapy exposure to valproic acid (VPA) (n=30, mean age 52.00[±15.22] months) and lamotrigine (LT) (n=42, mean age 50.12[±12.77] months), compared to non-exposed control children (n=52, mean age 59.96[±14.51] months). As a combined group, AED-exposed children showed reduced non-verbal IQ scores, and lower scores on motor measures, sensory measures, and parent-report executive function, behavioral and attentional measures. When the VPA- and LT-exposed groups were analyzed separately, no cognitive differences were found, but control-VPA and control-LT differences emerged for most motor and sensory measures as well as control-VPA parent-report behavioral and attentional differences. No differences were noted between the VPA and LT groups. These findings suggest that VPA- and LT-exposed children should be monitored on a wider range of developmental measures than currently used, and at differing developmental stages.

  3. Enhancement of Solubility of Lamotrigine by Solid Dispersion and Development of Orally Disintegrating Tablets Using 32 Full Factorial Design

    PubMed Central

    Singh, Jatinderpal; Garg, Rajeev; Gupta, Ghanshyam Das

    2015-01-01

    Present investigation deals with the preparation and evaluation of orally disintegrating tablets (ODTs) of lamotrigine using β-cyclodextrin and PVP-K30 as polymers for the preparation of solid dispersion which help in enhancement of aqueous solubility of this BCS CLASS-II drug and sodium starch glycolate (SSG) and crospovidone as a superdisintegrating agent, to reduce disintegration time. The ODTs were prepared by direct compression method. Nine formulations were developed with different ratios of superdisintegrating agents. All the formulations were evaluated for disintegration time, weight variation, hardness, friability, drug content uniformity, wetting time, and in vitro drug release study. In vitro drug release study was performed using United States Pharmacopoeia (USP) type 2 dissolution test apparatus employing paddle stirrer at 50 rpm using 900 mL of 0.1 N HCl maintained at 37°C ± 0.5°C as the dissolution medium. On the basis of evaluation parameters formulations were prepared using β-CD 1 : 1 solid dispersion. Then 32 full factorial design was applied using SSG and crospovidone in different ratios suggested by using design expert 8.0.7.1 and optimized formulation was prepared using amount of SSG and crospovidone as suggested by the software. The optimized formulation prepared had disintegrating time of 15 s, wetting time of 24 s, and % friability of 0.55. PMID:26634173

  4. Plant adaptogens increase lifespan and stress resistance in C. elegans.

    PubMed

    Wiegant, F A C; Surinova, S; Ytsma, E; Langelaar-Makkinje, M; Wikman, G; Post, J A

    2009-02-01

    Extracts of plant adaptogens such as Eleutherococcus senticosus (or Acanthopanax senticosus) and Rhodiola rosea can increase stress resistance in several model systems. We now show that both extracts also increase the mean lifespan of the nematode C. elegans in a dose-dependent way. In at least four independent experiments, 250 microg/ml Eleutherococcus (SHE-3) and 10-25 microg/ml Rhodiola (SHR-5) significantly increased life span between 10 and 20% (P < 0.001), increased the maximum lifespan with 2-3 days and postponed the moment when the first individuals in a population die, suggesting a modulation of the ageing process. With higher concentrations, less effect was observed, whereas at the highest concentrations tested (2500 microg/ml Eleutherococcus and 250 microg/ml Rhodiola) a lifespan shortening effect was observed of 15-25% (P < 0.001). Both adaptogen extracts were also able to increase stress resistance in C. elegans: against a relatively short heat shock (35 degrees C during 3 h) as well as chronic heat treatment at 26 degrees C. An increase against chronic oxidative stress conditions was observed in mev-1 mutants, and during exposure of the wild type nematode to paraquat (10 mM) or UV stress, be it less efficiently. Concerning the mode of action: both adaptogens induce translocation of the DAF-16 transcription factor from the cytoplasm into the nucleus, suggesting a reprogramming of transcriptional activities favoring the synthesis of proteins involved in stress resistance (such as the chaperone HSP-16) and longevity. Based on these observations, it is suggested that adaptogens are experienced as mild stressors at the lifespan-enhancing concentrations and thereby induce increased stress resistance and a longer lifespan.

  5. Methionine restriction beyond life-span extension.

    PubMed

    Ables, Gene P; Hens, Julie R; Nichenametla, Sailendra N

    2016-01-01

    Dietary methionine restriction (MR) extends life span across species via various intracellular regulatory mechanisms. In rodents, MR induces resistance against adiposity, improves hepatic glucose metabolism, preserves cardiac function, and reduces body size, all of which can affect the onset of age-related diseases. Recent studies have shown that MR-affected biomarkers, such as fibroblast growth factor 21, adiponectin, leptin, cystathionine β synthase, and insulin-like growth factor 1, can potentially alter physiology. The beneficial effects of MR could be explained in part by its ability to reduce mitochondrial oxidative stress. Studies have revealed that MR can reduce reactive oxygen species that damage cells and promote cancer progression. It has been demonstrated that either MR or the targeting of specific genes in the methionine cycle could induce cell apoptosis while decreasing proliferation in several cancer models. The complete mechanism underlying the actions of MR on the cell cycle during cancer has not been fully elucidated. Epigenetic mechanisms, such as methylation and noncoding RNAs, are also possible downstream effectors of MR; future studies should help to elucidate some of these mechanisms. Despite evidence that changes in dietary methionine can affect epigenetics, it remains unknown whether epigenetics is a mechanism in MR. This review summarizes research on MR and its involvement in metabolism, cancer, and epigenetics.

  6. Lifespan and Healthspan: Past, Present, and Promise

    PubMed Central

    Crimmins, Eileen M.

    2015-01-01

    The past century was a period of increasing life expectancy throughout the age range. This resulted in more people living to old age and to spending more years at the older ages. It is likely that increases in life expectancy at older ages will continue, but life expectancy at birth is unlikely to reach levels above 95 unless there is a fundamental change in our ability to delay the aging process. We have yet to experience much compression of morbidity as the age of onset of most health problems has not increased markedly. In recent decades, there have been some reductions in the prevalence of physical disability and dementia. At the same time, the prevalence of disease has increased markedly, in large part due to treatment which extends life for those with disease. Compressing morbidity or increasing the relative healthspan will require “delaying aging” or delaying the physiological change that results in disease and disability. While moving to life expectancies above age 95 and compressing morbidity substantially may require significant scientific breakthroughs; significant improvement in health and increases in life expectancy in the United States could be achieved with behavioral, life style, and policy changes that reduce socioeconomic disparities and allow us to reach the levels of health and life expectancy achieved in peer societies. PMID:26561272

  7. Rosemary Extract-Mediated Lifespan Extension and Attenuated Oxidative Damage in Drosophila melanogaster Fed on High-Fat Diet.

    PubMed

    Wang, Hua-Li; Sun, Zhen-Ou; Rehman, Rizwan-Ur; Wang, Hong; Wang, Yi-Fei; Wang, Hao

    2017-04-01

    Rosemary extract has a potent antioxidant activity and is widely used in the food industry. In this study, the lifespan prolonging and antioxidant activity of rosemary extract was evaluated by high-fat-induced oxidative damage in Drosophila melanogaster. The results revealed that the lifespan and climbing ability of fruit flies was enhanced significantly by feeding rosemary extract. Furthermore, feeding with rosemary extract significantly increased the enzyme activity of superoxide dismutase (SOD) and catalase (CAT), and significantly decreased the level of malonaldehyde. The gene expression of SOD, CAT, and nuclear factor erythroid-2 related factor 2 was enhanced and that for methuselah was significantly reduced. The comet assay showed that high-fat diet-induced DNA lesion was significantly reduced in larvae treated with the rosemary extract. Our results suggest that feeding with rosemary extract is effective to the extended lifespan in fruit flies by strengthening of the resistance to high-fat-induced oxidative stress and by stimulating, at least in part, the endogenous antioxidant response.

  8. A Systems Approach to Reverse Engineer Lifespan Extension by Dietary Restriction.

    PubMed

    Hou, Lei; Wang, Dan; Chen, Di; Liu, Yi; Zhang, Yue; Cheng, Hao; Xu, Chi; Sun, Na; McDermott, Joseph; Mair, William B; Han, Jing-Dong J

    2016-03-08

    Dietary restriction (DR) is the most powerful natural means to extend lifespan. Although several genes can mediate responses to alternate DR regimens, no single genetic intervention has recapitulated the full effects of DR, and no unified system is known for different DR regimens. Here we obtain temporally resolved transcriptomes during calorie restriction and intermittent fasting in Caenorhabditis elegans and find that early and late responses involve metabolism and cell cycle/DNA damage, respectively. We uncover three network modules of DR regulators by their target specificity. By genetic manipulations of nodes representing discrete modules, we induce transcriptomes that progressively resemble DR as multiple nodes are perturbed. Targeting all three nodes simultaneously results in extremely long-lived animals that are refractory to DR. These results and dynamic simulations demonstrate that extensive feedback controls among regulators may be leveraged to drive the regulatory circuitry to a younger steady state, recapitulating the full effect of DR.

  9. A Systems Approach to Reverse Engineer Lifespan Extension by Dietary Restriction

    PubMed Central

    Hou, Lei; Wang, Dan; Chen, Di; Liu, Yi; Zhang, Yue; Cheng, Hao; Xu, Chi; Sun, Na; McDermott, Joseph; Mair, William B.; Han, Jing-Dong J.

    2016-01-01

    Summary Dietary restriction (DR) is the most powerful natural means to extend lifespan. Although several genes can mediate responses to alternate DR regimens, no single genetic intervention has recapitulated the full effects of DR, and no unified system is known for different DR regimens. Here we obtain temporally resolved transcriptomes during calorie restriction and intermittent fasting in Caenorhabditis elegans, and find that early and late responses involve metabolism and cell cycle/DNA damage, respectively. We uncover three network modules of DR regulators by their target specificity. By genetic manipulations of nodes representing discrete modules, we induce transcriptomes that progressively resemble DR as multiple nodes are perturbed. Targeting all three nodes simultaneously results in extremely long-lived animals that are refractory to DR. These results and dynamic simulations demonstrate that extensive feedback controls among regulators may be leveraged to drive the regulatory circuitry to a younger steady state, recapitulating the full effect of DR. PMID:26959186

  10. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals "aging factors" and mechanism of lifespan asymmetry.

    PubMed

    Yang, Jing; McCormick, Mark A; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K; Li, Hao

    2015-09-22

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials ("aging factors") through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms.

  11. A Randomized Double-Blind Placebo-Controlled Study to Compare Preemptive Analgesic Efficacy of Novel Antiepileptic Agent Lamotrigine in Patients Undergoing Major Surgeries

    PubMed Central

    Shah, Priyank; Bhosale, Uma A; Gupta, Ankush; Yegnanarayan, Radha; Sardesai, Shalini

    2016-01-01

    Background: If postoperative acute pain remains unrelieved, it may result in significant morbidity and mortality. Preemptive analgesic initiated before surgery offers premature analgesia even before exposure to an initial noxious stimulus bestowing effective postoperative analgesia. In developed countries, it is regularly practiced as a part of well-defined protocol. In our country however, only a few centers practice it and that too irregularly and with undefined protocol. Few studies support preemptive analgesic efficacy of novel antiepileptic agent gabapentin. Though lamotrigine is a proven analgesic in animal models of chronic pain and clinical studies of gabapentin-resistant neuropathic pain, a literature search revealed scarce data on its preemptive analgesic efficacy. Aims: The present study is designed to study the preemptive analgesic efficacy of lamotrigine in comparison with diclofenac sodium in postoperative pain control. Materials and Methods: This randomized clinical trial included 90 patients of both sexes, between 18 years and 70 years undergoing major surgeries. Patients were randomly allocated into placebo, control, and test groups and received the respective treatment 30 min before the induction of anesthesia. Aldrete score and pain score were recorded using visual analog scale (VAS), facial rating scale (FRS), and behavioral rating scale (BRS) at awakening and at 1 h, 2 h, 4 h, 6 h, and 24 h. Postoperative rescue analgesic consumption for 24 h was recorded. Results: Significantly higher pain scores were observed in the placebo group postoperatively for 2 h on all pain scales (P < 0.05), whereas in the control group it was significantly higher at 1 h (P < 0.05). The test group patients were more comfortable throughout the study and postoperative analgesic requirement was significantly less (P < 0.05). Conclusions: The study recommends the use of single oral dose lamotrigine as preemptive analgesic for effective postoperative pain control. PMID

  12. Extended antipaternalism

    PubMed Central

    Hansson, S

    2005-01-01

    Extended antipaternalism means the use of antipaternalist arguments to defend activities that harm (consenting) others. As an example, a smoker's right to smoke is often invoked in defence of the activities of tobacco companies. It can, however, be shown that antipaternalism in the proper sense does not imply such extended antipaternalism. We may therefore approve of Mill's antipaternalist principle (namely, that the only reason to interfere with someone's behaviour is to protect others from harm) without accepting activities that harm (consenting) others. This has immediate consequences for the ethics of public health. An antipaternalist need not refrain from interfering with activities such as the marketing of tobacco or heroin, boxing promotion, driving with unbelted passengers, or buying sex from "voluntary" prostitutes. PMID:15681674

  13. Fuel extender

    SciTech Connect

    Dorn, G.K.; Gilbert, H.A.

    1989-02-21

    An efficient and cost competitive fuel extender liquid is described for blending with lead-free gasoline as an additive thereto in a maximum amount of up to about 35% thereof with 65% by volume of the gasoline in a blended mixture wherein. The content of the extender in the resultant fuel as proportioned on the basis of its thus representative maximum content consists essentially of: naphtha X as represented by C/sub 4/, C/sub 5/ and C/sub 6/ hydrocarbons having a Reid vapor pressure of about 8.5 to 9.6 per ASTM, D323 test procedure and an initial distillation point of about 101/sup 0/F. and an end point of about 280/sup 0/F. within a range of about 10 to 25% by volume, about 3.8 to 6.0% by volume of anhydrous ethanol, a stabilizing amount of a water repellent of the class consisting of ethyl acetate and methyl isotubyl ketone; and about 4 to 10.5% by volume of aromatics benzene and toluene, of benzene and xylene or of benzene with toluene and xylene; the extender having a specific gravity substantially comparable with that of the lead-free gasoline to which it is to be added and having phase stability in the presence of water when mixed with the gasoline.

  14. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology

    PubMed Central

    Munch, Stephan B.; Salinas, Santiago

    2009-01-01

    Many ectotherms exhibit striking latitudinal gradients in lifespan. However, it is unclear whether lifespan gradients in distantly related taxa share a common mechanistic explanation. We compiled data on geographic variation in lifespan in ectotherms from around the globe to determine how much of this intraspecific variation in lifespan may be explained by temperature using the simple predictions of the metabolic theory of ecology. We found that the metabolic theory accurately predicts how lifespan varies with temperature within species in a wide range of ectotherms in both controlled laboratory experiments and free-living populations. After removing the effect of temperature, only a small fraction of species showed significant trends with latitude. There was, however, considerable residual intraspecific variation indicating that other, more local factors are likely to be important in determining lifespan within species. These findings suggest that, given predicted increases in global temperature, lifespan of ectotherms may be substantially shortened in the future. PMID:19666552

  15. Alive and Well? Exploring Disease by Studying Lifespan

    PubMed Central

    Brett, Jamie O.; Rando, Thomas A.

    2014-01-01

    A common concept in aging research is that chronological age is the most important risk factor for the development of diverse diseases, including degenerative diseases and cancers. The mechanistic link between the aging process and disease pathogenesis, however, is still enigmatic. Nevertheless, measurement of lifespan, as a surrogate for biological aging, remains among the most frequently used assays in aging research. In this review, we examine the connection between “normal aging” and age-related disease from the point of view that they form a continuum of aging phenotypes. This notion of common mechanisms gives rise to the converse postulate that diseases may be risk factors for accelerated aging. We explore the advantages and caveats associated with using lifespan as a metric to understand cell and tissue aging, focusing on the elucidation of molecular mechanisms and potential therapies for age-related diseases. PMID:25005743

  16. Lifespan trends of autobiographical remembering: episodicity and search for meaning.

    PubMed

    Habermas, Tilmann; Diel, Verena; Welzer, Harald

    2013-09-01

    Autobiographical memories of older adults show fewer episodic and more non-episodic elements than those of younger adults. This semantization effect is attributed to a loss of episodic memory ability. However the alternative explanation by an increasing proclivity to search for meaning has not been ruled out to date. To test whether a decrease in episodicity and an increase in meaning-making in autobiographical narratives are related across the lifespan, we used different instructions, one focussing on specific episodes, the other on embedding events in life, in two lifespan samples. A continuous decrease of episodic quality of memory (memory specificity, narrative quality) was confirmed. An increase of search for meaning (interpretation, life story integration) was confirmed only up to middle adulthood. This non-inverse development of episodicity and searching for meaning in older age speaks for an autonomous semantization effect that is not merely due to an increase in interpretative preferences.

  17. Effects of lithium and lamotrigine on oxidative-nitrosative stress and spatial learning deficit after global cerebral ischemia.

    PubMed

    Ozkul, Ayca; Sair, Ahmet; Akyol, Ali; Yenisey, Cigdem; Dost, Turhan; Tataroglu, Canten

    2014-05-01

    Lithium (Li) and lamotrigine (LTG) have neuroprotective properties. However, the exact therapeutic mechanisms of these drugs have not been well understood. We investigated the antioxidant properties of Li (40 and 80 mg/kg/day) and LTG (20 and 40 mg/kg/day) in a rat model of global cerebral ischemia based on permanent bilateral occlusion of the common carotid arteries (BCAO). Nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), glutathione reductase (GSH-R), catalase (CAT) and superoxide dismutase (SOD) levels were measured as an indicator of oxidative-nitrosative stress in both prefrontal cortex (PFC) and hippocampus after 28 days of treatment. The spatial learning disability was also assessed at the end of the study by Morris water maze (MWM) test. All oxidative-nitrosative parameters were found to be higher in the groups under treatment than in sham. Both drugs caused a decrease in PFC NO and MDA elevation, meanwhile the increase in GSH, GSH-R, CAT and SOD levels was significantly more evident in treated groups. We also found higher PFC GSH-R and hippocampal SOD levels in BCAO + Li (80 mg/day) treated group when compared with BCAO + LTG 40 mg/day. MWM test data showed a similar increase in spatial learning ability in all groups under treatment. We found no other statistical difference in comparison of treated groups with different dosages. Our findings suggested that Li and LTG treatments may decrease spatial learning memory deficits accompanied by lower oxidative-nitrosative stress in global cerebral ischemia. Both drugs may have potential benefits for the treatment of vascular dementia in clinical practice.

  18. Lamotrigine Decreased Hippocampal Damage and Improved Vascular Risk Markers in a Rat Model of Pentylenetetrazole Induced Kindling Seizure

    PubMed Central

    Haggag, Basma S; Raafat, Mona H; Abdel Kawy, Hala S

    2014-01-01

    Various antiepileptic drugs (AEDs) especially enzyme-inducing AEDs might be associated with increased vascular risk, through impairment of the endogenous antioxidative ability which may trigger oxygen-dependent tissue injury. Lamotrigine (LTG) a non-enzyme-inducing AED has scarce information regarding its effects on oxidative stress. The present study aimed to study the possible modulation of vascular risk factors of epileptogenesis by LTG, in a rat model of kindling seizure induced by pentylenetetrazole (PTZ). Four groups of male Wister rats were used; vehicle control group, PTZ group (alternate day PTZ, 30 mg/kg, i.p), LTG/PTZ group (LTG 20 mg/kg/day p.o and alternate day PTZ) and LTG group. The study period was 5 weeks. Lipoproteins and total homocysteine (tHcy), malondialdehyde (MDA) and reduced glutathione (GSH) were measured. Aortic endothelial function study and histopathological examination of the rats' brains, aortas and coronaries were conducted. Serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C), tHcy, MDA, GSH levels were significantly higher in epileptic rats than normal controls rats. A decrease in HDL-cholesterol with high atherosclerotic index was also demonstrated. The administration of LTG improved the PTZ-kindled seizures. It produced a significant decrease in TC, TG and LDL-cholesterol, MDA, aortic GSH and increase in HDL-cholesterol with no significant effect on serum GSH and tHcy levels. LTG improved endothelium-dependent relaxation, decreased hippocampal neurodegenerative changes and atherosclerotic changes of aortas and coronaries. LTG decreased seizures severity, hippocampal damage and improved vascular risk markers in this rat model of kindling seizures. PMID:24976768

  19. Macronutrient balance, reproductive function, and lifespan in aging mice

    PubMed Central

    Solon-Biet, Samantha M.; Walters, Kirsty A.; Simanainen, Ulla K.; McMahon, Aisling C.; Ruohonen, Kari; Ballard, John William O.; Raubenheimer, David; Le Couteur, David G.; Simpson, Stephen J.

    2015-01-01

    In invertebrates, reproductive output and lifespan are profoundly impacted by dietary macronutrient balance, with these traits achieving their maxima on different diet compositions, giving the appearance of a resource-based tradeoff between reproduction and longevity. For the first time in a mammal, to our knowledge, we evaluate the effects of dietary protein (P), carbohydrate (C), fat (F), and energy (E) on lifespan and reproductive function in aging male and female mice. We show that, as in invertebrates, the balance of macronutrients has marked and largely opposing effects on reproductive and longevity outcomes. Mice were provided ad libitum access to one of 25 diets differing in P, C, F, and E content, with reproductive outcomes assessed at 15 months. An optimal balance of macronutrients exists for reproductive function, which, for most measures, differs from the diets that optimize lifespan, and this response differs with sex. Maximal longevity was achieved on diets containing a P:C ratio of 1:13 in males and 1:11 for females. Diets that optimized testes mass and epididymal sperm counts (indicators of gamete production) contained a higher P:C ratio (1:1) than those that maximized lifespan. In females, uterine mass (an indicator of estrogenic activity) was also greatest on high P:C diets (1:1) whereas ovarian follicle number was greatest on P:C 3:1 associated with high-F intakes. By contrast, estrous cycling was more likely in mice on lower P:C (1:8), and the number of corpora lutea, indicative of recent ovulations, was greatest on P:C similar to those supporting greatest longevity (1:11). PMID:25733862

  20. Cell resilience in species lifespans: a link to inflammation?

    PubMed Central

    Finch, CE; Morgan, TE; Longo, VD; de Magalhaes, JP

    2010-01-01

    Species differences in lifespan have been attributed to cellular survival during various stressors, designated here as ‘cell resilience’. In primary fibroblast cultures, cell resilience during exposure to free radicals, hypoglycemia, hyperthermia, and various toxins has shown generally consistent correlations with the species characteristic lifespans of birds and mammals. However, the mechanistic links of cell resilience in fibroblast cultures to different species lifespans are poorly understood. We propose that certain experimental stressors are relevant to somatic damage in vivo during inflammatory responses of innate immunity, particularly, resistance to ROS, low glucose, and hyperthermia. According to this hypothesis, somatic cell resilience determines species' differences in longevity during repeated infections and traumatic injuries in the natural environment. Infections and injury expose local fibroblasts and other cells to ROS generated by macrophages and to local temperature elevations. Systemically, acute phase immune reactions cause hypoglycemia and hyperthermia. We propose that cell resilience to somatic stressors incurred in inflammation is important in the evolution of longevity and that longer-lived species are specifically more resistant to immune-related stressors. This hypothesis further specifies Kirkwood's disposable soma theory. We suggest expanding the battery of stressors and markers used for comparative studies to additional cell types and additional parameters relevant to host defense and to their ecological specificities. PMID:20415721

  1. Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Shen, En-Zhi; Song, Chun-Qing; Lin, Yuan; Zhang, Wen-Hong; Su, Pei-Fang; Liu, Wen-Yuan; Zhang, Pan; Xu, Jiejia; Lin, Na; Zhan, Cheng; Wang, Xianhua; Shyr, Yu; Cheng, Heping; Dong, Meng-Qiu

    2014-04-01

    It has been theorized for decades that mitochondria act as the biological clock of ageing, but the evidence is incomplete. Here we show a strong coupling between mitochondrial function and ageing by in vivo visualization of the mitochondrial flash (mitoflash), a frequency-coded optical readout reflecting free-radical production and energy metabolism at the single-mitochondrion level. Mitoflash activity in Caenorhabditis elegans pharyngeal muscles peaked on adult day 3 during active reproduction and on day 9 when animals started to die off. A plethora of genetic mutations and environmental factors inversely modified the lifespan and the day-3 mitoflash frequency. Even within an isogenic population, the day-3 mitoflash frequency was negatively correlated with the lifespan of individual animals. Furthermore, enhanced activity of the glyoxylate cycle contributed to the decreased day-3 mitoflash frequency and the longevity of daf-2 mutant animals. These results demonstrate that the day-3 mitoflash frequency is a powerful predictor of C. elegans lifespan across genetic, environmental and stochastic factors. They also support the notion that the rate of ageing, although adjustable in later life, has been set to a considerable degree before reproduction ceases.

  2. Red blood cell lifespan, erythropoiesis and hemoglobin control.

    PubMed

    Kruse, Anja; Uehlinger, Dominik E; Gotch, Frank; Kotanko, Peter; Levin, Nathan W

    2008-01-01

    Erythropoietin (EPO) and iron deficiency as causes of anemia in patients with limited renal function or end-stage renal disease are well addressed. The concomitant impairment of red blood cell (RBC) survival has been largely neglected. Properties of the uremic environment like inflammation, increased oxidative stress and uremic toxins seem to be responsible for the premature changes in RBC membrane and cytoskeleton. The exposure of antigenic sites and breakdown of the phosphatidylserine asymmetry promote RBC phagocytosis. While the individual response to treatment with EPO-stimulating agents (ESA) depends on both the RBC's lifespan and the production rate, uniform dosing algorithms do not meet that demand. The clinical use of mathematical models predicting ESA-induced changes in hematocrit might be greatly improved once independent estimates of RBC production rate and/or lifespan become available, thus making the concomitant estimation of both parameters unnecessary. Since heme breakdown by the hemoxygenase pathway results in carbon monoxide (CO) which is exhaled, a simple CO breath test has been used to calculate hemoglobin turnover and therefore RBC survival and lifespan. Future research will have to be done to validate and implement this method in patients with kidney failure. This will result in new insights into RBC kinetics in renal patients. Eventually, these findings are expected to improve our understanding of the hemoglobin variability in response to ESA.

  3. Ontogeny of morningness-eveningness across the adult human lifespan

    NASA Astrophysics Data System (ADS)

    Randler, Christoph

    2016-02-01

    Sleep timing of humans can be classified alongside a continuum from early to late sleepers, with some people (larks) having an early activity, early bed, and rise times and others (owls) with a more nocturnally orientated activity. Only a few studies reported that morningness-eveningness changes significantly during the adult lifespan based on community samples. Here, I applied a different methodological approach to seek for evidence for the age-related changes in morningness-eveningness preferences by using a meta-data from all available studies. The new aspect of this cross-sectional approach is that only a few studies themselves address the age-related changes of the adult lifespan development, but that many studies are available that provide exactly the data needed. The studies came from 27 countries and included 36,939 participants. Age was highly significantly correlated with scores on the Composite Scale of Morningness ( r = 0.70). This relationship seems linear, because a linear regression explained nearly the same amount of variance compared to other models such as logarithmic, quadratic, or cubic models. The standard deviation of age correlated with the standard deviation of CSM scores ( r = 0.55), suggesting when there is much variance in age in a study; in turn, there is much variance in morningness. This meta-analytical approach shows that morningness-eveningness changes across the adult lifespan and that older age is related to higher morningness.

  4. Lifespan behavioural and neural resilience in a social insect

    PubMed Central

    Giraldo, Ysabel Milton; Kamhi, J. Frances; Moreau, Mathieu; Rusakov, Adina; Wimberly, Lindsey; Diloreto, Alexandria; Kordek, Adrianna; Traniello, James F. A.

    2016-01-01

    Analyses of senescence in social species are important to understanding how group living influences the evolution of ageing in society members. Social insects exhibit remarkable lifespan polyphenisms and division of labour, presenting excellent opportunities to test hypotheses concerning ageing and behaviour. Senescence patterns in other taxa suggest that behavioural performance in ageing workers would decrease in association with declining brain functions. Using the ant Pheidole dentata as a model, we found that 120-day-old minor workers, having completed 86% of their laboratory lifespan, showed no decrease in sensorimotor functions underscoring complex tasks such as alloparenting and foraging. Collaterally, we found no age-associated increases in apoptosis in functionally specialized brain compartments or decreases in synaptic densities in the mushroom bodies, regions associated with integrative processing. Furthermore, brain titres of serotonin and dopamine—neuromodulators that could negatively impact behaviour through age-related declines—increased in old workers. Unimpaired task performance appears to be based on the maintenance of brain functions supporting olfaction and motor coordination independent of age. Our study is the first to comprehensively assess lifespan task performance and its neurobiological correlates and identify constancy in behavioural performance and the absence of significant age-related neural declines. PMID:26740614

  5. Target of rapamycin activation predicts lifespan in fruit flies

    PubMed Central

    Scialò, Filippo; Sriram, Ashwin; Naudí, Alba; Ayala, Victoria; Jové, Mariona; Pamplona, Reinald; Sanz, Alberto

    2015-01-01

    Aging and age-related diseases are one of the most important health issues that the world will confront during the 21st century. Only by understanding the proximal causes will we be able to find treatments to reduce or delay the onset of degenerative diseases associated with aging. Currently, the prevalent paradigm in the field is the accumulation of damage. However, a new theory that proposes an alternative explanation is gaining momentum. The hyperfunction theory proposes that aging is not a consequence of a wear and tear process, but a result of the continuation of developmental programs during adulthood. Here we use Drosophila melanogaster, where evidence supporting both paradigms has been reported, to identify which parameters that have been previously related with lifespan best predict the rate of aging in wild type flies cultured at different temperatures. We find that mitochondrial function and mitochondrial reactive oxygen species (mtROS) generation correlates with metabolic rate, but not with the rate of aging. Importantly, we find that activation of nutrient sensing pathways (i.e. insulin-PI3K/Target of rapamycin (Tor) pathway) correlates with lifespan, but not with metabolic rate. Our results, dissociate metabolic rate and lifespan in wild type flies and instead link nutrient sensing signaling with longevity as predicted by the hyperfunction theory. PMID:26259964

  6. Organic fertilization leads to increased peach root production and lifespan.

    PubMed

    Baldi, E; Toselli, M; Eissenstat, D M; Marangoni, B

    2010-11-01

    We evaluated the effects of mineral and organic fertilizers on peach root dynamics in the growing season from 2003 to 2006 in a nectarine (Prunus persica L.) orchard, planted in 2001 and located in the Po valley, northeastern Italy. Very few studies have conducted long-term investigations of root dynamics of fruit crops. Our main objective was to determine whether organic fertilizers affect root dynamics differently than mineral fertilizers. The experiment was a completely randomized block design with four replicates of three treatments: unfertilized, mineral fertilized and composted with municipal waste. Mineral fertilizers included P (100 kg ha(-1) year(-1)) and K (200 kg ha(-1) year(-1)) applied only at planting and N (70-130 kg ha(-1) year(-1)) split into two applications, one at 40 days after full bloom (60%) and the other in September (40%) each year. The compost fertilization represented a yearly rate of 10 metric tons (t) dry weight ha(-1), which approximates (in kg ha(-1) year(-1)) 240 N, 100 P and 200 K, split similarly to that described for the mineral fertilization of N. Both root growth and survival were evaluated at 20-day intervals during the growing season by the minirhizotron technique. Compost increased the production of new roots compared with the other treatments (P < 0.01). Roots were mainly produced at a depth of 41-80 cm and from March to May and in late summer. An analysis of covariance indicated no significant effect of soil nitrate on root production (P = 0.47). The root lifespan was longer in compost-treated trees than in mineral-fertilized or unfertilized trees (P < 0.01) and it was strongly affected by time of birth; roots born later in the summer lived longer than those born in the spring. Across years and treatments, the average root lifespan was positively correlated with soil nitrate (r = 0.60; P < 0.001). Variation in root lifespan with method of fertilization could be accounted for by variation in soil

  7. Differences in spatial and temporal root lifespan of temperate steppes across Inner Mongolia grasslands

    NASA Astrophysics Data System (ADS)

    Bai, W.-M.; Zhou, M.; Fang, Y.; Zhang, W.-H.

    2015-12-01

    Lifespan of fine roots plays important roles in regulating carbon (C) cycling in terrestrial ecosystems. Determination of root lifespan and elucidation of its regulatory mechanism in different plant communities are essential for accurate prediction of C cycling from ecosystem to regional scales. Temperate steppes in Inner Mongolia grasslands have three major types, i.e., Stipa krylovii, Stipa grandis and Stipa breviflora grasslands. There have been no studies to compare the root dynamics among the three types of grasslands. In the present study, we determined root lifespan of the three grasslands using the rhizotron. We found that root lifespan differed substantially among the three types of grasslands within the temperate steppes of Inner Mongolia, such that root lifespan of Stipa breviflora > Stipa grandis > Stipa krylovii grasslands. Root lifespan across the three types of grasslands in the Inner Mongolian temperate steppes displayed a similar temporal pattern, i.e. lifespan of the roots produced in spring and autumn was shortest and longest, respectively, whereas lifespan of summer-produced roots was between that of roots produced in spring and autumn. The spatial and temporal differences in root lifespan across the three types of grasslands were mainly determined by contents of soluble sugars in roots of the dominant species. The differences in root lifespan across the major types of grasslands and different seasons highlight the necessity to take into account these differences in the prediction of C cycling within grassland ecosystem by the simulating model.

  8. Anti-Epileptic Drug Combination Efficacy in an In Vitro Seizure Model – Phenytoin and Valproate, Lamotrigine and Valproate

    PubMed Central

    O’Brien, Terence J.; Williams, David A.; French, Chris R.

    2017-01-01

    In this study, we investigated the relative efficacy of different classes of commonly used anti-epileptic drugs (AEDs) with different mechanisms of action, individually and in combination, to suppress epileptiform discharges in an in vitro model. Extracellular field potential were recorded in 450 μm thick transverse hippocampal slices prepared from juvenile Wistar rats, in which “epileptiform discharges” (ED’s) were produced with a high-K+ (8.5 mM) bicarbonate-buffered saline solution. Single and dual recordings in stratum pyramidale of CA1 and CA3 regions were performed with 3–5 MΩ glass microelectrodes. All drugs—lamotrigine (LTG), phenytoin (PHT) and valproate (VPA)—were applied to the slice by superfusion at a rate of 2 ml/min at 32°C. Effects upon frequency of ED’s were assessed for LTG, PHT and VPA applied at different concentrations, in isolation and in combination. We demonstrated that high-K+ induced ED frequency was reversibly reduced by LTG, PHT and VPA, at concentrations corresponding to human therapeutic blood plasma concentrations. With a protocol using several applications of drugs to the same slice, PHT and VPA in combination displayed additivity of effect with 50μM PHT and 350μM VPA reducing SLD frequency by 44% and 24% individually (n = 19), and together reducing SLD frequency by 66% (n = 19). 20μM LTG reduced SLD frequency by 32% and 350μM VPA by 16% (n = 18). However, in combination there was a supra-linear suppression of ED’s of 64% (n = 18). In another independent set of experiments, similar results of drug combination responses were also found. In conclusion, a combination of conventional AEDs with different mechanisms of action, PHT and VPA, displayed linear additivity of effect on epileptiform activity. More intriguingly, a combination of LTG and VPA considered particularly efficacious clinically showed a supra-additive suppression of ED’s. This approach may be useful as an in vitro platform for assessing drug

  9. [Development of laughter and humour throughout the lifespan].

    PubMed

    Falkenberg, I

    2010-02-01

    Humor and laughter are fundamental elements of human communication throughout the lifespan. The understanding of humor, humor production (e. g. joking) and functionality of humor (e. g. as a coping strategy) evolve in the course of a lifetime and are essentially determined by cognitive, verbal and social abilities. This review outlines the landmarks in the development of humor and laughter from early childhood to older age. In all stages of life, humor fulfils important functions; in the elderly, however, the function of humor as a coping mechanism gains in importance. Yet, humor processing, such as understanding of humor, humor production and emotional reactions to humor in the elderly, is an underresearched area.

  10. Menstruation during a lifespan: A qualitative study of women's experiences.

    PubMed

    Brantelid, Ida Emilie; Nilvér, Helena; Alehagen, Siw

    2014-01-01

    Menstruation is a natural phenomenon for women during their reproductive years. Our aim was to describe women's experiences of menstruation across the lifespan. Qualitative interviews with a narrative approach were conducted with 12 women between 18 and 48 years of age in Sweden. Using thematic analysis, we found menstruation to be a complex phenomenon that binds women together. It is perceived as an intimate and private matter, which makes women want to conceal the occurrence of menstrual bleeding. Over time, menstruation becomes a natural part of women's lives and gender identity. Health professionals play a central role supporting women to deal with menstruation.

  11. p53/CEP-1 Increases or Decreases Lifespan, Depending on Level of Mitochondrial Bioenergetic Stress

    PubMed Central

    Ventura, Natascia; Rea, Shane L.; Schiavi, Alfonso; Torgovnick, Alessandro; Testi, Roberto; Johnson, Thomas E.

    2009-01-01

    SUMMARY Mitochondrial pathologies underlie a number of life-shortening diseases in humans. In the nematode Caenorhabditis elegans, severely reduced expression of mitochondrial proteins involved in electron transport chain-mediated energy production also leads to pathological phenotypes, including arrested development and/or shorter life; in sharp contrast, mild suppression of these same proteins extends lifespan. Here we show that the C. elegans p53 ortholog cep-1 mediates these opposite effects. We find that cep-1 is required to extend longevity in response to mild suppression of several bioenergetically relevant mitochondrial proteins, including frataxin - the protein defective in patients with Friedreich’s Ataxia. Importantly we show that cep-1 also mediates both the developmental arrest and life shortening induced by severe mitochondrial stress. Our findings support an evolutionarily conserved function for p53 in modulating organismal responses to mitochondrial dysfunction and suggest that metabolic checkpoint responses may play a role in longevity control and in human mitochondrial-associated diseases. PMID:19416129

  12. Reproductive Aging Drives Protein Accumulation in the Uterus and Limits Lifespan in C. elegans

    PubMed Central

    Zimmerman, Stephanie M.; Hinkson, Izumi V.; Elias, Joshua E.; Kim, Stuart K.

    2015-01-01

    Aging in Caenorhabditis elegans is characterized by widespread physiological and molecular changes, but the mechanisms that determine the rate at which these changes occur are not well understood. In this study, we identify a novel link between reproductive aging and somatic aging in C. elegans. By measuring global age-related changes in the proteome, we identify a previously uncharacterized group of secreted proteins in the adult uterus that dramatically increase in abundance with age. This accumulation is blunted in animals with an extended reproductive period and accelerated in sterile animals lacking a germline. Uterine proteins are not removed in old post-reproductive animals or in young vulvaless worms, indicating that egg-laying is necessary for their rapid removal in wild-type young animals. Together, these results suggest that age-induced infertility contributes to extracellular protein accumulation in the uterus with age. Finally, we show that knocking down multiple age-increased proteins simultaneously extends lifespan. These results provide a mechanistic example of how the cessation of reproduction contributes to detrimental changes in the soma, and demonstrate how the timing of reproductive decline can influence the rate of aging. PMID:26656270

  13. Meta-analysis of global metabolomic data identifies metabolites associated with life-span extension.

    PubMed

    Patti, Gary J; Tautenhahn, Ralf; Johannsen, Darcy; Kalisiak, Ewa; Ravussin, Eric; Brüning, Jens C; Dillin, Andrew; Siuzdak, Gary

    2014-08-01

    The manipulation of distinct signaling pathways and transcription factors has been shown to influence life span in a cell-non-autonomous manner in multicellular model organisms such as Caenorhabditis elegans. These data suggest that coordination of whole-organism aging involves endocrine signaling, however, the molecular identities of such signals have not yet been determined and their potential relevance in humans is unknown. Here we describe a novel metabolomic approach to identify molecules directly associated with extended life span in C. elegans that represent candidate compounds for age-related endocrine signals. To identify metabolic perturbations directly linked to longevity, we developed metabolomic software for meta-analysis that enabled intelligent comparisons of multiple different mutants. Simple pairwise comparisons of long-lived glp-1, daf-2, and isp-1 mutants to their respective controls resulted in more than 11,000 dysregulated metabolite features of statistical significance. By using meta-analysis, we were able to reduce this number to six compounds most likely to be associated with life-span extension. Mass spectrometry-based imaging studies suggested that these metabolites might be localized to C. elegans muscle. We extended the metabolomic analysis to humans by comparing quadricep muscle tissue from young and old individuals and found that two of the same compounds associated with longevity in worms were also altered in human muscle with age. These findings provide candidate compounds that may serve as age-related endocrine signals and implicate muscle as a potential tissue regulating their levels in humans.

  14. On the challenge of a century lifespan satellite

    NASA Astrophysics Data System (ADS)

    Gonzalo, Jesús; Domínguez, Diego; López, Deibi

    2014-10-01

    This paper provides a review of the main issues affecting satellite survivability, including a discussion on the technologies to mitigate the risks and to enhance system reliability. The feasibility of a 100-year lifespan space mission is taken as the guiding thread for the discussion. Such a mission, defined with a few preliminary requirements, could be used to deliver messages to our descendants regardless of the on-ground contingencies. After the analysis of the main threats for long endurance in space, including radiation, debris and micrometeoroids, atmospheric drag and thermal environment, the available solutions are investigated. A trade-off study analyses orbital profiles from the point of view of radiation, thermal stability and decay rate, providing best locations to maximize lifespan. Special attention is also paid to on-board power, in terms of energy harvesting and accumulation, highlighting the limitations of current assets, i.e. solar panels and batteries, and revealing possible future solutions. Furthermore, the review includes electronics, non-volatile memories and communication elements, which need extra hardening against radiation and thermal cycling if extra-long endurance is required. As a result of the analysis, a century-lifetime mission is depicted by putting together all the reviewed concepts. The satellite, equipped with reliability enhanced elements and system-level solutions such as smart hibernation policies, could provide limited but still useful performance after a 100-year flight.

  15. Decreased segregation of brain systems across the healthy adult lifespan

    PubMed Central

    Chan, Micaela Y.; Park, Denise C.; Savalia, Neil K.; Petersen, Steven E.; Wig, Gagan S.

    2014-01-01

    Healthy aging has been associated with decreased specialization in brain function. This characterization has focused largely on describing age-accompanied differences in specialization at the level of neurons and brain areas. We expand this work to describe systems-level differences in specialization in a healthy adult lifespan sample (n = 210; 20–89 y). A graph-theoretic framework is used to guide analysis of functional MRI resting-state data and describe systems-level differences in connectivity of individual brain networks. Young adults’ brain systems exhibit a balance of within- and between-system correlations that is characteristic of segregated and specialized organization. Increasing age is accompanied by decreasing segregation of brain systems. Compared with systems involved in the processing of sensory input and motor output, systems mediating “associative” operations exhibit a distinct pattern of reductions in segregation across the adult lifespan. Of particular importance, the magnitude of association system segregation is predictive of long-term memory function, independent of an individual’s age. PMID:25368199

  16. Form and Function of Sleep Spindles across the Lifespan

    PubMed Central

    Clawson, Brittany C.; Durkin, Jaclyn; Aton, Sara J.

    2016-01-01

    Since the advent of EEG recordings, sleep spindles have been identified as hallmarks of non-REM sleep. Despite a broad general understanding of mechanisms of spindle generation gleaned from animal studies, the mechanisms underlying certain features of spindles in the human brain, such as “global” versus “local” spindles, are largely unknown. Neither the topography nor the morphology of sleep spindles remains constant throughout the lifespan. It is likely that changes in spindle phenomenology during development and aging are the result of dramatic changes in brain structure and function. Across various developmental windows, spindle activity is correlated with general cognitive aptitude, learning, and memory; however, these correlations vary in strength, and even direction, depending on age and metrics used. Understanding these differences across the lifespan should further clarify how these oscillations are generated and their function under a variety of circumstances. We discuss these issues, and their translational implications for human cognitive function. Because sleep spindles are similarly affected in disorders of neurodevelopment (such as schizophrenia) and during aging (such as neurodegenerative conditions), both types of disorders may benefit from therapies based on a better understanding of spindle function. PMID:27190654

  17. [ADHD across the lifespan - an update on research and practice].

    PubMed

    Schmidt, Sören; Schüßler, Gerhard; Petermann, Franz

    2012-01-01

    ADHD can be regarded as a lifespan disorder. From biopsychosocial vantage point, ADHD leads to age-specific impairments, high psychological distress and is associated with a high occurrence of comorbid disorders. For this review, we summarize actual findings from epidemiological, neuroscientific and clinical studies to present an overview of ADHD-research. We discuss the proposed revisions for DSM-V criteria by comparing them with the present DSM-IV-TR criteria, with a focus on the implications for research and practice. In the second part of this paper, we present new findings from socioeconomic, diagnostic and therapeutic perspectives. There is evidence for a high economic burden that is indirectly caused by ADHD (e.g., production loss, material costs, higher accident rates). Consequently, there is a high demand for comprehensive diagnostic and therapeutic approaches. We present a summary of the latest available diagnostic instruments and therapeutic manuals. The results of research and practice show a growing support for a lifespan perspective on ADHD psychopathology. The burdens resulting from ADHD are evident in all age groups, which has led to establishing age-specific diagnostic and therapeutic materials. Although there is a lack in ADHD-specific healthcare in adulthood, this should be realized by structural changes in healthcare services.

  18. Lifespan Differences in Cortico-Striatal Resting State Connectivity

    PubMed Central

    Lee, Chi-Mei; Kwak, Youngbin; Peltier, Scott J.; Bernard, Jessica A.; Buschkuehl, Martin; Jaeggi, Susanne M.; Wiggins, Jillian L.; Jonides, John; Monk, Christopher S.; Seidler, Rachael D.

    2014-01-01

    Abstract Distinctive cortico-striatal circuits that serve motor and cognitive functions have been recently mapped based on resting state connectivity. It has been reported that age differences in cortico-striatal connectivity relate to cognitive declines in aging. Moreover, children in their early teens (i.e., youth) already show mature motor network patterns while their cognitive networks are still developing. In the current study, we examined age differences in the frontal-striatal “cognitive” and “motor” circuits in children and adolescence, young adults (YAs), and older adults (OAs). We predicted that the strength of the “cognitive” frontal-striatal circuits would follow an inverted “U” pattern across age; children and OAs would have weaker connectivity than YAs. However, we predicted that the “motor” circuits would show less variation in connectivity strength across the lifespan. We found that most areas in both the “cognitive” and “motor” circuits showed higher connectivity in YAs than children and OAs, suggesting general inverted “U”-shaped changes across the lifespan for both the cognitive and motor frontal-striatal networks. PMID:24575740

  19. A pharmacological network for lifespan extension in Caenorhabditis elegans

    PubMed Central

    Ye, Xiaolan; Linton, James M; Schork, Nicholas J; Buck, Linda B; Petrascheck, Michael

    2014-01-01

    One goal of aging research is to find drugs that delay the onset of age-associated disease. Studies in invertebrates, particularly Caenorhabditis elegans, have uncovered numerous genes involved in aging, many conserved in mammals. However, which of these encode proteins suitable for drug targeting is unknown. To investigate this question, we screened a library of compounds with known mammalian pharmacology for compounds that increase C. elegans lifespan. We identified 60 compounds that increase longevity in C. elegans, 33 of which also increased resistance to oxidative stress. Many of these compounds are drugs approved for human use. Enhanced resistance to oxidative stress was associated primarily with compounds that target receptors for biogenic amines, such as dopamine or serotonin. A pharmacological network constructed with these data reveal that lifespan extension and increased stress resistance cluster together in a few pharmacological classes, most involved in intercellular signaling. These studies identify compounds that can now be explored for beneficial effects on aging in mammals, as well as tools that can be used to further investigate the mechanisms underlying aging in C. elegans. PMID:24134630

  20. Proactive and Reactive Response Inhibition across the Lifespan.

    PubMed

    Smittenaar, Peter; Rutledge, Robb B; Zeidman, Peter; Adams, Rick A; Brown, Harriet; Lewis, Glyn; Dolan, Raymond J

    2015-01-01

    One expression of executive control involves proactive preparation for future events, and this contrasts with stimulus driven reactive control exerted in response to events. Here we describe findings from a response inhibition task, delivered using a smartphone-based platform, that allowed us to index proactive and reactive inhibitory self-control in a large community sample (n = 12,496). Change in stop-signal reaction time (SSRT) when participants are provided with advance information about an upcoming trial, compared to when they are not, provides a measure of proactive control while SSRT in the absence of advance information provides a measure of reactive control. Both forms of control rely on overlapping frontostriatal pathways known to deteriorate in healthy aging, an age-related decline that occurs at an accelerated rate in men compared to women. Here we ask whether these patterns of age-related decline are reflected in similar changes in proactive and reactive inhibitory control across the lifespan. As predicted, we observed a decline in reactive control with natural aging, with a greater rate of decline in men compared to women (~10 ms versus ~8 ms per decade of adult life). Surprisingly, the benefit of preparation, i.e. proactive control, did not change over the lifespan and women showed superior proactive control at all ages compared to men. Our results suggest that reactive and proactive inhibitory control partially rely on distinct neural substrates that are differentially sensitive to age-related change.

  1. Spectral changes in spontaneous MEG activity across the lifespan

    NASA Astrophysics Data System (ADS)

    Gómez, Carlos; Pérez-Macías, Jose M.; Poza, Jesús; Fernández, Alberto; Hornero, Roberto

    2013-12-01

    Objective. The aim of this study is to explore the spectral patterns of spontaneous magnetoencephalography (MEG) activity across the lifespan. Approach. Relative power (RP) in six frequency bands (delta, theta, alpha, beta-1, beta-2 and gamma) was calculated in a sample of 220 healthy subjects with ages ranging from 7 to 84 years. Main results. A significant RP decrease in low-frequency bands (i.e. delta and theta) and a significant increase in high bands (mainly beta-1 and beta-2) were found from childhood to adolescence. This trend was observed until the sixth decade of life, though only slight changes were found. Additionally, healthy aging was characterized by a power increase in low-frequency bands. Our results show that spectral changes across the lifespan may follow a quadratic relationship in delta, theta, alpha, beta-2 and gamma bands with peak ages being reached around the fifth or sixth decade of life. Significance. Our findings provide original insights into the definition of the ‘normal’ behavior of age-related MEG spectral patterns. Furthermore, our study can be useful for the forthcoming MEG research focused on the description of the abnormalities of different brain diseases in comparison to cognitive decline in normal aging.

  2. Proactive and Reactive Response Inhibition across the Lifespan

    PubMed Central

    Smittenaar, Peter; Rutledge, Robb B.; Zeidman, Peter; Adams, Rick A.; Brown, Harriet; Lewis, Glyn; Dolan, Raymond J.

    2015-01-01

    One expression of executive control involves proactive preparation for future events, and this contrasts with stimulus driven reactive control exerted in response to events. Here we describe findings from a response inhibition task, delivered using a smartphone-based platform, that allowed us to index proactive and reactive inhibitory self-control in a large community sample (n = 12,496). Change in stop-signal reaction time (SSRT) when participants are provided with advance information about an upcoming trial, compared to when they are not, provides a measure of proactive control while SSRT in the absence of advance information provides a measure of reactive control. Both forms of control rely on overlapping frontostriatal pathways known to deteriorate in healthy aging, an age-related decline that occurs at an accelerated rate in men compared to women. Here we ask whether these patterns of age-related decline are reflected in similar changes in proactive and reactive inhibitory control across the lifespan. As predicted, we observed a decline in reactive control with natural aging, with a greater rate of decline in men compared to women (~10 ms versus ~8 ms per decade of adult life). Surprisingly, the benefit of preparation, i.e. proactive control, did not change over the lifespan and women showed superior proactive control at all ages compared to men. Our results suggest that reactive and proactive inhibitory control partially rely on distinct neural substrates that are differentially sensitive to age-related change. PMID:26488166

  3. Homeless Aging Veterans in Transition: A Life-Span Perspective

    PubMed Central

    Thompson, Carla J.; Bridier, Nancy L.

    2013-01-01

    The need for counseling and career/educational services for homeless veterans has captured political and economic venues for more than 25 years. Veterans are three times more likely to become homeless than the general population if veterans live in poverty or are minority veterans. This mixed methods study emphasized a life-span perspective approach for exploring factors influencing normative aging and life-quality of 39 homeless veterans in Alabama and Florida. Seven descriptive quantitative and qualitative research questions framed the investigation. Study participants completed a quantitative survey reflecting their preferences and needs with a subset of the sample (N = 12) also participating in individual qualitative interview sessions. Thirty-two service providers and stakeholders completed quantitative surveys. Empirical and qualitative data with appropriate triangulation procedures provided interpretive information relative to a life-span development perspective. Study findings provide evidence of the need for future research efforts to address strategies that focus on the health and economic challenges of veterans before they are threatened with the possibility of homelessness. Implications of the study findings provide important information associated with the premise that human development occurs throughout life with specific characteristics influencing the individual's passage. Implications for aging/homelessness research are grounded in late-life transitioning and human development intervention considerations. PMID:24286010

  4. Down syndrome: Cognitive and behavioral functioning across the lifespan.

    PubMed

    Grieco, Julie; Pulsifer, Margaret; Seligsohn, Karen; Skotko, Brian; Schwartz, Alison

    2015-06-01

    Individuals with Down syndrome (DS) commonly possess unique neurocognitive and neurobehavioral profiles that emerge within specific developmental periods. These profiles are distinct relative to others with similar intellectual disability (ID) and reflect underlying neuroanatomic findings, providing support for a distinctive phenotypic profile. This review updates what is known about the cognitive and behavioral phenotypes associated with DS across the lifespan. In early childhood, mild deviations from neurotypically developing trajectories emerge. By school-age, delays become pronounced. Nonverbal skills remain on trajectory for mental age, whereas verbal deficits emerge and persist. Nonverbal learning and memory are strengths relative to verbal skills. Expressive language is delayed relative to comprehension. Aspects of language skills continue to develop throughout adolescence, although language skills remain compromised in adulthood. Deficits in attention/executive functions are present in childhood and become more pronounced with age. Characteristic features associated with DS (cheerful, social nature) are personality assets. Children are at a lower risk for psychopathology compared to other children with ID; families report lower levels of stress and a more positive outlook. In youth, externalizing behaviors may be problematic, whereas a shift toward internalizing behaviors emerges with maturity. Changes in emotional/behavioral functioning in adulthood are typically associated with neurodegeneration and individuals with DS are higher risk for dementia of the Alzheimer's type. Individuals with DS possess many unique strengths and weaknesses that should be appreciated as they develop across the lifespan. Awareness of this profile by professionals and caregivers can promote early detection and support cognitive and behavioral development.

  5. Sex-specific Tradeoffs With Growth and Fitness Following Life-span Extension by Rapamycin in an Outcrossing Nematode, Caenorhabditis remanei.

    PubMed

    Lind, Martin I; Zwoinska, Martyna K; Meurling, Sara; Carlsson, Hanne; Maklakov, Alexei A

    2016-07-01

    Rapamycin inhibits the nutrient-sensing TOR pathway and extends life span in a wide range of organisms. Although life-span extension usually differs between the sexes, the reason for this is poorly understood. Because TOR influences growth, rapamycin likely affects life-history traits such as growth and reproduction. Sexes have different life-history strategies, and theory predicts that they will resolve the tradeoffs between growth, reproduction, and life span differently. Specifically, in taxa with female-biased sexual size dimorphism, reduced growth may have smaller effects on male fitness. We investigated the effects of juvenile, adult, or life-long rapamycin treatment on growth, reproduction, life span, and individual fitness in the outcrossing nematode Caenorhabditis remanei Life-long exposure to rapamycin always resulted in the strongest response, whereas postreproductive exposure did not affect life span. Although rapamycin resulted in longer life span and smaller size in males, male individual fitness was not affected. In contrast, size and fitness were negatively affected in females, whereas life span was only extended under high rapamycin concentrations. Our results support the hypothesis that rapamycin affects key life-history traits in a sex-specific manner. We argue that the fitness cost of life-span extension will be sex specific and propose that the smaller sex generally pay less while enjoying stronger life-span increase.

  6. Nonclassical export pathway: overexpression of NCE102 reduces protein and DNA damage and prolongs lifespan in an SGS1 deficient Saccharomyces cerevisiae.

    PubMed

    Desmyter, Liesbeth; Verstraelen, Jan; Dewaele, Sylviane; Libert, Claude; Contreras, Roland; Chen, Cuiying

    2007-10-01

    In this study, we used our recently developed screening method, Bud-Scar-based Screening (BSS), to screen a yeast cDNA expression library in an SGS1 deletion BY4742 yeast strain. One gene involved in a nonclassical export pathway, NCE102, was found to extend the life span of Deltasgs1 yeast. Deletion of NCE102 in a wild type yeast strain increased its sensitivity to oxidative stress upon diethylmaleate (DEM) treatment but did not shorten its lifespan, indicating that this gene is not essential in determining yeast lifespan. Transformation of NCE102 into either Deltance102 or Deltasgs1 strains could rescue its tolerance to DEM stress, indicating that NCE102 is protective during oxidative stress. Moreover, overexpression of NCE102 in Deltasgs1 strain leads to reduced protein damage. However, overexpression of NCE102 in wild type yeast strain BY4742 neither protected against oxidative stress due to DEM nor extended yeast lifespan compared to its parental wild type strain, indicating that nonclassical export is redundant and DNA repair is fully sufficient in the wild type strain. We therefore demonstrate that a nonclassical export pathway functions as an alternative clearance/detoxification pathway to eliminate damaged material, when the basic repair pathway is not sufficient.

  7. Electrophysiological correlates of selective attention: A lifespan comparison

    PubMed Central

    Mueller, Viktor; Brehmer, Yvonne; von Oertzen, Timo; Li, Shu-Chen; Lindenberger, Ulman

    2008-01-01

    Background To study how event-related brain potentials (ERPs) and underlying cortical mechanisms of selective attention change from childhood to old age, we investigated lifespan age differences in ERPs during an auditory oddball task in four age groups including 24 younger children (9–10 years), 28 older children (11–12 years), 31 younger adults (18–25), and 28 older adults (63–74 years). In the Unattend condition, participants were asked to simply listen to the tones. In the Attend condition, participants were asked to count the deviant stimuli. Five primary ERP components (N1, P2, N2, P3 and N3) were extracted for deviant stimuli under Attend conditions for lifespan comparison. Furthermore, Mismatch Negativity (MMN) and Late Discriminative Negativity (LDN) were computed as difference waves between deviant and standard tones, whereas Early and Late Processing Negativity (EPN and LPN) were calculated as difference waves between tones processed under Attend and Unattend conditions. These four secondary ERP-derived measures were taken as indicators for change detection (MMN and LDN) and selective attention (EPN and LPN), respectively. To examine lifespan age differences, the derived difference-wave components for attended (MMN and LDN) and deviant (EPN and LPN) stimuli were specifically compared across the four age groups. Results Both primary and secondary ERP components showed age-related differences in peak amplitude, peak latency, and topological distribution. The P2 amplitude was higher in adults compared to children, whereas N2 showed the opposite effect. P3 peak amplitude was higher in older children and younger adults than in older adults. The amplitudes of N3, LDN, and LPN were higher in older children compared with both of the adult groups. In addition, both P3 and N3 peak latencies were significantly longer in older than in younger adults. Interestingly, in the young adult sample P3 peak amplitude correlated positively and P3 peak latency

  8. Emotional Egocentricity Bias Across the Life-Span

    PubMed Central

    Riva, Federica; Triscoli, Chantal; Lamm, Claus; Carnaghi, Andrea; Silani, Giorgia

    2016-01-01

    In our daily lives, we often have to quickly estimate the emotions of our conspecifics in order to have successful social interactions. While this estimation process seems quite easy when we are ourselves in a neutral or equivalent emotional state, it has recently been shown that in case of incongruent emotional states between ourselves and the others, our judgments can be biased. This phenomenon, introduced to the literature with the term Emotional Egocentricity Bias (EEB), has been found to occur in young adults and, to a greater extent, in children. However, how the EEB changes across the life-span from adolescence to old age has been largely unexplored. In this study, we recruited 114 female participants subdivided in four cohorts (adolescents, young adults, middle-aged adults, older adults) to examine EEB age-related changes. Participants were administered with a recently developed paradigm which, by making use of visuo-tactile stimulation that elicits conflicting feelings in paired participants, allows the valid and reliable exploration of the EEB. Results highlighted a U-shape relation between age and EEB, revealing enhanced emotional egocentricity in adolescents and older adults compared to young and middle-aged adults. These results are in line with the neuroscientific literature which has recently shown that overcoming the EEB is associated with a greater activation of a portion of the parietal lobe, namely the right Supramarginal Gyrus (rSMG). This is an area that reaches full maturation by the end of adolescence and goes through an early decay. Thus, the age-related changes of the EEB could be possibly due to the life-span development of the rSMG. This study is the first one to show the quadratic relation between age and the EEB and set a milestone for further research exploring the neural correlates of the life-span development of the EEB. Future studies are needed in order to generalize these results to the male population and to explore gender

  9. Target of rapamycin signaling regulates metabolism, growth, and lifespan in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TOR is a major nutrition and energy sensor that regulates growth and lifespan in yeast and animals. In plants growth and lifespan are intertwined with not only nutrient acquisition but also nutrition generation and unique aspects of development and differentiation. How TOR functions in these process...

  10. Implications for Research of a Life-Span Approach to Teacher Development.

    ERIC Educational Resources Information Center

    Sutton, Rosemary E.; Peters, Donald L.

    This paper examines the life-span approach to developmental psychology as it relates to teacher development research and presents some empirical results demonstrating the potential of the approach for increasing understanding of teacher development. Five assumptions of the life-span orientation as applied to the study of teacher development are…

  11. Length of paternal lifespan is manifested in the DNA methylome of their nonagenarian progeny

    PubMed Central

    Marttila, Saara; Kananen, Laura; Jylhävä, Juulia; Nevalainen, Tapio; Hervonen, Antti; Jylhä, Marja; Hurme, Mikko

    2015-01-01

    The heritability of lifespan is 20-30%, but only a few genes associated with longevity have been identified. To explain this discrepancy, the inheritance of epigenetic features, such as DNA methylation, have been proposed to contribute to the heritability of lifespan. We investigated whether parental lifespan is associated with DNA methylation profile in nonagenarians. A regression model, adjusted for differences in blood cell proportions, identified 659 CpG sites where the level of methylation was associated with paternal lifespan. However, no association was observed between maternal lifespan and DNA methylation. The 659 CpG sites associated with paternal lifespan were enriched outside of CpG islands and were located in genes associated with development and morphogenesis, as well as cell signaling. The largest difference in the level of methylation between the progeny of the shortest-lived and longest-lived fathers was identified for CpG sites mapping to CXXC5. In addition, the level of methylation in three Notch-genes (NOTCH1, NOTCH3 and NOTCH4) was also associated with paternal lifespan. There are implications for the inheritance of acquired traits via epigenetic mechanisms in mammals. Here we describe DNA methylation features that are associated with paternal lifespan, and we speculate that the identified CpG sites may represent intergenerational epigenetic inheritance. PMID:26436701

  12. Divergence in age patterns of mortality change drives international divergence in lifespan inequality.

    PubMed

    Gillespie, Duncan O S; Trotter, Meredith V; Tuljapurkar, Shripad D

    2014-06-01

    In the past six decades, lifespan inequality has varied greatly within and among countries even while life expectancy has continued to increase. How and why does mortality change generate this diversity? We derive a precise link between changes in age-specific mortality and lifespan inequality, measured as the variance of age at death. Key to this relationship is a young-old threshold age, below and above which mortality decline respectively decreases and increases lifespan inequality. First, we show for Sweden that shifts in the threshold's location have modified the correlation between changes in life expectancy and lifespan inequality over the last two centuries. Second, we analyze the post-World War II (WWII) trajectories of lifespan inequality in a set of developed countries-Japan, Canada, and the United States-where thresholds centered on retirement age. Our method reveals how divergence in the age pattern of mortality change drives international divergence in lifespan inequality. Most strikingly, early in the 1980s, mortality increases in young U.S. males led to a continuation of high lifespan inequality in the United States; in Canada, however, the decline of inequality continued. In general, our wider international comparisons show that mortality change varied most at young working ages after WWII, particularly for males. We conclude that if mortality continues to stagnate at young ages yet declines steadily at old ages, increases in lifespan inequality will become a common feature of future demographic change.

  13. Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Curcumin is an antioxidant extracted from the root of the turmeric plant. We examined the antioxidant effect and lifespan extension of curcumin in Drosophila. To ascertain the antioxidant effects of curcumin with regard to lifespan extension and the response to reactive oxygen species, female and ma...

  14. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    SciTech Connect

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.

  15. Inbreeding removes sex differences in lifespan in a population of Drosophila melanogaster.

    PubMed

    Carazo, Pau; Green, Jared; Sepil, Irem; Pizzari, Tommaso; Wigby, Stuart

    2016-06-01

    Sex differences in ageing rates and lifespan are common in nature, and an enduring puzzle for evolutionary biology. One possibility is that sex-specific mortality rates may result from recessive deleterious alleles in 'unguarded' heterogametic X or Z sex chromosomes (the unguarded X hypothesis). Empirical evidence for this is, however, limited. Here, we test a fundamental prediction of the unguarded X hypothesis in Drosophila melanogaster, namely that inbreeding shortens lifespan more in females (the homogametic sex in Drosophila) than in males. To test for additional sex-specific social effects, we studied the lifespan of males and females kept in isolation, in related same-sex groups, and in unrelated same-sex groups. As expected, outbred females outlived outbred males and inbreeding shortened lifespan. However, inbreeding-mediated reductions in lifespan were stronger for females, such that lifespan was similar in inbred females and males. We also show that the social environment, independent of inbreeding, affected male, but not female lifespan. In conjunction with recent studies, the present results suggest that asymmetric inheritance mechanisms may play an important role in the evolution of sex-specific lifespan and that social effects must be considered explicitly when studying these fundamental patterns.

  16. Inbreeding removes sex differences in lifespan in a population of Drosophila melanogaster

    PubMed Central

    Green, Jared; Sepil, Irem; Pizzari, Tommaso; Wigby, Stuart

    2016-01-01

    Sex differences in ageing rates and lifespan are common in nature, and an enduring puzzle for evolutionary biology. One possibility is that sex-specific mortality rates may result from recessive deleterious alleles in ‘unguarded’ heterogametic X or Z sex chromosomes (the unguarded X hypothesis). Empirical evidence for this is, however, limited. Here, we test a fundamental prediction of the unguarded X hypothesis in Drosophila melanogaster, namely that inbreeding shortens lifespan more in females (the homogametic sex in Drosophila) than in males. To test for additional sex-specific social effects, we studied the lifespan of males and females kept in isolation, in related same-sex groups, and in unrelated same-sex groups. As expected, outbred females outlived outbred males and inbreeding shortened lifespan. However, inbreeding-mediated reductions in lifespan were stronger for females, such that lifespan was similar in inbred females and males. We also show that the social environment, independent of inbreeding, affected male, but not female lifespan. In conjunction with recent studies, the present results suggest that asymmetric inheritance mechanisms may play an important role in the evolution of sex-specific lifespan and that social effects must be considered explicitly when studying these fundamental patterns. PMID:27354712

  17. Live fast, die soon: cell cycle progression and lifespan in yeast cells

    PubMed Central

    Jiménez, Javier; Bru, Samuel; Ribeiro, Mariana; Clotet, Josep

    2015-01-01

    Our understanding of lifespan has benefited enormously from the study of a simple model, the yeast Saccharomyces cerevisiae. Although a unicellular organism, yeasts undergo many of the processes directly related with aging that to some extent are conserved in mammalian cells. Nutrient-limiting conditions have been involved in lifespan extension, especially in the case of caloric restriction, which also has a direct impact on cell cycle progression. In fact, other environmental stresses (osmotic, oxidative) that interfere with normal cell cycle progression also influence the lifespan of cells, indicating a relationship between lifespan and cell cycle control. In the present review we compile and discuss new findings related to how cell cycle progression is regulated by other nutrients. We centred this review on the analysis of phosphate, also give some attention to nitrogen, and the impact of these nutrients on lifespan. PMID:28357278

  18. Rapamycin extends life- and health span because it slows aging

    PubMed Central

    Blagosklonny, Mikhail V.

    2013-01-01

    Making headlines, a thought-provocative paper by Neff, Ehninger and coworkers claims that rapamycin extends life span but has limited effects on aging. How is that possibly possible? And what is aging if not an increase of the probability of death with age. I discuss that the JCI paper actually shows that rapamycin slows aging and also extends lifespan regardless of its direct anti-cancer activities. Aging is, in part, MTOR-driven: a purposeless continuation of developmental growth. Rapamycin affects the same processes in young and old animals: young animals' traits and phenotypes, which continuations become hyperfunctional, harmful and lethal later in life. PMID:23934728

  19. Rapamycin extends life- and health span because it slows aging.

    PubMed

    Blagosklonny, Mikhail V

    2013-08-01

    Making headlines, a thought-provocative paper by Neff, Ehninger and coworkers claims that rapamycin extends life span but has limited effects on aging. How is that possibly possible? And what is aging if not an increase of the probability of death with age. I discuss that the JCI paper actually shows that rapamycin slows aging and also extends lifespan regardless of its direct anti-cancer activities. Aging is, in part, MTOR-driven: a purposeless continuation of developmental growth. Rapamycin affects the same processes in young and old animals: young animals' traits and phenotypes, which continuations become hyperfunctional, harmful and lethal later in life.

  20. No turnover in lens lipids for the entire human lifespan.

    PubMed

    Hughes, Jessica R; Levchenko, Vladimir A; Blanksby, Stephen J; Mitchell, Todd W; Williams, Alan; Truscott, Roger J W

    2015-03-11

    Lipids are critical to cellular function and it is generally accepted that lipid turnover is rapid and dysregulation in turnover results in disease (Dawidowicz 1987; Phillips et al., 2009; Liu et al., 2013). In this study, we present an intriguing counter-example by demonstrating that in the center of the human ocular lens, there is no lipid turnover in fiber cells during the entire human lifespan. This discovery, combined with prior demonstration of pronounced changes in the lens lipid composition over a lifetime (Hughes et al., 2012), suggests that some lipid classes break down in the body over several decades, whereas others are stable. Such substantial changes in lens cell membranes may play a role in the genesis of age-related eye disorders. Whether long-lived lipids are present in other tissues is not yet known, but this may prove to be important in understanding the development of age-related diseases.

  1. Multisensory Processes: A Balancing Act across the Lifespan.

    PubMed

    Murray, Micah M; Lewkowicz, David J; Amedi, Amir; Wallace, Mark T

    2016-08-01

    Multisensory processes are fundamental in scaffolding perception, cognition, learning, and behavior. How and when stimuli from different sensory modalities are integrated rather than treated as separate entities is poorly understood. We review how the relative reliance on stimulus characteristics versus learned associations dynamically shapes multisensory processes. We illustrate the dynamism in multisensory function across two timescales: one long term that operates across the lifespan and one short term that operates during the learning of new multisensory relations. In addition, we highlight the importance of task contingencies. We conclude that these highly dynamic multisensory processes, based on the relative weighting of stimulus characteristics and learned associations, provide both stability and flexibility to brain functions over a wide range of temporal scales.

  2. HSF-1 mediated cytoskeletal integrity determines thermotolerance and lifespan

    PubMed Central

    Baird, Nathan A.; Douglas, Peter M.; Simic, Milos S.; Grant, Ana R.; Moresco, James J.; Wolff, Suzanne C.; Yates, John R.; Manning, Gerard; Dillin, Andrew

    2015-01-01

    The conserved transcription factor HSF-1 is essential to cellular stress resistance and organismal lifespan determination. The canonical function of HSF-1 is to regulate a network of molecular chaperones that maintain protein homeostasis during extrinsic environmental stresses or intrinsic age related deterioration. In the metazoan C. elegans, we engineered a modified HSF-1 strain that increases stress resistance and longevity without enhancing chaperone induction. This HSF-1 dependent health assurance acts through the regulation of pat-10. Upon heat stress pat-10 upregulation maintains a functional actin cytoskeleton and endocytic network. Loss of pat-10 causes a collapse of organismal health and failure of stress resistance. Furthermore, overexpression of pat-10 is sufficient to increase both thermotolerance and longevity by mechanisms that affect actin stability. Our findings indicate that in addition to chaperone induction, HSF-1 plays a prominent role in cytoskeletal integrity to ensure proper cellular function during times of stress and aging. PMID:25324391

  3. Transcription errors induce proteotoxic stress and shorten cellular lifespan.

    PubMed

    Vermulst, Marc; Denney, Ashley S; Lang, Michael J; Hung, Chao-Wei; Moore, Stephanie; Moseley, M Arthur; Mosely, Arthur M; Thompson, J Will; Thompson, William J; Madden, Victoria; Gauer, Jacob; Wolfe, Katie J; Summers, Daniel W; Schleit, Jennifer; Sutphin, George L; Haroon, Suraiya; Holczbauer, Agnes; Caine, Joanne; Jorgenson, James; Cyr, Douglas; Kaeberlein, Matt; Strathern, Jeffrey N; Duncan, Mara C; Erie, Dorothy A

    2015-08-25

    Transcription errors occur in all living cells; however, it is unknown how these errors affect cellular health. To answer this question, we monitor yeast cells that are genetically engineered to display error-prone transcription. We discover that these cells suffer from a profound loss in proteostasis, which sensitizes them to the expression of genes that are associated with protein-folding diseases in humans; thus, transcription errors represent a new molecular mechanism by which cells can acquire disease phenotypes. We further find that the error rate of transcription increases as cells age, suggesting that transcription errors affect proteostasis particularly in aging cells. Accordingly, transcription errors accelerate the aggregation of a peptide that is implicated in Alzheimer's disease, and shorten the lifespan of cells. These experiments reveal a previously unappreciated role for transcriptional fidelity in cellular health and aging.

  4. Linguistic Processing of Accented Speech Across the Lifespan

    PubMed Central

    Cristia, Alejandrina; Seidl, Amanda; Vaughn, Charlotte; Schmale, Rachel; Bradlow, Ann; Floccia, Caroline

    2012-01-01

    In most of the world, people have regular exposure to multiple accents. Therefore, learning to quickly process accented speech is a prerequisite to successful communication. In this paper, we examine work on the perception of accented speech across the lifespan, from early infancy to late adulthood. Unfamiliar accents initially impair linguistic processing by infants, children, younger adults, and older adults, but listeners of all ages come to adapt to accented speech. Emergent research also goes beyond these perceptual abilities, by assessing links with production and the relative contributions of linguistic knowledge and general cognitive skills. We conclude by underlining points of convergence across ages, and the gaps left to face in future work. PMID:23162513

  5. Long life to emotions: emotional response categorisation across the lifespan.

    PubMed

    Castelli, Luigi; Lanza, Francesca

    2011-12-01

    People perceive and organise their social world on the basis of their previous semantic knowledge as well as on the basis of their emotional responses. We tested the hypothesis that emotional response categorisation, namely the tendency to group stimuli on the basis of the emotion they evoke, increases across the lifespan. Young and older adults were asked to categorise target words and either conceptual or emotional response similarity could be used to perform the task. Results showed that older adults were more likely than younger adults to rely on emotional equivalence to categorise stimuli. In addition, current affective state was significantly related to emotional response categorisation. These findings are discussed in relation to recent models that propose a prominent role for emotions in the social life of older adults.

  6. Lifespan Mental Activity Predicts Diminished Rate of Hippocampal Atrophy

    PubMed Central

    Valenzuela, Michael J.; Sachdev, Perminder; Wen, Wei; Chen, Xiaohua; Brodaty, Henry

    2008-01-01

    Objective Epidemiological studies suggest that complex mental activity may reduce the risk for dementia, however an underlying mechanism remains unclear. Our objective was to determine whether individual differences in lifespan complex mental activity are linked to altered rates of hippocampal atrophy independent of global measures of neurodegeneration. Methods Thirty seven healthy older individuals had their complex mental activity levels estimated using the Lifetime of Experiences Questionnaire (LEQ) and completed serial MRI investigations at baseline and three years follow-up. Hippocampal volume and semi-automatic quantitation of whole brain volume (WBV) and white matter hyperintensities (WMHs) were compared at both time points. Results Higher LEQ scores were correlated with hippocampal volume independent of covariates at the three year follow-up stage (r = 0.43, p = 0.012). Moreover, those with higher LEQ scores experienced less hippocampal atrophy over the follow-up period (r = 0.41, p = 0.02). High LEQ individuals had less than half the hippocampal volume decline of low LEQ individuals in a multivariate analysis (F = 4.47, p = 0.042). No parallel changes were found in measures of WBV and WMHs. Conclusions High level of complex mental activity across the lifespan was correlated with a reduced rate of hippocampal atrophy. This finding could not be explained by general differences in intracranial volume, larger hippocampi at baseline, presence of hypertensive disease, gender or low mood. Our results suggest that neuroprotection in medial temporal lobe may be one mechanism underlying the link between mental activity and lower rates of dementia observed in population-based studies. Additional studies are required to further explore this novel finding. PMID:18612379

  7. Gengnianchun, a Traditional Chinese Medicine, Enhances Oxidative Stress Resistance and Lifespan in Caenorhabditis elegans by Modulating daf-16/FOXO

    PubMed Central

    2017-01-01

    Objective. Gengnianchun (GNC), a traditional Chinese medicine (TCM), is primarily used to improve declining functions related to aging. In this study, we investigated its prolongevity and stress resistance properties and explored the associated regulatory mechanism using a Caenorhabditis elegans model. Methods. Wild-type C. elegans N2 was used for lifespan analysis and oxidative stress resistance assays. Transgenic animals were used to investigate pathways associated with antioxidative stress activity. The effects of GNC on levels of reactive oxygen species (ROS) and expression of specific genes were examined. Results. GNC-treated wild-type worms showed an increase in survival time under both normal and oxidative stress conditions. GNC decreased intracellular ROS levels by 67.95%. GNC significantly enhanced the oxidative stress resistance of several mutant strains, suggesting that the protective effect of GNC is independent of the function of these genes. However, the oxidative stress resistance effect of GNC was absent in worms with daf-16 mutation. We also found upregulation of daf-16 downstream targets including sod-3 and mtl-1. Conclusions. Our findings suggest that GNC extends the lifespan of C. elegans and enhances its resistance to oxidative stress via a daf-16/FOXO-dependent pathway. This study also provides a feasible method for screening the biological mechanisms of TCMs.

  8. How teen girls think about fertility and the reproductive lifespan. Possible implications for curriculum reform and public health policy.

    PubMed

    Littleton, Fiona Kisby

    2014-09-01

    Despite an 'epidemic' of delayed childbirth in England and Wales beyond a woman's optimally fertile years, research shows that young adults are unaware of or misunderstand the risks regarding starting or extending families that such behaviour entails. Currently, sex education syllabi in British schools neglect these issues, rendering school leavers ignorant of them.These curricula cannot be improved until more is known about adolescents' knowledge of relevant topics. In the light of this, this article describes exploratory research on how teenage girls in one English school think about the reproductive lifespan. Going beyond recent 'scientific' investigations which have mostly only tested the extent of ignorance of young adults, this qualitative enquiry used theories of the life course and emerging adulthood to analyse data gathered in interviews. It sought to understand not only what girls know, but how they apply their knowledge in relation to their assumptions about aging, motherhood, pregnancy, parenting and employment. One finding is highlighted here: that whilst "correct" knowledge about the reproductive lifespan does appear to be held by teenage girls, the ability to apply that knowledge and connect the socio-cultural with the biological domain, may not always be in place. This is relevant for curriculum developers aiming to prepare future citizens to take full control of their reproductive health, and policy makers responsible for ensuring an appropriate public health message about these concerns is available after formal schooling ends.

  9. Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction

    PubMed Central

    Regan, Jennifer C; Khericha, Mobina; Dobson, Adam J; Bolukbasi, Ekin; Rattanavirotkul, Nattaphong; Partridge, Linda

    2016-01-01

    Women live on average longer than men but have greater levels of late-life morbidity. We have uncovered a substantial sex difference in the pathology of the aging gut in Drosophila. The intestinal epithelium of the aging female undergoes major deterioration, driven by intestinal stem cell (ISC) division, while lower ISC activity in males associates with delay or absence of pathology, and better barrier function, even at old ages. Males succumb to intestinal challenges to which females are resistant, associated with fewer proliferating ISCs, suggesting a trade-off between highly active repair mechanisms and late-life pathology in females. Dietary restriction reduces gut pathology in aging females, and extends female lifespan more than male. By genetic sex reversal of a specific gut region, we induced female-like aging pathologies in males, associated with decreased lifespan, but also with a greater increase in longevity in response to dietary restriction. DOI: http://dx.doi.org/10.7554/eLife.10956.001 PMID:26878754

  10. Different Temporal Patterns of Specific and General Autobiographical Memories across the Lifespan in Alzheimer's Disease

    PubMed Central

    Philippi, Nathalie; Rousseau, François; Noblet, Vincent; Botzung, Anne; Després, Olivier; Cretin, Benjamin; Kremer, Stéphane; Blanc, Frédéric; Manning, Liliann

    2015-01-01

    We compared specific (i.e., associated with a unique time and space) and general (i.e., extended or repeated events) autobiographical memories (AbM) in Alzheimer's disease (AD). The comparison aims at investigating the relationship between these two components of AbM across the lifespan and the volume of cerebral regions of interest within the temporal lobe. We hypothesized that the ability to elicit specific memories would correlate with hippocampal volume, whereas evoking general memories would be related to lateral temporal lobe. AbM was assessed using the modified Crovitz test in 18 patients with early AD and 18 matched controls. The proportions of total memories—supposed to reflect the ability to produce general memories—and specific memories retrieved were compared between AD patients and controls. Correlations to MRI volumes of temporal cortex were tested. We found different temporal patterns for specific and general memories in AD patients, with (i) relatively spared general memories, according to a temporal gradient that preserved remote memories, predominantly associated with right lateral temporal cortex volume. (ii) Conversely, the retrieval of specific AbMs was impaired for all life periods and correlated with bilateral hippocampal volumes. Our results highlight a shift from an initially episodic to a semantic nature of AbMs during AD, where the abstracted form of memories remains. PMID:26175549

  11. NAD(+) Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair.

    PubMed

    Fang, Evandro Fei; Kassahun, Henok; Croteau, Deborah L; Scheibye-Knudsen, Morten; Marosi, Krisztina; Lu, Huiming; Shamanna, Raghavendra A; Kalyanasundaram, Sumana; Bollineni, Ravi Chand; Wilson, Mark A; Iser, Wendy B; Wollman, Bradley N; Morevati, Marya; Li, Jun; Kerr, Jesse S; Lu, Qiping; Waltz, Tyler B; Tian, Jane; Sinclair, David A; Mattson, Mark P; Nilsen, Hilde; Bohr, Vilhelm A

    2016-10-11

    Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD(+), and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD(+) reduce the severity of A-T neuropathology, normalize neuromuscular function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD(+) also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial dysfunction through nuclear DNA damage-induced nuclear-mitochondrial signaling, and demonstrates that they are important pathophysiological determinants in premature aging of A-T, pointing to therapeutic interventions.

  12. Animal models in epigenetic research: institutional animal care and use committee considerations across the lifespan.

    PubMed

    Harris, Craig

    2012-01-01

    The rapid expansion and evolution of epigenetics as a core scientific discipline have raised new questions about how endogenous and environmental factors can inform the mechanisms through which biological form and function are regulated. Existing and proposed animal models used for epigenetic research have targeted a myriad of health and disease endpoints that may be acute, chronic, and transgenerational in nature. Initiating events and outcomes may extend across the entire lifespan to elicit unanticipated phenotypes that are of particular concern to institutional animal care and use committees (IACUCs). The dynamics and plasticity of epigenetic mechanisms produce effects and consequences that are manifest differentially within discreet spatial and temporal contexts, including prenatal development, stem cells, assisted reproductive technologies, production of sexual dimorphisms, senescence, and others. Many dietary and nutritional interventions have also been shown to have a significant impact on biological functions and disease susceptibilities through altered epigenetic programming. The environmental, chemical, toxic, therapeutic, and psychosocial stressors used in animal studies to elicit epigenetic changes can become extreme and should raise IACUC concerns for the well-being and proper care of all research animals involved. Epigenetics research is rapidly becoming an integral part of the search for mechanisms in every major area of biomedical and behavioral research and will foster the continued development of new animal models. From the IACUC perspective, care must be taken to acknowledge the particular needs and concerns created by superimposition of epigenetic mechanisms over diverse fields of investigation to ensure the proper care and use of animals without impeding scientific progress.

  13. Mitohormesis: Promoting Health and Lifespan by Increased Levels of Reactive Oxygen Species (ROS)

    PubMed Central

    Ristow, Michael; Schmeisser, Kathrin

    2014-01-01

    Increasing evidence indicates that reactive oxygen species (ROS), consisting of superoxide, hydrogen peroxide, and multiple others, do not only cause oxidative stress, but rather may function as signaling molecules that promote health by preventing or delaying a number of chronic diseases, and ultimately extend lifespan. While high levels of ROS are generally accepted to cause cellular damage and to promote aging, low levels of these may rather improve systemic defense mechanisms by inducing an adaptive response. This concept has been named mitochondrial hormesis or mitohormesis. We here evaluate and summarize more than 500 publications from current literature regarding such ROS-mediated low-dose signaling events, including calorie restriction, hypoxia, temperature stress, and physical activity, as well as signaling events downstream of insulin/IGF-1 receptors, AMP-dependent kinase (AMPK), target-of-rapamycin (TOR), and lastly sirtuins to culminate in control of proteostasis, unfolded protein response (UPR), stem cell maintenance and stress resistance. Additionally, consequences of interfering with such ROS signals by pharmacological or natural compounds are being discussed, concluding that particularly antioxidants are useless or even harmful. PMID:24910588

  14. Lifetime return on investment increases with leaf lifespan among 10 Australian woodland species.

    PubMed

    Falster, Daniel S; Reich, Peter B; Ellsworth, David S; Wright, Ian J; Westoby, Mark; Oleksyn, Jacek; Lee, Tali D

    2012-01-01

    • Co-occurring species often differ in their leaf lifespan (LL) and it remains unclear how such variation is maintained in a competitive context. Here we test the hypothesis that leaves of long-LL species yield a greater return in carbon (C) fixed per unit C or nutrient invested by the plant than those of short-LL species. • For 10 sympatric woodland species, we assessed three-dimensional shoot architecture, canopy openness, leaf photosynthetic light response, leaf dark respiration and leaf construction costs across leaf age sequences. We then used the YPLANT model to estimate light interception and C revenue along the measured leaf age sequences. This was done under a series of simulations that incorporated the potential covariates of LL in an additive fashion. • Lifetime return in C fixed per unit C, N or P invested increased with LL in all simulations. • In contrast to other recent studies, our results show that extended LL confers a fundamental economic advantage by increasing a plant's return on investment in leaves. This suggests that time-discounting effects, that is, the compounding of income that arises from quick reinvestment of C revenue, are key in allowing short-LL species to succeed in the face of this economic handicap.

  15. Comparative Pre-Emptive Analgesic Efficacy Study of Novel Antiepileptic Agents Lamotrigine and Topiramate in Patients Undergoing Major Surgeries at a Tertiary Care Hospital: A Randomized Double Blind Clinical Trial

    PubMed Central

    Gupta, Ankush; Bhosale, Uma A.; Shah, Priyank; Yegnanarayan, Radha; Sardesai, Shalini

    2016-01-01

    Background Central nervous sensitization, following surgical injury, leads to postoperative pain hypersensitivity due to lowered pain threshold in peripheral nociceptors and increased excitability of spinal neurons. Pre-emptive analgesia is intended to decrease pain perception and overall analgesic need by use of drug regimen, seizing CNS sensitization before exposure to painful stimuli. Few studies support pre-emptive analgesic efficacy of novel antiepileptic agent Gabapentin. Though Topiramate and Lamotrigine have been proven analgesic in animal models of chronic pain and clinical studies of Gabapentin-resistant neuropathic pain, literature search revealed scarce data on its pre-emptive analgesic efficacy. Purpose This study is designed to study and compare the pre-emptive analgesic efficacy of Lamotrigine, Topiramate, and Diclofenac sodium in postoperative pain control. Methods This randomized clinical trial included 90 patients of either sex, between 18 and 70 years undergoing major surgeries. Patients were randomly allocated to control and test groups and received respective treatment 30 min before induction of anesthesia. Aldrete's and pain scores were recorded using the Visual Analog Scale, Facial and Behavioral Rating Scale at awakening and at 1, 2, 4, 6, and 24 h. Postoperative rescue analgesic consumption for 24 h was recorded. Results Significantly higher pain scores were observed in the Topiramate group postoperatively for 2 h on all pain scales (p < 0.05), whereas in the control group it was significantly higher at 1 h (p < 0.05). Lamotrigine-treated patients were more comfortable throughout the study with significantly less (p < 0.05) postoperative analgesic requirement. Conclusions Study results strongly suggest the pre-emptive analgesic efficacy of a single oral dose of Lamotrigine over Diclofenac and Topiramate in postoperative pain control. PMID:27721585

  16. Green tea polyphenols require the mitochondrial iron transporter, mitoferrin, for lifespan extension in Drosophila melanogaster.

    PubMed

    Lopez, Terry E; Pham, Hoang M; Nguyen, Benjamin V; Tahmasian, Yerazik; Ramsden, Shannon; Coskun, Volkan; Schriner, Samuel E; Jafari, Mahtab

    2016-12-01

    Green tea has been found to increase the lifespan of various experimental animal models including the fruit fly, Drosophila melanogaster. High in polyphenolic content, green tea has been shown to reduce oxidative stress in part by its ability to bind free iron, a micronutrient that is both essential for and toxic to all living organisms. Due to green tea's iron-binding properties, we questioned whether green tea acts to increase the lifespan of the fruit fly by modulating iron regulators, specifically, mitoferrin, a mitochondrial iron transporter, and transferrin, found in the hemolymph of flies. Publicly available hypomorph mutants for these iron regulators were utilized to investigate the effect of green tea on lifespan and fertility. We identified that green tea could not increase the lifespan of mitoferrin mutants but did rescue the reduced male fertility phenotype. The effect of green tea on transferrin mutant lifespan and fertility were comparable to w(1118) flies, as observed in our previous studies, in which green tea increased male fly lifespan and reduced male fertility. Expression levels in both w(1118) flies and mutant flies, supplemented with green tea, showed an upregulation of mitoferrin but not transferrin. Total body and mitochondrial iron levels were significantly reduced by green tea supplementation in w(1118) and mitoferrin mutants but not transferrin mutant flies. Our results demonstrate that green tea may act to increase the lifespan of Drosophila in part by the regulation of mitoferrin and reduction of mitochondrial iron.

  17. Why do lifespan variability trends for the young and old diverge? A perturbation analysis

    PubMed Central

    Engelman, Michal; Caswell, Hal; Agree, Emily M.

    2015-01-01

    BACKGROUND Variation in lifespan has followed strikingly different trends for the young and old: while total lifespan variability has decreased as life expectancy at birth has risen, the variability conditional on survival to older ages has increased. These diverging trends reflect changes in the underlying demographic parameters determining age-specific mortality. OBJECTIVE We ask why the variation in the ages at death after survival to adult ages has followed a different trend than the variation at younger ages, and aim to explain the divergence in terms of the age pattern of historical mortality changes. METHODS Using simulations, we show that the empirical trends in lifespan variation are well characterized using the Siler model, which describes the mortality trajectory using functions representing early-life, later-life, and background mortality. We then obtain maximum likelihood estimates of the Siler parameters for Swedish females from 1900 to 2010. We express mortality in terms of a Markov chain model, and apply matrix calculus to compute the sensitivity of age-specific variance trends to the changes in Siler model parameters. RESULTS Our analysis quantifies the influence of changing demographic parameters on lifespan variability at all ages, highlighting the influence of declining childhood mortality on the reduction of lifespan variability, and the influence of subsequent improvements in adult survival on the rising variability of lifespans at older ages. CONCLUSIONS These findings provide insight into the dynamic relationship between the age pattern of survival improvements and time trends in lifespan variability. PMID:25685053

  18. The influence of dietary fat source on liver and skeletal muscle mitochondrial modifications and lifespan changes in calorie-restricted mice

    PubMed Central

    Villalba, José Manuel; López-Domínguez, José Alberto; Chen, Yana; Khraiwesh, Husam; González-Reyes, José Antonio; del Río, Lucía Fernández; Gutiérrez-Casado, Elena; del Río, Mercedes; Calvo-Rubio, Miguel; Ariza, Julia; de Cabo, Rafael; López-Lluch, Guillermo; Navas, Plácido; Hagopian, Kevork; Burón, María Isabel; Ramsey, Jon Jay

    2015-01-01

    The Membrane Theory of Aging proposes that lifespan is inversely related to the level of unsaturation in membrane phospholipids. Calorie restriction (CR) without malnutrition extends lifespan in many model organisms, which may be related to alterations in membrane phospholipids fatty acids. During the last few years our research focused on studying how altering the predominant fat source affects the outcome of CR in mice. We have established four dietary groups: one control group fed 95% of a pre-determined ad libitum intake (in order to prevent obesity), and three CR groups fed 40% less than ad libitum intake. Lipid source for the control and one of the CR groups was soybean oil (high in n-6 PUFA) whereas the two remaining CR groups were fed diets containing fish oil (high in n-3 PUFA), or lard (high in saturated and monounsaturated fatty acids). Dietary intervention periods ranged from 1 to 18 months. We performed a longitudinal lifespan study and a cross-sectional study set up to evaluate several mitochondrial parameters which included fatty acid composition, H+ leak, activities of electron transport chain enzymes, ROS generation, lipid peroxidation, mitochondrial ultrastructure, and mitochondrial apoptotic signaling in liver and skeletal muscle. These approaches applied to different cohorts of mice have independently indicated that lard as a fat source often maximizes the effects of 40% CR on mice. These effects could be due to significant increases of monounsaturated fatty acids levels, in accordance with the Membrane Theory of Aging. PMID:25860863

  19. The influence of dietary fat source on liver and skeletal muscle mitochondrial modifications and lifespan changes in calorie-restricted mice.

    PubMed

    Villalba, José Manuel; López-Domínguez, José Alberto; Chen, Yana; Khraiwesh, Husam; González-Reyes, José Antonio; Del Río, Lucía Fernández; Gutiérrez-Casado, Elena; Del Río, Mercedes; Calvo-Rubio, Miguel; Ariza, Julia; de Cabo, Rafael; López-Lluch, Guillermo; Navas, Plácido; Hagopian, Kevork; Burón, María Isabel; Ramsey, Jon Jay

    2015-10-01

    The Membrane Theory of Aging proposes that lifespan is inversely related to the level of unsaturation in membrane phospholipids. Calorie restriction (CR) without malnutrition extends lifespan in many model organisms, which may be related to alterations in membrane phospholipids fatty acids. During the last few years our research focused on studying how altering the predominant fat source affects the outcome of CR in mice. We have established four dietary groups: one control group fed 95 % of a pre-determined ad libitum intake (in order to prevent obesity), and three CR groups fed 40 % less than ad libitum intake. Lipid source for the control and one of the CR groups was soybean oil (high in n-6 PUFA) whereas the two remaining CR groups were fed diets containing fish oil (high in n-3 PUFA), or lard (high in saturated and monounsaturated fatty acids). Dietary intervention periods ranged from 1 to 18 months. We performed a longitudinal lifespan study and a cross-sectional study set up to evaluate several mitochondrial parameters which included fatty acid composition, H(+) leak, activities of electron transport chain enzymes, ROS generation, lipid peroxidation, mitochondrial ultrastructure, and mitochondrial apoptotic signaling in liver and skeletal muscle. These approaches applied to different cohorts of mice have independently indicated that lard as a fat source often maximizes the effects of 40 % CR on mice. These effects could be due to significant increases of monounsaturated fatty acids levels, in accordance with the Membrane Theory of Aging.

  20. Pharmacological modulation of histone demethylase activity by a small molecule isolated from subcritical water extracts of Sasa senanensis leaves prolongs the lifespan of Drosophila melanogaster

    PubMed Central

    2012-01-01

    Background Extracts of Sasa senanensis Rehder are used in traditional Japanese medicine; however, little is known about the underlying mechanisms of their potential health benefits. Methods S. senanensis leaves were extracted with subcritical water. An active small-molecule was isolated using reversed-phase high-performance liquid chromatography (HPLC), and identified as 3,4-dihydroxybenzaldehyde (protocatechuic aldehyde or PA). The effects of PA on the activity of histone demethylase, the Drosophila melanogaster lifespan and gene expression in Drosophila S2 cells were investigated. Results PA inhibited the activity of Jumonji domain-containing protein 2A (JMJD2A) histone demethylase in a dose-dependent manner with a half-maximal inhibitory concentration (IC50) of 11.6 μM. However, there was no effect on lysine-specific demethylase 1 (LSD1), histone deacetylase 1 (HDAC1) or HDAC8. PA significantly extended the lifespan of female, but not male, Drosophila. In Drosophila S2 cells, the eukaryotic translation initiation factor 4E binding protein (4E-BP) was up-regulated by PA exposure. Conclusions Our findings provide insight into the possible relationship between the pharmacological modulation of histone demethylation and lifespan extension by PA; they might also be important in the development of alternative therapies for age-related disorders. PMID:22809229

  1. Defected red blood cell membranes and direct correlation with the uraemic milieu: the connection with the decreased red blood cell lifespan observed in haemodialysis patients

    NASA Astrophysics Data System (ADS)

    Stamopoulos, D.; Grapsa, E.; Manios, E.; Gogola, V.; Bakirtzi, N.

    2012-12-01

    Together with impaired production of erythropoietin and iron deficiency, the decreased lifespan of red blood cells (RBCs) is a main factor contributing to the chronic anaemia observed in haemodialysis (HD) patients. Atomic force microscopy is employed in this work to thoroughly survey the membrane of intact RBCs (iRBCs) of HD patients in comparison to those of healthy donors, aiming to obtain direct information on the structural status of RBCs that can be related to their decreased lifespan. We observed that the iRBC membrane of the HD patients is overpopulated with extended circular defects, termed ‘orifices’, that have typical dimension ranging between 0.2 and 1.0 μm. The ‘orifice’ index—that is, the mean population of ‘orifices’ per top membrane surface—exhibits a pronounced relative increase of order 54 ± 12% for the HD patients as compared to healthy donors. Interestingly, for the HD patients, the ‘orifice’ index, which relates to the structural status of the RBC membrane, correlates strongly with urea concentration, which is a basic index of the uraemic milieu. Thus, these results indicate that the uraemic milieu downgrades the structural status of the RBC membrane, possibly triggering biochemical processes that result in their premature elimination from the circulation. This process could decrease the lifespan of RBCs, as observed in HD patients.

  2. Nutrient-Dependent Requirement for SOD1 in Lifespan Extension by Protein Restriction in Drosophila melanogaster

    PubMed Central

    Sun, Xiaoping; Komatsu, Toshimitsu; Lim, Jinhwan; Laslo, Mara; Yolitz, Jason; Wang, Cecilia; Poirier, Luc; Alberico, Thomas; Zou, Sige

    2012-01-01

    Summary Reactive oxygen species (ROS) modulate aging and aging-related diseases. Dietary composition is critical in modulating lifespan. However, how ROS modulate dietary effects on lifespan remains poorly understood. Superoxide dismutase 1 (SOD1) is a major cytosolic enzyme responsible for scavenging superoxides. Here we investigated the role of SOD1 in lifespan modulation by diet in Drosophila. We found that a high sugar-low protein (HS-LP) diet or low-calorie diet with low-sugar content, representing protein restriction, increased lifespan but not resistance to acute oxidative stress in wild-type flies, relative to a standard base diet. A low sugar-high protein diet had an opposite effect. Our genetic analysis indicated that SOD1 overexpression or dfoxo deletion did not alter lifespan patterns of flies responding to diets. However, sod1 reduction blunted lifespan extension by the HS-LP diet but not the low-calorie diet. HS-LP and low-calorie diets both reduced target-of-rapamycin (TOR) signaling and only the HS-LP diet increased oxidative damage. sod1 knockdown did not affect phosphorylation of S6 kinase, suggesting that SOD1 acts in parallel with or downstream of TOR signaling. Surprisingly rapamycin decreased lifespan in sod1 mutant but not wild-type males fed the standard, HS-LP and low calorie diets, whereas antioxidant N-acetylcysteine only increased lifespan in sod1 mutant males fed the HS-LP diet, when compared to diet-matched controls. Our findings suggest that SOD1 is required for lifespan extension by protein restriction only when dietary sugar is high, and support the context-dependent role of ROS in aging and caution the use of rapamycin and antioxidants in aging interventions. PMID:22672579

  3. Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model.

    PubMed

    Lavasani, Mitra; Robinson, Andria R; Lu, Aiping; Song, Minjung; Feduska, Joseph M; Ahani, Bahar; Tilstra, Jeremy S; Feldman, Chelsea H; Robbins, Paul D; Niedernhofer, Laura J; Huard, Johnny

    2012-01-03

    With ageing, there is a loss of adult stem cell function. However, there is no direct evidence that this has a causal role in ageing-related decline. We tested this using muscle-derived stem/progenitor cells (MDSPCs) in a murine progeria model. Here we show that MDSPCs from old and progeroid mice are defective in proliferation and multilineage differentiation. Intraperitoneal administration of MDSPCs, isolated from young wild-type mice, to progeroid mice confer significant lifespan and healthspan extension. The transplanted MDSPCs improve degenerative changes and vascularization in tissues where donor cells are not detected, suggesting that their therapeutic effect may be mediated by secreted factor(s). Indeed, young wild-type-MDSPCs rescue proliferation and differentiation defects of aged MDSPCs when co-cultured. These results establish that adult stem/progenitor cell dysfunction contributes to ageing-related degeneration and suggests a therapeutic potential of post-natal stem cells to extend health.

  4. Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles

    NASA Astrophysics Data System (ADS)

    Zou, Yuan; Hu, Xiaosong; Ma, Hongmin; Li, Shengbo Eben

    2015-01-01

    A combined SOC (State Of Charge) and SOH (State Of Health) estimation method over the lifespan of a lithium-ion battery is proposed. First, the SOC dependency of the nominal parameters of a first-order RC (resistor-capacitor) model is determined, and the performance degradation of the nominal model over the battery lifetime is quantified. Second, two Extended Kalman Filters with different time scales are used for combined SOC/SOH monitoring: the SOC is estimated in real-time, and the SOH (the capacity and internal ohmic resistance) is updated offline. The time scale of the SOH estimator is determined based on model accuracy deterioration. The SOC and SOH estimation results are demonstrated by using large amounts of testing data over the battery lifetime.

  5. A life-span, relational, public health model of self-regulation: impact on individual and community health.

    PubMed

    Maniar, Swapnil; Zaff, Jonathan F

    2011-01-01

    In this chapter, the authors extend the ideas around the development of self-regulation and its impact on development by proposing a life-span, relational, public health model. They propose that the role of self-regulation should be understood across transitions from childhood to adulthood and through an individual and community perspective, including the relational process between the individual, the community, and contextual factors, such as the social determinants of health. These contextual factors may mediate or moderate the development of self-regulatory capacity across one's life span, influencing both individual and community health. Therefore, to ensure proper self-regulatory development, we must address the myriad external factors that undermine the development of self-regulation across the life span.

  6. Modulation of Replicative Lifespan in Cryptococcus neoformans: Implications for Virulence.

    PubMed

    Bouklas, Tejas; Jain, Neena; Fries, Bettina C

    2017-01-01

    The fungal pathogen, Cryptococcus neoformans, has been shown to undergo replicative aging. Old cells are characterized by advanced generational age and phenotypic changes that appear to mediate enhanced resistance to host and antifungal-based killing. As a consequence of this age-associated resilience, old cells accumulate during chronic infection. Based on these findings, we hypothesized that shifting the generational age of a pathogenic yeast population would alter its vulnerability to the host and affect its virulence. SIR2 is a well-conserved histone deacetylase, and a pivotal target for the development of anti-aging drugs. We tested its effect on C. neoformans' replicative lifespan (RLS). First, a mutant C. neoformans strain (sir2Δ) was generated, and confirmed a predicted shortened RLS in sir2Δ cells consistent with its known role in aging. Next, RLS analysis showed that treatment of C. neoformans with Sir2p-agonists resulted in a significantly prolonged RLS, whereas treatment with a Sir2p-antagonist shortened RLS. RLS modulating effects were dependent on SIR2 and not observed in sir2Δ cells. Because SIR2 loss resulted in a slightly impaired fitness, effects of genetic RLS modulation on virulence could not be compared with wild type cells. Instead we chose to chemically modulate RLS, and investigated the effect of Sir2p modulating drugs on C. neoformans cells in a Galleria mellonella infection model. Consistent with our hypothesis that shifts in the generational age of the infecting yeast population alters its vulnerability to host cells, we observed decreased virulence of C. neoformans in the Galleria host when RLS was prolonged by treatment with Sir2p agonists. In contrast, treatment with a Sir2p antagonist, which shortens RLS enhanced virulence in Galleria. In addition, combination of Sir2p agonists with antifungal therapy enhanced the antifungal's effect. Importantly, no difference in virulence was observed with drug treatment when sir2Δ cells were

  7. Modulation of Replicative Lifespan in Cryptococcus neoformans: Implications for Virulence

    PubMed Central

    Bouklas, Tejas; Jain, Neena; Fries, Bettina C.

    2017-01-01

    The fungal pathogen, Cryptococcus neoformans, has been shown to undergo replicative aging. Old cells are characterized by advanced generational age and phenotypic changes that appear to mediate enhanced resistance to host and antifungal-based killing. As a consequence of this age-associated resilience, old cells accumulate during chronic infection. Based on these findings, we hypothesized that shifting the generational age of a pathogenic yeast population would alter its vulnerability to the host and affect its virulence. SIR2 is a well-conserved histone deacetylase, and a pivotal target for the development of anti-aging drugs. We tested its effect on C. neoformans’ replicative lifespan (RLS). First, a mutant C. neoformans strain (sir2Δ) was generated, and confirmed a predicted shortened RLS in sir2Δ cells consistent with its known role in aging. Next, RLS analysis showed that treatment of C. neoformans with Sir2p-agonists resulted in a significantly prolonged RLS, whereas treatment with a Sir2p-antagonist shortened RLS. RLS modulating effects were dependent on SIR2 and not observed in sir2Δ cells. Because SIR2 loss resulted in a slightly impaired fitness, effects of genetic RLS modulation on virulence could not be compared with wild type cells. Instead we chose to chemically modulate RLS, and investigated the effect of Sir2p modulating drugs on C. neoformans cells in a Galleria mellonella infection model. Consistent with our hypothesis that shifts in the generational age of the infecting yeast population alters its vulnerability to host cells, we observed decreased virulence of C. neoformans in the Galleria host when RLS was prolonged by treatment with Sir2p agonists. In contrast, treatment with a Sir2p antagonist, which shortens RLS enhanced virulence in Galleria. In addition, combination of Sir2p agonists with antifungal therapy enhanced the antifungal’s effect. Importantly, no difference in virulence was observed with drug treatment when sir2Δ cells

  8. Transcriptome analysis of a long-lived natural Drosophila variant: a prominent role of stress- and reproduction-genes in lifespan extension

    PubMed Central

    2012-01-01

    Background While studying long-lived mutants has advanced our understanding of the processes involved in ageing, the mechanisms underlying natural variation in lifespan and ageing rate remain largely unknown. Here, we characterise genome-wide expression patterns of a long-lived, natural variant of Drosophila melanogaster resulting from selection for starvation resistance (SR) and compare it with normal-lived control flies (C). We do this at two time points representing middle age (90% survival) and old age (10% survival) respectively, in three adult diets (malnutrition, optimal food, and overfeeding). Results We found profound differences between Drosophila lines in their age-related expression. Most of the age-associated changes in normal-lived flies were abrogated in long-lived Drosophila. The stress-related genes, including those involved in proteolysis and cytochrome P450, were generally higher expressed in SR flies and showed a smaller increase in expression with age compared to C flies. The genes involved in reproduction showed a lower expression in middle-aged SR than in C flies and, unlike C flies, a lack of their downregulation with age. Further, we found that malnutrition strongly affected age-associated transcript patterns overriding the differences between the lines. However, under less stressful dietary conditions, line and diet affected age-dependent expression similarly. Finally, we present lists of candidate markers of ageing and lifespan extension. Conclusions Our study unveils transcriptional changes associated with lifespan extension in SR Drosophila. The results suggest that natural genetic variation for SR and lifespan can operate through similar transcriptional mechanisms as those of dietary restriction and life-extending mutations. PMID:22559237

  9. Rec-8 dimorphism affects longevity, stress resistance and X-chromosome nondisjunction in C. elegans, and replicative lifespan in S. cerevisiae

    PubMed Central

    Ayyadevara, Srinivas; Tazearslan, Çagdas; Alla, Ramani; Jiang, James C.; Jazwinski, S. Michal; Shmookler Reis, Robert J.

    2014-01-01

    A quantitative trait locus (QTL) in the nematode C. elegans, “lsq4,” was recently implicated by mapping longevity genes. QTLs for lifespan and three stress-resistance traits coincided within a span of <300 kbp, later narrowed to <200 kbp. A single gene in this interval is now shown to modulate all lsq4-associated traits. Full-genome analysis of transcript levels indicates that lsq4 contains a dimorphic gene governing the expression of many sperm-specific genes, suggesting an effect on spermatogenesis. Quantitative analysis of allele-specific transcripts encoded within the lsq4 interval revealed significant, 2- to 15-fold expression differences for 10 of 33 genes. Fourteen “dual-candidate” genes, implicated by both position and expression, were tested for RNA-interference effects on QTL-linked traits. In a strain carrying the shorter-lived allele, knockdown of rec-8 (encoding a meiotic cohesin) reduced its transcripts 4-fold, to a level similar to the longer-lived strain, while extending lifespan 25–26%, whether begun before fertilization or at maturity. The short-lived lsq4 allele also conferred sensitivity to oxidative and thermal stresses, and lower male frequency (reflecting X-chromosome non-disjunction), traits reversed uniquely by rec-8 knockdown. A strain bearing the longer-lived lsq4 allele, differing from the short-lived strain at <0.3% of its genome, derived no lifespan or stress-survival benefit from rec-8 knockdown. We consider two possible explanations: high rec-8 expression may include increased “leaky” expression in mitotic cells, leading to deleterious destabilization of somatic genomes; or REC-8 may act entirely in germ-line meiotic cells to reduce aberrations such as non-disjunction, thereby blunting a stress-resistance response mediated by innate immunity. Replicative lifespan was extended 20% in haploid S. cerevisiae (BY4741) by deletion of REC8, orthologous to nematode rec-8, implying that REC8 disruption of mitotic-cell survival

  10. No turnover in lens lipids for the entire human lifespan

    PubMed Central

    Hughes, Jessica R; Levchenko, Vladimir A; Blanksby, Stephen J; Mitchell, Todd W; Williams, Alan; Truscott, Roger JW

    2015-01-01

    Lipids are critical to cellular function and it is generally accepted that lipid turnover is rapid and dysregulation in turnover results in disease (Dawidowicz 1987; Phillips et al., 2009; Liu et al., 2013). In this study, we present an intriguing counter-example by demonstrating that in the center of the human ocular lens, there is no lipid turnover in fiber cells during the entire human lifespan. This discovery, combined with prior demonstration of pronounced changes in the lens lipid composition over a lifetime (Hughes et al., 2012), suggests that some lipid classes break down in the body over several decades, whereas others are stable. Such substantial changes in lens cell membranes may play a role in the genesis of age-related eye disorders. Whether long-lived lipids are present in other tissues is not yet known, but this may prove to be important in understanding the development of age-related diseases. DOI: http://dx.doi.org/10.7554/eLife.06003.001 PMID:25760082

  11. Audiovisual Simultaneity Judgment and Rapid Recalibration throughout the Lifespan

    PubMed Central

    De Niear, Matthew; Van der Burg, Erik; Wallace, Mark T.

    2016-01-01

    Multisensory interactions are well established to convey an array of perceptual and behavioral benefits. One of the key features of multisensory interactions is the temporal structure of the stimuli combined. In an effort to better characterize how temporal factors influence multisensory interactions across the lifespan, we examined audiovisual simultaneity judgment and the degree of rapid recalibration to paired audiovisual stimuli (Flash-Beep and Speech) in a sample of 220 participants ranging from 7 to 86 years of age. Results demonstrate a surprisingly protracted developmental time-course for both audiovisual simultaneity judgment and rapid recalibration, with neither reaching maturity until well into adolescence. Interestingly, correlational analyses revealed that audiovisual simultaneity judgments (i.e., the size of the audiovisual temporal window of simultaneity) and rapid recalibration significantly co-varied as a function of age. Together, our results represent the most complete description of age-related changes in audiovisual simultaneity judgments to date, as well as being the first to describe changes in the degree of rapid recalibration as a function of age. We propose that the developmental time-course of rapid recalibration scaffolds the maturation of more durable audiovisual temporal representations. PMID:27551918

  12. Developmental aspects of synaesthesia across the adult lifespan

    PubMed Central

    Meier, Beat; Rothen, Nicolas; Walter, Stefan

    2014-01-01

    In synaesthesia, stimuli such as sounds, words or letters trigger experiences of colors, shapes or tastes and the consistency of these experiences is a hallmark of this condition. In this study we investigate for the first time whether there are age-related changes in the consistency of synaesthetic experiences. We tested a sample of more than 400 grapheme-color synaesthetes who have color experiences when they see letters and/or digits with a well-established test of consistency. Our results showed a decline in the number of consistent grapheme-color associations across the adult lifespan. We also assessed age-related changes in the breadth of the color spectrum. The results showed that the appearance of primary colors (i.e., red, blue, and green) was mainly age-invariant. However, there was a decline in the occurrence of lurid colors while brown and achromatic tones occurred more often as concurrents in older age. These shifts in the color spectrum suggest that synaesthesia does not simply fade, but rather undergoes more comprehensive changes. We propose that these changes are the result of a combination of both age-related perceptual and memory processing shifts. PMID:24653689

  13. Antihypertensive Therapy in Females: A Clinical Review Across the Lifespan.

    PubMed

    Marrs, Joel C; Thompson, Angela M

    2016-06-01

    Hypertension affects one-third of all females in the United States, with the prevalence increasing over a female's lifespan. The approach to treating females with hypertension varies depending on a female's age, race, comorbidities, and whether she is of child-bearing age or pregnant. It is important to factor in the safety and effectiveness of antihypertensive medications across these populations of females. Blood pressure target goals are the same in females as in males regardless of comorbidities or stage of life, with the exception of those females who are pregnant. Recommendations for antihypertensive medication do not differ between females and males based on disease state or stage of life, with the exception of females who are pregnant, breastfeeding, or of child-bearing age. Multiple guidelines recommend avoiding renin-angiotensin system blockers during pregnancy and suggest balancing the risk versus benefit in females of child-bearing age. Further, multiple guidelines provide race-based therapy recommendations for the use of calcium channel blockers and thiazide diuretics in black versus nonblack patients, irrespective of sex. Future research is needed to evaluate whether there are sex differences relative to blood pressure and cardiovascular event-lowering relative to specific antihypertensive medications with a focus on pharmacogenomic differences.

  14. Steroids as Central Regulators of Organismal Development and Lifespan

    PubMed Central

    Lee, Siu Sylvia; Schroeder, Frank C.

    2012-01-01

    Larvae of the nematode Caenorhabditis elegans must choose between reproductive development and dauer diapause. This decision is based on sensing of environmental inputs and dauer pheromone, a small molecule signal that serves to monitor population density. These signals are integrated via conserved neuroendocrine pathways that converge on steroidal ligands of the nuclear receptor DAF-12, a homolog of the mammalian vitamin D receptor and liver X receptor. DAF-12 acts as the main switch between gene expression programs that drive either reproductive development or dauer entry. Extensive studies in the past two decades demonstrated that biosynthesis of two bile acid-like DAF-12 ligands, named dafachronic acids (DA), controls developmental fate. In this issue of PLoS Biology, Wollam et al. showed that a conserved steroid-modifying enzyme, DHS-16, introduces a key feature in the structures of the DAF-12 ligands, closing a major gap in the DA biosynthesis pathway. The emerging picture of DA biosynthesis in C. elegans enables us to address a key question in the field: how are complex environmental signals integrated to enforce binary, organism-wide decisions on developmental fate? Schaedel et al. demonstrated that pheromone and DA serve as competing signals, and that a positive feedback loop based on regulation of DA biosynthesis ensures organism-wide commitment to reproductive development. Considering that many components of DA signaling are highly conserved, ongoing studies in C. elegans may reveal new aspects of bile acid function and lifespan regulation in mammals. PMID:22505849

  15. Spatio-temporal distribution of human lifespan in China

    NASA Astrophysics Data System (ADS)

    Wang, Shaobin; Luo, Kunli; Liu, Yonglin

    2015-09-01

    Based on the data of latest three Chinese population censuses (1990-2010), four lifespan indicators were calculated: centenarians per one hundred thousand inhabitants (CH); longevity index (LI); the percentage of the population aged at least 80 years (ultra-octogenarian index, UOI) and life expectancy at birth (LEB). The spatio-temporal distributions of data at Chinese county level show that high-longevity areas (high values of CH and LI) and low-longevity areas (low CH and LI values) both exhibit clear non-uniformity of spatial distribution and relative immobility through time. Contrarily, the distribution of UOI and LEB shows a decline from the east to the west. The spatial autocorrelation analyses indicate less spatial dependency and several discontinuous clusters regions of high-CH and LI areas. The factors of temperature, topography and wet/dry climate lack of significant influence on CH and LI. It can be inferred that, in addition to genetic factor and living custom, some unique and long-term environmental effects may be related with high or low values of CH and LI.

  16. RETENTION OF HIGH TACTILE ACUITY THROUGHOUT THE LIFESPAN IN BLINDNESS

    PubMed Central

    Legge, Gordon E.; Madison, Cindee; Vaughn, Brenna N.; Cheong, Allen M.Y.; Miller, Joseph C.

    2009-01-01

    Previous studies of tactile acuity on the fingertip using passive touch have demonstrated an age-related decline in spatial resolution for both sighted and blind subjects. We have re-examined this age dependence with two newly designed tactile-acuity charts requiring active exploration of the test symbols. One chart used dot patterns similar to Braille and the other used embossed Landolt rings. Groups of blind Braille readers and sighted subjects, ranging in age from 12 to 85 years, were tested in two experiments. We replicated previous findings for sighted subjects by showing an age related decrease in tactile acuity by nearly 1% per year. Surprisingly, the blind subjects retained high acuity into old age showing no age-related decline. For the blind subjects, tactile acuity did not correlate with braille reading speed, the amount of daily reading, or the age at which braille was learned. We conclude that when measured with active touch, blind subjects retain high tactile acuity into old age, unlike their aging sighted peers. We propose that blind people's use of active touch in daily activities, not specifically Braille reading, results in preservation of tactile acuity across the lifespan. PMID:19064491

  17. Stability and Plasticity of Auditory Brainstem Function Across the Lifespan

    PubMed Central

    Skoe, Erika; Krizman, Jennifer; Anderson, Samira; Kraus, Nina

    2015-01-01

    The human auditory brainstem is thought to undergo rapid developmental changes early in life until age ∼2 followed by prolonged stability until aging-related changes emerge. However, earlier work on brainstem development was limited by sparse sampling across the lifespan and/or averaging across children and adults. Using a larger dataset than past investigations, we aimed to trace more subtle variations in auditory brainstem function that occur normally from infancy into the eighth decade of life. To do so, we recorded auditory brainstem responses (ABRs) to a click stimulus and a speech syllable (da) in 586 normal-hearing healthy individuals. Although each set of ABR measures (latency, frequency encoding, response consistency, nonstimulus activity) has a distinct developmental profile, across all measures developmental changes were found to continue well past age 2. In addition to an elongated developmental trajectory and evidence for multiple auditory developmental processes, we revealed a period of overshoot during childhood (5–11 years old) for latency and amplitude measures, when the latencies are earlier and the amplitudes are greater than the adult value. Our data also provide insight into the capacity for experience-dependent auditory plasticity at different stages in life and underscore the importance of using age-specific norms in clinical and experimental applications. PMID:24366906

  18. Continuum percolation of long lifespan clusters in a simple fluid.

    PubMed

    Pugnaloni, Luis A; Carlevaro, Carlos M; Valluzzi, Marcos G; Vericat, Fernando

    2008-08-14

    We present results on the percolation loci for chemical clusters and physical clusters of long lifespan. Chemical clusters are defined as sets of particles connected through particle-particle bonds that last for a given time tau. Physical clusters are sets of particles that remain close together at every instant for a given period of time tau. By using molecular dynamics simulations of a Lennard-Jones system we obtain the percolation loci at different values of tau as the lines in the temperature-density plane at which the system presents a spanning cluster in 50% of the configurations. We find that the percolation loci for chemical clusters shifts rapidly toward high densities as tau is increased. For moderate values of tau this line converges to the low-density branch of the liquid-solid coexistence curve. This implies that no stable chemical clusters can be found in the fluid phase. In contrast, the percolation loci for physical clusters tend to a limiting line, as tau tends to infinity, which is far from the liquid-solid transition line.

  19. Cognitive neuroscience neuroimaging repository for the adult lifespan.

    PubMed

    Razlighi, Qolamreza R; Habeck, Christian; Barulli, Daniel; Stern, Yaakov

    2017-01-01

    With recent advances in neuroimaging technology, it is now possible to image human brain function in vivo, which revolutionized the cognitive neuroscience field. However, like any other newly developed technique, the acquisition of neuroimaging data is costly and logistically challenging. Furthermore, studying human cognition requires acquiring a large amount of neuroimaging data, which might not be feasible to do by every researcher in the field. Here, we describe our group's efforts to acquire one of the largest neuroimaging datasets that aims to investigate the neural substrates of age-related cognitive decline, which will be made available to share with other investigators. Our neuroimaging repository includes up to 14 different functional images for more than 486 subjects across the entire adult lifespan in addition to their 3 structural images. Currently, data from 234 participants have been acquired, including all 14 functional and 3 structural images, which is planned to increased to 375 participants in the next few years. A complete battery of neuropsychological tests was also administered to all participants. The neuroimaging and accompanying psychometric data will be available through an online and easy-to-use data sharing website.

  20. Hydrogen-bonding synthons in lamotrigine salts: 3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 2-[(2-carboxyphenyl)disulfanyl]benzoate in its monohydrate and anhydrous forms.

    PubMed

    Freire, Eleonora; Polla, Griselda; Baggio, Ricardo

    2016-11-01

    Lamotrigine is a drug used in the treatment of epilepsy and related convulsive diseases. The drug in its free form is rather inadequate for pharmacological use due to poor absorption by the patient, which limits its bioavailability. On the other hand, the lamotrigine molecule is an excellent hydrogen-bonding agent and this has been exploited intensively in the search for better formulations. The formulation presently commercialized (under the brand name Lamictal) is rather complex and includes a number of anions in addition to the active pharmaceutical ingredient (API). The title salts of lamotrigine, namely 3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 2-[(2-carboxyphenyl)disulfanyl]benzoate monohydrate, C9H8Cl2N5(+)·C14H9O4S2(-)·H2O, (I), and the anhydrate, C9H8Cl2N5(+)·C14H9O4S2(-), (II), contain a lamotriginium cation (L), a hydrogen dithiodibenzoate monoanion (D) and, in the case of (I), a disordered solvent water molecule. Both L and D present their usual configurations severely twisted around their central C-C and S-S bonds, respectively. The supramolecular structure generated by the many available donor and acceptor sites is characterized by a planar antisymmetric motif of the form D-L-L-D, i.e. the structural building block. Although this characteristic motif is extremely similar in both structures, its conformation involves different donors and acceptors in its R2(2)(8) central L-L homosynthon. The lateral R2(2)(8) D-L heterosynthons are, on the other hand, identical. These substructures are further connected by strong hydrogen bonds into broad two-dimensional structures, in turn weakly linked to each other. Even if the homo- and heterosynthons in (I) and (II) are rather frequent in lamotrigine structural chemistry, the composite tetrameric synthon appears to be much less common. The occurrence of these motifs among lamotrigine salts and cocrystals is analyzed.

  1. A gain-of-function screen to identify genes that reduce lifespan in the adult of Drosophila melanogaster

    PubMed Central

    2014-01-01

    Background Several lines of evidence associate misregulated genetic expression with risk factors for diabetes, Alzheimer’s, and other diseases that sporadically develop in healthy adults with no background of hereditary disorders. Thus, we are interested in genes that may be expressed normally through parts of an individual’s life, but can cause physiological defects and disease when misexpressed in adulthood. Results We attempted to identify these genes in a model organism by arbitrarily misexpressing specific genes in adult Drosophila melanogaster, using 14,133 Gene Search lines. We identified 39 “reduced-lifespan genes” that, when misexpressed in adulthood, shortened the flies’ lifespan to less than 30% of that of control flies. About half of these genes have human orthologs that are known to be involved in human diseases. For about one-fourth of the reduced-lifespan genes, suppressing apoptosis restored the lifespan shortened by their misexpression. We determined the organs responsible for reduced lifespan when these genes were misexpressed specifically in adulthood, and found that while some genes induced reduced lifespan only when misexpressed in specific adult organs, others could induce reduced lifespan when misexpressed in various organs. This finding suggests that tissue-specific dysfunction may be involved in reduced lifespan related to gene misexpression. Gene ontology analysis showed that reduced-lifespan genes are biased toward genes related to development. Conclusions We identified 39 genes that, when misexpressed in adulthood, shortened the lifespan of adult flies. Suppressing apoptosis rescued this shortened lifespan for only a subset of the reduced-lifespan genes. The adult tissues in which gene misexpression caused early death differed among the reduced-lifespan genes. These results suggest that the cause of reduced lifespan upon misexpression differed among the genes. PMID:24739137

  2. Life-Span Differences in Semantic Integration of Pictures and Sentences in Memory.

    ERIC Educational Resources Information Center

    Pezdek, Kathy

    1980-01-01

    Examines life-span developmental differences in spontaneous integration of semantically relevant material presented in pictures and sentences. Elementary school students, high school students, and adults were tested. (Author/SS)

  3. Inhibition of peroxisome fission, but not mitochondrial fission, increases yeast chronological lifespan.

    PubMed

    Lefevre, Sophie D; Kumar, Sanjeev; van der Klei, Ida J

    2015-01-01

    Mitochondria are key players in aging and cell death. It has been suggested that mitochondrial fragmentation, mediated by the Dnm1/Fis1 organelle fission machinery, stimulates aging and cell death. This was based on the observation that Saccharomyces cerevisiae Δdnm1 and Δfis1 mutants show an enhanced lifespan and increased resistance to cell death inducers. However, the Dnm1/Fis1 fission machinery is also required for peroxisome division. Here we analyzed the significance of peroxisome fission in yeast chronological lifespan, using yeast strains in which fission of mitochondria was selectively blocked. Our data indicate that the lifespan extension caused by deletion of FIS1 is mainly due to a defect in peroxisome fission and not caused by a block in mitochondrial fragmentation. These observations are underlined by our observation that deletion of FIS1 does not lead to lifespan extension in yeast peroxisome deficient mutant cells.

  4. Hispanic-White Differences in Lifespan Variability in the United States

    PubMed Central

    Lariscy, Joseph T.; Nau, Claudia; Firebaugh, Glenn; Hummer, Robert A.

    2016-01-01

    This study is the first to investigate whether and, if so, why Hispanics and non-Hispanic whites in the United States differ in the variability of their lifespans. Although Hispanics enjoy higher life expectancy than whites, very little is known about how lifespan variability—and thus uncertainty about length of life—differs by race/ethnicity. We use 2010 U.S. National Vital Statistics System data to calculate lifespan variance at ages 10 and older for Hispanics and whites, and then decompose the Hispanic-white variance difference into cause-specific spread, allocation, and timing effects. In addition to their higher life expectancy relative to whites, Hispanics also exhibit 7 % lower lifespan variability, with a larger gap among women than men. Differences in cause-specific incidence (allocation effects) explain nearly two-thirds of Hispanics’ lower lifespan variability, mainly because of the higher mortality from suicide, accidental poisoning, and lung cancer among whites. Most of the remaining Hispanic-white variance difference is due to greater age dispersion (spread effects) in mortality from heart disease and residual causes among whites than Hispanics. Thus, the Hispanic paradox—that a socioeconomically disadvantaged population (Hispanics) enjoys a mortality advantage over a socioeconomically advantaged population (whites)—pertains to lifespan variability as well as to life expectancy. Efforts to reduce U.S. lifespan variability and simultaneously increase life expectancy, especially for whites, should target premature, young adult causes of death—in particular, suicide, accidental poisoning, and homicide. We conclude by discussing how the analysis of Hispanic-white differences in lifespan variability contributes to our understanding of the Hispanic paradox. PMID:26682740

  5. Lifespan differences in hematopoietic stem cells are due to imperfect repair and unstable mean-reversion.

    PubMed

    Sieburg, Hans B; Cattarossi, Giulio; Muller-Sieburg, Christa E

    2013-04-01

    The life-long supply of blood cells depends on the long-term function of hematopoietic stem cells (HSCs). HSCs are functionally defined by their multi-potency and self-renewal capacity. Because of their self-renewal capacity, HSCs were thought to have indefinite lifespans. However, there is increasing evidence that genetically identical HSCs differ in lifespan and that the lifespan of a HSC is predetermined and HSC-intrinsic. Lifespan is here defined as the time a HSC gives rise to all mature blood cells. This raises the intriguing question: what controls the lifespan of HSCs within the same animal, exposed to the same environment? We present here a new model based on reliability theory to account for the diversity of lifespans of HSCs. Using clonal repopulation experiments and computational-mathematical modeling, we tested how small-scale, molecular level, failures are dissipated at the HSC population level. We found that the best fit of the experimental data is provided by a model, where the repopulation failure kinetics of each HSC are largely anti-persistent, or mean-reverting, processes. Thus, failure rates repeatedly increase during population-wide division events and are counteracted and decreased by repair processes. In the long-run, a crossover from anti-persistent to persistent behavior occurs. The cross-over is due to a slow increase in the mean failure rate of self-renewal and leads to rapid clonal extinction. This suggests that the repair capacity of HSCs is self-limiting. Furthermore, we show that the lifespan of each HSC depends on the amplitudes and frequencies of fluctuations in the failure rate kinetics. Shorter and longer lived HSCs differ significantly in their pre-programmed ability to dissipate perturbations. A likely interpretation of these findings is that the lifespan of HSCs is determined by preprogrammed differences in repair capacity.

  6. Lifespan Differences in Hematopoietic Stem Cells are Due to Imperfect Repair and Unstable Mean-Reversion

    PubMed Central

    Sieburg, Hans B; Cattarossi, Giulio; Muller-Sieburg, Christa E.

    2013-01-01

    The life-long supply of blood cells depends on the long-term function of hematopoietic stem cells (HSCs). HSCs are functionally defined by their multi-potency and self-renewal capacity. Because of their self-renewal capacity, HSCs were thought to have indefinite lifespans. However, there is increasing evidence that genetically identical HSCs differ in lifespan and that the lifespan of a HSC is predetermined and HSC-intrinsic. Lifespan is here defined as the time a HSC gives rise to all mature blood cells. This raises the intriguing question: what controls the lifespan of HSCs within the same animal, exposed to the same environment? We present here a new model based on reliability theory to account for the diversity of lifespans of HSCs. Using clonal repopulation experiments and computational-mathematical modeling, we tested how small-scale, molecular level, failures are dissipated at the HSC population level. We found that the best fit of the experimental data is provided by a model, where the repopulation failure kinetics of each HSC are largely anti-persistent, or mean-reverting, processes. Thus, failure rates repeatedly increase during population-wide division events and are counteracted and decreased by repair processes. In the long-run, a crossover from anti-persistent to persistent behavior occurs. The cross-over is due to a slow increase in the mean failure rate of self-renewal and leads to rapid clonal extinction. This suggests that the repair capacity of HSCs is self-limiting. Furthermore, we show that the lifespan of each HSC depends on the amplitudes and frequencies of fluctuations in the failure rate kinetics. Shorter and longer lived HSCs differ significantly in their pre-programmed ability to dissipate perturbations. A likely interpretation of these findings is that the lifespan of HSCs is determined by preprogrammed differences in repair capacity. PMID:23637582

  7. Reproduction and lifespan: Trade-offs, overall energy budgets, intergenerational costs, and costs neglected by research.

    PubMed

    Jasienska, Grazyna

    2009-01-01

    In human females allocation of resources to support reproduction may cause their insufficient supply to other metabolic functions, resulting in compromised physiology, increased risks of diseases and, consequently, reduced lifespan. While many studies on both historical and contemporary populations show that women with high fertility indeed have shorter lifespans. This relationship is far from universal: a lack of correlation between fertility and lifespan, or even an increased lifespan of women with high fertility have also been documented. Reduced lifespan in women with high fertility may be undetectable due to methodological weaknesses of research or it may be truly absent, and its absence may be explained from biological principles. I will discuss the following reasons for a lack of the negative relationship, described in some demographic studies, between the number of children and lifespan in women: (1) Number of children is only a proxy of the total costs of reproduction and the cost of breastfeeding is often higher than the pregnancy cost but is often not taken into account. (2) Costs of reproduction can be interpreted in a meaningful way only when they are analyzed in relation to the overall energy budget of the woman. (3) Trade-offs between risks of different diseases due to reproduction yield different mortality predictions depending on the socio-economic status of the studied populations. (4) Costs of reproduction are related not only to having children but also to having grandchildren. Such intergenerational costs should be included in analysis of trade-offs between costs of reproduction and longevity.

  8. Ecology and mode-of-life explain lifespan variation in birds and mammals

    PubMed Central

    Healy, Kevin; Guillerme, Thomas; Finlay, Sive; Kane, Adam; Kelly, Seán B. A.; McClean, Deirdre; Kelly, David J.; Donohue, Ian; Jackson, Andrew L.; Cooper, Natalie

    2014-01-01

    Maximum lifespan in birds and mammals varies strongly with body mass such that large species tend to live longer than smaller species. However, many species live far longer than expected given their body mass. This may reflect interspecific variation in extrinsic mortality, as life-history theory predicts investment in long-term survival is under positive selection when extrinsic mortality is reduced. Here, we investigate how multiple ecological and mode-of-life traits that should reduce extrinsic mortality (including volancy (flight capability), activity period, foraging environment and fossoriality), simultaneously influence lifespan across endotherms. Using novel phylogenetic comparative analyses and to our knowledge, the most species analysed to date (n = 1368), we show that, over and above the effect of body mass, the most important factor enabling longer lifespan is the ability to fly. Within volant species, lifespan depended upon when (day, night, dusk or dawn), but not where (in the air, in trees or on the ground), species are active. However, the opposite was true for non-volant species, where lifespan correlated positively with both arboreality and fossoriality. Our results highlight that when studying the molecular basis behind cellular processes such as those underlying lifespan, it is important to consider the ecological selection pressures that shaped them over evolutionary time. PMID:24741018

  9. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution.

    PubMed

    Moss, David K; Ivany, Linda C; Judd, Emily J; Cummings, Patrick W; Bearden, Claire E; Kim, Woo-Jun; Artruc, Emily G; Driscoll, Jeremy R

    2016-08-17

    Mean body size in marine animals has increased more than 100-fold since the Cambrian, a discovery that brings to attention the key life-history parameters of lifespan and growth rate that ultimately determine size. Variation in these parameters is not well understood on the planet today, much less in deep time. Here, we present a new global database of maximum reported lifespan and shell growth coupled with body size data for 1 148 populations of marine bivalves and show that (i) lifespan increases, and growth rate decreases, with latitude, both across the group as a whole and within well-sampled species, (ii) growth rate, and hence metabolic rate, correlates inversely with lifespan, and (iii) opposing trends in lifespan and growth combined with high variance obviate any demonstrable pattern in body size with latitude. Our observations suggest that the proposed increase in metabolic activity and demonstrated increase in body size of organisms over the Phanerozoic should be accompanied by a concomitant shift towards faster growth and/or shorter lifespan in marine bivalves. This prediction, testable from the fossil record, may help to explain one of the more fundamental patterns in the evolutionary and ecological history of animal life on this planet.

  10. Altitudinal variation in lifespan of Drosophila melanogaster populations from the Firtina Valley, northeastern Turkey.

    PubMed

    Ayhan, Nazli; Güler, Pinar; Onder, Banu Sebnem

    2016-10-01

    Studies of altitudinal changes in phenotype and genotype can complement studies of latitudinal patterns and provide evidence of natural selection in response to climatic factors. In Drosophila melanogaster, latitudinal variation in phenotype and genotype has been well studied, but altitudinal patterns have rarely been investigated. We studied populations from six different altitudes varying between 35m and 2173m in the Firtina Valley in northeastern part of Turkey to evaluate clinal trends in lifespan under experimental conditions. Lifespan in the D. melanogaster populations was examined in relation to altitude, sex, temperature (25°C and 29°C), and dietary yeast concentration (5g/L and 25g/L). As expected high temperature decrease lifespan in all populations. However, it was shown that lifespan was slightly affected by dietary stress. We found that lifespan decreases significantly under thermal stress conditions with increasing altitude. Moreover, there was a slightly negative relationship between altitude and lifespan, which was closely associated with climatic factors such as temperature and precipitation, may suggest local adaptation to climate.

  11. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans

    PubMed Central

    Kumar, Jitendra; Barhydt, Tracy; Awasthi, Anjali; Lithgow, Gordon J.; Killilea, David W.; Kapahi, Pankaj

    2016-01-01

    Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy. PMID:27078872

  12. Constraints on the use of lifespan-shortening Wolbachia to control dengue fever.

    PubMed

    Schraiber, Joshua G; Kaczmarczyk, Angela N; Kwok, Ricky; Park, Miran; Silverstein, Rachel; Rutaganira, Florentine U; Aggarwal, Taruna; Schwemmer, Michael A; Hom, Carole L; Grosberg, Richard K; Schreiber, Sebastian J

    2012-03-21

    Dengue fever, a viral disease spread by the mosquito Aedes aegypti, affects 50-100 million people a year in many tropical countries. Because the virus must incubate within mosquito hosts for two weeks before being able to transmit the infection, shortening the lifespan of mosquitoes may curtail dengue transmission. We developed a continuous time reaction-diffusion model of the spatial spread of Wolbachia through a population of A. aegypti. This model incorporates the lifespan-shortening effects of Wolbachia on infected A. aegypti and the fitness advantage to infected females due to cytoplasmic incompatibility (CI). We found that local establishment of the Wolbachia infection can occur if the fitness advantage due to CI exceeds the fitness reduction due to lifespan-shortening effects, in accordance with earlier results concerning fecundity reduction. However, spatial spread is possible only if the fitness advantage due to CI is twice as great as the fitness reduction due to lifespan shortening effects. Moreover, lifespan-shortening and fecundity-reduction can have different effects on the speed of wave-retreat. Using data from the literature, we estimated all demographic parameters for infected and uninfected mosquitoes and computed the velocities of spread of infection. Our most optimistic estimates suggest that the spatial spread of lifespan-shortening Wolbachia may be so slow that efficient spatial spread would require a prohibitively large number of point releases. However, as these estimates of demographic parameters may not accurately reflect natural conditions, further research is necessary to corroborate these predictions.

  13. Epigenetic programming by stress and glucocorticoids along the human lifespan.

    PubMed

    Zannas, A S; Chrousos, G P

    2017-03-14

    Psychosocial stress triggers a set of behavioral, neural, hormonal, and molecular responses that can be a driving force for survival when adaptive and time-limited, but may also contribute to a host of disease states if dysregulated or chronic. The beneficial or detrimental effects of stress are largely mediated by the hypothalamic-pituitary axis, a highly conserved neurohormonal cascade that culminates in systemic secretion of glucocorticoids. Glucocorticoids activate the glucocorticoid receptor, a ubiquitous nuclear receptor that not only causes widespread changes in transcriptional programs, but also induces lasting epigenetic modifications in many target tissues. While the epigenome remains sensitive to stressors throughout life, we propose two key principles that may govern the epigenetics of stress and glucocorticoids along the lifespan: first, the presence of distinct life periods, during which the epigenome shows heightened plasticity to stress exposure, such as in early development and at advanced age; and, second, the potential of stress-induced epigenetic changes to accumulate throughout life both in select chromatin regions and at the genome-wide level. These principles have important clinical and translational implications, and they show striking parallels with the existence of sensitive developmental periods and the cumulative impact of stressful experiences on the development of stress-related phenotypes. We hope that this conceptual mechanistic framework will stimulate fruitful research that aims at unraveling the molecular pathways through which our life stories sculpt genomic function to contribute to complex behavioral and somatic phenotypes.Molecular Psychiatry advance online publication, 14 March 2017; doi:10.1038/mp.2017.35.

  14. Host lifespan and the evolution of resistance to multiple parasites.

    PubMed

    Donnelly, R; White, A; Boots, M

    2017-03-01

    Hosts are typically challenged by multiple parasites, but to date theory on the evolution of resistance has mainly focused on single infections. We develop a series of models that examine the impact of multiple parasites on the evolution of resistance under the assumption that parasites coexist at the host population scale as a consequence of superinfection. In this way, we are able to explicitly examine the impact of ecological dynamics on the evolutionary outcome. We use our models to address a key question of how host lifespan affects investment in resistance to multiple parasites. We show that investment in costly resistance depends on the specificity of the immune response and on whether or not the focal parasite leads to more acute infection than the co-circulating parasite. A key finding is that investment in resistance always increases as the immune response becomes more general independently of whether it is the focal or the co-circulating parasite that exploits the host most aggressively. Long-lived hosts always invest more than short-lived hosts in both general resistance and resistance that is specific to relatively acute focal parasites. However, for specific resistance to parasites that are less acute than co-circulating parasites it is the short-lived hosts that are predicted to invest most. We show that these results apply whatever the mode of defence, that is whether it is through avoidance or through increased recovery, with or without acquired immunity, or through acquired immunity itself. As a whole, our results emphasize the importance of considering multiple parasites in determining optimal immune investment in eco-evolutionary systems.

  15. Lifespan anxiety is reflected in human amygdala cortical connectivity

    PubMed Central

    He, Ye; Xu, Ting; Zhang, Wei

    2016-01-01

    Abstract The amygdala plays a pivotal role in processing anxiety and connects to large‐scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting‐state functional MRI data from 280 healthy adults (18–83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network‐specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network‐specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety–connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety–connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety–gender interactions on its iFC with amygdala. Together with findings from additional vertex‐wise analysis, these data clearly indicated that both low‐level sensory networks and high‐level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders. Hum Brain Mapp 37:1178–1193, 2016. © 2015 The Authors Human Brain Mapping

  16. A three phase hollow fiber liquid-phase microextraction for quantification of lamotrigine in plasma of epileptic patients by capillary electrophoresis.

    PubMed

    Barros, Luiza Saldanha Ribeiro; Carrão, Daniel Blascke; Queiroz, Regina Helena Costa; de Oliveira, Anderson Rodrigo Moraes; de Gaitani, Cristiane Masetto

    2016-10-01

    A three phase hollow fiber liquid-phase microextraction technique combined with capillary electrophoresis was developed to quantify lamotrigine (LTG) in plasma samples. The analyte was extracted from 4.0 mL of a basic donor phase (composed of 0.5 mL of plasma and 3.5 mL of sodium phosphate solution pH 9.0) through a supported liquid membrane composed of 1-octanol immobilized in the pores of the hollow fiber, and to an acidic acceptor phase (hydrochloric acid solution pH 4.0) placed in the lumen of the fiber. The extraction was carried out for 30 min at 500 rpm. The eletrophoretic analysis was carried out in 130 mmol/L MES buffer, pH 5.0 with a constant voltage of +15 kV and 20°C. Sample injections were performed for 10 s, at a pressure of 0.5 psi. The detection was performed at 214 nm for both LTG and the internal standard lidocaine. Under the optimized conditions, the method showed a limit of quantification of 1.0 μg/mL and was linear over the plasmatic concentration range of 1.0-20.0 μg/mL. Finally, the validated method was applied for the quantification of LTG in plasma samples of epileptic patients.

  17. Stability of Atenolol, Clonazepam, Dexamethasone, Diclofenac Sodium, Diltiazem, Enalapril Maleate, Ketoprofen, Lamotrigine, Penicillamine-D, and Thiamine in SyrSpend SF PH4 Oral Suspensions.

    PubMed

    Polonini, Hudson C; Loures, Sharlene; Lima, Luis Claudio; Ferreira, Anderson O; Brandão, Marcos Antônio F

    2016-01-01

    The objective of this study was to evaluate the stability of 10 commonly used active pharmaceutical ingredients compounded in oral suspensions using SyrSpend SF PH4 (atenolol 1.0 and 5.0 mg/mL, clonazepam 0.2 mg/mL, dexamethasone 1.0 mg/mL, diclofenac sodium 5.0 mg/mL, diltiazem 12.0 mg/mL, enalapril maleate 1.0 mg/mL, ketoprofen 20.0 mg/mL, lamotrigine 1.0 mg/mL, penicillamine-D 50.0 mg/mL, thiamine 100 mg/m) and stored both at controlled refrigerated (2°C to 8°C) and room temperature (20°C to 25°C). Stability was assessed by means of measuring percent recovery at varying time points throughout a 90-day period. The quantification of the active pharmaceutical ingredients was performed by a stability-indicating, high-performance liquid chromatographic method. The beyond-use date of the products was found to be at least 90 days for all suspensions (except atenolol 1 mg/mL, which was stable up to 60 days), both for controlled refrigerated temperature and room temperature. This confirms that SyrSpend SF PH4 is a stable suspending vehicle for compounding with a broad range of different active pharmaceutical ingredients.

  18. Enhancement of Solubility of Lamotrigine by Solid Dispersion and Development of Orally Disintegrating Tablets Using 3(2) Full Factorial Design.

    PubMed

    Singh, Jatinderpal; Garg, Rajeev; Gupta, Ghanshyam Das

    2015-01-01

    Present investigation deals with the preparation and evaluation of orally disintegrating tablets (ODTs) of lamotrigine using β-cyclodextrin and PVP-K30 as polymers for the preparation of solid dispersion which help in enhancement of aqueous solubility of this BCS CLASS-II drug and sodium starch glycolate (SSG) and crospovidone as a superdisintegrating agent, to reduce disintegration time. The ODTs were prepared by direct compression method. Nine formulations were developed with different ratios of superdisintegrating agents. All the formulations were evaluated for disintegration time, weight variation, hardness, friability, drug content uniformity, wetting time, and in vitro drug release study. In vitro drug release study was performed using United States Pharmacopoeia (USP) type 2 dissolution test apparatus employing paddle stirrer at 50 rpm using 900 mL of 0.1 N HCl maintained at 37°C ± 0.5°C as the dissolution medium. On the basis of evaluation parameters formulations were prepared using β-CD 1 : 1 solid dispersion. Then 3(2) full factorial design was applied using SSG and crospovidone in different ratios suggested by using design expert 8.0.7.1 and optimized formulation was prepared using amount of SSG and crospovidone as suggested by the software. The optimized formulation prepared had disintegrating time of 15 s, wetting time of 24 s, and % friability of 0.55.

  19. Robust isocratic high performance liquid chromatographic method for simultaneous determination of seven antiepileptic drugs including lamotrigine, oxcarbazepine and zonisamide in serum after solid-phase extraction.

    PubMed

    Vermeij, T A C; Edelbroek, P M

    2007-09-15

    A rapid, simple and robust method is presented for the simultaneous determination of seven antiepileptic drugs (AEDs), including primidone, phenobarbital, phenytoin, carbamazepine with its two major metabolites carbamazepine-10,11-epoxide and carbamazepine-10,11-(trans)-dihydrodiol and the new AEDs lamotrigine, hydroxycarbazepine (active metabolite of oxcarbazepine) and zonisamide in serum by high performance liquid chromatography (HPLC)-diode array detector (DAD). After solid-phase extraction, separation is achieved on an Alltima 3C18 analytical column using isocratic elution with a mixture of acetonitrile, methanol and phosphate buffer at 45 degrees C. The method is exhaustively validated, including experimental design in combination with statistical evaluation (ANOVA) to study the robustness of chromatography and sample preparation. Commonly co-administered antiepileptic drugs do not interfere with the method. Intra-day precision (RSD<1.9%), linearity, lower limit of quantitation (LOQ<0.065 mg/l) and robustness make the method suitable for daily therapeutic drug monitoring and pharmacokinetic studies.

  20. Chemical and Physical Approaches to Extend the Replicative and Differentiation Potential of Stem Cells.

    PubMed

    Hwang, Eun Seong; Ok, Jeong Soo; Song, SeonBeom

    2016-06-01

    Cell therapies using mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) are increasing in regenerative medicine, with applications to a growing number of aging-associated dysfunctions and degenerations. For successful therapies, a certain mass of cells is needed, requiring extensive ex vivo expansion of the cells. However, the proliferation of both MSCs and EPCs is limited as a result of telomere shortening-induced senescence. As cells approach senescence, their proliferation slows down and differentiation potential decreases. Therefore, ways to delay senescence and extend the replicative lifespan these cells are needed. Certain proteins and pathways play key roles in determining the replicative lifespan by regulating ROS generation, damage accumulation, or telomere shortening. And, their agonists and gene activators exert positive effects on lifespan. In many of the treatments, importantly, the lifespan is extended with the retention of differentiation potential. Furthermore, certain culture conditions, including the use of specific atmospheric conditions and culture substrates, exert positive effects on not only the proliferation rate, but also the extent of proliferation and differentiation potential as well as lineage determination. These strategies and known underlying mechanisms are introduced in this review, with an evaluation of their pros and cons in order to facilitate safe and effective MSC expansion ex vivo.

  1. Mapping cerebral pulse pressure and arterial compliance over the adult lifespan with optical imaging

    PubMed Central

    Tan, Chin Hong; Low, Kathy A.; Kong, Tania; Fletcher, Mark A.; Zimmerman, Benjamin; Maclin, Edward L.; Chiarelli, Antonio M.; Gratton, Gabriele

    2017-01-01

    Cerebrovascular health is important for maintaining a high level of cognitive performance, not only in old age, but also throughout the lifespan. Recently, it was first demonstrated that diffuse optical imaging measures of pulse amplitude and arterial compliance can provide estimates of cerebral arterial health throughout the cortex, and were associated with age, estimated cardiorespiratory fitness (eCRF), neuroanatomy and cognitive function in older adults (aged 55–87). The current study replicates and extends the original findings using a broader age range (a new adult sample aged 18–75), longer recording periods (360 s), and a more extensive optical montage (1536 channels). These methodological improvements represent a 5-fold increase in recording time and a 4-fold increase in coverage compared to the initial study. Results show that reliability for both pulse amplitude and compliance measures across recording blocks was very high (r(45) = .99 and .75, respectively). Pulse amplitude and pulse pressure were shown to correlate with age across the broader age range. We also found correlations between arterial health and both cortical and subcortical gray matter volumes. Additionally, we replicated the correlations between arterial compliance and age, eCRF, global brain atrophy, and cognitive flexibility. New regional analyses revealed that higher performance on the operation span (OSPAN) working memory task was associated with greater localized arterial compliance in frontoparietal cortex, but not with global arterial compliance. Further, greater arterial compliance in frontoparietal regions was associated with younger age and higher eCRF. These associations were not present in the visual cortex. The current study not only replicates the initial one in a sample including a much wider age range, but also provides new evidence showing that frontoparietal regions may be especially vulnerable to vascular degeneration during brain aging, with potential functional

  2. Mapping cerebral pulse pressure and arterial compliance over the adult lifespan with optical imaging.

    PubMed

    Tan, Chin Hong; Low, Kathy A; Kong, Tania; Fletcher, Mark A; Zimmerman, Benjamin; Maclin, Edward L; Chiarelli, Antonio M; Gratton, Gabriele; Fabiani, Monica

    2017-01-01

    Cerebrovascular health is important for maintaining a high level of cognitive performance, not only in old age, but also throughout the lifespan. Recently, it was first demonstrated that diffuse optical imaging measures of pulse amplitude and arterial compliance can provide estimates of cerebral arterial health throughout the cortex, and were associated with age, estimated cardiorespiratory fitness (eCRF), neuroanatomy and cognitive function in older adults (aged 55-87). The current study replicates and extends the original findings using a broader age range (a new adult sample aged 18-75), longer recording periods (360 s), and a more extensive optical montage (1536 channels). These methodological improvements represent a 5-fold increase in recording time and a 4-fold increase in coverage compared to the initial study. Results show that reliability for both pulse amplitude and compliance measures across recording blocks was very high (r(45) = .99 and .75, respectively). Pulse amplitude and pulse pressure were shown to correlate with age across the broader age range. We also found correlations between arterial health and both cortical and subcortical gray matter volumes. Additionally, we replicated the correlations between arterial compliance and age, eCRF, global brain atrophy, and cognitive flexibility. New regional analyses revealed that higher performance on the operation span (OSPAN) working memory task was associated with greater localized arterial compliance in frontoparietal cortex, but not with global arterial compliance. Further, greater arterial compliance in frontoparietal regions was associated with younger age and higher eCRF. These associations were not present in the visual cortex. The current study not only replicates the initial one in a sample including a much wider age range, but also provides new evidence showing that frontoparietal regions may be especially vulnerable to vascular degeneration during brain aging, with potential functional

  3. Caenorhabditis elegans PI3K mutants reveal novel genes underlying exceptional stress resistance and lifespan

    PubMed Central

    Ayyadevara, Srinivas; Tazearslan, Çagdaþ; Bharill, Puneet; Alla, Ramani; Siegel, Eric; Shmookler Reis, Robert J.

    2010-01-01

    Summary Two age-1 nonsense mutants, truncating the class-I phosphatidylinositol 3-kinase catalytic subunit (PI3KCS) before its kinase domain, confer extraordinary longevity and stress-resistance to Caenorhabditis elegans. These traits, unique to second-generation homozygotes, are blunted at the first generation and are largely reversed by additional mutations to DAF-16/FOXO, a transcription factor downstream of AGE-1 in insulin-like signaling. The strong age-1 alleles (mg44, m333) were compared with the weaker hx546 allele on expression microarrays, testing four independent cohorts of each allele. Among 276 genes with significantly differential expression, 92% showed fewer transcripts in adults carrying strong age-1 alleles rather than hx546. This proportion is significantly greater than the slight bias observed when contrasting age-1 alleles to wild-type worms. Thus, transcriptional changes peculiar to nonsense alleles primarily involve either gene silencing or failure of transcriptional activation. A subset of genes responding preferentially to age-1-nonsense alleles was reassessed by real-time polymerase chain reaction, in worms bearing strong or weak age-1 alleles; nearly all of these were significantly more responsive to the age-1(mg44) allele than to age-1(hx546). Additional mutation of daf-16 reverted the majority of altered mg44-F2 expression levels to approximately wild-type values, although a substantial number of genes remained significantly distinct from wild-type, implying that age-1(mg44) modulates transcription through both DAF-16/FOXO-dependent and –independent channels. When age-1-inhibited genes were targeted by RNA interference (RNAi) in wild-type or age-1(hx546) adults, most conferred significant oxidative-stress protection. RNAi constructs targeting two of those genes were shown previously to extend life, and RNAi’s targeting five novel genes were found here to increase lifespan. PI3K-null mutants may thus implicate novel mechanisms of life

  4. Effects of TAT-conjugated platinum nanoparticles on lifespan of mitochondrial electron transport complex I-deficient Caenorhabditis elegans, nuo-1.

    PubMed

    Sakaue, Yuri; Kim, Juewon; Miyamoto, Yusei

    2010-09-20

    Platinum nanoparticle (Pt-np) species are superoxide dismutase/catalase mimetics and also have an activity similar to that of mitochondrial electron transport complex I. To examine if this complex I-like activity functions in vivo, we studied the effects of Pt-nps on the lifespan of a mitochondrial complex I-deficient Caenorhabditis elegans mutant, nuo-1 (LB25) compared with wild-type N2. We synthesized a fusion protein of a cell-penetrating peptide, human immunodeficiency virus-1 TAT (48-60), C-terminally linked to a peptide with a high affinity to platinum (GRKKRRQRRRPPQ-DRTSTWR). Pt-nps were functionalized by conjugation with this fusion protein at a 1:1 ratio of TAT-PtBP to Pt atoms. Adult worms were treated with conjugated Pt-nps for 10 days. The mean lifespan of untreated N2 and LB25 was 19.6 ± 0.4 and 11.8 ± 0.3 days, respectively. Using 5 μM of conjugated Pt-nps, the lifespan of N2 and LB25 was maximally extended. This maximal lifespan extension of LB25 was 31.9 ± 2.6%, which was significantly greater than that of N2 (21.1 ± 1.7%, P < 0.05 by Student's t-test). Internalization of Pt into the whole body and mitochondria was similar between these two strains. Excessive accumulation of reactive oxygen species was not observed in the cytosol or mitochondria of untreated LB25. Treatment for five days with 5 μM conjugated Pt-nps decreased cytosolic and mitochondrial reactive oxygen species in N2 and LB25 to a similar extent. The ratio of [NAD(+)]/[NADH] was very low in the whole body and mitochondria of control LB25. After five days of treatment with 5 μM conjugated Pt-nps, the ratio of [NAD(+)]/[NADH] was increased in N2 and LB25. However, the degree of the increase was much higher in LB25 than in N2. Pt-nps function as NADH oxidase and recover the [NAD(+)]/[NADH] ratio in LB25, leading to effective extension of the lifespan of LB25.

  5. Trajectories and phenotypes with estrogen exposures across the lifespan: What does Goldilocks have to do with it?

    PubMed Central

    Koebele, Stephanie V.; Bimonte-Nelson, Heather A.

    2015-01-01

    Estrogens impact the organization and activation of the mammalian brain in both sexes, with sex-specific critical windows. Throughout the female lifespan estrogens activate brain substrates previously organized by estrogens, and estrogens can induce non-transient brain and behavior changes into adulthood. Therefore, from early life through the transition to reproductive senescence and beyond, estrogens are potent modulators of the brain and behavior. Organizational, reorganizational, and activational hormone events likely impact the trajectory of brain profiles during aging. A “brain profile,” or quantitative brain measurement for research purposes, is typically a snapshot in time, but in life a brain profile is anything but static – it is in flux, variable, and dynamic. Akin to this, the only thing continuous and consistent about hormone exposures across a female's lifespan is that they are noncontinuous and inconsistent, building and rebuilding on past exposures to create a present brain and behavioral landscape. Thus, hormone variation is especially rich in females, and is likely the destiny for maximal responsiveness in the female brain. The magnitude and direction of estrogenic effects on the brain and its functions depend on a myriad of factors; a “Goldilocks” phenomenon exists for estrogens, whereby if the timing, dose, and regimen for an individual are just right, markedly efficacious effects present. Data indicate that exogenously-administered estrogens can bestow beneficial cognitive effects in some circumstances, especially when initiated in a window of opportunity such as the menopause transition. Could it be that the age-related reduction in efficacy of estrogens reflects the closure of a late-in-life critical window occurring around the menopause transition? Information from classic and contemporary works studying organizational/activational estrogen actions, in combination with acknowledging the tendency for maximal responsiveness to

  6. Genetic links between post-reproductive lifespan and family size in Framingham

    PubMed Central

    Wang, Xiaofei; Byars, Sean G.; Stearns, Stephen C.

    2013-01-01

    Background and objectives: Is there a trade-off between children ever born (CEB) and post-reproductive lifespan in humans? Here, we report a comprehensive analysis of reproductive trade-offs in the Framingham Heart Study (FHS) dataset using phenotypic and genotypic correlations and a genome-wide association study (GWAS) to look for single-nucleotide polymorphisms (SNPs) that are related to the association between CEB and lifespan. Methodology: We calculated the phenotypic and genetic correlations of lifespan with CEB for men and women in the Framingham dataset, and then performed a GWAS to search for SNPs that might affect the relationship between post-reproductive lifespan and CEB. Results: We found significant negative phenotypic correlations between CEB and lifespan in both women (rP = −0.133, P < 0.001) and men (rP = −0. 079, P = 0.036). The genetic correlation was large, highly significant and strongly negative in women (rG = −0.877, P = 0.009) in a model without covariates, but not in men (P = 0.777). The GWAS identified five SNPs associated with the relationship between CEB and post-reproductive lifespan in women; some are near genes that have been linked to cancer. None were identified in men. Conclusions and implications: We identified several SNPs for which the relationship between CEB and post-reproductive lifespan differs by genotype in women in the FHS who were born between 1889 and 1958. That result was not robust to changes in the sample. Further studies on larger samples are needed to validate the antagonistic pleiotropy of these genes. PMID:24481203

  7. Foraging strategies in trees of different root morphology: the role of root lifespan.

    PubMed

    Adams, Thomas S; McCormack, M Luke; Eissenstat, David M

    2013-09-01

    Resource exploitation of patches is influenced not simply by the rate of root production in the patches but also by the lifespan of the roots inhabiting the patches. We examined the effect of sustained localized nitrogen (N) fertilization on root lifespan in four tree species that varied widely in root morphology and presumed foraging strategy. The study was conducted in a 12-year-old common garden in central Pennsylvania using a combination of data from minirhizotron and root in-growth cores. The two fine-root tree species, Acer negundo L. and Populus tremuloides Michx., exhibited significant increases in root lifespan with local N fertilization; no significant responses were observed in the two coarse-root tree species, Sassafras albidum Nutt. and Liriodendron tulipifera L. Across species, coarse-root tree species had longer median root lifespan than fine-root tree species. Localized N fertilization did not significantly increase the N concentration or the respiration of the roots growing in the N-rich patch. Our results suggest that some plant species appear to regulate the lifespan of different portions of their root system to improve resource acquisition while other species do not. Our results are discussed in the context of different strategies of foraging of nutrient patches in species of different root morphology.

  8. Why Lifespans Are More Variable Among Blacks Than Among Whites in the United States

    PubMed Central

    Acciai, Francesco; Noah, Aggie J.; Prather, Christopher; Nau, Claudia

    2014-01-01

    Lifespans are both shorter and more variable for blacks than for whites in the United States. Because their lifespans are more variable, there is greater inequality in length of life—and thus greater uncertainty about the future—among blacks. This study is the first to decompose the black-white difference in lifespan variability in America. Are lifespans more variable for blacks because they are more likely to die of causes that disproportionately strike the young and middle-aged, or because age at death varies more for blacks than for whites among those who succumb to the same cause? We find that it is primarily the latter. For almost all causes of death, age at death is more variable for blacks than it is for whites, especially among women. Although some youthful causes of death, such as homicide and HIV/AIDS, contribute to the black-white disparity in variance, those contributions are largely offset by the higher rates of suicide and drug poisoning deaths for whites. As a result, differences in the causes of death for blacks and whites account, on net, for only about one-eighth of the difference in lifespan variance. PMID:25391224

  9. High glucose diets shorten lifespan of Caenorhabditis elegans via ectopic apoptosis induction.

    PubMed

    Choi, Shin Sik

    2011-06-01

    Diets based on carbohydrates increase rapidly the blood glucose level due to the fast conversion of carbohydrates to glucose. High glucose diets have been known to induce many lifestyle diseases. Here, we demonstrated that high glucose diet shortened the lifespan of Caenorhabditis elegans through apoptosis induction. Control adult groups without glucose diet lived for 30 days, whereas animals fed 10 mg/L of D-glucose lived only for 20 days. The reduction of lifespan by glucose diet showed a dose-dependent profile in the concentration range of glucose from 1 to 20 mg/L. Aging effect of high glucose diet was examined by measurement of response time for locomotion after stimulating movement of the animals by touching. Glucose diet decreased the locomotion capacity of the animals during mid-adulthood. High glucose diets also induced ectopic apoptosis in the body of C. elegans, which is a potent mechanism that can explain the shortened lifespan and aging. Apoptotic cell corpses stained with SYTO 12 were found in the worms fed 10 mg/L of glucose. Mutation of core apoptotic regulatory genes, CED-3 and CED-4, inhibited the reduction of viability induced by high glucose diet, which indicates that these regulators were required for glucose-induced apoptosis or lifespan shortening. Thus, we conclude that high glucose diets have potential for inducing ectopic apoptosis in the body, resulting in a shortened lifespan accompanied with loss of locomotion capacity.

  10. HOW LONG WILL MY MOUSE LIVE? MACHINE LEARNING APPROACHES FOR PREDICTION OF MOUSE LIFESPAN

    PubMed Central

    Swindell, William R.; Harper, James M.; Miller, Richard A.

    2009-01-01

    Prediction of individual lifespan based upon characteristics evaluated at middle-age represents a challenging objective for aging research. In this study, we used machine learning algorithms to construct models that predict lifespan in a stock of genetically heterogeneous mice. Lifespan-prediction accuracy of 22 algorithms was evaluated using a cross-validation approach, in which models were trained and tested with distinct subsets of data. Using a combination of body weight and T-cell subset measures evaluated before two years of age, we show that the lifespan quartile to which an individual mouse belongs can be predicted with an accuracy of 35.3% (± 0.10%). This result provides a new benchmark for the development of lifespan-predictive models, but improvement can be expected through identification of new predictor variables and development of computational approaches. Future work in this direction can provide tools for aging research and will shed light on associations between phenotypic traits and longevity. PMID:18840793

  11. Alzheimer-related protein APL-1 modulates lifespan through heterochronic gene regulation in Caenorhabditis elegans.

    PubMed

    Ewald, Collin Y; Marfil, Vanessa; Li, Chris

    2016-08-24

    Alzheimer's disease (AD) is an age-associated disease. Mutations in the amyloid precursor protein (APP) may be causative or protective of AD. The presence of two functionally redundant APP-like genes (APLP1/2) has made it difficult to unravel the biological function of APP during aging. The nematode Caenorhabditis elegans contains a single APP family member, apl-1. Here, we assessed the function of APL-1 on C. elegans' lifespan and found tissue-specific effects on lifespan by overexpression of APL-1. Overexpression of APL-1 in neurons causes lifespan reduction, whereas overexpression of APL-1 in the hypodermis causes lifespan extension by repressing the function of the heterochronic transcription factor LIN-14 to preserve youthfulness. APL-1 lifespan extension also requires signaling through the FOXO transcription factor DAF-16, heat-shock factor HSF-1, and vitamin D-like nuclear hormone receptor DAF-12. We propose that reinforcing APL-1 expression in the hypodermis preserves the regulation of heterochronic lin-14 gene network to improve maintenance of somatic tissues via DAF-16/FOXO and HSF-1 to promote healthy aging. Our work reveals a mechanistic link of how a conserved APP-related protein modulates aging.

  12. High transcript levels of heat-shock genes are associated with shorter lifespan of Caenorhabditis elegans.

    PubMed

    Manière, X; Krisko, A; Pellay, F X; Di Meglio, J-M; Hersen, P; Matic, I

    2014-12-01

    Individual lifespans of isogenic organisms, such as Caenorhabditis elegans nematodes, fruit flies, and mice, vary greatly even under identical environmental conditions. To study the molecular mechanisms responsible for such variability, we used an assay based on the measurement of post-reproductive nematode movements stimulated by a moderate electric field. This assay allows for the separation of individual nematodes based on their speed. We show that this phenotype could be used as a biomarker for aging because it is a better predictor of lifespan than chronological age. Fast nematodes have longer lifespans, fewer protein carbonyls, higher heat-shock resistance, and higher transcript levels of the daf-16 and hsf-1 genes, which code for the stress response transcription factors, than slow nematodes. High transcript levels of the genes coding for heat-shock proteins observed in slow nematodes correlate with lower heat-shock resistance, more protein carbonyls, and shorter lifespan. Taken together, our data suggests that shorter lifespan results from early-life damage accumulation that causes subsequent faster age-related deterioration.

  13. Evolutionary genetics of lifespan and mortality rates in two populations of the seed beetle, Callosobruchus maculatus.

    PubMed

    Fox, C W; Bush, M L; Roff, D A; Wallin, W G

    2004-03-01

    The age at which individuals die varies substantially within and between species, but we still have little understanding of why there is such variation in life expectancy. We examined sex-specific and genetic variation in adult lifespan and the shape of mortality curves both within and between two populations of the seed beetle, Callosobruchus maculatus, that differ in a suite of life history characters associated with adaptation to different host species. Mean adult lifespan and the shape of the logistic mortality curves differed substantially between males and females (males had lower initial mortality rates, but a faster increase in the rate of mortality with increasing age) and between populations (they differed in the rate of increase in mortality with age). Larger individuals lived longer than smaller individuals, both because they had lower initial mortality rates and a slower increase in the rate of mortality with increasing age. However, differences in body size were not adequate to explain the differences in mortality between the sexes or populations. Both lifespan and mortality rates were genetically variable within populations and genetic variance/covariance matrices for lifespan differed between the populations and sexes. This study thus demonstrated substantial genetic variation in lifespan and mortality rates within and between populations of C. maculatus.

  14. Regional and longitudinal estimation of product lifespan distribution: a case study for automobiles and a simplified estimation method.

    PubMed

    Oguchi, Masahiro; Fuse, Masaaki

    2015-02-03

    Product lifespan estimates are important information for understanding progress toward sustainable consumption and estimating the stocks and end-of-life flows of products. Publications reported actual lifespan of products; however, quantitative data are still limited for many countries and years. This study presents regional and longitudinal estimation of lifespan distribution of consumer durables, taking passenger cars as an example, and proposes a simplified method for estimating product lifespan distribution. We estimated lifespan distribution parameters for 17 countries based on the age profile of in-use cars. Sensitivity analysis demonstrated that the shape parameter of the lifespan distribution can be replaced by a constant value for all the countries and years. This enabled a simplified estimation that does not require detailed data on the age profile. Applying the simplified method, we estimated the trend in average lifespans of passenger cars from 2000 to 2009 for 20 countries. Average lifespan differed greatly between countries (9-23 years) and was increasing in many countries. This suggests consumer behavior differs greatly among countries and has changed over time, even in developed countries. The results suggest that inappropriate assumptions of average lifespan may cause significant inaccuracy in estimating the stocks and end-of-life flows of products.

  15. Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway

    PubMed Central

    Donato, Verónica; Ayala, Facundo Rodríguez; Cogliati, Sebastián; Bauman, Carlos; Costa, Juan Gabriel; Leñini, Cecilia; Grau, Roberto

    2017-01-01

    Beneficial bacteria have been shown to affect host longevity, but the molecular mechanisms mediating such effects remain largely unclear. Here we show that formation of Bacillus subtilis biofilms increases Caenorhabditis elegans lifespan. Biofilm-proficient B. subtilis colonizes the C. elegans gut and extends worm lifespan more than biofilm-deficient isogenic strains. Two molecules produced by B. subtilis — the quorum-sensing pentapeptide CSF and nitric oxide (NO) — are sufficient to extend C. elegans longevity. When B. subtilis is cultured under biofilm-supporting conditions, the synthesis of NO and CSF is increased in comparison with their production under planktonic growth conditions. We further show that the prolongevity effect of B. subtilis biofilms depends on the DAF-2/DAF-16/HSF-1 signalling axis and the downregulation of the insulin-like signalling (ILS) pathway. PMID:28134244

  16. Development and validation of an analytical method based on high performance thin layer chromatography for the simultaneous determination of lamotrigine, zonisamide and levetiracetam in human plasma.

    PubMed

    Antonilli, Letizia; Brusadin, Valentina; Filipponi, Francesca; Guglielmi, Renzo; Nencini, Paolo

    2011-12-05

    Methods based on HPLC technology are the most frequently adopted for monitoring blood levels of novel antiepileptics. Here a rapid method based on HPTLC was developed for quantitative determination of lamotrigine (LTG), zonisamide (ZNS) and levetiracetam (LVT) in human plasma and compared with HPLC and LC-MS/MS methods. Chromatographic separation was achieved on silical gel 60F(254) plates using ethylacetate:methanol:ammonia (91:10:15v/v/v) as mobile phase. Quantitative analysis was carried out by densitometry at a wavelength of 312, 240 and 210nm for LTG, ZNS and LVT, respectively. Calibration curves were linear over range of 0-200ng for LTG and ZNS and 0-400ng for and LVT. The limit of quantification of LTG, ZNS and LTV was found to be 3.69, 3.7 and 6.85μg/ml, respectively. Intra and inter-assay precision provided relative standard deviations lower than 10% for all three analytes. Correlation and Bland-Altman plot showed general agreement between HPTLC and LC-MS/MS quantification, with a mean bias of -0.25, -0.46 and 0.5μg/ml for LTG ZNS and LVT, respectively. Likewise, comparison between HPLC-UV and LC-MS/MS showed good agreement for all the three compounds analyzed. In conclusion, the proposed HPTLC method is simple, rapid, precise and accurate. It therefore is appropriate for the routine quantification of therapeutic levels of LTG, ZNS and LVT in human plasma.

  17. Simultaneous HPLC-UV analysis of rufinamide, zonisamide, lamotrigine, oxcarbazepine monohydroxy derivative and felbamate in deproteinized plasma of patients with epilepsy.

    PubMed

    Contin, Manuela; Mohamed, Susan; Candela, Carmina; Albani, Fiorenzo; Riva, Roberto; Baruzzi, Agostino

    2010-02-01

    We present an implementation of a method we previously reported allowing the newer antiepileptic drugs (AEDs) rufinamide (RFN) and zonisamide (ZNS) to be simultaneously determined with lamotrigine (LTG), oxcarbazepine's (OXC) main active metabolite monohydroxycarbamazepine (MHD) and felbamate (FBM) in plasma of patients with epilepsy using high performance liquid chromatography (HPLC) with UV detection. Plasma samples (250 microL) were deproteinized by 1 mL acetonitrile spiked with citalopram as internal standard (I.S.). HPLC analysis was carried out on a Synergi 4 microm Hydro-RP, 250 mm x 4.6 mm I.D. column. The mobile phase was a mixture of potassium dihydrogen phosphate buffer (50 mM, pH 4.5), acetonitrile and methanol (65:26.2:8.8, v/v/v) at an isocratic flow rate of 0.8 mL/min. The UV detector was set at 210 nm. The chromatographic run lasted 19 min. Commonly coprescribed AEDs did not interfere with the assay. Calibration curves were linear for both AEDs over a range of 2-40 microg/mL for RFN and 2-80 microg/mL for ZNS. The limit of quantitation was 2 microg/mL for both analytes and the absolute recovery ranged from 97% to 103% for RFN, ZNS and the I.S. Intra- and interassay precision and accuracy were lower than 10% at all tested concentrations. The present study describes the first simple and validated method for RFN determination in plasma of patients with epilepsy. By grouping different new AEDs in the same assay the method can be advantageous for therapeutic drug monitoring (TDM).

  18. Age-dependent changes in mitochondrial morphology and volume are not predictors of lifespan.

    PubMed

    Regmi, Saroj G; Rolland, Stéphane G; Conradt, Barbara

    2014-02-01

    Mitochondrial dysfunction is a hallmark of skeletal muscle degeneration during aging. One mechanism through which mitochondrial dysfunction can be caused is through changes in mitochondrial morphology. To determine the role of mitochondrial morphology changes in age-dependent mitochondrial dysfunction, we studied mitochondrial morphology in body wall muscles of the nematodeC. elegans. We found that in this tissue, animals display a tubular mitochondrial network, which fragments with increasing age. This fragmentation is accompanied by a decrease in mitochondrial volume. Mitochondrial fragmentation and volume loss occur faster under conditions that shorten lifespan and occur slower under conditions that increase lifespan. However, neither mitochondrial morphology nor mitochondrial volume of five- and seven-day old wild-type animals can be used to predict individual lifespan. Our results indicate that while mitochondria in body wall muscles undergo age-dependent fragmentation and a loss in volume, these changes are not the cause of aging but rather a consequence of the aging process.

  19. A Modified Carbon Monoxide Breath Test for Measuring Erythrocyte Lifespan in Small Animals

    PubMed Central

    Ma, Yong-Jian; Zhang, Hou-De; Ji, Yong-Qiang; Zhu, Guo-Liang; Huang, Jia-Liang; Du, Li-Tao; Cao, Ping; Zang, De-Yue; Du, Ji-Hui; Li, Rong; Wang, Lei

    2016-01-01

    This study was to develop a CO breath test for RBC lifespan estimation of small animals. The ribavirin induced hemolysis rabbit models were placed individually in a closed rebreath cage and air samples were collected for measurement of CO concentration. RBC lifespan was calculated from accumulated CO, blood volume, and hemoglobin concentration data. RBC lifespan was determined in the same animals with the standard biotin-labeling method. RBC lifespan data obtained by the CO breath test method for control (CON, 49.0 ± 5.9 d) rabbits, rabbits given 10 mg/kg·d−1 of ribavirin (RIB10, 31.0 ± 4.0 d), and rabbits given 20 mg/kg·d−1 of ribavirin (RIB20, 25.0 ± 2.9 d) were statistically similar (all p > 0.05) to and linearly correlated (r = 0.96, p < 0.01) with the RBC lifespan data obtained for the same rabbits by the standard biotin-labeling method (CON, 51.0 ± 2.7 d; RIB10, 33.0 ± 1.3 d; and RIB20, 27.0 ± 0.8 d). The CO breath test method takes less than 3 h to complete, whereas the standard method requires at least several weeks. In conclusion, the CO breath test method provides a simple and rapid means of estimating RBC lifespan and is feasible for use with small animal models. PMID:27294128

  20. Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila.

    PubMed

    Sanz, Alberto; Fernández-Ayala, Daniel J M; Stefanatos, Rhoda Ka; Jacobs, Howard T

    2010-04-01

    The Mitochondrial Free Radical Theory of Aging (MFRTA) is currently one of the most widely accepted theories used to explain aging. From MFRTA three basic predictions can be made: long-lived individuals or species should produce fewer mitochondrial Reactive Oxygen Species (mtROS) than short-lived individuals or species; a decrease in mtROS production will increase lifespan; and an increase in mtROS production will decrease lifespan. It is possible to add a further fourth prediction: if ROS is controlling longevity separating these parameters through selection would be impossible. These predictions have been tested in Drosophila melanogaster. Firstly, we studied levels of mtROS production and lifespan of three wild-type strains of Drosophila, Oregon R, Canton S and Dahomey. Oregon R flies live the longest and produce significantly fewer mtROS than both Canton S and Dahomey. These results are therefore in accordance with the first prediction. A new transgenic Drosophila model expressing the Ciona intestinalis Alternative Oxidase (AOX) was used to test the second prediction. In fungi and plants, AOX expression regulates both free radical production and lifespan. In Drosophila, AOX expression decreases mtROS production, but does not increase lifespan. This result contradicts the second prediction of MFRTA. The third prediction was tested in flies mutant for the gene dj-1beta. These flies are characterized by an age-associated decline in locomotor function and increased levels of mtROS production. Nevertheless, dj-1beta mutant flies do not display decreased lifespan, which again is in contradiction with MFRTA. In our final experiment we utilized flies with DAH mitochondrial DNA in an OR nuclear background, and OR mitochondrial DNA in DAH nuclear background. From this, Mitochondrial DNA does not control free radical production, but it does determine longevity of females independently of mtROS production. In summary, these results do not systematically support the

  1. Life-span plasticity of the brain and cognition: from questions to evidence and back.

    PubMed

    Raz, Naftali; Lindenberger, Ulman

    2013-11-01

    Experience-related changes induced by modification of environment, physical exercise, or cognitive training affect brain structure and function. Research on brain plasticity and its relationship to experiential changes gathers momentum and attracts significant public interest. This collection of papers is based on presentation at the First International Conference on Life-Span Plasticity of Brain and Behavior: A Cognitive Neuroscience Perspective that took place in Detroit, MI, on October 12-14, 2011. The conference honored Margret M. and Paul B. Baltes, the pioneers of life-span developmental psychology who initiated some of the first studies on experience- and training-related changes in cognition across the life span.

  2. Metabolic adaptations to methionine restriction that benefit health and lifespan in rodents.

    PubMed

    Perrone, Carmen E; Malloy, Virginia L; Orentreich, David S; Orentreich, Norman

    2013-07-01

    Restriction of dietary methionine by 80% slows the progression of aged-related diseases and prolongs lifespan in rodents. A salient feature of the methionine restriction phenotype is the significant reduction of adipose tissue mass, which is associated with improvement of insulin sensitivity. These beneficial effects of MR involve a host of metabolic adaptations leading to increased mitochondrial biogenesis and function, elevated energy expenditure, changes of lipid and carbohydrate homeostasis, and decreased oxidative damage and inflammation. This review summarizes observations from MR studies and provides insight about potential mediators of tissue-specific responses associated with MR's favorable metabolic effects that contribute to health and lifespan extension.

  3. The Impact of Endometriosis across the Lifespan of Women: Foreseeable Research and Therapeutic Prospects

    PubMed Central

    Hughes, C. L.; Foster, W. G.

    2015-01-01

    In addition to estrogen dependence, endometriosis is characterized by chronic pelvic inflammation. The impact of the chronic pelvic inflammatory state on other organ systems and women's health is unclear. Endometriosis associated chronic inflammation and potential adverse health effects across the lifespan render it imperative for renewed research vigor into the identification of novel biomarkers of disease and therapeutic options. Herein we propose a number of opportunities for research and development of new therapeutics to address the unmet needs in the treatment of endometriosis per se and its ancillary risks for other diseases in women across the lifespan. PMID:26064879

  4. Interaction of temperature and an environmental stressor: Moina macrocopa responds with increased body size, increased lifespan, and increased offspring numbers slightly above its temperature optimum.

    PubMed

    Engert, Antonia; Chakrabarti, Shumon; Saul, Nadine; Bittner, Michal; Menzel, Ralph; Steinberg, Christian E W

    2013-02-01

    For organisms, temperature is one of the most important environmental factors and gains increasing importance due to global warming, since increasing temperatures may pose organisms close to their environmental tolerance limits and, thus, they may become more vulnerable to environmental stressors. We analyzed the temperature-dependence of the water-soluble antioxidant capacity of the cladoceran Moina macrocopa and evaluated its life trait variables with temperature (15, 20, 25, 30°C) and humic substance (HS) concentrations (0, 0.18, 0.36, 0.90, 1.79 mM DOC) as stressors. Temperatures below and above the apparent optimum (20°C) reduced the antioxidative capacity. Additions of HSs increased body length, but decreased mean lifespan at 15 and 20°C. There was no clear HS-effect on offspring numbers at 15, 20, and 30°C. At 25°C with increasing HS-concentration, lifespan was extended and offspring numbers increased tremendously, reaching 250% of the control. Although the applied HS preparation possesses estrogenic and antiandrogenic activities, a xenohormone mechanism does not seem plausible for the reproductive increase, because comparable effects did not occur at other temperatures. A more convincing explanation appears to be the mitohormesis hypothesis which states that a certain increase of reactive oxygen production leads to improved health and longevity and, with Moina, also to increased offspring numbers. Our results suggest that at least with the eurythermic M. macrocopa, a temperature above the optimum can be beneficial for several life trait variables, even when combined with a chemical stressor. Temperatures approximately 10°C above its optimum appear to adversely affect the lifespan and reproduction of M. macrocopa. This indicates that this cladoceran species seems to be able to utilize temperature as an ecological resource in a range slightly above its thermal optimum.

  5. Modelling impacts of performance on the probability of reproducing, and thereby on productive lifespan, allow prediction of lifetime efficiency in dairy cows.

    PubMed

    Phuong, H N; Blavy, P; Martin, O; Schmidely, P; Friggens, N C

    2016-01-01

    Reproductive success is a key component of lifetime efficiency - which is the ratio of energy in milk (MJ) to energy intake (MJ) over the lifespan, of cows. At the animal level, breeding and feeding management can substantially impact milk yield, body condition and energy balance of cows, which are known as major contributors to reproductive failure in dairy cattle. This study extended an existing lifetime performance model to incorporate the impacts that performance changes due to changing breeding and feeding strategies have on the probability of reproducing and thereby on the productive lifespan, and thus allow the prediction of a cow's lifetime efficiency. The model is dynamic and stochastic, with an individual cow being the unit modelled and one day being the unit of time. To evaluate the model, data from a French study including Holstein and Normande cows fed high-concentrate diets and data from a Scottish study including Holstein cows selected for high and average genetic merit for fat plus protein that were fed high- v. low-concentrate diets were used. Generally, the model consistently simulated productive and reproductive performance of various genotypes of cows across feeding systems. In the French data, the model adequately simulated the reproductive performance of Holsteins but significantly under-predicted that of Normande cows. In the Scottish data, conception to first service was comparably simulated, whereas interval traits were slightly under-predicted. Selection for greater milk production impaired the reproductive performance and lifespan but not lifetime efficiency. The definition of lifetime efficiency used in this model did not include associated costs or herd-level effects. Further works should include such economic indicators to allow more accurate simulation of lifetime profitability in different production scenarios.

  6. Evolution of product lifespan and implications for environmental assessment and management: a case study of personal computers in higher education.

    PubMed

    Babbitt, Callie W; Kahhat, Ramzy; Williams, Eric; Babbitt, Gregory A

    2009-07-01

    Product lifespan is a fundamental variable in understanding the environmental impacts associated with the life cycle of products. Existing life cycle and materials flow studies of products, almost without exception, consider lifespan to be constant over time. To determine the validity of this assumption, this study provides an empirical documentation of the long-term evolution of personal computer lifespan, using a major U.S. university as a case study. Results indicate that over the period 1985-2000, computer lifespan (purchase to "disposal") decreased steadily from a mean of 10.7 years in 1985 to 5.5 years in 2000. The distribution of lifespan also evolved, becoming narrower over time. Overall, however, lifespan distribution was broader than normally considered in life cycle assessments or materials flow forecasts of electronic waste management for policy. We argue that these results suggest that at least for computers, the assumption of constant lifespan is problematic and that it is important to work toward understanding the dynamics of use patterns. We modify an age-structured model of population dynamics from biology as a modeling approach to describe product life cycles. Lastly, the purchase share and generation of obsolete computers from the higher education sector is estimated using different scenarios for the dynamics of product lifespan.

  7. Sex-specific effects of protein and carbohydrate intake on reproduction but not lifespan in Drosophila melanogaster.

    PubMed

    Jensen, Kim; McClure, Colin; Priest, Nicholas K; Hunt, John

    2015-08-01

    Modest dietary restriction extends lifespan (LS) in a diverse range of taxa and typically has a larger effect in females than males. Traditionally, this has been attributed to a stronger trade-off between LS and reproduction in females than in males that is mediated by the intake of calories. Recent studies, however, suggest that it is the intake of specific nutrients that extends LS and mediates this trade-off. Here, we used the geometric framework (GF) to examine the sex-specific effects of protein (P) and carbohydrate (C) intake on LS and reproduction in Drosophila melanogaster. We found that LS was maximized at a high intake of C and a low intake of P in both sexes, whereas nutrient intake had divergent effects on reproduction. Male offspring production rate and LS were maximized at the same intake of nutrients, whereas female egg production rate was maximized at a high intake of diets with a P:C ratio of 1:2. This resulted in larger differences in nutrient-dependent optima for LS and reproduction in females than in males, as well as an optimal intake of nutrients for lifetime reproduction that differed between the sexes. Under dietary choice, the sexes followed similar feeding trajectories regulated around a P:C ratio of 1:4. Consequently, neither sex reached their nutritional optimum for lifetime reproduction, suggesting intralocus sexual conflict over nutrient optimization. Our study shows clear sex differences in the nutritional requirements of reproduction in D. melanogaster and joins the growing list of studies challenging the role of caloric restriction in extending LS.

  8. Sex-specific effects of protein and carbohydrate intake on reproduction but not lifespan in Drosophila melanogaster

    PubMed Central

    Jensen, Kim; McClure, Colin; Priest, Nicholas K; Hunt, John

    2015-01-01

    Modest dietary restriction extends lifespan (LS) in a diverse range of taxa and typically has a larger effect in females than males. Traditionally, this has been attributed to a stronger trade-off between LS and reproduction in females than in males that is mediated by the intake of calories. Recent studies, however, suggest that it is the intake of specific nutrients that extends LS and mediates this trade-off. Here, we used the geometric framework (GF) to examine the sex-specific effects of protein (P) and carbohydrate (C) intake on LS and reproduction in Drosophila melanogaster. We found that LS was maximized at a high intake of C and a low intake of P in both sexes, whereas nutrient intake had divergent effects on reproduction. Male offspring production rate and LS were maximized at the same intake of nutrients, whereas female egg production rate was maximized at a high intake of diets with a P:C ratio of 1:2. This resulted in larger differences in nutrient-dependent optima for LS and reproduction in females than in males, as well as an optimal intake of nutrients for lifetime reproduction that differed between the sexes. Under dietary choice, the sexes followed similar feeding trajectories regulated around a P:C ratio of 1:4. Consequently, neither sex reached their nutritional optimum for lifetime reproduction, suggesting intralocus sexual conflict over nutrient optimization. Our study shows clear sex differences in the nutritional requirements of reproduction in D. melanogaster and joins the growing list of studies challenging the role of caloric restriction in extending LS. PMID:25808180

  9. Effects of carbamazepine, phenytoin, valproic acid, oxcarbazepine, lamotrigine, topiramate and vinpocetine on the presynaptic Ca2+ channel-mediated release of [3H]glutamate: comparison with the Na+ channel-mediated release.

    PubMed

    Sitges, María; Guarneros, Araceli; Nekrassov, Vladimir

    2007-12-01

    The effect of carbamazepine, phenytoin, valproate, oxcarbazepine, lamotrigine and topiramate, that are among the most widely used antiepileptic drugs (AEDs), and of the new putative AED vinpocetine on the Ca(2+) channel-mediated release of [(3)H]Glu evoked by high K(+) in hippocampal isolated nerve endings was investigated. Results show that carbamazepine, oxcarbazepine and phenytoin reduced [(3)H]Glu release to high K(+) to about 30% and 55% at concentrations of 500 microM and 1500 microM, respectively; lamotrigine and topiramate to about 27% at 1500 microM; while valproate failed to modify it. Vinpocetine was the most potent and effective; 50 microM vinpocetine practically abolished the high K(+) evoked release of [(3)H]Glu. Comparison of the inhibition exerted by the AEDs on [(3)H]Glu release evoked by high K(+) with the inhibition exerted by the AEDs on [(3)H]Glu release evoked by the Na(+) channel opener, veratridine, shows that all the AEDs are in general more effective blockers of the presynaptic Na(+) than of the presynaptic Ca(2+) channel-mediated response. The high doses of AEDs required to control seizures are frequently accompanied by adverse secondary effects. Therefore, the higher potency and efficacy of vinpocetine to reduce the permeability of presynaptic ionic channels controlling the release of the most important excitatory neurotransmitter in the brain must be advantageous in the treatment of epilepsy.

  10. Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil.

    PubMed

    Bauerle, T L; Richards, J H; Smart, D R; Eissenstat, D M

    2008-02-01

    Redistribution of water within plants could mitigate drought stress of roots in zones of low soil moisture. Plant internal redistribution of water from regions of high soil moisture to roots in dry soil occurs during periods of low evaporative demand. Using minirhizotrons, we observed similar lifespans of roots in wet and dry soil for the grapevine 'Merlot' (Vitis vinifera) on the rootstock 101-14 Millardet de Gramanet (Vitis riparia x Vitis rupestris) in a Napa County, California vineyard. We hypothesized that hydraulic redistribution would prevent an appreciable reduction in root water potential and would contribute to prolonged root survivorship in dry soil zones. In a greenhouse study that tested this hypothesis, grapevine root systems were divided using split pots and were grown for 6 months. With thermocouple psychrometers, we measured water potentials of roots of the same plant in both wet and dry soil under three treatments: control (C), 24 h light + supplemental water (LW) and 24 h light only (L). Similar to the field results, roots in the dry side of split pots had similar survivorship as roots in the wet side of the split pots (P = 0.136) in the C treatment. In contrast, reduced root survivorship was directly associated with plants in which hydraulic redistribution was experimentally reduced by 24 h light. Dry-side roots of plants in the LW treatment lived half as long as the roots in the wet soil despite being provided with supplemental water (P < 0.0004). Additionally, pre-dawn water potentials of roots in dry soil under 24 h of illumination (L and LW) exhibited values nearly twice as negative as those of C plants (P = 0.034). Estimates of root membrane integrity using electrolyte leakage were consistent with patterns of root survivorship. Plants in which nocturnal hydraulic redistribution was reduced exhibited more than twice the amount of electrolyte leakage in dry roots compared to those in wet soil of the same plant. Our study demonstrates that

  11. A Neuromedin U Receptor Acts with the Sensory System to Modulate Food Type-Dependent Effects on C. elegans Lifespan

    PubMed Central

    Regenass, Martin; Alcedo, Joy

    2010-01-01

    The type of food source has previously been shown to be as important as the level of food intake in influencing lifespan. Here we report that different Escherichia coli food sources alter Caenorhabditis elegans lifespan. These effects are modulated by different subsets of sensory neurons, which act with nmur-1, a homolog of mammalian neuromedin U receptors. Wild-type nmur-1, which is expressed in the somatic gonad, sensory neurons, and interneurons, shortens lifespan only on specific E. coli food sources—an effect that is dependent on the type of E. coli lipopolysaccharide structure. Moreover, the food type-dependent effect of nmur-1 on lifespan is different from that of food-level restriction. Together our data suggest that nmur-1 processes information from specific food cues to influence lifespan and other aspects of physiology. PMID:20520844

  12. Life-Span Extension by Caloric Restriction Is Determined by Type and Level of Food Reduction and by Reproductive Mode in Brachionus manjavacas (Rotifera)

    PubMed Central

    2013-01-01

    We measured life span and fecundity of three reproductive modes in a clone of the monogonont rotifer Brachionus manjavacas subjected to chronic caloric restriction (CCR) over a range of food concentrations or to intermittent fasting (IF). IF increased life span 50%–70% for all three modes, whereas CCR increased life span of asexual females derived from sexually or asexually produced eggs, but not that of sexual females. The main effect of CR on both asexual modes was to delay death at young ages, rather than to prevent death at middle ages or to greatly extend maximum life span; in contrast CR in sexual females greatly increased the life span of a few long-lived individuals. Lifetime fecundity did not decrease with CCR, suggesting a lack of resource allocation trade-off between somatic maintenance and reproduction. Multiple outcomes for a clonal lineage indicate that different responses are established through epigenetic programming, whereas differences in life-span allocations suggest that multiple genetic mechanisms mediate life-span extension. PMID:22904096

  13. Life-span extension by caloric restriction is determined by type and level of food reduction and by reproductive mode in Brachionus manjavacas (Rotifera).

    PubMed

    Gribble, Kristin E; Welch, David B Mark

    2013-04-01

    We measured life span and fecundity of three reproductive modes in a clone of the monogonont rotifer Brachionus manjavacas subjected to chronic caloric restriction (CCR) over a range of food concentrations or to intermittent fasting (IF). IF increased life span 50%-70% for all three modes, whereas CCR increased life span of asexual females derived from sexually or asexually produced eggs, but not that of sexual females. The main effect of CR on both asexual modes was to delay death at young ages, rather than to prevent death at middle ages or to greatly extend maximum life span; in contrast CR in sexual females greatly increased the life span of a few long-lived individuals. Lifetime fecundity did not decrease with CCR, suggesting a lack of resource allocation trade-off between somatic maintenance and reproduction. Multiple outcomes for a clonal lineage indicate that different responses are established through epigenetic programming, whereas differences in life-span allocations suggest that multiple genetic mechanisms mediate life-span extension.

  14. A role for Mfb1p in region-specific anchorage of high-functioning mitochondria and lifespan in Saccharomyces cerevisiae.

    PubMed

    Pernice, Wolfgang M; Vevea, Jason D; Pon, Liza A

    2016-02-03

    Previous studies indicate that replicative lifespan in daughter cells of Sacchraromyces cerevisiae depends on the preferential inheritance of young, high-functioning mitochondria. We report here that mitochondria are functionally segregated even within single mother cells in S. cerevisiae. A high-functioning population of mitochondria accumulates at the tip of the mother cell distal to the bud. We find that the mitochondrial F-box protein (Mfb1p) localizes to mitochondria in the mother tip and is required for mitochondrial anchorage at that site, independent of the previously identified anchorage protein Num1p. Deletion of MFB1 results in loss of the mother-tip-localized mitochondrial population, defects in mitochondrial function and premature replicative ageing. Inhibiting mitochondrial inheritance to buds, by deletion of MMR1, in mfb1Δ cells restores mitochondrial distribution, promotes mitochondrial function and extends replicative lifespan. Our results identify a mechanism that retains a reservoir of high-functioning mitochondria in mother cells and thereby preserves maternal reproductive capacity.

  15. Prospective memory across the lifespan: investigating the contribution of retrospective and prospective processes.

    PubMed

    Mattli, Florentina; Schnitzspahn, Katharina M; Studerus-Germann, Aline; Brehmer, Yvonne; Zöllig, Jacqueline

    2014-01-01

    Prospective memory performance follows an inverted U-shaped function across the lifespan. Findings on the relative contribution of purely prospective memory and retrospective memory processes within prospective memory to this trajectory are scarce and inconclusive. We analyzed age-related differences in prospective memory performance across the lifespan in a cross-sectional design including six age groups (N = 99, 7-83 years) and investigated possible mechanisms by experimentally disentangling the relative contributions of retrospective memory and purely prospective memory processes. Results confirmed the inverted U-shaped function of prospective memory performance across the lifespan. A significant interaction between process type and age group was observed indicating differential relative contributions of retrospective memory and purely prospective memory processes on the development of prospective memory performance. Our results showed that mainly the pure prospective memory processes within prospective memory lead to lower prospective memory performance in young children and old adults. Moreover, the relative contributions of the retrospective memory and purely prospective memory processes are not uniform at both ends of the lifespan, i.e., in later adulthood the purely prospective memory processes seem to determine performance to an even greater extent than in childhood. Nevertheless, age effects were also observed in the retrospective component which thus contributed to the prospective memory performance differences between the age groups.

  16. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes

    PubMed Central

    Shaposhnikov, Mikhail; Proshkina, Ekaterina; Shilova, Lyubov; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster. PMID:26477511

  17. Abilities and Competencies in Adulthood: Life-Span Perspectives on Workplace Skills.

    ERIC Educational Resources Information Center

    Smith, Jacqui; Marsiske, Michael

    This report presents a framework for considering general and work-related adult cognitive performance that is drawn from current theory and research on life-span developmental and cognitive psychology. The first section considers the concept of basic skills and the classical distinction between achievement and aptitude. By drawing linkages between…

  18. Complex Prospective Memory: Development across the Lifespan and the Role of Task Interruption

    ERIC Educational Resources Information Center

    Kliegel, Matthias; Mackinlay, Rachael; Jager, Theodor

    2008-01-01

    Prospective memory (PM) reflects the product of cognitive processes associated with the formation, retention, delayed initiation, and execution of intentions. It has been proposed that developmental changes in PM across the lifespan are heavily dependent upon the developmental trajectory of executive control functions. This study is the first to…

  19. Epigenetic Effects of Diet on Fruit Fly Lifespan: An Investigation to Teach Epigenetics to Biology Students

    ERIC Educational Resources Information Center

    Billingsley, James; Carlson, Kimberly A.

    2010-01-01

    Do our genes exclusively control us, or are other factors at play? Epigenetics can provide a means for students to use inquiry-based methods to understand a complex biological concept. Students research and design an experiment testing whether dietary supplements affect the lifespan of Drosophila melanogaster over multiple generations.

  20. Excessive folate synthesis limits lifespan in the C. elegans: E. coli aging model

    PubMed Central

    2012-01-01

    Background Gut microbes influence animal health and thus, are potential targets for interventions that slow aging. Live E. coli provides the nematode worm Caenorhabditis elegans with vital micronutrients, such as folates that cannot be synthesized by animals. However, the microbe also limits C. elegans lifespan. Understanding these interactions may shed light on how intestinal microbes influence mammalian aging. Results Serendipitously, we isolated an E. coli mutant that slows C. elegans aging. We identified the disrupted gene to be aroD, which is required to synthesize aromatic compounds in the microbe. Adding back aromatic compounds to the media revealed that the increased C. elegans lifespan was caused by decreased availability of para-aminobenzoic acid, a precursor to folate. Consistent with this result, inhibition of folate synthesis by sulfamethoxazole, a sulfonamide, led to a dose-dependent increase in C. elegans lifespan. As expected, these treatments caused a decrease in bacterial and worm folate levels, as measured by mass spectrometry of intact folates. The folate cycle is essential for cellular biosynthesis. However, bacterial proliferation and C. elegans growth and reproduction were unaffected under the conditions that increased lifespan. Conclusions In this animal:microbe system, folates are in excess of that required for biosynthesis. This study suggests that microbial folate synthesis is a pharmacologically accessible target to slow animal aging without detrimental effects. PMID:22849329

  1. Effects of a Short Strategy Training on Metacognitive Monitoring across the Life-Span

    ERIC Educational Resources Information Center

    von der Linden, Nicole; Löffler, Elisabeth; Schneider, Wolfgang

    2015-01-01

    The present study was conducted to explore the potential positive influence of a short strategy training on metacognitive monitoring competencies covering a life-span approach. Participants of four age groups (3rd-grade children, adolescents, younger and older adults) concluded a paired-associate learning task. Additionally, they gave delayed…

  2. Differences in Binding and Monitoring Mechanisms Contribute to Lifespan Age Differences in False Memory

    ERIC Educational Resources Information Center

    Fandakova, Yana; Shing, Yee Lee; Lindenberger, Ulman

    2013-01-01

    Based on a 2-component framework of episodic memory development across the lifespan (Shing & Lindenberger, 2011), we examined the contribution of memory-related binding and monitoring processes to false memory susceptibility in childhood and old age. We administered a repeated continuous recognition task to children (N = 20, 10-12 years),…

  3. Sexuality and Developmental Disability: Obstacles to Healthy Sexuality throughout the Lifespan

    ERIC Educational Resources Information Center

    Richards, Deborah; Miodrag, Nancy; Watson, Shelley L.

    2006-01-01

    This paper presents a lifespan perspective of sexuality issues for individuals with developmental disabilities. Individuals with developmental disabilities are human beings who have historically been denied the right to express their sexuality or engage in sexual relationships due to misconceptions or negative attitudes. Using a hypothetical case…

  4. Genetic and Environmental Stability in Attention Problems across the Lifespan: Evidence from the Netherlands Twin Register

    ERIC Educational Resources Information Center

    Kan, Kees-Jan; Dolan, Conor V.; Nivard, Michel G.; Middeldorp, Christel M.; van Beijsterveldt, Catharina E. M.; Willemsen, Gonneke; Boomsma, Dorret I.

    2013-01-01

    Objective: To review findings on attention-deficit/hyperactivity disorder and attention problems (AP) in children, adolescents, and adults, as established in the database of the Netherlands Twin Register and increase the understanding of stability in AP across the lifespan as a function of genetic and environmental influences. Method: A…

  5. Aging and orthopedics: how a lifespan development model can inform practice and research

    PubMed Central

    Gautreau, Sylvia; Gould, Odette N.; Forsythe, Michael E.

    2016-01-01

    Orthopedic surgical care, like all health care today, is in flux owing to an aging population and to chronic medical conditions leading to an increased number of people with illnesses that need to be managed over the lifespan. The result is an ongoing shift from curing acute illnesses to the management and care of chronic illness and conditions. Theoretical models that provide a useful and feasible vision for the future of health care and health care research are needed. This review discusses how the lifespan development model used in some disciplines within the behavioural sciences can be seen as an extension of the biopsychosocial model. We posit that the lifespan development model provides useful perspectives for both orthopedic care and research. We present key concepts and recommendations, and we discuss how the lifespan development model can contribute to new and evolving perspectives on orthopedic outcomes and to new directions for research. We also offer practical guidelines on how to implement the model in orthopedic practice. PMID:27240129

  6. Perceptions of Love across the Lifespan: Differences in Passion, Intimacy, and Commitment

    ERIC Educational Resources Information Center

    Sumter, Sindy R.; Valkenburg, Patti M.; Peter, Jochen

    2013-01-01

    This study investigated perceptions of love across the lifespan using Sternberg's triangular theory of love, which distinguishes between passion, intimacy, and commitment. The study aimed to (a) investigate the psychometric properties of the short Triangular Love Scale (TLS-short) in adolescents and adults (see Appendix), and (b) track age and…

  7. Career Adaptability: An Integrative Construct for Life-Span, Life-Space Theory.

    ERIC Educational Resources Information Center

    Savickas, Mark L.

    1997-01-01

    Examines the origin and current status of lifespan, life-space theory and proposes one way in which to integrate its three segments. Discusses a functionalist strategy for theory construction and the outcomes and consequences of this strategy. Discusses future directions for theory development, such as career adaptability and planful attitudes.…

  8. Acetyl-CoA synthetase is a conserved regulator of autophagy and lifespan

    PubMed Central

    Mirzaei, Hamed; Longo, Valter D.

    2014-01-01

    Autophagy is essential for the maintenance of cellular homeostasis during periods of stress. Eisenberg and colleagues (Eisenberg et al., 2014) now describe the central and conserved role for acetyl-CoA synthetase in regulating lifespan in yeast and flies by a mechanism involving autophagy. PMID:24703691

  9. The Impact of Drug Use on Earnings: A Life-Span Perspective.

    ERIC Educational Resources Information Center

    Kandel, Denise; And Others

    1995-01-01

    Among a longitudinal cohort of 400 employed males, illicit drug use had a positive impact on wages up to age 28-29 and a negative impact by the mid-30s. A life-span perspective emphasizes differential short- and long-term impacts of education, training, and job changes on users' and nonusers' incomes. Contains 57 references. (Author/SV)

  10. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan

    PubMed Central

    McCright, Sam J.; Kumar, Dinesh B. Uthaya; Collet, Magalie A.; Mowel, Walter K.; Elliott, Ellen N.; Uyar, Asli; Makiya, Michelle A.; Dunagin, Margaret C.; Harman, Christian C.D.; Virtue, Anthony T.; Zhu, Stella; Bailis, Will; Stein, Judith; Hughes, Cynthia; Raj, Arjun; Wherry, E. John; Goff, Loyal A.; Klion, Amy D.; Rinn, John L.; Williams, Adam; Flavell, Richard A.; Henao-Mejia, Jorge

    2016-01-01

    Summary Neutrophils, eosinophils and “classical” monocytes collectively account for ~70% of human blood leukocytes and are among the shortest-lived cells in the body1,2. Precise regulation of the lifespan of these myeloid cells is critical to maintain protective immune responses while minimizing the deleterious consequences of prolonged inflammation1,2. However, how the lifespan of these cells is strictly controlled remains largely unknown. Here, we identify a novel long non-coding RNA (lncRNA) that we termed Morrbid, which tightly controls the survival of neutrophils, eosinophils and “classical” monocytes in response to pro-survival cytokines. To control the lifespan of these cells, Morrbid regulates the transcription of its neighboring pro-apoptotic gene, Bcl2l11 (Bim), by promoting the enrichment of the PRC2 complex at the Bcl2l11 promoter to maintain this gene in a poised state. Notably, Morrbid regulates this process in cis, enabling allele-specific control of Bcl2l11 transcription. Thus, in these highly inflammatory cells, changes in Morrbid levels provide a locus-specific regulatory mechanism that allows for rapid control of apoptosis in response to extracellular pro-survival signals. As MORRBID is present in humans and dysregulated in patients with hypereosinophilic syndrome, this lncRNA may represent a potential therapeutic target for inflammatory disorders characterized by aberrant short-lived myeloid cell lifespan. PMID:27525555

  11. Levels and location are crucial in determining the effect of ROS on lifespan.

    PubMed

    Van Raamsdonk, Jeremy Michael

    2015-01-01

    Reactive oxygen species (ROS) cause molecular damage that accumulates with age and have been proposed to be one of the primary causes of aging. However, recent work indicates that ROS have beneficial roles in an organism and that the relationship between ROS and aging is complex. We have shown that increasing ROS levels or oxidative damage does not necessarily lead to decreased lifespan. We have also shown that in some cases increasing ROS can promote longevity. Further investigation of the factors that determine the effect of ROS on lifespan demonstrate that both the levels and location of ROS are important in predicting the impact of ROS on longevity. Increasing superoxide levels in the cytoplasm results in decreased lifespan, while increasing superoxide levels in the mitochondria leads to increased lifespan. Within the mitochondria, mild elevation of superoxide levels promote longevity, while high levels of superoxide are toxic. Thus, a new paradigm is emerging in which ROS are neither good nor bad but levels and location makes it so.

  12. Logic and Belief across the Lifespan: The Rise and Fall of Belief Inhibition during Syllogistic Reasoning

    ERIC Educational Resources Information Center

    De Neys, Wim; Van Gelder, Elke

    2009-01-01

    Popular reasoning theories postulate that the ability to inhibit inappropriate beliefs lies at the heart of the human reasoning engine. Given that people's inhibitory capacities are known to rise and fall across the lifespan, we predicted that people's deductive reasoning performance would show similar curvilinear age trends. A group of children…

  13. Lifespan metabolic potential of the unicellular organisms expressed by Boltzmann constant, absolute temperature and proton mass

    NASA Astrophysics Data System (ADS)

    Atanasov, Atanas Todorov

    2016-12-01

    The unicellular organisms and phages are the first appeared fundamental living organisms on the Earth. The total metabolic energy (Els, J) of these organisms can be expressed by their lifespan metabolic potential (Als, J/kg) and body mass (M, kg): Els =Als M. In this study we found a different expression - by Boltzmann's constant (k, J/K), nucleon mass (mp+, kg) of protons (and neutrons), body mass (M, kg) of organism or mass (Ms) of biomolecules (proteins, nucleotides, polysaccharides and lipids) building organism, and the absolute temperature (T, K). The found equations are: Els= (M/mp+)kT for phages and Els=(Ms/mp+)kT for the unicellular organisms. From these equations the lifespan metabolic potential can be expressed as: Als=Els/M= (k/mp+)T for phages and Als=Els/M= (k/3.3mp+)T for unicellular organisms. The temperature-normated lifespan metabolic potential (Als/T, J/K.kg) is equals to the ratio between Boltzmann's constant and nucleon mass: Als/T=k/mp+ for phages and Als/T=k/3.3mp+ for unicellular organisms. The numerical value of the k/mp+ ratio is equals to 8.254×103 J/K.kg, and the numerical value of k/3.3mp+ ratio is equal to 2.497×103 J/K.kg. These values of temperature-normated lifespan metabolic potential could be considered fundamental for the unicellular organisms.

  14. A New Model for Scaling from Leaf Lifespan to Conifer Forest Structure and Function

    NASA Astrophysics Data System (ADS)

    Osborne, C. P.; Beerling, D. J.

    2002-12-01

    Generic relationships between the lifespan, physiology and biochemistry of leaves have recently been quantified for the first time in contrasting biomes and functional groups. These relationships have important consequences for ecosystem biogeochemical cycles, and therefore offer the potential for simulating large-scale forest properties on the basis of leaf lifespan. We have used the scaling mechanisms involved to develop the University of Sheffield Conifer Model (USCM), a tool for simulating conifer carbon, nitrogen, and water fluxes using data on leaf lifespan, climate and soils as inputs. Simulations of net primary production and partitioning, leaf area index, evapotranspiration, nitrogen uptake and land surface energy partitioning show close agreement with observations from sites across a wide climatic gradient. This indicates the generic utility of our model for modern forests, and adequate representation of the key processes involved in forest function. The new development of a technique for estimating leaf lifespan from the anatomical properties of fossil woods provides a secure basis for extrapolating model simulations to conifer forests of the geological past. Future simulations with our model will therefore examine conifer forest feedbacks on paleoclimate during warm intervals in the Mesozoic and early Tertiary.

  15. Gender Separation Increases Somatic Growth in Females but Does Not Affect Lifespan in Nothobranchius furzeri

    PubMed Central

    Graf, Michael; Cellerino, Alessandro; Englert, Christoph

    2010-01-01

    According to life history theory, physiological and ecological traits and parameters influence an individual's life history and thus, ultimately, its lifespan. Mating and reproduction are costly activities, and in a variety of model organisms, a negative correlation of longevity and reproductive effort has been demonstrated. We are employing the annual killifish Nothobranchius furzeri as a vertebrate model for ageing. N. furzeri is the vertebrate displaying the shortest known lifespan in captivity with particular strains living only three to four months under optimal laboratory conditions. The animals show explosive growth, early sexual maturation and age-dependent physiological and behavioural decline. Here, we have used N. furzeri to investigate a potential reproduction-longevity trade-off in both sexes by means of gender separation. Though female reproductive effort and offspring investment were significantly reduced after separation, as investigated by analysis of clutch size, eggs in the ovaries and ovary mass, the energetic surplus was not reallocated towards somatic maintenance. In fact, a significant extension of lifespan could not be observed in either sex. This is despite the fact that separated females, but not males, grew significantly larger and heavier than the respective controls. Therefore, it remains elusive whether lifespan of an annual species evolved in periodically vanishing habitats can be prolonged on the cost of reproduction at all. PMID:20689818

  16. Qualitative Exploration of Acculturation and Life-Span Issues of Elderly Asian Americans

    ERIC Educational Resources Information Center

    Lee, Jee Hyang; Heo, Nanseol; Lu, Junfei; Portman, Tarrell Awe Agahe

    2013-01-01

    Awareness of aging issues across diverse populations begins the journey toward counselors becoming culturally competent across client life spans. Understanding the life-span experiences of cultural groups is important for helping professionals. The purpose of this research was to gain insight into the qualitative experiences of Asian American…

  17. Integrating the Life Course and Life-Span: Formulating Research Questions with Dual Points of Entry.

    ERIC Educational Resources Information Center

    Shanahan, Michael J.; Porfelli, Erik

    2002-01-01

    Life-span research typically begins with personal characteristics, life-course research with social context and roles. Using both points of entry will encourage interdisciplinary work as well as the study of person-context interactions. (Contains 30 references.) (SK)

  18. Myricetin-Mediated Lifespan Extension in Caenorhabditis elegans Is Modulated by DAF-16

    PubMed Central

    Büchter, Christian; Ackermann, Daniela; Havermann, Susannah; Honnen, Sebastian; Chovolou, Yvonni; Fritz, Gerhard; Kampkötter, Andreas; Wätjen, Wim

    2013-01-01

    Myricetin is a naturally occurring flavonol found in many plant based food sources. It increases the lifespan of Caenorhabditis elegans, but the molecular mechanisms are not yet fully understood. We have investigated the impact of this flavonoid on the transcription factors DAF-16 (C. elegans FoxO homologue) and SKN-1 (Nrf2 homologue), which have crucial functions in the regulation of ageing. Myricetin is rapidly assimilated by the nematode, causes a nuclear translocation of DAF-16 but not of SKN-1, and finally prolongs the mean adult lifespan of C. elegans by 32.9%. The lifespan prolongation was associated with a decrease in the accumulation of reactive oxygen species (ROS) detected by DCF. Myricetin also decreases the formation of lipofuscin, a pigment consisting of highly oxidized and cross-linked proteins that is considered as a biomarker of ageing in diverse species. The lifespan extension was completely abolished in a daf-16 loss-of-function mutant strain (CF1038). Consistently with this result, myricetin was also not able to diminish stress-induced ROS accumulation in the mutant. These results strongly indicate that the pro-longevity effect of myricetin is dependent on DAF-16 and not on direct anti-oxidative effects of the flavonoid. PMID:23736695

  19. Dyadic Drumming across the Lifespan Reveals a Zone of Proximal Development in Children

    ERIC Educational Resources Information Center

    Kleinspehn-Ammerlahn, Anna; Riediger, Michaela; Schmiedek, Florian; von Oertzen, Timo; Li, Shu-Chen; Lindenberger, Ulman

    2011-01-01

    Many social interactions require the synchronization--be it automatically or intentionally--of one's own behavior with that of others. Using a dyadic drumming paradigm, the authors delineate lifespan differences in interpersonal action synchronization (IAS). Younger children, older children, younger adults, and older adults in same- and mixed-age…

  20. Variation in ultraviolet radiation and diabetes: evidence of an epigenetic effect that modulates diabetics’ lifespan

    PubMed Central

    2013-01-01

    Background Published research has shown that month-of-birth variations modulate the incidence of adult human diseases. This article explores diabetes type 2 as one of those diseases. This study uses the death records of approximately 829,000 diabetics (approximately 90% were type-2) born before the year 1945 (and dying between 1979 and 2005) to show that variations in adult lifespan vary with ultraviolet radiation (UVR) at solar cycle peaks (MAX, approximately a three-year period) with less at non-peaks (MIN, approximately an eight-year period). The MAX minus MIN (in years) was our measure of sensitivity (for example, responsiveness) to long-term variations in UVR. Results Diabetics were less sensitive than non-diabetics, and ethnic minorities were more sensitive than whites. Diabetic males gained 6.1 years, and females 2.3 years over non-diabetics, with diabetic males gaining an average of 3.8 years over diabetic females. Most variation in lifespan occurred in those conceived around the seasonal equinoxes, suggesting that the human epigenome at conception is especially influenced by rapid variation in UVR. With rapidly decreasing UVR at conception, lifespan decreased in the better-nourished, white, female diabetic population. Conclusions Rapidly changing UVR at the equinoxes modulates the expression of an epigenome involving the conservation of energy, a mechanism especially canalized in women. Decreasing UVR at conception and early gestation stimulates energy conservation in persons we consider ‘diabetic’ in today’s environment of caloric surfeit. In the late 19th and early 20th centuries ethnic minorities had poorer nutrition, laborious work, and leaner bodies, and in that environment a calorie-conserving epigenome was a survival advantage. Ethnic minorities with a similar epigenome lived long enough to express diabetes as we define it today and exceeded the lifespan of their non-diabetic contemporaries, while that epigenome in diabetics in the nutritional

  1. Trends in Life Expectancy and Lifespan Variation by Educational Attainment: United States, 1990-2010.

    PubMed

    Sasson, Isaac

    2016-04-01

    The educational gradient in life expectancy is well documented in the United States and in other low-mortality countries. Highly educated Americans, on average, live longer than their low-educated counterparts, who have recently seen declines in adult life expectancy. However, limiting the discussion on lifespan inequality to mean differences alone overlooks other dimensions of inequality and particularly disparities in lifespan variation. The latter represents a unique form of inequality, with higher variation translating into greater uncertainty in the time of death from an individual standpoint, and higher group heterogeneity from a population perspective. Using data from the National Vital Statistics System from 1990 to 2010, this is the first study to document trends in both life expectancy and S25--the standard deviation of age at death above 25--by educational attainment. Among low-educated whites, adult life expectancy declined by 3.1 years for women and by 0.6 years for men. At the same time, S25 increased by about 1.5 years among high school-educated whites of both genders, becoming an increasingly important component of total lifespan inequality. By contrast, college-educated whites benefited from rising life expectancy and record low variation in age at death, consistent with the shifting mortality scenario. Among blacks, adult life expectancy increased, and S25 plateaued or declined in nearly all educational attainment groups, although blacks generally lagged behind whites of the same gender on both measures. Documenting trends in lifespan variation can therefore improve our understanding of lifespan inequality and point to diverging trajectories in adult mortality across socioeconomic strata.

  2. Lifespan and reproduction in brain-specific miR-29-knockdown mouse.

    PubMed

    Takeda, Toru; Tanabe, Hiroyuki

    2016-03-18

    The microRNA miR-29 is widely distributed and highly expressed in adult mouse brain during the mouse's lifetime. We recently created conditional mutant mice whose miR-29 was brain-specifically knocked down through overexpression of an antisense RNA transgene against miR-29. To explore a role for brain miR-29 in maximizing organismal fitness, we assessed somatic growth, reproduction, and lifespan in the miR-29-knockdown (KD) mice and their wild-type (WT) littermates. The KD mice were developmentally indistinguishable from WT mice with respect to gross morphology and physical activity. Fertility testing revealed that KD males were subfertile, whereas KD females were hyperfertile, only in terms of reproductive success, when compared to their gender-matched WT correspondents. Another phenotypic difference between KD and WT animals appeared in their lifespan data; KD males displayed an overall increasing tendency in post-reproductive survival relative to WT males. In contrast, KD females were prone to shorter lifespans than WT females. These results clarify that brain-targeted miR-29 knockdown affects both lifespan and reproduction in a gender-dependent manner, and moreover that the reciprocal responsiveness to the miR-29 knockdown between these two phenotypes in both genders closely follow life-course models based on the classical trade-off prediction wherein elaborate early-life energetic investment in reproduction entails accelerated late-life declines in survival, and vice versa. Thus, this study identified miR-29 as the first mammalian miRNA that is directly implicated in the lifetime trade-off between the two major fitness components, lifespan and reproduction.

  3. Adaptation of Drosophila melanogaster to Unfavorable Growth Medium Affects Lifespan and Age-Related Fecundity.

    PubMed

    Yakovleva, E U; Naimark, E B; Markov, A V

    2016-12-01

    Experimental adaptation of Drosophila melanogaster to nutrient-deficient starch-based (S) medium resulted in lifespan shortening, increased early-life fecundity, accelerated reproductive aging, and sexually dimorphic survival curves. The direction of all these evolutionary changes coincide with the direction of phenotypic plasticity observed in non-adapted flies cultured on S medium. High adult mortality rate caused by unfavorable growth medium apparently was the main factor of selection during the evolutionary experiment. The results are partially compatible with Williams' hypothesis, which states that increased mortality rate should result in relaxed selection against mutations that decrease fitness late in life, and thus promote the evolution of shorter lifespan and earlier reproduction. However, our results do not confirm Williams' prediction that the sex with higher mortality rate should undergo more rapid aging: lifespan shortening by S medium is more pronounced in naïve males than females, but it was female lifespan that decreased more in the course of adaptation. These data, as well as the results of testing of F1 hybrids between adapted and control lineages, are compatible with the idea that the genetic basis of longevity is different in the two sexes, and that evolutionary response to increased mortality rate depends on the degree to which the mortality is selective. Selective mortality can result in the development of longer (rather than shorter) lifespan in the course of evolution. The results also imply that antagonistic pleiotropy of alleles, which increase early-life fecundity at the cost of accelerated aging, played an important role in the evolutionary changes of females in the experimental lineage, while accumulation of deleterious mutations with late-life effects due to drift was more important in the evolution of male traits.

  4. Functional Extended Redundancy Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Suk, Hye Won; Lee, Jang-Han; Moskowitz, D. S.; Lim, Jooseop

    2012-01-01

    We propose a functional version of extended redundancy analysis that examines directional relationships among several sets of multivariate variables. As in extended redundancy analysis, the proposed method posits that a weighed composite of each set of exogenous variables influences a set of endogenous variables. It further considers endogenous…

  5. Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway

    PubMed Central

    Fang, Evandro F.; Waltz, Tyler B.; Kassahun, Henok; Lu, Qiping; Kerr, Jesse S.; Morevati, Marya; Fivenson, Elayne M.; Wollman, Bradley N.; Marosi, Krisztina; Wilson, Mark A.; Iser, Wendy B.; Eckley, D.