Science.gov

Sample records for lamp design atomic

  1. Atomic Oxygen Lamp Cleaning Facility Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Stueber, Thomas J.

    1999-01-01

    NASA Lewis Research Center's Atomic Oxygen Lamp Cleaning Facility was designed to produce an atomic oxygen plasma within a metal halide lamp to remove carbon-based contamination. It is believed that these contaminants contribute to the high failure rate realized during the production of these lamps. The facility is designed to evacuate a metal halide lamp and produce a radio frequency generated atomic oxygen plasma within it. Oxygen gas, with a purity of 0.9999 percent and in the pressure range of 150 to 250 mtorr, is used in the lamp for plasma generation while the lamp is being cleaned. After cleaning is complete, the lamp can be backfilled with 0.9999-percent pure nitrogen and torch sealed. The facility comprises various vacuum components connected to a radiation-shielded box that encloses the bulb during operation. Radiofrequency power is applied to the two parallel plates of a capacitor, which are on either side of the lamp. The vacuum pump used, a Leybold Trivac Type D4B, has a pumping speed of 4-m3/hr, has an ultimate pressure of <8x10-4, and is specially adapted for pure oxygen service. The electronic power supply, matching network, and controller (500-W, 13.56-MHz) used to supply the radiofrequency power were purchased from RF Power Products Inc. Initial test results revealed that this facility could remove the carbon-based contamination from within bulbs.

  2. Studies on Temperature Dependence of Rubidium Lamp for Atomic Frequency Standard

    NASA Astrophysics Data System (ADS)

    Ghosal, Bikash; Banik, Alak; Vats, Vaibhav; Pal, Sukamal; Bahl, R. K.

    2011-10-01

    Rb lamp is a very critical component of the Rb atomic clock's Physics Package. The Rb lamp's performance is very sensitive to temperature and its stability. In this paper we discuss the behaviors of Rb Lamp with temperature. The Rb lamp exciter power and temperature of Rb bulb are very important parameters in controlling the performance of the Rb Lamp. It is observed that at temperatures beyond 110° C, the lamp mode changes from the ring to red mode resulting in abnormal broadening of emission lines and self reversal. The results of our studies on spectral analysis of Rb lamp under various operating conditions are reported in the paper.

  3. Studies on Temperature Dependence of Rubidium Lamp for Atomic Frequency Standard

    SciTech Connect

    Ghosal, Bikash; Banik, Alak; Vats, Vaibhav; Pal, Sukamal; Bahl, R. K

    2011-10-20

    Rb lamp is a very critical component of the Rb atomic clock's Physics Package. The Rb lamp's performance is very sensitive to temperature and its stability. In this paper we discuss the behaviors of Rb Lamp with temperature. The Rb lamp exciter power and temperature of Rb bulb are very important parameters in controlling the performance of the Rb Lamp. It is observed that at temperatures beyond 110 deg. C, the lamp mode changes from the ring to red mode resulting in abnormal broadening of emission lines and self reversal. The results of our studies on spectral analysis of Rb lamp under various operating conditions are reported in the paper.

  4. Optics designs for an innovative LED lamp family system

    NASA Astrophysics Data System (ADS)

    Weiss, Herbert; Muschaweck, Julius; Hadrath, Stefan; Kudaev, Sergey

    2011-10-01

    On the general lighting market of LED lamps for professional applications there are still mainly products for single purpose solutions existing. There is a lack of standardised lamp systems like they are common for conventional lighting technologies. Therefore, an LED lamp family system was studied using high power LED with the objective to entirely substitute standard conventional lamp families in general lighting applications in the professional market segment. This comprises the realization of sets of lamp types with compact and linear shapes as well as with light distribution characteristics ranging from diffuse to extreme collimation and exceptionally high candle power. Innovative secondary optics concepts are discussed which allow both, the design of lamps with non-bulky shape and to obtain sufficient colour mixing when using multicolour LED combinations in order to achieve a very high colour rendering quality.

  5. Interior view, law library (note one of aluminum lamps designed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view, law library (note one of aluminum lamps designed by Jennwein is in the foreground; the murals were painted by Maurice Sterne) - United States Department of Justice, Constitution Avenue between Ninth & Tenth Streets, Northwest, Washington, District of Columbia, DC

  6. 30 CFR 20.14 - Instructions for handling future changes in lamp design.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... lamp design. 20.14 Section 20.14 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS § 20.14 Instructions for handling future changes in lamp design. All approvals are granted with...

  7. 30 CFR 20.14 - Instructions for handling future changes in lamp design.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... lamp design. 20.14 Section 20.14 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS § 20.14 Instructions for handling future changes in lamp design. All approvals are granted with...

  8. 30 CFR 20.14 - Instructions for handling future changes in lamp design.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lamp design. 20.14 Section 20.14 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS § 20.14 Instructions for handling future changes in lamp design. All approvals are granted with...

  9. 30 CFR 20.14 - Instructions for handling future changes in lamp design.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lamp design. 20.14 Section 20.14 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS § 20.14 Instructions for handling future changes in lamp design. All approvals are granted with...

  10. A novel solution for LED wall lamp design and simulation

    NASA Astrophysics Data System (ADS)

    Ge, Rui; Hong, Weibin; Li, Kuangqi; Liang, Pengxiang; Zhao, Fuli

    2014-11-01

    The model of the wall washer lamp and the practical illumination application have been established with a new design of the lens to meet the uniform illumination demand for wall washer lamp based on the Lambertian light sources. Our secondary optical design of freeform surface lens to LED wall washer lamp based on the conservation law of energy and Snell's law can improve the lighting effects as a uniform illumination. With the relationship between the surface of the lens and the surface of the target, a great number of discrete points of the freeform profile curve were obtained through the iterative method. After importing the data into our modeling program, the optical entity was obtained. Finally, to verify the feasibility of the algorithm, the model was simulated by specialized software, with both the LED Lambertian point source and LED panel source model.

  11. 30 CFR 19.13 - Instructions for handling future changes in lamp design.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lamp design. 19.13 Section 19.13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC CAP LAMPS § 19.13 Instructions for handling future changes in lamp design. All approvals are granted with the understanding that the...

  12. 30 CFR 19.13 - Instructions for handling future changes in lamp design.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... lamp design. 19.13 Section 19.13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC CAP LAMPS § 19.13 Instructions for handling future changes in lamp design. All approvals are granted with the understanding that the...

  13. 30 CFR 19.13 - Instructions for handling future changes in lamp design.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... lamp design. 19.13 Section 19.13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC CAP LAMPS § 19.13 Instructions for handling future changes in lamp design. All approvals are granted with the understanding that the...

  14. 30 CFR 19.13 - Instructions for handling future changes in lamp design.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lamp design. 19.13 Section 19.13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC CAP LAMPS § 19.13 Instructions for handling future changes in lamp design. All approvals are granted with the understanding that the...

  15. LAVA: an open-source approach to designing LAMP (loop-mediated isothermal amplification) DNA signatures.

    PubMed

    Torres, Clinton; Vitalis, Elizabeth A; Baker, Brian R; Gardner, Shea N; Torres, Marisa W; Dzenitis, John M

    2011-06-16

    We developed an extendable open-source Loop-mediated isothermal AMPlification (LAMP) signature design program called LAVA (LAMP Assay Versatile Analysis). LAVA was created in response to limitations of existing LAMP signature programs. LAVA identifies combinations of six primer regions for basic LAMP signatures, or combinations of eight primer regions for LAMP signatures with loop primers, which can be used as LAMP signatures. The identified primers are conserved among target organism sequences. Primer combinations are optimized based on lengths, melting temperatures, and spacing among primer sites. We compare LAMP signature candidates for Staphylococcus aureus created both by LAVA and by PrimerExplorer. We also include signatures from a sample run targeting all strains of Mycobacterium tuberculosis. We have designed and demonstrated new software for identifying signature candidates appropriate for LAMP assays. The software is available for download at http://lava-dna.googlecode.com/.

  16. LAVA: An Open-Source Approach To Designing LAMP (Loop-Mediated Isothermal Amplification) DNA Signatures

    PubMed Central

    2011-01-01

    Background We developed an extendable open-source Loop-mediated isothermal AMPlification (LAMP) signature design program called LAVA (LAMP Assay Versatile Analysis). LAVA was created in response to limitations of existing LAMP signature programs. Results LAVA identifies combinations of six primer regions for basic LAMP signatures, or combinations of eight primer regions for LAMP signatures with loop primers, which can be used as LAMP signatures. The identified primers are conserved among target organism sequences. Primer combinations are optimized based on lengths, melting temperatures, and spacing among primer sites. We compare LAMP signature candidates for Staphylococcus aureus created both by LAVA and by PrimerExplorer. We also include signatures from a sample run targeting all strains of Mycobacterium tuberculosis. Conclusions We have designed and demonstrated new software for identifying signature candidates appropriate for LAMP assays. The software is available for download at http://lava-dna.googlecode.com/. PMID:21679460

  17. Optical design of free-form bicycle lamp

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Cen, Zaofeng; Deng, Shitao; Wang, Jing

    2008-03-01

    Bicycle lamp used for road lighting is becoming popular now. However, few people have realized its potential market and correlative researches are far from enough. Generally speaking, researches on bicycle lamps are mostly focused on how to design a reflector which will collect light energy more efficiently and can transfer it to certain areas forward when the light source is determinated. In traditional angle of view, the reflector is usually a paraboloid or ellipsoid. However, both of them can not meet the requirement in practice most of the cases. Therefore, free form reflectors (FFRs) instead are widely used. In this paper, a new approach to design FFR which is convenient and rapid is presented. To do computer-aided simulation, certain light source should be selected first. Usually, light sources that behavior like a Lambertian emitter are modeled. To examine the correctness of this approach, a bicycle lamp is designed according to this approach to see if it can meet the requirements of the Germany standard which will be introduced in the text later. The standard requires specific illuminance values for particular points at the test screen with a distance of 10m from the source. The simulation results is exciting and can meet all the requirement. For example, 10lx is expected at the point (0, 0) while the obtained value is 10.42lx, under the conditions that the total luminous flux of the light source is 42lm and the reflectivity of FFR is 0.8. This method has certain universal significance and can provide references for the design of other illumination systems.

  18. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.

    PubMed

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-05-01

    In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52±0.4ppb of mercury in the vapor phase, 204.16±8.9ppb of mercury in the phosphor powder, and 18.74±0.5ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  19. A novel optimization strategy for LED street lamp designing

    NASA Astrophysics Data System (ADS)

    Dong, Yun; Cen, Zhaofeng; Li, Xiaotong; Pang, Wubin; Ruan, Wangchao

    2013-12-01

    In light-emitting diode (LED) street lamp design, it has always been an obsession that how to achieve an expected illumination distribution confined to a given region. To solve this problem, a new optimization strategy is proposed. In view of the practicability of actual production, we select the relatively mature approach that is based on both the Snell law and the energy conservation law which would obtain coordinate relations between the spaces the light source and target plane owned respectively and a set of equations to establish the initial construction of free-form lens. In addition, all the processes of simulation, analysis and optimization as well are accomplished in software. Generally speaking, for construction method which is in the light of the set of equations, the major improvement ideology focus on finding out the most suitable mapping relationship between the two coordinate systems. So does our work. In order to get better performance, the grid of control points must be modified. Then the core problem lies in determining the direction and distance of every point's movement contained in the grid. The rule of changing direction has a bearing on energy relations while migration length is gained by direct search algorithm.We apply the method in uniform illumination and get some effect. In short, the optimization strategy provides a practical and simple way for street lamp design of LED illumination.

  20. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    NASA Astrophysics Data System (ADS)

    Nimalasuriya, T.; Flikweert, A. J.; Stoffels, W. W.; Haverlag, M.; van der Mullen, J. J. A. M.; Pupat, N. B. M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg+/Dy+, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  1. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    SciTech Connect

    Nimalasuriya, T.; Flikweert, A.J.; Stoffels, W.W.; Haverlag, M.; Mullen, J.J.A.M. van der; Pupat, N.B.M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg{sup +}/Dy{sup +}, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  2. The various dielectric barrier discharges lamps and plasma panel prototype designs developed in VNIIEF

    NASA Astrophysics Data System (ADS)

    Tsvetkov, V. M.; Pikulev, A. A.

    2008-01-01

    The various dielectric barrier discharges (DBD) lamps and plasma panel prototype designs developed in VNIIEF are presented. The lamps given, depending on a configuration of electrodes, it is possible to divide into three types: 1) a lamp with a plane-parallel configuration of the electrodes, intended for researching of barrier discharges parameters and UV-radiation of various mixes. The design of this lamp allows changing electrodes and varying distance between them; 2) lamps of cylindrical geometry. The external electrode is a spiral or a grid, and internal electrode is a metallic foil. Such design of lamps is the most widespread; 3) lamps with a planar configuration of electrodes. There are two types of lamps with a planar configuration of electrodes: 1) plasma panel prototypes and 2) lamps with ceramic barriers. Plasma panel prototypes are increased (in 50-100 times) copies of plasma display panels (PDP) and are intended for researching of the processes taking place in PDP. Using ceramic barriers of high capacity in DBD lamps allows receiving bigger power density of UV-radiation, than in case of glass (quartz) barriers.

  3. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry

    SciTech Connect

    Rey-Raap, Natalia

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  4. Design Thinking in Elementary Students' Collaborative Lamp Designing Process

    ERIC Educational Resources Information Center

    Kangas, Kaiju; Seitamaa-Hakkarainen, Pirita; Hakkarainen, Kai

    2013-01-01

    Design and Technology education is potentially a rich environment for successful learning, if the management of the whole design process is emphasised, and students' design thinking is promoted. The aim of the present study was to unfold the collaborative design process of one team of elementary students, in order to understand their multimodal…

  5. 30 CFR 20.14 - Instructions for handling future changes in lamp design.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Instructions for handling future changes in lamp design. 20.14 Section 20.14 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP...

  6. 30 CFR 19.13 - Instructions for handling future changes in lamp design.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Instructions for handling future changes in lamp design. 19.13 Section 19.13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC CAP LAMPS § 19.13 Instructions for...

  7. Design of an efficient projector for LED flat lamp without light guide plate

    NASA Astrophysics Data System (ADS)

    Lai, Li-ping; Zhuang, Qi-ren; Liang, De-juan

    2013-11-01

    An efficient LED projector is designed for the LED flat lamp without light guide plate (LGP), in order to get high-efficiency lighting capablility and low cost of LED flat lamp. By employing refraction and total reflection, uniform intensity distribution of the emergent light and high-efficiency lighting capablility are achieved. The simulation results show that the output efficiency and intensity distribution on LED flat lamp panel depend on the distance between projector and output panel, the rotation angle of the projector and the gap between projector and LED. It performs well in both lighting efficiency and uniformity, while a distance of 5 mm, a rotation angle of 2° and a gap of 1.2 mm are used with the panel size of 240 mm×360 mm in the LED flat lamp without LGP. And 96.6% of optical uniformity is achieved.

  8. Measurements of atomic state distribution functions of the Philips QL-lamp

    SciTech Connect

    Jonkers, J.; Bakker, M.; Mullen, J.A.M. van der

    1996-12-31

    In 1992 Philips Lighting introduced the QL-lamp, an inductively coupled low pressure RF discharge containing a mixture of argon and mercury. Its main advantage is the absence of electrodes, which benefits the life-time. In order to improve the knowledge of this kind of plasmas a model has been developed and measurements have been performed. In every plasma the free electrons are an important species: they control the energy transfer from the electromagnetic field to the heavy particles. Therefore, it is important to know the spatial distribution of the electron temperature and of the electron density. These parameters can be obtained from the Atomic State Distribution Function (ASDF), since the levels close the ionization limit are in partial Local Saha Equilibrium (pLSE). The densities of the excited states are obtained from absolute line intensity measurements. However, it appears that the highly excited, measurable, states are not in pLSE, indicating that the QL plasma is far from Saha equilibrium. In order to obtain the electron densities and temperatures the ASDF has to be combined with either measurements of continuum radiation or a Collisional Radiative Model (CRM). The results of both methods will be presented and compared with a third technique to obtain the electron density and temperature: Thomson scattering.

  9. Design of Solar Street Lamp Control System Based on MPPT

    NASA Astrophysics Data System (ADS)

    Cui, Fengying

    This paper proposes a new solar street lamp control system which is composed of photovoltaic cell, controller, battery and load. In this system controller as the key part applies the microchip to achieve many functions. According to the nonlinear output characteristics of solar cell and the influence of environment, it uses the perturbation and observation (P&O) method to realize the maximum power point tracking (MPPT) and promotes the efficiency. In order to prolong the battery life the pulse width modulation (PWM) charge mode is selected to control the battery capacity and provent the battery from the state of over-charge and over-discharge. Meanwhile the function of temperature compensation, charge and discharge protection are set to improve the running safety and stability.

  10. Design method of a light emitting diode front fog lamp based on a freeform reflector

    NASA Astrophysics Data System (ADS)

    Wu, Heng; Zhang, Xianmin; Ge, Peng

    2015-09-01

    We propose a method for the design of a light emitting diode front fog lamp based on a freeform reflector. The source-target mapping is used to establish the relationship between the solid angle of the source and the target plane. The reflector is then constructed based on the non-imaging optics theory and Snell's law. A feedback function is deduced from the deviation in the simulated light pattern based on the sampling method. The reflector is then regenerated with feedback modifications and the variance is minimized after several feedbacks. A reflector for the automobile front fog lamp is designed for the OSTAR Headlamp LED source whose emitting surface is 2.8 mm×2.5 mm. Simulation results indicate that the light performance can well meet the standard of the front fog lamps in ECE R19 Revision 7.

  11. Design method of a light-emitting diode front fog lamp based on a freeform reflector

    NASA Astrophysics Data System (ADS)

    Wu, Heng; Zhang, Xianmin; Ge, Peng

    2015-06-01

    We propose a method for the design of a light-emitting diode front fog lamp based on a freeform reflector. The source-target mapping is used to establish the relationship between the solid angle of the source and the target plane. The reflector is then constructed based on the non-imaging optics theory and Snell's Law. A feedback function is deduced from the deviation in the simulated light pattern based on the sampling method. The reflector is then regenerated with feedback modifications and the variance is minimized after several feedbacks. A reflector for the automobile front fog lamp is designed for the OSTAR Headlamp LED source whose emitting surface is 2.8 mm×2.5 mm. Simulation results indicate that the light performance can well meet the standard of the front fog lamps in ECE R19 Revision 7.

  12. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry.

    PubMed

    Lifshitz, A; Skinner, G B; Wood, D R

    1978-09-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described.

  13. 15 KJ FLASH LAMP, POWER CONDITIONING UNIT DESIGNED FOR SAFTY, RELIABILITY & MANUFACTURABILITY*

    SciTech Connect

    James, G; Merritt, B; Dreifuerst, G; Strickland, S

    2007-08-07

    A 15kJoule, Flash Lamp Power Conditioning Unit has been successfully designed, developed, and deployed in the National Ignition Facility (NIF) Preamplifier Modules (PAM). The primary design philosophy of this power conditioning unit (PCU) is safety, reliability, and manufacturability. Cost reduction over commercially equivalent systems was also achieved through an easily manufactured packaging design optimized to meet NIF requirements. While still maintaining low cost, the PCU design includes a robust control system, fault diagnostic system, and safety features. The pulsed power design includes 6 PFN modules, each including a dual series injection trigger transformer, that drive a total of 12 flash lamp loads. The lamps are individually triggered via a 20kV pulse produced by a 1kV, MCT switched capacitive discharge unit on the primary side of the trigger transformer. The remote control interface includes an embedded controller that captures flash lamp current wave forms and fault status for each shot. The embedded controller provides the flexibility of remotely adjusting both the main drive voltage from 1.6 to 2.5 kV and the trigger voltage from 0 to 20 kV.

  14. Dynamics of interstitial atoms and vacancies during the crystallization of amorphous Si and Ge films by flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Matsuo, Naoto; Yoshioka, Naoki; Heya, Akira

    2017-08-01

    We examined the dynamics of interstitial atoms and vacancies in amorphous Si (a-Si) and a-Ge films crystallized by flash lamp annealing in consideration of the self-diffusion coefficients of Si and Ge. We found that the interstitial atoms play an important role in the liquid-phase crystallization (LPC) of a-Si films, whereas the vacancies are more important for the solid-phase crystallization (SPC) of a-Si films along with the LPC and SPC of a-Ge films. For Si, the crystal defect density of the film crystallized by LPC was higher than that of the film crystallized by SPC; the opposite result was achieved for Ge. This phenomenon is considered to be attributed to the existence of interstitial atoms introduced in Si. The thermodynamic calculated results related to the relationship between the point defect and SPC or LPC supported the crystallization mechanism.

  15. Precision performance lamp technology

    NASA Astrophysics Data System (ADS)

    Bell, Dean A.; Kiesa, James E.; Dean, Raymond A.

    1997-09-01

    A principal function of a lamp is to produce light output with designated spectra, intensity, and/or geometric radiation patterns. The function of a precision performance lamp is to go beyond these parameters and into the precision repeatability of performance. All lamps are not equal. There are a variety of incandescent lamps, from the vacuum incandescent indictor lamp to the precision lamp of a blood analyzer. In the past the definition of a precision lamp was described in terms of wattage, light center length (LCL), filament position, and/or spot alignment. This paper presents a new view of precision lamps through the discussion of a new segment of lamp design, which we term precision performance lamps. The definition of precision performance lamps will include (must include) the factors of a precision lamp. But what makes a precision lamp a precision performance lamp is the manner in which the design factors of amperage, mscp (mean spherical candlepower), efficacy (lumens/watt), life, not considered individually but rather considered collectively. There is a statistical bias in a precision performance lamp for each of these factors; taken individually and as a whole. When properly considered the results can be dramatic to the system design engineer, system production manage and the system end-user. It can be shown that for the lamp user, the use of precision performance lamps can translate to: (1) ease of system design, (2) simplification of electronics, (3) superior signal to noise ratios, (4) higher manufacturing yields, (5) lower system costs, (6) better product performance. The factors mentioned above are described along with their interdependent relationships. It is statistically shown how the benefits listed above are achievable. Examples are provided to illustrate how proper attention to precision performance lamp characteristics actually aid in system product design and manufacturing to build and market more, market acceptable product products in the

  16. Minimization of lumen depreciation in LED lamps using thermal transient behavior analysis and design optimizations.

    PubMed

    Khan, M Nisa

    2016-02-10

    We expansively investigate thermal behaviors of various general-purpose light-emitting diode (LED) lamps and apply our measured results, validated by simulation, to establish lamp design rules for optimizing their optical and thermal properties. These design rules provide the means to minimize lumen depreciation over time by minimizing the periods for lamps to reach thermal steady-state while maintaining their high luminous efficacy and omnidirectional light distribution capability. While it is well known that minimizing the junction temperature of an LED leads to a longer lifetime and an increased lumen output, our study demonstrates, for the first time, to the best of our knowledge, that it is also important to minimize the time it takes to reach thermal equilibrium because doing so minimizes lumen depreciation and enhances light output and color stability during operation. Specifically, we have found that, in addition to inadequate heat-sink fin areas for a lamp configuration, LEDs mounted on multiple boards, as opposed to a single board, lead to longer periods for reaching thermal equilibrium contributing to larger lumen depreciation.

  17. IODC 2014 Illumination design problem: the Cinderella Lamp

    NASA Astrophysics Data System (ADS)

    Cassarly, William J.

    2014-12-01

    For the 3rd time, the International Optical Design Conference (IODC) included an Illumination Design contest. This year, the contest involved designing the illuminator to project the 1950 Walt Disney "Cinderella" movie using a box of optical knick-knacks. The goal of the problem was to provide the highest screen lumens with greater than 30% uniformity. There were 12 entries from 3 different countries. Three different commercial optical/illumination design packages were used. The winning solution, provided by Alois Herkommer, provided 371 screen lumens.

  18. 15 kJ Flash Lamp, Power Conditioning Unit Designed for Safety, Reliability & Manufacturability

    DTIC Science & Technology

    2007-06-01

    This work was performed under the auspices of U.S.Department of Energy National Nuclear Security Administration by Lawrence Livermore National...Laboratory under Contract W-7405-Eng-48. 15 KJ FLASH LAMP, POWER CONDITIONING UNIT DESIGNED FOR SAFTY , RELIABILITY & MANUFACTURABILITY* B...Conditioning Unit Designed For Safty , Reliability & Manufacturability 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  19. Design procedure for effervescent atomizers

    NASA Astrophysics Data System (ADS)

    Chin, J. S.; Lefebvre, A. H.

    1995-04-01

    A methodology for the design of effervescent atomizers is described. The objective is to achieve sprays of minimum mean drop size for any stipulated values of liquid flow rate, air supply pressure, and air/liquid ratio. Application of the method leads to optimum values for all the key atomizer dimensions, including the number and size of the air injection holes, and the diameters of the mixing chamber and discharge orifice. It also enables optimum dimensions to be determined for a convergent-divergent nozzle should such a device be fitted to the nozzle exit to improve atomization performance. Examples are provided to demonstrate the application of the recommended design procedure and to illustrate the relative importance of various flow and geometric parameters in regard to their effects on atomization quality.

  20. Optical design of a light-emitting diode lamp for a maritime lighthouse.

    PubMed

    Jafrancesco, D; Mercatelli, L; Sansoni, P; Fontani, D; Sani, E; Coraggia, S; Meucci, M; Francini, F

    2015-04-10

    Traffic signaling is an emerging field for light-emitting diode (LED) applications. This sustainable power-saving illumination technology can be used in maritime signaling thanks to the recently updated norms, where the possibility to utilize LED sources is explicitly cited, and to the availability of high-power white LEDs that, combined with suitable lenses, permit us to obtain well-collimated beams. This paper describes the optical design of a LED-based lamp that can replace a traditional lamp in an authentic marine lighthouse. This source recombines multiple separated LEDs realizing a quasi-punctual localized source. Advantages can be lower energy consumption, higher efficiency, longer life, fewer faults, slower aging, and minor maintenance costs. The proposed LED source allows us to keep and to utilize the old Fresnel lenses of the lighthouse, which very often have historical value.

  1. Design, simulation, and measurement of LED reading lamp with non-axisymmetrical reflector and freeform lens

    NASA Astrophysics Data System (ADS)

    Chao, Wei-Yang; Chen, Yi-Yung; Whang, Allen Jong-Woei; Lu, Ming-Jun

    2011-10-01

    With the rapid development of various types of digi-readers, such as i-Pad, Kindle, and so on, non-self-luminous type has an advantage, low power consumption. This type of digi-reader reflects the surrounding light to display so it is no good at all to read under dim environment. In this paper, we design a LED lamp for a square lighted range with low power consumption. The e-book is about 12cm x 9cm, the total flux of LED is 3 Lm, and the LED lamp is put on the upper brink of the panel with 6cm height and 45 degree tilted angle. For redistributing the energy, the LED lamp has a freeform lens to control the light of small view angle and a non-axisymmetrical reflector to control the light of large view angle and create a rectangular-like spot. In accordance with the measurement data, the proposed optical structure achieves that the power consumption of LED light source is only 90mW, the average illumination is about 200 Lux, the uniformity of illumination is over 0.7, and the spot is rectangular-like with precise light/dark cutting-off line. Our designed optical structure significantly increases the efficiency of light using and meets the environmental goal of low energy consumption.

  2. Signal lights - designed light for rear lamps and new upcoming technologies: innovations in automotive lighting

    NASA Astrophysics Data System (ADS)

    Mügge, Martin; Hohmann, Carsten

    2016-04-01

    Signal functions have to fulfill statutory regulations such as ECE or FMVSS108 to provide a clear signal to other road users and satisfy the same standard definitions of lighting parameters. However, as rear combination lamps are very different from one another, and these days are an increasingly powerful design element of cars, automotive manufacturers want an innovative, superior, and contrasting design. Daytime appearances with a new and unusual look and nighttime appearances with unexpected illumination are strong drivers for developing amazing innovative signal functions. The combination of LED technology and different forms of light-guiding optics, new interpretations of common optical systems to develop various styling options, the use of new materials and components for lighting effects, the introduction of OLED technology on the automotive market, and amazing new optical systems, using diffractive or holographic optics in future rear lamps, are paving the way for further, exciting design possibilities. The challenge of new signal functions is to take these possibilities and to develop the appearance and illumination effects the designer wants to reinforce the image of the car manufacturer and to fit harmoniously into the vehicle design. Lighting systems with a three-dimensional design and appearance when unlit and lit, amazing 3D effects, and surprising lighting scenarios will gain in importance. But the signal lights on cars will, in the future, be not only lighting functions in rear lamps; new functions and stylistic illuminations for coming/leaving-home scenarios will support and complete the car's overall lighting appearance. This paper describes current lighting systems realizing the styling requirements and future lighting systems offering new design possibilities and developing further stylistic, visual effects and improved technologies.

  3. Turning on LAMP

    ScienceCinema

    Bostedt, Christoph

    2016-07-12

    Christoph Bostedt, a senior staff scientist at SLAC's Linac Coherent Light Source X-ray laser, provides a sneak peek of a powerful new instrument, called LAMP, that is now available for experiments that probe the atomic and molecular realm. LAMP replaces and updates the first instrument at LCLS, dubbed CAMP, which will be installed at an X-ray laser in Germany.

  4. Turning on LAMP

    SciTech Connect

    Bostedt, Christoph

    2014-06-30

    Christoph Bostedt, a senior staff scientist at SLAC's Linac Coherent Light Source X-ray laser, provides a sneak peek of a powerful new instrument, called LAMP, that is now available for experiments that probe the atomic and molecular realm. LAMP replaces and updates the first instrument at LCLS, dubbed CAMP, which will be installed at an X-ray laser in Germany.

  5. Simultaneous monitoring of multimetallic atom densities in plasma processes employing a multimicrohollow cathode lamp

    SciTech Connect

    Ohta, Takayuki; Ito, Masafumi; Tachibana, Yoshihiro; Taneda, Satoshi; Takashima, Seigo; Hori, Masaru; Kano, Hiroyuki; Den, Shoji

    2007-06-18

    The authors have developed a simultaneous measurement technique of multimetallic atom densities in process plasmas using absorption spectroscopy employing a multimicrohollow cathode plasma as a light source. The optical emissions of four metallic atoms of Cu, Zn, Fe, and Mo were simultaneously produced from the multimicrohollow cathode plasma of millimeter size. The absolute densities of Cu and Mo in the magnetron sputtering plasma were simultaneously measured using this technique. The simultaneous monitoring of multimetallic atoms is very useful for controlling the plasma processes precisely.

  6. Thermal and optical design analyses, optimizations, and experimental verification for a novel glare-free LED lamp for household applications.

    PubMed

    Khan, M Nisa

    2015-07-20

    Light-emitting diode (LED) technologies are undergoing very fast developments to enable household lamp products with improved energy efficiency and lighting properties at lower cost. Although many LED replacement lamps are claimed to provide similar or better lighting quality at lower electrical wattage compared with general-purpose incumbent lamps, certain lighting characteristics important to human vision are neglected in this comparison, which include glare-free illumination and omnidirectional or sufficiently broad light distribution with adequate homogeneity. In this paper, we comprehensively investigate the thermal and lighting performance and trade-offs for several commercial LED replacement lamps for the most popular Edison incandescent bulb. We present simulations and analyses for thermal and optical performance trade-offs for various LED lamps at the chip and module granularity levels. In addition, we present a novel, glare-free, and production-friendly LED lamp design optimized to produce very desirable light distribution properties as demonstrated by our simulation results, some of which are verified by experiments.

  7. Design and measurement of TIR lens of MR16-compatible LED lamp without aspherical surface for high directivity

    NASA Astrophysics Data System (ADS)

    Hsieh, Wei-Che; Chen, Yi-Yung; Lee, Yu-Chi; Whang, Allen Jong-Woei

    2010-05-01

    In recently, many illuminance applications use LEDs to replace the traditional light source because they have many advantages, such as longer life time, lower power consumption, smaller size, and safer. Because the optical characteristics of LEDs and traditional sources are different, we need to do secondary optical design for LED applications, such as headlamp, street lamp, and MR16 lamp. For the better optical characteristic, the optical elements of the applications often include aspherical surface. However, it would generate higher cost and lower yield. In this paper, we design a TIR lens for MR16-Compatible LED Lamp without any aspherical surface. Base on the purpose of MR16, the design conditions are high directivity for higher illumination and flat top surface to simulate the traditional MR16. In this design, the TIR surface controls the edge intensity of LED and the central curve surface controls the center intensity of LED. According to the optical simulation, the view angle of the MR16-Compatible LED Lamp is +/-9.3° and the central illumination is 559 Lux in which the total flux of LED is 83 lm. Finally, we manufacture and measurement the designed TIR lens. The view angle of the manufactured MR16 is about +/-7.0° and the central illumination is 581 Lux in which the total flux is 52 lm.

  8. Design of an optical lens combined with a total internal reflection (TIR) freeform surface for a LED front fog lamp

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Li, Xiufeng; Ge, Peng

    2017-02-01

    We propose a design method of an optical lens combined with a total internal reflection (TIR) freeform surface for a LED front fog lamp. The TIR freeform surface controls the edge rays of the LED source. It totally reflects the edge rays and makes them emit from the top surface of the lens. And the middle rays of the LED source go through the refractive surface and reach the measured plane. We simulate the model by Monte Carlo method. Simulation results show that the front fog lamp system can satisfy the requirement of ECE R19 Rev7. The light control efficiency can reach up to 76%.

  9. Fluorescence and Fourier-transform infrared spectroscopy for the analysis of iconic Italian design lamps made of polymeric materials.

    PubMed

    Toja, Francesca; Nevin, Austin; Comelli, Daniela; Levi, Marinella; Cubeddu, Rinaldo; Toniolo, Lucia

    2011-03-01

    The preservation of design object collections requires an understanding of their constituent materials which are often polymeric blends. Challenges associated with aging of complex polymers from objects with an unknown physical history may compromise the interpretation of data from analytical techniques, and therefore complicate the assessment of the condition of polymers in indoor museum environments. This study focuses on the analysis of polymeric materials from three well-known Italian design lamps from the 1960s. To assess the degree of chemical modifications in the polymers, non-destructive molecular spectroscopic techniques, Fourier-transform infrared (FTIR) and fluorescence spectroscopy, have been applied directly on the object surfaces using an optical fiber probe and through examination of micro samples. FTIR spectra of the different polymers, polyvinylacetate (PVAc) for the lamps Taraxacum and Fantasma, and both acrylonitrile-butadiene-styrene polymer (ABS) and cellulose acetate (CA) for the lamp Nesso, allowed the detection of ongoing deterioration processes. Fluorescence spectroscopy proved particularly sensitive for the detection of molecular changes in the polymeric objects, as the spectra obtained from the examined lamps differ significantly from those of the unaged reference materials. Differences in fluorescence spectra are also detected between different points on the same object further indicating the presence of different chemical species on the surfaces. With the aid of complementary data from FTIR spectroscopy, an interpretation of the emission spectra of the studied polymeric objects is here proposed, further suggesting that fluorescence spectroscopy may be useful for following the degradation of historical polymeric objects.

  10. Design a light pattern of multiple concentric circles for LED fishing lamps using Fourier series and an energy mapping method.

    PubMed

    Shen, S C; Li, J S; Huang, M C

    2014-06-02

    Fourier series and an energy mapping method were used in this study to design a lens that produces a light pattern of multiple concentric circles (LPMCC) for a light-emitting diode (LED) fishing lamp. Fourier series were used to represent the light intensity distribution curve (LIDC) of the LPMCC light pattern. Energy mapping involves performing angular energy mapping based on the LIDCs of an LED light source and LPMCC to design a freeform lens. Type I and Type II LPMCC lenses were designed according to the phototaxis behavior of fish to create a LPMCC light pattern of interleaving light-dark zones that attracts fish shoals to stay in an area for a long period. The experimental results indicated that, in comparing the LIDCs of the Type I and II lenses with the respective simulation values, the normalized cross-correlation (NCC) value reached 96%. According to a 24-hour observation of the phototaxis of Poecilia reticulata to evaluate the effectiveness of the proposed light pattern to attract fish, when a fish shoal was habituated to a light source that emitted constant illumination light, it gradually moved away from the intense light zone and hovered around the junction of the light and dark zones. In the future, the design used in this study can be applied to LED fishing lamps to replace traditional fishing lamps.

  11. Design of energy-saving control system for LED street lamps

    NASA Astrophysics Data System (ADS)

    Ding, Xiao; Jin, Wenguang

    2013-10-01

    Based on the energy-saving and safe-driving requirements of road lighting, a kind of energy-saving system is proposed for street lamps in this paper, which is handled by two controllers. At daybreak and dusk, the lamps are turned on or off according to local sunrise and sunset. And at night, it is controlled by a fuzzy controller. Traffic flow and its variation rate, the highest road speed limit are taken as the inputs of the controller, at the same time, the lighting comfort and the experience of driver are defined as the fuzzy sets and control rules. LED lamps are used in the system as illuminant. The numerical simulation in MATLAB and analysis on the practical measured data show that the system is effective in energy-saving for road lighting.

  12. Novel designs of microwave discharge electrodeless lamps (MDEL) in photochemical applications. Use in advanced oxidation processes.

    PubMed

    Horikoshi, Satoshi; Abe, Masahiko; Serpone, Nick

    2009-08-01

    Novel light sources based on microwave discharge electrodeless lamps (MDEL) are examined as potential light sources to drive photochemical processes, in particular advanced oxidation processes (AOPs) of which various applications are described. The MDELs possess several features that make them attractive as possible environmental remediation lamps and as light sources to activate metal oxide photocatalysts in environmental remediation processes. Accordingly, the article describes some of the many features, albeit non-exhaustively, of MDEL devices and reports some photoreactors that incorporate these MDELs. Fundamental issues of MDEL light sources in remediation processing of actual pollutants are introduced. Examples are taken from the oxidative destruction of volatile organic compounds (VOCs; e.g. acetaldehyde and toluene), from the oxidative degradation of contaminants present in wastewaters (e.g. the 2,4-D herbicide and the endocrine disruptor bisphenol-A) and from the remediation of dioxin-contaminated fly-ash, along with an actual industrial wastewater sample from the manufacturing of cement.

  13. The optical pumping of alkali atoms using coherent radiation from semi-conductor injection lasers and incoherent radiation from resonance lamps

    NASA Technical Reports Server (NTRS)

    Singh, G.

    1973-01-01

    An experimental study for creating population differences in the ground states of alkali atoms (Cesium 133) is presented. Studies made on GaAs-junction lasers and the achievement of population inversions among the hyperfine levels in the ground state of Cs 133 by optically pumping it with radiation from a GaAs diode laser. Laser output was used to monitor the populations in the ground state hyperfine levels as well as to perform the hyperfine pumping. A GaAs laser operated at about 77 K was used to scan the 8521 A line of Cs 133. Experiments were performed both with neon-filled and with paraflint-coated cells containing the cesium vapor. Investigations were also made for the development of the triple resonance coherent pulse technique and for the detection of microwave induced hyperfine trasistions by destroying the phase relationships produced by a radio frequency pulse. A pulsed cesium resonance lamp developed, and the lamp showed clean and reproducible switching characteristics.

  14. Loop-Mediated Isothermal Amplification (LAMP) Signature Identification Software

    SciTech Connect

    Torres, C.

    2009-03-17

    This is an extendable open-source Loop-mediated isothermal AMPlification (LAMP) signature design program called LAVA (LAMP Assay Versatile Analysis). LAVA was created in response to limitations of existing LAMP signature programs.

  15. Design for a compact CW atom laser

    NASA Astrophysics Data System (ADS)

    Power, Erik; Raithel, Georg

    2011-05-01

    We present a design for a compact continuous-wave atom laser on a chip. A 2D spiral-shaped quadrupole guide is formed by two 0.5 mm × 0.5 mm wires carrying 5 A each embedded in a Si wafer; a 1.5 mm × 0.5 mm wire on the bottom layer carries -10 A, producing a horizontal B-field that pushes the guiding channel center above the chip surface. The center-to-center separation between the top wires is varied from 1.6 mm at the start of the guide to 1 mm at the end, decreasing the guide height from ~ 500 μm to ~ 25 μm above the surface as the atoms travel the 70 cm-long guide. The magnetic gradient of the guiding channel gradually increases from ~ 100 G /cm to ~ 930 G /cm . These features result in continuous surface adsorption evaporative cooling and progressive magnetic compression. Spin flip losses are mitigated by a solenoid sewn around the guide to produce a longitudinal B-field. 87Rb atoms are gravitationally loaded into the guide. A far off-resonant light shift barrier at the end of the guide traps the atoms and allows formation of a BEC. Tuning the barrier height to create a non-zero tunneling rate equal to the loading rate completes the implementation of a CW atom laser. Two options for atom interferometry are implemented on the first-generation chip (matter-wave Fabry-Perot interferometer and guide-based Mach-Zehnder interferometer). Current construction status and challenges will be discussed, along with preliminary results.

  16. Catalyst design with atomic layer deposition

    DOE PAGES

    O'Neill, Brandon J.; Jackson, David H. K.; Lee, Jechan; ...

    2015-02-06

    Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriadmore » catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Lastly, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts.« less

  17. Flickering lamps

    NASA Astrophysics Data System (ADS)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2015-05-01

    Many processes in electromagnetism vary with time. Some of them are well known, in particular those related to line frequencies of 50 Hz or 60 Hz such as fluctuating light output of discharge and incandescent lamps. The flickers of discharge and incandescent lamps have quite different physical principles involved, which are investigated experimentally using high-speed cameras and theoretically using simplified models. The topic is related to other phenomena such as the transient behaviour of phosphor layers covering the screen of oscilloscopes and the time-varying Lorentz force acting on the filament of light bulbs. All studies are well suited for teaching selected aspects of electromagnetism and light at undergraduate level at university.

  18. Lava Lamp

    ERIC Educational Resources Information Center

    Leif, Todd R.

    2008-01-01

    This past semester I brought a Lava Lite[R] Lamp into my classroom. Why bring such a thing into class? Many of today's students are part of the "retro" movement. They buy clothes from the '60s, they wear their hair like people did in the '60s, and they look for the ideals and themes related to living in the 1960s. Physics education reform is also…

  19. Lava Lamp

    ERIC Educational Resources Information Center

    Leif, Todd R.

    2008-01-01

    This past semester I brought a Lava Lite[R] Lamp into my classroom. Why bring such a thing into class? Many of today's students are part of the "retro" movement. They buy clothes from the '60s, they wear their hair like people did in the '60s, and they look for the ideals and themes related to living in the 1960s. Physics education reform is also…

  20. A novel vacuum ultra violet lamp for metastable rare gas experiments.

    PubMed

    Daerr, Heiner; Kohler, Markus; Sahling, Peter; Tippenhauer, Sandra; Arabi-Hashemi, Ariyan; Becker, Christoph; Sengstock, Klaus; Kalinowski, Martin B

    2011-07-01

    We report on a new design of a vacuum ultra violet (VUV) lamp for direct optical excitation of high laying atomic states, e.g., for excitation of metastable rare gas atoms. The lamp can be directly mounted to ultra-high vacuum vessels (p ≤ 10(-10)mbar). It is driven by a 2.45 GHz microwave source. For optimum operation, it requires powers of ~20 W. The VUV light is transmitted through a magnesium fluoride window, which is known to have a decreasing transmittance for VUV photons with time. In our special setup, after a run-time of the VUV lamp of 550 h the detected signal continuously decreased to 25% of its initial value. This corresponds to a lifetime increase of two orders of magnitude compared to previous setups or commercial lamps.

  1. Aperture lamp

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.

    2003-01-01

    A discharge lamp includes means for containing a light emitting fill, the fill being capable of absorbing light at one wavelength and re-emitting the light at a different wavelength, the light emitted from the fill having a first spectral power distribution in the absence of reflection of light back into the fill; means for exciting the fill to cause the fill to emit light; and means for reflecting some of the light emitted by the fill back into the fill while allowing some light to exit, the exiting light having a second spectral power distribution with proportionately more light in the visible region as compared to the first spectral power distribution, wherein the light re-emitted by the fill is shifted in wavelength with respect to the absorbed light and the magnitude of the shift is in relation to an effective optical path length. Another discharge lamp includes an envelope; a fill which emits light when excited disposed in the envelope; a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light; and a reflective ceramic structure disposed around the envelope and defining an light emitting opening, wherein the structure comprises a sintered body built up directly on the envelope and made from a combination of alumina and silica.

  2. Effusive atomic oven nozzle design using an aligned microcapillary array

    SciTech Connect

    Senaratne, Ruwan Rajagopal, Shankari V.; Geiger, Zachary A.; Fujiwara, Kurt M.; Lebedev, Vyacheslav; Weld, David M.

    2015-02-15

    We present a simple and inexpensive design for a multichannel effusive oven nozzle which provides improved atomic beam collimation and thus extended oven lifetimes. Using this design, we demonstrate an atomic lithium source suitable for trapped-atom experiments. At a nozzle temperature of 525 °C, the collimated atomic beam flux directly after the nozzle is 1.2 × 10{sup 14} atoms/s with a peak beam intensity greater than 5.0 × 10{sup 16} atoms/s/sr. This suggests an oven lifetime of several decades of continuous operation.

  3. Effusive atomic oven nozzle design using an aligned microcapillary array

    NASA Astrophysics Data System (ADS)

    Senaratne, Ruwan; Rajagopal, Shankari V.; Geiger, Zachary A.; Fujiwara, Kurt M.; Lebedev, Vyacheslav; Weld, David M.

    2015-02-01

    We present a simple and inexpensive design for a multichannel effusive oven nozzle which provides improved atomic beam collimation and thus extended oven lifetimes. Using this design, we demonstrate an atomic lithium source suitable for trapped-atom experiments. At a nozzle temperature of 525 °C, the collimated atomic beam flux directly after the nozzle is 1.2 × 1014 atoms/s with a peak beam intensity greater than 5.0 × 1016 atoms/s/sr. This suggests an oven lifetime of several decades of continuous operation.

  4. Effusive atomic oven nozzle design using an aligned microcapillary array.

    PubMed

    Senaratne, Ruwan; Rajagopal, Shankari V; Geiger, Zachary A; Fujiwara, Kurt M; Lebedev, Vyacheslav; Weld, David M

    2015-02-01

    We present a simple and inexpensive design for a multichannel effusive oven nozzle which provides improved atomic beam collimation and thus extended oven lifetimes. Using this design, we demonstrate an atomic lithium source suitable for trapped-atom experiments. At a nozzle temperature of 525 °C, the collimated atomic beam flux directly after the nozzle is 1.2 × 10(14) atoms/s with a peak beam intensity greater than 5.0 × 10(16) atoms/s/sr. This suggests an oven lifetime of several decades of continuous operation.

  5. Lava Lamp

    NASA Astrophysics Data System (ADS)

    Leif, Todd R.

    2008-04-01

    This past semester I brought a Lava Lite® Lamp into my classroom. Why bring such a thing into class? Many of today's students are part of the "retro" movement. They buy clothes from the '60s, they wear their hair like people did in the '60s, and they look for the ideals and themes related to living in the 1960s. Physics education reform is also examining ideas from the "retro" world of science. This was the post-Sputnik era, a time when science was done by actually doing it and not necessarily by lecturing about it. Cliff Swartz, former TPT editor, once mentioned during a presentation at a Texas AAPT meeting, "The world of physics teaching is cyclic, like a swinging pendulum. We as physics teachers jump from `new ideas' back to our old ones, each generation testing what works best for them."

  6. LED lamp

    SciTech Connect

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  7. 49 CFR 571.108 - Standard No. 108; Lamps, reflective devices, and associated equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Lamps, July 1972, may be met for all inboard test points at a distance of 15 feet from the vehicle and...: (a) Four red signal lamps designed to conform to SAE Standard J887, School Bus Red Signal Lamps, July... to SAE Standard J887, School Bus Red Signal Lamps, July 1964, and four amber signal lamps designed to...

  8. Studying Atomic Dynamics with Designer Pulses

    SciTech Connect

    Reinhold, C.O.; Burgdorfer, J.; Frey, M.T.; Dunning, F.B.

    1997-09-01

    We present a brief review of recent experimental and theoretical progress on the dynamics of Rydberg atoms using short half cycle pulses. We discuss new possibilities in coherent control and non-linear dynamics of atoms which have lately become possible using various superpositions of such pulses.

  9. Development of measurement technique for carbon atoms employing vacuum ultraviolet absorption spectroscopy with a microdischarge hollow-cathode lamp and its application to diagnostics of nanographene sheet material formation plasmas

    SciTech Connect

    Takeuchi, Wakana; Sasaki, Hajime; Takashima, Seigo; Kato, Satoru; Hiramatsu, Mineo; Hori, Masaru

    2009-06-01

    This study describes the development of a compact measurement technique for absolute carbon (C) atom density in processing plasmas, using vacuum ultraviolet absorption spectroscopy (VUVAS) employing a high-pressure CO{sub 2} microdischarge hollow-cathode lamp (C-MHCL) as the light source. The characteristics of the C-MHCL as a resonance line source of C atoms at 165.7 nm for VUVAS measurements of the absolute C atom density are reported. The emission line profile of the C-MHCL under typical operating conditions was estimated to be the Voigt profile with a DELTAnu{sub L}/DELTAnu{sub D} value of 2.5, where DELTAnu{sub L} is the Lorentz width and DELTAnu{sub D} is the Doppler width. In order to investigate the behavior of C and H atoms in the processing plasma used for the fabrication of two-dimensional nanographene sheet material, measurements of the atom densities were carried out using the VUVAS technique. The H atom density increased with increasing pressure, while the C atom density was almost constant at 5x10{sup 12} cm{sup -3}. The density ratio of C to H atoms in the plasma was found to influence the morphology of carbon nanowalls (CNWs). With increasing H/C density ratio, the growth rate decreased and the space between the walls of the CNWs became wider.

  10. High efficiency fluorescent excimer lamps: An alternative to mercury based UVC lamps

    SciTech Connect

    Masoud, N. M.; Murnick, D. E.

    2013-12-15

    A high efficiency xenon excimer lamp radiating at 172 nm, with an internal phosphor coating shifting to UVC has been demonstrated, showing the feasibility of a cost effective alternative to UVC mercury lamps. Fluorescent lamps so designed can be fabricated in various geometries with high efficiency. Unlike other xenon excimer lamps based on dielectric barrier discharges this new system is highly compatible with existing and proposed phosphors as it operates in an inert gas environment at modest temperature and is subject only to 172 nm primary radiation. Using a lamp coated with a UVC phosphor we have demonstrated the feasibility of germicidal and curing lamps with 40% energy conversion efficiency and high power density. These lamps are rapidly switchable, have long projected lifetimes and are compatible with dimmers.

  11. Wood's lamp illumination (image)

    MedlinePlus

    A Wood's lamp emits ultraviolet light and can be a diagnostic aid in determining if someone has a fungal ... is an infection on the area where the Wood's lamp is illuminating, the area will fluoresce. Normally ...

  12. Comparison of technologies for new energy-efficient lamps

    NASA Astrophysics Data System (ADS)

    Verderber, R. R.; Rubinstein, F. R.

    1983-06-01

    Energy efficient light bulbs are developed to replace the incandescent lamp where they can satisfy the design criteria and be used in sockets that have long hours of annual use. Four technologies are discussed which include: the compact fluorescent lamp, coated filament lamp, electrodeless fluorescent lamp, and compact high intensity discharge lamp. The systems demonstrate efficacy improvements of two to four times that of their incandescent counterparts. The new lamps required considerable advances in lamp technology. They offer the potential for achieving efficacies close to 80 lumens per watt. The new lamps will reduce the energy used annually by incandescent lamps (190 BkWh) by more than 50% in the 1990s, at which times they will be commonly employed.

  13. Halogen lamp experiment, HALEX

    NASA Technical Reports Server (NTRS)

    Schmitt, G.; Stapelmann, J.

    1986-01-01

    The main purpose of the Halogen Lamp Experiment (HALEX) was to investigate the operation of a halogen lamp during an extended period in a microgravity environment and to prove its behavior in space. The Mirror Heating Facilities for Crystal Growth and Material Science Experiments in space relies on one or two halogen lamps as a furnace to melt the specimens. The HALEX aim is to verify: full power operation of a halogen lamp for a period of about 60 hours; achievement of about 10% of its terrestrial life span; and operation of the halogen lamp under conditions similar to furnace operation.

  14. Halogen lamp experiment, HALEX

    NASA Technical Reports Server (NTRS)

    Schmitt, G.; Stapelmann, J.

    1986-01-01

    The main purpose of the Halogen Lamp Experiment (HALEX) was to investigate the operation of a halogen lamp during an extended period in a microgravity environment and to prove its behavior in space. The Mirror Heating Facilities for Crystal Growth and Material Science Experiments in space relies on one or two halogen lamps as a furnace to melt the specimens. The HALEX aim is to verify: full power operation of a halogen lamp for a period of about 60 hours; achievement of about 10% of its terrestrial life span; and operation of the halogen lamp under conditions similar to furnace operation.

  15. The Design, Fabrication and Characterization of a Transparent Atom Chip

    PubMed Central

    Chuang, Ho-Chiao; Huang, Chia-Shiuan; Chen, Hung-Pin; Huang, Chi-Sheng; Lin, Yu-Hsin

    2014-01-01

    This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm) without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments. PMID:24922456

  16. The design, fabrication and characterization of a transparent atom chip.

    PubMed

    Chuang, Ho-Chiao; Huang, Chia-Shiuan; Chen, Hung-Pin; Huang, Chi-Sheng; Lin, Yu-Hsin

    2014-06-11

    This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm) without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments.

  17. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... lamps and front fog lamps. 393.24 Section 393.24 Transportation Other Regulations Relating to... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front fog.... 108. Auxiliary driving lamps and/or front fog lamps may not be used to satisfy the requirements...

  18. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... lamps and front fog lamps. 393.24 Section 393.24 Transportation Other Regulations Relating to... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front fog.... 108. Auxiliary driving lamps and/or front fog lamps may not be used to satisfy the requirements...

  19. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... lamps and front fog lamps. 393.24 Section 393.24 Transportation Other Regulations Relating to... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front fog.... 108. Auxiliary driving lamps and/or front fog lamps may not be used to satisfy the requirements...

  20. Design, fabrication and testing of tunable RF meta-atoms

    NASA Astrophysics Data System (ADS)

    Langley, Derrick

    Metamaterials are engineered structures designed to alter the propagation of electromagnetic waves incident upon the structure. The focus of this research was the effect of metamaterials on electromagnetic signals at radio frequencies. RF meta-atoms were investigated to further develop the theory, modeling, design and fabrication of metamaterials. Comparing the analytic modeling and experimental testing, the results provide a deeper understanding into metamaterials which could lead to applications for beam steering, invisibility cloaking, negative refraction, super lenses, and hyper lenses. RF meta-atoms integrated with microelectromechanical systems produce tunable meta-atoms in the 10 -- 15 GHz and 1 -- 4 GHz frequency ranges. RF meta-atoms with structural design changes are developed to show how inductance changes based on structural modifications. RF meta-atoms integrated with gain medium are investigated showing that loss due to material characteristics can be compensated using active elements such as a Low Noise Amplifier. Integrating the amplifier into the split ring resonator causes a deeper null at the resonant frequency. The research results show that the resonant frequency can be tuned using microelectromechanical systems, or by induction with structural designs and reduce loss associated with the material conductivity by compensating with an active gain medium. Proposals that offer future research activities are discussed for inductance and active element meta-atoms. In addition, terahertz (THz), infrared (IR), and optical structures are briefly investigated.

  1. Lamp reliability studies for improved satellite rubidium frequency standard

    NASA Technical Reports Server (NTRS)

    Frueholz, R. P.; Wun-Fogle, M.; Eckert, H. U.; Volk, C. H.; Jones, P. F.

    1982-01-01

    In response to the premature failure of Rb lamps used in Rb atomic clocks onboard NAVSTAR GPS satellites experimental and theoretical investigations into their failure mechanism were initiated. The primary goal of these studies is the development of an accelerated life test for future GPS lamps. The primary failure mechanism was identified as consumption of the lamp's Rb charge via direct interaction between Rb and the lamp's glass surface. The most effective parameters to accelerate the interaction between the Rb and the glass are felt to be RF excitation power and lamp temperature. Differential scanning calorimetry is used to monitor the consumption of Rb within a lamp as a function of operation time. This technique yielded base line Rb consumption data for GPS lamps operating under normal conditions.

  2. Portable lamp with dynamically controlled lighting distribution

    DOEpatents

    Siminovitch, Michael J.; Page, Erik R.

    2001-01-01

    A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) arranged vertically with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum insures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. The lighting system may be designed for the home, hospitality, office or other environments.

  3. Discharge lamp technologies

    NASA Technical Reports Server (NTRS)

    Dakin, James

    1994-01-01

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advances.

  4. COS Wavecal Lamp Verification

    NASA Astrophysics Data System (ADS)

    Welty, Alan

    2011-10-01

    As part of the recovery of COS following its 4/40/12 suspend event, we want to test the lamp that was on at the time of the anomaly to verify that it is behaving nominally before proceeding with FUV recovery activities.1} The LINE1 lamp current will be set to MEDIUM {as it was for 12715 visit 11, last exposure}.2} The LINE1 lamp will be turned ON.3} Wait 10 minutes.4} The LINE1 lamp will be turned OFF.

  5. Jacketed lamp bulb envelope

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter

    2001-01-01

    A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.

  6. Radiation Trapping in Electrodeless Lamps: Complex Geometries and Operating Conditions

    NASA Astrophysics Data System (ADS)

    Rajaraman, Kapil; Kushner, Mark J.

    2003-10-01

    Electrodeless gas discharges are finding increasing applications as lighting sources, especially for Ar/Hg based fluorescent lamps. The particulars of resonance radiation trapping from Hg are important considerations in the design of these sources. For simple geometries, analytical formulas for the radiation trapping factors can be derived. For many lamp designs, however, the geometries are complex, and there are spatially non-uniform densities of the emitting and absorbing atoms. To address these complexities, a Monte Carlo model for resonance radiation transport has been developed which accounts for frequency resolved emission and absorption. This radiation transport model has been integrated into a 2-D self-consistent plasma equipment model which accounts for electromagnetics, electron energy transport, and heavy particle transport, and the solution of the Poisson's equation. The influence of the lamp geometry has been studied by varying the size and shape of bulb, as well as the number and positions of the inductive coils. The coil frequency, coil power, cold-spot temperature and the initial pressure were varied to investigate their effects on the trapping factors.

  7. [Remote Slit Lamp Microscope Consultation System Based on Web].

    PubMed

    Chen, Junfa; Zhuo, Yong; Liu, Zuguo; Chen, Yanping

    2015-11-01

    To realize the remote operation of the slit lamp microscope for department of ophthalmology consultation, and visual display the real-time status of remote slit lamp microscope, a remote slit lamp microscope consultation system based on B/S structure is designed and implemented. Through framing the slit lamp microscope on the website system, the realtime acquisition and transmission of remote control and image data is realized. The three dimensional model of the slit lamp microscope is established and rendered on the web by using WebGL technology. The practical application results can well show the real-time interactive of the remote consultation system.

  8. Compact fluorescent lamp applications in luxury hotels

    SciTech Connect

    Gilleskie, R.J.

    1996-01-01

    Over the past several years, consumers, lighting designers, and energy conservationists have paid increasing attention to the special characteristics of compact fluorescent lamps (CFLs). CFLs can typically be used to replace incandescent lamps of three to four times their own wattage, and their color rendering indices (CRIs)-80 to 85-make them virtually indistinguishable from incandescents. The typical 10,0000-hour life of a CFL often makes savings in labor its most desirable feature when compared to a shorter-lived incandescent lamp.

  9. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOEpatents

    Siminovitch, M.

    1998-02-10

    A novel design is described for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment. 9 figs.

  10. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOEpatents

    Siminovitch, Michael

    1998-01-01

    A novel design for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment.

  11. Improvements in three-dimensional atom probe design

    NASA Astrophysics Data System (ADS)

    Cerezo, A.; Godfrey, T. J.; Hyde, J. M.; Sijbrandij, S. J.; Smith, G. D. W.

    1994-03-01

    An improved position-sensitive atom probe has been designed which uses a combination of a parallel timing system and a silicon photodiode array camera. The use of two separate data acquisition systems allows the two functions of accurate positioning and flight time determination to be divorced, thus removing the compromises which must be made when these functions are carried out with only a single detector. The resulting instrument is able to determine flight times and positions of impacts straightforwardly, even when multiple ions are evaporated on a single pulse, and should be capable of operating at evaporation rates close to that of a conventional probe-hole atom probe.

  12. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front fog lamps. (a) Headlamps. Every bus, truck and truck tractor shall be equipped with headlamps as required by...

  13. Atomic hydrogen maser active oscillator cavity and bulb design optimization

    NASA Technical Reports Server (NTRS)

    Peters, H. E.; Washburn, P. J.

    1984-01-01

    The performance characteristics and reliability of the active oscillator atomic hydrogen maser depend upon oscillation parameters which characterize the interaction region of the maser, the resonant cavity and atom storage bulb assembly. With particular attention to use of the cavity frequency switching servo (1) to reduce cavity pulling, it is important to maintain high oscillation level, high atomic beam flux utilization efficiency, small spin exchange parameter and high cavity quality factor. It is also desirable to have a small and rigid cavity and bulb structure and to minimize the cavity temperature sensitivity. Curves for a novel hydrogen maser cavity configuration which is partially loaded with a quartz dielectric cylinder and show the relationships between cavity length, cavity diameter, bulb size, dielectric thickness, cavity quality factor, filling factor and cavity frequency temperature coefficient are presented. The results are discussed in terms of improvement in maser performance resulting from particular design choices.

  14. Geometric Modelling of Octagonal Lamp Poles

    NASA Astrophysics Data System (ADS)

    Chan, T. O.; Lichti, D. D.

    2014-06-01

    Lamp poles are one of the most abundant highway and community components in modern cities. Their supporting parts are primarily tapered octagonal cones specifically designed for wind resistance. The geometry and the positions of the lamp poles are important information for various applications. For example, they are important to monitoring deformation of aged lamp poles, maintaining an efficient highway GIS system, and also facilitating possible feature-based calibration of mobile LiDAR systems. In this paper, we present a novel geometric model for octagonal lamp poles. The model consists of seven parameters in which a rotation about the z-axis is included, and points are constrained by the trigonometric property of 2D octagons after applying the rotations. For the geometric fitting of the lamp pole point cloud captured by a terrestrial LiDAR, accurate initial parameter values are essential. They can be estimated by first fitting the points to a circular cone model and this is followed by some basic point cloud processing techniques. The model was verified by fitting both simulated and real data. The real data includes several lamp pole point clouds captured by: (1) Faro Focus 3D and (2) Velodyne HDL-32E. The fitting results using the proposed model are promising, and up to 2.9 mm improvement in fitting accuracy was realized for the real lamp pole point clouds compared to using the conventional circular cone model. The overall result suggests that the proposed model is appropriate and rigorous.

  15. Fan Atomized Burner design advances & commercial development progress

    SciTech Connect

    Kamath, B.; Butcher, T.A.

    1996-07-01

    As a part of the Oil Heat Research and Development program, sponsored by the US Department of Energy, Brookhaven National Laboratory (BNL) has an on-going interest in advanced combustion technologies. This interest is aimed at: improving the initial efficiency of heating equipment, reducing long term fouling and efficiency degradation, reducing air pollutant emissions, and providing practical low-firing rate technologies which may lead to new, high efficiency oil-fired appliances. The Fan-Atomized Burner (FAB) technology is being developed at BNL as part of this general goal. The Fan-Atomized Burner uses a low pressure, air atomizing nozzle in place of the high pressure nozzle used in conventional burners. Because it is air-atomized the burner can operate at low firing rates without the small passages and reliability concerns of low input pressure nozzles. Because it uses a low pressure nozzle the burner can use a fan in place of the small compressor used in other air-atomized burner designs. High initial efficiency of heating equipment is achieved because the burner can operate at very low excess air levels. These low excess air levels also reduce the formation of sulfuric acid in flames. Sulfuric acid is responsible for scaling and fouling of heat exchanger surfaces.

  16. Rapid flash lamp

    DOEpatents

    Gavenonis, Thomas L.; Hewitt, William H.

    1989-01-01

    A method and apparatus for providing low peak time and pulse width actinic energy from a lamp by varying the input energy of a capacitive ignition circuit having relatively high voltage to the lamp. The lamp comprises a pair of electrodes disposed within a light transparent envelope in which a combustible and an oxidizing gas reaction combination is located. The combustible is preferably shredded zirconium which is in contact with and provides an electrical discharge path between the electrodes. The gas is preferably pressurized oxygen.

  17. Rapid flash lamp

    DOEpatents

    Gavenonis, Thomas L.; Hewitt, William H.

    1989-06-06

    A method and apparatus for providing low peak time and pulse width actinic energy from a lamp by varying the input energy of a capacitive ignition circuit having relatively high voltage to the lamp. The lamp comprises a pair of electrodes disposed within a light transparent envelope in which a combustible and an oxidizing gas reaction combination is located. The combustible is preferably shredded zirconium which is in contact with and provides an electrical discharge path between the electrodes. The gas is preferably pressurized oxygen.

  18. Energy-efficient incandescent lamp

    NASA Astrophysics Data System (ADS)

    1982-04-01

    The status of the Energy Efficient Light Bulb (EELB) development at the beginning of the subcontract was characterized by a newly introduced lamp construction based on an optimum optical quality envelope consisting of two hemispheres or hemi-ellipsoids bonded together. Considerable progress was made concerning the output of the continuous process heat mirror coating machine, the reproducibility of the film characteristics, and the durability of the coating over long periods of lamp operation. The bonding assembly processes were improved to the point where they are suitable for full mechanization and high speed production. A new concept for dimensioning the required compact and mechanically stable filaments was introduced by using diodes in series that reduce the effective operating voltage to 83 volts. This led to filament designs of greater stability and greater compactness than any obtained before.

  19. Design of a dual species atom interferometer for space

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Schubert, Christian; Krutzik, Markus; Bote, Lluis Gesa; Gaaloul, Naceur; Hartwig, Jonas; Ahlers, Holger; Herr, Waldemar; Posso-Trujillo, Katerine; Rudolph, Jan; Seidel, Stephan; Wendrich, Thijs; Ertmer, Wolfgang; Herrmann, Sven; Kubelka-Lange, André; Milke, Alexander; Rievers, Benny; Rocco, Emanuele; Hinton, Andrew; Bongs, Kai; Oswald, Markus; Franz, Matthias; Hauth, Matthias; Peters, Achim; Bawamia, Ahmad; Wicht, Andreas; Battelier, Baptiste; Bertoldi, Andrea; Bouyer, Philippe; Landragin, Arnaud; Massonnet, Didier; Lévèque, Thomas; Wenzlawski, Andre; Hellmig, Ortwin; Windpassinger, Patrick; Sengstock, Klaus; von Klitzing, Wolf; Chaloner, Chris; Summers, David; Ireland, Philip; Mateos, Ignacio; Sopuerta, Carlos F.; Sorrentino, Fiodor; Tino, Guglielmo M.; Williams, Michael; Trenkel, Christian; Gerardi, Domenico; Chwalla, Michael; Burkhardt, Johannes; Johann, Ulrich; Heske, Astrid; Wille, Eric; Gehler, Martin; Cacciapuoti, Luigi; Gürlebeck, Norman; Braxmaier, Claus; Rasel, Ernst

    2015-06-01

    Atom interferometers have a multitude of proposed applications in space including precise measurements of the Earth's gravitational field, in navigation & ranging, and in fundamental physics such as tests of the weak equivalence principle (WEP) and gravitational wave detection. While atom interferometers are realized routinely in ground-based laboratories, current efforts aim at the development of a space compatible design optimized with respect to dimensions, weight, power consumption, mechanical robustness and radiation hardness. In this paper, we present a design of a high-sensitivity differential dual species 85Rb/87Rb atom interferometer for space, including physics package, laser system, electronics and software. The physics package comprises the atom source consisting of dispensers and a 2D magneto-optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein condensate (BEC) creation and interferometry, the detection unit, the vacuum system for 10-11 mbar ultra-high vacuum generation, and the high-suppression factor magnetic shielding as well as the thermal control system. The laser system is based on a hybrid approach using fiber-based telecom components and high-power laser diode technology and includes all laser sources for 2D-MOT, 3D-MOT, ODT, interferometry and detection. Manipulation and switching of the laser beams is carried out on an optical bench using Zerodur bonding technology. The instrument consists of 9 units with an overall mass of 221 kg, an average power consumption of 608 W (814 W peak), and a volume of 470 liters which would well fit on a satellite to be launched with a Soyuz rocket, as system studies have shown.

  20. Reload design process at Yankee Atomic Electric Company

    SciTech Connect

    Weader, R.J.

    1986-01-01

    Yankee Atomic Electric Company (YAEC) performs reload design and licensing for their nuclear power plants: Yankee Rowe, Maine Yankee, and Vermont Yankee. Significant savings in labor and computer costs have been achieved in the reload design process by the use of the SIMULATE nodal code using the CASMO assembly burnup code or LEOPARD pin cell burnup code inputs to replace the PDQ diffusion theory code in many required calculations for the Yankee Rowe and Maine Yankee pressurized water reactors (PWRs). An efficient process has evolved for the design of reloads for the Vermont Yankee boiling water reactor (BWR). Due to the major differences in the core design of the three plants, different reload design processes have evolved for each plant.

  1. Hollow-Core Fiber Lamp

    NASA Technical Reports Server (NTRS)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  2. Physics of Incandescent Lamp Burnout

    ERIC Educational Resources Information Center

    Gluck, Paul; King, John

    2008-01-01

    Incandescent lamps with tungsten filaments have been in use for about a century while being gradually replaced by fluorescent lamps; in another generation both will quite probably be largely replaced by light-emitting diodes. Incandescent lamps (simply called "lamps" in what follows) burn out after a lifetime that depends mostly on the temperature…

  3. Physics of Incandescent Lamp Burnout

    ERIC Educational Resources Information Center

    Gluck, Paul; King, John

    2008-01-01

    Incandescent lamps with tungsten filaments have been in use for about a century while being gradually replaced by fluorescent lamps; in another generation both will quite probably be largely replaced by light-emitting diodes. Incandescent lamps (simply called "lamps" in what follows) burn out after a lifetime that depends mostly on the temperature…

  4. Parametric Design within an Atomic Design Process (ADP) applied to Spacecraft Design

    NASA Astrophysics Data System (ADS)

    Ramos Alarcon, Rafael

    This thesis describes research investigating the development of a model for the initial design of complex systems, with application to spacecraft design. The design model is called an atomic design process (ADP) and contains four fundamental stages (specifications, configurations, trade studies and drivers) that constitute the minimum steps of an iterative process that helps designers find a feasible solution. Representative design models from the aerospace industry are reviewed and are compared with the proposed model. The design model's relevance, adaptability and scalability features are evaluated through a focused design task exercise with two undergraduate teams and a long-term design exercise performed by a spacecraft payload team. The implementation of the design model is explained in the context in which the model has been researched. This context includes the organization (a student-run research laboratory at the University of Michigan), its culture (academically oriented), members that have used the design model and the description of the information technology elements meant to provide support while using the model. This support includes a custom-built information management system that consolidates relevant information that is currently being used in the organization. The information is divided in three domains: personnel development history, technical knowledge base and laboratory operations. The focused study with teams making use of the design model to complete an engineering design exercise consists of the conceptual design of an autonomous system, including a carrier and a deployable lander that form the payload of a rocket with an altitude range of over 1000 meters. Detailed results from each of the stages of the design process while implementing the model are presented, and an increase in awareness of good design practices in the teams while using the model are explained. A long-term investigation using the design model consisting of the

  5. Video equipment recommendations for slit lamp videography.

    PubMed

    Hammack, G G

    1991-08-01

    Current developments in video technology have made videotaping through a slit lamp a useful capability available at a more reasonable cost. The technical basis of equipment needed to select or design an apparatus for slit lamp videography is reviewed. As an overview, the optimum slit lamp video apparatus would have the following criteria; the slit lamp should have zoom optics and rheostat illumination, the beam splitter should be a mirror or 70/30 type, the camera should have maximal light sensitivity (101ux) with reasonable resolution (greater than 300 lines). The recorder should be SP-Umatic or Super VHS for documentation, or consumer VHS for patient education, and the monitor should be a professional 13- or 15-inch monitor.

  6. Magnetic fluorescent lamp

    DOEpatents

    Berman, S.M.; Richardson R.W.

    1983-12-29

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  7. Physical phenomena in lamps

    NASA Astrophysics Data System (ADS)

    Cayless, M. A.

    1988-01-01

    Electric lamps depend for their performance on an extraordinary range of natural phenomena, some of considerable subtlety or complexity, making them a fascinating field for the scientist or engineer. The author describes some of the less obvious phenomena which are crucial to the efficient performance of modern lamps. These include: thermal diffusion; resonance line broadening; hyperfine structure; metal halide cycles; ionic pumping; voids in tungsten; photoelectricity and electrolysis; and Penning effect

  8. Magnetic fluorescent lamp

    NASA Astrophysics Data System (ADS)

    Berman, S. M.; Richardson, R. W.

    1983-12-01

    The radiant emission of a mercury argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a zeeman splitting of approximately 1.7 times the thermal line width.

  9. CALiPER Retail Lamps Study 3

    SciTech Connect

    Royer, Michael P.; Beeson, Tracy A.

    2014-02-01

    The CALiPER program first began investigating LED lamps sold at retail stores in 2010, purchasing 33 products from eight retailers and covering six product categories. The findings revealed a fragmented marketplace, with large disparities in performance of different products, accuracy of manufacturer claims, and offerings from different retail outlets. Although there were some good products, looking back many would not be considered viable competitors to other available options, with too little lumen output, not high enough efficacy, or poor color quality. CALiPER took another look in late 2011purchasing 38 products of five different types from nine retailers and the improvement was marked. Performance was up; retailer claims were more accurate; and the price per lumen and price per unit efficacy were down, although the price per product had not changed much. Nonetheless, there was still plenty of room for improvement, with the performance of LED lamps not yet reaching that of well-established classes of conventional lamps (e.g., 75 W incandescent A19 lamps). Since the second retail lamp study was published in early 2012, there has been substantial progress in all aspects of LED lamps available from retailers. To document this progress, CALiPER again purchased a sample of lamps from retail stores 46 products in total, focusing on A19, PAR30, and MR16 lamps but instead of a random sample, sought to select products to answer specific hypotheses about performance. These hypotheses focused on expanding ranges of LED equivalency, the accuracy of lifetime claims, efficacy and price trends, as well as changes to product designs. Among other results, key findings include: There are now very good LED options to compete with 60 W, 75 W, and 100 W incandescent A19 lamps, and 75 W halogen PAR30 lamps. MR16 lamps have shown less progress, but there are now acceptable alternatives to 35 W, 12 V halogen MR16 lamps and 50 W, 120 V halogen MR16 lamps for some applications. Other

  10. Discharge lamp technologies

    SciTech Connect

    Dakin, J.

    1994-12-31

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advance. A general overview of discharge lighting technology can be found in the book of Waymouth (1971). A recent review of low pressure lighting discharge science is found in Dakin (1991). The pioneering paper of Reiling (1964) provides a good introduction to metal halide discharges. Particularly relevant to lighting for plant growth, a recent and thorough treatment of high pressure Na lamps is found in the book by deGroot and vanVliet (1986). Broad practical aspects of lighting application are thoroughly covered in the IES Lighting Handbook edited by Kaufman (1984).

  11. Developments in polymerization lamps.

    PubMed

    Jiménez-Planas, Amparo; Martín, Juan; Abalos, Camilo; Llamas, Rafael

    2008-02-01

    Polymerization shrinkage of composite resins and the consequent stress generated at the composite-tooth interface continue to pose a serious clinical challenge. The development of high-intensity halogen lamps and the advent of curing units providing higher energy performance, such as laser lamps, plasma arc units, and, most recently, light-emitting diode (LED) curing units, have revolutionized polymerization lamp use and brought major changes in light-application techniques. A comprehensive review of the literature yielded the following conclusions: (1) the most reliable curing unit for any type of composite resin is the high-density halogen lamp, fitted with a programming device to enable both pulse-delay and soft-start techniques; (2) if any other type of curing unit is used, information must be available on the compatibility of the unit with the composite materials to be used; (3) polymerization lamp manufacturers need to focus on the ongoing development of LED technology; (4) further research is required to identify the most reliable light-application techniques.

  12. Integrity Monitoring of Mercury Discharge Lamps

    NASA Technical Reports Server (NTRS)

    Tjoelker, Robert L.

    2010-01-01

    Mercury discharge lamps are critical in many trapped ion frequency standard applications. An integrity monitoring system can be implemented using end-of-life signatures observed in operational mercury discharge lamps, making it possible to forecast imminent failure and to take action to mitigate the consequences (such as switching to a redundant system). Mercury lamps are used as a source of 194-nm ultraviolet radiation for optical pumping and state selection of mercury trapped ion frequency standards. Lamps are typically fabricated using 202Hg distilled into high-purity quartz, or other 194-nm transmitting material (e.g., sapphire). A buffer gas is also placed into the bulb, typically a noble gas such as argon, neon, or krypton. The bulbs are driven by strong RF fields oscillating at .200 MHz. The lamp output may age over time by two internal mechanisms: (1) the darkening of the bulb that attenuates light transmission and (2) the loss of mercury due to migration or chemical interactions with the bulb surface. During fabrication, excess mercury is placed into a bulb, so that the loss rate is compensated with new mercury emanating from a cool tip or adjacent reservoir. The light output is nearly constant or varies slightly at a constant rate for many months/years until the mercury source is depleted. At this point, the vapor pressure abruptly falls and the total light output and atomic clock SNR (signal-to-noise ratio) decrease. After several days to weeks, the light levels decrease to a point where the atomic clock SNR is no longer sufficient to stay in lock, or the lamp self-extinguishes. This signature has been observed in four separate end-of-life lamp failures while operating in the Deep Space Network (DSN). A simple integrator circuit can observe and document steady-state lamp behavior. When the light levels drop over a predetermined time interval by a specified amount (e.g., 20 percent), an alarm is set. For critical operational applications, such as the DSN

  13. Fluorescent discharge lamp

    NASA Technical Reports Server (NTRS)

    Mukai, E.; Otsuka, H.; Nomi, K.; Honmo, I.

    1982-01-01

    A rapidly illuminating fluorescent lamp 1,200 mm long and 32.5 mm in diameter with an interior conducting strip which is compatible with conventional fixtures and ballasts is described. The fluorescent lamp is composed of a linear glass tube, electrodes sealed at both ends, mercury and raregas sealed in the glass tube, a fluorescent substance clad on the inner walls of the glass tube, and a clad conducting strip extending the entire length of the glass tube in the axial direction on the inner surface of the tube.

  14. Philips' 2nd generation Novallure LED candle lamp

    NASA Astrophysics Data System (ADS)

    Li, Yun; Pei, Zhigang; Yuan, Chuan; Jiang, Tan; Lu, Zhengsong; Wang, Yuqian; Duan, Xiaoqing; Xiong, Yan; Zhong, Hong; Liu, Ye

    2010-08-01

    Finding an energy efficient replacement of incandescent candle lamp has been a technical challenge. Compact fluorescent lamps, for example, can be miniaturized to fit the form factor of a candle lamp but they fail to reproduce its "sparkle" effect. Empowered by solid state lighting technology along with original optical design, Philips has successfully developed LED-powered candle lamps "Novallure" with great energy savings (2W power consumption with lumen output of 55 lumen) and the "butterfly" radiation pattern that mimics the sparkle effect from an incandescent candle lamp. With new high performance LED packages, novel under-cut prismatic optics and state-of-the-art electronic driver solution and thermal solution, we have developed a 2nd generation Novallure with breakthrough performance: a dimmable 2700K 136 lumen LED candle lamp with CRI 90.

  15. Software Package Completed for Alloy Design at the Atomic Level

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Noebe, Ronald D.; Abel, Phillip B.; Good, Brian S.

    2001-01-01

    As a result of a multidisciplinary effort involving solid-state physics, quantum mechanics, and materials and surface science, the first version of a software package dedicated to the atomistic analysis of multicomponent systems was recently completed. Based on the BFS (Bozzolo, Ferrante, and Smith) method for the calculation of alloy and surface energetics, this package includes modules devoted to the analysis of many essential features that characterize any given alloy or surface system, including (1) surface structure analysis, (2) surface segregation, (3) surface alloying, (4) bulk crystalline material properties and atomic defect structures, and (5) thermal processes that allow us to perform phase diagram calculations. All the modules of this Alloy Design Workbench 1.0 (ADW 1.0) are designed to run in PC and workstation environments, and their operation and performance are substantially linked to the needs of the user and the specific application.

  16. Slit lamp photography: The basics.

    PubMed

    Painter, Rosalyn

    2015-06-01

    This introductory paper is designed to explain the basics of slit lamp photography with the use of illustrations and sample images. The two primary methods of illumination are described with reference to positioning and magnification, as well as the use of background illumination. Filters and dye usage are described along with a brief explanation of associated imaging techniques. Further explanation of techniques will be looked at in subsequent articles, this paper aims to give an over view rather than an in-depth discussion of techniques.

  17. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical... lamps; school bus warning lamps; amber warning lamps or flashing warning lamps on tow trucks and...

  18. Slit-lamp exam (image)

    MedlinePlus

    A slit-lamp, which is a specialized magnifying microscope, is used to examine the structures of the eye (including the cornea, iris, vitreous, and retina). The slit-lamp is used to examine, treat (with a laser), ...

  19. The fundus slit lamp.

    PubMed

    Gellrich, Marcus-Matthias

    2015-01-01

    Fundus biomicroscopy with the slit lamp as it is practiced widely nowadays was not established until the 1980-es with the introduction of the Volk lenses +90 and +60D. Thereafter little progress has been made in retinal imaging with the slit lamp. It is the aim of this paper to fully exploit the potential of a video slit lamp for fundus documentation by using easily accessible additions. Suitable still images are easily retrieved from videorecordings of slit lamp examinations. The effects of changements in the slit lamp itself (slit beam and apertures) and its examination equipment (converging lenses from +40 to +90D) on quality and spectrum of fundus images are demonstrated. Imaging software is applied for reconstruction of larger fundus areas in a mosaic pattern (Hugin®) and to perform the flicker test in order to visualize changes in the same fundus area at different points of time (Power Point®). The three lenses +90/+60/+40D are a good choice for imaging the whole spectrum of retinal diseases. Displacement of the oblique slit light can be used to assess changes in the surface profile of the inner retina which occurs e.g. in macular holes or pigment epithelial detachment. The mosaic function in its easiest form (one strip macula adapted to one strip with the optic disc) provides an overview of the posterior pole comparable to a fundus camera's image. A reconstruction of larger fundus areas is feasible for imaging in vitreoretinal surgery or occlusive vessel disease. The flicker test is a fine tool for monitoring progressive glaucoma by changes in the optic disc, and it is also a valuable diagnostic tool in macular disease. Nearly all retinal diseases can be imaged with the slit lamp - irrespective whether they affect the posterior pole, mainly the optic nerve or the macula, the whole retina or only its periphery. Even a basic fundus controlled perimetry is possible. Therefore fundus videography with the slit lamp is a worthwhile approach especially for the

  20. New rules of thumb maximizing energy efficiency in street lighting with discharge lamps: The general equations for lighting design

    NASA Astrophysics Data System (ADS)

    Peña-García, A.; Gómez-Lorente, D.; Espín, A.; Rabaza, O.

    2016-06-01

    New relationships between energy efficiency, illuminance uniformity, spacing and mounting height in public lighting installations were derived from the analysis of a large sample of outputs generated with a widely used software application for lighting design. These new relationships greatly facilitate the calculation of basic lighting installation parameters. The results obtained are also based on maximal energy efficiency and illuminance uniformity as a premise, which are not included in more conventional methods. However, these factors are crucial since they ensure the sustainability of the installations. This research formulated, applied and analysed these new equations. The results of this study highlight their usefulness in rapid planning and urban planning in developing countries or areas affected by natural disasters where engineering facilities and computer applications for this purpose are often unavailable.

  1. Mobilizing slit lamp to the field: A new affordable solution.

    PubMed

    Farooqui, Javed Hussain; Jorgenson, Richard; Gomaa, Ahmed

    2015-11-01

    We are describing a simple and affordable design to pack and carry the slit lamp to the field. Orbis staff working on the Flying Eye Hospital (FEH) developed this design to facilitate mobilization of the slit lamp to the field during various FEH programs. The solution involves using a big toolbox, a central plywood apparatus, and foam. These supplies were cut to measure and used to support the slit lamp after being fitted snuggly in the box. This design allows easy and safe mobilization of the slit lamp to remote places. It was developed with the efficient use of space in mind and it can be easily reproduced in developing countries using same or similar supplies. Mobilizing slit lamp will be of great help for staff and institutes doing regular outreach clinical work.

  2. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front fog... aim of the lighting device from being disturbed while the vehicle is operating on public roads. (d...

  3. LED solution for E14 candle lamp

    NASA Astrophysics Data System (ADS)

    Li, Yun; Liu, Ye; Boonekamp, Erik P.; Shi, Lei; Mei, Yi; Jiang, Tan; Guo, Qing; Wu, Huarong

    2009-08-01

    On a short to medium term, energy efficient retrofit LED products can offer an attractive solution for traditional lamps replacement in existing fixtures. To comply with user expectations, LED retrofit lamps should not only have the same mechanical interface to fit (socket and shape), but also have the similar light effect as the lamps they replace. The decorative lighting segment shows the best conditions to meet these requirements on short term. In 2008, Philips Lighting Shanghai started with the development of an LED candle lamp for the replacement of a 15W Candle shape (B35 E14) incandescent bulb, which is used in e.g. chandeliers. In this decorative application the main objective is not to generate as much light as possible, but the application requires the lamp to have a comparable look and, primarily, the same light effect as the incandescent candle lamp. This effect can be described as sparkling light, and it has to be directed sufficiently downwards (i.e., in the direction of the base of the lamp). These requirements leave very limited room for optics, electronics, mechanics and thermal design to play with in the small outline of this lamp. The main voltage AC LED concept is chosen to save the space for driver electronics. However the size of the AC LED is relatively big, which makes the optical design challenging. Several optical solutions to achieve the required light effect, to improve the optical efficiency, and to simplify the system are discussed. A novel prismatic lens has been developed which is capable of transforming the Lambertian light emission from typical high power LEDs into a butter-fly intensity distribution with the desired sparkling light effect. Thanks to this lens no reflecting chamber is needed, which improves the optical efficiency up to 70%, while maintaining the compact feature of the original optics. Together with advanced driver solution and thermal solution, the resulting LED candle lamp operates at 230V, consumes 1.8W, and

  4. Development of a see-through hollow cathode discharge lamp for (Li/Ne) optogalvanic studies

    NASA Astrophysics Data System (ADS)

    Saini, V. K.; Kumar, P.; Sarangpani, K. K.; Dixit, S. K.; Nakhe, S. V.

    2017-09-01

    Development of a demountable and see-through hollow cathode (HC) discharge lamp suitable for optogalvanic (OG) spectroscopy is described. The design of the HC lamp is simple, compact, and inexpensive. Lithium, investigated rarely by the OG method, is selected for cathode material as its isotopes are important for nuclear industry. The HC lamp is characterized electrically and optically for discharge oscillations free OG effect. Strong OG signals of lithium as well as neon (as buffer gas) are produced precisely upon copper vapor laser pumped tunable dye laser irradiation. The HC lamp is capable of generating a clean OG resonance spectrum in the available dye laser wavelength scanning range (627.5-676 nm) obtained with 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran dye. About 28 resonant OG lines are explicitly observed. Majority of them have been identified using j-l coupling scheme and assigned to the well-known neon transitions. One line that corresponds to wavelength near about 670.80 nm is assigned to lithium and resolved for its fine (2S1/2 → 2P1/2, 3/2) transitions. These OG transitions allow 0.33 cm-1 accuracy and can be used to supplement the OG transition data available from other sources to calibrate the wavelength of a scanning dye laser with precision at atomic levels.

  5. Max Tech and Beyond: Fluorescent Lamps

    SciTech Connect

    Scholand, Michael

    2012-04-01

    Fluorescent lamps are the most widely used artificial light source today, responsible for approximately 70% of the lumens delivered to our living spaces globally. The technology was originally commercialized in the 1930's, and manufacturers have been steadily improving the efficacy of these lamps over the years through modifications to the phosphors, cathodes, fill-gas, operating frequency, tube diameter and other design attributes. The most efficient commercially available fluorescent lamp is the 25 Watt T5 lamp. This lamp operates at 114-116 lumens per watt while also providing good color rendering and more than 20,000 hours of operating life. Industry experts interviewed indicated that while this lamp is the most efficient in the market today, there is still a further 10 to 14% of potential improvements that may be introduced to the market over the next 2 to 5 years. These improvements include further developments in phosphors, fill-gas, cathode coatings and ultraviolet (UV) reflective glass coatings. The commercialization of these technology improvements will combine to bring about efficacy improvements that will push the technology up to a maximum 125 to 130 lumens per watt. One critical issue raised by researchers that may present a barrier to the realization of these improvements is the fact that technology investment in fluorescent lamps is being reduced in order to prioritize research into light emitting diodes (LEDs) and ceramic metal halide high intensity discharge (HID) lamps. Thus, it is uncertain whether these potential efficacy improvements will be developed, patented and commercialized. The emphasis for premium efficacy will continue to focus on T5 lamps, which are expected to continue to be marketed along with the T8 lamp. Industry experts highlighted the fact that an advantage of the T5 lamp is the fact that it is 40% smaller and yet provides an equivalent lumen output to that of a T8 or T12 lamp. Due to its smaller form factor, the T5 lamp

  6. Dimming of metal halide lamps

    NASA Astrophysics Data System (ADS)

    Schurer, Kees

    1994-03-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  7. Dimming of metal halide lamps

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  8. Flight vehicle thermal testing with infrared lamps

    NASA Technical Reports Server (NTRS)

    Fields, Roger A.

    1992-01-01

    The verification and certification of new structural material concepts for advanced high speed flight vehicles relies greatly on thermal testing with infrared quartz lamps. The basic quartz heater system characteristics and design considerations are presented. Specific applications are illustrated with tests that were conducted for the X-15, the Space Shuttle, and YF-12 flight programs.

  9. Scanning For Hotspots In Lamp Filaments

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.; Van Sant, Tim; Leidecker, Henning

    1993-01-01

    Scanning photometer designed for use in investigation of failures of incandescent lamp filaments. Maps brightness as function of position along each filament to identify bright (hot) spots, occurring at notches and signifying incipient breaks or rewelds. Also used to measure nonuniformity in outputs of such linear devices as light-emitting diodes, and to measure diffraction patterns of lenses.

  10. Illuminating the Mathematics of Lamp Shades

    ERIC Educational Resources Information Center

    Matthews, Michael E.; Gross, Greg

    2008-01-01

    The problem of creating lamp shades to specific design parameters allows rich and interesting explorations in the mathematics of circles and triangles. This interactive project helps students build their spatial reasoning and is especially appropriate during a unit on either the Pythagorean theorem or similar triangles. (Contains 7 figures and 1…

  11. A loop mediated isothermal amplification (LAMP) method for detection of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Gunimaladevi, I; Kono, T; Lapatra, S E; Sakai, M

    2005-05-01

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) protocol was developed for detection of infectious hematopoietic necrosis virus (IHNV) RNA in rainbow trout (Oncorhynchus mykiss). A set of four primers, two outer and two inner primers for the RT-LAMP and the LAMP assay, were designed based on the sequence of G-protein of IHNV. Time and temperature conditions were optimized for 60 min at 63 degrees C for both RT-LAMP and LAMP protocols. The detection limit was found to be similar for both RT-LAMP and LAMP. When the sensitivity of RT-LAMP and LAMP were compared with conventional nested PCR, a10-fold higher sensitivity was seen for the LAMP protocols.

  12. LAMP Joining between Ceramic and Plastic

    NASA Astrophysics Data System (ADS)

    Kawahito, Yousuke; Nishimoto, Kouji; Katayama, Seiji

    Joining of dissimilar materials is necessary and important from a manufacturing viewpoint. Therefore, the authors have developed a new laser direct joining method between a metal and a plastic which is named Laser Assisted Metal and Plastic (LAMP) joining method. In this research, LAMP joining was applied to join silicon nitride Si3N4 ceramic and polyethylene terephthalate (PET) engineering plastic, although metal was replaced by ceramic. The tensile shear strength of obtained joints was 3100 N at the maximum, which was strong enough to elongate a PET base plate of 2 mm in thickness and 30 mm in width. Moreover, transmission electron microscopes (TEM) observation demonstrates that the ceramic and the plastic are tightly bonded on atomic or molecular sized level.

  13. Atomic force microscopy-based characterization and design of biointerfaces

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Gaub, Hermann E.; Newton, Richard; Pfreundschuh, Moritz; Gerber, Christoph; Müller, Daniel J.

    2017-03-01

    Atomic force microscopy (AFM)-based methods have matured into a powerful nanoscopic platform, enabling the characterization of a wide range of biological and synthetic biointerfaces ranging from tissues, cells, membranes, proteins, nucleic acids and functional materials. Although the unprecedented signal-to-noise ratio of AFM enables the imaging of biological interfaces from the cellular to the molecular scale, AFM-based force spectroscopy allows their mechanical, chemical, conductive or electrostatic, and biological properties to be probed. The combination of AFM-based imaging and spectroscopy structurally maps these properties and allows their 3D manipulation with molecular precision. In this Review, we survey basic and advanced AFM-related approaches and evaluate their unique advantages and limitations in imaging, sensing, parameterizing and designing biointerfaces. It is anticipated that in the next decade these AFM-related techniques will have a profound influence on the way researchers view, characterize and construct biointerfaces, thereby helping to solve and address fundamental challenges that cannot be addressed with other techniques.

  14. Note: Design principles of a linear array multi-channel effusive metal-vapor atom source

    SciTech Connect

    Jana, B.; Majumder, A.; Thakur, K. B.; Das, A. K.

    2013-10-15

    Atomic beams can easily be produced by allowing atoms to effuse through a channel. In an earlier investigation [A. Majumder et al., Vacuum 83, 989 (2009)], we had designed, fabricated, and characterized an effusive metal-vapor source using collinear-array of multi-channel. In this note, we describe the theoretical basis of designing the source. Atom density in atomic beam has been estimated using a set of analytical expressions for long-channel operated in transparent mode. Parametric studies on aspect ratio of channel, inter-channel separation, beam width, and vertical distance from the source are carried out. They are useful in providing physical picture and optimizing design parameters.

  15. Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy

    SciTech Connect

    Flikweert, A.J.; Nimalasuriya, T.; Groothuis, C.H.J.M.; Kroesen, G.M.W.; Stoffels, W.W.

    2005-10-01

    High intensity discharge lamps have a high efficiency. These lamps contain rare-earth additives (in our case dysprosium iodide) which radiate very efficiently. A problem is color separation in the lamp because of axial segregation of the rare-earth additives, caused by diffusion and convection. Here two-dimensional atomic dysprosium density profiles are measured by means of laser absorption spectroscopy; the order of magnitude of the density is 10{sup 22} m{sup -3}. The radially resolved atomic density measurements show a hollow density profile. In the outer parts of the lamp molecules dominate, while the center is depleted of dysprosium atoms due to ionization. From the axial profiles the segregation parameter is determined. It is shown that the lamp operates on the right-hand side of the Fischer curve [J. Appl. Phys. 47, 2954 (1976)], i.e., a larger convection leads to less segregation.

  16. Compact fluorescent lamps, LED lamps and harmonic distortion

    NASA Astrophysics Data System (ADS)

    Franco, A. M. R.; Debatin, R. M.; Cotia, F. C. G.; Silva, M. V. M.; Ribeiro, R. S.; Zampilis, R. R. N.

    2015-01-01

    The aim of this paper is to evaluate the harmonic distortion in the current waveform of Compact Fluorescent Lamps (CFL) and Lamps Lighting Emitting Diode (LED). For this, we analysed the power factor, voltage waveform, current waveform, total harmonic distortion (THD) and active power consumed.

  17. Lava lamp optics.

    PubMed

    Clark, Thomas Alan

    2011-10-01

    An interesting optical focusing effect occurred in the early heating phases of a simple model of a lava lamp that was constructed to demonstrate convection effects. During this early heating phase, the interface between the two immiscible liquids was found to form a surface of rotation with a conic cross section that acted as a mirror to produce an excellent image of the filament of the bulb within the lower liquid. The relevant features of the lamp construction are discussed briefly, and photographs of this focusing effect are shown. A simple analysis is presented that transforms the photographed cross section of the liquid interface into the true cross section by removing the effect of the cylindrical lens formed by the fluid-filled bottle, and the resulting cross section is then fitted to the shape of an ellipse. The possible cause for the shape of this liquid interface is discussed and compared and contrasted with the somewhat analogous situation of a stretched circular membrane that is subjected to different gas pressures on either side of the membrane.

  18. High brightness microwave lamp

    DOEpatents

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  19. Coatings for Energy Efficient Lamps with Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Rancourt, James; Martin, Robert

    1986-09-01

    During the past several years, a high level of activity has been directed toward developing more efficient lighting products to meet consumer demand in the face of energy scarcity and its high cost. Without major redesign of lamps, manufacturers have been able to achieve modest gains of 5 to 10 percent in incandescent lamp efficacy by optimizing standard features such as filament design, gas fill, etc. What was desired for incandescent lamps was a major jump in efficacy of 30% or more. Much encouraging work, notably by Philips in the Netherlands, has already been accomplished in the laboratory using thin film reflectors to recycle the wasted infrared radiation from incandescent lamps. Indium tin oxide (ITO) films, which are transparent in the visible and reflect well at wavelengths greater than 2 micrometers, is a most attractive material for its simplicity and apparent high performance. It °has a serious drawback, however, in its inability to reflect adequately when its temperature exceeds 800 C. A separate outer jacket surrounding the lamp itself is required in order to keep the ITO coating cool and thereby take advantage of its properties. The use of this extra component makes this solution to the energy problem more expensive and complex. In the United States, the Duratest Corporation has developed a sophisticated silver coating which is deposited inside domestic type A-line lamps. About six years ago, the General Electric Co., a major U.S. lamp manufacturer, approached 0.C.L.I. and requested assistance in improving the quartz-halogen lamp. The G.E.-0.C.L.I. method that was developed for improving the efficacy of an incandescent lamp product consists of coating quartz-halogen lamps with infrared reflectors. These reflectors are interference reflector stacks made of refractory metal oxides using conventional thermal evaporation technology. These products have been available commercially for about three years.

  20. UV Discharge Lamp on Distilled Water Vapor

    NASA Astrophysics Data System (ADS)

    Avtaeva, Svetlana; Andrij, General

    2009-10-01

    Recently interest in sources of ultra-violet (UV) radiation in a wavelength range of 200-400 nm has increased. Therefore we have created a source of spontaneous, incoherent UV radiation on distilled water vapor excited by the low-pressure capacitive discharge (1 Torr). Spectral, temporary and energy characteristics of the spontaneous UV radiation source have been experimentally studied. In addition the electron energy distribution function (EEDF), the mean electron energy, electron transport coefficients, rate constants of elastic and inelastic electron collisions with atoms and electron energy losses have been theoretically calculated with help of the program Bolsig+. Results of the theoretical calculation are used for optimizing radiative characteristics of the radiation source. Advantages of the created lamp based on the low-pressure capacitive discharge on water vapor are: 1) inexpensive and ecologically safe working medium on the basis of hydroxyl radicals; 2) absence of electrodes in a gas-discharge zone that allows to hope for significant increasing their useful operation resource, in comparison with lamps of glow or other discharges; 3) simplicity of the lamp construction.

  1. Inductive tuners for microwave driven discharge lamps

    DOEpatents

    Simpson, James E.

    1999-01-01

    An RF powered electrodeless lamp utilizing an inductive tuner in the waveguide which couples the RF power to the lamp cavity, for reducing reflected RF power and causing the lamp to operate efficiently.

  2. LAMP Whys? LAMP Wise! A Practical Guide to the Lansing Area Manufacturing Partnership.

    ERIC Educational Resources Information Center

    MacAllum, Keith; McDonald, Deanne; Johnson, Amy Bell

    This document profiles the Lansing Area Manufacturing Partnership (LAMP), which is a model school-to-career initiative featuring an innovative integrated, employer-driven curriculum that was designed, developed, and implemented through the joint efforts of the Ingham Intermediate School District in Lansing, Michigan, the United Auto Workers (UAW),…

  3. Design and Finite Temperature Aspects of Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Blakie, Peter

    2003-05-01

    The control and manipulation of Bose-Einstein condensates with optical lattices is a major current interest in cold atom research, and is an important component in proposals for quantum computing with neutral atoms. A condensate loaded into an optical lattice can be described by a Bose-Hubbard Hamiltonian and presents a unique opportunity for investigating aspects of many-body physics in a controlled manner, as typified by a recent experimental investigation where the quantum phase transition of atoms from a superfluid to Mott-insulating state was observed [1]. In this talk we consider the interference of three co-planar equal frequency light fields, which are far detuned from atomic resonance. Atoms within the region of the light field overlap will experience a periodic light shift potential that forms a two-dimensional optical lattice. We demonstrate the range of possible geometries for this type of lattice, obtainable by varying the propagation directions of the light fields. From band structure calculations we show how the tunneling rates can be manipulated to control the effective number of nearest neighbors. We discuss possible applications of this work to cold atom research. In the second part of this talk we consider recent experiments done in collaboration with Morsch et al. [2] investigating the non-adiabatic loading of a condensate into an optical lattice. We discuss the dephasing mechanisms and preliminary results in developing a model for the long time dynamically behavior. [1] M. Greiner, O. Mandel, T.Esslinger, T.W. Hansch and I. Bloch, Nature 415, 2002. [2] O. Morsch, J.H. Müller, D. Ciampini, M. Cristiani, P.B. Blakie, C.J. Williams, P.S. Julienne and E. Arimondo. Cond-mat/0208162 (to appear in Phys. Rev. A)

  4. Design and Properties of Confined Nanocatalysts by Atomic Layer Deposition.

    PubMed

    Gao, Zhe; Qin, Yong

    2017-09-19

    Governing the process and outcome of chemical reactions is the most important aim of catalytic chemistry. The confinement of active sites inside nanosized spaces provides a powerful strategy to achieve this goal. Reacting molecules (reactants, intermediates, and products of a reaction) and nanomaterials (metal/metal-oxide nanoparticles) confined inside nanoreactors have been observed to exhibit modified behaviors and properties with respect to their unconfined counterparts. Typically, catalysts confined in zeolites, mesoporous materials, metal-organic frameworks, and nanotubes are obtained by traditional liquid-phase methods. However, excess metals or undesired solvents and other reagents must be removed. It is also difficult to precisely regulate the confined nanostructures and assemble multifunctional sites in the confined nanospaces. Atomic layer deposition (ALD) provides a controllable method to fabricate confined catalysts due to its outstanding advantages. In this Account, we describe our progress in the design and properties of confined nanocatalysts by ALD. ALD is an elegant method to directly deposit highly dispersed metal or oxide species into porous materials, including zeolites and mesoporous materials. We deposited Pt nanoclusters in the micropores of a KL zeolite with precisely controlled size by ALD. We also introduced CoOx nanoclusters into mesoporous SBA-15. We have reported pioneering works on the synthesis of confined nanoparticles with metal-in-nanotube structures by a template-assisted ALD method. Confined Cu nanoparticles were prepared by reducing CuO nanowires coated with Al2O3, TiO2, or alucone layers by ALD. Confined Cu and Au nanoparticles were also prepared starting from the corresponding metal nanowires with the assistance of sacrificial layers produced by ALD. In a more facile strategy, Au nanoparticles confined in Al2O3 nanotubes were produced using a sacrificial template by ALD. Furthermore, we synthesized a multiply confined Ni

  5. Spectroscopic imaging of metal halide high-intensity discharge lamps

    NASA Astrophysics Data System (ADS)

    Bonvallet, Geoffrey A.

    The body of this work consists of three main research projects. An optical- and near-ultraviolet-wavelength absorption study sought to determine absolute densities of ground and excited level Sc atoms, ground level Sc + ions, and ground level Na atoms in a commercial 250 W metal halide high intensity discharge lamp during operation. These measurements also allowed the determination of the arc temperature and absolute electron density as functions of radius. Through infrared emission spectroscopy, relative densities of sodium and scandium were determined as functions of radius. Using the absolute densities gained from the optical experiment, these relative densities were calibrated. In addition, direct observation of the infrared emission allowed us to characterize the infrared power losses of the lamp. When considered as a fraction of the overall power consumption, the near-infrared spectral power losses were not substantial enough to warrant thorough investigation of their reduction in these lamps. The third project was an attempt to develop a portable x-ray diagnostic experiment. Two-dimensional spatial maps of the lamps were analyzed to determine absolute elemental mercury densities and the arc temperature as a function of radius. Two methods were used to improve the calibration of the density measurements and to correct for the spread in x-ray energy: known solutions of mercury in nitric acid, and an arc lamp which was uniformly heated to evaporate the mercury content. Although many complexities arose in this experiment, its goal was successfully completed.

  6. Evaluation of GOES encoder lamps

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Helmold, N.

    1983-01-01

    Aging characteristics and life expectancies of flight quality, tungsten filament, encoder lamps are similar to those of 'commercial' grade gas filled lamps of similar construction, filament material and filament temperature. The aging and final failure by filament burnout are caused by single crystal growth over large portions of the filament with the concomitant development of facets and notches resulting in reduction of cross section and mechanical weakening of the filament. The life expectancy of presently produced lamps is about one year at their nominal operating voltage of five volts dc. At 4.5 volts, it is about two years. These life times are considerably shorter, and the degradation rates of lamp current and light flux are considerably higher, than were observed in the laboratory and in orbit on lamps of the same type manufactured more than a decade ago. It is speculated that the filaments of these earlier lamps contained a crystallization retarding dopant, possibly thorium oxide. To obtain the desired life expectancy of or = to four years in present lamps, operating voltages of or = to four volts dc would be required.

  7. LRO-Lyman Alpha Mapping Project (LAMP) Observations of the GRAIL Impact Plumes

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Greathouse, T. K.; Hurley, D. M.; Gladstone, G. R.; Hayne, P. O.; Paige, D. A.; Greenhagen, B. T.; Sefton-Nash, E.; Zuber, M. T.; Smith, D. E.; Colaprete, A.; Kaufmann, D. E.; Miles, P. F.; Grava, C.; Throop, H.; Feldman, P. D.; Hendrix, A. R.; Pryor, W. R.; Stubbs, T. J.; Glenar, D. A.; Parker, J. W.; Stern, S. A.

    2013-10-01

    The Lyman Alpha Mapping Project (LAMP) UV spectrograph on the Lunar Reconnaissance Orbiter (LRO) was positioned to directly view the expanding gas plumes from the two GRAIL spacecraft impacts on 17 December 2012. LAMP detected resonantly scattered emissions from Hg and H atoms in the sunlit regions of these plumes. The spectral, spatial, and light-curve analyses used in these gas detections are consistent with previous LAMP observations of the LCROSS impact into the permanently shadowed region of Cabeus crater. LAMP's detection of atomic H by Lyman-α emission at the Moon (a first) was facilitated by pointing at the nightside surface to eliminate sky background noise. Volatile transport of Hg and H species is known to concentrate them near the poles, and in the context of LRO-Diviner temperature measurements of these high-latitude (75.6° N) impact sites the LAMP detections address this process.

  8. Custom blending of lamp phosphors

    NASA Technical Reports Server (NTRS)

    Klemm, R. E.

    1978-01-01

    Spectral output of fluorescent lamps can be precisely adjusted by using computer-assisted analysis for custom blending lamp phosphors. With technique, spectrum of main bank of lamps is measured and stored in computer memory along with emission characteristics of commonly available phosphors. Computer then calculates ratio of green and blue intensities for each phosphor according to manufacturer's specifications and plots them as coordinates on graph. Same ratios are calculated for measured spectrum. Once proper mix is determined, it is applied as coating to fluorescent tubing.

  9. A New Instrument Design for Imaging Low Energy Neutral Atoms

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  10. Designing Frustrated Quantum Magnets with Laser-Dressed Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Glaetzle, Alexander W.; Dalmonte, Marcello; Nath, Rejish; Gross, Christian; Bloch, Immanuel; Zoller, Peter

    2015-05-01

    We show how a broad class of lattice spin-1 /2 models with angular- and distance-dependent couplings can be realized with cold alkali atoms stored in optical or magnetic trap arrays. The effective spin-1 /2 is represented by a pair of atomic ground states, and spin-spin interactions are obtained by admixing van der Waals interactions between fine-structure split Rydberg states with laser light. The strengths of the diagonal spin interactions as well as the "flip-flop," and "flip-flip" and "flop-flop" interactions can be tuned by exploiting quantum interference, thus realizing different spin symmetries. The resulting energy scales of interactions compare well with typical temperatures and decoherence time scales, making the exploration of exotic forms of quantum magnetism, including emergent gauge theories and compass models, accessible within state-of-the-art experiments.

  11. A New Instrument Design for Imaging Low Energy Neutral Atoms

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  12. REVIEW ARTICLE: UHP lamp systems for projection applications

    NASA Astrophysics Data System (ADS)

    Derra, Guenther; Moench, Holger; Fischer, Ernst; Giese, Hermann; Hechtfischer, Ulrich; Heusler, Gero; Koerber, Achim; Niemann, Ulrich; Noertemann, Folke-Charlotte; Pekarski, Pavel; Pollmann-Retsch, Jens; Ritz, Arnd; Weichmann, Ulrich

    2005-09-01

    Projection systems have found widespread use in conference rooms and other professional applications during the last decade and are now entering the home TV market at a considerable pace. Projectors as small as about one litre are able to deliver several thousand screen lumens and are, with a system efficacy of over 10 lm W-1, the most efficient display systems realized today. Short arc lamps are a key component for projection systems of the highest efficiency for small-size projection displays. The introduction of the ultra high performance (UHP) lamp system by Philips in 1995 can be identified as one of the key enablers of the commercial success of projection systems. The UHP lamp concept features outstanding arc luminance, a well suited spectrum, long life and excellent lumen maintenance. For the first time it combines a very high pressure mercury discharge lamp with extremely short and stable arc gap with a regenerative chemical cycle keeping the discharge walls free from blackening, leading to lifetimes of over 10 000 h. Since the introduction of the UHP lamp system, many important new technology improvements have been realized: burner designs for higher lamp power, advanced ignition systems, miniaturized electronic drivers and innovative reflector concepts. These achievements enabled the impressive increase of projector light output, a remarkable reduction in projector size and even higher optical efficiency in projection systems during the last years. In this paper the concept of the UHP lamp system is described, followed by a discussion of the technological evolution the UHP lamp has undergone so far. Last, but not least, the important improvements of the UHP lamp system including the electronic driver and the reflector are discussed.

  13. Electronic ballast for fluorescent lamps

    SciTech Connect

    Kazimierczuk, M.K.; Szaraniec, W.

    1993-10-01

    A frequency-domain analysis is given for a Class D voltage-switching power inverter with a load resistance connected in parallel with a resonant capacitor. Using the fundamental component approximation, design equations are derived to provide easy-to-use design tools. The inverter is inherently short-circuit proof, but cannot operate safely with an open circuit at the resonant frequency. Safe operation with an open circuit can be achieved if the operating frequency is sufficiently lower or higher than the resonant frequency. The experimental results are given for two fluorescent lamps F40 connected in series, using MTP5N40 MOSFET`s. The operating frequency was 50 kHz at full power and 70 kHz at 20% of full power. The power factor was 0.99 at full power and 0.96 at 20% of full power. At full power, the efficiency of the Class D inverter was 95.6% and the efficiency of the power factor corrector was 93%. The overall efficiency of the ballast was 89.4% at full power.

  14. Design of periodic waveguide for enhancing the interaction of light and atoms in a vacuum

    NASA Astrophysics Data System (ADS)

    Faggiani, Rémi; Zang, Xiaorun; Yang, Jianji; Lalanne, Philippe

    2017-02-01

    The emerging field of on-chip integration of nanophotonic devices and cold atoms offers extremely strong and pure light-matter interaction schemes, which may have profound impact on quantum information science. In this context, a long-standing obstacle is to achieve strong interaction between single atoms and single photons, while at the same time trap atoms in vacuum at large separation distances from dielectric surfaces. In this work, we study new waveguide geometries that challenge these conflicting objectives. The designed photonic crystal waveguides are expected to offer a good compromise, which additionally allow for easy manipulation of atomic clouds around the structure.

  15. LAMP Observes the LCROSS Plume

    NASA Image and Video Library

    This video shows LAMP’s view of the LCROSS plume. The first half of the animation shows the LAMP viewport scanning across the horizon, passing through the plume, and moving on. The second half of...

  16. Sensitivity of an illumination system to lamp flicker

    NASA Astrophysics Data System (ADS)

    Rehn, H.

    2008-09-01

    Discharge lamps serve a wide variety of applications and outperform novel light sources such as LEDs in terms of luminous flux and luminance. Unfortunately, such lamps occasionally show arc movements (flicker) which change the amount of light that is coupled into an optical system. A variety of measures in lamp design can suppress flicker tendencies of a lamp but arc movement cannot be totally avoided. In our contribution, we show that the way how the light is collected considerably influences the impact of flicker on the collected luminous flux. We investigate light collection sensitivity of an illumination system as a function of the etendue and of the particular realization of the illumination system. As a result, flicker sensitivity can be substantially reduced at the expense of collection efficiency.

  17. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Requirements for lamps other than head lamps. 393.25 Section 393.25 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... Wiring § 393.25 Requirements for lamps other than head lamps. (a) Mounting. All lamps shall be...

  18. 10 CFR 429.27 - General service fluorescent lamps, general service incandescent lamps, and incandescent reflector...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false General service fluorescent lamps, general service incandescent lamps, and incandescent reflector lamps. 429.27 Section 429.27 Energy DEPARTMENT OF ENERGY ENERGY... lamp, the color rendering index (CRI) shall be measured from the same lamps selected for the lumen...

  19. Preventing mercury vapor release from broken fluorescent lamps during shipping.

    PubMed

    Glenz, Tracy T; Brosseau, Lisa M; Hoffbeck, Richard W

    2009-03-01

    Fluorescent lamps are estimated to annually release 1 t of mercury into the air in the United States; transport of used lamps may play an important role in these emissions. In 1999, the U.S. Environmental Protection Agency added lamps to the universal waste rule to encourage recycling by allowing shipment to recycling facilities by common carrier. The rules required that lamp packaging must be structurally sound and adequate to prevent breakage but did not address vapor release. In 2005, a requirement was added that packaging must be designed to prevent the escape of mercury into the environment, but this change does not apply to fluorescent lamps. The goal of this research was to compare mercury vapor containment among different packaging configurations. In 10 replicate experiments of 5 different packages containing 40 broken, used, low-mercury lamps, two 6-hr samples of airborne mercury vapor concentrations were taken in a well-mixed sealed chamber held at 83 +/- 2 degrees F. Average chamber concentrations ranged from 0.977 mg/m3 for a single cardboard box to 0.004 mg/m3 for a double cardboard box with a plastic-foil laminate bag sandwiched between the boxes. In comparison to the single cardboard box, a single box with an unsealed thin plastic liner lowered mercury concentrations in the chamber by 52%, single or double boxes with a thicker tape-sealed plastic bag lowered concentrations by 90-92%, and a double box with a ziplock plastic-foil laminate bag lowered concentrations by 99.7%. The latter was the only configuration capable of maintaining airborne concentrations below all occupational exposure levels. Standards more specific to mercury containment are needed for packages used to ship fluorescent lamps to recyclers. Results from this study suggest that an effective packaging design should minimize the effect of cuts from broken glass while also preventing the release of mercury vapor from broken lamps.

  20. Advanced Research on the Electrode Area of a Low Pressure Hg-Ar Discharge Lamp

    NASA Astrophysics Data System (ADS)

    Shi, Jianou

    The phenomenon of electrical discharge in low pressure Hg-Ar vapor has been under continuous investigation since it was first discovered. Because much work has been done in the positive column, it is, therefore, that the electrode area of the lamp is the main focus of this thesis. To simulate the interface phenomena on a electrode surface, samples, with optically smooth tungsten-barium interfaces were fired in a high vacuum furnace at different temperatures. Measurements were made using surface characterization techniques. It is found that no Ba_3WO _6 is formed on the surface as previously reported in the powder mixing experiments, and the interface consists mainly of BaWO_4. It was discovered in the early 1950's that vaporization of the barium from the cathode in a fluorescent lamp could be reduced tremendously with the addition of 5% of ZrO _2 to the coating mix. However, the reason for this is poorly understood. A possible explanation has been found, and number of tests have been completed to simulate the formation of BaZO_3 under different lamp operating conditions. The measurements and simulation of barium atom and ion number densities are presented. Barium emitted from the electrode surface has a strong interaction with the local plasma. The number density distributions depend mainly on the discharge conditions. A Monte Carlo computer simulation for the barium ion number density is described and the results from the simulation compared to the experimental results obtained by absorption method. It is clear that the ion distribution and phosphor contamination in the electrode area are two closely related issues. XPS is used to measure the chemical composition on the phosphor surface of the lamp. A discussion of calibration methods and the possible compounds forming on the phosphors is then presented. A number of questions have been raised concerning the safety of the lamp and its affects on health related to radiation generated in the electrode area. Typically

  1. Mercury speciation in fluorescent lamps by thermal release analysis

    SciTech Connect

    Raposo, Claudio; Windmoeller, Claudia Carvalhinho; Durao Junior, Walter Alves

    2003-07-01

    In this work, mercury speciation in phosphorus powder matrices and soda lime glass waste from new and spent fluorescent lamp wastes has been studied by thermo-desorption/atomic absorption spectrometry (TDAAS), X-ray diffraction (XRD), cold vapor-atomic absorption (CV-AAS) and atomic emission spectrometry/inductively coupled plasma (ICP/AES). TDAAS results show the presence of oxidized forms of mercury, i.e., Hg{sup 1+} and Hg{sup 2+}, especially in wastes with high mercury concentration. Such forms are mobile, and therefore represent a potential hazard waste material. Glass TD profiles of spent fluorescent lamps suggested the presence of mercury strongly linked to the matrix, which desorbs only at high temperatures.

  2. Mercury speciation in fluorescent lamps by thermal release analysis.

    PubMed

    Raposo, Cláudio; Windmöller, Cláudia Carvalhinho; Durão, Walter Alves

    2003-01-01

    In this work, mercury speciation in phosphorus powder matrices and soda lime glass waste from new and spent fluorescent lamp wastes has been studied by thermo-desorption/atomic absorption spectrometry (TDAAS), X-ray diffraction (XRD), cold vapor-atomic absorption (CV-AAS) and atomic emission spectrometry/inductively coupled plasma (ICP/AES). TDAAS results show the presence of oxidized forms of mercury, i.e., Hg(1+) and Hg(2+), especially in wastes with high mercury concentration. Such forms are mobile, and therefore represent a potential hazard waste material. Glass TD profiles of spent fluorescent lamps suggested the presence of mercury strongly linked to the matrix, which desorbs only at high temperatures.

  3. X-ray Methods in High-Intensity Discharges and Metal-Halide Lamps: X-ray Induced Fluorescence

    SciTech Connect

    Curry, John J.; Lapatovich, Walter P.; Henins, Albert

    2011-12-09

    We describe the use of x-ray induced fluorescence to study metal-halide high-intensity discharge lamps and to measure equilibrium vapor pressures of metal-halide salts. The physical principles of metal-halide lamps, relevant aspects of x-ray-atom interactions, the experimental method using synchrotron radiation, and x-ray induced fluorescence measurements relevant to metal-halide lamps are covered.

  4. New insights in atom-atom interactions for future drug design.

    PubMed

    Popelier, Paul

    2012-01-01

    In silico medicinal chemistry investigates molecular systems that are too large to be tackled by medium to high level ab initio quantum chemistry. Only atomistic force fields can deliver rapid computation of energy required in sampling the many conformational and orientational degrees of freedom of a ligand within a protein pocket. However, the predictive reliability of a force field critically depends on the quality and realism of its energy function. Particularly, the electrostatic component of this energy needs to be as accurate as possible because druglike ligands and proteins are polar molecules, whose interaction does not just depend on shape. Surprisingly, the challenging problem of energy accuracy receives much less attention than it deserves. Docking results in the literature are still dependent on atomic point charges, which are inherently inaccurate at short and medium range. This has been known for decades but improved and more accurate methods have not (yet) found their way in mainstream in silico medicinal chemistry. Moreover, often the "details" of the electrostatic energy are poorly and not at all reported, as if they do not matter. This article attempts to inspire future docking algorithms with ideas from an approach called Quantum Chemical Topology (QCT). The way this method partitions energy and treats the electrostatic interaction should inject more realism into the current paradigm. The gap between the medicinal chemistry "world view" and that of physical and computational chemistry needs to narrow en route to reach the currently elusive goal to make docking work for the right reasons. We discuss in detail a path to make electrostatics drastically more realistic, based on novel ideas, some partially implemented.

  5. Optimal experimental design for nano-particle atom-counting from high-resolution STEM images.

    PubMed

    De Backer, A; De Wael, A; Gonnissen, J; Van Aert, S

    2015-04-01

    In the present paper, the principles of detection theory are used to quantify the probability of error for atom-counting from high resolution scanning transmission electron microscopy (HR STEM) images. Binary and multiple hypothesis testing have been investigated in order to determine the limits to the precision with which the number of atoms in a projected atomic column can be estimated. The probability of error has been calculated when using STEM images, scattering cross-sections or peak intensities as a criterion to count atoms. Based on this analysis, we conclude that scattering cross-sections perform almost equally well as images and perform better than peak intensities. Furthermore, the optimal STEM detector design can be derived for atom-counting using the expression for the probability of error. We show that for very thin objects LAADF is optimal and that for thicker objects the optimal inner detector angle increases.

  6. The design and implementation of a distributed transaction system based on atomic data types

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Stroud, R. J.; Moody, K.; Bacon, J.

    1995-03-01

    The complexity of potential interactions among concurrent activities and the multitude of failure modes that can occur in distributed systems make it hard to reason about distributed programs. Transactions provide the programmer with a mechanism that simplifies the development of concurrent and distributed programs. In this paper we present the design and implementation of a distributed transaction system that uses atomic data types to provide synchronization and recovery. Generally speaking, implementing user-defined atomic data types is a difficult task. However, unlike existing systems, our system requires programmers to do very little extra work to make an object atomic. Programmers implement atomic data types as if for a sequential and reliable environment and specify the concurrent semantics of object operations separately in a small, but expressive declarative language. Appropriate synchronization and recovery code for atomic data types is generated automatically by the system according to this information.

  7. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  8. Design and fabrication of diffractive atom chips for laser cooling and trapping

    NASA Astrophysics Data System (ADS)

    Cotter, J. P.; McGilligan, J. P.; Griffin, P. F.; Rabey, I. M.; Docherty, K.; Riis, E.; Arnold, A. S.; Hinds, E. A.

    2016-06-01

    It has recently been shown that optical reflection gratings fabricated directly into an atom chip provide a simple and effective way to trap and cool substantial clouds of atoms (Nshii et al. in Nat Nanotechnol 8:321-324, 2013; McGilligan et al. in Opt Express 23(7):8948-8959, 2015). In this article, we describe how the gratings are designed and microfabricated and we characterise their optical properties, which determine their effectiveness as a cold atom source. We use simple scalar diffraction theory to understand how the morphology of the gratings determines the power in the diffracted beams.

  9. Invited Review Article: The statistical modeling of atomic clocks and the design of time scales

    SciTech Connect

    Levine, Judah

    2012-02-15

    I will show how the statistical models that are used to describe the performance of atomic clocks are derived from their internal design. These statistical models form the basis for time scales, which are used to define international time scales such as International Atomic Time and Coordinated Universal Time. These international time scales are realized by ensembles of clocks at national laboratories such as the National Institute of Standards and Technology, and I will describe how ensembles of atomic clocks are characterized and managed.

  10. Invited review article: The statistical modeling of atomic clocks and the design of time scales.

    PubMed

    Levine, Judah; Ibarra-Manzano, O

    2012-02-01

    I will show how the statistical models that are used to describe the performance of atomic clocks are derived from their internal design. These statistical models form the basis for time scales, which are used to define international time scales such as International Atomic Time and Coordinated Universal Time. These international time scales are realized by ensembles of clocks at national laboratories such as the National Institute of Standards and Technology, and I will describe how ensembles of atomic clocks are characterized and managed.

  11. Mechanical and Thermal Design and Qualification of an Atom Interferometer Sounding Rocket Payload

    NASA Astrophysics Data System (ADS)

    Grosse, J.; Seidel, S. T.; Krutzik, M.; Wendrich, T.; Stamminger, A.; Scharringhausen, M.; Quantus Consortium

    2015-09-01

    The MAIUS-1 experiment is a pathfinder quantum optics experiment about to fly on a VSB-30 sounding rocket in November 2015. The scientific objective of the mission is to demonstrate the feasibility of creating a Bose-Einstein Condensate and performing atom interferometry aboard a sounding rocket with Rubidium 87atoms. This paper will summarize the thermal and mechanical design of the payload and its (sub)systems. Moreover the qualification procedures and the results of the qualification test will be presented.

  12. A 400 kilowatt argon arc lamp for solar simulation

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Pollack, J. L.

    1972-01-01

    A 400 kilowatt argon arc lamp for a solar simulator has been designed, operated, and evaluated. The lamp is designed to produce one solar constant on a test area 4.6 by 9.2 meters when used with a collimator. The divergence angle of the beam is about 1 deg. The lamp is designed to operate completely within a vacuum environment. Over 80 kilowatt of directed radiation was monitored and measured for a 25-hour period during a recent test. In another test, an arc was operated at 400 kilowatt for 110 hours without removal or refurbishing of the electrodes. These tests have proven the cleanliness and integrity of the radiation source.

  13. A hydrometallurgical process for the recovery of terbium from fluorescent lamps: Experimental design, optimization of acid leaching process and process analysis.

    PubMed

    Innocenzi, Valentina; Ippolito, Nicolò Maria; De Michelis, Ida; Medici, Franco; Vegliò, Francesco

    2016-12-15

    Terbium and rare earths recovery from fluorescent powders of exhausted lamps by acid leaching with hydrochloric acid was the objective of this study. In order to investigate the factors affecting leaching a series of experiments was performed in according to a full factorial plan with four variables and two levels (4(2)). The factors studied were temperature, concentration of acid, pulp density and leaching time. Experimental conditions of terbium dissolution were optimized by statistical analysis. The results showed that temperature and pulp density were significant with a positive and negative effect, respectively. The empirical mathematical model deducted by experimental data demonstrated that terbium content was completely dissolved under the following conditions: 90 °C, 2 M hydrochloric acid and 5% of pulp density; while when the pulp density was 15% an extraction of 83% could be obtained at 90 °C and 5 M hydrochloric acid. Finally a flow sheet for the recovery of rare earth elements was proposed. The process was tested and simulated by commercial software for the chemical processes. The mass balance of the process was calculated: from 1 ton of initial powder it was possible to obtain around 160 kg of a concentrate of rare earths having a purity of 99%. The main rare earths elements in the final product was yttrium oxide (86.43%) following by cerium oxide (4.11%), lanthanum oxide (3.18%), europium oxide (3.08%) and terbium oxide (2.20%). The estimated total recovery of the rare earths elements was around 70% for yttrium and europium and 80% for the other rare earths.

  14. Flat light guides with prismatic elements coupled with a mini aperture fluorescent lamp

    NASA Astrophysics Data System (ADS)

    Zaremba, Krzysztof

    2005-09-01

    Flat light guides are modern solution enabling production of luminaries characterised by large area and low height. The amount of the luminous flux, which might penetrate the side-lit flat light waveguide with a predefined thickness depends on the light source's luminance. Special fluorescent lamps equipped with an internal reflector layer were designed for this kind of illumination systems. Such lamps are typically characterised by small aperture along the spine of the lamp. The aperture technology boosts the luminance value within the lamp's aperture to levels even 4 to 5 times higher than the average luminance of a standard fluorescent lamp. The presented article contains a detailed analysis of the impact of the aperture angle size on the coupling efficiency. It was also shown that application of a mini aperture fluorescent lamp influences changes in the luminous intensity curves of prismatic elements, which are most commonly used to direct the luminous flux.

  15. Adjoint design sensitivity analysis of reduced atomic systems using generalized Langevin equation for lattice structures

    SciTech Connect

    Kim, Min-Geun; Jang, Hong-Lae; Cho, Seonho

    2013-05-01

    An efficient adjoint design sensitivity analysis method is developed for reduced atomic systems. A reduced atomic system and the adjoint system are constructed in a locally confined region, utilizing generalized Langevin equation (GLE) for periodic lattice structures. Due to the translational symmetry of lattice structures, the size of time history kernel function that accounts for the boundary effects of the reduced atomic systems could be reduced to a single atom’s degrees of freedom. For the problems of highly nonlinear design variables, the finite difference method is impractical for its inefficiency and inaccuracy. However, the adjoint method is very efficient regardless of the number of design variables since one additional time integration is required for the adjoint GLE. Through numerical examples, the derived adjoint sensitivity turns out to be accurate and efficient through the comparison with finite difference sensitivity.

  16. Performance of electronic ballast and controls with 34 and 40 watt F40 fluorescent lamps

    SciTech Connect

    Verderber, R.R.; Morse, O.; Rubinstein, F.M.

    1988-06-01

    The electric and photometric characteristics have been compared for 40 watt (40W) and 34 watt (34W), F40 T-12 fluorescent lamps by operating them with electronic ballasts, static controls and dynamic controls of different designs. The energy savings krypton filled 34W lamp system is, at best, slightly more efficacious than the standard 40W argon filled lamp system by virtue of the use of lite white phosphor. The 34W system has limitations that include higher starting voltages, reduced temperature range of operation, smaller dimming range and poorer color rendering than the standard cool white 40W lamp system. 9 refs., 7 figs., 9 tabs.

  17. Guidelines for application of fluorescent lamps in high-performance avionic backlight systems

    NASA Astrophysics Data System (ADS)

    Syroid, Daniel D.

    1997-07-01

    Fluorescent lamps have proven to be well suited for use in high performance avionic backlight systems as demonstrated by numerous production applications for both commercial and military cockpit displays. Cockpit display applications include: Boeing 777, new 737s, F-15, F-16, F-18, F-22, C- 130, Navy P3, NASA Space Shuttle and many others. Fluorescent lamp based backlights provide high luminance, high lumen efficiency, precision chromaticity and long life for avionic active matrix liquid crystal display applications. Lamps have been produced in many sizes and shapes. Lamp diameters range from 2.6 mm to over 20 mm and lengths for the larger diameter lamps range to over one meter. Highly convoluted serpentine lamp configurations are common as are both hot and cold cathode electrode designs. This paper will review fluorescent lamp operating principles, discuss typical requirements for avionic grade lamps, compare avionic and laptop backlight designs and provide guidelines for the proper application of lamps and performance choices that must be made to attain optimum system performance considering high luminance output, system efficiency, dimming range and cost.

  18. Optimization of a constrained linear monochromator design for neutral atom beams.

    PubMed

    Kaltenbacher, Thomas

    2016-04-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam.

  19. LAMP: Peering Into the Lunar Dark

    NASA Image and Video Library

    The Lyman-Alpha Mapping Project (LAMP) is an instrument on NASA’s Lunar Reconnaissance Orbiter mission to map and study the moon. LAMP is a spectrograph that images the ultraviolet region of the...

  20. Design of atomic step networks on Si(111) through strain distribution control

    NASA Astrophysics Data System (ADS)

    Omi, Hiroo; Homma, Yoshikazu; Ogino, Toshio; Stoyanov, Stoyan; Tonchev, Vesselin

    2004-01-01

    We propose an alternative method to control atomic step networks on silicon for future wafer-scale integration of self-assembling nanostructures. The method is the strain-distribution-control method that we have recently proposed in [H. Omi, D. J. Bottomley, and T. Ogino, Appl. Phys. Lett. 80, 1073 (2002)], which we apply here to design atomic step networks on vicinal Si(111) wafer. Si(111) with its strain patterned by buried silicon oxide inclusions was annealed at 1230 °C in ultrahigh vacuum and observed by in situ secondary electron microscopy and ex situ atomic force microscopy. The images show that the method enables us to create the desired arrays of atomic step networks on an arbitrary area of planar silicon wafer. The arrays remain stable during the 1230 °C annealing.

  1. Axial segregation in metal halide lamps under varying gravity conditions during parabolic flights

    NASA Astrophysics Data System (ADS)

    Flikweert, A. J.; van Kemenade, M.; Nimalasuriya, T.; Haverlag, M.; Kroesen, G. M. W.; Stoffels, W. W.

    2006-04-01

    Metal-halide lamps have high efficiencies. These lamps often contain rare-earth additives (in our case dysprosium iodide) which radiate very efficiently in the visible spectrum. Colour separation is a problem in these lamps; this is caused by axial segregation of these additives as a result of diffusion and convection. To vary the effect of convection, parabolic flights were performed with micro-gravity (0g) and hyper-gravity (~1.8g) phases. During these flights, the atomic dysprosium density was measured by means of laser absorption spectroscopy. In addition, the lamp voltage, which is strongly influenced by the total amount of Dy in the lamp, was measured. The Dy density and axial segregation are dependent on the gravity. The dynamic lamp behaviour during the parabolas was investigated: the dysprosium density and lamp voltage followed the gravity variations. When entering the micro-gravity phase, the axial diffusion time constant is the slowest time constant; it is proportional to the mercury pressure in the lamp.

  2. Thermal analysis of a linear infrared lamp

    SciTech Connect

    Nakos, J.T.

    1982-01-01

    A theoretical and experimental analysis of an infrared lamp is presented based on radiant heat transfer theory. The analysis is performed on a specific type of linear lamp which has a coiled tungsten filament surrounded by a fused quartz envelope. The purpose of the study was to model the lamp thermally, not electrically, to arrive at a better understanding of the operation of the lamp.

  3. Lake Huron LAMPs

    EPA Pesticide Factsheets

    The approach in Lake Huron differs from the Lakewide Management Plans of the other Great Lakes: no formal binational designation of lakewide beneficial use impairments, nor extensive lakewide modeling of chemical loadings

  4. Visualization of Atomization Gas Flow and Melt Break-up Effects in Response to Nozzle Design

    SciTech Connect

    Anderson, Iver; Rieken, Joel; Meyer, John; Byrd, David; Heidloff, Andy

    2011-04-01

    Both powder particle size control and efficient use of gas flow energy are highly prized goals for gas atomization of metal and alloy powder to minimize off-size powder inventory (or 'reverb') and excessive gas consumption. Recent progress in the design of close-coupled gas atomization nozzles and the water model simulation of melt feed tubes were coupled with previous results from several types of gas flow characterization methods, e.g., aspiration measurements and gas flow visualization, to make progress toward these goals. Size distribution analysis and high speed video recordings of gas atomization reaction synthesis (GARS) experiments on special ferritic stainless steel alloy powders with an Ar+O{sub 2} gas mixture were performed to investigate the operating mechanisms and possible advantages of several melt flow tube modifications with one specific gas atomization nozzle. In this study, close-coupled gas atomization under closed wake gas flow conditions was demonstrated to produce large yields of ultrafine (dia.<20 {mu}m) powders (up to 32%) with moderate standard deviations (1.62 to 1.99). The increased yield of fine powders is consistent with the dual atomization mechanisms of closed wake gas flow patterns in the near-field of the melt orifice. Enhanced size control by stabilized pre-filming of the melt with a slotted trumpet bell pour tube was not clearly demonstrated in the current experiments, perhaps confounded by the influence of the melt oxidation reaction that occurred simultaneously with the atomization process. For this GARS variation of close-coupled gas atomization, it may be best to utilize the straight cylindrical pour tube and closed wake operation of an atomization nozzle with higher gas mass flow to promote the maximum yields of ultrafine powders that are preferred for the oxide dispersion strengthened alloys made from these powders.

  5. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all persons...

  6. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all persons...

  7. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all...

  8. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all...

  9. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all...

  10. 49 CFR 234.221 - Lamp voltage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lamp voltage. 234.221 Section 234.221 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.221 Lamp voltage. The voltage at each lamp shall...

  11. 49 CFR 234.221 - Lamp voltage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Lamp voltage. 234.221 Section 234.221..., DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY AND STATE ACTION PLANS Maintenance, Inspection, and Testing Maintenance Standards § 234.221 Lamp voltage. The voltage at each lamp shall be...

  12. CALiPER Report 20.3: Robustness of LED PAR38 Lamps

    SciTech Connect

    Poplawski, Michael E.; Royer, Michael P.; Brown, Charles C.

    2014-12-01

    Three samples of 40 of the Series 20 PAR38 lamps underwent multi-stress testing, whereby samples were subjected to increasing levels of simultaneous thermal, humidity, electrical, and vibrational stress. The results do not explicitly predict expected lifetime or reliability, but they can be compared with one another, as well as with benchmark conventional products, to assess the relative robustness of the product designs. On average, the 32 LED lamp models tested were substantially more robust than the conventional benchmark lamps. As with other performance attributes, however, there was great variability in the robustness and design maturity of the LED lamps. Several LED lamp samples failed within the first one or two levels of the ten-level stress plan, while all three samples of some lamp models completed all ten levels. One potential area of improvement is design maturity, given that more than 25% of the lamp models demonstrated a difference in failure level for the three samples that was greater than or equal to the maximum for the benchmarks. At the same time, the fact that nearly 75% of the lamp models exhibited better design maturity than the benchmarks is noteworthy, given the relative stage of development for the technology.

  13. Saturated vapor pressure above the amalgam of alkali metals in discharge lamps

    NASA Astrophysics Data System (ADS)

    Gavrish, S. V.

    2011-12-01

    A theoretical and numerical analysis of the evaporation process of two-component compounds in vapors of alkali metals in discharge lamps is presented. Based on the developed mathematical model of calculation of saturated vapor pressure of the metal above the amalgam, dependences of mass fractions of the components in the discharge volume on design parameters and thermophysical characteristics of the lamp are obtained.

  14. Lighting Systems For High Speed Photography Applying Special Metal Halide Discharge Lamps

    NASA Astrophysics Data System (ADS)

    Gillum, Keith M.; Steuernagel, K. H.

    1983-03-01

    High speed photography requires, in addition to a good color quality of the light source, a very high level of illumination. Conventional lighting systems utilizing incandescent lamps or other metal halide lamp types has inherent problems of inefficient light output or poor color quality. Heat generated by incandescent lamps and the power these sources require drive up operating and installation costs. A most economical and practical solution was devised by using the metal halide discharge lamp developed by OSRAM, GmbH of Munich, West Germany. This lamp trade marked the HMITM Metallogen was primarily developed for the needs of the television and motion picture film industry. Due to their high efficiency and other consistent operating qualities these lamps also fulfill the needs of high speed photography, e.g. in crash test facilities, when special engineering activities are carried out. The OSRAM HMITM lamp is an AC discharge metal halide lamp with rare earth additives to increase both the efficiency and light output qualities. Since the lamp is an AC source, a special method had to be developed to overcome the strobing effect, which is normal for AC lamps given their modulated light output, when used with high speed cameras, (e.g. with >1000 fps). This method is based on an increased frequency for the lamp supply voltage coupled with a mix of the light output achieved using a multiphase mains power supply. First developed in 1977, this system using the OSRAM HMITM lamps was installed in a crash test facility of a major automotive manufacturer in West Germany. The design resulted in the best lighting and performance ever experienced. Since that time several other motor companies have made use of this breakthrough. Industrial and scientific users are now considering additional applications use of this advanced high speed lighting system.

  15. Optimization of lamp arrangement in a closed-conduit UV reactor based on a genetic algorithm.

    PubMed

    Sultan, Tipu; Ahmad, Zeshan; Cho, Jinsoo

    2016-01-01

    The choice for the arrangement of the UV lamps in a closed-conduit ultraviolet (CCUV) reactor significantly affects the performance. However, a systematic methodology for the optimal lamp arrangement within the chamber of the CCUV reactor is not well established in the literature. In this research work, we propose a viable systematic methodology for the lamp arrangement based on a genetic algorithm (GA). In addition, we analyze the impacts of the diameter, angle, and symmetry of the lamp arrangement on the reduction equivalent dose (RED). The results are compared based on the simulated RED values and evaluated using the computational fluid dynamics simulations software ANSYS FLUENT. The fluence rate was calculated using commercial software UVCalc3D, and the GA-based lamp arrangement optimization was achieved using MATLAB. The simulation results provide detailed information about the GA-based methodology for the lamp arrangement, the pathogen transport, and the simulated RED values. A significant increase in the RED values was achieved by using the GA-based lamp arrangement methodology. This increase in RED value was highest for the asymmetric lamp arrangement within the chamber of the CCUV reactor. These results demonstrate that the proposed GA-based methodology for symmetric and asymmetric lamp arrangement provides a viable technical solution to the design and optimization of the CCUV reactor.

  16. Giant Atomic and Molecular Models and Other Lecture Demonstration Devices Designed for Concrete Operational Students.

    ERIC Educational Resources Information Center

    Battino, Rubin

    1983-01-01

    Describes the design, construction, and use of oversize lecture-demonstration atomic/molecular models. These models appeal to both concrete and formal operational students. Also describes construction and use of an "spdf" sandwich board and an experiment using attribute blocks. (JN)

  17. Giant Atomic and Molecular Models and Other Lecture Demonstration Devices Designed for Concrete Operational Students.

    ERIC Educational Resources Information Center

    Battino, Rubin

    1983-01-01

    Describes the design, construction, and use of oversize lecture-demonstration atomic/molecular models. These models appeal to both concrete and formal operational students. Also describes construction and use of an "spdf" sandwich board and an experiment using attribute blocks. (JN)

  18. Multiple-lamp illumination system for projection displays

    NASA Astrophysics Data System (ADS)

    Vanderwerf, Dennis F.

    1996-03-01

    This paper describes a diascopic projection system that efficiently combines and integrates the output from multiple light sources. The images of these light sources are superposed at a common focus in the projection lens, resulting in a projected screen brightness considerably greater than that produced by a single lamp of equivalent wattage. The illumination system consists of a series of collimating and converging plastic Fresnel lenses, and a linear beam- integrating micro-prismatic element. Glass anamorphic condenser optics are also used. The optics can be cascaded, and the design requirements of a four-lamp system is described. The experimental results from a laboratory developed overhead projection system using dual tungsten-halogen lamps is discussed.

  19. An efficient strategy for designing ambipolar organic semiconductor material: Introducing dehydrogenated phosphorus atoms into pentacene core

    NASA Astrophysics Data System (ADS)

    Tang, Xiao-Dan

    2017-09-01

    The charge transport properties of phosphapentacene (P-PEN) derivatives were systematically explored by theoretical calculation. The dehydrogenated P-PENs have reasonable frontier molecular orbital energy levels to facilitate both electron and hole injection. The reduced reorganization energies of dehydrogenated P-PENs could be intimately connected to the bonding nature of phosphorus atoms. From the idea of homology modeling, the crystal structure of TIPSE-4P-2p is constructed and fully optimized. Fascinatingly, TIPSE-4P-2p shows the intrinsic property of ambipolar transport in both hopping and band models. Thus, introducing dehydrogenated phosphorus atoms into pentacene core could be an efficient strategy for designing ambipolar material.

  20. 30 CFR 20.8 - Class 1 lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... explosion hazards: Ignition of an explosive atmosphere by the heated filament of the bulb in case the bulb... bulb glass surrounding the filament is broken. Alternatively, if the lamp is designed and constructed... the bulb from breakage and preventing exposure of the hot filament, no separate safety device is...

  1. Direct-current converter for gas-discharge lamps

    NASA Technical Reports Server (NTRS)

    Lutus, P.

    1980-01-01

    Metal/halide and similar gas-discharge lamps are powered from low-voltage dc source using small efficient converter. Converter is useful whenever 60-cycle ac power is not available or where space and weight allocations are limited. Possible applications are offshore platforms, mobile homes, and emergency lighting. Design innovations give supply high reliability and efficiency up to 75 percent.

  2. Microgravity Science Glovebox - Interior Lamps

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An array of miniature lamps will provide illumination to help scientists as they conduct experiments inside the Microgravity Science Glovebox (MSG). The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  3. Generation of ion-acoustic waves in an inductively coupled, low-pressure discharge lamp

    SciTech Connect

    Camparo, J. C.; Klimcak, C. M.

    2006-04-15

    For a number of years it has been known that the alkali rf-discharge lamps used in atomic clocks can exhibit large amplitude intensity oscillations. These oscillations arise from ion-acoustic plasma waves and have typically been associated with erratic clock behavior. Though large amplitude ion-acoustic plasma waves are clearly deleterious for atomic clock operation, it does not follow that small amplitude oscillations have no utility. Here, we demonstrate two easily implemented methods for generating small amplitude ion-acoustic plasma waves in alkali rf-discharge lamps. Furthermore, we demonstrate that the frequency of these waves is proportional to the square root of the rf power driving the lamp and therefore that their examination can provide an easily accessible parameter for monitoring and controlling the lamp's plasma conditions. This has important consequences for precise timekeeping, since the atomic ground-state hyperfine transition, which is the heart of the atomic clock signal, can be significantly perturbed by changes in the lamp's output via the ac-Stark shift.

  4. Combining emission and absorption spectroscopy at rare earth spectral lines: plasma temperature measurements in ceramic metal halide lamps

    NASA Astrophysics Data System (ADS)

    Ruhrmann, C.; Westermeier, M.; Höbing, T.; Bergner, A.; Denissen, C.; Suijker, J.; Awakowicz, P.; Mentel, J.

    2013-07-01

    Presently, most high intensity discharge (HID) lamps contain mercury to generate a high pressure buffer gas and thereby an appropriate power input into the arc. Due to its toxicity, the replacement of Hg is of particular interest in recent research on HID lamps. Up to now, the emission coefficient of an atomic Hg double line is widely used to determine the plasma temperature Tpl in HID lamps. Tpl is needed to calculate the total density of atoms and ions of elements inside these lamps. A combination of optical emission and broadband absorption spectroscopy allows us to evaluate Tpl independently of Hg emission lines. The method is required for a determination of Tpl if the Hg line intensity within the investigated lamp is too low, is superimposed by other lines or if environmental-friendly Hg-free lamps are developed. Within this work, phase-resolved plasma temperatures are determined in front of the electrode of Hg-containing MH lamps by emission spectroscopy at atomic Hg lines. Above all, temperatures are measured by a combination of emission and absorption spectroscopy at atomic rare earth lines, namely Dy and Tm. A comparison of Tpl determined by both methods agree within an error margin of <10%. Total phase-resolved rare earth atom densities are obtained by means of the measured ground state densities and Tpl. The combination of emission and absorption spectroscopy is also applied to the bulk plasma of lamps where the intensity of the Hg emission lines is too low for plasma temperature measurements or Hg is absent. It provides the partial rare earth pressure and by comparison with thermodynamic data cold spot temperatures within the lamps.

  5. Temperature measurement on and inside lamps

    SciTech Connect

    Wallin, B.

    1994-12-31

    The use of thermography within the lamp manufacturing industry can improve the quality of many types of lamps ranging from normal incandescent lamps to highly specialized lamps for sports arenas, airports or small lamps for cars. There is a strong demand for more light for the same energy input. Specialized lamps for all possible purposes are developed. But it also forces the lamp manufacturers to utilize the available materials to their extremes. The exact control of the temperatures inside or on the lamp shell has therefore become increasingly necessary as temperatures in lamps can be rather extreme. In plasma lamps for example, the plasma can have a temperature of 6,000 C, the bulk around 700 C and the electrodes inside the bulb can have temperatures in excess of 2,000 C. Thermographic methods have shown their applicability for a large number of measurement cases. Some of these methods and measurement cases are described. As these applications put very special demands on the measurement equipment, these demands are explained in more detail.

  6. Temperature measurement on and inside lamps

    NASA Astrophysics Data System (ADS)

    Wallin, Bo

    1994-03-01

    The use of thermography within the lamp manufacturing industry can improve the quality of many types of lamps ranging from normal incandescent lamps to highly specialized lamps for sports arenas, airports or small lamps for cars. There is a strong demand for more light for the same energy input. Specialized lamps for all possible purposes are developed. But it also forces the lamp manufacturers to utilize the available materials to their extremes. The exact control of the temperatures inside or on the lamp shell has therefore become increasingly necessary as temperatures in lamps can be rather extreme. In plasma lamps for example, the plasma can have a temperature of 6000 C, the bulb around 700 C and the electrodes inside the bulb can have temperatures in excess of 2000 C. Thermographic methods have shown their applicability for a large number of measurement cases. Some of these methods and measurement cases are described. As these applications put very special demands on the measurement equipment, these demands are explained in more detail.

  7. Miniature Bose-Einstein condensate system design based on a transparent atom chip

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Li, Xiaolin; Zhang, Jingfang; Xu, Xinping; Jiang, Xiaojun; Zhang, Haichao; Wang, Yuzhu

    2016-08-01

    We propose a new miniature Bose-Einstein condensate (BEC) system based on a transparent atom chip with a compact external coil structure. A standard six-beam macroscopic magneto-optical trap (MOT) is able to be created near the chip surface due to the chip’s transparency. A novel wire pattern consisting of a double-z wire and a z-shaped wire is designed on the transparent atom chip. With a vertical bias magnetic field, the double-z wire can create the quadrupole magnetic field of an intermediate chip MOT, which is suitable for transporting atoms from the macroscopic MOT to the chip z-wire trap efficiently. The compact external coil structure is designed with a rectangular frameless geometry consisting of only four coil pairs and its volume is less than 0.3 liters. The maximum system power consumption during the BEC generation procedure is about 45 W. The miniature system is evaluated, and about 3 × 106 atoms can be loaded into the chip z-wire trap. The miniature chip BEC system has the advantages of small volume and low power consumption, and it has great potential for practical applications of BEC.

  8. Detecting and locating light atoms from high-resolution STEM images: The quest for a single optimal design.

    PubMed

    Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S

    2016-11-01

    In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the optimal experiment design for locating light atoms, use is made of the so-called Cramér-Rao Lower Bound (CRLB). It is investigated if a single optimal design can be found for both the detection and location problem of light atoms. Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under the optimal detector settings to detect light atoms.

  9. Effect of flash lamp annealing on electrical activation in boron-implanted polycrystalline Si thin films

    SciTech Connect

    Do, Woori; Jin, Won-Beom; Choi, Jungwan; Bae, Seung-Muk; Kim, Hyoung-June; Kim, Byung-Kuk; Park, Seungho; Hwang, Jin-Ha

    2014-10-15

    Highlights: • Intensified visible light irradiation was generated via a high-powered Xe arc lamp. • The disordered Si atomic structure absorbs the intensified visible light. • The rapid heating activates electrically boron-implanted Si thin films. • Flash lamp heating is applicable to low temperature polycrystalline Si thin films. - Abstract: Boron-implanted polycrystalline Si thin films on glass substrates were subjected to a short duration (1 ms) of intense visible light irradiation generated via a high-powered Xe arc lamp. The disordered Si atomic structure absorbs the intense visible light resulting from flash lamp annealing. The subsequent rapid heating results in the electrical activation of boron-implanted Si thin films, which is empirically observed using Hall measurements. The electrical activation is verified by the observed increase in the crystalline component of the Si structures resulting in higher transmittance. The feasibility of flash lamp annealing has also been demonstrated via a theoretical thermal prediction, indicating that the flash lamp annealing is applicable to low-temperature polycrystalline Si thin films.

  10. Design and analysis of control system for VCSEL of atomic interference magnetometer

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-nan; Sun, Xiao-jie; Kou, Jun; Yang, Feng; Li, Jie; Ren, Zhang; Wei, Zong-kang

    2016-11-01

    Magnetic field detection is an important means of deep space environment exploration. Benefit from simple structure and low power consumption, atomic interference magnetometer become one of the most potential detector payloads. Vertical Cavity Surface Emitting Laser (VCSEL) is usually used as a light source in atomic interference magnetometer and its frequency stability directly affects the stability and sensitivity of magnetometer. In this paper, closed-loop control strategy of VCSEL was designed and analysis, the controller parameters were selected and the feedback error algorithm was optimized as well. According to the results of experiments that were performed on the hardware-in-the-loop simulation platform, the designed closed-loop control system is reasonable and it is able to effectively improve the laser frequency stability during the actual work of the magnetometer.

  11. Photochemical/Microchannel Plasma Reactors Driven By High Power Vacuum Ultraviolet Lamps

    NASA Astrophysics Data System (ADS)

    Shin, Chul; Park, Sung-Jin; Eden, Gary

    2016-09-01

    Experiments are being conducted in which molecular dissociation or other chemical reactions in microchannel plasmas are accelerated by the introduction of vacuum ultraviolet photons. Initial emphasis is being placed on recently-developed Xe2 lamps that are efficient sources of 172 nm (h ν 7.2 eV) photons. Thin, flat lamps, fabricated from fused silica and having microcavity arrays internal to the lamp, have been developed by the University of Illinois and Eden Park Illumination and produce intensities above 200 mW/cm2. Integrating such lamps into a microcavity plasma reactor yields a hybrid photochemical/plasma system in which product yield and power consumption can be optimized. The selectivity of photodissociation in generating radicals and atomic fragments offers new synergies in plasma processing. Data concerning CO2 dissociation in arrays of microchannel plasmas, and the modification of this process by external 172 nm radiation, will be presented.

  12. Quadrichromatic white solid state lamp with digital feedback

    NASA Astrophysics Data System (ADS)

    Zukauskas, Arturas; Vaicekauskas, Rimantas; Ivanauskas, Felikas; Kurilcik, Genadij; Bliznikas, Zenius; Breive, Kestutis; Krupic, Jevgenij; Rupsys, Andrius; Novickovas, Algirdas; Vitta, Pranciskus; Navickas, Alvydas; Raskauskas, Vytautas; Shur, Michael S.; Gaska, Remis

    2004-01-01

    White light with high color rendering indices can be produced by additive color mixing of emissions from several light-emitting diodes (LEDs) having different primary colors. White Versatile Solid-State Lamps (VSSLs) with variable color temperature, constant-chromaticity dimming, and efficiency/color-rendering trade-off can be developed using pulse-width modulation (PWM) driving technique. However, such lamps exhibit chromaticity shifts caused by different temperature and aging coefficients of the optical output for primary LEDs of different colors. To overcome this drawback, we developed a polychromatic white solid-state lamp with an internal digital feedback. The lamp features a quadrichromatic (red-amber-green-blue) design based on commercially available high-power LEDs. The design is optimized to achieve high values of the general color rendering index (69 to 79 points) in the color-temperature range of 2856 to 6504 K. A computer-controlled driving circuit contains a pulse-width modulator and a photodiode-based meter. The software performs periodical measurement of the radiant flux from primary LEDs of each color and adjusts the widths of the driving pulses. These VSSLs with feedback found application in phototherapy of seasonal affective disorder (SAD).

  13. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of common genetically modified organisms (GMOs).

    PubMed

    Feng, Jiawang; Tang, Shiming; Liu, Lideng; Kuang, Xiaoshan; Wang, Xiaoyu; Hu, Songnan; You, Shuzhu

    2015-03-01

    Here, we developed a loop-mediated isothermal amplification (LAMP) assay for 11 common transgenic target DNA in GMOs. Six sets of LAMP primer candidates for each target were designed and their specificity, sensitivity, and reproductivity were evaluated. With the optimized LAMP primers, this LAMP assay was simply run within 45-60 min to detect all these targets in GMOs tested. The sensitivity, specificity, and reproductivity of the LAMP assay were further analyzed in comparison with those of Real-Time PCR. In consistent with real-time PCR, detection of 0.5% GMOs in equivalent background DNA was possible using this LAMP assay for all targets. In comparison with real-time PCR, the LAMP assay showed the same results with simple instruments. Hence, the LAMP assay developed can provide a rapid and simple approach for routine screening as well as specific events detection of many GMOs.

  14. Rapid detection of Opisthorchis viverrini copro-DNA using loop-mediated isothermal amplification (LAMP).

    PubMed

    Arimatsu, Yuji; Kaewkes, Sasithorn; Laha, Thewarach; Hong, Sung-Jong; Sripa, Banchob

    2012-03-01

    Opisthorchis viverrini and other foodborne trematode infections are major health problem in Thailand, the Lao People's Democratic Republic, Vietnam and Cambodia. Differential diagnosis of O. viverrini based on the microscopic observation of parasite eggs is difficult in areas where Clonorchis sinensis and minute intestinal flukes coexist. We therefore established a rapid, sensitive and specific method for detecting O. viverrini infection from the stool samples using the loop-mediated isothermal amplification (LAMP) method. A total of five primers from seven regions were designed to target the internal transcribed spacer 1 (ITS1) in ribosomal DNA for specific amplification. Hydroxy naphthol blue (HNB) was more effective to detect the LAMP product compared to the Real-time LAMP and turbidity assay for its simple and distinct detection. The LAMP assay specifically amplified O. viverrini ITS1 but not C. sinensis and minute intestinal flukes with the limit of detection around 10(-3)ng DNA/μL. The sensitivity of the LAMP was 100% compared to egg positive samples. While all microscopically positive samples were positive by LAMP, additionally 5 of 13 (38.5%) microscopically negative samples were also LAMP positive. The technique has great potential for differential diagnosis in endemic areas with mixed O. viverrini and intestinal fluke infections. As it is an easy and simple method, the LAMP is potentially applicable for point-of-care diagnosis.

  15. Table lamp with dynamically controlled lighting distribution and uniformly illuminated luminous shade

    DOEpatents

    Siminovitch, Michael J.; Page, Erik R.

    2002-01-01

    A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) or other lamps arranged vertically, i.e. one lamp above the other, with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum ensures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. In a particular configuration, the reflective septum is bowl shaped, with the upper CFL sitting in the bowl, and a luminous shade hanging down from the bowl. The lower CFL provides both task lighting and uniform shade luminance. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. However, other types of lamps, including incandescent, halogen, and LEDs can also be used in the fixture. The lighting system may be designed for the home, hospitality, office or other environments.

  16. Iodine atoms: a new molecular feature for the design of potent transthyretin fibrillogenesis inhibitors.

    PubMed

    Mairal, Teresa; Nieto, Joan; Pinto, Marta; Almeida, Maria Rosário; Gales, Luis; Ballesteros, Alfredo; Barluenga, José; Pérez, Juan J; Vázquez, Jesús T; Centeno, Nuria B; Saraiva, Maria Joao; Damas, Ana M; Planas, Antoni; Arsequell, Gemma; Valencia, Gregorio

    2009-01-01

    The thyroid hormone and retinol transporter protein known as transthyretin (TTR) is in the origin of one of the 20 or so known amyloid diseases. TTR self assembles as a homotetramer leaving a central hydrophobic channel with two symmetrical binding sites. The aggregation pathway of TTR into amiloid fibrils is not yet well characterized but in vitro binding of thyroid hormones and other small organic molecules to TTR binding channel results in tetramer stabilization which prevents amyloid formation in an extent which is proportional to the binding constant. Up to now, TTR aggregation inhibitors have been designed looking at various structural features of this binding channel others than its ability to host iodine atoms. In the present work, greatly improved inhibitors have been designed and tested by taking into account that thyroid hormones are unique in human biochemistry owing to the presence of multiple iodine atoms in their molecules which are probed to interact with specific halogen binding domains sitting at the TTR binding channel. The new TTR fibrillogenesis inhibitors are based on the diflunisal core structure because diflunisal is a registered salicylate drug with NSAID activity now undergoing clinical trials for TTR amyloid diseases. Biochemical and biophysical evidence confirms that iodine atoms can be an important design feature in the search for candidate drugs for TTR related amyloidosis.

  17. Iodine Atoms: A New Molecular Feature for the Design of Potent Transthyretin Fibrillogenesis Inhibitors

    PubMed Central

    Pinto, Marta; Almeida, Maria Rosário; Gales, Luis; Ballesteros, Alfredo; Barluenga, José; Pérez, Juan J.; Vázquez, Jesús T.; Centeno, Nuria B.; Saraiva, Maria Joao; Damas, Ana M.; Planas, Antoni; Arsequell, Gemma; Valencia, Gregorio

    2009-01-01

    The thyroid hormone and retinol transporter protein known as transthyretin (TTR) is in the origin of one of the 20 or so known amyloid diseases. TTR self assembles as a homotetramer leaving a central hydrophobic channel with two symmetrical binding sites. The aggregation pathway of TTR into amiloid fibrils is not yet well characterized but in vitro binding of thyroid hormones and other small organic molecules to TTR binding channel results in tetramer stabilization which prevents amyloid formation in an extent which is proportional to the binding constant. Up to now, TTR aggregation inhibitors have been designed looking at various structural features of this binding channel others than its ability to host iodine atoms. In the present work, greatly improved inhibitors have been designed and tested by taking into account that thyroid hormones are unique in human biochemistry owing to the presence of multiple iodine atoms in their molecules which are probed to interact with specific halogen binding domains sitting at the TTR binding channel. The new TTR fibrillogenesis inhibitors are based on the diflunisal core structure because diflunisal is a registered salicylate drug with NSAID activity now undergoing clinical trials for TTR amyloid diseases. Biochemical and biophysical evidence confirms that iodine atoms can be an important design feature in the search for candidate drugs for TTR related amyloidosis. PMID:19125186

  18. Lamp with a truncated reflector cup

    DOEpatents

    Li, Ming; Allen, Steven C.; Bazydola, Sarah; Ghiu, Camil-Daniel

    2013-10-15

    A lamp assembly, and method for making same. The lamp assembly includes first and second truncated reflector cups. The lamp assembly also includes at least one base plate disposed between the first and second truncated reflector cups, and a light engine disposed on a top surface of the at least one base plate. The light engine is configured to emit light to be reflected by one of the first and second truncated reflector cups.

  19. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    NASA Astrophysics Data System (ADS)

    Sloan Roberts, F.; Anderson, Scott L.

    2013-12-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.

  20. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: a modular vacuum ultraviolet source.

    PubMed

    Roberts, F Sloan; Anderson, Scott L

    2013-12-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.

  1. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    SciTech Connect

    Sloan Roberts, F.; Anderson, Scott L.

    2013-12-15

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  2. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical..., March 2002; J592—Sidemarker Lamps for Use on Road Vehicles Less Than 2032 mm in Overall Width, August...

  3. Lamp bulb with integral reflector

    DOEpatents

    Levin, Izrail; Shanks, Bruce; Sumner, Thomas L.

    2001-01-01

    An improved electrodeless discharge lamp bulb includes an integral ceramic reflector as a portion of the bulb envelope. The bulb envelope further includes two pieces, a reflector portion or segment is cast quartz ceramic and a light transmissive portion is a clear fused silica. In one embodiment, the cast quartz ceramic segment includes heat sink fins or stubs providing an increased outside surface area to dissipate internal heat. In another embodiment, the quartz ceramic segment includes an outside surface fused to eliminate gas permeation by polishing.

  4. Investigation of Passive Filter for LED Lamp

    NASA Astrophysics Data System (ADS)

    Sarwono, Edi; Facta, Mochammad; Handoko, Susatyo

    2017-04-01

    Light Emitting Diode lamp or LED lamp is one of the energy saving lamps nowadays widely used by consumers. However, LED lamp has contained harmonics caused by the rectifier circuit inside the lamp. Harmonics cause a quality problem in power system. As the harmonics present in current or voltage, the waveforms are distorted. Harmonics can lead to overheating in magnetic core of electrical equipments. In this paper, several tests are carried out to investigate the harmonic content of voltage and currents, and also the level of light intensity of the two brands of LED lamps. Measurements in this study are conducted by using HIOKI Power Quality Analyzer 3197. The test results show that the total harmonic distortion or THD of voltage on various brands of LED lamps did not exceed 5% as in compliance to the limit of IEEE standard 519-1992. The largest harmonic voltage is 2.9%, while maximum harmonic current for tested brands of LED lamp is 170.6%. The use of low pass filter in the form of LC filter was proposed. Based on experimental results, the application of LC filter at input side of LED lamp has successfully reduced THD current in the range of 85%-88%.

  5. STIS PtCr/Ne Lamp Ratios

    NASA Astrophysics Data System (ADS)

    Pascucci, Ilaria

    2009-07-01

    We will provide improved information on the ratio of the STIS wavelength calibration lamps at all wavelengths. The LINE & HITM1 lamps have faded by a factor of several since launch, and at the shortest wavelengths the fading is enough to have significantly impacted the S/N of the wavecals. The FUV flux of the HITM2 lamp has not been checked since 1997, and so a detailed comparison of all three lamps is needed to support a proper wavelength calibration for GO proposals.

  6. Note: Design and development of an integrated three-dimensional scanner for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Rashmi, T.; Dharsana, G.; Sriramshankar, R.; Sri Muthu Mrinalini, R.; Jayanth, G. R.

    2013-11-01

    A compact scanning head for the Atomic Force Microscope (AFM) greatly enhances the portability of AFM and facilitates easy integration with other tools. This paper reports the design and development of a three-dimensional (3D) scanner integrated into an AFM micro-probe. The scanner is realized by means of a novel design for the AFM probe along with a magnetic actuation system. The integrated scanner, the actuation system, and their associated mechanical mounts are fabricated and evaluated. The experimentally calibrated actuation ranges are shown to be over 1 μm along all the three axes.

  7. Note: Design and development of an integrated three-dimensional scanner for atomic force microscopy

    SciTech Connect

    Rashmi, T.; Dharsana, G.; Sriramshankar, R.; Sri Muthu Mrinalini, R.; Jayanth, G. R.

    2013-11-15

    A compact scanning head for the Atomic Force Microscope (AFM) greatly enhances the portability of AFM and facilitates easy integration with other tools. This paper reports the design and development of a three-dimensional (3D) scanner integrated into an AFM micro-probe. The scanner is realized by means of a novel design for the AFM probe along with a magnetic actuation system. The integrated scanner, the actuation system, and their associated mechanical mounts are fabricated and evaluated. The experimentally calibrated actuation ranges are shown to be over 1 μm along all the three axes.

  8. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... metallic vapors. Metal halide lamp fixture means a light fixture for general lighting application designed... providing any standby or active mode function. PLC control signal means a power line carrier (PLC)...

  9. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... metallic vapors. Metal halide lamp fixture means a light fixture for general lighting application designed... providing any standby or active mode function. PLC control signal means a power line carrier (PLC)...

  10. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... metallic vapors. Metal halide lamp fixture means a light fixture for general lighting application designed... providing any standby or active mode function. PLC control signal means a power line carrier (PLC)...

  11. LAMP Project: School Trials of Topic Brief No. 9--Paints and Dyes

    ERIC Educational Resources Information Center

    Higgins, D. L.

    1978-01-01

    Presents student and teacher evaluations of the LAMP unit "Paints and Dyes." The units are designed for low motivated secondary school students. Copies of the objectives and the evaluation instruments are included with the article. (CP)

  12. 30 CFR 20.9 - Class 2 lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS § 20.9 Class 2 lamps. (a) Safety. (1... section (No. 9, class 2 lamps), as experience and service prove to be necessary in the interests of safety. ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Class 2 lamps. 20.9 Section 20.9 Mineral...

  13. 30 CFR 20.9 - Class 2 lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS § 20.9 Class 2 lamps. (a) Safety. (1... section (No. 9, class 2 lamps), as experience and service prove to be necessary in the interests of safety. ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Class 2 lamps. 20.9 Section 20.9 Mineral...

  14. 30 CFR 20.9 - Class 2 lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS § 20.9 Class 2 lamps. (a) Safety. (1... section (No. 9, class 2 lamps), as experience and service prove to be necessary in the interests of safety. ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Class 2 lamps. 20.9 Section 20.9 Mineral...

  15. 49 CFR 393.9 - Lamps operable, prohibition of obstructions of lamps and reflectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and... 49 Transportation 5 2010-10-01 2010-10-01 false Lamps operable, prohibition of obstructions of lamps and reflectors. 393.9 Section 393.9 Transportation Other Regulations Relating to Transportation...

  16. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Requirements for lamps other than head lamps. 393... MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical...

  17. 49 CFR 393.9 - Lamps operable, prohibition of obstructions of lamps and reflectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and... 49 Transportation 5 2014-10-01 2014-10-01 false Lamps operable, prohibition of obstructions of lamps and reflectors. 393.9 Section 393.9 Transportation Other Regulations Relating to Transportation...

  18. 49 CFR 393.9 - Lamps operable, prohibition of obstructions of lamps and reflectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and... 49 Transportation 5 2012-10-01 2012-10-01 false Lamps operable, prohibition of obstructions of lamps and reflectors. 393.9 Section 393.9 Transportation Other Regulations Relating to Transportation...

  19. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Requirements for lamps other than head lamps. 393... MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical...

  20. 10 CFR 429.40 - Candelabra base incandescent lamps and intermediate base incandescent lamps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Candelabra base incandescent lamps and intermediate base....40 Candelabra base incandescent lamps and intermediate base incandescent lamps. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to candelabra...

  1. 10 CFR 429.40 - Candelabra base incandescent lamps and intermediate base incandescent lamps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Candelabra base incandescent lamps and intermediate base....40 Candelabra base incandescent lamps and intermediate base incandescent lamps. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to candelabra...

  2. 10 CFR 429.40 - Candelabra base incandescent lamps and intermediate base incandescent lamps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Candelabra base incandescent lamps and intermediate base....40 Candelabra base incandescent lamps and intermediate base incandescent lamps. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to candelabra...

  3. Design and optimization of a harmonic probe with step cross section in multifrequency atomic force microscopy.

    PubMed

    Cai, Jiandong; Wang, Michael Yu; Zhang, Li

    2015-12-01

    In multifrequency atomic force microscopy (AFM), probe's characteristic of assigning resonance frequencies to integer harmonics results in a remarkable improvement of detection sensitivity at specific harmonic components. The selection criterion of harmonic order is based on its amplitude's sensitivity on material properties, e.g., elasticity. Previous studies on designing harmonic probe are unable to provide a large design capability along with maintaining the structural integrity. Herein, we propose a harmonic probe with step cross section, in which it has variable width in top and bottom steps, while the middle step in cross section is kept constant. Higher order resonance frequencies are tailored to be integer times of fundamental resonance frequency. The probe design is implemented within a structural optimization framework. The optimally designed probe is micromachined using focused ion beam milling technique, and then measured with an AFM. The measurement results agree well with our resonance frequency assignment requirement.

  4. Design and optimization of a harmonic probe with step cross section in multifrequency atomic force microscopy

    SciTech Connect

    Cai, Jiandong; Zhang, Li; Wang, Michael Yu

    2015-12-15

    In multifrequency atomic force microscopy (AFM), probe’s characteristic of assigning resonance frequencies to integer harmonics results in a remarkable improvement of detection sensitivity at specific harmonic components. The selection criterion of harmonic order is based on its amplitude’s sensitivity on material properties, e.g., elasticity. Previous studies on designing harmonic probe are unable to provide a large design capability along with maintaining the structural integrity. Herein, we propose a harmonic probe with step cross section, in which it has variable width in top and bottom steps, while the middle step in cross section is kept constant. Higher order resonance frequencies are tailored to be integer times of fundamental resonance frequency. The probe design is implemented within a structural optimization framework. The optimally designed probe is micromachined using focused ion beam milling technique, and then measured with an AFM. The measurement results agree well with our resonance frequency assignment requirement.

  5. Design of heavy-ion APF-IH type linac for atomic physics and medical use

    NASA Astrophysics Data System (ADS)

    Hata, T.; Hattori, T.; Kashiwagi, H.; Takahashi, Y.; Yamamoto, K.; Matsui, S.; Dudu, D.; Osvath, E.; Vata, I.; Yamada, S.

    2002-04-01

    We have studied a compact heavy-ion linac for atomic physics and medical use. The design of the linac was based on using alternating-phase-focus (APF) and interdigital-H (IH) structures which give sufficient electric power efficiency. Thereby, it will be possible to design a small and high efficiency linac. The APF-IH linac was designed to accelerate ions from C 2+ to U 40+, from 30 to 300 keV/u and an operating frequency of 100 MHz. We made a half-scale cold model of this linac using orbit calculation and measured its RF characteristics. Then, we designed a APF-IH type linac using the results of the measurement.

  6. Discharge lamp with reflective jacket

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Kipling, Kent

    2001-01-01

    A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

  7. An electronic flash lamp system to replace the traditional explosively driven light source

    NASA Astrophysics Data System (ADS)

    Stigman, William L.; Kihara, Ronald; Scarpetti, Raymond D.

    2003-07-01

    Electronic flash lamps are being developed at the Lawrence Livermore National Laboratory (LLNL). These lamps are intended to replace the traditional explosively driven Argon-gas filled light sources (Argon candles) that are currently used to provide illumination for high speed rotating mirror-framing cameras. At Livermore, we are developing an electronic flash lamp system that can match or exceed the light output of a traditional Argon candle. These systems utilize a Plasma Arc Lamp developed by PRISM Science Inc of Woburn, MA, USA. In the past, high-speed photography requiring explosively driven light sources were a one-time-only even that destroyed fixtures and optical alignment. The electronic flash lamp system, utilizing the Plasma ArC Lamp, will replace the explosively driven lighting systems and provide the capability to dry run experimental setups and repeat tests without damage to the experimental set-up. The electronic flash lamp system eliminates the problem of collateral damage to the experiment and does not add to the overall amount of explosives needed for single test. Since the Pulsed-Power driver is remotely located, only the flash lamp itself is destroyed when the explosive shot is fired. The flexible geometry of this light source also enables the user to create complex light patterns as well as photograph very large areas with a single lighting system. This electronic flash lamp system will provide an extremely bright, stable, and repeatable light source for rotating-mirror framing cameras operating at one million frames per second, using both black & white or color films. The design of the Pulsed-Power driver and the flash lamp, along with experimental data and results will be discussed.

  8. An Electronic Flash Lamp System to Replace the Traditional, Explosively-Driven Light Source

    SciTech Connect

    Stigman, W L; Kihara, R; Scarpetti, R D

    2002-09-25

    Electronic flash lamps are being developed at the Lawrence Livermore National Laboratory (LLNL). These lamps are intended to replace the traditional explosively driven Argon-gas filled light sources (Argon candles) that are currently used to provide illumination for high speed rotating mirror-framing cameras. At Livermore, we are developing an electronic flash lamp system that can match or exceed the light output of a traditional Argon candle. These systems utilize a Plasma Arc Lamp developed by PRISM Science Inc of Chatham, MA, USA. In the past, high-speed photography requiring explosively driven light sources were a one-time-only event that destroyed fixtures and optical alignment. The electronic flash lamp system, utilizing the Plasma Arc Lamp, will replace the explosively driven lighting systems and provide the capability to dry run experimental setups and repeat tests without damage to the experimental set-up. The electronic flash lamp system eliminates the problem of collateral damage to the experiment and does not add to the overall amount of explosives needed for a single test. Since the Pulsed-Power driver is remotely located, only the flash lamp itself is destroyed when the explosive shot is fired. The flexible geometry of this light source also enables the user to create complex light patterns as well as photograph very large areas with a single lighting system. This electronic flash lamp system will provide an extremely bright, stable, and repeatable light source for rotating-mirror framing cameras operating at one million frames per second, using both black & white or color films. The design of the Pulsed-Power driver and the flash lamp, along with experimental data and results will be discussed.

  9. Development of an Infrared Lamp Array for the Smap Spacecraft Thermal Balance Test

    NASA Technical Reports Server (NTRS)

    Miller, Jennifer R.; Emis, Nickolas; Forgette, Daniel

    2015-01-01

    NASA launched the SMAP observatory in January 2015 aboard a Delta II into a sun-synchronous orbit around Earth. The science payload of a radar and a radiometer utilizes a shared rotating six-meter antenna to provide a global map of the Earth's soil moisture content and its freeze/thaw state on a global, high-resolution scale in this three-year mission. An observatory-level thermal balance test conducted in May/June 2014 validated the thermal design and demonstrated launch readiness as part of the planned environmental test campaign. An infrared lamp array was designed and used in the thermal balance test to replicate solar heating on the solar array and sunlit side of the spacecraft that would normally be seen in orbit. The design, implementation, and operation of an infrared lamp array used for this nineteen-day system thermal test are described in this paper. Instrumental to the smooth operation of this lamp array was a characterization test performed in the same chamber two months prior to the observatory test to provide insight into its array operation and flux uniformity. This knowledge was used to identify the lamp array power settings that would provide the worst case predicted on-orbit fluxes during eclipse, cold, and hot cases. It also showed the lamp array variation when adjustments in flux were needed. Calorimeters calibrated prior to testing determined a relationship between calorimeter temperature and lamp array flux. This allowed the team to adjust the lamp output for the desired absorbed flux on the solar array. Flux levels were within 10% of the desired value at the center of the solar array with an ability to maintain these levels within 5% during steady state cases. All tests demonstrated the infrared lamp array functionality and furthered lamp array understanding for modeling purposes. This method contributed to a high-fidelity environmental simulation, which was required to replicate the extreme on-orbit thermal environments.

  10. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification....

  11. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification....

  12. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification....

  13. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification....

  14. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification....

  15. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp....

  16. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp....

  17. 49 CFR 234.221 - Lamp voltage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Lamp voltage. 234.221 Section 234.221..., DEPARTMENT OF TRANSPORTATION GRADE CROSSING SAFETY, INCLUDING SIGNAL SYSTEMS, STATE ACTION PLANS, AND EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Maintenance Standards § 234.221 Lamp...

  18. 49 CFR 234.221 - Lamp voltage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Lamp voltage. 234.221 Section 234.221..., DEPARTMENT OF TRANSPORTATION GRADE CROSSING SAFETY, INCLUDING SIGNAL SYSTEMS, STATE ACTION PLANS, AND EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Maintenance Standards § 234.221 Lamp...

  19. 49 CFR 234.221 - Lamp voltage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Lamp voltage. 234.221 Section 234.221..., DEPARTMENT OF TRANSPORTATION GRADE CROSSING SAFETY, INCLUDING SIGNAL SYSTEMS, STATE ACTION PLANS, AND EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Maintenance Standards § 234.221 Lamp...

  20. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp....

  1. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp....

  2. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp....

  3. Primer of School Lighting Lamps and Maintenance.

    ERIC Educational Resources Information Center

    Allphin, Willard

    The basic principles of the most commonly used lamp types and the circuitry which makes them operate are discussed. The two objectives of this book are to serve as a--(1) guide to economical lighting, and (2) a permanent reference source for troubleshooting. Areas dealt with include--(1) lighting fundamentals, (2) incandescent lamps, (3)…

  4. 49 CFR 393.23 - Power supply for lamps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.23 Power supply for lamps. All required lamps must be powered by the electrical system of the motor vehicle with...

  5. 49 CFR 393.23 - Power supply for lamps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.23 Power supply for lamps. All required lamps must be powered by the electrical system of the motor vehicle with the...

  6. Using fence post designs to speed the atomic layer deposition of optical thin films.

    PubMed

    Willey, Ronald R

    2008-05-01

    Atomic layer deposition (ALD) at this time is much slower than conventional optical thin-film deposition techniques. A more rapid ALD process for SiO(2) has been developed than for other ALD materials. A fence post design for optical thin films has thin layers of high-index posts standing above a broad low-index ground. If a design for ALD can be predominantly composed of SiO(2) layers with thin high-index layers, the deposition times can be correspondingly shortened, and it is shown that the required performance can still be nearly that of more conventional designs with high- and low-index layers of equal thickness. This combination makes the ALD benefits of conformal coating and precise thickness control more practical for optical thin-film applications.

  7. Influence of operating conditions and atomizer design on circumferential liquid distribution from small pressure-swirl atomizer

    NASA Astrophysics Data System (ADS)

    Malý, Milan; Janáčková, Lada; Jedelský, Jan; Jícha, Miroslav

    The spray symmetry is an important aspect in most practical applications. However, it is often an overlooked parameter. A measurement of circumferential distribution was carried out by a circular-sectored vessel on several pressure-swirl atomizers with spill-line over a wide range of injection pressure. The obtained results show that the spray uniformity improves markedly with the injection pressure. The increase in a number of tangential entry ports has only a minor effect on the spray uniformity. Even a small mechanical corruption of the atomizer internal parts negatively affects the spray patternation.

  8. Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) assemble via distinct modes.

    PubMed

    Terasawa, Kazue; Tomabechi, Yuri; Ikeda, Mariko; Ehara, Haruhiko; Kukimoto-Niino, Mutsuko; Wakiyama, Motoaki; Podyma-Inoue, Katarzyna A; Rajapakshe, Anupama R; Watabe, Tetsuro; Shirouzu, Mikako; Hara-Yokoyama, Miki

    2016-10-21

    Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) have a large, heavily glycosylated luminal domain composed of two subdomains, and are the most abundant protein components in lysosome membranes. LAMP-1 and LAMP-2 have distinct functions, and the presence of both proteins together is required for the essential regulation of autophagy to avoid embryonic lethality. However, the structural aspects of LAMP-1 and LAMP-2 have not been elucidated. In the present study, we demonstrated that the subdomains of LAMP-1 and LAMP-2 adopt the unique β-prism fold, similar to the domain structure of the dendritic cell-specific-LAMP (DC-LAMP, LAMP-3), confirming the conserved aspect of this family of lysosome-associated membrane proteins. Furthermore, we evaluated the effects of the N-domain truncation of LAMP-1 or LAMP-2 on the assembly of LAMPs, based on immunoprecipitation experiments. We found that the N-domain of LAMP-1 is necessary, whereas that of LAMP-2 is repressive, for the organization of a multimeric assembly of LAMPs. Accordingly, the present study suggests for the first time that the assembly modes of LAMP-1 and LAMP-2 are different, which may underlie their distinct functions.

  9. Measurements of UV-A radiation and hazard limits from some types of outdoor lamps

    NASA Astrophysics Data System (ADS)

    El-Moghazy, Essam; Abd-Elmageed, Alaa-Eldin; Reda, Sameh

    2015-05-01

    Illumination using artificial light sources is common in these days. Many manufactures are paying for the design of lamps depending on high efficacy and low UV hazards. This research is focusing on the most useable lamps in the Egyptian markets; High Pressure Mercury (HPM), Metal Halide (MH), and High Pressure Sodium (HPS). A set up for relative spectral power distribution based on single monochromator and UVA silicon detector for absolute irradiance measurements are used. The absolute irradiance in (W/m2) in UVA region of the lamps and their accompanied standard uncertainty are evaluated.

  10. Should Tungsten Ribbon Lamps Be Replaced or Not?

    NASA Astrophysics Data System (ADS)

    Matveyev, M. S.; Pokhodun, A. I.; Sild, Yu. A.

    2003-09-01

    Tungsten ribbon lamps are the most frequently used means in the temperature range higher than 800 °C for reproduction and precise transfer of a temperature scale by non-contact methods. Lamps have many advantages: a very high reproducibility, stability and durability; use of a lamp over dozens of years with careful and correct operation; and relative simplicity of operation, storage and transportation. The direct correlation of temperature and current through a ribbon enables us to use the advantages of electrical measurements. At the same time lamps have also a number of negative features. Small deviations from the prescribed procedure can lead to unpredictable changes of the performance of a lamp and, even, to irreversible changes of its parameters. The important factor of the quality of transferring the temperature scale is the propinquity of the transferred temperature to the thermodynamic one. Only this factor guarantees the accuracy and unity of temperature measurements of temperature by instruments applying different principles of operation and various designs. However, this is the quality that the lamps do not possess. Their main drawback is selectivity of radiation stipulated by the spectral dependence of emissivity. That is why it is necessary to replace them with blackbodies, which let us rely completely on the definition of the ITS-90. Several years ago at our institute we started investigations on development of special measuring instruments, in which a sensor was located around a miniature blackbody. The aperture of this blackbody could be used as a standard emitter, which temperature was accurately determined by a resistance thermometer. Applying also a standard pyrometer, we refined the reference function of a platinum resistor in the range between the Ag and Cu fixed points. To extend the temperature range up to 1450 °C to 1500 °C we built an instrument in the form of a miniature blackbody made of Pd which was connected to three platinum wires

  11. Tungsten wire for incandescent lamps

    SciTech Connect

    Walter, J.L.; Briant, C.L. )

    1990-09-01

    Tungsten wire for incandescent lamp filaments must operate at high temperatures and for long times. To meet these requirements, the grain morphology of the wire must be controlled to reduce the propensity for grain boundary sliding. The morphology is a function of the distribution of very small pockets of potassium in the wire and the mechanical processing from ingot to wire. The behavior of the filament is directly related to the grain morphology. This paper describes the mechanism by which the potassium is incorporated into and distributed in the ingot. The elongation and spheroidization of the bubbles during hot rolling and swaging is also examined and related to the grain morphology of wire. Some indications of the relationship between grain morphology and filament behavior are also given.

  12. User manual for SPLASH (Single Panel Lamp and Shroud Helper).

    SciTech Connect

    Larsen, Marvin Elwood

    2006-02-01

    The radiant heat test facility develops test sets providing well-characterized thermal environments, often representing fires. Many of the components and procedures have become standardized to such an extent that the development of a specialized design tool to determine optimal configurations for radiant heat experiments was appropriate. SPLASH (Single Panel Lamp and Shroud Helper) is that tool. SPLASH is implemented as a user-friendly, Windows-based program that allows a designer to describe a test setup in terms of parameters such as number of lamps, power, position, and separation distance. This document is a user manual for that software. Any incidental descriptions of theory are only for the purpose of defining the model inputs. The theory for the underlying model is described in SAND2005-2947 (Ref. [1]). SPLASH provides a graphical user interface to define lamp panel and shroud designs parametrically, solves the resulting radiation enclosure problem for up to 2500 surfaces, and provides post-processing to facilitate understanding and documentation of analyzed designs.

  13. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    NASA Astrophysics Data System (ADS)

    de Vos, Marc; Torah, Russel; Tudor, John

    2016-04-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps.

  14. Unwanted reflections during slit lamp assisted binocular indirect ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Sheehan, Matthew; Goncharov, Alexander

    2011-11-01

    Binocular indirect ophthalmoscopy is a routine ophthalmic examination procedure. Two different apparatus setups are commonly employed; the head/spectacle mounted designs of Schepens and slit lamp assisted ophthalmoscopy, both typically performed through a fundus lens of high positive power. It can be difficult for clinicians to avoid unwanted back reflections primarily emanating from the fundus lens and the pre-corneal tear film, particularly when initially learning the skills required to perform the examination. In this investigation the illumination system of a slit lamp was modified to include a variety of obscuration designs optically conjugate to surfaces responsible for creating unwanted reflections. The modified apparatus was then used to perform binocular indirect ophthalmoscopy on an artificial eye and on real eyes. Clinicians used questionnaires to score the appearance of reflections. The mean scores were similar across all trials, including the control unmodified trial, indicating general consensus that the modified illumination system provided no substantial effect on the perception of these unwanted reflections.

  15. High-peak-irradiance microwave-powered UV lamps for processing of coatings, inks, and adhesives

    NASA Astrophysics Data System (ADS)

    Stowe, Richard W.

    1993-01-01

    The number and variety of applications for UV curable inks, coatings, and adhesives continue to expand at a rapid pace, and pose new design challenges to increase cure efficiency, speed, and the physical properties of the cured polymer film. The latest developments in microwave powered lamps for industrial processing are presented. Among these are: (1) the selection and control of the lamp emission spectra to match the optical properties of the film and its photoinitiator, (2) sustained high power lamp operation at 6 kilowatts, and (3) the use of absorptive dichroic reflectors to mange the relative components of UV and infrared energy in the highly focused radiation delivered to surfaces being processed. The design considerations of high powered UV lamps and dichroic reflectors for them are presented.

  16. Feasibility of Using Photovoltaic Power Systems (PPS) with High Pressure Sodium (HPS) Lamps for Magazine Entry Lighting.

    DTIC Science & Technology

    1984-01-01

    housed in an explosion proof fixture designed for use in the mining industry . This fixture prevents the intrusion of explosive gases or dust particles...a vendor for HPS lamps that can operate off primary batteries for use in the mining industry . These lamps usually operate at voltages higher than

  17. Rapid detection of the Klebsiella pneumoniae carbapenemase (KPC) gene by loop-mediated isothermal amplification (LAMP).

    PubMed

    Nakano, Ryuichi; Nakano, Akiyo; Ishii, Yoshikazu; Ubagai, Tsuneyuki; Kikuchi-Ueda, Takane; Kikuchi, Hirotoshi; Tansho-Nagakawa, Shigeru; Kamoshida, Go; Mu, Xiaoqin; Ono, Yasuo

    2015-03-01

    Klebsiella pneumoniae carbapenemases (KPC), which are associated with resistance to carbapenem, have recently spread worldwide and have become a global concern. It is necessary to detect KPC-producing organisms in clinical settings to be able to control the spread of this resistance. We have developed a loop-mediated isothermal amplification (LAMP) method for rapid detection of KPC producers. LAMP primer sets were designed to recognize the homologous regions of blaKPC-2 to blaKPC-17 and could amplify blaKPC rapidly. The specificity and sensitivity of the primers in the LAMP reactions for blaKPC detection were determined. This LAMP assay was able to specifically detect KPC producers at 68 °C, and no cross-reactivity was observed for other types of β-lactamase (class A, B, C, or D) producers. The detection limit for this assay was found to be 10(0) CFU per tube, in 25 min, which was 10-fold more sensitive than a PCR assay for blaKPC detection. Then, the sensitivity of the LAMP reactions for blaKPC detection in human specimens (sputum samples, urine samples, fecal samples and blood samples) was analyzed; it was observed that the LAMP assay had almost the same sensitivity in these samples as when using purified DNA. The LAMP assay is easy to perform and rapid. It may therefore be routinely applied for detection of KPC producers in the clinical laboratory.

  18. Cost effectiveness of long life incandescent lamps and energy buttons

    SciTech Connect

    Verderber, R.; Morse, O.

    1980-04-07

    Long-life replacement lamps for the incandescent lamp have been evaluated with regard to their cost effectiveness. The replacements include the use of energy buttons that extend lamp life as well as an adaptive fluorescent circline lamp that will fit into existing incandescent lamp sockets. The initial, operating, and replacement costs for one million lumen hours are determined for each lamp system. It is found that the most important component lighting cost is the operating cost. Using lamps that are less efficient or devices that cause lamps to operate less efficiently are not cost-effective. The adaptive fluorescent circline lamp, even at an initial unit cost of $20.00, is the most cost-effective source of illumination compared to the incandescent lamp and lamp systems examined.

  19. Design of mechanical components for vibration reduction in an atomic force microscope.

    PubMed

    Kim, Chulsoo; Jung, Jongkyu; Youm, Woosub; Park, Kyihwan

    2011-03-01

    Vibration is a key factor to be considered when designing the mechanical components of a high precision and high speed atomic force microscope (AFM). It is required to design the mechanical components so that they have resonant frequencies higher than the external and internal vibration frequencies. In this work, the mechanical vibration in a conventional AFM system is analyzed by considering its mechanical components, and a vibration reduction is then achieved by reconfiguring the mechanical components. To analyze the mechanical vibration, a schematic of the lumped model of the AFM system is derived and the vibrational influences of the AFM components are experimentally examined. Based on this vibration analysis, a reconfigured AFM system is proposed and its effects are compared to a conventional system through a series of simulations and experiments.

  20. System design and new applications for atomic force microscope based on tunneling

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, A. P.; Yang, X. H.

    2015-09-01

    The design of atomic force microscopy (AFM) with high resolution is introduced in this paper. Mainly, we have developed the system design of the apparatus based on tunneling. AFM.IPC-208B, this kind of apparatus combines scanning tunnel microscopy (STM) and AFM availability, and its lens body with original frame enhances the capability of the machine. In order to analyze the performance of AFM.IPC-208B, as a new tool in the field of Life Science, we make use of the system to study natural mica and molecular protein structures of Cattle-insulin and human antibody immunoglobulin G (IgG) coupled with staphylococcus protein A (SPA). As the results of new applications, the resolution of AFM.IPC-208B is proved to be 0.1 nm, and these nanometer measurement results provide much valuable information for the study of small molecular proteins and HIV experiments.

  1. LRO-LAMP Observations of Lunar Exospheric Helium

    NASA Astrophysics Data System (ADS)

    Grava, Cesare; Retherford, Kurt D.; Hurley, Dana M.; Feldman, Paul D.; Gladstone, Randy; Greathouse, Thomas K.; Cook, Jason C.; Stern, Alan; Pryor, Wayne R.; Halekas, Jasper S.; Kaufmann, David E.

    2015-11-01

    We present results from Lunar Reconnaissance Orbiter’s (LRO) UV spectrograph LAMP (Lyman-Alpha Mapping Project) campaign to study the lunar atmosphere. Two kinds of off-nadir maneuvers (lateral rolls and pitches towards and opposite the direction of motion of LRO) were performed to search for resonantly scattering species, increasing the illuminated line-of-sight (and hence the signal from atoms resonantly scattering the solar photons) compared to previously reported LAMP “twilight observations” [Cook & Stern, 2014]. Helium was the only element distinguishable on a daily basis, and we present latitudinal profiles of its line-of-sight column density in December 2013. We compared the helium line-of-sight column densities with solar wind alpha particle fluxes measured from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon’s Interaction with the Sun) twin spacecraft. Our data show a correlation with the solar wind alpha particle flux, confirming that the solar wind is the main source of the lunar helium, but not with a 1:1 relationship. Assuming that the lunar soil is saturated with helium atoms, our results suggest that not all of the incident alpha particles are converted to thermalized helium, allowing for a non-negligible fraction (~50 %) to escape as suprathermal helium or simply backscattered from the lunar surface. We also support the finding by Benna et al. [2015] and Hurley et al. [2015], that a non-zero contribution from endogenic helium, coming from radioactive decay of 232Th and 238U within the mantle, is present, and is estimated to be (4.5±1.2) x 106 He atoms cm-2 s-1. Finally, we compare LAMP-derived helium surface density with the one recorded by the mass spectrometer LACE (Lunar Atmospheric Composition Experiment) deployed on the lunar surface during the Apollo 17 mission, finding good agreement between the two measurements. These LRO off-nadir maneuvers allow LAMP to provide unique coverage of local solar time and

  2. Lamp system for uniform semiconductor wafer heating

    DOEpatents

    Zapata, Luis E.; Hackel, Lloyd

    2001-01-01

    A lamp system with a very soft high-intensity output is provided over a large area by water cooling a long-arc lamp inside a diffuse reflector of polytetrafluorethylene (PTFE) and titanium dioxide (TiO.sub.2) white pigment. The water is kept clean and pure by a one micron particulate filter and an activated charcoal/ultraviolet irradiation system that circulates and de-ionizes and biologically sterilizes the coolant water at all times, even when the long-arc lamp is off.

  3. Design of microwave signal source for CS chip-scale atomic clock

    NASA Astrophysics Data System (ADS)

    Lei, Ji; Zhi, Meng Hui; Li, Xin Wei; Liang, Tang; Qiao, Dong Hai

    2017-03-01

    Nowadays, some countries have already invented chip-scale atomic clock (CSAC) based on coherent population trapping (CPT), and it has been applied in every areas. According to its working principle, the microwave signal source is one of the decisive factors affecting its stability. Usually the microwave signal source is a phase-locked loop circuit, it mainly includes a frequency synthesizer, a voltage controlled oscillator (VCO) and a loop filter. This paper aims to develop a microwave signal source for Cs CSAC. First, a VCO should be designed, in order to validate the characteristic of the designed VCO, the VCO needs to be tested at high and low temperatures, and the results show that it has good stability of high and low temperatures. Second, for the purpose of verifying that the design and production consistency of the VCO are in good condition, 1000 VCOs are test, respectively. The statistical distribution of the phase noise at 1 kHz offset would be painted a curve. Finally, the designed VCO (PN: 61.01dBc/Hz@1kHz) will be applied in phase-locked loop, the test results show that the phase noise is -83.57dBc/Hz@300Hz, it is much better than -43dBc/Hz@300Hz which is the spec of CSAC. If the microwave signal source would be used in CSAC, its stability would be greatly improved.

  4. LED lamp power management system and method

    SciTech Connect

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  5. Integral CFLs performance in table lamps

    SciTech Connect

    Page, E.; Driscoll, D.; Siminovitch, M.

    1997-03-01

    This paper focuses on performance variations associated with lamp geometry and distribution in portable table luminaires. If correctly retrofit with compact fluorescent lamps (CFLs), these high use fixtures produce significant energy savings, but if misused, these products could instead generate consumer dissatisfaction with CFLs. It is the authors assertion that the lumen distribution of the light source within the luminaires plays a critical role in total light output, fixture efficiency and efficacy, and, perhaps most importantly, perceived brightness. The authors studied nearly 30 different integral (screw-based) CFLs available on the market today in search of a lamp, or group of lamps, which work best in portable table luminaires. The findings conclusively indicate that horizontally oriented CFLs outperform all other types of CFLs in nearly every aspect.

  6. 30 CFR 20.9 - Class 2 lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Class 2 lamps. 20.9 Section 20.9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS § 20.9 Class 2 lamps. (a) Safety. (1...

  7. Characterizing risk factors for pediatric lamp oil product exposures

    PubMed Central

    SHEIKH, S.; CHANG, A.; KIESZAK, S.; LAW, R.; BENNETT, H. K. W.; ERNST, E.; BOND, G. R.; SPILLER, H. A.; SCHURZ-ROGERS, H.; CHU, A.; BRONSTEIN, A. C.; SCHIER, J. G.

    2015-01-01

    Poisonings from lamp oil ingestion continue to occur worldwide among the pediatric population despite preventive measures such as restricted sale of colored and scented lamp oils. This suggests that optimal prevention practices for unintentional pediatric exposures to lamp oil have yet to be identified and/or properly implemented. Objective To characterize demographic, health data, and potential risk factors associated with reported exposures to lamp oil by callers to poison centers (PCs) in the US and discuss their public health implications. Study design . This was a two part study in which the first part included characterizing all exposures to a lamp oil product reported to the National Poison Data System (NPDS) with regard to demographics, exposure, health, and outcome data from 1/1/2000 to 12/31/2010. Regional penetrance was calculated using NPDS data by grouping states into four regions and dividing the number of exposure calls by pediatric population per region (from the 2000 US census). Temporal analyses were performed on NPDS data by comparing number of exposures by season and around the July 4th holiday. Poisson regression was used to model the count of exposures for these analyses. In the second part of this project, in order to identify risk factors we conducted a telephone-based survey to the parents of children from five PCs in five different states. The 10 most recent lamp oil product exposure calls for each poison center were systematically selected for inclusion. Calls in which a parent or guardian witnessed a pediatric lamp oil product ingestion were eligible for inclusion. Data on demographics, exposure information, behavioral traits, and health were collected. A descriptive analysis was performed and Fisher’s exact test was used to evaluate associations between variables. All analyses were conducted using SAS v9.3. Results Among NPDS data, 2 years was the most common patient age reported and states in the Midwestern region had the highest

  8. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25

    PubMed Central

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-01-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg−1 GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25. PMID:24804053

  9. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25.

    PubMed

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-11-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg(-1) GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25.

  10. Modelling and control of a vortex arc lamp for RTP applications

    NASA Astrophysics Data System (ADS)

    Grover, Harpreet Singh

    The objective of this thesis is to develop a controller that can ramp the temperature of a semiconductor wafer in a controllable fashion. The semiconductor wafers are heated using vortex arc lamps, placed on either side of the wafer. The wafer is heated from room temperature to an intermediate level of around 900 degrees C in a ramp wise fashion before it undergoes flash annealing from the top surface. This thesis focuses on the control of the bottom lamps during the process of heating to the intermediate phase. The challenge in designing this control system is that the wafer temperature measurements are not available during the initial phase of the ramp and also that the resulting lamp current profile should be smooth and free of fluctuations. To achieve this, a vortex arc lamp model, a semiconductor wafer model and a suitable control strategy has been developed.

  11. Assessing occupational mercury exposures during the on-site processing of spent fluorescent lamps.

    PubMed

    Lucas, Alan; Emery, Robert

    2006-03-01

    On-site processing of spent fluorescent lamps reduces storage space requirements and prevents mercury-containing lamp contents from entering the municipal waste stream, but such processing activities are typically not carried out in facilities specifically designed for the operation. This circumstance is of particular concern because lamp-handling and -crushing operations can release mercury vapors and aerosols that constitute an occupational exposure risk. In the study reported here, sampling for airborne mercury was performed during the processing of fluorescent lamps in an enclosed work area and in an open, outdoor work environment. In both enclosed and open work environments, exposures in excess of the established mercury exposure limit were detected. Simple interventions to prevent this possible unanticipated source of mercury exposure are described.

  12. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor.

    PubMed

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnO(x)-CVD layers.

  13. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor

    NASA Astrophysics Data System (ADS)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G.

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnOx-CVD layers.

  14. Metrological characterization of custom-designed 894.6 nm VCSELs for miniature atomic clocks.

    PubMed

    Gruet, F; Al-Samaneh, A; Kroemer, E; Bimboes, L; Miletic, D; Affolderbach, C; Wahl, D; Boudot, R; Mileti, G; Michalzik, R

    2013-03-11

    We report on the characterization and validation of custom-designed 894.6 nm vertical-cavity surface-emitting lasers (VCSELs), for use in miniature Cs atomic clocks based on coherent population trapping (CPT). The laser relative intensity noise (RIN) is measured to be 1 × 10(-11) Hz(-1) at 10 Hz Fourier frequency, for a laser power of 700 μW. The VCSEL frequency noise is 10(13) · f(-1) Hz(2)/Hz in the 10 Hz < f < 10(5) Hz range, which is in good agreement with the VCSEL’s measured fractional frequency instability (Allan deviation) of ≈ 1 × 10(-8) at 1 s, and also is consistent with the VCSEL’s typical optical linewidth of 20-25 MHz. The VCSEL bias current can be directly modulated at 4.596 GHz with a microwave power of -6 to +6 dBm to generate optical sidebands for CPT excitation. With such a VCSEL, a 1.04 kHz linewidth CPT clock resonance signal is detected in a microfabricated Cs cell filled with Ne buffer gas. These results are compatible with state-of-the-art CPT-based miniature atomic clocks exhibiting a short-term frequency instability of 2-3 × 10(-11) at τ = 1 s and few 10(-12) at τ = 10(4) s integration time..

  15. Spectral comparisons of sunlight and different lamps

    NASA Technical Reports Server (NTRS)

    Deitzer, Gerald

    1994-01-01

    The tables in this report were compiled to characterize the spectra of available lamp types and provide comparison to the spectra of sunlight. Table 1 reports the spectral distributions for various lamp sources and compares them to those measured for sunlight. Table 2 provides the amount of energy in Wm(exp -2) relative to the number of photons of PAR (photosynthetically active radiation) (400-700 nm) for each light source.

  16. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  17. Hollow cathode lamp based Faraday anomalous dispersion optical filter.

    PubMed

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-07-15

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the (88)Sr (5s(2))(1)S0 - (5s5p)(1)P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  18. Hollow cathode lamp based Faraday anomalous dispersion optical filter

    PubMed Central

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-01-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 − (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization. PMID:27418112

  19. Corneal astigmatism measuring module for slit lamps

    NASA Astrophysics Data System (ADS)

    Ventura, L.; Riul, C.; Sousa, S. J. F.; DeGroote, J. G. S.; Rosa Filho, A. B.; Oliveira, G. C. D.

    2006-06-01

    We have developed an automatic keratometer module for slit lamps that provides automatic measurements of the radii of the corneal curvature. The system projects 72 light spots displayed in a precise circle at the examined cornea. The displacement and deformation of the reflected image of these light spots are analysed providing the keratometry. Measurements in the range of 26.8-75 D can be obtained and a self-calibration system has been specially designed in order to keep the system calibrated. Infrared LEDs indicate automatically which eye is being examined. Volunteer patients (492) have been submitted to the system and the results show that our system has a high correlation factor with the commercially available manual keratometers and the keratometry measurements from a topographer. Our developed system is 95% in agreement with the corneal topographer (Humphrey—Atlas 995 CZM) and the manual keratometer (Topcon OM-4). The system's nominal precision is 0.05 mm for the radii of curvature and 1° for the associated axis. This research has been supported by Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP).

  20. Plasma diagnostical investigations of high-density metal vapor discharge lamps using temporally and spatially resolved spectral interferometry

    NASA Astrophysics Data System (ADS)

    Hipp, Martin; Fliesser, Walter; Neger, Theo

    1999-08-01

    An optimization of the discharge parameters of high pressure mercury lamps with respect to improved emission properties and longer lifetimes has to be performed using results of advanced model calculations. However, the reliability of these models critically depends on the availability of accurate experimental data. The aim of this work was to provide spatially resolved particle densities of neutral mercury atoms by side-on spectral interferometry. The main challenge was to find an optical arrangement that enables one to compensate for the strong wavefront distortion in the object arm caused by the extreme curvature of the bulb of the discharge lamp, a general problem in classical interferometry. The interferograms could be taken with a time-resolution of 150 microsecond(s) at any phase of the discharge current that varied with 50 Hz. The applied spectro- interferometric technique was a phase method developed at the institute. It supplies a highly resolved phase of the light wavefronts passing the plasma using FFT algorithms. By an Abel-inversion of the side-on data mercury density profiles could be presented for cross-sections ranging up to 10 mm as consequence of the specially designed test and reference beams in the used Mach-Zehnder interferometer.

  1. [Purkinje images in slit lamp videography : Video article].

    PubMed

    Gellrich, M-M; Kandzia, C

    2016-09-01

    Reflexes that accompany every examination with the slit lamp are usually regarded as annoying and therefore do not receive much attention. In the video available online, clinical information "hidden" in the Purkinje images is analyzed according to our concept of slit lamp videography. In the first part of the video, the four Purkinje images which are reflections on the eye's optical surfaces are introduced for the phakic eye. In the pseudophakic eye, however, the refracting surfaces of the intraocular lens (IOL) have excellent optical properties and therefore form Purkinje images 3 and 4 of high quality. Especially the third Purkinje image from the anterior IOL surface, which is usually hardly visible in the phakic eye can be detected deep in the vitreous, enlarged through the eye's own optics like a magnifying glass. Its area of reflection can be used to visualize changes of the anterior segment at high contrast. The third Purkinje image carries valuable information about the anterior curvature and, thus, about the power of the IOL. If the same IOL type is implanted in a patient, often a difference between right and left of 0.5 diopter in its power can be detected by the difference in size of the respective third Purkinje image. In a historical excursion to the "prenatal phase" of the slit lamp in Uppsala, we show that our most important instrument in clinical work was originally designed for catoptric investigations (of specular reflections). Accordingly A. Gullstrand called it an ophthalmometric Nernst lamp.

  2. Xenon arc lamp spectral radiance modelling for satellite instrument calibration

    NASA Astrophysics Data System (ADS)

    Rolt, Stephen; Clark, Paul; Schmoll, Jürgen; Shaw, Benjamin J. R.

    2016-07-01

    Precise radiometric measurements play a central role in many areas of astronomical and terrestrial observation. We focus on the use of continuum light sources in the absolute radiometric calibration of detectors in an imaging spectrometer for space applications. The application, in this instance, revolves around the ground based calibration of the Sentinel-4/UVN instrument. This imaging spectrometer instrument is expected to be deployed in 2019 and will make spatially resolved spectroscopic measurements of atmospheric chemistry. The instrument, which operates across the UV/VIS and NIR spectrum from 305-775 nm, is designed to measure the absolute spectral radiance of the Earth and compare it with the absolute spectral irradiance of the Sun. Of key importance to the fidelity of these absolute measurements is the ground based calibration campaign. Continuum lamp sources that are temporally stable and are spatially well defined are central to this process. Xenon short arc lamps provide highly intense and efficient continuum illumination in a range extending from the ultra-violet to the infra-red and their spectrum is well matched to this specific application. Despite their widespread commercial use, certain aspects of their performance are not well documented in the literature. One of the important requirements in this calibration application is the delivery of highly uniform, collimated illumination at high radiance. In this process, it cannot be assumed that the xenon arc is a point source; the spatial distribution of the radiance must be characterised accurately. We present here careful measurements that thoroughly characterise the spatial distribution of the spectral radiance of a 1000W xenon lamp. A mathematical model is presented describing the spatial distribution. Temporal stability is another exceptionally important requirement in the calibration process. As such, the paper also describes strategies to re-inforce the temporal stability of the lamp output by

  3. Strong-LAMP: A LAMP Assay for Strongyloides spp. Detection in Stool and Urine Samples. Towards the Diagnosis of Human Strongyloidiasis Starting from a Rodent Model

    PubMed Central

    Gandasegui, Javier; Bajo Santos, Cristina; López-Abán, Julio; Saugar, José María; Rodríguez, Esperanza; Vicente, Belén; Muro, Antonio

    2016-01-01

    Background Strongyloides stercoralis, the chief causative agent of human strongyloidiasis, is a nematode globally distributed but mainly endemic in tropical and subtropical regions. Chronic infection is often clinically asymptomatic but it can result in severe hyperinfection syndrome or disseminated strongyloidiasis in immunocompromised patients. There is a great diversity of techniques used in diagnosing the disease, but definitive diagnosis is accomplished by parasitological examination of stool samples for morphological identification of parasite. Until now, no molecular method has been tested in urine samples as an alternative to stool samples for diagnosing strongyloidiasis. This study aimed to evaluate the use of a new molecular LAMP assay in a well-established Wistar rat experimental infection model using both stool and, for the first time, urine samples. The LAMP assay was also clinically evaluated in patients´ stool samples. Methodology/Principal Findings Stool and urine samples were obtained daily during a 28-day period from rats infected subcutaneously with different infective third-stage larvae doses of S. venezuelensis. The dynamics of parasite infection was determined by daily counting the number of eggs per gram of feces from day 1 to 28 post-infection. A set of primers for LAMP assay based on a DNA partial sequence in the 18S rRNA gene from S. venezuelensis was designed. The set up LAMP assay (namely, Strong-LAMP) allowed the sensitive detection of S. venezuelensis DNA in both stool and urine samples obtained from each infection group of rats and was also effective in S. stercoralis DNA amplification in patients´ stool samples with previously confirmed strongyloidiasis by parasitological and real-time PCR tests. Conclusions/Significance Our Strong-LAMP assay is an useful molecular tool in research of a strongyloidiasis experimental infection model in both stool and urine samples. After further validation, the Strong-LAMP could also be potentially

  4. Optimized positioning of autonomous surgical lamps

    NASA Astrophysics Data System (ADS)

    Teuber, Jörn; Weller, Rene; Kikinis, Ron; Oldhafer, Karl-Jürgen; Lipp, Michael J.; Zachmann, Gabriel

    2017-03-01

    We consider the problem of finding automatically optimal positions of surgical lamps throughout the whole surgical procedure, where we assume that future lamps could be robotized. We propose a two-tiered optimization technique for the real-time autonomous positioning of those robotized surgical lamps. Typically, finding optimal positions for surgical lamps is a multi-dimensional problem with several, in part conflicting, objectives, such as optimal lighting conditions at every point in time while minimizing the movement of the lamps in order to avoid distractions of the surgeon. Consequently, we use multi-objective optimization (MOO) to find optimal positions in real-time during the entire surgery. Due to the conflicting objectives, there is usually not a single optimal solution for such kinds of problems, but a set of solutions that realizes a Pareto-front. When our algorithm selects a solution from this set it additionally has to consider the individual preferences of the surgeon. This is a highly non-trivial task because the relationship between the solution and the parameters is not obvious. We have developed a novel meta-optimization that considers exactly this challenge. It delivers an easy to understand set of presets for the parameters and allows a balance between the lamp movement and lamp obstruction. This metaoptimization can be pre-computed for different kinds of operations and it then used by our online optimization for the selection of the appropriate Pareto solution. Both optimization approaches use data obtained by a depth camera that captures the surgical site but also the environment around the operating table. We have evaluated our algorithms with data recorded during a real open abdominal surgery. It is available for use for scientific purposes. The results show that our meta-optimization produces viable parameter sets for different parts of an intervention even when trained on a small portion of it.

  5. Optimization of loop-mediated isothermal amplification (LAMP) assays for the detection of Leishmania DNA in human blood samples.

    PubMed

    Abbasi, Ibrahim; Kirstein, Oscar D; Hailu, Asrat; Warburg, Alon

    2016-10-01

    Visceral leishmaniasis (VL), one of the most important neglected tropical diseases, is caused by Leishmania donovani eukaryotic protozoan parasite of the genus Leishmania, the disease is prevalent mainly in the Indian sub-continent, East Africa and Brazil. VL can be diagnosed by PCR amplifying ITS1 and/or kDNA genes. The current study involved the optimization of Loop-mediated isothermal amplification (LAMP) for the detection of Leishmania DNA in human blood or tissue samples. Three LAMP systems were developed; in two of those the primers were designed based on shared regions of the ITS1 gene among different Leishmania species, while the primers for the third LAMP system were derived from a newly identified repeated region in the Leishmania genome. The LAMP tests were shown to be sufficiently sensitive to detect 0.1pg of DNA from most Leishmania species. The green nucleic acid stain SYTO16, was used here for the first time to allow real-time monitoring of LAMP amplification. The advantage of real time-LAMP using SYTO 16 over end-point LAMP product detection is discussed. The efficacy of the real time-LAMP tests for detecting Leishmania DNA in dried blood samples from volunteers living in endemic areas, was compared with that of qRT-kDNA PCR.

  6. An Open Source "Smart Lamp" for the Optimization of Plant Systems and Thermal Comfort of Offices.

    PubMed

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2016-03-07

    The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called "Smart Lamp", useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment.

  7. Lamp pumped Nd:YAG laser. Space-qualifiable Nd:YAG laser for optical communications

    NASA Technical Reports Server (NTRS)

    Ward, K. B.

    1973-01-01

    Results are given of a program concerned with the design, fabrication, and evaluation of alkali pump lamps for eventual use in a space qualified Nd:YAG laser system. The study included evaluation of 2mm through 6mm bore devices. Primary emphasis was placed upon the optimization of the 4mm bore lamp and later on the 6mm bore lamp. As part of this effort, reference was made to the Sylvania work concerned with the theoretical modeling of the Nd:YAG laser. With the knowledge gained, a projection of laser performance was made based upon realistic lamp parameters which should easily be achieved during following developmental efforts. Measurements were made on the lamp performance both in and out of the cavity configuration. One significant observation was that for a constant vapor pressure device, the spectral and fluorescent output did not vary for vacuum or argon environment. Therefore, the laser can be operated in an inert environment (eg. argon) with no degradation in output. Laser output of 3.26 watts at 430 watts input was obtained for an optimized 4mm bore lamp.

  8. Awareness of the risks of tanning lamps does not influence behavior among college students.

    PubMed

    Knight, J Matthew; Kirincich, Anna N; Farmer, Evan R; Hood, Antoinette F

    2002-10-01

    Awareness of the risks of artificial tanning influences tanning behavior among college students. To correlate the prevalence of tanning lamp use, the perceived benefits and risks associated with UV exposure, and knowledge about skin cancer among university students. A survey was designed and administered to college students seeking "walk-in" care at a university student health center from September 7, 1999, through September 30, 1999. A large midwestern public university student health center. Undergraduate and graduate students attending the student health center for any medical condition. None. Completion of the survey. Of the surveyed students, 47% had used a tanning lamp during the preceding 12 months. Female students were more common users than male students. Of the students surveyed, 39% reported never having used tanning lamps. More than 90% of users of tanning lamps were aware that premature aging and skin cancer were possible complications of tanning lamp use. Despite adequate knowledge of the adverse effects of UV exposure, university students freely and frequently use tanning lamps, primarily for desired cosmetic appearance. To alter this risky behavior will require a fundamental change in the societal belief that tans are attractive and healthy.

  9. Rapid and specific identification of Brucella abortus using the loop-mediated isothermal amplification (LAMP) assay.

    PubMed

    Kang, Sung-Il; Her, Moon; Kim, Ji-Yeon; Lee, Jin Ju; Lee, Kichan; Sung, So-Ra; Jung, Suk Chan

    2015-06-01

    A rapid and accurate diagnosis of brucellosis is required to reduce and prevent the spread of disease among animals and the risk of transfer to humans. In this study, a Brucella abortus-specific (Ba) LAMP assay was developed, that had six primers designed from the BruAb2_0168 region of chromosome I. The specificity of this LAMP assay was confirmed with Brucella reference strains, B. abortus vaccine strains, B. abortus isolates and phylogenetically or serologically related strains. The detection limit of target DNA was up to 20 fg/μl within 60 min. The sensitivity of the new LAMP assay was equal to or slightly higher than other PCR based assays. Moreover, this Ba-LAMP assay could specifically amplify all B. abortus biovars compared to previous PCR assays. To our knowledge, this is the first report of specific detection of B. abortus using a LAMP assay. The Ba-LAMP assay can offer a rapid, sensitive and accurate diagnosis of bovine brucellosis in the field.

  10. Atomic switch networks-nanoarchitectonic design of a complex system for natural computing.

    PubMed

    Demis, E C; Aguilera, R; Sillin, H O; Scharnhorst, K; Sandouk, E J; Aono, M; Stieg, A Z; Gimzewski, J K

    2015-05-22

    Self-organized complex systems are ubiquitous in nature, and the structural complexity of these natural systems can be used as a model to design new classes of functional nanotechnology based on highly interconnected networks of interacting units. Conventional fabrication methods for electronic computing devices are subject to known scaling limits, confining the diversity of possible architectures. This work explores methods of fabricating a self-organized complex device known as an atomic switch network and discusses its potential utility in computing. Through a merger of top-down and bottom-up techniques guided by mathematical and nanoarchitectonic design principles, we have produced functional devices comprising nanoscale elements whose intrinsic nonlinear dynamics and memorization capabilities produce robust patterns of distributed activity and a capacity for nonlinear transformation of input signals when configured in the appropriate network architecture. Their operational characteristics represent a unique potential for hardware implementation of natural computation, specifically in the area of reservoir computing-a burgeoning field that investigates the computational aptitude of complex biologically inspired systems.

  11. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    PubMed

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  12. Design criteria for molecular mimics of fragments of the β-turn. 1. Cα atom analysis

    NASA Astrophysics Data System (ADS)

    Garland, S. L.; Dean, P. M.

    1999-09-01

    Peptides represent an extensive class of biologically active molecules. They may be used as leads in the development of novel therapeutic agents provided the pharmacophoric information present within them can be translated into non-peptide analogs that lack the peptide backbone and are stable to proteolysis. This is the rationale for peptidomimetic drug design. Frequently, the β-turn has been implicated as a conformation important for biological recognition of peptides. Empirical evidence from known peptidomimetics, coupled with a theoretical model of peptide binding and the observation that glycine and proline residues are common within the β-turn, has suggested the design of molecules to mimic placement of between two and four of the side-chains. The moderate number of different β-turn conformations, combined with the combinatoric nature of side-chain selection complicates the procedure. In this paper, cluster analysis has been used to classify the arrangement of C_α atoms about the various fragments of the β-turn. Recombination of the observed patterns provides a general model for the β-turn which may be used as an effective screen for potential peptidomimetic scaffolds in chemical databases.

  13. Atomic switch networks—nanoarchitectonic design of a complex system for natural computing

    NASA Astrophysics Data System (ADS)

    Demis, E. C.; Aguilera, R.; Sillin, H. O.; Scharnhorst, K.; Sandouk, E. J.; Aono, M.; Stieg, A. Z.; Gimzewski, J. K.

    2015-05-01

    Self-organized complex systems are ubiquitous in nature, and the structural complexity of these natural systems can be used as a model to design new classes of functional nanotechnology based on highly interconnected networks of interacting units. Conventional fabrication methods for electronic computing devices are subject to known scaling limits, confining the diversity of possible architectures. This work explores methods of fabricating a self-organized complex device known as an atomic switch network and discusses its potential utility in computing. Through a merger of top-down and bottom-up techniques guided by mathematical and nanoarchitectonic design principles, we have produced functional devices comprising nanoscale elements whose intrinsic nonlinear dynamics and memorization capabilities produce robust patterns of distributed activity and a capacity for nonlinear transformation of input signals when configured in the appropriate network architecture. Their operational characteristics represent a unique potential for hardware implementation of natural computation, specifically in the area of reservoir computing—a burgeoning field that investigates the computational aptitude of complex biologically inspired systems.

  14. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    SciTech Connect

    Loganathan, Muthukumaran; Bristow, Douglas A.

    2014-04-15

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  15. Visual performance for trip hazard detection when using incandescent and led miner cap lamps.

    PubMed

    Sammarco, John J; Gallagher, Sean; Reyes, Miguel

    2010-04-01

    Accident data for 2003-2007 indicate that slip, trip, and falls (STFs) are the second leading accident class (17.8%, n=2,441) of lost-time injuries in underground mining. Proper lighting plays a critical role in enabling miners to detect STF hazards in this environment. Often, the only lighting available to the miner is from a cap lamp worn on the miner's helmet. The focus of this research was to determine if the spectral content of light from light-emitting diode (LED) cap lamps enabled visual performance improvements for the detection of tripping hazards as compared to incandescent cap lamps that are traditionally used in underground mining. A secondary objective was to determine the effects of aging on visual performance. The visual performance of 30 subjects was quantified by measuring each subject's speed and accuracy in detecting objects positioned on the floor both in the near field, at 1.83 meters, and far field, at 3.66 meters. Near field objects were positioned at 0 degrees and +/-20 degrees off axis, while far field objects were positioned at 0 degrees and +/-10 degrees off axis. Three age groups were designated: group A consisted of subjects 18 to 25 years old, group B consisted of subjects 40 to 50 years old, and group C consisted of subjects 51 years and older. Results of the visual performance comparison for a commercially available LED, a prototype LED, and an incandescent cap lamp indicate that the location of objects on the floor, the type of cap lamp used, and subject age all had significant influences on the time required to identify potential trip hazards. The LED-based cap lamps enabled detection times that were an average of 0.96 seconds faster compared to the incandescent cap lamp. Use of the LED cap lamps resulted in average detection times that were about 13.6% faster than those recorded for the incandescent cap lamp. The visual performance differences between the commercially available LED and prototype LED cap lamp were not statistically

  16. Strategy for designing stable and powerful nitrogen-rich high-energy materials by introducing boron atoms.

    PubMed

    Wu, Wen-Jie; Chi, Wei-Jie; Li, Quan-Song; Li, Ze-Sheng

    2017-06-01

    One of the most important aims in the development of high-energy materials is to improve their stability and thus ensure that they are safe to manufacture and transport. In this work, we theoretically investigated open-chain N4B2 isomers using density functional theory in order to find the best way of stabilizing nitrogen-rich molecules. The results show that the boron atoms in these isomers are aligned linearly with their neighboring atoms, which facilitates close packing in the crystals of these materials. Upon comparing the energies of nine N4B2 isomers, we found that the structure with alternating N and B atoms had the lowest energy. Structures with more than one nitrogen atom between two boron atoms had higher energies. The energy of N4B2 increases by about 50 kcal/mol each time it is rearranged to include an extra nitrogen atom between the two boron atoms. More importantly, our results also show that boron atoms stabilize nitrogen-rich molecules more efficiently than carbon atoms do. Also, the combustion of any isomer of N4B2 releases more heat than the corresponding isomer of N4C2 does under well-oxygenated conditions. Our study suggests that the three most stable N4B2 isomers (BN13, BN24, and BN34) are good candidates for high-energy molecules, and it outlines a new strategy for designing stable boron-containing high-energy materials. Graphical abstract The structural characteristics, thermodynamic stabilities, and exothermic properties of nitrogen-rich N4B2 isomers were investigated by means of density functional theory.

  17. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  18. Design of a high-bandwidth tripod scanner for high speed atomic force microscopy.

    PubMed

    Yang, Chen; Yan, Jihong; Dukic, Maja; Hosseini, Nahid; Zhao, Jie; Fantner, Georg E

    2016-11-01

    Tip-scanning high-speed atomic force microscopes (HS-AFMs) have several advantages over their sample-scanning counterparts. Firstly, they can be used on samples of almost arbitrary size since the high imaging bandwidth of the system is immune to the added mass of the sample and its holder. Depending on their layouts, they also enable the use of several tip-scanning HS-AFMs in combination. However, the need for tracking the cantilever with the readout laser makes designing tip-scanning HS-AFMs difficult. This often results in a reduced resonance frequency of the HS-AFM scanner, or a complex and large set of precision flexures. Here, we present a compact, simple HS-AFM designed for integrating the self-sensing cantilever into the tip-scanning configuration, so that the difficulty of tracking small cantilever by laser beam is avoided. The position of cantilever is placed to the end of whole structure, hence making the optical viewing of the cantilever possible. As the core component of proposed system, a high bandwidth tripod scanner is designed, with a scan size of 5.8 µm × 5.8 µm and a vertical travel range of 5.9 µm. The hysteresis of the piezoactuators in X- and Y-axes are linearized using input shaping technique. To reduce in-plane crosstalk and vibration-related dynamics, we implement both filters and compensators on a field programmable analog array. Based on these, images with 512 × 256 pixels are successfully obtained at scan rates up to 1024 lines/s, corresponding to a 4 mm/stip velocity. SCANNING 38:889-900, 2016. © 2016 Wiley Periodicals, Inc.

  19. Towards high-energy and durable lithium-ion batteries via atomic layer deposition: elegantly atomic-scale material design and surface modification.

    PubMed

    Meng, Xiangbo

    2015-01-16

    Targeted at fueling future transportation and sustaining smart grids, lithium-ion batteries (LIBs) are undergoing intensive investigation for improved durability and energy density. Atomic layer deposition (ALD), enabling uniform and conformal nanofilms, has recently made possible many new advances for superior LIBs. The progress was summarized by Liu and Sun in their latest review [1], offering many insightful views, covering the design of nanostructured battery components (i.e., electrodes and solid electrolytes), and nanoscale modification of electrode/electrolyte interfaces. This work well informs peers of interesting research conducted and it will also further help boost the applications of ALD in next-generation LIBs and other advanced battery technologies.

  20. Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps

    SciTech Connect

    Royer, Michael P.; Poplawski, Michael E.; Brown, Charles C.

    2014-12-01

    To date, all three reports in the retail lamps series have focused on basic performance parameters, such as lumen output, efficacy, and color quality. This report goes a step further, examining the photoelectric characteristics (i.e., dimming and flicker) of a subset of lamps from CALiPER Retails Lamps Study 3. Specifically, this report focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers. The results demonstrate notable variation across the various lamps, but little variation between the four dimmers. Overall, the LED lamps: ~tended to have higher relative light output compared to the incandescent and halogen benchmark at the same dimmer output signal (RMS voltage). The lamps’ dimming curves (i.e., the relationship between control signal and relative light output) ranged from linear to very similar to the square-law curve typical of an incandescent lamp. ~generally exhibited symmetrical behavior—the same dimming curve—when measured proceeding from maximum to minimum or minimum to maximum control signal. ~mostly dimmed below 10% of full light output, with some exceptions for specific lamp and dimmer combinations ~exhibited a range of flicker characteristics, with many comparing favorably to the level typical of a magnetically-ballasted fluorescent lamp through at least a majority of the dimming range. ~ always exceeded the relative (normalized) efficacy over the dimming range of the benchmark lamps, which rapidly decline in efficacy when they are dimmed. This report generally does not attempt to rank the performance of one product compared to another, but instead focuses on the collective performance of the group versus conventional incandescent or halogen lamps, the performance of which is likely to be the baseline for a majority of consumers. Undoubtedly, some LED lamps perform better—or more similar to conventional lamps—than others. Some perform desirably for one

  1. Basics of lava-lamp convection

    NASA Astrophysics Data System (ADS)

    Gyüre, Balázs; Jánosi, Imre M.

    2009-10-01

    Laboratory experiments are reported in an immiscible two-fluid system, where thermal convection is initiated by heating at the bottom and cooling at the top. The lava-lamp regime is characterized by a robust periodic exchange process where warm blobs rise from the bottom, attach to the top surface for a while, then cold blobs sink down again. Immiscibility allows to reach real steady (dynamical equilibrium) states which can be sustained for several days. Two modes of lava-lamp convection could be identified by recording and evaluating temperature time series at the bottom and at the top of the container: a “slow” mode is determined by an effective heat transport speed at a given temperature gradient, while a second mode of constant periodicity is viscosity limited. Contrasting of laboratory and geophysical observations yields the conclusion that the frequently suggested lava-lamp analogy fails for the accepted models of mantle convection.

  2. Coaxial HgI excimer lamps

    SciTech Connect

    Malinin, A N; Polyak, A V; Guivan, N N; Shimon, Lyudvik L; Zubrilin, N G

    2002-02-28

    The emission of coaxial HgI excimer lamps pumped by a repetitively pulsed barrier discharge is experimentally studied. The stable operation of the excimer lamps was demonstrated at pump-pulse repetition rates from 0.5 to 12 kHz, and the average emission power attained of 0.6 W at 444 nm. It was found that upon an addition of 0.8% of xenon to the mixture of helium and mercury diiodide, the pulse and average emission powers increased by 30%. The emission power reduced by 5% after 2.5 x 10{sup 6} pulses. An interpretation of the results of optimising the excimer lamp characteristics is given. (laser applications and other topics in quantum electronics)

  3. Basics of lava-lamp convection.

    PubMed

    Gyüre, Balázs; Jánosi, Imre M

    2009-10-01

    Laboratory experiments are reported in an immiscible two-fluid system, where thermal convection is initiated by heating at the bottom and cooling at the top. The lava-lamp regime is characterized by a robust periodic exchange process where warm blobs rise from the bottom, attach to the top surface for a while, then cold blobs sink down again. Immiscibility allows to reach real steady (dynamical equilibrium) states which can be sustained for several days. Two modes of lava-lamp convection could be identified by recording and evaluating temperature time series at the bottom and at the top of the container: a "slow" mode is determined by an effective heat transport speed at a given temperature gradient, while a second mode of constant periodicity is viscosity limited. Contrasting of laboratory and geophysical observations yields the conclusion that the frequently suggested lava-lamp analogy fails for the accepted models of mantle convection.

  4. Ethylene Decomposition Initiated by Ultraviolet Radiation from Low Pressure Mercury Lamps: Kinetics Model Prediction and Experimental Verification.

    NASA Astrophysics Data System (ADS)

    Jozwiak, Zbigniew Boguslaw

    1995-01-01

    Ethylene is an important auto-catalytic plant growth hormone. Removal of ethylene from the atmosphere surrounding ethylene-sensitive horticultural products may be very beneficial, allowing an extended period of storage and preventing or delaying the induction of disorders. Various ethylene removal techniques have been studied and put into practice. One technique is based on using low pressure mercury ultraviolet lamps as a source of photochemical energy to initiate chemical reactions that destroy ethylene. Although previous research showed that ethylene disappeared in experiments with mercury ultraviolet lamps, the reactions were not described and the actual cause of ethylene disappearance remained unknown. Proposed causes for this disappearance were the direct action of ultraviolet rays on ethylene, reaction of ethylene with ozone (which is formed when air or gas containing molecular oxygen is exposed to radiation emitted by this type of lamp), or reactions with atomic oxygen leading to formation of ozone. The objective of the present study was to determine the set of physical and chemical actions leading to the disappearance of ethylene from artificial storage atmosphere under conditions of ultraviolet irradiation. The goal was achieved by developing a static chemical model based on the physical properties of a commercially available ultraviolet lamp, the photochemistry of gases, and the kinetics of chemical reactions. The model was used to perform computer simulations predicting time dependent concentrations of chemical species included in the model. Development of the model was accompanied by the design of a reaction chamber used for experimental verification. The model provided a good prediction of the general behavior of the species involved in the chemistry under consideration; however the model predicted lower than measured rate of ethylene disappearance. Some reasons for the model -experiment disagreement are radiation intensity averaging, the experimental

  5. SBC Internal Lamp P-flat Monitoring

    NASA Astrophysics Data System (ADS)

    Avila, R. J.; Chiaberge, M.; Bohlin, R.

    2016-03-01

    We report on a Cycle 23 calibration program to monitor the status of the SBC P-flat. We find random pixel to pixel changes to be small, with only 2% of pixels having changed by more than 3. There are coherent changes that we measure to be above the poisson errors, in some regions as high as 4% peak to peak. We recommend that the ACS team obtain new observations in order to create a new P-flat. We also measured the degradation of the deuterium lamp used to create internal flats. The brightness of the lamp is currently 65% of its initial level, the degradation being dependent on lifetime usage.

  6. Fundamental studies on a heat driven lamp

    NASA Technical Reports Server (NTRS)

    Lawless, J. L.

    1985-01-01

    A detailed theoretical study of a heat-driven lamp has been performed. This lamp uses a plasma produced in a thermionic diode. The light is produced by the resonance transition of cesium. An important result of this study is that up to 30% of the input heat is predicted to be converted to light in this device. This is a major improvement over ordinary thermionic energy converters in which only approx. 1% is converted to resonance radiation. Efficiencies and optimum inter-electrode spacings have been found as a function of cathode temperature and the radiative escape factor. The theory developed explains the operating limits of the device.

  7. Efficiency and efficacy of incandescent lamps

    NASA Astrophysics Data System (ADS)

    Agrawal, D. C.; Leff, Harvey S.; Menon, V. J.

    1996-05-01

    Planck's radiation formula is used to estimate the dimensionless efficiency of incandescent lamps as a function of filament temperature, with typical values of 2%-13%. Similarly, using the known spectral luminous efficiency of the eye, the efficacy of incandescent light bulbs is estimated as a function of temperature, showing values of 8-24 L W-1 for bulbs of 10-1000 W. The efficiency and efficacy results compare favorably with published data and enable estimation of the filament temperature for any lamp of known efficacy.

  8. Loop-mediated isothermal amplification (LAMP) test for specific and rapid detection of Brucella abortus in cattle.

    PubMed

    Karthik, K; Rathore, Rajesh; Thomas, Prasad; Arun, T R; Viswas, K N; Agarwal, R K; Manjunathachar, H V; Dhama, Kuldeep

    2014-01-01

    Brucella abortus, the major causative agent of abortion in cattle and a zoonotic pathogen, needs to be diagnosed at an early stage. Loop-mediated isothermal amplification (LAMP) test is easy to perform and also promising to be adapted at field level. To develop a LAMP assay for specific and rapid detection of B. abortus from clinical samples of cattle. LAMP primers were designed targeting BruAb2_0168 region using specific software tool and LAMP was optimized. The developed LAMP was tested for its specificity with 3 Brucella spp. and 11 other non-Brucella spp. Sensitivity of the developed LAMP was also carried out with known quantity of DNA. Cattle whole blood samples and aborted fetal stomach contents were collected and used for testing with developed LAMP assay and results were compared with polymerase chain reaction (PCR). The developed LAMP assay works at 61 °C for 60 min and the detection limit was observed to be 100-fold more than the conventional PCR that is commonly used for diagnosis of B. abortus. Clinical sensitivity and specificity of the developed LAMP assay was 100% when compared with Rose Bengal plate test and standard tube agglutination test. SYB® green dye I was used to visualize the result with naked eye. The novelty of the developed LAMP assay for specifically detecting B. abortus infection in cattle along with its inherent rapidness and high sensitivity can be employed for detecting this economically important pathogen of cattle at field level as well be exploited for screening of human infections.

  9. High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues

    NASA Astrophysics Data System (ADS)

    Bazaei, A.; Yong, Yuen K.; Moheimani, S. O. Reza

    2012-06-01

    Tracking of triangular or sawtooth waveforms is a major difficulty for achieving high-speed operation in many scanning applications such as scanning probe microscopy. Such non-smooth waveforms contain high order harmonics of the scan frequency that can excite mechanical resonant modes of the positioning system, limiting the scan range and bandwidth. Hence, fast raster scanning often leads to image distortion. This paper proposes analysis and design methodologies for a nonlinear and smooth closed curve, known as Lissajous pattern, which allows much faster operations compared to the ordinary scan patterns. A simple closed-form measure is formulated for the image resolution of the Lissajous pattern. This enables us to systematically determine the scan parameters. Using internal model controllers (IMC), this non-raster scan method is implemented on a commercial atomic force microscope driven by a low resonance frequency positioning stage. To reduce the tracking errors due to actuator nonlinearities, higher order harmonic oscillators are included in the IMC controllers. This results in significant improvement compared to the traditional IMC method. It is shown that the proposed IMC controller achieves much better tracking performances compared to integral controllers when the noise rejection performances is a concern.

  10. High-speed Lissajous-scan atomic force microscopy: scan pattern planning and control design issues.

    PubMed

    Bazaei, A; Yong, Yuen K; Moheimani, S O Reza

    2012-06-01

    Tracking of triangular or sawtooth waveforms is a major difficulty for achieving high-speed operation in many scanning applications such as scanning probe microscopy. Such non-smooth waveforms contain high order harmonics of the scan frequency that can excite mechanical resonant modes of the positioning system, limiting the scan range and bandwidth. Hence, fast raster scanning often leads to image distortion. This paper proposes analysis and design methodologies for a nonlinear and smooth closed curve, known as Lissajous pattern, which allows much faster operations compared to the ordinary scan patterns. A simple closed-form measure is formulated for the image resolution of the Lissajous pattern. This enables us to systematically determine the scan parameters. Using internal model controllers (IMC), this non-raster scan method is implemented on a commercial atomic force microscope driven by a low resonance frequency positioning stage. To reduce the tracking errors due to actuator nonlinearities, higher order harmonic oscillators are included in the IMC controllers. This results in significant improvement compared to the traditional IMC method. It is shown that the proposed IMC controller achieves much better tracking performances compared to integral controllers when the noise rejection performances is a concern.

  11. Atomic force microscopy as a nanoscience tool in rational food design.

    PubMed

    Morris, Victor J; Woodward, Nicola C; Gunning, Allan P

    2011-09-01

    Atomic force microscopy (AFM) is a nanoscience tool that has been used to provide new information on the molecular structure of food materials. As an imaging tool it has led to solutions to previously intractable problems in food science. This type of information can provide a basis for tailoring food structures to optimise functional behaviour. Such an approach will be illustrated by indicating how a basic understanding of the role of interfacial stability in complex foods systems can be extended to understand how such interfacial structures behave on digestion, and how this in turn suggests routes for the rational design of processed food structures to modify lipolysis and control fat intake. As a force transducer AFM can be used to probe interactions between food structures such as emulsion droplets at the colloidal level. This use of force spectroscopy will be illustrated through showing how it allows the effect of the structural modification of interfacial structures on colloidal interactions to be probed in model emulsion systems. Direct studies on interactions between colliding soft, deformable droplets reveal new types of interactions unique to deformable particles that can be exploited to manipulate the behaviour of processed or natural emulsion structures involved in digestion processes. Force spectroscopy can be adapted to probe specific intermolecular interactions, and this application of the technique will be illustrated through its use to test molecular hypotheses for the bioactivity of modified pectin molecules.

  12. Enhanced lithiation and fracture behavior of silicon mesoscale pillars via atomic layer coatings and geometry design

    NASA Astrophysics Data System (ADS)

    Ye, J. C.; An, Y. H.; Heo, T. W.; Biener, M. M.; Nikolic, R. J.; Tang, M.; Jiang, H.; Wang, Y. M.

    2014-02-01

    Crystalline silicon nanostructures are commonly known to exhibit anisotropic expansion behavior during the lithiation that leads to grooving and fracture. Here we report surprisingly relatively uniform volume expansion behavior of large aspect-ratio (∼25), well-patterned, n-type (100) silicon micropillars (∼2 μm diameter) during the initial lithiation. The comparison results with and without atomic layer metal oxides (Al2O3 and TiO2) coatings reveal drastically enhanced solid electrolyte interphase (SEI) formation, higher volume expansion, and increased anisotropy. Square-pillars are found to exhibit nearly twice volume expansion without fracture compared to circular-pillars. Models are invoked to qualitatively address these beneficial or detrimental properties of silicon for lithium ion battery. Our experiments and computer simulations point at the critical relevance of SEI and pristine geometry in regulating volume expansion and failure. ALD-coated ultrathin metal oxides can act as an ion channel gate that helps promote fast Li+ transport into the bulk by changing the surface kinetics, suggesting new ways of designing electrodes for high-performance lithium ion battery applications.

  13. Cold Light from Hot Atoms and Molecules

    SciTech Connect

    Lister, Graeme; Curry, John J.

    2011-05-11

    The introduction of rare earth atoms and molecules into lighting discharges led to great advances in efficacy of these lamps. Atoms such as Dy, Ho and Ce provide excellent radiation sources for lighting applications, with rich visible spectra, such that a suitable combination of these elements can provide high quality white light. Rare earth molecules have also proved important in enhancing the radiation spectrum from phosphors in fluorescent lamps. This paper reviews some of the current aspects of lighting research, particularly rare earth chemistry and radiation, and the associated fundamental atomic and molecular data.

  14. Application of novel loop-mediated isothermal amplification (LAMP) for rapid authentication of the herbal tea ingredient Hedyotis diffusa Willd.

    PubMed

    Li, Ming; Wong, Yuk-Lau; Jiang, Li-Li; Wong, Ka-Lok; Wong, Yuen-Ting; Lau, Clara Bik-San; Shaw, Pang-Chui

    2013-12-01

    Hedyotis diffusa Willd. (Baihuasheshecao) is an ingredient of herbal teas commonly consumed in the Orient and tropical Asia for cancer treatment and health maintenance. In the market, this ingredient is frequently adulterated by the related species Hedyotis corymbosa (L.) Lam. The objective of this study is to develop a novel loop-mediated isothermal amplification (LAMP) technique to differentiate H. diffusa from its adulterant H. corymbosa. A set of four internal control primers (F3, FIP, BIP and B3) were designed based on six loci in the internal transcribed spacer (ITS) for LAMP of both H. diffusa and H. corymbosa. Two specific primers (S_F3 and S_FIP) were designed for specific LAMP detection of H. diffusa only. Our data showed that LAMP was successful for both H. diffusa and H. corymbosa in internal control. In contrast, only H. diffusa was detected in specific LAMP using the specific primers S_F3 and S_FIP. This study showed that LAMP was useful to differentiate H. diffusa from its adulterant H. corymbosa. This study is significant for the verification of the authenticity for better quality control of this common herbal tea ingredient. The strategy of including an internal control assures the quality of the concerned DNA region for LAMP.

  15. DESIGN OF ATOMIZERS AND BURNERS FOR COAL-WATER SLURRY COMBUSTION

    SciTech Connect

    Rony Hitron; William Humphrey; Norman Chigier

    1999-01-05

    The Falling Droplet device was used to measure the extensional viscosity of a variety of aqueous polymer solutions. These solutions were atomized with the miniature ''inverse'' twin-fluid atomizer. Droplet size measurements were made with a Malvern laser diffraction particle sizing device. Droplet sizes measured did not rank strictly according to either low-shear rate shear viscosity or extensional viscosity.

  16. LRO-LAMP observations of the LCROSS impact plume.

    PubMed

    Gladstone, G Randall; Hurley, Dana M; Retherford, Kurt D; Feldman, Paul D; Pryor, Wayne R; Chaufray, Jean-Yves; Versteeg, Maarten; Greathouse, Thomas K; Steffl, Andrew J; Throop, Henry; Parker, Joel Wm; Kaufmann, David E; Egan, Anthony F; Davis, Michael W; Slater, David C; Mukherjee, Joey; Miles, Paul F; Hendrix, Amanda R; Colaprete, Anthony; Stern, S Alan

    2010-10-22

    On 9 October 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) sent a kinetic impactor to strike Cabeus crater, on a mission to search for water ice and other volatiles expected to be trapped in lunar polar soils. The Lyman Alpha Mapping Project (LAMP) ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO) observed the plume generated by the LCROSS impact as far-ultraviolet emissions from the fluorescence of sunlight by molecular hydrogen and carbon monoxide, plus resonantly scattered sunlight from atomic mercury, with contributions from calcium and magnesium. The observed light curve is well simulated by the expansion of a vapor cloud at a temperature of ~1000 kelvin, containing ~570 kilograms (kg) of carbon monoxide, ~140 kg of molecular hydrogen, ~160 kg of calcium, ~120 kg of mercury, and ~40 kg of magnesium.

  17. 2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP AND CHIMNEY COMPANY IN BACKGROUND. - Bridgeport Lamp Chimney Company, Simpson Creek Bridge, Spanning Simpson Creek, State Route 58 vicinity, Bridgeport, Harrison County, WV

  18. Detail view of lamp in law library; Jennewein modeled symbols ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of lamp in law library; Jennewein modeled symbols of the four seasons on the lamp's aluminum supports - United States Department of Justice, Constitution Avenue between Ninth & Tenth Streets, Northwest, Washington, District of Columbia, DC

  19. 46 CFR 92.05-10 - Lamp room construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CONSTRUCTION AND ARRANGEMENT General Fire Protection § 92.05-10 Lamp room construction. (a) Lamp, paint, and oil lockers and similar compartments shall be constructed of steel or shall be wholly lined with metal. ...

  20. 46 CFR 92.05-10 - Lamp room construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CONSTRUCTION AND ARRANGEMENT General Fire Protection § 92.05-10 Lamp room construction. (a) Lamp, paint, and oil lockers and similar compartments shall be constructed of steel or shall be wholly lined with metal. ...

  1. 46 CFR 92.05-10 - Lamp room construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CONSTRUCTION AND ARRANGEMENT General Fire Protection § 92.05-10 Lamp room construction. (a) Lamp, paint, and oil lockers and similar compartments shall be constructed of steel or shall be wholly lined with metal. ...

  2. 46 CFR 92.05-10 - Lamp room construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CONSTRUCTION AND ARRANGEMENT General Fire Protection § 92.05-10 Lamp room construction. (a) Lamp, paint, and oil lockers and similar compartments shall be constructed of steel or shall be wholly lined with metal. ...

  3. 46 CFR 92.05-10 - Lamp room construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CONSTRUCTION AND ARRANGEMENT General Fire Protection § 92.05-10 Lamp room construction. (a) Lamp, paint, and oil lockers and similar compartments shall be constructed of steel or shall be wholly lined with metal. ...

  4. 49 CFR 393.23 - Power supply for lamps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.23 Power supply for... exception of battery powered lamps used on projecting loads. [70 FR 48046, Aug. 15, 2005]...

  5. Circular, explosion-proof lamp provides uniform illumination

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Circular explosion-proof fluorescent lamp is fitted around a TV camera lens to provide shadowless illumination with a low radiant heat flux. The lamp is mounted in a transparent acrylic housing sealed with clear silicone rubber.

  6. Lamp automatically switches to new filament on burnout

    NASA Technical Reports Server (NTRS)

    Ingle, W. B.

    1966-01-01

    Lamp with primary and secondary filaments has a means for automatic switching to the secondary filament at primary filament burnout. Lamp failures and resultant expenses during oscillograph printing are appreciably reduced.

  7. Application of Wireless Intelligent Control System for HPS Lamps and LEDs Combined Illumination in Road Tunnel

    PubMed Central

    Lai, Jinxing; Qiu, Junling; Chen, Jianxun; Wang, Yaqiong; Fan, Haobo

    2014-01-01

    Because of the particularity of the environment in the tunnel, the rational tunnel illumination system should be developed, so as to optimize the tunnel environment. Considering the high cost of traditional tunnel illumination system with high-pressure sodium (HPS) lamps as well as the effect of a single light source on tunnel entrance, the energy-saving illumination system with HPS lamps and LEDs combined illumination in road tunnel, which could make full use of these two kinds of lamps, was proposed. The wireless intelligent control system based on HPS lamps and LEDs combined illumination and microcontrol unit (MCU) Si1000 wireless communication technology was designed. And the remote monitoring, wireless communication, and PWM dimming module of this system were designed emphatically. Intensity detector and vehicle flow detector can be configured in wireless intelligent control system, which gather the information to the master control unit, and then the information is sent to the monitoring center through the Ethernet. The control strategies are got by the monitoring center according to the calculated results, and the control unit wirelessly sends parameters to lamps, which adjust the luminance of each segment of the tunnel and realize the wireless intelligent control of combined illumination in road tunnel. PMID:25587266

  8. Application of wireless intelligent control system for HPS lamps and LEDs combined illumination in road tunnel.

    PubMed

    Lai, Jinxing; Qiu, Junling; Chen, Jianxun; Wang, Yaqiong; Fan, Haobo

    2014-01-01

    Because of the particularity of the environment in the tunnel, the rational tunnel illumination system should be developed, so as to optimize the tunnel environment. Considering the high cost of traditional tunnel illumination system with high-pressure sodium (HPS) lamps as well as the effect of a single light source on tunnel entrance, the energy-saving illumination system with HPS lamps and LEDs combined illumination in road tunnel, which could make full use of these two kinds of lamps, was proposed. The wireless intelligent control system based on HPS lamps and LEDs combined illumination and microcontrol unit (MCU) Si1000 wireless communication technology was designed. And the remote monitoring, wireless communication, and PWM dimming module of this system were designed emphatically. Intensity detector and vehicle flow detector can be configured in wireless intelligent control system, which gather the information to the master control unit, and then the information is sent to the monitoring center through the Ethernet. The control strategies are got by the monitoring center according to the calculated results, and the control unit wirelessly sends parameters to lamps, which adjust the luminance of each segment of the tunnel and realize the wireless intelligent control of combined illumination in road tunnel.

  9. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    SciTech Connect

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J.; Denissen, C.; Suijker, J.

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  10. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    NASA Astrophysics Data System (ADS)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Denissen, C.; Suijker, J.; Awakowicz, P.; Mentel, J.

    2015-08-01

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  11. Breakdown characteristics of xenon HID Lamps

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  12. Blackbody Radiation from an Incandescent Lamp

    ERIC Educational Resources Information Center

    Ribeiro, C. I.

    2014-01-01

    In this article we propose an activity aimed at introductory students to help them understand the Stefan-Boltzmann and Wien's displacement laws. It only requires simple materials that are available at any school: an incandescent lamp, a variable dc energy supply, and a computer to run an interactive simulation of the blackbody spectrum.…

  13. Heat Lamps Solder Solar Array Quickly

    NASA Technical Reports Server (NTRS)

    Coyle, P. J.; Crouthamel, M. S.

    1982-01-01

    Interconnection tabs in a nine-solar-cell array have been soldered simultaneously with radiant heat. Cells and tabs are held in position for soldering by sandwiching them between compliant silicone-rubber vacuum platen and transparent polyimide sealing membrane. Heat lamps warm cells, producing smooth, flat solder joints of high quality.

  14. Blackbody Radiation from an Incandescent Lamp

    ERIC Educational Resources Information Center

    Ribeiro, C. I.

    2014-01-01

    In this article we propose an activity aimed at introductory students to help them understand the Stefan-Boltzmann and Wien's displacement laws. It only requires simple materials that are available at any school: an incandescent lamp, a variable dc energy supply, and a computer to run an interactive simulation of the blackbody spectrum.…

  15. Fluorescent lamp with non-scattering phosphor

    SciTech Connect

    Johnson, P.D.

    1984-09-04

    A fluorescent lamp comprises a source of near ultraviolet radiation together with an outer shell at least partially surrounding the ultraviolet source and comprising an ultraviolet transmissive material, the shell having embedded or dissolved therein a phosphor material having an indexed refraction approximately, but not quite equal, to the index of refraction of the shell.

  16. Basic physics of the incandescent lamp (lightbulb)

    NASA Astrophysics Data System (ADS)

    MacIsaac, Dan; Kanner, Gary; Anderson, Graydon

    1999-12-01

    We describe the basic electrical and optical characteristics of the incandescent lamp (lightbulb), as an appropriate exemplar for use in teaching introductory electricity and magnetism. We discuss filament characteristics, blackbody physics, mechanical bulb manufacture, and halogen technology. Variants of the incandescent bulb are also addressed.

  17. CW arc-lamp-pumped alexandrite lasers

    SciTech Connect

    Samelson, H.; Walling, J.C.; Wernikowski, T.; Harter, D.J.

    1988-06-01

    The performance characteristics of arc-lamp- (Xe and Hg) pumped, CW alexandrite lasers are described in detail. The modes of operation considered are free running, tuned, and repetitively Q-switched. The experimental arrangement and apparatus are also outlined. The experimental results are discussed in terms of a steady-state model, and the areas of agreement and difficulty are pointed out.

  18. Incandescent electric lamp with heat recovery means

    SciTech Connect

    Walsh, P.

    1981-06-23

    An incandescent electric lamp is described which utilizes an infrared (ir) reflector for directing ir energy back to the filament to increase its operating efficiency in which a reflector is used to redirect circulating infrared energy back to the wall of the envelope where it then can be redirected back to the filament, or reflected directly back onto the filament.

  19. Acute And Long-Term Bioeffects And Lamp Safety

    NASA Astrophysics Data System (ADS)

    Andersen, F. Alan

    1980-10-01

    Knowledge of both acute and chronic biological effects is currently used to evaluate lamp safety. In some cases, a quantitative basis for avoiding exposures greater than a certain value can be stated. In other cases, however, only a qualitative estimate of the hazard is available. In a discussion that uses mercury vapor lamps, tanning booths, and sodium vapor lamps as examples, the interplay between the two types of data leading to an evaluation of lamp safety is described.

  20. Design of atomizers and burners for coal-water slurry combustion. Progress report, April 1--June 31, 1996

    SciTech Connect

    Mansour, A.; Chigier, N.

    1996-12-31

    In the period extending from March 30th to June 30th 1996 the following tasks were completed. The authors have successfully developed the falling droplet technique to measure the extensional viscosity of very dilute polymeric solutions. They have also determined that the polymeric materials used behaved as elastic solids even at very low concentrations of the order of 30 ppm. A published paper contains a complete description of the technique and is enclosed within this report. They have designed and built the air-assist effervescent atomizer. They have mounted the atomizer to the spray chamber. They have set up the phase Doppler to make droplet size and velocity measurements in the flow field of the air assist effervescent atomizer.

  1. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. Persons underground shall use only permissible electric lamps approved by the Secretary for portable...

  2. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. Persons underground shall use only permissible electric lamps approved by the Secretary for portable...

  3. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. Persons underground shall use only permissible electric lamps approved by the Secretary for...

  4. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. Persons underground shall use only permissible electric lamps approved by the Secretary for...

  5. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. Persons underground shall use only permissible electric lamps approved by the Secretary for...

  6. 46 CFR 72.03-15 - Lamp room construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Lamp room construction. 72.03-15 Section 72.03-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 72.03-15 Lamp room construction. (a) Lamp, paint, and oil lockers and...

  7. 46 CFR 72.03-15 - Lamp room construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Lamp room construction. 72.03-15 Section 72.03-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 72.03-15 Lamp room construction. (a) Lamp, paint, and oil lockers and...

  8. 46 CFR 72.03-15 - Lamp room construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Lamp room construction. 72.03-15 Section 72.03-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 72.03-15 Lamp room construction. (a) Lamp, paint, and oil lockers and...

  9. 46 CFR 72.03-15 - Lamp room construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Lamp room construction. 72.03-15 Section 72.03-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 72.03-15 Lamp room construction. (a) Lamp, paint, and oil lockers and...

  10. 46 CFR 72.03-15 - Lamp room construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Lamp room construction. 72.03-15 Section 72.03-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 72.03-15 Lamp room construction. (a) Lamp, paint, and oil lockers and...

  11. 30 CFR 75.1703-1 - Permissible lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Permissible lamps. 75.1703-1 Section 75.1703-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703-1 Permissible lamps. Lamps...

  12. 30 CFR 75.1703-1 - Permissible lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Permissible lamps. 75.1703-1 Section 75.1703-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703-1 Permissible lamps. Lamps...

  13. 30 CFR 75.1703-1 - Permissible lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permissible lamps. 75.1703-1 Section 75.1703-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703-1 Permissible lamps. Lamps...

  14. 30 CFR 75.1703-1 - Permissible lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Permissible lamps. 75.1703-1 Section 75.1703-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703-1 Permissible lamps. Lamps...

  15. 30 CFR 75.1703-1 - Permissible lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Permissible lamps. 75.1703-1 Section 75.1703-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703-1 Permissible lamps. Lamps...

  16. 146. DETAIL VIEW, LOOKING STRAIGHT ON, OF CAST IRON LAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. DETAIL VIEW, LOOKING STRAIGHT ON, OF CAST IRON LAMP STANDARD. THIS AND OTHER LAMP STANDARDS WERE REMOVED FROM THE LAMP COLUMNS ON THE PARAPET WALLS DURING WORLD WAR II AND STORED INSIDE THE DAM (January 1991) - Coolidge Dam, Gila River, Peridot, Gila County, AZ

  17. Design and implementation of a mobile teaching-learning pattern through atom publishing protocol

    NASA Astrophysics Data System (ADS)

    Wu, Yu

    2011-12-01

    The new technologies set the stage for Mobile Learning. In this paper, we explored a Mobile Teaching-Learning pattern and its advantages. And then we modeled courses with Atom and Atom Publishing Protocol. Grounded on the pattern and modeling, we implemented mobile learning client side with Apple technologies, which could achieve anytime, anywhere learning. And at last, we discussed the application of our system.

  18. Determination of Ba-emitter densities along electrodes in high pressure sodium lamps by optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Westermeier, Michael; Reinelt, Jens; Awakowicz, Peter; Mentel, Juergen

    2008-10-01

    Nowadays, high pressure sodium lamps gain more importance in various fields of lighting e.g. for horticulture lighting. To achieve a long lifetime, a detailed understanding of the density of the barium emitter around the lamp electrodes and its interaction with them is needed. The lamp under investigation has a special research design. It is downscaled to a 140 W lamp and equipped with a sapphire discharge tube to allow optical observations. Ba is stored in a tungsten coil around the rod shaped tungsten electrodes and transported to the tip during operation. By measuring the absorption of the 553 nm Ba resonance line the spatially resolved Ba density around the electrodes during lamp operation is determined. As backlight a filtered UHP-lamp is installed. The measuring results show a decrease of Ba along the electrode axis representing a diffusion process. Further results will be shown for different lamp operating parameters (e.g. current, frequency) and combined with the measured electrode temperature profiles.

  19. CALiPER Report 20.2: Dimming, Flicker, and Power Quality Characteristics of LED PAR38 Lamps

    SciTech Connect

    None, None

    2014-03-31

    This report focuses on the flicker and power quality performance of the Series 20 lamps at full output and various dimmed levels. All of the Series 20 PAR38 lamps that manufacturers claimed to be dimmable (including all halogen lamps) were evaluated individually (one lamp at a time) both on a switch and under the control of a phase-cut dimmer designed for use with "all classes of bulbs." Measurements of luminous flux, flicker, and power quality were taken at 10 target dimmed settings and compared with operation on a switch. Because only a single unit of each product was evaluated on a single dimmer that may or may not have been recommended by its manufacturer, this report focuses on the performance of the products relative to each other, rather than the best-case performance of each lamp or variation in performance delivered from each lamp. Despite these limitations, the results suggest that LED performance is improving, and performance trends are beginning to emerge, perhaps due in part to the identification of preferred LED driver strategies for lamp products.

  20. Real-time electrochemical LAMP: a rational comparative study of different DNA intercalating and non-intercalating redox probes.

    PubMed

    Martin, Alexandra; Bouffier, Laurent; Grant, Kathryn B; Limoges, Benoît; Marchal, Damien

    2016-06-20

    We present a comparative study of ten redox-active probes for use in real-time electrochemical loop-mediated isothermal amplification (LAMP). Our main objectives were to establish the criteria that need to be fulfilled for minimizing some of the current limitations of the technique and to provide future guidelines in the search for ideal redox reporters. To ensure a reliable comparative study, each redox probe was tested under similar conditions using the same LAMP reaction and the same entirely automatized custom-made real-time electrochemical device (designed for electrochemically monitoring in real-time and in parallel up to 48 LAMP samples). Electrochemical melt curve analyses were recorded immediately at the end of each LAMP reaction. Our results show that there are a number of intercalating and non-intercalating redox compounds suitable for real-time electrochemical LAMP and that the best candidates are those able to intercalate strongly into ds-DNA but not too much to avoid inhibition of the LAMP reaction. The strongest intercalating redox probes were finally shown to provide higher LAMP sensitivity, speed, greater signal amplitude, and cleaner-cut DNA melting curves than the non-intercalating molecules.

  1. High Throughput Atomic Layer Deposition Processes: High Pressure Operations, New Reactor Designs, and Novel Metal Processing

    NASA Astrophysics Data System (ADS)

    Mousa, MoatazBellah Mahmoud

    Atomic Layer Deposition (ALD) is a vapor phase nano-coating process that deposits very uniform and conformal thin film materials with sub-angstrom level thickness control on various substrates. These unique properties made ALD a platform technology for numerous products and applications. However, most of these applications are limited to the lab scale due to the low process throughput relative to the other deposition techniques, which hinders its industrial adoption. In addition to the low throughput, the process development for certain applications usually faces other obstacles, such as: a required new processing mode (e.g., batch vs continuous) or process conditions (e.g., low temperature), absence of an appropriate reactor design for a specific substrate and sometimes the lack of a suitable chemistry. This dissertation studies different aspects of ALD process development for prospect applications in the semiconductor, textiles, and battery industries, as well as novel organic-inorganic hybrid materials. The investigation of a high pressure, low temperature ALD process for metal oxides deposition using multiple process chemistry revealed the vital importance of the gas velocity over the substrate to achieve fast depositions at these challenging processing conditions. Also in this work, two unique high throughput ALD reactor designs are reported. The first is a continuous roll-to-roll ALD reactor for ultra-fast coatings on porous, flexible substrates with very high surface area. While the second reactor is an ALD delivery head that allows for in loco ALD coatings that can be executed under ambient conditions (even outdoors) on large surfaces while still maintaining very high deposition rates. As a proof of concept, part of a parked automobile window was coated using the ALD delivery head. Another process development shown herein is the improvement achieved in the selective synthesis of organic-inorganic materials using an ALD based process called sequential vapor

  2. Hamiltonian design in readout from room-temperature Raman atomic memory.

    PubMed

    Dąbrowski, Michał; Chrapkiewicz, Radosław; Wasilewski, Wojciech

    2014-10-20

    We present an experimental demonstration of the Hamiltonian manipulation in light-atom interface in Raman-type warm rubidium-87 vapor atomic memory. By adjusting the detuning of the driving beam we varied the relative contributions of the Stokes and anti-Stokes scattering to the process of four-wave mixing which reads out a spatially multimode state of atomic memory. We measured the temporal evolution of the readout fields and the spatial intensity correlations between write-in and readout as a function of detuning with the use of an intensified camera. The correlation maps enabled us to resolve between the anti-Stokes and the Stokes scattering and to quantify their contributions. Our experimental results agree quantitatively with a simple, plane-wave theoretical model we provide. They allow for a simple interpretation of the coaction of the anti-Stokes and the Stokes scattering at the readout stage. The Stokes contribution yields additional, adjustable gain at the readout stage, albeit with inevitable extra noise. Here we provide a simple and useful framework to trace it and the results can be utilized in the existing atomic memories setups. Furthermore, the shown Hamiltonian manipulation offers a broad range of atom-light interfaces readily applicable in current and future quantum protocols with atomic ensembles.

  3. 75 FR 22213 - Energy Conservation Program: Test Procedures for General Service Fluorescent Lamps, Incandescent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... Lamps, Incandescent Reflector Lamps, and General Service Incandescent Lamps; Correction AGENCY: Office... procedures for general service fluorescent lamps, incandescent reflector lamps, and general service incandescent lamps, which was published in the Federal Register on July 6, 2009. In that final rule, the...

  4. CALiPER Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps

    SciTech Connect

    none,

    2014-12-31

    This CALiPER report examines the characteristics of a subset of lamps from CALiPER Retail Lamps Study 3 in more detail. Specifically, it focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers.

  5. Application of a loop-mediated isothermal amplification (LAMP) assay for molecular identification of Trueperella pyogenes isolated from various origins.

    PubMed

    Abdulmawjood, A; Wickhorst, J; Hashim, O; Sammra, O; Hassan, A A; Alssahen, M; Lämmler, C; Prenger-Berninghoff, E; Klein, G

    2016-08-01

    In the present study 28 Trueperella pyogenes strains isolated from various origins could successfully be identified with a newly designed loop-mediated isothermal amplification (LAMP) assay based on gene cpn60 encoding chaperonin. No cross reaction could be observed with control strains representing four species of genus Trueperella and seven species of closely related genus Arcanobacterium. The present cpn60 LAMP assay might allow a reliable and low cost identification of T. pyogenes also in laboratories with less specified equipment.

  6. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  7. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  8. Inter-laboratory Evaluation of Ultraviolet Radiation Emissions from Compact Fluorescent Lamps.

    PubMed

    Miller, Sharon; Bergman, Rolf; Duffy, Mark; Gross, David; Jackson, Andrew; James, Robert; Kotrebai, Mihaly; Lamontagne, Andre; Lyon, Terry; Yandek, Edward; Sliney, David

    2016-01-27

    There have been many recent reports regarding the potential risks of UV emissions from compact fluorescent lamps (CFLs). In some of these reports, the robustness of the measurements was difficult to discern. We conducted round-robin measurements, involving three lamp manufacturers and two government research laboratories to gather reliable data on the UV emissions from commercially-available CFLs. The initial sample of lamps consisted of 71 spiral-shaped CFLs purchased from local retailers. From the initial sample, 14 'high UV emitting' CFLs were chosen for further evaluation. We compared the UV emissions at a distance of 20 cm with the UV exposure limits (ELs) published by the International Commission on Non-ionizing Radiation Protection (ICNIRP). We found that the allowable exposure time for measured lamps ranged from 21 to 415 hrs. This indicates that the emissions would not exceed the short-term ELs that have been established by the ICNIRP for healthy individuals. We also evaluated the potential long-term risk and found it to be insignificant. There was a large variation in the UV emissions found, even for lamps from a single package, indicating that it is impossible to predict the UV output of a CFL based on its physical appearance and model designation. This article is protected by copyright. All rights reserved.

  9. Electric LAMP: Virtual Loop-Mediated Isothermal AMPlification

    PubMed Central

    Salinas, Nelson R.; Little, Damon P.

    2012-01-01

    We present eLAMP, a PERL script, with Tk graphical interface, that electronically simulates Loop-mediated AMPlification (LAMP) allowing users to efficiently test putative LAMP primers on a set of target sequences. eLAMP can match primers to templates using either exact (via builtin PERL regular expressions) or approximate matching (via the tre-agrep library). Performance was tested on 40 whole genome sequences of Staphylococcus. eLAMP correctly predicted that the two tested primer sets would amplify from S. aureus genomes and not amplify from other Staphylococcus species. Open source (GNU Public License) PERL scripts are available for download from the New York Botanical Garden's website. PMID:25969751

  10. Controlling the vapor pressure of a mercury lamp

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

  11. Comparative studies on dimming capabilities of retrofit LED lamps

    NASA Astrophysics Data System (ADS)

    Ionescu, Ciprian; Vasile, Alexandru; Codreanu, Norocel; Negroiu, Rodica

    2016-12-01

    These days many variants for lighting systems are available on the market, and new solutions are about to emerge. Most of the new lamps are offered in form to be retrofitted to existing sockets and luminaires. In this paper, are presented some systematically investigations on different lamps as LEDs, Compact Fluorescent Lamps (CFLs), tungsten, and new available Cold Cathode Fluorescent Lamps (CCFLs), regarding the light level, dimming performances and also the resulting flicker and power distortion performances. The light level was expressed by the illuminance level, measured for all lamps in the same conditions, at the same distance and on the same surface represented by the photometer probe.

  12. Controlling the vapor pressure of a mercury lamp

    DOEpatents

    Grossman, M.W.; George, W.A.

    1988-05-24

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

  13. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok Srivatava

    2007-03-31

    This is the Final Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet (UV) emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. Our work started by investigating through modeling calculations the requirement for the particle size of the NCP. Our work to develop suitable nanocrystalline phosphors started with the known oxide quantum splitting and UV emitting phosphors. We demonstrated several synthesis techniques for the production of high quality nanocrystalline materials that crystallizes in the desired phase and with the desired particle size. In collaboration with our subcontractor we demonstrated the feasibility for the manufacture of NC phosphors. We also demonstrated novel techniques of coating the NCP on the surface of micron sized phosphors. Our chief achievement pertains to the successful testing of the coated hybrid phosphor systems in linear fluorescent lamps. In linear fluorescent lamp tests, we have demonstrated up to 7% increase in the efficacy of hybrid phosphors over the conventional (uncoated) phosphors. We have also demonstrated the improvement in the lumen maintenance of the coated phosphors. A hybrid phosphor system based on the commercial red emitting phosphor, Y{sub 2}O{sub 3}:Eu{sup 3+} did not show the anticipated improvement in lamp efficacy. We explored the reasons for this observation

  14. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  15. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  16. Photoswitching behavior of a novel single molecular tip for noncontact atomic force microscopy designed for chemical identification.

    PubMed

    Takamatsu, Daiko; Yamakoshi, Yoko; Fukui, Ken-ichi

    2006-02-09

    A tripod molecule with an azobenzene arm was designed as a single molecular tip for noncontact atomic force microscopy (NC-AFM). The azobenzene moiety showed photoisomerization that enabled measurements of the same position of the sample by different tip apexes with different interactions. Photoswitching behavior of the molecule synthesized and adsorbed on Au surfaces was examined and reversible switching between the trans- and cis forms was successfully confirmed by NC-AFM measurements.

  17. The interaction of infra-red controls and electronic compact fluorescent lamps

    SciTech Connect

    Anderson, W.A.; Hammer, E.E.; Serres, A.

    1995-12-31

    This report is an overview of a joint project between the National Electrical Manufacturers Association (NEMA) Lamp Section and the Electronics Industries Association (EIA) Consumer Electronics Group. It addresses the interactions between electronic, screwbase, self-ballasted compact fluorescent lamps (CFL`s) or ballasted adapters; and infra-red (IR) remote controls typically used with TV`s or home entertainment devices. The committee examined the history of the interactions, performed testing, and proposed solutions. This has benefited NEMA and EIA and alerted other industries developing IR systems, such as computers and video-conferencing, to address solutions in the design stage of product development.

  18. Automatic protein design with all atom force-fields by exact and heuristic optimization.

    PubMed

    Wernisch, L; Hery, S; Wodak, S J

    2000-08-18

    A fully automatic procedure for predicting the amino acid sequences compatible with a given target structure is described. It is based on the CHARMM package, and uses an all atom force-field and rotamer libraries to describe and evaluate side-chain types and conformations. Sequences are ranked by a quantity akin to the free energy of folding, which incorporates hydration effects. Exact (Branch and Bound) and heuristic optimisation procedures are used to identifying highly scoring sequences from an astronomical number of possibilities. These sequences include the minimum free energy sequence, as well as all amino acid sequences whose free energy lies within a specified window from the minimum. Several applications of our procedure are illustrated. Prediction of side-chain conformations for a set of ten proteins yields results comparable to those of established side-chain placement programs. Applications to sequence optimisation comprise the re-design of the protein cores of c-Crk SH3 domain, the B1 domain of protein G and Ubiquitin, and of surface residues of the SH3 domain. In all calculations, no restrictions are imposed on the amino acid composition and identical parameter settings are used for core and surface residues. The best scoring sequences for the protein cores are virtually identical to wild-type. They feature no more than one to three mutations in a total of 11-16 variable positions. Tests suggest that this is due to the balance between various contributions in the force-field rather than to overwhelming influence from packing constraints. The effectiveness of our force-field is further supported by the sequence predictions for surface residues of the SH3 domain. More mutations are predicted than in the core, seemingly in order to optimise the network of complementary interactions between polar and charged groups. This appears to be an important energetic requirement in absence of the partner molecules with which the SH3 domain interacts, which were not

  19. Designing exotic many-body states of atomic spin and motion in photonic crystals.

    PubMed

    Manzoni, Marco T; Mathey, Ludwig; Chang, Darrick E

    2017-03-08

    Cold atoms coupled to photonic crystals constitute an exciting platform for exploring quantum many-body physics. For example, such systems offer the potential to realize strong photon-mediated forces between atoms, which depend on the atomic internal (spin) states, and where both the motional and spin degrees of freedom can exhibit long coherence times. An intriguing question then is whether exotic phases could arise, wherein crystalline or other spatial patterns and spin correlations are fundamentally tied together, an effect that is atypical in condensed matter systems. Here, we analyse one realistic model Hamiltonian in detail. We show that this previously unexplored system exhibits a rich phase diagram of emergent orders, including spatially dimerized spin-entangled pairs, a fluid of composite particles comprised of joint spin-phonon excitations, phonon-induced Néel ordering, and a fractional magnetization plateau associated with trimer formation.

  20. Designing exotic many-body states of atomic spin and motion in photonic crystals

    PubMed Central

    Manzoni, Marco T.; Mathey, Ludwig; Chang, Darrick E.

    2017-01-01

    Cold atoms coupled to photonic crystals constitute an exciting platform for exploring quantum many-body physics. For example, such systems offer the potential to realize strong photon-mediated forces between atoms, which depend on the atomic internal (spin) states, and where both the motional and spin degrees of freedom can exhibit long coherence times. An intriguing question then is whether exotic phases could arise, wherein crystalline or other spatial patterns and spin correlations are fundamentally tied together, an effect that is atypical in condensed matter systems. Here, we analyse one realistic model Hamiltonian in detail. We show that this previously unexplored system exhibits a rich phase diagram of emergent orders, including spatially dimerized spin-entangled pairs, a fluid of composite particles comprised of joint spin-phonon excitations, phonon-induced Néel ordering, and a fractional magnetization plateau associated with trimer formation. PMID:28272466

  1. Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites

    NASA Astrophysics Data System (ADS)

    Li, Z. K.; Fu, H. M.; Sha, P. F.; Zhu, Z. W.; Wang, A. M.; Li, H.; Zhang, H. W.; Zhang, H. F.; Hu, Z. Q.

    2015-03-01

    The interaction between active element Zr and W damages the W fibers and the interface and decreases the mechanical properties, especially the tensile strength of the W fibers reinforced Zr-based bulk metallic glass composites (BMGCs). From the viewpoint of atomic interaction, the W-Zr interaction can be restrained by adding minor elements that have stronger interaction with W into the alloy. The calculation about atomic interaction energy indicates that Ta and Nb preferred to segregate on the W substrate surface. Sessile drop experiment proves the prediction and corresponding in-situ coating appears at the interface. Besides, the atomic interaction mechanism was proven to be effective in many other systems by the sessile drop technique. Considering the interfacial morphology, Nb was added into the alloy to fabricate W/Zr-based BMGCs. As expected, the Nb addition effectively suppressed the W-Zr reaction and damage to W fibers. Both the compressive and tensile properties are improved obviously.

  2. Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites.

    PubMed

    Li, Z K; Fu, H M; Sha, P F; Zhu, Z W; Wang, A M; Li, H; Zhang, H W; Zhang, H F; Hu, Z Q

    2015-03-11

    The interaction between active element Zr and W damages the W fibers and the interface and decreases the mechanical properties, especially the tensile strength of the W fibers reinforced Zr-based bulk metallic glass composites (BMGCs). From the viewpoint of atomic interaction, the W-Zr interaction can be restrained by adding minor elements that have stronger interaction with W into the alloy. The calculation about atomic interaction energy indicates that Ta and Nb preferred to segregate on the W substrate surface. Sessile drop experiment proves the prediction and corresponding in-situ coating appears at the interface. Besides, the atomic interaction mechanism was proven to be effective in many other systems by the sessile drop technique. Considering the interfacial morphology, Nb was added into the alloy to fabricate W/Zr-based BMGCs. As expected, the Nb addition effectively suppressed the W-Zr reaction and damage to W fibers. Both the compressive and tensile properties are improved obviously.

  3. Designing exotic many-body states of atomic spin and motion in photonic crystals

    NASA Astrophysics Data System (ADS)

    Manzoni, Marco T.; Mathey, Ludwig; Chang, Darrick E.

    2017-03-01

    Cold atoms coupled to photonic crystals constitute an exciting platform for exploring quantum many-body physics. For example, such systems offer the potential to realize strong photon-mediated forces between atoms, which depend on the atomic internal (spin) states, and where both the motional and spin degrees of freedom can exhibit long coherence times. An intriguing question then is whether exotic phases could arise, wherein crystalline or other spatial patterns and spin correlations are fundamentally tied together, an effect that is atypical in condensed matter systems. Here, we analyse one realistic model Hamiltonian in detail. We show that this previously unexplored system exhibits a rich phase diagram of emergent orders, including spatially dimerized spin-entangled pairs, a fluid of composite particles comprised of joint spin-phonon excitations, phonon-induced Néel ordering, and a fractional magnetization plateau associated with trimer formation.

  4. Design and performance of atomizing nozzles for spray calcination of high-level wastes

    SciTech Connect

    Miller, F.A.; Stout, L.A.

    1981-05-01

    A key aspect of high-level liquid-waste spray calcination is waste-feed atomization by using air atomizing nozzles. Atomization substantially increases the heat transfer area of the waste solution, which enhances rapid drying. Experience from the spray-calciner operations has demonstrated that nozzle flow conditions that produce 70-..mu.. median-volume-diameter or smaller spray droplets are required for small-scale spray calciners (drying capacity less than 80 L/h). For large-scale calciners (drying capacity greater than 300 L/h), nozzle flow conditions that produce 100-..mu.. median-volume-diameter or smaller spray droplets are required. Mass flow ratios of 0.2 to 0.4, depending on nozzle size, are required for proper operation of internal-mix atomizing nozzles. Both internal-mix and external-mix nozzles have been tested at PNL. Due to the lower airflow requirements and fewer large droplets produced, the internal-mix nozzle has been chosen for primary development in the spray calciner program at PNL. Several nozzle air-cap materials for internal-mix nozzles have been tested for wear resistance. Results show that nozzle air caps of stainless steel and Cer-vit (a machineable glass ceramic) are suceptible to rapid wear by abrasive slurries, whereas air caps of alumina and reaction-bonded silicon nitride show only slow wear. Longer-term testing is necessary to determine more accurately the actual frequency of nozzle replacement. Atomizing nozzle air caps of alumina are subject to fracture from thermal shock, whereas air caps of silicon nitride and Cer-vit are not. Fractured nozzles are held in place by the air-cap retaining ring and continue to atomize satisfactorily. Therefore, fractures caused by thermal shocking do not necessarily result in nozzle failure.

  5. Absolute Doppler shift calibration of laser induced fluorescence signals using optogalvanic measurements in a hollow cathode lamp

    NASA Technical Reports Server (NTRS)

    Ruyten, Wilhelmus M.; Keefer, Dennis

    1992-01-01

    The paper investigates the use of optogalvanic (OG) measurements on the neutral 3P1 and 3P2 levels of argon in a hollow cathode lamp for the purpose of calibrating Doppler shifts of laser-induced fluorescence signals from an arcjet plume. It is shown that, even with non-Doppler-free OG detection, accuracy to better than 10 MHz is possible but that, depending on the experiment geometry, corrections of 10-35 MHz may be necessary to offset small axial drift velocities of neutral atoms in the hollow cathode lamp.

  6. Competition between convection and diffusion in a metal halide lamp, investigated by numerical simulations and imaging laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Beks, M. L.; Flikweert, A. J.; Nimalasuriya, T.; Stoffels, W. W.; van der Mullen, J. J. A. M.

    2008-07-01

    The effect of the competition between convection and diffusion on the distribution of metal halide additives in a high pressure mercury lamp has been examined by placing COST reference lamps with mercury fillings of 5 and 10 mg in a centrifuge. By subjecting them to different accelerational conditions the convection speed of the mercury buffer gas is affected. The resulting distribution of the additives, in this case dysprosium iodide, has been studied by numerical simulations and measurements of the density of dysprosium atoms in the ground state using imaging laser spectroscopy. The competition between axial convection and radial diffusion determines the degree of axial segregation of the dysprosium additives.

  7. CALiPER Report 20.3: Robustness of LED PAR38 Lamps

    SciTech Connect

    none,

    2014-12-30

    A small sample of each of the CALiPER Application Summary Report 20 PAR38 lamp types underwent stress testing that included substantial temperature and humidity changes, electrical variation, and vibration. The results do not directly address expected lifetime, but can be compared with one another, as well as with benchmark conventional products, to assess the relative robustness of the product designs.

  8. A LAMP-based schematic prototype instrument for detection of microorganisms in human outer space activities

    NASA Astrophysics Data System (ADS)

    Hu, Yongfei; Liu, Zhiheng; Li, Junxiong; Zhu, Baoli

    One of the main tasks of human outer space exploration is to detect signs of life. Based on meteoritic evidence, common ancestry hypothesis has been posed. Therefore, searching for the fundamental molecules (DNA, RNA, and proteins) that constitute life as we know on Earth is feasible and now the typical approach. To achieve this goal, portable, robust, and highly sensitive instrument is also needed. In this study, based on Loop mediated isothermal amplification (LAMP) technique that targets life information storage molecular, DNA, we designed a schematic prototype instrument for microorganism detection. First, we designed LAMP primers used for amplification of DNA markers of Bacteria, Archaea, and Fungus; then, we optimized the LAMP reaction system for space using; and finally, we designed a prototype instrument and operating software system that are compatible with the LAMP reaction system. The results of simulation experiments showed that our instrument performed well for detecting representative microorganisms and the device can achieve semi-automatization. The detection process, from sample preparation to signal visualization, was completed in 1.5 hour. Our study provides a new method and corresponding device for detection of DNA molecular, which has great potential for applications in outer space exploration. Besides, the instrument we designed can also been used for monitoring changes of terrestrial microorganisms in outer space, for example in aircraft.

  9. From LAMP to Koha: Case Study of the Pakistan Legislative Assembly Libraries

    ERIC Educational Resources Information Center

    Shafi-Ullah, Farasat; Qutab, Saima

    2012-01-01

    Purpose: This paper aims to elaborate the library data migration process from LAMP (Library Automation Management Program) to the open source software Koha's (2.2.8 Windows based) Pakistani flavour PakLAG-Koha in six legislative assembly libraries of Pakistan. Design/methodology/approach: The paper explains different steps of the data migration…

  10. From LAMP to Koha: Case Study of the Pakistan Legislative Assembly Libraries

    ERIC Educational Resources Information Center

    Shafi-Ullah, Farasat; Qutab, Saima

    2012-01-01

    Purpose: This paper aims to elaborate the library data migration process from LAMP (Library Automation Management Program) to the open source software Koha's (2.2.8 Windows based) Pakistani flavour PakLAG-Koha in six legislative assembly libraries of Pakistan. Design/methodology/approach: The paper explains different steps of the data migration…

  11. Identifying Churches for Community-Based Mammography Promotion: Lessons from the LAMP Study

    ERIC Educational Resources Information Center

    Duan, Naihua; Fox, Sarah; Derose, Kathryn Pitkin; Carson, Sally; Stockdale, Susan

    2005-01-01

    There is great potential in public health and faith communities partnering to promote health education and research. This article describes lessons learned from the design and implementation of such a partnership, the Los Angeles Mammography Promotion in Churches Program (LAMP). It is feasible, although challenging, to enumerate and survey…

  12. Electronic screw-in ballast and improved circline lamp phase I. Final report

    SciTech Connect

    Kohler, T.P.

    1980-09-01

    A solid state ballast has been designed for the efficient operation of a 10 in circline fluorescent lamp. The circuit can be manufactured using power hybrid technology. Eight discrete component versions of the ballasts have been delivered to LBL for testing. The results show the solid state fluorescent ballast system is more efficient than the core-coil ballasted systems on the market.

  13. Lamp-life predictive model for avionics backlights

    NASA Astrophysics Data System (ADS)

    Webster, Richard P.; Nelson, Leonard Y.

    1998-09-01

    Active Matrix Liquid Crystal Displays (AMLCDs) used in avionics applications require high luminance, high efficacy, and long-life backlights. Currently, fluorescent lamps are the favored light sources for these high performance avionics backlights. Their spectral characteristics and high electrical efficiency are well suited to illuminating AMLCDs used in avionics applications. Fluorescent lamps, however, suffer gradual reduction in luminance output caused by various degradation mechanisms. Korry Electronics Co. recently developed a mathematical model for predicting fluorescent lamp life. The model's basis is the well characterized exponential decay of the phosphor output. The primary luminance degradation mechanism of a fluorescent lamp is related to the arc discharge. Consequently, phosphor depreciation is proportional to the discharge arc power divided by the phosphor surface area. This 'wall loading' is a parameter in the computer model developed to extrapolate long-term luminance performance. Our model predicts a rapidly increasing decay rate of the lamp output as the input power is increased to sustain constant luminance. Eventually, a run-away condition occurs -- lamp arc power must be increased by unrealistically large factors (greater than 5x) to maintain the required luminance output. This condition represents the end of the useful lamp life. The lamp life model requires the definition of several key parameters in order to accurately predict the useful lamp life of an avionics backlight. These important factors include the construction of the lamp, lamp arc power, a decay constant based on the phosphor loading, and the operational profile. Based on the above-mentioned factors, our model approximates the useful lamp life of an avionics backlight using fluorescent lamp technology. Comparisons between calculated and experimental lamp depreciation are presented.

  14. The lake acidification mitigation project (LAMP)

    SciTech Connect

    Porcella, D.P. )

    1987-01-01

    In areas where there is limited capacity to resist input of acid deposition, acid soils and surface waters have affected natural communities and man's uses of the environment. In response to problems of acid soils, farmers added limestone materials to their soil during Roman times; this method of agricultural management continues today. The addition of limestone (CaCo/sub 3/), called liming, has been used more recently to mitigate acidic conditions in lakes and streams. Liming neutralizes acidity directly, provides buffering as acid neutralizing capacity (ANC) or alkalinity, and increases calcium ion concentration which mitigates toxicity in low ionic strength waters. The Lake Acidification Mitigation Project (LAMP) has the objective of identifying and quantifying environmental impacts of liming, and evaluating the effectiveness of liming and stocking procedures in restoring acid lakes. The purpose of this paper is to provide an overview of LAMP and to summarize results from the initial phases of the project.

  15. LED lamp color control system and method

    DOEpatents

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.

    2013-02-05

    An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.

  16. CALiPER Retail Lamps Study 3

    SciTech Connect

    none,

    2014-02-01

    This is a special CALiPER report on LED lamps available through the retail marketplace and targeted toward general consumers. It follows similar reports published in 2011 and 2012 (products purchased in 2010 and 2011), and is intended as a continuation that identifies long-term trends. For this report, products were selected to investigate specific hypotheses, rather than represent a sample of the increasingly large retail LED market.

  17. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, Donald A.; Turner, Brian; Kipling, Kent

    1999-01-01

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture.

  18. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, D.A.; Turner, B.; Kipling, K.

    1999-05-11

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible is disclosed. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture. 20 figs.

  19. High output lamp with high brightness

    DOEpatents

    Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.

    2002-01-01

    An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.

  20. Raman lidar characterization using a reference lamp

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; da Costa, Renata F.; Rodrigues, Patricia F.; da Silva Lopes, Fábio J.

    2014-10-01

    The determination of the amount of water vapor in the atmosphere using lidar is a calibration dependent technique. Different collocated instruments are used for this purpose, like radiossoundings and microwave radiometers. When there are no collocated instruments available, an independente lamp mapping calibration technique can be used. Aiming to stabilish an independ technique for the calibration of the six channels Nd-YAG Raman lidar system located at the Center for Lasers and Applications (CLA), S˜ao Paulo, Brazil, an optical characterization of the system was first performed using a reference tungsten lamp. This characterization is useful to identify any possible distortions in the interference filters, telescope mirror and stray light contamination. In this paper we show three lamp mapping caracterizations (01/16/2014, 01/22/2014, 04/09/2014). The first day is used to demostrate how the tecnique is useful to detect stray light, the second one how it is sensible to the position of the filters and the third one demostrates a well optimized optical system.

  1. Fluorescent ballast and lamp disposal issues

    SciTech Connect

    Leishman, D.L.

    1996-12-01

    All around the world, governments, utility companies, and private businesses are attempting to reduce the amount of energy consumed. In the US alone, new economic strategies and programs are being created to facilitate this process. For instance, the recent enactment of the National Energy Policy Act, the Environmental Protection Agency`s (EPA) Green Lights Program, and a surge of utility involvement in Demand Side Management (DSM) Commercial/Industrial Direct Install and Rebate Programs. Many of these problems target commercial/industrial lighting system retrofits as one of the most cost effective avenues for reducing the consumption of energy. Due to this trend, hundreds of millions of lighting ballasts and lamps are being discarded. The benefits of these programs result in enormous reductions in fossil fuels (and subsequent carbon dioxide, sulfur dioxide, and nitrogen oxide emissions) required to generate the displaced electricity. Throughout the US, however, there is an increasing concern for the environmental impacts surrounding the accelerated disposal of both lighting ballasts and lamps. Regulations initially established were for a one by one, retirement (failure) process rather than promoted obsolescence and forced retirement of lamp groups or entire systems (truckloads of old technologies). Recognizing this trend and the potential negative environmental effects, federal, state, and local regulators are reevaluating the impacts and are being asked to promulgate policies to specifically address this situation.

  2. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok M. Srivastava

    2005-09-30

    This is the Yearly Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. Our chief achievement, during the current contract period, pertains to the successful synthesis and characterization of coated phosphors. We demonstrated several synthesis techniques for the coating of micron sized commercial phosphors with quantum-splitting and UV emitting nanophosphors. We have also continued our fundamental investigations into the physical processes that determine the quantum efficiency of the nanophosphors and this has further helped codify a set of rules for the host lattice that support efficient quantum splitting and UV emission at room temperature. In this report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

  3. The Effect of Nozzle Design and Operating Conditions on the Atomization and Distribution of Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1933-01-01

    The atomization and distribution characteristics of fuel sprays from automatic injection valves for compression-ignition engines were determined by catching the fuel drops on smoked-glass plates, and then measuring and counting the impressions made in the lampblack. The experiments were made in an air-tight chamber in which the air density was raised to values corresponding to engine conditions.

  4. Design of a versatile pressure control system for gas targets in ion-atom collision studies

    NASA Astrophysics Data System (ADS)

    Fuelling, S.; Bruch, R.

    1993-06-01

    In this work, a unique gas target pressure control system is described which has been developed to measure state selective absolute EUV cross sections subsequent to electron and ion impact on gaseous targets. This system can be used in any type of gas phase experiment using positively or negatively charged and neutral particle beams interacting with atomic and molecular targets.

  5. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  6. Application of Plackett-Burman and Doehlert designs for optimization of selenium analysis in plasma with electrothermal atomic absorption spectrometry.

    PubMed

    El Ati-Hellal, Myriam; Hellal, Fayçal; Hedhili, Abderrazek

    2014-10-01

    The aim of this study was the optimization of selenium determination in plasma samples with electrothermal atomic absorption spectrometry using experimental design methodology. 11 variables being able to influence selenium analysis in human blood plasma by electrothermal atomic absorption spectrometry (ETAAS) were evaluated with Plackett-Burman experimental design. These factors were selected from sample preparation, furnace program and chemical modification steps. Both absorbance and background signals were chosen as responses in the screening approach. Doehlert design was used for method optimization. Results showed that only ashing temperature has a statistically significant effect on the selected responses. Optimization with Doehlert design allowed the development of a reliable method for selenium analysis with ETAAS. Samples were diluted 1/10 with 0.05% (v/v) TritonX-100+2.5% (v/v) HNO3 solution. Optimized ashing and atomization temperatures for nickel modifier were 1070°C and 2270°C, respectively. A detection limit of 2.1μgL(-1) Se was obtained. Accuracy of the method was checked by the analysis of selenium in Seronorm™ Trace element quality control serum level 1. The developed procedure was applied for the analysis of total selenium in fifteen plasma samples with standard addition method. Concentrations ranged between 24.4 and 64.6μgL(-1), with a mean of 42.6±4.9μgL(-1). The use of experimental designs allowed the development of a cheap and accurate method for selenium analysis in plasma that could be applied routinely in clinical laboratories. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  7. A design for a subminiature, low energy scanning electron microscope with atomic resolution

    SciTech Connect

    Eastham, D. A.; Edmondson, P.; Greene, S.; Donnelly, S.; Olsson, E.; Svensson, K.; Bleloch, A.

    2009-01-01

    We describe a type of scanning electron microscope that works by directly imaging the electron field-emission sites on a nanotip. Electrons are extracted from the nanotip through a nanoscale aperture, accelerated in a high electric field, and focused to a spot using a microscale Einzel lens. If the whole microscope (accelerating section and lens) and the focal length are both restricted in size to below 10 {mu}m, then computer simulations show that the effects of aberration are extremely small and it is possible to have a system with approximately unit magnification at electron energies as low as 300 eV. Thus a typical emission site of 1 nm diameter will produce an image of the same size, and an atomic emission site will give a resolution of 0.1-0.2 nm (1-2 A). Also, because the beam is not allowed to expand beyond 100 nm in diameter, the depth of field is large and the contribution to the beam spot size from chromatic aberrations is less than 0.02 nm (0.2 A) for 500 eV electrons. Since it is now entirely possible to make stable atomic sized emitters (nanopyramids), it is expected that this instrument will have atomic resolution. Furthermore the brightness of the beam is determined only by the field emission and can be up to 1x10{sup 6} times larger than in a typical (high energy) electron microscope. The advantages of this low energy, bright-beam electron microscope with atomic resolution are described and include the possibility of it being used to rapidly sequence the human genome from a single strand of DNA as well as being able to identify atomic species directly from the elastic scattering of electrons.

  8. Investigation of structure in the modular light pipe component for LED automotive lamp

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Zhou, Yang; Huang, Chien-Sheng; Jhong, Wan-Ling; Cheng, Bo-Wei; Jhang, Jhe-Ming

    2014-09-01

    Light-Emitting Diodes (LEDs) have the advantages of small length, long lifetime, fast response time (μs), low voltage, good mechanical properties and environmental protection. Furthermore, LEDs could replace the halogen lamps to avoid the mercury pollution and economize the use of energy. Therefore, the LEDs could instead of the traditional lamp in the future and became an important light source. The proposal of this study was to investigate the effects of the structure and length of the reflector component for a LED automotive lamp. The novel LED automotive lamp was assembled by several different modularization columnar. The optimized design of the different structure and the length to the reflector was simulated by software TracePro. The design result must met the vehicle regulation of United Nations Economic Commission for Europe (UNECE) such as ECE-R19 etc. The structure of the light pipe could be designed by two steps structure. Then constitute the proper structure and choose different power LED to meet the luminous intensity of the vehicle regulation. The simulation result shows the proper structure and length has the best total luminous flux and a high luminous efficiency for the system. Also, the stray light could meet the vehicle regulation of ECE R19. Finally, the experimental result of the selected structure and length of the light pipe could match the simulation result above 80%.

  9. Characterization of halogen lamps as secondary standard of luminous flux

    NASA Astrophysics Data System (ADS)

    Marques, A. A. R.; Sanchez, O., Jr.; Ferreira, A. F. G., Jr.

    2011-09-01

    This work presents a study of lamps characterization concerning its lamp output, current and voltage drift during seasoning and regarding the use of theses lamps as luminous flux secondary standard. The 200W halogen lamps are seasoned for 30 hours and during the seasoning period the relative drift of the lamp illuminance, current and voltage are measured at each 3 minutes. The illuminance is measured using a photometer with detector head, the lamp voltage is measured using a 6.5 digits voltmeter and the current is measured using a 6.5 digits voltmeter and 0.1 Ohms standard resistor. The lamp current is controlled by a calibrated current power source with stability better than 1 mA. To reduce the stray light, baffles are positioned between the lamp and the detector head. The alignment of experimental assembly is made by a He-Ne Laser. Data of illuminance, current and voltage is acquired by software built in Labview database. Among the 5 lamps seasoned, the best result presents the variation of illuminance of 0.04% per hour. This lamp is chosen to become the secondary standard and its luminous flux is measured using an Ulbricht integrating sphere. This method allows the laboratory to create secondary standard of luminous flux for its routine test and measurements and to supply theses standards for Brazilian industry.

  10. Design, synthesis and antiproliferative activity of thiazolo[5,4-d]pyrimidine derivatives through the atom replacement strategy.

    PubMed

    Li, Zhong-Hua; Liu, Xue-Qi; Geng, Peng-Fei; Zhang, Ji; Ma, Jin-Lian; Wang, Bo; Zhao, Tao-Qian; Zhao, Bing; Zhang, Xin-Hui; Yu, Bin; Liu, Hong-Min

    2017-09-29

    A series of thiazolo[5,4-d]pyrimidine derivatives were designed through the atom replacement strategy based on biologically validated scaffolds and then evaluated for their antiproliferative activities on cancer cell lines. The structure-activity relationship studies were conducted, leading to the identification of compound 22, which exhibited good antiproliferative activity against HGC-27 with an IC50 value of 1.22 μM and low toxicity against GES-1 cells. Mechanistic studies showed that compound 22 inhibited the colony formation and migration of HGC-27 as well as induced apoptosis. The western blot experiments proved that compound 22 up-regulated expression of Bax, down-regulated expression levels of Bcl-2 and cleaved caspased-3/9. These findings indicate that compound 22 may serve as a template for designing new agents for the treatment of human gastric cancers. The atom replacement strategy could be viable strategy for designing new anticancer drugs and may find its applications in drug design. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Design and construction of a sample preparation chamber for atomic beam scattering

    SciTech Connect

    Nielsen, C.

    1992-05-18

    A new type of atomic beam scattering spectrometer was built to advance the usefulness of the atomic beam scattering technique as a surface dynamics probe. The facility was not only built to investigate the typical alkali halide samples such as NaCl, NaF, and LiF, but also to investigate metallic surfaces. Metal samples are more complicated to study, due to their reactive surfaces and the sample preparation process. A surface analysis chamber was constructed as an attachment to the scattering facility to treat samples under ultra high vacuum (UHV) and then transfer these samples into the scattering facility. This surface analysis chamber is referred to as the sample preparation chamber and is the basis for this thesis.

  12. DESIGN OF ATOMIZERS AND BURNERS FOR COAL-WATER SLURRY COMBUSTION

    SciTech Connect

    Rony Hitron; William Humphrey; Norman Chigier

    1998-10-01

    A detailed compressible airflow analysis was performed on the central air passage of the triple-concentric atomizer. The results show that a minimum mass flow rate of 0.33 g/s ({approx}16 L/min at STP) of air at a supply pressure of 296 kPa(absolute) is required to create a sonic flow at the atomizer exit, which is 0.97 mm in diameter. This result confirms the hypothesis that previous parametric visualization studies of the spray cone did not have sonic air flow in all cases. Additionally, Phase/Doppler droplet size and velocity measurements were made in sprays of both water and a dilute solution (0.05% wt/wt) of high-molecular weight polyacrylamide. The measurements show small increases in mean drop size when the polymer is added to the liquid, which are nevertheless large compared to the percentage of polymer solute in the solution.

  13. Design and construction of a sample preparation chamber for atomic beam scattering

    SciTech Connect

    Nielsen, C.

    1992-05-18

    A new type of atomic beam scattering spectrometer was built to advance the usefulness of the atomic beam scattering technique as a surface dynamics probe. The facility was not only built to investigate the typical alkali halide samples such as NaCl, NaF, and LiF, but also to investigate metallic surfaces. Metal samples are more complicated to study, due to their reactive surfaces and the sample preparation process. A surface analysis chamber was constructed as an attachment to the scattering facility to treat samples under ultra high vacuum (UHV) and then transfer these samples into the scattering facility. This surface analysis chamber is referred to as the sample preparation chamber and is the basis for this thesis.

  14. Ab initio simulation and design of graphene-based transistors at the atomic scale

    NASA Astrophysics Data System (ADS)

    Lu, Wenchang; Bernholc, Jerry

    2015-03-01

    Two-dimensional materials, such as graphene and molybdenum disulfide, have attracted much attention because of their unique properties. Graphene's high mobility make it a very promising material for next generation electronics, but its zero band gap is a big hurdle for digital transistors. However, graphene nanoribbons can exhibit band gaps due to quantum confinement, and their electronic properties differ depending on the structures of their edges. Based on the real space multigrid method and the non-equilibrium Green functions technique for multi-probe systems, we have developed massively parallel DFT-based software to calculate quantum transport properties with several thousands atoms. We present results for transport properties of graphene-based transistors with different atomic structures and study the effects of nanoribbon length, width and gate structure.

  15. Comparison of cap lamp and laser illumination for detecting visual escape cues in smoke

    PubMed Central

    Lutz, T.J.; Sammarco, J.J.; Srednicki, J.R.; Gallagher, S.

    2015-01-01

    The Illuminating Engineering Society of North America reports that an underground mine is the most difficult environment to illuminate (Rea, 2000). Researchers at the U.S. National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) are conducting ongoing studies designed to explore different lighting technologies for improving mine safety. Underground miners use different visual cues to escape from a smoke-filled environment. Primary and secondary escapeways are marked with reflective ceiling tags of various colors. Miners also look for mine rail tracks. The main objective of this paper is to compare different lighting types and ceiling tag colors to differentiate what works best in a smoke-filled environment. Various cap lamps (LED and incandescent) and lasers (red, blue, green) were compared to see which options resulted in the longest detection distances for red, green and blue reflective markers and a section of mine rail track. All targets advanced toward the human subject inside of a smoke-filled room to simulate the subject walking in a mine environment. Detection distances were recorded and analyzed to find the best cap lamp, laser color and target color in a smoke environment. Results show that cap lamp, laser color and target color do make a difference in detection distances and are perceived differently based on subject age. Cap lamps were superior to lasers in all circumstances of ceiling tag detection, with the exception of the green laser. The incandescent cap lamp worked best in the simulated smoke compared to the LED cap lamps. The green laser was the best color for detecting the tags and track compared to the red and blue lasers. The green tags were the easiest color to detect on the ceiling. On average, the track was easier for the subjects to detect than the ceiling tags. PMID:26236146

  16. Comparison of cap lamp and laser illumination for detecting visual escape cues in smoke.

    PubMed

    Lutz, T J; Sammarco, J J; Srednicki, J R; Gallagher, S

    The Illuminating Engineering Society of North America reports that an underground mine is the most difficult environment to illuminate (Rea, 2000). Researchers at the U.S. National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) are conducting ongoing studies designed to explore different lighting technologies for improving mine safety. Underground miners use different visual cues to escape from a smoke-filled environment. Primary and secondary escapeways are marked with reflective ceiling tags of various colors. Miners also look for mine rail tracks. The main objective of this paper is to compare different lighting types and ceiling tag colors to differentiate what works best in a smoke-filled environment. Various cap lamps (LED and incandescent) and lasers (red, blue, green) were compared to see which options resulted in the longest detection distances for red, green and blue reflective markers and a section of mine rail track. All targets advanced toward the human subject inside of a smoke-filled room to simulate the subject walking in a mine environment. Detection distances were recorded and analyzed to find the best cap lamp, laser color and target color in a smoke environment. Results show that cap lamp, laser color and target color do make a difference in detection distances and are perceived differently based on subject age. Cap lamps were superior to lasers in all circumstances of ceiling tag detection, with the exception of the green laser. The incandescent cap lamp worked best in the simulated smoke compared to the LED cap lamps. The green laser was the best color for detecting the tags and track compared to the red and blue lasers. The green tags were the easiest color to detect on the ceiling. On average, the track was easier for the subjects to detect than the ceiling tags.

  17. Max Tech and Beyond: High-Intensity Discharge Lamps

    SciTech Connect

    Scholand, Michael

    2012-04-01

    High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. With the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating conditions, and

  18. Automated Multiple-Sample Tray Manipulation Designed and Fabricated for Atomic Oxygen Facility

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Stueber, Thomas J.; Dever, Joyce A.; Banks, Bruce A.; Rutledge, Sharon K.

    2000-01-01

    Extensive improvements to increase testing capacity and flexibility and to automate the in situ Reflectance Measurement System (RMS) are in progress at the Electro-Physics Branch s Atomic Oxygen (AO) beam facility of the NASA Glenn Research Center at Lewis Field. These improvements will triple the system s capacity while placing a significant portion of the testing cycle under computer control for added reliability, repeatability, and ease of use.

  19. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy

    SciTech Connect

    Souma, S.; Sato, T.; Takahashi, T.; Baltzer, P.

    2007-12-15

    We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He I{alpha} line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.

  20. Halogen atoms in the modern medicinal chemistry: hints for the drug design.

    PubMed

    Hernandes, Marcelo Zaldini; Cavalcanti, Suellen Melo T; Moreira, Diogo Rodrigo M; de Azevedo Junior, Walter Filgueira; Leite, Ana Cristina Lima

    2010-03-01

    A significant number of drugs and drug candidates in clinical development are halogenated structures. For a long time, insertion of halogen atoms on hit or lead compounds was predominantly performed to exploit their steric effects, through the ability of these bulk atoms to occupy the binding site of molecular targets. However, halogens in drug - target complexes influence several processes rather than steric aspects alone. For example, the formation of halogen bonds in ligand-target complexes is now recognized as a kind of intermolecular interaction that favorably contributes to the stability of ligand-target complexes. This paper is aimed at introducing the fascinating versatility of halogen atoms. It starts summarizing the prevalence of halogenated drugs and their structural and pharmacological features. Next, we discuss the identification and prediction of halogen bonds in protein-ligand complexes, and how these bonds should be exploited. Interesting results of halogen insertions during the processes of hit-to-lead or lead-to-drug conversions are also detailed. Polyhalogenated anesthetics and protein kinase inhibitors that bear halogens are analyzed as cases studies. Thereby, this review serves as one guide for the virtual screening of libraries containing halogenated compounds and may be a source of inspiration for the medicinal chemists.

  1. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Du, Y.; Droubay, T. C.; Liyu, A. V.; Li, G.; Chambers, S. A.

    2014-04-01

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  2. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    SciTech Connect

    Du, Y. E-mail: scott.chambers@pnnl.gov; Liyu, A. V.; Droubay, T. C.; Chambers, S. A. E-mail: scott.chambers@pnnl.gov; Li, G.

    2014-04-21

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  3. Disturbed Cholesterol Traffic but Normal Proteolytic Function in LAMP-1/LAMP-2 Double-deficient FibroblastsD⃞

    PubMed Central

    Eskelinen, Eeva-Liisa; Schmidt, Christine Katrin; Neu, Silja; Willenborg, Marion; Fuertes, Graciela; Salvador, Natalia; Tanaka, Yoshitaka; Lüllmann-Rauch, Renate; Hartmann, Dieter; Heeren, Jörg; von Figura, Kurt; Knecht, Erwin; Saftig, Paul

    2004-01-01

    Mice double deficient in LAMP-1 and -2 were generated. The embryos died between embryonic days 14.5 and 16.5. An accumulation of autophagic vacuoles was detected in many tissues including endothelial cells and Schwann cells. Fibroblast cell lines derived from the double-deficient embryos accumulated autophagic vacuoles and the autophagy protein LC3II after amino acid starvation. Lysosomal vesicles were larger and more peripherally distributed and showed a lower specific density in Percoll gradients in double deficient when compared with control cells. Lysosomal enzyme activities, cathepsin D processing and mannose-6-phosphate receptor expression levels were not affected by the deficiency of both LAMPs. Surprisingly, LAMP-1 and -2 deficiencies did not affect long-lived protein degradation rates, including proteolysis due to chaperone-mediated autophagy. The LAMP-1/2 double-deficient cells and, to a lesser extent, LAMP-2 single-deficient cells showed an accumulation of unesterified cholesterol in endo/lysosomal, rab7, and NPC1 positive compartments as well as reduced amounts of lipid droplets. The cholesterol accumulation in LAMP-1/2 double-deficient cells could be rescued by overexpression of murine LAMP-2a, but not by LAMP-1, highlighting the more prominent role of LAMP-2. Taken together these findings indicate partially overlapping functions for LAMP-1 and -2 in lysosome biogenesis, autophagy, and cholesterol homeostasis. PMID:15121881

  4. The Novel Multiple Inner Primers-Loop-Mediated Isothermal Amplification (MIP-LAMP) for Rapid Detection and Differentiation of Listeria monocytogenes.

    PubMed

    Wang, Yi; Wang, Yan; Ma, Aijing; Li, Dongxun; Luo, Lijuan; Liu, Dongxin; Hu, Shoukui; Jin, Dong; Liu, Kai; Ye, Changyun

    2015-12-03

    Here, a novel model of loop-mediated isothermal amplification (LAMP), termed multiple inner primers-LAMP (MIP-LAMP), was devised and successfully applied to detect Listeria monocytogenes. A set of 10 specific MIP-LAMP primers, which recognized 14 different regions of target gene, was designed to target a sequence in the hlyA gene. The MIP-LAMP assay efficiently amplified the target element within 35 min at 63 °C and was evaluated for sensitivity and specificity. The templates were specially amplified in the presence of the genomic DNA from L. monocytogenes. The limit of detection (LoD) of MIP-LAMP assay was 62.5 fg/reaction using purified L. monocytogenes DNA. The LoD for DNA isolated from serial dilutions of L. monocytogenes cells in buffer and in milk corresponded to 2.4 CFU and 24 CFU, respectively. The amplified products were analyzed by real-time monitoring of changes in turbidity, and visualized by adding Loop Fluorescent Detection Reagent (FD), or as a ladder-like banding pattern on gel electrophoresis. A total of 48 pork samples were investigated for L. monocytogenes by the novel MIP-LAMP method, and the diagnostic accuracy was shown to be 100% when compared to the culture-biotechnical method. In conclusion, the MIP-LAMP methodology was demonstrated to be a reliable, sensitive and specific tool for rapid detection of L. monocytogenes strains.

  5. Neutral atom traps.

    SciTech Connect

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  6. A new visually improved and sensitive loop mediated isothermal amplification (LAMP) for diagnosis of symptomatic falciparum malaria.

    PubMed

    Mohon, Abu Naser; Elahi, Rubayet; Khan, Wasif A; Haque, Rashidul; Sullivan, David J; Alam, Mohammad Shafiul

    2014-06-01

    Molecular diagnosis of malaria by nucleotide amplification requires sophisticated and expensive instruments, typically found only in well-established laboratories. Loop-mediated isothermal amplification (LAMP) has provided a new platform for an easily adaptable molecular technique for molecular diagnosis of malaria without the use of expensive instruments. A new primer set has been designed targeting the 18S rRNA gene for the detection of Plasmodium falciparum in whole blood samples. The efficacy of LAMP using the new primer set was assessed in this study in comparison to that of a previously described set of LAMP primers as well as with microscopy and real-time PCR as reference methods for detecting P. falciparum. Pre-addition of hydroxy napthol blue (HNB) in the LAMP reaction caused a distinct color change, thereby improving the visual detection system. The new LAMP assay was found to be 99.1% sensitive compared to microscopy and 98.1% when compared to real-time PCR. Meanwhile, its specificity was 99% and 100% in contrast to microscopy and real-time PCR, respectively. Moreover, the LAMP method was in very good agreement with microscopy and real-time PCR (0.94 and 0.98, respectively). This new LAMP method can detect at least 5parasites/μL of infected blood within 35min, while the other LAMP method tested in this study, could detect a minimum of 100parasites/μL of human blood after 60min of amplification. Thus, the new method is sensitive and specific, can be carried out in a very short time, and can substitute PCR in healthcare clinics and standard laboratories.

  7. The design and characteristics of direct current glow discharge atomic emission source operated with plain and hollow cathodes.

    PubMed

    Qayyum, A; Mahmood, M I

    2008-01-07

    A compact direct current glow discharge atomic emission source has been designed and constructed for analytical applications. This atomic emission source works very efficiently at a low-input electrical power. The design has some features that make it distinct from that of the conventional Grimm glow discharge source. The peculiar cathode design offered greater flexibility on size and shape of the sample. As a result the source can be easily adopted to operate in Plain or Hollow Cathode configuration. I-V and spectroscopic characteristics of the source were compared while operating it with plain and hollow copper cathodes. It was observed that with hollow cathode, the source can be operated at a less input power and generates greater Cu I and Cu II line intensities. Also, the intensity of Cu II line rise faster than Cu I line with argon pressure for both cathodes. But the influence of pressure on Cu II lines was more significant when the source is operated with hollow cathode.

  8. Perspective: Toward "synthesis by design": Exploring atomic correlations during inorganic materials synthesis

    NASA Astrophysics Data System (ADS)

    Soderholm, L.; Mitchell, J. F.

    2016-05-01

    Synthesis of inorganic extended solids is a critical starting point from which real-world functional materials and their consequent technologies originate. However, unlike the rich mechanistic foundation of organic synthesis, with its underlying rules of assembly (e.g., functional groups and their reactivities), the synthesis of inorganic materials lacks an underpinning of such robust organizing principles. In the latter case, any such rules must account for the diversity of chemical species and bonding motifs inherent to inorganic materials and the potential impact of mass transport on kinetics, among other considerations. Without such assembly rules, there is less understanding, less predictive power, and ultimately less control of properties. Despite such hurdles, developing a mechanistic understanding for synthesis of inorganic extended solids would dramatically impact the range of new material discoveries and resulting new functionalities, warranting a broad call to explore what is possible. Here we discuss our recent approaches toward a mechanistic framework for the synthesis of bulk inorganic extended solids, in which either embryonic atomic correlations or fully developed phases in solutions or melts can be identified and tracked during product selection and crystallization. The approach hinges on the application of high-energy x-rays, with their penetrating power and large Q-range, to explore reaction pathways in situ. We illustrate this process using two examples: directed assembly of Zr clusters in aqueous solution and total phase awareness during crystallization from K-Cu-S melts. These examples provide a glimpse of what we see as a larger vision, in which large scale simulations, data-driven science, and in situ studies of atomic correlations combine to accelerate materials discovery and synthesis, based on the assembly of well-defined, prenucleated atomic correlations.

  9. Hazards from High Intensity Lamps and Arcs

    NASA Technical Reports Server (NTRS)

    Sliney, D. H.

    1970-01-01

    The principal occupational health problem generally associated with high intensity arc lamps results from exposure of the eye and skin to ultraviolet radiation. Occasionally, the chorioretinal burns are of concern. The eye is generally more susceptible than the skin to injury from high intensity optical radiation sources whether ultraviolet, visible or infrared. Recent developments in technology have shown that some high intensity optical radiation sources which have output parameters greatly different from those encountered in the natural environment present a serious chorioretinal burn hazard.

  10. Hazards from High Intensity Lamps and Arcs

    NASA Technical Reports Server (NTRS)

    Sliney, D. H.

    1970-01-01

    The principal occupational health problem generally associated with high intensity arc lamps results from exposure of the eye and skin to ultraviolet radiation. Occasionally, the chorioretinal burns are of concern. The eye is generally more susceptible than the skin to injury from high intensity optical radiation sources whether ultraviolet, visible or infrared. Recent developments in technology have shown that some high intensity optical radiation sources which have output parameters greatly different from those encountered in the natural environment present a serious chorioretinal burn hazard.

  11. The effectiveness of side marker lamps: an experimental study.

    PubMed

    Theeuwes, J; Alferdinck, J W

    1997-03-01

    The present experiment investigated the effect of small amber lamps mounted near the front and rear on each side of a passenger car-so called side marker lamps-on visual detection and recognition of passenger cars in complex nighttime environments. It was determined whether cars equipped with side marker lamps are detected and recognized earlier and more accurately than cars without side marker lamps. Subjects were presented with slides of natural nighttime scenes in which a car, either with or without side marker lamps, viewed from its side, approaching from a side street, was either present or not. Subjects determined as fast as possible whether a car was present or not. Reaction time measures (speed and accuracy) indicated that both under clear and fog visibility conditions, a car equipped with side marker lamps was detected and recognized earlier and more accurately than a car without side marker lamps. The results indicate that side marker lamps increase both lateral conspicuity and recognizability suggesting that side marker lamps may be effective in reducing the number of nighttime angle collisions.

  12. Heat transfer assembly for a fluorescent lamp and fixture

    DOEpatents

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  13. Heat transfer assembly for a fluorescent lamp and fixture

    DOEpatents

    Siminovitch, Michael J.; Rubenstein, Francis M.; Whitman, Richard E.

    1992-01-01

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

  14. Fluorescent lamp unit with magnetic field generating means

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope.

  15. Fluorescent lamp unit with magnetic field generating means

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-08-08

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope. 4 figs.

  16. Compact microwave lamp having a tuning block and a dielectric located in a lamp cavity

    SciTech Connect

    Simpson, J.E.

    2000-02-29

    A microwave lamp having a compact structure utilizing a coupling slot which has a dielectric member extending there through and a tuning block adjoining the coupling slot. A non-conventional waveguide is used which has about the width of a WR-284 waveguide and about the length of a WR-340 waveguide.

  17. Compact microwave lamp having a tuning block and a dielectric located in a lamp cavity

    DOEpatents

    Simpson, James E.

    2000-01-01

    A microwave lamp having a compact structure utilizing a coupling slot which has a dielectric member extending therethrough and a tuning block adjoining the coupling slot. A non-conventional waveguide is used which has about the width of a WR-284 waveguide and about the length of a WR-340 waveguide.

  18. Moving Forward: College and Career Transitions of LAMP Graduates. Findings from the LAMP Longitudinal Study.

    ERIC Educational Resources Information Center

    MacAllum, Keith; Yoder, Karla; Kim, Scott; Bozick, Robert

    A longitudinal study examined the college and career transitions of graduates of the Lansing Area Manufacturing Partnership (LAMP) program, which is a school-to-career (STC) program sponsored by the United Auto Workers, General Motors Corporation, and Michigan's Ingham County Intermediate School District. The progress of three cohorts of LAMP…

  19. RF driven sulfur lamp having driving electrodes arranged to cool the lamp

    DOEpatents

    Gabor, George; Orr, Thomas Robert; Greene, Charles Maurice; Crawford, Douglas Gordon; Berman, Samuel Maurice

    1998-01-01

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance.

  20. RF driven sulfur lamp having driving electrodes arranged to cool the lamp

    DOEpatents

    Gabor, G.; Orr, T.R.; Greene, C.M.; Crawford, D.G.; Berman, S.M.

    1998-10-20

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance. 17 figs.

  1. Adsorption by design: Tuning atom-graphene van der Waals interactions via mechanical strain

    NASA Astrophysics Data System (ADS)

    Nichols, Nathan S.; Del Maestro, Adrian; Wexler, Carlos; Kotov, Valeri N.

    2016-05-01

    We aim to understand how the van der Waals force between neutral adatoms and a graphene layer is modified by uniaxial strain and electron correlation effects. A detailed analysis is presented for three atoms (He, H, and Na) and graphene strain ranging from weak to moderately strong. We show that the van der Waals potential can be significantly enhanced by strain, and present applications of our results to the problem of elastic scattering of atoms from graphene. In particular, we find that quantum reflection can be significantly suppressed by strain, meaning that dissipative inelastic effects near the surface become of increased importance. Furthermore, we introduce a method to independently estimate the Lennard-Jones parameters used in an effective model of He interacting with graphene, and determine how they depend on strain. At short distances, we find that strain tends to reduce the interaction strength by pushing the location of the adsorption potential minima to higher distances above the deformed graphene sheet. This opens up the exciting possibility of mechanically engineering an adsorption potential, with implications for the formation and observation of anisotropic low-dimensional superfluid phases.

  2. Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering

    PubMed Central

    Marrese, Marica; Guarino, Vincenzo; Ambrosio, Luigi

    2017-01-01

    Functional polymers currently represent a basic component of a large range of biological and biomedical applications including molecular release, tissue engineering, bio-sensing and medical imaging. Advancements in these fields are driven by the use of a wide set of biodegradable polymers with controlled physical and bio-interactive properties. In this context, microscopy techniques such as Atomic Force Microscopy (AFM) are emerging as fundamental tools to deeply investigate morphology and structural properties at micro and sub-micrometric scale, in order to evaluate the in time relationship between physicochemical properties of biomaterials and biological response. In particular, AFM is not only a mere tool for screening surface topography, but may offer a significant contribution to understand surface and interface properties, thus concurring to the optimization of biomaterials performance, processes, physical and chemical properties at the micro and nanoscale. This is possible by capitalizing the recent discoveries in nanotechnologies applied to soft matter such as atomic force spectroscopy to measure surface forces through force curves. By tip-sample local interactions, several information can be collected such as elasticity, viscoelasticity, surface charge densities and wettability. This paper overviews recent developments in AFM technology and imaging techniques by remarking differences in operational modes, the implementation of advanced tools and their current application in biomaterials science, in terms of characterization of polymeric devices in different forms (i.e., fibres, films or particles). PMID:28208801

  3. 76 FR 20089 - Energy Conservation Program: Energy Conservation Standards for Fluorescent Lamp Ballasts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... lamps 1.49 * ln (total lamp arc 31.7. in cold temperature outdoor signs. power) + 81.34. * IS = instant...- lamp IS and RS ballasts that operate common 4-foot T8 lamps in the commercial sector.\\2\\ When more than..., and 8-foot high output cold temperature lamps commonly used in outdoor signs. DOE also considered...

  4. Atomic-Scale Design, Synthesis and Characterization of Two-Dimensional Material Interfaces

    NASA Astrophysics Data System (ADS)

    Kiraly, Brian Thomas

    The reduction of material dimensions to near atomic-scales leads to changes in the properties of these materials. The most recent development in reduced dimensionality is the isolation of atomically thin materials with 2 "bulk" or large-scale dimensions. The isolation of a single plane of carbon atoms has thus paved the way for the study of material properties when one of three dimensions is confined. Early studies revealed a wealth of exotic physical phenomena in these two-dimensional (2D) layers due to the valence and crystalline symmetry of the materials, focusing primarily on understanding the intrinsic properties of the system. Recent studies have begun to investigate the influence that the surroundings have on the 2D material properties and how those effects may be used to tune the composite system properties. In this thesis, I will examine the synthesis and characterization of these 2D interfaces to understand how the constituents impact the overall observations and discuss how these interfaces might be used to deliberately manipulate 2D materials. I will begin by demonstrating how ultra-high vacuum (UHV) conditions enable the preparation and synthesis of 2D materials on air-unstable surfaces by utilizing a characteristic example of crystalline silver. The lack of catalytic activity of silver toward carbon-containing precursors is overcome by using atomic carbon to grow the graphene on the surface. The resulting system provides unique insight into graphene-metal interactions as it marks the lower boundary for graphene-metal interaction strength. I will then show how new 2D materials can be grown utilizing this growth motif, demonstrating the methodology with elemental silicon. The atomically thin 2D silicon grown on the silver surfaces clearly demonstrates a diamond-cubic crystal structure, including an electronic bandgap of 1eV. This work marks the realization of both a new 2D semiconductor and the direct scaling limit for bulk sp3 silicon. The common

  5. Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy

    SciTech Connect

    King, Neil P.; Sheffler, William; Sawaya, Michael R.; Vollmar, Breanna S.; Sumida, John P.; André, Ingemar; Gonen, Tamir; Yeates, Todd O.; Baker, David

    2015-09-17

    We describe a general computational method for designing proteins that self-assemble to a desired symmetric architecture. Protein building blocks are docked together symmetrically to identify complementary packing arrangements, and low-energy protein-protein interfaces are then designed between the building blocks in order to drive self-assembly. We used trimeric protein building blocks to design a 24-subunit, 13-nm diameter complex with octahedral symmetry and a 12-subunit, 11-nm diameter complex with tetrahedral symmetry. The designed proteins assembled to the desired oligomeric states in solution, and the crystal structures of the complexes revealed that the resulting materials closely match the design models. The method can be used to design a wide variety of self-assembling protein nanomaterials.

  6. Atomic force microscope imaging and force measurements at electrified and actively corroding interfaces: Challenges and novel cell design

    NASA Astrophysics Data System (ADS)

    Valtiner, Markus; Ankah, Genesis Ngwa; Bashir, Asif; Renner, Frank Uwe

    2011-02-01

    We report the design of an improved electrochemical cell for atomic force microscope measurements in corrosive electrochemical environments. Our design improvements are guided by experimental requirements for studying corrosive reactions such as selective dissolution, dealloying, pitting corrosion, and/or surface and interface forces at electrified interfaces. Our aim is to examine some of the limitations of typical electrochemical scanning probe microscopy (SPM) experiments and in particular to outline precautions and cell-design elements, which must necessarily be taken into account in order to obtain reliable experimental results. In particular, we discuss electrochemical requirements for typical electrochemical SPM experiments and introduce novel design features to avoid common issues such as crevice formations; we discuss the choice of electrodes and contaminations from ions of reference electrodes. We optimize the cell geometry and introduce standard samples for electrochemical AFM experiments. We have tested the novel design by performing force-distance spectroscopy as a function of the applied electrochemical potential between a bare gold electrode surface and a SAM-coated AFM tip. Topography imaging was tested by studying the well-known dealloying process of a Cu3Au(111) surface up to the critical potential. Our design improvements should be equally applicable to in situ electrochemical scanning tunneling microscope cells.

  7. UVR measurement of a UV germicidal lamp.

    PubMed

    Chang, Cheng-Ping; Liu, Hung-Hsin; Peng, Chiung-Yu; Shieh, Jeng-Yueh; Lan, Cheng-Hang

    2007-03-01

    Ultraviolet radiation (UVR) exposure is known to cause serious effects such as conjunctivitis and keratitis in eyes and erythema in skin. The exposure assessment of UVR has not been well established and developed in workplaces due to the lack of suitable UV detecting instruments. Therefore, UV monitoring and measuring procedures were investigated and developed with commercial spectroradiometry devices described in this paper. The UVR irradiance integrated with a biological effective parameter (S lambda) represents the impacts on human skin and eyes as UV effective irradiance. The spectral weighting function derived from the American Conference of Governmental Industrial Hygienists was applied and evaluated to indicate the degree of harmfulness of UVR as a function of wavelength. A portable UV germicidal lamp with short and long wavelengths (254 nm and 365 nm) served as the UVR emission source. The UVR photon count similar to the perceived brightness of a source, irradiance, and effective irradiance (E eff) of the germicidal lamp were measured and analyzed, then the permissible exposure times (T max) were derived for UVR exposure assessment. This monitoring provided a comprehensive approach to detecting UVR magnitude, evaluated the performance of the approach, and quantified the effective exposure based on measured data. From this study, the methodology of UV measurement was established and could be applied to further UVR exposure assessment in the workplace.

  8. Lamp for generating high power ultraviolet radiation

    DOEpatents

    Morgan, Gary L.; Potter, James M.

    2001-01-01

    The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

  9. [Near infrared light irradiator using halogen lamp].

    PubMed

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  10. Design of a novel globular protein fold with atomic-level accuracy.

    PubMed

    Kuhlman, Brian; Dantas, Gautam; Ireton, Gregory C; Varani, Gabriele; Stoddard, Barry L; Baker, David

    2003-11-21

    A major challenge of computational protein design is the creation of novel proteins with arbitrarily chosen three-dimensional structures. Here, we used a general computational strategy that iterates between sequence design and structure prediction to design a 93-residue alpha/beta protein called Top7 with a novel sequence and topology. Top7 was found experimentally to be folded and extremely stable, and the x-ray crystal structure of Top7 is similar (root mean square deviation equals 1.2 angstroms) to the design model. The ability to design a new protein fold makes possible the exploration of the large regions of the protein universe not yet observed in nature.

  11. Designing high performance precursors for atomic layer deposition of silicon oxide

    SciTech Connect

    Mallikarjunan, Anupama Chandra, Haripin; Xiao, Manchao; Lei, Xinjian; Pearlstein, Ronald M.; Bowen, Heather R.; O'Neill, Mark L.; Derecskei-Kovacs, Agnes; Han, Bing

    2015-01-15

    Conformal and continuous silicon oxide films produced by atomic layer deposition (ALD) are enabling novel processing schemes and integrated device structures. The increasing drive toward lower temperature processing requires new precursors with even higher reactivity. The aminosilane family of precursors has advantages due to their reactive nature and relative ease of use. In this paper, the authors present the experimental results that reveal the uniqueness of the monoaminosilane structure [(R{sub 2}N)SiH{sub 3}] in providing ultralow temperature silicon oxide depositions. Disubstituted aminosilanes with primary amines such as in bis(t-butylamino)silane and with secondary amines such as in bis(diethylamino)silane were compared with a representative monoaminosilane: di-sec-butylaminosilane (DSBAS). DSBAS showed the highest growth per cycle in both thermal and plasma enhanced ALD. These findings show the importance of the arrangement of the precursor's organic groups in an ALD silicon oxide process.

  12. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter; K. Streib

    1999-09-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg(OH){sub 2} carbonation is a leading process candidate, which generates the stable naturally occurring mineral magnesite (MgCO{sub 3}) and water. Key to process cost and viability are the carbonation reaction rate and its degree of completion. This process, which involves simultaneous dehydroxylation and carbonation is very promising, but far from optimized. In order to optimize the dehydroxylation/carbonation process, an atomic-level understanding of the mechanisms involved is needed. Since Mg(OH){sub 2} dehydroxylation is intimately associated with the carbonation process, its mechanisms are also of direct interest in understanding and optimizing the process. In the first project year, our investigations have focused on developing an atomic-level understanding of the dehydroxylation/carbonation reaction mechanisms that govern the overall carbonation reaction process in well crystallized material. In years two and three, we will also explore the roles of crystalline defects and impurities. Environmental-cell, dynamic high-resolution transmission electron microscopy has been used to directly observe the dehydroxylation process at the atomic-level for the first time. These observations were combined with advanced computational modeling studies to better elucidate the atomic-level process. These studies were combined with direct carbonation studies to better elucidate dehydroxylation/carbonation reaction mechanisms. Dehydroxylation follows a lamellar nucleation and growth process involving oxide layer formation. These layers form lamellar oxyhydroxide regions, which can

  13. Reduced atomic pair-interaction design (RAPID) model for simulations of proteins.

    PubMed

    Ni, Boris; Baumketner, Andrij

    2013-02-14

    Increasingly, theoretical studies of proteins focus on large systems. This trend demands the development of computational models that are fast, to overcome the growing complexity, and accurate, to capture the physically relevant features. To address this demand, we introduce a protein model that uses all-atom architecture to ensure the highest level of chemical detail while employing effective pair potentials to represent the effect of solvent to achieve the maximum speed. The effective potentials are derived for amino acid residues based on the condition that the solvent-free model matches the relevant pair-distribution functions observed in explicit solvent simulations. As a test, the model is applied to alanine polypeptides. For the chain with 10 amino acid residues, the model is found to reproduce properly the native state and its population. Small discrepancies are observed for other folding properties and can be attributed to the approximations inherent in the model. The transferability of the generated effective potentials is investigated in simulations of a longer peptide with 25 residues. A minimal set of potentials is identified that leads to qualitatively correct results in comparison with the explicit solvent simulations. Further tests, conducted for multiple peptide chains, show that the transferable model correctly reproduces the experimentally observed tendency of polyalanines to aggregate into β-sheets more strongly with the growing length of the peptide chain. Taken together, the reported results suggest that the proposed model could be used to succesfully simulate folding and aggregation of small peptides in atomic detail. Further tests are needed to assess the strengths and limitations of the model more thoroughly.

  14. 76 FR 25211 - Energy Conservation Program: Test Procedures for Fluorescent Lamp Ballasts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ...The U.S. Department of Energy (DOE) issues a final rule amending the existing test procedures for fluorescent lamp ballasts at Appendix Q and establishing a new test procedure at Appendix Q1. The amendments to appendix Q update a reference to an industry test procedure. The new test procedure at Appendix Q1 changes the efficiency metric to ballast luminous efficiency (BLE), which is measured directly using electrical measurements instead of the photometric measurements employed in the test procedure at Appendix Q. The calculation of BLE includes a correction factor to account for the reduced lighting efficacy of low frequency lamp operation. The test procedure specifies use of a fluorescent lamp load during testing, allowing ballasts to operate closer to their optimal design points and providing a better descriptor of real ballast performance compared to resistor loads. If DOE determines that amendments to the fluorescent lamp ballast energy conservation standards are required, they will be issued or published by June 30, 2011, and use of the test procedures at Appendix Q1 will be required on the compliance date of the amendments. Until that time, manufacturers must use the procedures at Appendix Q to certify compliance.

  15. Low-pressure microwave plasma ultraviolet lamp for water purification and ozone applications

    NASA Astrophysics Data System (ADS)

    Al-Shamma'a, A. I.; Pandithas, I.; Lucas, J.

    2001-09-01

    Low-pressure mercury lamps are commonly used for germicidal applications. The germicidal effect is due to the emission of light at 254 nm, which leads to the destruction of the most waterborne bacteria and viruses. The microwave plasma ultraviolet (UV) lamp (MPUVL) is a new technology for generating a high-intensity UV light and that can be also controlled to operate at 185 nm irradiation is in air at this wavelength produces ozone. The microwave power is injected into a resonant cavity and the surface wave excitation takes place within the cavity through that part of the discharge tube (fused silica) protruding inside it. The MPUVL has many advantages over conventional lamps, which are limited to an output power in the region of 30 W m-1, while MPUVL can deliver any amount of power per unit length and the tube can be of any shape, length or diameter. This paper describes the design of the MPUVL and compares its efficiency with that of conventional lamps through spectral analysis. Other results, which include the effects of temperature and different power inputs, are also discussed.

  16. Calibration of fiber-optic shock pyrometer using high-power coiled tungsten lamp

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Asimow, P. D.

    2015-06-01

    Comparison of all known calibration sources indicates that coiled standards of spectral irradiance, despite their very non-uniform brightness, are currently the best practical choice for accurate shock temperature measurements above 3000 K by optical pyrometry. We review all three documented methods of shock pyrometer calibration to a coiled lamp and show that only one technique, with no fiber-optics employed, is free of major radiometric errors. We report the development of a new, accurate to 5% and precise to 1-1.5% calibration procedure for the modified Caltech 6-channel, 3-ns temporal resolution combined open beam and fiber-coupled instrument. A designated central area of an 0.7x demagnified image of 900 W coiled-coil lamp filament is used, cross-calibrated against a NIST-traceable tungsten ribbon lamp. The results of two slightly different cross-calibrations are reported and the procedure to characterize the difference between the static and dynamic response of NewFocus 1801 amplified photodetectors. The most essential requirements for error-free calibration of a fiber-optic pyrometer using a coiled irradiance standard lamp are discussed. All these conditions are validated in actual radiometric tests and shock temperature experiments on single-crystal NaCl and MgO.

  17. Preparation of electrodeless discharge lamps for emission studies of uranium isotopes at trace level

    NASA Astrophysics Data System (ADS)

    Bhowmick, G. K.; Verma, R.; Verma, M. K.; Raman, V. A.; Joshi, A. R.; Deo, M. N.; Gantayet, L. M.; Tiwari, A. K.; Ramakumar, K. L.; Kumar, Navin

    2010-12-01

    A simplified method for preparation of electrodeless discharge lamp for uranium isotopes with specific concerns for 232U is described. Micro-gram quantities of solid uranium oxides and aqueous solution of uranium nitrate have been used as a starting material for in situ synthesis of uranium tetraiodide. High temperature iodination reaction is carried out in the presence of inert gas neon. By careful design, the preparation time and surface area of quartz reaction tubes have been reduced considerably. The latter decreases the level of contamination which has a direct bearing on the operational lifetime of the lamps. Incorporation of steps to purify the product from an unwanted material improved the stability of the lamps. The procedure provides a safe and convenient way of handling 232U in particular but can be extended in general to any actinides having radioactivity similar to that of freshly separated 232U. Characteristic emission of uranium isotopes have been recorded by Fourier Transform Spectrometer to show the satisfactory operation of the lamps as well as their usage for studying emission spectra of the specific isotope.

  18. Long-Term Radiometric Performance of the SCIAMACHY Quartz Tungsten Halogen Lamp

    NASA Astrophysics Data System (ADS)

    Noël, S.; Bramstedt, K.; Bovensmann, H.; Burrows, J. P.; Gottwald, M.; Krieg, E.

    2009-04-01

    The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) is part of the atmospheric chemistry payload of ESAś Environmental Satellite ENVISAT. Since 2002, SCIAMACHY provides the amount and global distribution of various atmospheric constituents relevant in the contexts of ozone chemistry, air pollution and climate change. Originally designed for a 5-year mission, the SCIAMACHY instrument is still working well and ready for the planned mission extension until 2010 or even further. Calibration and monitoring of the instrument performance are a pre-requisite for a continuously high data product quality. Here, results from the monitoring of the optical performance of the SCIAMACHY instrument are presented. Emphasis is placed on the investigation of the performance of the SCIAMACHY internal Quartz Tungsten Halogen (QTH) lamp. This type of lamp has been used for monitoring the radiometric performance of an UV-VIS-SWIR Earth observation sensor over mission lifetime for the first time. The analysis of regular in-flight measurements has shown the radiometric stability of the SCIAMACHY QTH lamp over time especially in the visible/NIR spectral range. Lamps of this type are therefore considered as useful components for further space-borne spectroscopic missions, as they provide a relatively cheap and reliable mean for (at least relative) radiometric calibration and monitoring.

  19. Predicted Pulsed-Power/Flash-Lamp Performance of the NIF Main Amplifier

    SciTech Connect

    Fulkerson, E. Steven; Hammond, Jud; Harjes, Henry C.; Moore, William B.S.; Smith, David L.; Wilson, J. Michael

    1999-06-22

    The laser glass for the National Ignition Facility (NIF) Main Amplifier system is pumped by a system of 192 pulsed power/flash lamp assemblies. Each of these 192 assemblies consists of a 1.6 MJ (nominal) capacitor bank working with a Pre-Ionization/Lamp Check (PILC) pulser to drive an array of 40 flash lamps. This paper describes the predicted performance of these Power Conditioning System (PCS) modules in concert with flashlamp assemblies in NIF. Each flashlamp assembly consists of 20 parallel sets of lamps in series pairs. The sensitivity of system performance to various design parameters of the PILC pulser and the main capacitor bank is described. Results of circuit models are compared to sub-scale flashlamp tests and to measurements taken in tests of a PCS module driving a flashlamp assembly in the First Article NIF Test Module facility at Sandia National Laboratories. Also included are predictions from a physics-based, semi-empirical amplifier gain code.

  20. Design of activated serine-containing catalytic triads with atomic level accuracy

    PubMed Central

    Rajagopalan, Sridharan; Wang, Chu; Yu, Kai; Kuzin, Alexandre P.; Richter, Florian; Lew, Scott; Miklos, Aleksandr E.; Matthews, Megan L.; Seetharaman, Jayaraman; Su, Min; Hunt, John. F.; Cravatt, Benjamin F.; Baker, David

    2014-01-01

    A challenge in the computational design of enzymes is that multiple properties must be simultaneously optimized -- substrate-binding, transition state stabilization, and product release -- and this has limited the absolute activity of successful designs. Here, we focus on a single critical property of many enzymes: the nucleophilicity of an active site residue that initiates catalysis. We design proteins with idealized serine-containing catalytic triads, and assess their nucleophilicity directly in native biological systems using activity-based organophosphate probes. Crystal structures of the most successful designs show unprecedented agreement with computational models, including extensive hydrogen bonding networks between the catalytic triad (or quartet) residues, and mutagenesis experiments demonstrate that these networks are critical for serine activation and organophosphate-reactivity. Following optimization by yeast-display, the designs react with organophosphate probes at rates comparable to natural serine hydrolases. Co-crystal structures with diisopropyl fluorophosphate bound to the serine nucleophile suggest the designs could provide the basis for a new class of organophosphate captures agents. PMID:24705591

  1. Sustainability Engineering and Maintenance - Plan, Design, and Construct for Maintainability: Sustainable Lighting Systems

    DTIC Science & Technology

    2011-01-01

    wattage combination.  Replace incandescent lamps with compact fluorescent lamp ( CFL ) which provide 60 percent or more in energy savings...lighting, therefore reducing lamp count. Longer TechData Sheet Engineering Service Center Port Hueneme, California 93043-4307 lamp life and a...reduced lamp count will therefore require less replacement material and labor cost. Electric Lighting Requirements must be designed with the

  2. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  3. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  4. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  5. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  6. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  7. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  8. Fluorescent lamp with static magnetic field generating means

    DOEpatents

    Moskowitz, Philip E.; Maya, Jakob

    1987-01-01

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed.

  9. 49 CFR 393.11 - Lamps and reflective devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.11 Lamps and... devices and electrical equipment in effect at the time of manufacture. Trailers which are equipped with... commercial motor vehicles shown in the last column of Table 1. A. Buses and trucks less than 2,032 mm (80...

  10. 49 CFR 393.11 - Lamps and reflective devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... reflective devices. (a)(1) Lamps and reflex reflectors. Table 1 specifies the requirements for lamps... reflex reflectors listed in Table 1 if— (i) The conspicuity material is placed at the locations where reflex reflectors are required by Table 1; and (ii) The conspicuity material when installed on the...

  11. 49 CFR 393.11 - Lamps and reflective devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... reflective devices. (a)(1) Lamps and reflex reflectors. Table 1 specifies the requirements for lamps... reflex reflectors listed in Table 1 if— (i) The conspicuity material is placed at the locations where reflex reflectors are required by Table 1; and (ii) The conspicuity material when installed on the...

  12. 49 CFR 393.11 - Lamps and reflective devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... reflective devices. (a)(1) Lamps and reflex reflectors. Table 1 specifies the requirements for lamps... reflex reflectors listed in Table 1 if— (i) The conspicuity material is placed at the locations where reflex reflectors are required by Table 1; and (ii) The conspicuity material when installed on the...

  13. Convection venting lensed reflector-type compact fluorescent lamp system

    DOEpatents

    Pelton, B.A.; Siminovitch, M.

    1997-07-29

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures. 12 figs.

  14. Convection venting lensed reflector-type compact fluorescent lamp system

    DOEpatents

    Pelton, Bruce A.; Siminovitch, Michael

    1997-01-01

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures.

  15. Modelling of Ar/Hg Induction Lamps with PLASIMO

    NASA Astrophysics Data System (ADS)

    van Dijk, J.; Janssen, G. M.; van der Mullen, J. A. M.

    1998-10-01

    In the last years various induction lamps have been announced by the major lighting companies. Examples are the Philips QL lamp, Osram's Endura and GE's Genura. In order to improve our understanding of such light sources some modelling has been done with the plasma simulation toolkit

  16. Reaction times to neon, LED, and fast incandescent brake lamps.

    PubMed

    Sivak, M; Flannagan, M J; Sato, T; Traube, E C; Aoki, M

    1994-06-01

    Standard incandescent brake lamps have a relatively slow rise time. It takes approximately a quarter of a second for them to reach 90% of asymptotic light output, causing potential delays in responses by following drivers. The present study evaluated reaction times to brake signals from standard incandescent brake lamps and from three alternative brake lamps with substantially faster rise times: neon, LED, and fast incandescent. The study, performed in a laboratory, simulated a daytime driving condition. The subject's task was to respond as quickly as possible to the onset of either of two brake lamps in the visual periphery, while engaged in a central tracking task. Brake signals were presented at two levels of luminous intensity. The results showed that reaction times to the alternative brake lamps were faster than to the standard incandescent lamp, with the advantage averaging 166 ms for the LED and neon lamps, and 135 ms for the fast incandescent lamp. A reduction of the signals' luminous intensity from 42 cd to 5 cd increased the reaction time by 84 ms.

  17. High-definition slit-lamp video camera system.

    PubMed

    Yamamoto, Satoru; Manabe, Noriyoshi; Yamamoto, Kenji

    2010-01-01

    Using a high-definition video camera for slit-lamp examination is now possible with the assistance of an adaptor. The authors describe the easy manipulation, convenience of use, and performance of a high-definition slit-lamp video camera system and provide images of eyes that were obtained using the system.

  18. Fluorescent lamp with static magnetic field generating means

    DOEpatents

    Moskowitz, P.E.; Maya, J.

    1987-09-08

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  19. 78 FR 14357 - Certain Compact Fluorescent Reflector Lamps, Products Containing Same and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... COMMISSION Certain Compact Fluorescent Reflector Lamps, Products Containing Same and Components Thereof... importation of certain compact fluorescent reflector lamps, products containing same and components thereof by... importation of certain compact fluorescent reflector lamps, products containing same and components thereof...

  20. Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp.

    PubMed

    Kim, Jae Ihn; Park, Chang Yong; Yeom, Jin Yong; Kim, Eok Bong; Yoon, Tai Hyun

    2003-02-15

    We have demonstrated in an ytterbium laser cooling and trapping experiment a high-power violet extendedcavity diode laser (ECDL) stabilized to the Yb resonant transition at 398.9 nm in an Yb hollow-cathode lamp. A frequency-dispersion signal, which we obtained by applying a modulation-free dichroic-atomic-vapor laser lock technique, allowed us to stabilize the violet ECDL at a frequency stability below 1 MHz at 1-s average time and a useful output power of 15 mW.