Science.gov

Sample records for lamp design atomic

  1. Atomic Oxygen Lamp Cleaning Facility Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Stueber, Thomas J.

    1999-01-01

    NASA Lewis Research Center's Atomic Oxygen Lamp Cleaning Facility was designed to produce an atomic oxygen plasma within a metal halide lamp to remove carbon-based contamination. It is believed that these contaminants contribute to the high failure rate realized during the production of these lamps. The facility is designed to evacuate a metal halide lamp and produce a radio frequency generated atomic oxygen plasma within it. Oxygen gas, with a purity of 0.9999 percent and in the pressure range of 150 to 250 mtorr, is used in the lamp for plasma generation while the lamp is being cleaned. After cleaning is complete, the lamp can be backfilled with 0.9999-percent pure nitrogen and torch sealed. The facility comprises various vacuum components connected to a radiation-shielded box that encloses the bulb during operation. Radiofrequency power is applied to the two parallel plates of a capacitor, which are on either side of the lamp. The vacuum pump used, a Leybold Trivac Type D4B, has a pumping speed of 4-m3/hr, has an ultimate pressure of <8x10-4, and is specially adapted for pure oxygen service. The electronic power supply, matching network, and controller (500-W, 13.56-MHz) used to supply the radiofrequency power were purchased from RF Power Products Inc. Initial test results revealed that this facility could remove the carbon-based contamination from within bulbs.

  2. Optimized design of LED plant lamp

    NASA Astrophysics Data System (ADS)

    Chen, Jian-sheng; Cai, Ruhai; Zhao, Yunyun; Zhao, Fuli; Yang, Bowen

    2014-12-01

    In order to fabricate the optimized LED plant lamp we demonstrated an optical spectral exploration. According to the mechanism of higher plant photosynthesis process and the spectral analysis we demonstrate an optical design of the LED plant lamp. Furthermore we built two kins of prototypes of the LED plant lamps which are suitable for the photosynthesis of higher green vegetables. Based on the simulation of the lamp box of the different alignment of the plants we carried out the growing experiment of green vegetable and obtain the optimized light illumination as well as the spectral profile. The results show that only blue and red light are efficient for the green leave vegetables. Our work is undoubtedly helpful for the LED plant lamping design and manufacture.

  3. Studies on Temperature Dependence of Rubidium Lamp for Atomic Frequency Standard

    SciTech Connect

    Ghosal, Bikash; Banik, Alak; Vats, Vaibhav; Pal, Sukamal; Bahl, R. K

    2011-10-20

    Rb lamp is a very critical component of the Rb atomic clock's Physics Package. The Rb lamp's performance is very sensitive to temperature and its stability. In this paper we discuss the behaviors of Rb Lamp with temperature. The Rb lamp exciter power and temperature of Rb bulb are very important parameters in controlling the performance of the Rb Lamp. It is observed that at temperatures beyond 110 deg. C, the lamp mode changes from the ring to red mode resulting in abnormal broadening of emission lines and self reversal. The results of our studies on spectral analysis of Rb lamp under various operating conditions are reported in the paper.

  4. Optics designs for an innovative LED lamp family system

    NASA Astrophysics Data System (ADS)

    Weiss, Herbert; Muschaweck, Julius; Hadrath, Stefan; Kudaev, Sergey

    2011-10-01

    On the general lighting market of LED lamps for professional applications there are still mainly products for single purpose solutions existing. There is a lack of standardised lamp systems like they are common for conventional lighting technologies. Therefore, an LED lamp family system was studied using high power LED with the objective to entirely substitute standard conventional lamp families in general lighting applications in the professional market segment. This comprises the realization of sets of lamp types with compact and linear shapes as well as with light distribution characteristics ranging from diffuse to extreme collimation and exceptionally high candle power. Innovative secondary optics concepts are discussed which allow both, the design of lamps with non-bulky shape and to obtain sufficient colour mixing when using multicolour LED combinations in order to achieve a very high colour rendering quality.

  5. Interior view, law library (note one of aluminum lamps designed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view, law library (note one of aluminum lamps designed by Jennwein is in the foreground; the murals were painted by Maurice Sterne) - United States Department of Justice, Constitution Avenue between Ninth & Tenth Streets, Northwest, Washington, District of Columbia, DC

  6. Optical design of LED-based automotive tail lamps

    NASA Astrophysics Data System (ADS)

    Domhardt, André; Rohlfing, Udo; Klinger, Karsten; Manz, Karl; Kooß, Dieter; Lemmer, Uli

    2007-09-01

    The application of ultra bright monochromatic and white High-Power-LEDs in the range of automotive lighting systems is now state of the art. These LEDs offer new possibilities in optical design and engineering within different fields of automotive lighting, e.g., tail lamps, signal lamps, headlamps and interior lighting. This contribution describes the process of the optical design of an automotive LED tail lamp based on a practical example. We will elaborate the principal geometric approach, the radiometric conditions and the optical design by using standard and advanced mathematical optimization methods. Special attention will be paid to the following topics: efficient light coupling from the LED into the optical device, adaptation of the illuminance and optimization with respect to the requirements from SAE/ECE regulations. It will be shown that the development of LED-lamps requires the complex interaction of several factors. The challenge for the optical designer is to fulfill the technical demands while also considering the appearance of the final product desired by the customer. Further design specifications emerge from the electrical and thermal layout of the lamp.

  7. A novel solution for LED wall lamp design and simulation

    NASA Astrophysics Data System (ADS)

    Ge, Rui; Hong, Weibin; Li, Kuangqi; Liang, Pengxiang; Zhao, Fuli

    2014-11-01

    The model of the wall washer lamp and the practical illumination application have been established with a new design of the lens to meet the uniform illumination demand for wall washer lamp based on the Lambertian light sources. Our secondary optical design of freeform surface lens to LED wall washer lamp based on the conservation law of energy and Snell's law can improve the lighting effects as a uniform illumination. With the relationship between the surface of the lens and the surface of the target, a great number of discrete points of the freeform profile curve were obtained through the iterative method. After importing the data into our modeling program, the optical entity was obtained. Finally, to verify the feasibility of the algorithm, the model was simulated by specialized software, with both the LED Lambertian point source and LED panel source model.

  8. 30 CFR 20.14 - Instructions for handling future changes in lamp design.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Instructions for handling future changes in lamp design. 20.14 Section 20.14 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... LAMPS § 20.14 Instructions for handling future changes in lamp design. All approvals are granted...

  9. A novel optimization strategy for LED street lamp designing

    NASA Astrophysics Data System (ADS)

    Dong, Yun; Cen, Zhaofeng; Li, Xiaotong; Pang, Wubin; Ruan, Wangchao

    2013-12-01

    In light-emitting diode (LED) street lamp design, it has always been an obsession that how to achieve an expected illumination distribution confined to a given region. To solve this problem, a new optimization strategy is proposed. In view of the practicability of actual production, we select the relatively mature approach that is based on both the Snell law and the energy conservation law which would obtain coordinate relations between the spaces the light source and target plane owned respectively and a set of equations to establish the initial construction of free-form lens. In addition, all the processes of simulation, analysis and optimization as well are accomplished in software. Generally speaking, for construction method which is in the light of the set of equations, the major improvement ideology focus on finding out the most suitable mapping relationship between the two coordinate systems. So does our work. In order to get better performance, the grid of control points must be modified. Then the core problem lies in determining the direction and distance of every point's movement contained in the grid. The rule of changing direction has a bearing on energy relations while migration length is gained by direct search algorithm.We apply the method in uniform illumination and get some effect. In short, the optimization strategy provides a practical and simple way for street lamp design of LED illumination.

  10. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.

    PubMed

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-05-01

    In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52±0.4ppb of mercury in the vapor phase, 204.16±8.9ppb of mercury in the phosphor powder, and 18.74±0.5ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  11. 30 CFR 19.13 - Instructions for handling future changes in lamp design.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Instructions for handling future changes in lamp design. 19.13 Section 19.13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... handling future changes in lamp design. All approvals are granted with the understanding that...

  12. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    NASA Astrophysics Data System (ADS)

    Nimalasuriya, T.; Flikweert, A. J.; Stoffels, W. W.; Haverlag, M.; van der Mullen, J. J. A. M.; Pupat, N. B. M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg+/Dy+, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  13. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    SciTech Connect

    Nimalasuriya, T.; Flikweert, A.J.; Stoffels, W.W.; Haverlag, M.; Mullen, J.J.A.M. van der; Pupat, N.B.M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg{sup +}/Dy{sup +}, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  14. Design Thinking in Elementary Students' Collaborative Lamp Designing Process

    ERIC Educational Resources Information Center

    Kangas, Kaiju; Seitamaa-Hakkarainen, Pirita; Hakkarainen, Kai

    2013-01-01

    Design and Technology education is potentially a rich environment for successful learning, if the management of the whole design process is emphasised, and students' design thinking is promoted. The aim of the present study was to unfold the collaborative design process of one team of elementary students, in order to understand their multimodal…

  15. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry

    SciTech Connect

    Rey-Raap, Natalia

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  16. Measurements of atomic state distribution functions of the Philips QL-lamp

    SciTech Connect

    Jonkers, J.; Bakker, M.; Mullen, J.A.M. van der

    1996-12-31

    In 1992 Philips Lighting introduced the QL-lamp, an inductively coupled low pressure RF discharge containing a mixture of argon and mercury. Its main advantage is the absence of electrodes, which benefits the life-time. In order to improve the knowledge of this kind of plasmas a model has been developed and measurements have been performed. In every plasma the free electrons are an important species: they control the energy transfer from the electromagnetic field to the heavy particles. Therefore, it is important to know the spatial distribution of the electron temperature and of the electron density. These parameters can be obtained from the Atomic State Distribution Function (ASDF), since the levels close the ionization limit are in partial Local Saha Equilibrium (pLSE). The densities of the excited states are obtained from absolute line intensity measurements. However, it appears that the highly excited, measurable, states are not in pLSE, indicating that the QL plasma is far from Saha equilibrium. In order to obtain the electron densities and temperatures the ASDF has to be combined with either measurements of continuum radiation or a Collisional Radiative Model (CRM). The results of both methods will be presented and compared with a third technique to obtain the electron density and temperature: Thomson scattering.

  17. Design method of a light emitting diode front fog lamp based on a freeform reflector

    NASA Astrophysics Data System (ADS)

    Wu, Heng; Zhang, Xianmin; Ge, Peng

    2015-09-01

    We propose a method for the design of a light emitting diode front fog lamp based on a freeform reflector. The source-target mapping is used to establish the relationship between the solid angle of the source and the target plane. The reflector is then constructed based on the non-imaging optics theory and Snell's law. A feedback function is deduced from the deviation in the simulated light pattern based on the sampling method. The reflector is then regenerated with feedback modifications and the variance is minimized after several feedbacks. A reflector for the automobile front fog lamp is designed for the OSTAR Headlamp LED source whose emitting surface is 2.8 mm×2.5 mm. Simulation results indicate that the light performance can well meet the standard of the front fog lamps in ECE R19 Revision 7.

  18. Design method of a light-emitting diode front fog lamp based on a freeform reflector

    NASA Astrophysics Data System (ADS)

    Wu, Heng; Zhang, Xianmin; Ge, Peng

    2015-06-01

    We propose a method for the design of a light-emitting diode front fog lamp based on a freeform reflector. The source-target mapping is used to establish the relationship between the solid angle of the source and the target plane. The reflector is then constructed based on the non-imaging optics theory and Snell's Law. A feedback function is deduced from the deviation in the simulated light pattern based on the sampling method. The reflector is then regenerated with feedback modifications and the variance is minimized after several feedbacks. A reflector for the automobile front fog lamp is designed for the OSTAR Headlamp LED source whose emitting surface is 2.8 mm×2.5 mm. Simulation results indicate that the light performance can well meet the standard of the front fog lamps in ECE R19 Revision 7.

  19. 15 KJ FLASH LAMP, POWER CONDITIONING UNIT DESIGNED FOR SAFTY, RELIABILITY & MANUFACTURABILITY*

    SciTech Connect

    James, G; Merritt, B; Dreifuerst, G; Strickland, S

    2007-08-07

    A 15kJoule, Flash Lamp Power Conditioning Unit has been successfully designed, developed, and deployed in the National Ignition Facility (NIF) Preamplifier Modules (PAM). The primary design philosophy of this power conditioning unit (PCU) is safety, reliability, and manufacturability. Cost reduction over commercially equivalent systems was also achieved through an easily manufactured packaging design optimized to meet NIF requirements. While still maintaining low cost, the PCU design includes a robust control system, fault diagnostic system, and safety features. The pulsed power design includes 6 PFN modules, each including a dual series injection trigger transformer, that drive a total of 12 flash lamp loads. The lamps are individually triggered via a 20kV pulse produced by a 1kV, MCT switched capacitive discharge unit on the primary side of the trigger transformer. The remote control interface includes an embedded controller that captures flash lamp current wave forms and fault status for each shot. The embedded controller provides the flexibility of remotely adjusting both the main drive voltage from 1.6 to 2.5 kV and the trigger voltage from 0 to 20 kV.

  20. Optical design of a street lamp based on dual-module chip-on-board LED arrays.

    PubMed

    Ge, Aiming; Cai, Jinlin; Chen, Dehua; Shu, Hongyun; Qiu, Peng; Wang, Junwei; Zhu, Ling

    2014-09-01

    We design and propose a compact street lamp based on dual-module chip-on-board LED. The street lamp is composed of six faceted reflectors. It can direct the luminous flux and form uniform illumination on the target area, and it effectively reduces power consumption. We have conducted both simulations and prototype measurements. The test results show good optical performance in that the uniformity of luminance reaches 0.58 for LED lamp zigzag arrangements and 0.60 for LED lamp double-side arrangements. The average luminance can fulfill the requirements in Chinese road lighting Standard CJJ45-2006. PMID:25321373

  1. Precision performance lamp technology

    NASA Astrophysics Data System (ADS)

    Bell, Dean A.; Kiesa, James E.; Dean, Raymond A.

    1997-09-01

    A principal function of a lamp is to produce light output with designated spectra, intensity, and/or geometric radiation patterns. The function of a precision performance lamp is to go beyond these parameters and into the precision repeatability of performance. All lamps are not equal. There are a variety of incandescent lamps, from the vacuum incandescent indictor lamp to the precision lamp of a blood analyzer. In the past the definition of a precision lamp was described in terms of wattage, light center length (LCL), filament position, and/or spot alignment. This paper presents a new view of precision lamps through the discussion of a new segment of lamp design, which we term precision performance lamps. The definition of precision performance lamps will include (must include) the factors of a precision lamp. But what makes a precision lamp a precision performance lamp is the manner in which the design factors of amperage, mscp (mean spherical candlepower), efficacy (lumens/watt), life, not considered individually but rather considered collectively. There is a statistical bias in a precision performance lamp for each of these factors; taken individually and as a whole. When properly considered the results can be dramatic to the system design engineer, system production manage and the system end-user. It can be shown that for the lamp user, the use of precision performance lamps can translate to: (1) ease of system design, (2) simplification of electronics, (3) superior signal to noise ratios, (4) higher manufacturing yields, (5) lower system costs, (6) better product performance. The factors mentioned above are described along with their interdependent relationships. It is statistically shown how the benefits listed above are achievable. Examples are provided to illustrate how proper attention to precision performance lamp characteristics actually aid in system product design and manufacturing to build and market more, market acceptable product products in the

  2. Minimization of lumen depreciation in LED lamps using thermal transient behavior analysis and design optimizations.

    PubMed

    Khan, M Nisa

    2016-02-10

    We expansively investigate thermal behaviors of various general-purpose light-emitting diode (LED) lamps and apply our measured results, validated by simulation, to establish lamp design rules for optimizing their optical and thermal properties. These design rules provide the means to minimize lumen depreciation over time by minimizing the periods for lamps to reach thermal steady-state while maintaining their high luminous efficacy and omnidirectional light distribution capability. While it is well known that minimizing the junction temperature of an LED leads to a longer lifetime and an increased lumen output, our study demonstrates, for the first time, to the best of our knowledge, that it is also important to minimize the time it takes to reach thermal equilibrium because doing so minimizes lumen depreciation and enhances light output and color stability during operation. Specifically, we have found that, in addition to inadequate heat-sink fin areas for a lamp configuration, LEDs mounted on multiple boards, as opposed to a single board, lead to longer periods for reaching thermal equilibrium contributing to larger lumen depreciation. PMID:26906393

  3. Minimization of lumen depreciation in LED lamps using thermal transient behavior analysis and design optimizations.

    PubMed

    Khan, M Nisa

    2016-02-10

    We expansively investigate thermal behaviors of various general-purpose light-emitting diode (LED) lamps and apply our measured results, validated by simulation, to establish lamp design rules for optimizing their optical and thermal properties. These design rules provide the means to minimize lumen depreciation over time by minimizing the periods for lamps to reach thermal steady-state while maintaining their high luminous efficacy and omnidirectional light distribution capability. While it is well known that minimizing the junction temperature of an LED leads to a longer lifetime and an increased lumen output, our study demonstrates, for the first time, to the best of our knowledge, that it is also important to minimize the time it takes to reach thermal equilibrium because doing so minimizes lumen depreciation and enhances light output and color stability during operation. Specifically, we have found that, in addition to inadequate heat-sink fin areas for a lamp configuration, LEDs mounted on multiple boards, as opposed to a single board, lead to longer periods for reaching thermal equilibrium contributing to larger lumen depreciation.

  4. A compact bike head lamp design based on a white LED operated at one watt

    NASA Astrophysics Data System (ADS)

    Lo, Yi-Chien; Cai, Jhih-You; Chen, Chin-Wei; Sun, Ching-Cherng

    2012-06-01

    A design of a compact bike head lamp meeting the K mark regulation based on a white LED by Cree XP-C is presented. The proposed design contains three parts, one is a parabolic mirror, another is a flat mirror and the other is a lens. The design performed a contrast of 66.7 across the cut-off line by the K-mark regulation, and a prototype fabricated by a simple CNC machining was measured a contrast of 12.4 across the cut-off line. The successful design requests the LED operated at only 1 W, and it enables an user to operate the lamp longer with energy saving.

  5. IODC 2014 Illumination design problem: the Cinderella Lamp

    NASA Astrophysics Data System (ADS)

    Cassarly, William J.

    2014-12-01

    For the 3rd time, the International Optical Design Conference (IODC) included an Illumination Design contest. This year, the contest involved designing the illuminator to project the 1950 Walt Disney "Cinderella" movie using a box of optical knick-knacks. The goal of the problem was to provide the highest screen lumens with greater than 30% uniformity. There were 12 entries from 3 different countries. Three different commercial optical/illumination design packages were used. The winning solution, provided by Alois Herkommer, provided 371 screen lumens.

  6. Use of multiwavelength emission from hollow cathode lamp for measurement of state resolved atom density of metal vapor produced by electron beam evaporation

    SciTech Connect

    Majumder, A.; Dikshit, B.; Bhatia, M. S.; Mago, V. K.

    2008-09-15

    State resolved atom population of metal vapor having low-lying metastable states departs from equilibrium value. It needs to be experimentally investigated. This paper reports the use of hollow cathode lamp based atomic absorption spectroscopy technique to measure online the state resolved atom density (ground and metastable) of metal vapor in an atomic beam produced by a high power electron gun. In particular, the advantage of availability of multiwavelength emission in hollow cathode lamp is used to determine the atom density in different states. Here, several transitions pertaining to a given state have also been invoked to obtain the mean value of atom density thereby providing an opportunity for in situ averaging. It is observed that at higher source temperatures the atoms from metastable state relax to the ground state. This is ascribed to competing processes of atom-atom and electron-atom collisions. The formation of collision induced virtual source is inferred from measurement of atom density distribution profile along the width of the atomic beam. The total line-of-sight average atom density measured by absorption technique using hollow cathode lamp is compared to that measured by atomic vapor deposition method. The presence of collisions is further supported by determination of beaming exponent by numerically fitting the data.

  7. Optical design of a light-emitting diode lamp for a maritime lighthouse.

    PubMed

    Jafrancesco, D; Mercatelli, L; Sansoni, P; Fontani, D; Sani, E; Coraggia, S; Meucci, M; Francini, F

    2015-04-10

    Traffic signaling is an emerging field for light-emitting diode (LED) applications. This sustainable power-saving illumination technology can be used in maritime signaling thanks to the recently updated norms, where the possibility to utilize LED sources is explicitly cited, and to the availability of high-power white LEDs that, combined with suitable lenses, permit us to obtain well-collimated beams. This paper describes the optical design of a LED-based lamp that can replace a traditional lamp in an authentic marine lighthouse. This source recombines multiple separated LEDs realizing a quasi-punctual localized source. Advantages can be lower energy consumption, higher efficiency, longer life, fewer faults, slower aging, and minor maintenance costs. The proposed LED source allows us to keep and to utilize the old Fresnel lenses of the lighthouse, which very often have historical value. PMID:25967311

  8. Design of LED spherical lamps for uniform far-field illumination

    NASA Astrophysics Data System (ADS)

    Moreno, Ivan

    2006-02-01

    Light-Emitting Diodes (LEDs) have matured to the point that they can be considered to replace the inefficient and short life incandescent lamps in many lighting applications. Though modern high power LEDs produce up 120 lumens per device, several individual LEDs must be mounted on panels to obtain practical powers. In this paper we analyze, by considering each single LED as an imperfect Lambertian emitter, the first order design of a lamp consisting of several LEDs assembled upon a spherical surface to uniformly illuminate far targets. Practical formulas are derived for the optimum LED-to-LED spacing, i.e., the optimum packaging density, of ring array configurations to achieve uniform far-field irradiance.

  9. Signal lights - designed light for rear lamps and new upcoming technologies: innovations in automotive lighting

    NASA Astrophysics Data System (ADS)

    Mügge, Martin; Hohmann, Carsten

    2016-04-01

    Signal functions have to fulfill statutory regulations such as ECE or FMVSS108 to provide a clear signal to other road users and satisfy the same standard definitions of lighting parameters. However, as rear combination lamps are very different from one another, and these days are an increasingly powerful design element of cars, automotive manufacturers want an innovative, superior, and contrasting design. Daytime appearances with a new and unusual look and nighttime appearances with unexpected illumination are strong drivers for developing amazing innovative signal functions. The combination of LED technology and different forms of light-guiding optics, new interpretations of common optical systems to develop various styling options, the use of new materials and components for lighting effects, the introduction of OLED technology on the automotive market, and amazing new optical systems, using diffractive or holographic optics in future rear lamps, are paving the way for further, exciting design possibilities. The challenge of new signal functions is to take these possibilities and to develop the appearance and illumination effects the designer wants to reinforce the image of the car manufacturer and to fit harmoniously into the vehicle design. Lighting systems with a three-dimensional design and appearance when unlit and lit, amazing 3D effects, and surprising lighting scenarios will gain in importance. But the signal lights on cars will, in the future, be not only lighting functions in rear lamps; new functions and stylistic illuminations for coming/leaving-home scenarios will support and complete the car's overall lighting appearance. This paper describes current lighting systems realizing the styling requirements and future lighting systems offering new design possibilities and developing further stylistic, visual effects and improved technologies.

  10. Lamp system with a single second-lens newly designed by using the least square method for 4 LEDs

    NASA Astrophysics Data System (ADS)

    Jo, Jae Heung; Ryu, Jae Myung; Hong, Chun Gang

    2014-05-01

    It is common for many companies to use multiple LEDs to enhance the brightness of a LED lamp and, in general, four LEDs are used in the LED lamp systems. Moreover, the second-lens must be used to obtain a straight uniform illumination from LED lights. Where four LEDs are used, four second-lenses are also assembled conventionally and those four units of second-lenses are manufactured from a single mold and assembled together with the LEDs. However, this study introduces a new method of using the Least Square Method to get a uniform illumination with the divergence angle of 40 degrees with a new single injection molded lens. Thanks to this optical design with a single lens, the assembling process of LED lamp system was simplified by eliminating the complicated assembly procedure. Also, the uniformity of illumination of this newly designed lamp system was less than 14.1%.

  11. Turning on LAMP

    ScienceCinema

    Bostedt, Christoph

    2016-07-12

    Christoph Bostedt, a senior staff scientist at SLAC's Linac Coherent Light Source X-ray laser, provides a sneak peek of a powerful new instrument, called LAMP, that is now available for experiments that probe the atomic and molecular realm. LAMP replaces and updates the first instrument at LCLS, dubbed CAMP, which will be installed at an X-ray laser in Germany.

  12. Turning on LAMP

    SciTech Connect

    Bostedt, Christoph

    2014-06-30

    Christoph Bostedt, a senior staff scientist at SLAC's Linac Coherent Light Source X-ray laser, provides a sneak peek of a powerful new instrument, called LAMP, that is now available for experiments that probe the atomic and molecular realm. LAMP replaces and updates the first instrument at LCLS, dubbed CAMP, which will be installed at an X-ray laser in Germany.

  13. Simultaneous monitoring of multimetallic atom densities in plasma processes employing a multimicrohollow cathode lamp

    SciTech Connect

    Ohta, Takayuki; Ito, Masafumi; Tachibana, Yoshihiro; Taneda, Satoshi; Takashima, Seigo; Hori, Masaru; Kano, Hiroyuki; Den, Shoji

    2007-06-18

    The authors have developed a simultaneous measurement technique of multimetallic atom densities in process plasmas using absorption spectroscopy employing a multimicrohollow cathode plasma as a light source. The optical emissions of four metallic atoms of Cu, Zn, Fe, and Mo were simultaneously produced from the multimicrohollow cathode plasma of millimeter size. The absolute densities of Cu and Mo in the magnetron sputtering plasma were simultaneously measured using this technique. The simultaneous monitoring of multimetallic atoms is very useful for controlling the plasma processes precisely.

  14. Anti-glare LED projection lamp based on an optical design with a confocal double-reflector

    NASA Astrophysics Data System (ADS)

    Sun, Ching-Cherng; Lo, Yi-Chien; Tsai, Chih-Chi; Lee, Xuan-Hao; Chien, Wei-Ting

    2012-10-01

    A new optical design of a confocal double-reflector, for white LED lighting, performing uniform illumination with a specific projection angle has been presented and demonstrated. In addition, the anti-glare design with double-reflector prevents direct view of the LED, and the measured veiling luminance is much lower than that in general LED-based projection lamps.

  15. 30 CFR 20.14 - Instructions for handling future changes in lamp design.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP..., 765 Technology Drive, Triadelphia, WV 26059, requesting an extension of the original approval...

  16. 30 CFR 19.13 - Instructions for handling future changes in lamp design.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC CAP LAMPS § 19.13 Instructions for..., Approval and Certification Center, 765 Technology Drive, Triadelphia, WV 26059, requesting an extension...

  17. The applied research and solar simulation spectral design based on pulse xenon lamp with coating film

    NASA Astrophysics Data System (ADS)

    Chen, Wenzhi; Cheng, Qijin; Zhang, Fengyan

    2014-09-01

    In the paper the spectrum of realistic sunlight and pulse xenon lamp were compared to each other, the result shows that the infrared part of luminescence spectrum of xenon lamp without coating film occupies the total spectrum's 57.4%, but the infrared part of the standard solar spectrum only reaches to 28.3%. The transmittance curve of pulse xenon lamp is got by fitting. Using appropriate method and coating film parameter, the film is done to pulse xenon lamp, and the negative film coefficient transmittance is 16% is got at 935nm central wavelength. At the range of 400-760nm wavelength the average transmittance is more than 86%, and the average transmittance is more than 96% at the range of 400-760nm wavelength. A portion of infrared light can be filtered after coating film. By the spectral testing of two coating film xenon lamp, it can be found that the spectral matching rate is from 0.792 to 1.176 and it is satisfied to A grade standard request. By using A and C grade pulse xenon lamp electric performance of 40.5W thin film cell is tested and the power value by C grade simulative light source is lower than real power for 11.2W. The result indicates the spectral matching rate of solar simulator is very important for cell electric performance.

  18. Design a light pattern of multiple concentric circles for LED fishing lamps using Fourier series and an energy mapping method.

    PubMed

    Shen, S C; Li, J S; Huang, M C

    2014-06-01

    Fourier series and an energy mapping method were used in this study to design a lens that produces a light pattern of multiple concentric circles (LPMCC) for a light-emitting diode (LED) fishing lamp. Fourier series were used to represent the light intensity distribution curve (LIDC) of the LPMCC light pattern. Energy mapping involves performing angular energy mapping based on the LIDCs of an LED light source and LPMCC to design a freeform lens. Type I and Type II LPMCC lenses were designed according to the phototaxis behavior of fish to create a LPMCC light pattern of interleaving light-dark zones that attracts fish shoals to stay in an area for a long period. The experimental results indicated that, in comparing the LIDCs of the Type I and II lenses with the respective simulation values, the normalized cross-correlation (NCC) value reached 96%. According to a 24-hour observation of the phototaxis of Poecilia reticulata to evaluate the effectiveness of the proposed light pattern to attract fish, when a fish shoal was habituated to a light source that emitted constant illumination light, it gradually moved away from the intense light zone and hovered around the junction of the light and dark zones. In the future, the design used in this study can be applied to LED fishing lamps to replace traditional fishing lamps.

  19. Design a light pattern of multiple concentric circles for LED fishing lamps using Fourier series and an energy mapping method.

    PubMed

    Shen, S C; Li, J S; Huang, M C

    2014-06-01

    Fourier series and an energy mapping method were used in this study to design a lens that produces a light pattern of multiple concentric circles (LPMCC) for a light-emitting diode (LED) fishing lamp. Fourier series were used to represent the light intensity distribution curve (LIDC) of the LPMCC light pattern. Energy mapping involves performing angular energy mapping based on the LIDCs of an LED light source and LPMCC to design a freeform lens. Type I and Type II LPMCC lenses were designed according to the phototaxis behavior of fish to create a LPMCC light pattern of interleaving light-dark zones that attracts fish shoals to stay in an area for a long period. The experimental results indicated that, in comparing the LIDCs of the Type I and II lenses with the respective simulation values, the normalized cross-correlation (NCC) value reached 96%. According to a 24-hour observation of the phototaxis of Poecilia reticulata to evaluate the effectiveness of the proposed light pattern to attract fish, when a fish shoal was habituated to a light source that emitted constant illumination light, it gradually moved away from the intense light zone and hovered around the junction of the light and dark zones. In the future, the design used in this study can be applied to LED fishing lamps to replace traditional fishing lamps. PMID:24921540

  20. Absorption by ground-state lead atoms of the 283. 3-nm resonant line from a lead hollow cathode lamp. An absolute number density calibration

    SciTech Connect

    Simons, J.W. ); Oldenborg, R.C.; Baughcum, S.L. )

    1989-10-19

    An accurate absolute number density calibration curve for absorption by gaseous lead atoms of the 283.3-nm resonant line from a typical lead hollow cathode lamp is reported. This calibration shows the usual curvature in the Beer-Lambert plot for atomic absorption at moderate to high absorbances that is commonly attributed to self-absorption leading to line reversal in the source and/or preferential absorption at the line center when the absorber temperature is not much greater than the source Doppler temperature. A theoretical calculation utilizing a Doppler-limited Fourier transform spectrum of the 283.3-nm emission from the lamp and a tabulated value of the absorption cross section and accounting for the isotopic and nuclear hyperfine components in both the emission and absorption due to naturally occurring lead quantitatively reproduces the experimental calibration curve without any parameter adjustments. It is found that the curvature in the Beer-Lambert plot has more to do with the fact that the absorbing and emitting atoms are a mixture of isotopes giving several isotopic and nuclear hyperfine transitions at slightly different frequencies than it does with preferential absorption at line centers.

  1. Design for an optical cw atom laser

    PubMed Central

    Ashkin, Arthur

    2004-01-01

    A new type of optical cw atom laser design is proposed that should operate at high intensity and high coherence and possibly record low temperatures. It is based on an “optical-shepherd” technique, in which far-off-resonance blue-detuned swept sheet laser beams are used to make new types of high-density traps, atom waveguides, and other components for achieving very efficient Bose–Einstein condensation and cw atom laser operation. A shepherd-enhanced trap is proposed that should be superior to conventional magneto-optic traps for the initial collection of molasses-cooled atoms. A type of dark-spot optical trap is devised that can cool large numbers of atoms to polarization-gradient temperatures at densities limited only by three-body collisional loss. A scheme is designed to use shepherd beams to capture and recycle essentially all of the escaped atoms in evaporative cooling, thereby increasing the condensate output by several orders of magnitude. Condensate atoms are stored in a shepherd trap, protected from absorbing light, under effectively zero-gravity conditions, and coupled out directly into an optical waveguide. Many experiments and devices may be possible with this cw atom laser. PMID:15302937

  2. Loop-Mediated Isothermal Amplification (LAMP) Signature Identification Software

    2009-03-17

    This is an extendable open-source Loop-mediated isothermal AMPlification (LAMP) signature design program called LAVA (LAMP Assay Versatile Analysis). LAVA was created in response to limitations of existing LAMP signature programs.

  3. The optical pumping of alkali atoms using coherent radiation from semi-conductor injection lasers and incoherent radiation from resonance lamps

    NASA Technical Reports Server (NTRS)

    Singh, G.

    1973-01-01

    An experimental study for creating population differences in the ground states of alkali atoms (Cesium 133) is presented. Studies made on GaAs-junction lasers and the achievement of population inversions among the hyperfine levels in the ground state of Cs 133 by optically pumping it with radiation from a GaAs diode laser. Laser output was used to monitor the populations in the ground state hyperfine levels as well as to perform the hyperfine pumping. A GaAs laser operated at about 77 K was used to scan the 8521 A line of Cs 133. Experiments were performed both with neon-filled and with paraflint-coated cells containing the cesium vapor. Investigations were also made for the development of the triple resonance coherent pulse technique and for the detection of microwave induced hyperfine trasistions by destroying the phase relationships produced by a radio frequency pulse. A pulsed cesium resonance lamp developed, and the lamp showed clean and reproducible switching characteristics.

  4. Absolute number density calibration of the absorption by ground-state lead atoms of the 283. 3-nm resonance line from a high-intensity lead hollow cathode lamp and the calculated effect of argon pressures

    SciTech Connect

    Simons, J.W.; McClean, R.E. ); Oldenborg, R.C. )

    1991-03-21

    The absolute number density calibration for the absorption by ground-state lead atoms of the 283.3-nm resonance line from a high-intensity lead hollow cathode lamp (Photron superlamp) is determined and found to be the same as that of a standard hollow cathode lamp. Comparisons of the calibrations to theoretical calculations are found to be quite satisfactory. The effects of argon pressures in the absorption cell on the calibration are examined theoretically by using a simple Lorentzian broadening and shifting model. These calculations show the expected reduction in sensitivity and increasing linearity of Beer-Lambert plots with increasing argon pressure.

  5. Design of a 3/2 Step-Up SC DC-DC Converter for Diode-Lamps

    NASA Astrophysics Data System (ADS)

    Eguchi, Kei; Ueno, Fumio; Inoue, Takahiro

    Aiming an IC implementation of a DC-DC converter which can provide a 4.5˜5 V stepped-up voltage for diode-lamps, a switched-capacitor (SC) DC-DC converter is proposed in this paper. Different from a conventional approach employing doubler circuits, the proposed circuit provides the output voltage by achieving a 3/2 step-up conversion. Therefore, decline in power efficiency for the proposed circuit is gentle. The process of DC-DC conversion is analyzed theoretically. To confirm the validity of the circuit design, SPICE simulations are performed. For the input voltage 3.2˜4.5 V, the power efficiency is 73˜92 % in the output current about 150 mA.

  6. Flickering lamps

    NASA Astrophysics Data System (ADS)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2015-05-01

    Many processes in electromagnetism vary with time. Some of them are well known, in particular those related to line frequencies of 50 Hz or 60 Hz such as fluctuating light output of discharge and incandescent lamps. The flickers of discharge and incandescent lamps have quite different physical principles involved, which are investigated experimentally using high-speed cameras and theoretically using simplified models. The topic is related to other phenomena such as the transient behaviour of phosphor layers covering the screen of oscilloscopes and the time-varying Lorentz force acting on the filament of light bulbs. All studies are well suited for teaching selected aspects of electromagnetism and light at undergraduate level at university.

  7. Lava Lamp

    ERIC Educational Resources Information Center

    Leif, Todd R.

    2008-01-01

    This past semester I brought a Lava Lite[R] Lamp into my classroom. Why bring such a thing into class? Many of today's students are part of the "retro" movement. They buy clothes from the '60s, they wear their hair like people did in the '60s, and they look for the ideals and themes related to living in the 1960s. Physics education reform is also…

  8. Aperture lamp

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.

    2003-01-01

    A discharge lamp includes means for containing a light emitting fill, the fill being capable of absorbing light at one wavelength and re-emitting the light at a different wavelength, the light emitted from the fill having a first spectral power distribution in the absence of reflection of light back into the fill; means for exciting the fill to cause the fill to emit light; and means for reflecting some of the light emitted by the fill back into the fill while allowing some light to exit, the exiting light having a second spectral power distribution with proportionately more light in the visible region as compared to the first spectral power distribution, wherein the light re-emitted by the fill is shifted in wavelength with respect to the absorbed light and the magnitude of the shift is in relation to an effective optical path length. Another discharge lamp includes an envelope; a fill which emits light when excited disposed in the envelope; a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light; and a reflective ceramic structure disposed around the envelope and defining an light emitting opening, wherein the structure comprises a sintered body built up directly on the envelope and made from a combination of alumina and silica.

  9. Lava Lamp

    NASA Astrophysics Data System (ADS)

    Leif, Todd R.

    2008-04-01

    This past semester I brought a Lava Lite® Lamp into my classroom. Why bring such a thing into class? Many of today's students are part of the "retro" movement. They buy clothes from the '60s, they wear their hair like people did in the '60s, and they look for the ideals and themes related to living in the 1960s. Physics education reform is also examining ideas from the "retro" world of science. This was the post-Sputnik era, a time when science was done by actually doing it and not necessarily by lecturing about it. Cliff Swartz, former TPT editor, once mentioned during a presentation at a Texas AAPT meeting, "The world of physics teaching is cyclic, like a swinging pendulum. We as physics teachers jump from `new ideas' back to our old ones, each generation testing what works best for them."

  10. LED lamp

    SciTech Connect

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  11. Studying Atomic Dynamics with Designer Pulses

    SciTech Connect

    Reinhold, C.O.; Burgdorfer, J.; Frey, M.T.; Dunning, F.B.

    1997-09-01

    We present a brief review of recent experimental and theoretical progress on the dynamics of Rydberg atoms using short half cycle pulses. We discuss new possibilities in coherent control and non-linear dynamics of atoms which have lately become possible using various superpositions of such pulses.

  12. High efficiency fluorescent excimer lamps: An alternative to mercury based UVC lamps

    SciTech Connect

    Masoud, N. M.; Murnick, D. E.

    2013-12-15

    A high efficiency xenon excimer lamp radiating at 172 nm, with an internal phosphor coating shifting to UVC has been demonstrated, showing the feasibility of a cost effective alternative to UVC mercury lamps. Fluorescent lamps so designed can be fabricated in various geometries with high efficiency. Unlike other xenon excimer lamps based on dielectric barrier discharges this new system is highly compatible with existing and proposed phosphors as it operates in an inert gas environment at modest temperature and is subject only to 172 nm primary radiation. Using a lamp coated with a UVC phosphor we have demonstrated the feasibility of germicidal and curing lamps with 40% energy conversion efficiency and high power density. These lamps are rapidly switchable, have long projected lifetimes and are compatible with dimmers.

  13. High efficiency fluorescent excimer lamps: an alternative to mercury based UVC lamps.

    PubMed

    Masoud, N M; Murnick, D E

    2013-12-01

    A high efficiency xenon excimer lamp radiating at 172 nm, with an internal phosphor coating shifting to UVC has been demonstrated, showing the feasibility of a cost effective alternative to UVC mercury lamps. Fluorescent lamps so designed can be fabricated in various geometries with high efficiency. Unlike other xenon excimer lamps based on dielectric barrier discharges this new system is highly compatible with existing and proposed phosphors as it operates in an inert gas environment at modest temperature and is subject only to 172 nm primary radiation. Using a lamp coated with a UVC phosphor we have demonstrated the feasibility of germicidal and curing lamps with 40% energy conversion efficiency and high power density. These lamps are rapidly switchable, have long projected lifetimes and are compatible with dimmers.

  14. Wood's lamp illumination (image)

    MedlinePlus

    A Wood's lamp emits ultraviolet light and can be a diagnostic aid in determining if someone has a fungal ... is an infection on the area where the Wood's lamp is illuminating, the area will fluoresce. Normally ...

  15. Wood's Lamp Examination

    MedlinePlus

    ... dermatologists to assist in the diagnosis of various pigment and infectious disorders. The examination is performed in ... lamp. If a fungal or bacterial infection or pigment disorder is present, Wood's lamp examination can strengthen ...

  16. Halogen lamp experiment, HALEX

    NASA Technical Reports Server (NTRS)

    Schmitt, G.; Stapelmann, J.

    1986-01-01

    The main purpose of the Halogen Lamp Experiment (HALEX) was to investigate the operation of a halogen lamp during an extended period in a microgravity environment and to prove its behavior in space. The Mirror Heating Facilities for Crystal Growth and Material Science Experiments in space relies on one or two halogen lamps as a furnace to melt the specimens. The HALEX aim is to verify: full power operation of a halogen lamp for a period of about 60 hours; achievement of about 10% of its terrestrial life span; and operation of the halogen lamp under conditions similar to furnace operation.

  17. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical... lamps; school bus warning lamps; amber warning lamps or flashing warning lamps on tow trucks...

  18. Lamp reliability studies for improved satellite rubidium frequency standard

    NASA Technical Reports Server (NTRS)

    Frueholz, R. P.; Wun-Fogle, M.; Eckert, H. U.; Volk, C. H.; Jones, P. F.

    1982-01-01

    In response to the premature failure of Rb lamps used in Rb atomic clocks onboard NAVSTAR GPS satellites experimental and theoretical investigations into their failure mechanism were initiated. The primary goal of these studies is the development of an accelerated life test for future GPS lamps. The primary failure mechanism was identified as consumption of the lamp's Rb charge via direct interaction between Rb and the lamp's glass surface. The most effective parameters to accelerate the interaction between the Rb and the glass are felt to be RF excitation power and lamp temperature. Differential scanning calorimetry is used to monitor the consumption of Rb within a lamp as a function of operation time. This technique yielded base line Rb consumption data for GPS lamps operating under normal conditions.

  19. The Design, Fabrication and Characterization of a Transparent Atom Chip

    PubMed Central

    Chuang, Ho-Chiao; Huang, Chia-Shiuan; Chen, Hung-Pin; Huang, Chi-Sheng; Lin, Yu-Hsin

    2014-01-01

    This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm) without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments. PMID:24922456

  20. Portable lamp with dynamically controlled lighting distribution

    SciTech Connect

    Siminovitch, Michael J.; Page, Erik R.

    2001-01-01

    A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) arranged vertically with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum insures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. The lighting system may be designed for the home, hospitality, office or other environments.

  1. Design, fabrication and testing of tunable RF meta-atoms

    NASA Astrophysics Data System (ADS)

    Langley, Derrick

    Metamaterials are engineered structures designed to alter the propagation of electromagnetic waves incident upon the structure. The focus of this research was the effect of metamaterials on electromagnetic signals at radio frequencies. RF meta-atoms were investigated to further develop the theory, modeling, design and fabrication of metamaterials. Comparing the analytic modeling and experimental testing, the results provide a deeper understanding into metamaterials which could lead to applications for beam steering, invisibility cloaking, negative refraction, super lenses, and hyper lenses. RF meta-atoms integrated with microelectromechanical systems produce tunable meta-atoms in the 10 -- 15 GHz and 1 -- 4 GHz frequency ranges. RF meta-atoms with structural design changes are developed to show how inductance changes based on structural modifications. RF meta-atoms integrated with gain medium are investigated showing that loss due to material characteristics can be compensated using active elements such as a Low Noise Amplifier. Integrating the amplifier into the split ring resonator causes a deeper null at the resonant frequency. The research results show that the resonant frequency can be tuned using microelectromechanical systems, or by induction with structural designs and reduce loss associated with the material conductivity by compensating with an active gain medium. Proposals that offer future research activities are discussed for inductance and active element meta-atoms. In addition, terahertz (THz), infrared (IR), and optical structures are briefly investigated.

  2. Discharge lamp technologies

    NASA Technical Reports Server (NTRS)

    Dakin, James

    1994-01-01

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advances.

  3. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOEpatents

    Siminovitch, Michael

    1998-01-01

    A novel design for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment.

  4. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOEpatents

    Siminovitch, M.

    1998-02-10

    A novel design is described for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment. 9 figs.

  5. [Remote Slit Lamp Microscope Consultation System Based on Web].

    PubMed

    Chen, Junfa; Zhuo, Yong; Liu, Zuguo; Chen, Yanping

    2015-11-01

    To realize the remote operation of the slit lamp microscope for department of ophthalmology consultation, and visual display the real-time status of remote slit lamp microscope, a remote slit lamp microscope consultation system based on B/S structure is designed and implemented. Through framing the slit lamp microscope on the website system, the realtime acquisition and transmission of remote control and image data is realized. The three dimensional model of the slit lamp microscope is established and rendered on the web by using WebGL technology. The practical application results can well show the real-time interactive of the remote consultation system. PMID:27066677

  6. Jacketed lamp bulb envelope

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter

    2001-01-01

    A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.

  7. Compact fluorescent lamp applications in luxury hotels

    SciTech Connect

    Gilleskie, R.J.

    1996-01-01

    Over the past several years, consumers, lighting designers, and energy conservationists have paid increasing attention to the special characteristics of compact fluorescent lamps (CFLs). CFLs can typically be used to replace incandescent lamps of three to four times their own wattage, and their color rendering indices (CRIs)-80 to 85-make them virtually indistinguishable from incandescents. The typical 10,0000-hour life of a CFL often makes savings in labor its most desirable feature when compared to a shorter-lived incandescent lamp.

  8. Design of ductile bulk metallic glasses by adding ''soft'' atoms

    SciTech Connect

    Zheng, N.; Pauly, S.; Calin, M.; Gemming, T.; Qu, R. T.; Zhang, Z. F.; Eckert, J.

    2012-04-02

    We propose a strategy for the design of ductile bulk metallic glasses (BMGs) through minor substitution using relatively large atoms, which make the bonding nature become more metallic and with it less shear resistant. Such a locally modified structure results in topological heterogeneity, which appears to be crucial for achieving enhanced plasticity. This strategy is verified for Ti-Zr-Cu-Pd glassy alloys, in which Cu was replaced by In, and seems to be extendable to other BMG systems. The atomic-scale heterogeneity in BMGs is somewhat analog to defects in crystalline alloys and helps to improve the overall plasticity of BMGs.

  9. Improvements in three-dimensional atom probe design

    NASA Astrophysics Data System (ADS)

    Cerezo, A.; Godfrey, T. J.; Hyde, J. M.; Sijbrandij, S. J.; Smith, G. D. W.

    1994-03-01

    An improved position-sensitive atom probe has been designed which uses a combination of a parallel timing system and a silicon photodiode array camera. The use of two separate data acquisition systems allows the two functions of accurate positioning and flight time determination to be divorced, thus removing the compromises which must be made when these functions are carried out with only a single detector. The resulting instrument is able to determine flight times and positions of impacts straightforwardly, even when multiple ions are evaporated on a single pulse, and should be capable of operating at evaporation rates close to that of a conventional probe-hole atom probe.

  10. Rapid flash lamp

    DOEpatents

    Gavenonis, Thomas L.; Hewitt, William H.

    1989-01-01

    A method and apparatus for providing low peak time and pulse width actinic energy from a lamp by varying the input energy of a capacitive ignition circuit having relatively high voltage to the lamp. The lamp comprises a pair of electrodes disposed within a light transparent envelope in which a combustible and an oxidizing gas reaction combination is located. The combustible is preferably shredded zirconium which is in contact with and provides an electrical discharge path between the electrodes. The gas is preferably pressurized oxygen.

  11. Atomic hydrogen maser active oscillator cavity and bulb design optimization

    NASA Technical Reports Server (NTRS)

    Peters, H. E.; Washburn, P. J.

    1984-01-01

    The performance characteristics and reliability of the active oscillator atomic hydrogen maser depend upon oscillation parameters which characterize the interaction region of the maser, the resonant cavity and atom storage bulb assembly. With particular attention to use of the cavity frequency switching servo (1) to reduce cavity pulling, it is important to maintain high oscillation level, high atomic beam flux utilization efficiency, small spin exchange parameter and high cavity quality factor. It is also desirable to have a small and rigid cavity and bulb structure and to minimize the cavity temperature sensitivity. Curves for a novel hydrogen maser cavity configuration which is partially loaded with a quartz dielectric cylinder and show the relationships between cavity length, cavity diameter, bulb size, dielectric thickness, cavity quality factor, filling factor and cavity frequency temperature coefficient are presented. The results are discussed in terms of improvement in maser performance resulting from particular design choices.

  12. Physics of Incandescent Lamp Burnout

    ERIC Educational Resources Information Center

    Gluck, Paul; King, John

    2008-01-01

    Incandescent lamps with tungsten filaments have been in use for about a century while being gradually replaced by fluorescent lamps; in another generation both will quite probably be largely replaced by light-emitting diodes. Incandescent lamps (simply called "lamps" in what follows) burn out after a lifetime that depends mostly on the temperature…

  13. Hollow-Core Fiber Lamp

    NASA Technical Reports Server (NTRS)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  14. Fan Atomized Burner design advances & commercial development progress

    SciTech Connect

    Kamath, B.; Butcher, T.A.

    1996-07-01

    As a part of the Oil Heat Research and Development program, sponsored by the US Department of Energy, Brookhaven National Laboratory (BNL) has an on-going interest in advanced combustion technologies. This interest is aimed at: improving the initial efficiency of heating equipment, reducing long term fouling and efficiency degradation, reducing air pollutant emissions, and providing practical low-firing rate technologies which may lead to new, high efficiency oil-fired appliances. The Fan-Atomized Burner (FAB) technology is being developed at BNL as part of this general goal. The Fan-Atomized Burner uses a low pressure, air atomizing nozzle in place of the high pressure nozzle used in conventional burners. Because it is air-atomized the burner can operate at low firing rates without the small passages and reliability concerns of low input pressure nozzles. Because it uses a low pressure nozzle the burner can use a fan in place of the small compressor used in other air-atomized burner designs. High initial efficiency of heating equipment is achieved because the burner can operate at very low excess air levels. These low excess air levels also reduce the formation of sulfuric acid in flames. Sulfuric acid is responsible for scaling and fouling of heat exchanger surfaces.

  15. Magnetic fluorescent lamp

    DOEpatents

    Berman, S.M.; Richardson R.W.

    1983-12-29

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  16. Parametric Design within an Atomic Design Process (ADP) applied to Spacecraft Design

    NASA Astrophysics Data System (ADS)

    Ramos Alarcon, Rafael

    This thesis describes research investigating the development of a model for the initial design of complex systems, with application to spacecraft design. The design model is called an atomic design process (ADP) and contains four fundamental stages (specifications, configurations, trade studies and drivers) that constitute the minimum steps of an iterative process that helps designers find a feasible solution. Representative design models from the aerospace industry are reviewed and are compared with the proposed model. The design model's relevance, adaptability and scalability features are evaluated through a focused design task exercise with two undergraduate teams and a long-term design exercise performed by a spacecraft payload team. The implementation of the design model is explained in the context in which the model has been researched. This context includes the organization (a student-run research laboratory at the University of Michigan), its culture (academically oriented), members that have used the design model and the description of the information technology elements meant to provide support while using the model. This support includes a custom-built information management system that consolidates relevant information that is currently being used in the organization. The information is divided in three domains: personnel development history, technical knowledge base and laboratory operations. The focused study with teams making use of the design model to complete an engineering design exercise consists of the conceptual design of an autonomous system, including a carrier and a deployable lander that form the payload of a rocket with an altitude range of over 1000 meters. Detailed results from each of the stages of the design process while implementing the model are presented, and an increase in awareness of good design practices in the teams while using the model are explained. A long-term investigation using the design model consisting of the

  17. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... specifications in FMVSS No. 108 (49 CFR 571.108), SAE J581, and SAE J583, respectively. ... lamps and front fog lamps. 393.24 Section 393.24 Transportation Other Regulations Relating to... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front...

  18. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... specifications in FMVSS No. 108 (49 CFR 571.108), SAE J581, and SAE J583, respectively. ... lamps and front fog lamps. 393.24 Section 393.24 Transportation Other Regulations Relating to... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front...

  19. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... specifications in FMVSS No. 108 (49 CFR 571.108), SAE J581, and SAE J583, respectively. ... lamps and front fog lamps. 393.24 Section 393.24 Transportation Other Regulations Relating to... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front...

  20. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... specifications in FMVSS No. 108 (49 CFR 571.108), SAE J581, and SAE J583, respectively. ... lamps and front fog lamps. 393.24 Section 393.24 Transportation Other Regulations Relating to... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front...

  1. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... specifications in FMVSS No. 108 (49 CFR 571.108), SAE J581, and SAE J583, respectively. ... lamps and front fog lamps. 393.24 Section 393.24 Transportation Other Regulations Relating to... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front...

  2. Reload design process at Yankee Atomic Electric Company

    SciTech Connect

    Weader, R.J.

    1986-01-01

    Yankee Atomic Electric Company (YAEC) performs reload design and licensing for their nuclear power plants: Yankee Rowe, Maine Yankee, and Vermont Yankee. Significant savings in labor and computer costs have been achieved in the reload design process by the use of the SIMULATE nodal code using the CASMO assembly burnup code or LEOPARD pin cell burnup code inputs to replace the PDQ diffusion theory code in many required calculations for the Yankee Rowe and Maine Yankee pressurized water reactors (PWRs). An efficient process has evolved for the design of reloads for the Vermont Yankee boiling water reactor (BWR). Due to the major differences in the core design of the three plants, different reload design processes have evolved for each plant.

  3. Design of a dual species atom interferometer for space

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Schubert, Christian; Krutzik, Markus; Bote, Lluis Gesa; Gaaloul, Naceur; Hartwig, Jonas; Ahlers, Holger; Herr, Waldemar; Posso-Trujillo, Katerine; Rudolph, Jan; Seidel, Stephan; Wendrich, Thijs; Ertmer, Wolfgang; Herrmann, Sven; Kubelka-Lange, André; Milke, Alexander; Rievers, Benny; Rocco, Emanuele; Hinton, Andrew; Bongs, Kai; Oswald, Markus; Franz, Matthias; Hauth, Matthias; Peters, Achim; Bawamia, Ahmad; Wicht, Andreas; Battelier, Baptiste; Bertoldi, Andrea; Bouyer, Philippe; Landragin, Arnaud; Massonnet, Didier; Lévèque, Thomas; Wenzlawski, Andre; Hellmig, Ortwin; Windpassinger, Patrick; Sengstock, Klaus; von Klitzing, Wolf; Chaloner, Chris; Summers, David; Ireland, Philip; Mateos, Ignacio; Sopuerta, Carlos F.; Sorrentino, Fiodor; Tino, Guglielmo M.; Williams, Michael; Trenkel, Christian; Gerardi, Domenico; Chwalla, Michael; Burkhardt, Johannes; Johann, Ulrich; Heske, Astrid; Wille, Eric; Gehler, Martin; Cacciapuoti, Luigi; Gürlebeck, Norman; Braxmaier, Claus; Rasel, Ernst

    2015-06-01

    Atom interferometers have a multitude of proposed applications in space including precise measurements of the Earth's gravitational field, in navigation & ranging, and in fundamental physics such as tests of the weak equivalence principle (WEP) and gravitational wave detection. While atom interferometers are realized routinely in ground-based laboratories, current efforts aim at the development of a space compatible design optimized with respect to dimensions, weight, power consumption, mechanical robustness and radiation hardness. In this paper, we present a design of a high-sensitivity differential dual species 85Rb/87Rb atom interferometer for space, including physics package, laser system, electronics and software. The physics package comprises the atom source consisting of dispensers and a 2D magneto-optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein condensate (BEC) creation and interferometry, the detection unit, the vacuum system for 10-11 mbar ultra-high vacuum generation, and the high-suppression factor magnetic shielding as well as the thermal control system. The laser system is based on a hybrid approach using fiber-based telecom components and high-power laser diode technology and includes all laser sources for 2D-MOT, 3D-MOT, ODT, interferometry and detection. Manipulation and switching of the laser beams is carried out on an optical bench using Zerodur bonding technology. The instrument consists of 9 units with an overall mass of 221 kg, an average power consumption of 608 W (814 W peak), and a volume of 470 liters which would well fit on a satellite to be launched with a Soyuz rocket, as system studies have shown.

  4. CALiPER Retail Lamps Study 3

    SciTech Connect

    Royer, Michael P.; Beeson, Tracy A.

    2014-02-01

    The CALiPER program first began investigating LED lamps sold at retail stores in 2010, purchasing 33 products from eight retailers and covering six product categories. The findings revealed a fragmented marketplace, with large disparities in performance of different products, accuracy of manufacturer claims, and offerings from different retail outlets. Although there were some good products, looking back many would not be considered viable competitors to other available options, with too little lumen output, not high enough efficacy, or poor color quality. CALiPER took another look in late 2011purchasing 38 products of five different types from nine retailers and the improvement was marked. Performance was up; retailer claims were more accurate; and the price per lumen and price per unit efficacy were down, although the price per product had not changed much. Nonetheless, there was still plenty of room for improvement, with the performance of LED lamps not yet reaching that of well-established classes of conventional lamps (e.g., 75 W incandescent A19 lamps). Since the second retail lamp study was published in early 2012, there has been substantial progress in all aspects of LED lamps available from retailers. To document this progress, CALiPER again purchased a sample of lamps from retail stores 46 products in total, focusing on A19, PAR30, and MR16 lamps but instead of a random sample, sought to select products to answer specific hypotheses about performance. These hypotheses focused on expanding ranges of LED equivalency, the accuracy of lifetime claims, efficacy and price trends, as well as changes to product designs. Among other results, key findings include: There are now very good LED options to compete with 60 W, 75 W, and 100 W incandescent A19 lamps, and 75 W halogen PAR30 lamps. MR16 lamps have shown less progress, but there are now acceptable alternatives to 35 W, 12 V halogen MR16 lamps and 50 W, 120 V halogen MR16 lamps for some applications. Other

  5. The National Energy Policy Act and lamp replacement options

    SciTech Connect

    Ryerson, C.

    1995-06-01

    The National Policy Act of 1992 involves the creation of energy efficiency standards for a wide range of products including fluorescent and incandescent lamps. Minimum efficacy (lumens per watt) and color rendering index (CRI) standards are mandated for the popular fluorescent lamps: four-foot medium bi-pin, two-foot U-bent, eight-foot slimline and eight-foot high output. Minimum efficacies are mandated for specific incandescent R and PAR reflector lamps. These standards will affect selected colors and designs of fluorescent lamps, the most significant being the standard lamps in the cool white and warm white colors. The incandescent reflector lamps will include the R-30, R-40, PAR-38 lamps above 40 watts, excluding the halogen types. These efficiency and color rendering standards will require end-users and specifiers to select replacement fluorescent lamps from a range of performance characteristics (lumen output, efficacy, CRI and price). The choice of replacement for the R and PAR incandescent lamps will include the halogen designs and compact fluorescent designs. In this paper, replacement options will be analyzed and discussed and the effect of these options on the performance of the lighting system will be explored in detail.

  6. Design of a femtosecond laser assisted tomographic atom probe

    SciTech Connect

    Gault, B.; Vurpillot, F.; Vella, A.; Gilbert, M.; Menand, A.; Blavette, D.; Deconihout, B.

    2006-04-15

    A tomographic atom probe (TAP) in which the atoms are field evaporated by means of femtosecond laser pulses has been designed. It is shown that the field evaporation is assisted by the laser field enhanced by the subwavelength dimensions of the specimen without any significant heating of the specimen. In addition, as compared with the conventional TAP, due to the very short duration of laser pulses, no spread in the energy of emitted ions is observed, leading to a very high mass resolution in a straight TAP in a wide angle configuration. At last, laser pulses can be used to bring the intense electric field required for the field evaporation on poor conductive materials such as intrinsic Si at low temperature. In this article, the performance of the laser TAP is described and illustrated through the investigation of metals, oxides, and silicon materials.

  7. Integrity Monitoring of Mercury Discharge Lamps

    NASA Technical Reports Server (NTRS)

    Tjoelker, Robert L.

    2010-01-01

    Mercury discharge lamps are critical in many trapped ion frequency standard applications. An integrity monitoring system can be implemented using end-of-life signatures observed in operational mercury discharge lamps, making it possible to forecast imminent failure and to take action to mitigate the consequences (such as switching to a redundant system). Mercury lamps are used as a source of 194-nm ultraviolet radiation for optical pumping and state selection of mercury trapped ion frequency standards. Lamps are typically fabricated using 202Hg distilled into high-purity quartz, or other 194-nm transmitting material (e.g., sapphire). A buffer gas is also placed into the bulb, typically a noble gas such as argon, neon, or krypton. The bulbs are driven by strong RF fields oscillating at .200 MHz. The lamp output may age over time by two internal mechanisms: (1) the darkening of the bulb that attenuates light transmission and (2) the loss of mercury due to migration or chemical interactions with the bulb surface. During fabrication, excess mercury is placed into a bulb, so that the loss rate is compensated with new mercury emanating from a cool tip or adjacent reservoir. The light output is nearly constant or varies slightly at a constant rate for many months/years until the mercury source is depleted. At this point, the vapor pressure abruptly falls and the total light output and atomic clock SNR (signal-to-noise ratio) decrease. After several days to weeks, the light levels decrease to a point where the atomic clock SNR is no longer sufficient to stay in lock, or the lamp self-extinguishes. This signature has been observed in four separate end-of-life lamp failures while operating in the Deep Space Network (DSN). A simple integrator circuit can observe and document steady-state lamp behavior. When the light levels drop over a predetermined time interval by a specified amount (e.g., 20 percent), an alarm is set. For critical operational applications, such as the DSN

  8. [The design and evaluation of horizontal pipe mini-flame atomization and ionization synchronous detector in GC/AAS].

    PubMed

    Yan, Z; Sun, J M; Qiao, Y Q; Sun, H W

    2001-01-01

    Gas chromatography/atomic absorption spectroscopy(GC/AAS) is a good method for the species analysis of organometallic compounds. But the traditional atomizers are not very suitable for this technology and all of them response only to one kind of signal--the concentration of the metallic atoms of the ground state. They can not give any information about the organic group of organometallic compounds and organic compounds which coexist with the former. For GC/AAS we want to design and manufacture a new kind of detector which is much more sensitive and has a much smaller dead volume and will sensitively and synchronously response to the atomization signal of organometallic compound and ionization signal of organic compound. The authors have noticed that the atomization of organometallic compound and ionization of organic compound have been existing in the same hydrogen flame. The question is how to gain and exchange and output the two signals which are completely different in characters. For this purpose we designed and manufactured a new type of horizontal pipe mini-flame atomization and ionization synchronous detector. The key part is a T type glass tube (80 mm x 13 mm x 10 mm i.d.) which covers horizontally on the jet of the mini-flame atomizer and a long pipe stainless steel collector (70 mm x 9.5 mm o.d. x 9 mm i.d.) is tightly inserted in the tube. The light beam of the hollow cathode lamp passes through the hydrogen flame along the axial center of the glass tube and the ground state metallic atoms in the flame diffuses to both ends of the tube along the axial center of the glass tube too. This process enriches the depth of the light absorption and then increases the sensitivity of atomization. At the same time the long pipe collector can enrich the collection efficiency of the ionization and increases the sensitivity and widens the linear range. So the detector can synchronously and sensitively detect the organometallic and organic compounds. The detection limit

  9. Fluorescent discharge lamp

    NASA Technical Reports Server (NTRS)

    Mukai, E.; Otsuka, H.; Nomi, K.; Honmo, I.

    1982-01-01

    A rapidly illuminating fluorescent lamp 1,200 mm long and 32.5 mm in diameter with an interior conducting strip which is compatible with conventional fixtures and ballasts is described. The fluorescent lamp is composed of a linear glass tube, electrodes sealed at both ends, mercury and raregas sealed in the glass tube, a fluorescent substance clad on the inner walls of the glass tube, and a clad conducting strip extending the entire length of the glass tube in the axial direction on the inner surface of the tube.

  10. Slit lamp photography: The basics.

    PubMed

    Painter, Rosalyn

    2015-06-01

    This introductory paper is designed to explain the basics of slit lamp photography with the use of illustrations and sample images. The two primary methods of illumination are described with reference to positioning and magnification, as well as the use of background illumination. Filters and dye usage are described along with a brief explanation of associated imaging techniques. Further explanation of techniques will be looked at in subsequent articles, this paper aims to give an over view rather than an in-depth discussion of techniques.

  11. False "highlighting" with Wood's lamp.

    PubMed

    Silverberg, Jonathan I; Silverberg, Nanette B

    2014-01-01

    Wood's lamp evaluation is used to diagnose pigmentary disorders. For example, vitiligo typically demonstrates lesional enhancement under Wood's lamp evaluation. Numerous false positive enhancing lesions can be noted in the skin. We describe a 5-year-old Hispanic boy who had painted his face with highlighter, producing enhancing lesions under Wood's lamp. Physicians who use Wood's lamp should be aware that the appearance of markers and highlighter can mimic that of true clinical illnesses.

  12. Mobilizing slit lamp to the field: A new affordable solution.

    PubMed

    Farooqui, Javed Hussain; Jorgenson, Richard; Gomaa, Ahmed

    2015-11-01

    We are describing a simple and affordable design to pack and carry the slit lamp to the field. Orbis staff working on the Flying Eye Hospital (FEH) developed this design to facilitate mobilization of the slit lamp to the field during various FEH programs. The solution involves using a big toolbox, a central plywood apparatus, and foam. These supplies were cut to measure and used to support the slit lamp after being fitted snuggly in the box. This design allows easy and safe mobilization of the slit lamp to remote places. It was developed with the efficient use of space in mind and it can be easily reproduced in developing countries using same or similar supplies. Mobilizing slit lamp will be of great help for staff and institutes doing regular outreach clinical work.

  13. Mobilizing slit lamp to the field: A new affordable solution

    PubMed Central

    Farooqui, Javed Hussain; Jorgenson, Richard; Gomaa, Ahmed

    2015-01-01

    We are describing a simple and affordable design to pack and carry the slit lamp to the field. Orbis staff working on the Flying Eye Hospital (FEH) developed this design to facilitate mobilization of the slit lamp to the field during various FEH programs. The solution involves using a big toolbox, a central plywood apparatus, and foam. These supplies were cut to measure and used to support the slit lamp after being fitted snuggly in the box. This design allows easy and safe mobilization of the slit lamp to remote places. It was developed with the efficient use of space in mind and it can be easily reproduced in developing countries using same or similar supplies. Mobilizing slit lamp will be of great help for staff and institutes doing regular outreach clinical work. PMID:26669342

  14. New rules of thumb maximizing energy efficiency in street lighting with discharge lamps: The general equations for lighting design

    NASA Astrophysics Data System (ADS)

    Peña-García, A.; Gómez-Lorente, D.; Espín, A.; Rabaza, O.

    2016-06-01

    New relationships between energy efficiency, illuminance uniformity, spacing and mounting height in public lighting installations were derived from the analysis of a large sample of outputs generated with a widely used software application for lighting design. These new relationships greatly facilitate the calculation of basic lighting installation parameters. The results obtained are also based on maximal energy efficiency and illuminance uniformity as a premise, which are not included in more conventional methods. However, these factors are crucial since they ensure the sustainability of the installations. This research formulated, applied and analysed these new equations. The results of this study highlight their usefulness in rapid planning and urban planning in developing countries or areas affected by natural disasters where engineering facilities and computer applications for this purpose are often unavailable.

  15. The fundus slit lamp.

    PubMed

    Gellrich, Marcus-Matthias

    2015-01-01

    Fundus biomicroscopy with the slit lamp as it is practiced widely nowadays was not established until the 1980-es with the introduction of the Volk lenses +90 and +60D. Thereafter little progress has been made in retinal imaging with the slit lamp. It is the aim of this paper to fully exploit the potential of a video slit lamp for fundus documentation by using easily accessible additions. Suitable still images are easily retrieved from videorecordings of slit lamp examinations. The effects of changements in the slit lamp itself (slit beam and apertures) and its examination equipment (converging lenses from +40 to +90D) on quality and spectrum of fundus images are demonstrated. Imaging software is applied for reconstruction of larger fundus areas in a mosaic pattern (Hugin®) and to perform the flicker test in order to visualize changes in the same fundus area at different points of time (Power Point®). The three lenses +90/+60/+40D are a good choice for imaging the whole spectrum of retinal diseases. Displacement of the oblique slit light can be used to assess changes in the surface profile of the inner retina which occurs e.g. in macular holes or pigment epithelial detachment. The mosaic function in its easiest form (one strip macula adapted to one strip with the optic disc) provides an overview of the posterior pole comparable to a fundus camera's image. A reconstruction of larger fundus areas is feasible for imaging in vitreoretinal surgery or occlusive vessel disease. The flicker test is a fine tool for monitoring progressive glaucoma by changes in the optic disc, and it is also a valuable diagnostic tool in macular disease. Nearly all retinal diseases can be imaged with the slit lamp - irrespective whether they affect the posterior pole, mainly the optic nerve or the macula, the whole retina or only its periphery. Even a basic fundus controlled perimetry is possible. Therefore fundus videography with the slit lamp is a worthwhile approach especially for the

  16. Software Package Completed for Alloy Design at the Atomic Level

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Noebe, Ronald D.; Abel, Phillip B.; Good, Brian S.

    2001-01-01

    As a result of a multidisciplinary effort involving solid-state physics, quantum mechanics, and materials and surface science, the first version of a software package dedicated to the atomistic analysis of multicomponent systems was recently completed. Based on the BFS (Bozzolo, Ferrante, and Smith) method for the calculation of alloy and surface energetics, this package includes modules devoted to the analysis of many essential features that characterize any given alloy or surface system, including (1) surface structure analysis, (2) surface segregation, (3) surface alloying, (4) bulk crystalline material properties and atomic defect structures, and (5) thermal processes that allow us to perform phase diagram calculations. All the modules of this Alloy Design Workbench 1.0 (ADW 1.0) are designed to run in PC and workstation environments, and their operation and performance are substantially linked to the needs of the user and the specific application.

  17. LED solution for E14 candle lamp

    NASA Astrophysics Data System (ADS)

    Li, Yun; Liu, Ye; Boonekamp, Erik P.; Shi, Lei; Mei, Yi; Jiang, Tan; Guo, Qing; Wu, Huarong

    2009-08-01

    On a short to medium term, energy efficient retrofit LED products can offer an attractive solution for traditional lamps replacement in existing fixtures. To comply with user expectations, LED retrofit lamps should not only have the same mechanical interface to fit (socket and shape), but also have the similar light effect as the lamps they replace. The decorative lighting segment shows the best conditions to meet these requirements on short term. In 2008, Philips Lighting Shanghai started with the development of an LED candle lamp for the replacement of a 15W Candle shape (B35 E14) incandescent bulb, which is used in e.g. chandeliers. In this decorative application the main objective is not to generate as much light as possible, but the application requires the lamp to have a comparable look and, primarily, the same light effect as the incandescent candle lamp. This effect can be described as sparkling light, and it has to be directed sufficiently downwards (i.e., in the direction of the base of the lamp). These requirements leave very limited room for optics, electronics, mechanics and thermal design to play with in the small outline of this lamp. The main voltage AC LED concept is chosen to save the space for driver electronics. However the size of the AC LED is relatively big, which makes the optical design challenging. Several optical solutions to achieve the required light effect, to improve the optical efficiency, and to simplify the system are discussed. A novel prismatic lens has been developed which is capable of transforming the Lambertian light emission from typical high power LEDs into a butter-fly intensity distribution with the desired sparkling light effect. Thanks to this lens no reflecting chamber is needed, which improves the optical efficiency up to 70%, while maintaining the compact feature of the original optics. Together with advanced driver solution and thermal solution, the resulting LED candle lamp operates at 230V, consumes 1.8W, and

  18. Max Tech and Beyond: Fluorescent Lamps

    SciTech Connect

    Scholand, Michael

    2012-04-01

    Fluorescent lamps are the most widely used artificial light source today, responsible for approximately 70% of the lumens delivered to our living spaces globally. The technology was originally commercialized in the 1930's, and manufacturers have been steadily improving the efficacy of these lamps over the years through modifications to the phosphors, cathodes, fill-gas, operating frequency, tube diameter and other design attributes. The most efficient commercially available fluorescent lamp is the 25 Watt T5 lamp. This lamp operates at 114-116 lumens per watt while also providing good color rendering and more than 20,000 hours of operating life. Industry experts interviewed indicated that while this lamp is the most efficient in the market today, there is still a further 10 to 14% of potential improvements that may be introduced to the market over the next 2 to 5 years. These improvements include further developments in phosphors, fill-gas, cathode coatings and ultraviolet (UV) reflective glass coatings. The commercialization of these technology improvements will combine to bring about efficacy improvements that will push the technology up to a maximum 125 to 130 lumens per watt. One critical issue raised by researchers that may present a barrier to the realization of these improvements is the fact that technology investment in fluorescent lamps is being reduced in order to prioritize research into light emitting diodes (LEDs) and ceramic metal halide high intensity discharge (HID) lamps. Thus, it is uncertain whether these potential efficacy improvements will be developed, patented and commercialized. The emphasis for premium efficacy will continue to focus on T5 lamps, which are expected to continue to be marketed along with the T8 lamp. Industry experts highlighted the fact that an advantage of the T5 lamp is the fact that it is 40% smaller and yet provides an equivalent lumen output to that of a T8 or T12 lamp. Due to its smaller form factor, the T5 lamp

  19. Dimming of metal halide lamps

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  20. Flight vehicle thermal testing with infrared lamps

    NASA Technical Reports Server (NTRS)

    Fields, Roger A.

    1992-01-01

    The verification and certification of new structural material concepts for advanced high speed flight vehicles relies greatly on thermal testing with infrared quartz lamps. The basic quartz heater system characteristics and design considerations are presented. Specific applications are illustrated with tests that were conducted for the X-15, the Space Shuttle, and YF-12 flight programs.

  1. 21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false High-intensity mercury vapor discharge lamps. 1040...-intensity mercury vapor discharge lamps. (a) Applicability. The provisions of this section apply to any high-intensity mercury vapor discharge lamp that is designed, intended, or promoted for illumination purposes...

  2. Combination of optical emission and broadband absorption spectroscopy for diagnostics of HID lamps

    NASA Astrophysics Data System (ADS)

    Ruhrmann, Cornelia; Bergner, Andre; Hoebing, Thomas; Mentel, Juergen; Awakowicz, Peter

    2011-11-01

    HID lamps are used in several fields of application e.g. in street or automotive lighting as well as in video projection systems. Most of these lamps contain mercury to generate a high pressure buffer gas filling and thereby an appropriate power input into the arc. Due to its toxicity, the replacement of mercury is of particular interest in recent research of HID lamps. Currently, the emission coefficient of a mercury double line is used to determine the plasma temperature and thereby particle densities inside an HID lamp. A combination of optical emission and broadband absorption spectroscopy allows evaluating the plasma temperature without the need of mercury emission lines. It offers in combination with emission spectroscopy the possibility to calculate the total density of atoms and ions of elements also inside a mercury-free HID lamp. In this paper the measuring method is applied to a mercury-containing special research HID lamp (YAG lamp), seeded with rare earth iodines.

  3. Design, fabrication and characterization of tunable external cavity diode laser and atom trapping chips for atomic physics

    NASA Astrophysics Data System (ADS)

    Chuang, Ho-Chiao

    External cavity diode laser systems (ECDLs) have been well documented for their suitability in the fields of laser cooling and atom trapping, and are now widely used in optical and atomic physics. A particularly simple implementation of this idea uses feedback from a diffraction grating mounted in the Littrow configuration and the typical size of this laser is quite large (120mmx90mmx90mm). For atom optics, the current atom trapping chips are not in a feedthrough configuration, which makes the chips to glass cell assembly process complicated and the wires and solder areas vulnerable, resulting in an unreliable vacuum seal. Recent experimental realizations of atom optical devices such as atomic waveguides, beam splitters, and on-chip Bose-Einstein condensate (BEC) sources have opened a new field for the development of more complex devices such as, e.g., BEC-based atom transistor. This work focuses on micro/nano fabrication techniques to build three different devices for the miniature BEC system. The research work focuses on the development of new ECDLs, a novel fabrication process of feedthrough atom trapping chips for atomic optics and a fabrication process for atom transistor chips. In the ECDLs part, we describe a new method for constructing a smaller external-cavity diode laser by use of a micromachined silicon flexure and a VHG (Volume Holographic Grating). It is much smaller, inexpensive and easy to build because it is based on simple modifications of a few commercial optical and mechanical components but with a specific silicon flexure design enabled by micro-fabrication technology for the laser frequency tuning. In the feedthrough chips part, we present a novel fabrication process for feedthrough atom trapping chips in atomic condensate optics cells using the copper electroplating to seal the vias. The advantages of using feedthrough atom trapping chips are the simple microfabrication process and reduction of the overall chip area bonded on the glass atom

  4. New slim automotive taillight using HiPerVision lamps

    NASA Astrophysics Data System (ADS)

    Haenen, Ludo; Ansems, Johan; Schuurmans, Jelle; de Montureux, Philippe

    2002-08-01

    HiPerVision is a new automotive signaling range of lamps (clear and colored) developed by Philips. These lamps offer car life service, reduced size and - consequently - new design opportunities. HiPerVision aims at progressively replacing P21W lamps and at being an economic alternative to LEDs. All lamp dimensions are significantly smaller than P21W's. The HiPerVision 16W lamp produces less heat than the P21W lamp (9 W less dissipation at 13.5 V), what enables a reduced reflector size, the use of low cost plastic or a combination of both. With a luminous flux of 300 lm (instead of 460 lm for P21W), the legal requirements can be easily fulfilled because of the smaller dimensions and tolerances. In order to illustrate the lamps benefits, a complete automotive taillight with 4 functions was designed and made. This paper describes the reflector design process for that taillight with HiPerVision. According to a current styling trend, the reflectors are based on Pillow Shaped Facets and on a clear front lens with no optical structure. With this design method, the whole reflector area is filled with sparkling light. The basic shape of the reflector was used to optimize heat management. By changing the shape and/or number of the pillows the desired light distribution was made. The HiPerVision lamp was measured with a Luminance Goniometer. The measurements were converted to ASAP ray sets as input for accurate simulations. The legal requirements were easily met which was confirmed by actual measurements. The total depth of the complete designed taillight was 53 mm, which is small compared to existing P21W based designs. If the lamp is placed transversal the requirements are still met and the depth of the complete taillight could be reduced to 33 mm, which is comparable with a taillight based on LEDs.

  5. Compatibility testing of fluorescent lamp and ballast systems

    SciTech Connect

    Ji, Y.; Davis, R.; O'Rourke, C.; Chui, E.W.M.

    1999-12-01

    The rapid growth in the use of electronic ballasts for fluorescent lighting systems, and the corresponding increase in the number of new products and new manufacturers in the market, has raised a number of questions regarding the compatibility of the lamps and ballasts used in fluorescent systems. Because many of the new products start and operate lamps differently than previous products, the relevant American National Standards Institute requirements may no longer be adequate for addressing compatibility concerns. The impacts on system performance of the newer products of a parametric study designed to test key hypotheses regarding the impact of ballast parameters on fluorescent lamp life. In this study, samples of 4-ft T8 fluorescent lamps were operated on duty cycles of 5 min on and 5 min off, using seven different ballast types. The results of the study indicate which parameters seem to have the biggest effect on lamp life, and can be used in establishing new performance standards for fluorescent systems.

  6. Design-atom approach for the quantum mechanical/molecular mechanical covalent boundary: a design-carbon atom with five valence electrons.

    PubMed

    Xiao, Chuanyun; Zhang, Yingkai

    2007-09-28

    A critical issue underlying the accuracy and applicability of the combined quantum mechanical/molecular mechanical (QM/MM) methods is how to describe the QM/MM boundary across covalent bonds. Inspired by the ab initio pseudopotential theory, here we introduce a novel design atom approach for a more fundamental and transparent treatment of this QM/MM covalent boundary problem. The main idea is to replace the boundary atom of the active part with a design atom, which has a different number of valence electrons but very similar atomic properties. By modifying the Troullier-Martins scheme, which has been widely employed to construct norm-conserving pseudopotentials for density functional calculations, we have successfully developed a design-carbon atom with five valence electrons. Tests on a series of molecules yield very good structural and energetic results and indicate its transferability in describing a variety of chemical bonds, including double and triple bonds.

  7. Physics of Incandescent Lamp Burnout

    NASA Astrophysics Data System (ADS)

    Gluck, Paul; King, John

    2008-01-01

    Incandescent lamps with tungsten filaments have been in use for about a century while being gradually replaced by fluorescent lamps; in another generation both will quite probably be largely replaced by light-emitting diodes. Incandescent lamps (simply called lamps in what follows) burn out after a lifetime that depends mostly on the temperature of the filament and hence the applied voltage. A full-term project (about 100 hours) on lamp burnout was carried out by two students in 1965 and has been briefly described. Many aspects of the physics of lamps have been dealt with in articles that have appeared in this journal, in the American Journal of Physics, and in Physics Education.2,3

  8. Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy

    SciTech Connect

    Flikweert, A.J.; Nimalasuriya, T.; Groothuis, C.H.J.M.; Kroesen, G.M.W.; Stoffels, W.W.

    2005-10-01

    High intensity discharge lamps have a high efficiency. These lamps contain rare-earth additives (in our case dysprosium iodide) which radiate very efficiently. A problem is color separation in the lamp because of axial segregation of the rare-earth additives, caused by diffusion and convection. Here two-dimensional atomic dysprosium density profiles are measured by means of laser absorption spectroscopy; the order of magnitude of the density is 10{sup 22} m{sup -3}. The radially resolved atomic density measurements show a hollow density profile. In the outer parts of the lamp molecules dominate, while the center is depleted of dysprosium atoms due to ionization. From the axial profiles the segregation parameter is determined. It is shown that the lamp operates on the right-hand side of the Fischer curve [J. Appl. Phys. 47, 2954 (1976)], i.e., a larger convection leads to less segregation.

  9. Compact fluorescent lamps, LED lamps and harmonic distortion

    NASA Astrophysics Data System (ADS)

    Franco, A. M. R.; Debatin, R. M.; Cotia, F. C. G.; Silva, M. V. M.; Ribeiro, R. S.; Zampilis, R. R. N.

    2015-01-01

    The aim of this paper is to evaluate the harmonic distortion in the current waveform of Compact Fluorescent Lamps (CFL) and Lamps Lighting Emitting Diode (LED). For this, we analysed the power factor, voltage waveform, current waveform, total harmonic distortion (THD) and active power consumed.

  10. Lyman Alpha Mapping Project (LAMP) Brightness Maps

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Gladstone, G.; Stern, S.; Egan, A. F.; Miles, P. F.; Parker, J. W.; Greathouse, T. K.; Davis, M. W.; Slater, D. C.; Kaufmann, D. E.; Versteeg, M. H.; Feldman, P. D.; Hurley, D. M.; Pryor, W. R.; Hendrix, A. R.

    2010-10-01

    The Lyman Alpha Mapping Project (LAMP) is an ultraviolet (UV) spectrograph on the Lunar Reconnaissance Orbiter (LRO) that is designed to map the lunar albedo at far-UV wavelengths. LAMP primarily measures interplanetary Hydrogen Lyman-alpha sky-glow and far-UV starlight reflected from the night-side lunar surface, including permanently shadowed regions (PSRs) near the poles. Dayside observations are also obtained. Brightness maps sorted by wavelength (including the Lyman-alpha wavelength of 121.6 nm) are reported for the polar regions, with a few regions of interest reported in more detail. LAMP's spectral range of 58 nm to 196 nm includes a water ice spectral feature near 160 nm, which provides a diagnostic tool for detecting water on the lunar surface that is complementary to recent discoveries using infrared and radio frequency techniques. Progress towards producing far-UV albedo maps and searching for water ice signatures will be reported. We'll discuss how LAMP data may address questions regarding how water is formed on the moon, transported through the lunar atmosphere, and deposited in the PSRs.

  11. High brightness microwave lamp

    DOEpatents

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  12. Energy-efficient compact screw-in fluorescent lamp. Final report

    SciTech Connect

    Morton, E.W.

    1982-11-01

    A compact fluorescent lamp has been designed and constructed which can replace an incandescent lamp. The lamp is slightly larger than a standard lamp (8 3/4 in. x 3 1/4 in.), but is designed to fit a majority of portable lamp applications. This version, with a core-coil ballast, results in a system efficacy of 54 lumens per watt, with a light output of more than 1800 lumens. This compares favorably with a 100-watt incandescent (17.5 lumens per watt and 1750 lumens light output). The color temperature of 3000/sup 0/K is compatible with an incandescent lamp (2800/sup 0/K). The color rendition index (CRI) is 84. With a solid-state ballast, the efficacy and light output could be increased by 20% (65 l/w, 2200 lumens) and could provide a direct replacement for a three-way, 150-watt incandescent lamp (15 l/w, 2200 lumens).

  13. Inductive tuners for microwave driven discharge lamps

    DOEpatents

    Simpson, James E.

    1999-01-01

    An RF powered electrodeless lamp utilizing an inductive tuner in the waveguide which couples the RF power to the lamp cavity, for reducing reflected RF power and causing the lamp to operate efficiently.

  14. Inductive tuners for microwave driven discharge lamps

    SciTech Connect

    Simpson, J.E.

    1999-11-02

    An RF powered electrodeless lamp utilizing an inductive tuner in the waveguide which couples the RF power to the lamp cavity, for reducing reflected RF power and causing the lamp to operate efficiently.

  15. Note: Design principles of a linear array multi-channel effusive metal-vapor atom source

    SciTech Connect

    Jana, B.; Majumder, A.; Thakur, K. B.; Das, A. K.

    2013-10-15

    Atomic beams can easily be produced by allowing atoms to effuse through a channel. In an earlier investigation [A. Majumder et al., Vacuum 83, 989 (2009)], we had designed, fabricated, and characterized an effusive metal-vapor source using collinear-array of multi-channel. In this note, we describe the theoretical basis of designing the source. Atom density in atomic beam has been estimated using a set of analytical expressions for long-channel operated in transparent mode. Parametric studies on aspect ratio of channel, inter-channel separation, beam width, and vertical distance from the source are carried out. They are useful in providing physical picture and optimizing design parameters.

  16. Evaluation of GOES encoder lamps

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Helmold, N.

    1983-01-01

    Aging characteristics and life expectancies of flight quality, tungsten filament, encoder lamps are similar to those of 'commercial' grade gas filled lamps of similar construction, filament material and filament temperature. The aging and final failure by filament burnout are caused by single crystal growth over large portions of the filament with the concomitant development of facets and notches resulting in reduction of cross section and mechanical weakening of the filament. The life expectancy of presently produced lamps is about one year at their nominal operating voltage of five volts dc. At 4.5 volts, it is about two years. These life times are considerably shorter, and the degradation rates of lamp current and light flux are considerably higher, than were observed in the laboratory and in orbit on lamps of the same type manufactured more than a decade ago. It is speculated that the filaments of these earlier lamps contained a crystallization retarding dopant, possibly thorium oxide. To obtain the desired life expectancy of or = to four years in present lamps, operating voltages of or = to four volts dc would be required.

  17. Transparent ceramic lamp envelope materials

    NASA Astrophysics Data System (ADS)

    Wei, G. C.

    2005-09-01

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  18. REVIEW ARTICLE: UHP lamp systems for projection applications

    NASA Astrophysics Data System (ADS)

    Derra, Guenther; Moench, Holger; Fischer, Ernst; Giese, Hermann; Hechtfischer, Ulrich; Heusler, Gero; Koerber, Achim; Niemann, Ulrich; Noertemann, Folke-Charlotte; Pekarski, Pavel; Pollmann-Retsch, Jens; Ritz, Arnd; Weichmann, Ulrich

    2005-09-01

    Projection systems have found widespread use in conference rooms and other professional applications during the last decade and are now entering the home TV market at a considerable pace. Projectors as small as about one litre are able to deliver several thousand screen lumens and are, with a system efficacy of over 10 lm W-1, the most efficient display systems realized today. Short arc lamps are a key component for projection systems of the highest efficiency for small-size projection displays. The introduction of the ultra high performance (UHP) lamp system by Philips in 1995 can be identified as one of the key enablers of the commercial success of projection systems. The UHP lamp concept features outstanding arc luminance, a well suited spectrum, long life and excellent lumen maintenance. For the first time it combines a very high pressure mercury discharge lamp with extremely short and stable arc gap with a regenerative chemical cycle keeping the discharge walls free from blackening, leading to lifetimes of over 10 000 h. Since the introduction of the UHP lamp system, many important new technology improvements have been realized: burner designs for higher lamp power, advanced ignition systems, miniaturized electronic drivers and innovative reflector concepts. These achievements enabled the impressive increase of projector light output, a remarkable reduction in projector size and even higher optical efficiency in projection systems during the last years. In this paper the concept of the UHP lamp system is described, followed by a discussion of the technological evolution the UHP lamp has undergone so far. Last, but not least, the important improvements of the UHP lamp system including the electronic driver and the reflector are discussed.

  19. Custom blending of lamp phosphors

    NASA Technical Reports Server (NTRS)

    Klemm, R. E.

    1978-01-01

    Spectral output of fluorescent lamps can be precisely adjusted by using computer-assisted analysis for custom blending lamp phosphors. With technique, spectrum of main bank of lamps is measured and stored in computer memory along with emission characteristics of commonly available phosphors. Computer then calculates ratio of green and blue intensities for each phosphor according to manufacturer's specifications and plots them as coordinates on graph. Same ratios are calculated for measured spectrum. Once proper mix is determined, it is applied as coating to fluorescent tubing.

  20. Multi-lamp laser pumping cavity

    SciTech Connect

    Kuppenheimer, J.D. Jr.

    1987-07-21

    An optically pumped laser comprises: A. a cylindrical laser rod having a longitudinal central rod axis; B. cylindrical lamps for optically pumping the laser rod. The lamps have longitudinal central lamp axes parallel to the rod axis. The lamps being so located with respect to each other and to the laser rod as to define in cross section a base line associated with each lamp and extending between the rod axis and the lamp axis of the associated lamp. The base lines being equal in length and equiangularly spaced; and C. a reflector wall consisting essentially of first and second wall sections associated with each lamp, the cross sections of the first and second wall sections associated with a given lamp essentially following first and second curves extending from a lamp cusp associated with the given lamp to second and first rod cusps, respectively, associated with the given lamp. The first and second curves consist of the loci of points to which the sums of the distances, exterior to the laser rod and the given lamp, from first and second rod starting points, respectively, associated with the given lamp and from first and second lamp starting points, respectively, on the given lamp equal a fixed quantity.

  1. LAMP Observes the LCROSS Plume

    NASA Video Gallery

    This video shows LAMP’s view of the LCROSS plume. The first half of the animation shows the LAMP viewport scanning across the horizon, passing through the plume, and moving on. The second half of...

  2. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Requirements for lamps other than head lamps. 393.25 Section 393.25 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... Wiring § 393.25 Requirements for lamps other than head lamps. (a) Mounting. All lamps shall be...

  3. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Requirements for lamps other than head lamps. 393.25 Section 393.25 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... Wiring § 393.25 Requirements for lamps other than head lamps. (a) Mounting. All lamps shall be...

  4. 10 CFR 429.27 - General service fluorescent lamps, general service incandescent lamps, and incandescent reflector...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false General service fluorescent lamps, general service... EQUIPMENT Certification § 429.27 General service fluorescent lamps, general service incandescent lamps, and... § 429.11 are applicable to general service fluorescent lamps, general service incandescent lamps...

  5. 10 CFR 429.27 - General service fluorescent lamps, general service incandescent lamps, and incandescent reflector...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false General service fluorescent lamps, general service... EQUIPMENT Certification § 429.27 General service fluorescent lamps, general service incandescent lamps, and... § 429.11 are applicable to general service fluorescent lamps, general service incandescent lamps...

  6. 10 CFR 429.27 - General service fluorescent lamps, general service incandescent lamps, and incandescent reflector...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false General service fluorescent lamps, general service... EQUIPMENT Certification § 429.27 General service fluorescent lamps, general service incandescent lamps, and... § 429.11 are applicable to general service fluorescent lamps, general service incandescent lamps...

  7. Preventing mercury vapor release from broken fluorescent lamps during shipping.

    PubMed

    Glenz, Tracy T; Brosseau, Lisa M; Hoffbeck, Richard W

    2009-03-01

    Fluorescent lamps are estimated to annually release 1 t of mercury into the air in the United States; transport of used lamps may play an important role in these emissions. In 1999, the U.S. Environmental Protection Agency added lamps to the universal waste rule to encourage recycling by allowing shipment to recycling facilities by common carrier. The rules required that lamp packaging must be structurally sound and adequate to prevent breakage but did not address vapor release. In 2005, a requirement was added that packaging must be designed to prevent the escape of mercury into the environment, but this change does not apply to fluorescent lamps. The goal of this research was to compare mercury vapor containment among different packaging configurations. In 10 replicate experiments of 5 different packages containing 40 broken, used, low-mercury lamps, two 6-hr samples of airborne mercury vapor concentrations were taken in a well-mixed sealed chamber held at 83 +/- 2 degrees F. Average chamber concentrations ranged from 0.977 mg/m3 for a single cardboard box to 0.004 mg/m3 for a double cardboard box with a plastic-foil laminate bag sandwiched between the boxes. In comparison to the single cardboard box, a single box with an unsealed thin plastic liner lowered mercury concentrations in the chamber by 52%, single or double boxes with a thicker tape-sealed plastic bag lowered concentrations by 90-92%, and a double box with a ziplock plastic-foil laminate bag lowered concentrations by 99.7%. The latter was the only configuration capable of maintaining airborne concentrations below all occupational exposure levels. Standards more specific to mercury containment are needed for packages used to ship fluorescent lamps to recyclers. Results from this study suggest that an effective packaging design should minimize the effect of cuts from broken glass while also preventing the release of mercury vapor from broken lamps.

  8. Designing frustrated quantum magnets with laser-dressed Rydberg atoms.

    PubMed

    Glaetzle, Alexander W; Dalmonte, Marcello; Nath, Rejish; Gross, Christian; Bloch, Immanuel; Zoller, Peter

    2015-05-01

    We show how a broad class of lattice spin-1/2 models with angular- and distance-dependent couplings can be realized with cold alkali atoms stored in optical or magnetic trap arrays. The effective spin-1/2 is represented by a pair of atomic ground states, and spin-spin interactions are obtained by admixing van der Waals interactions between fine-structure split Rydberg states with laser light. The strengths of the diagonal spin interactions as well as the "flip-flop," and "flip-flip" and "flop-flop" interactions can be tuned by exploiting quantum interference, thus realizing different spin symmetries. The resulting energy scales of interactions compare well with typical temperatures and decoherence time scales, making the exploration of exotic forms of quantum magnetism, including emergent gauge theories and compass models, accessible within state-of-the-art experiments.

  9. Designing Frustrated Quantum Magnets with Laser-Dressed Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Glaetzle, Alexander W.; Dalmonte, Marcello; Nath, Rejish; Gross, Christian; Bloch, Immanuel; Zoller, Peter

    2015-05-01

    We show how a broad class of lattice spin-1 /2 models with angular- and distance-dependent couplings can be realized with cold alkali atoms stored in optical or magnetic trap arrays. The effective spin-1 /2 is represented by a pair of atomic ground states, and spin-spin interactions are obtained by admixing van der Waals interactions between fine-structure split Rydberg states with laser light. The strengths of the diagonal spin interactions as well as the "flip-flop," and "flip-flip" and "flop-flop" interactions can be tuned by exploiting quantum interference, thus realizing different spin symmetries. The resulting energy scales of interactions compare well with typical temperatures and decoherence time scales, making the exploration of exotic forms of quantum magnetism, including emergent gauge theories and compass models, accessible within state-of-the-art experiments.

  10. Designing frustrated quantum magnets with laser-dressed Rydberg atoms.

    PubMed

    Glaetzle, Alexander W; Dalmonte, Marcello; Nath, Rejish; Gross, Christian; Bloch, Immanuel; Zoller, Peter

    2015-05-01

    We show how a broad class of lattice spin-1/2 models with angular- and distance-dependent couplings can be realized with cold alkali atoms stored in optical or magnetic trap arrays. The effective spin-1/2 is represented by a pair of atomic ground states, and spin-spin interactions are obtained by admixing van der Waals interactions between fine-structure split Rydberg states with laser light. The strengths of the diagonal spin interactions as well as the "flip-flop," and "flip-flip" and "flop-flop" interactions can be tuned by exploiting quantum interference, thus realizing different spin symmetries. The resulting energy scales of interactions compare well with typical temperatures and decoherence time scales, making the exploration of exotic forms of quantum magnetism, including emergent gauge theories and compass models, accessible within state-of-the-art experiments. PMID:25978228

  11. A New Instrument Design for Imaging Low Energy Neutral Atoms

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  12. Advanced Research on the Electrode Area of a Low Pressure Hg-Ar Discharge Lamp

    NASA Astrophysics Data System (ADS)

    Shi, Jianou

    The phenomenon of electrical discharge in low pressure Hg-Ar vapor has been under continuous investigation since it was first discovered. Because much work has been done in the positive column, it is, therefore, that the electrode area of the lamp is the main focus of this thesis. To simulate the interface phenomena on a electrode surface, samples, with optically smooth tungsten-barium interfaces were fired in a high vacuum furnace at different temperatures. Measurements were made using surface characterization techniques. It is found that no Ba_3WO _6 is formed on the surface as previously reported in the powder mixing experiments, and the interface consists mainly of BaWO_4. It was discovered in the early 1950's that vaporization of the barium from the cathode in a fluorescent lamp could be reduced tremendously with the addition of 5% of ZrO _2 to the coating mix. However, the reason for this is poorly understood. A possible explanation has been found, and number of tests have been completed to simulate the formation of BaZO_3 under different lamp operating conditions. The measurements and simulation of barium atom and ion number densities are presented. Barium emitted from the electrode surface has a strong interaction with the local plasma. The number density distributions depend mainly on the discharge conditions. A Monte Carlo computer simulation for the barium ion number density is described and the results from the simulation compared to the experimental results obtained by absorption method. It is clear that the ion distribution and phosphor contamination in the electrode area are two closely related issues. XPS is used to measure the chemical composition on the phosphor surface of the lamp. A discussion of calibration methods and the possible compounds forming on the phosphors is then presented. A number of questions have been raised concerning the safety of the lamp and its affects on health related to radiation generated in the electrode area. Typically

  13. RF-excited plasma lamps for use as sources in OGSE integrating spheres

    NASA Astrophysics Data System (ADS)

    Arecchi, Angelo V.; McKee, Greg A.; Durell, Christopher N.

    2011-10-01

    Integrating spheres for optical calibration of remote sensing cameras have traditionally been made with Quartz Tungsten Halogen (QTH) lamps because of their stability. However, QTH lamps have the spectrum of a blackbody at approximately 3000K, while remote sensing cameras are designed to view a sun-illuminated scene. This presents a severe significant mismatch in the blue end of the spectrum. Attempts to compensate for this spectral mismatch have primarily used Xenon lamps to augment the QTH lamps. However, Xenon lamps suffer from temporal instability that is not desirable in many applications. This paper investigates the possibility of using RF-excited plasma lamps to augment QTH lamps. These plasma lamps have a somewhat smoother spectrum than Xenon. Like Xenon, they have more fluctuation than QTH lamps, but the fluctuations are slower and may be able to be tracked in an actual OGSE light source. The paper presents measurements of spectra and stability. The spectrum is measured from 320 nm to 2500 nm and the temporal stability from DC to 10 MHz. The RF-excited plasma lamps are quite small, less than 10mm in diameter and about 15 mm in length. This makes them suitable for designing reasonably sized reflective optics for directing their light into a small port on an integrating sphere. The concludes with a roadmap for further testing.

  14. Plasma diagnostics in Hg-free short-arc lamps for automotive lighting

    NASA Astrophysics Data System (ADS)

    Kettlitz, M.; Wendt, M.; Schneidenbach, H.; Krylova, O.

    2007-07-01

    In the context of developing a mercury-free lamp for automotive lighting an optimization of lamp design and plasma radiation was performed. In contrast to existing quartz lamps, a new lamp design was chosen consisting of a sapphire capillary combined with ceramic parts and pure tungsten electrodes. The lamps consist of metal halides and between 1 and 20 bar of xenon. They were operated with an electronic ballast at input powers between 20 and 40 W. Besides an optimization of the tube materials, thermography and plasma diagnostics were performed to understand the processes inside the lamp and to find optimal operation conditions. In addition to experimental diagnostics, a simulation of self-reversed sodium spectral lines was performed to verify plasma parameters, particularly the xenon pressure which could not be determined from the experiment. Additionally, tendencies of the influence of single components could be estimated by modelling.

  15. Mercury speciation in fluorescent lamps by thermal release analysis

    SciTech Connect

    Raposo, Claudio; Windmoeller, Claudia Carvalhinho; Durao Junior, Walter Alves

    2003-07-01

    In this work, mercury speciation in phosphorus powder matrices and soda lime glass waste from new and spent fluorescent lamp wastes has been studied by thermo-desorption/atomic absorption spectrometry (TDAAS), X-ray diffraction (XRD), cold vapor-atomic absorption (CV-AAS) and atomic emission spectrometry/inductively coupled plasma (ICP/AES). TDAAS results show the presence of oxidized forms of mercury, i.e., Hg{sup 1+} and Hg{sup 2+}, especially in wastes with high mercury concentration. Such forms are mobile, and therefore represent a potential hazard waste material. Glass TD profiles of spent fluorescent lamps suggested the presence of mercury strongly linked to the matrix, which desorbs only at high temperatures.

  16. Mercury speciation in fluorescent lamps by thermal release analysis.

    PubMed

    Raposo, Cláudio; Windmöller, Cláudia Carvalhinho; Durão, Walter Alves

    2003-01-01

    In this work, mercury speciation in phosphorus powder matrices and soda lime glass waste from new and spent fluorescent lamp wastes has been studied by thermo-desorption/atomic absorption spectrometry (TDAAS), X-ray diffraction (XRD), cold vapor-atomic absorption (CV-AAS) and atomic emission spectrometry/inductively coupled plasma (ICP/AES). TDAAS results show the presence of oxidized forms of mercury, i.e., Hg(1+) and Hg(2+), especially in wastes with high mercury concentration. Such forms are mobile, and therefore represent a potential hazard waste material. Glass TD profiles of spent fluorescent lamps suggested the presence of mercury strongly linked to the matrix, which desorbs only at high temperatures.

  17. Atomic hydrogen beam source: a convenient, extended cavity, microwave discharge design.

    PubMed

    Murphy, E J; Brophy, J H

    1979-05-01

    An extended cavity design of a microwave discharge source for production of intense beams of atomic, radical, and metastable species in vacuo is described. The extended cavity enables the discharge to be run at the beam source nozzle while the power connection and tuning elements remain conveniently outside the apparatus. This design minimizes wall recombination losses to produce intense atomic hydrogen beams with considerably less engineering than previous discharge sources.

  18. Perceptions of compact fluorescent lamps in the residential market

    SciTech Connect

    Weiner, J.; Campbell, C.J. )

    1992-07-01

    Compact fluorescent lamps offer significant energy savings over other forms of residential lighting and last up to 10 times longer than conventional incandescent bulbs. In order to better understand existing barriers to acceptance and future opportunities for growth of compact fluorescent lighting in the residential retrofit sector, a three stage research project was designed and conducted by MACRO Consulting, Inc. Assessment of whether or not the benefits of compact fluorescent lamps are sufficient to overcome price resistance was one of the major purposes of this project. Residential customers were interviewed in focus group sessions to help determine key issues and motivating forces in the lighting/energy saving/cost saving equation. Residential customers in 5 major market areas were contacted by telephone, and data about their awareness, knowledge and use of compact fluorescent lighting were collected. These customers also participated in an attribute rating exercise in which compact fluorescent lamps were compared with fluorescent tubes and incandescent bulbs on a series of product attributes. A price elasticity exercise was also conducted. Teleconferences with retailers of compact fluorescent lamps were conducted in order to explore their knowledge of and attitudes towards compact fluorescent lamps. Customers agree that energy savings and longer life are both positive attributes for residential lighting products, but they are not yet ready to make the switch away from inexpensive, versatile and readily available incandescent bulbs to compact fluorescent lamps. Compact fluorescent lamps are rated poorly (even by satisfied'' users) on each of seven positive attributes of home lighting. Major barriers to increased use of compact fluorescent lamps include price, convenience, and performance. Prices above $10 are considered outrageous''. Product improvements are needed for appearance, light output and versatility.

  19. X-ray Methods in High-Intensity Discharges and Metal-Halide Lamps: X-ray Induced Fluorescence

    SciTech Connect

    Curry, John J.; Lapatovich, Walter P.; Henins, Albert

    2011-12-09

    We describe the use of x-ray induced fluorescence to study metal-halide high-intensity discharge lamps and to measure equilibrium vapor pressures of metal-halide salts. The physical principles of metal-halide lamps, relevant aspects of x-ray-atom interactions, the experimental method using synchrotron radiation, and x-ray induced fluorescence measurements relevant to metal-halide lamps are covered.

  20. Design of stapled DNA-minor-groove-binding molecules with a mutable atom simulated annealing method.

    PubMed

    Walker, W L; Kopka, M L; Dickerson, R E; Goodsell, D S

    1997-11-01

    We report the design of optimal linker geometries for the synthesis of stapled DNA-minor-groove-binding molecules. Netropsin, distamycin, and lexitropsins bind side-by-side to mixed-sequence DNA and offer an opportunity for the design of sequence-reading molecules. Stapled molecules, with two molecules covalently linked side-by-side, provide entropic gains and restrain the position of one molecule relative to its neighbor. Using a free-atom simulated annealing technique combined with a discrete mutable atom definition, optimal lengths and atomic composition for covalent linkages are determined, and a novel hydrogen bond 'zipper' is proposed to phase two molecules accurately side-by-side.

  1. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  2. Optimal experimental design for nano-particle atom-counting from high-resolution STEM images.

    PubMed

    De Backer, A; De Wael, A; Gonnissen, J; Van Aert, S

    2015-04-01

    In the present paper, the principles of detection theory are used to quantify the probability of error for atom-counting from high resolution scanning transmission electron microscopy (HR STEM) images. Binary and multiple hypothesis testing have been investigated in order to determine the limits to the precision with which the number of atoms in a projected atomic column can be estimated. The probability of error has been calculated when using STEM images, scattering cross-sections or peak intensities as a criterion to count atoms. Based on this analysis, we conclude that scattering cross-sections perform almost equally well as images and perform better than peak intensities. Furthermore, the optimal STEM detector design can be derived for atom-counting using the expression for the probability of error. We show that for very thin objects LAADF is optimal and that for thicker objects the optimal inner detector angle increases.

  3. Guidelines for application of fluorescent lamps in high-performance avionic backlight systems

    NASA Astrophysics Data System (ADS)

    Syroid, Daniel D.

    1997-07-01

    Fluorescent lamps have proven to be well suited for use in high performance avionic backlight systems as demonstrated by numerous production applications for both commercial and military cockpit displays. Cockpit display applications include: Boeing 777, new 737s, F-15, F-16, F-18, F-22, C- 130, Navy P3, NASA Space Shuttle and many others. Fluorescent lamp based backlights provide high luminance, high lumen efficiency, precision chromaticity and long life for avionic active matrix liquid crystal display applications. Lamps have been produced in many sizes and shapes. Lamp diameters range from 2.6 mm to over 20 mm and lengths for the larger diameter lamps range to over one meter. Highly convoluted serpentine lamp configurations are common as are both hot and cold cathode electrode designs. This paper will review fluorescent lamp operating principles, discuss typical requirements for avionic grade lamps, compare avionic and laptop backlight designs and provide guidelines for the proper application of lamps and performance choices that must be made to attain optimum system performance considering high luminance output, system efficiency, dimming range and cost.

  4. Invited Review Article: The statistical modeling of atomic clocks and the design of time scales

    SciTech Connect

    Levine, Judah

    2012-02-15

    I will show how the statistical models that are used to describe the performance of atomic clocks are derived from their internal design. These statistical models form the basis for time scales, which are used to define international time scales such as International Atomic Time and Coordinated Universal Time. These international time scales are realized by ensembles of clocks at national laboratories such as the National Institute of Standards and Technology, and I will describe how ensembles of atomic clocks are characterized and managed.

  5. Invited review article: The statistical modeling of atomic clocks and the design of time scales.

    PubMed

    Levine, Judah; Ibarra-Manzano, O

    2012-02-01

    I will show how the statistical models that are used to describe the performance of atomic clocks are derived from their internal design. These statistical models form the basis for time scales, which are used to define international time scales such as International Atomic Time and Coordinated Universal Time. These international time scales are realized by ensembles of clocks at national laboratories such as the National Institute of Standards and Technology, and I will describe how ensembles of atomic clocks are characterized and managed.

  6. Invited review article: The statistical modeling of atomic clocks and the design of time scales.

    PubMed

    Levine, Judah; Ibarra-Manzano, O

    2012-02-01

    I will show how the statistical models that are used to describe the performance of atomic clocks are derived from their internal design. These statistical models form the basis for time scales, which are used to define international time scales such as International Atomic Time and Coordinated Universal Time. These international time scales are realized by ensembles of clocks at national laboratories such as the National Institute of Standards and Technology, and I will describe how ensembles of atomic clocks are characterized and managed. PMID:22380071

  7. LAMP: Peering Into the Lunar Dark

    NASA Video Gallery

    The Lyman-Alpha Mapping Project (LAMP) is an instrument on NASA’s Lunar Reconnaissance Orbiter mission to map and study the moon. LAMP is a spectrograph that images the ultraviolet region of the...

  8. Thermal analysis of a linear infrared lamp

    SciTech Connect

    Nakos, J.T.

    1982-01-01

    A theoretical and experimental analysis of an infrared lamp is presented based on radiant heat transfer theory. The analysis is performed on a specific type of linear lamp which has a coiled tungsten filament surrounded by a fused quartz envelope. The purpose of the study was to model the lamp thermally, not electrically, to arrive at a better understanding of the operation of the lamp.

  9. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: J586—Stop Lamps for Use on Motor Vehicles Less Than 2032 mm in Overall Width, March 2000; J2261 Stop... these documents.) (f) Stop lamp operation. The stop lamps on each vehicle shall be activated upon application of the service brakes. The stop lamps are not required to be activated when the emergency...

  10. CALiPER Report 20.3: Robustness of LED PAR38 Lamps

    SciTech Connect

    Poplawski, Michael E.; Royer, Michael P.; Brown, Charles C.

    2014-12-01

    Three samples of 40 of the Series 20 PAR38 lamps underwent multi-stress testing, whereby samples were subjected to increasing levels of simultaneous thermal, humidity, electrical, and vibrational stress. The results do not explicitly predict expected lifetime or reliability, but they can be compared with one another, as well as with benchmark conventional products, to assess the relative robustness of the product designs. On average, the 32 LED lamp models tested were substantially more robust than the conventional benchmark lamps. As with other performance attributes, however, there was great variability in the robustness and design maturity of the LED lamps. Several LED lamp samples failed within the first one or two levels of the ten-level stress plan, while all three samples of some lamp models completed all ten levels. One potential area of improvement is design maturity, given that more than 25% of the lamp models demonstrated a difference in failure level for the three samples that was greater than or equal to the maximum for the benchmarks. At the same time, the fact that nearly 75% of the lamp models exhibited better design maturity than the benchmarks is noteworthy, given the relative stage of development for the technology.

  11. Comparison Between X-rays Absorption and Emission Spectroscopy Measurements on a Ceramic Envelop Lamp

    NASA Astrophysics Data System (ADS)

    Lafitte, Bruno; Aubes, Michel; Zissis, Georges

    2007-12-01

    Burners of metal halide lamps used for illumination are generally made of polycrystalline alumina ceramic (PCA) which is translucent to visible light. We show that the difficulty of selecting a line of sight through the lamp prevents the use of optical emission diagnostic. X-rays photons are mainly absorbed and not scattered by PCA. Absorption by mercury atoms contributing to the discharge allowed us to determine the density of mercury in the lamp. By comparing diagnostic methods, we put in evidence the difficulty of taking into account the scattering of light mathematically.

  12. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all...

  13. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all...

  14. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all...

  15. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all...

  16. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all...

  17. Optimization of lamp arrangement in a closed-conduit UV reactor based on a genetic algorithm.

    PubMed

    Sultan, Tipu; Ahmad, Zeshan; Cho, Jinsoo

    2016-01-01

    The choice for the arrangement of the UV lamps in a closed-conduit ultraviolet (CCUV) reactor significantly affects the performance. However, a systematic methodology for the optimal lamp arrangement within the chamber of the CCUV reactor is not well established in the literature. In this research work, we propose a viable systematic methodology for the lamp arrangement based on a genetic algorithm (GA). In addition, we analyze the impacts of the diameter, angle, and symmetry of the lamp arrangement on the reduction equivalent dose (RED). The results are compared based on the simulated RED values and evaluated using the computational fluid dynamics simulations software ANSYS FLUENT. The fluence rate was calculated using commercial software UVCalc3D, and the GA-based lamp arrangement optimization was achieved using MATLAB. The simulation results provide detailed information about the GA-based methodology for the lamp arrangement, the pathogen transport, and the simulated RED values. A significant increase in the RED values was achieved by using the GA-based lamp arrangement methodology. This increase in RED value was highest for the asymmetric lamp arrangement within the chamber of the CCUV reactor. These results demonstrate that the proposed GA-based methodology for symmetric and asymmetric lamp arrangement provides a viable technical solution to the design and optimization of the CCUV reactor.

  18. Design of laser system for absolute gravimeter based on 87Rb atom interferometer

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Wang, Shaokai; Zhuang, Wei; Fang, Fang; Li, Tianchu

    2015-08-01

    We present a laser system design for an absolute gravimeter based on 87Rb atom interferometer. By skillful design, lasers with 9 different frequencies are based on two diode lasers including tapered amplifier. Two electrical feedback systems are used for laser frequency stabilization and the Raman lasers generation respectively. All other lasers are based on two Raman lasers and realized with frequency shift by acoustic optical modulators. This laser system not only has the compact and simple construction, but meets all requirements for laser power and frequency controlling for the atom interferometer. It has the characteristic of reliability and integrity.

  19. Optimization of a constrained linear monochromator design for neutral atom beams.

    PubMed

    Kaltenbacher, Thomas

    2016-04-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam.

  20. Interaction between Atoms and Slow Light: A Study in Waveguide Design

    NASA Astrophysics Data System (ADS)

    Zang, Xiaorun; Yang, Jianji; Faggiani, Rémi; Gill, Christopher; Petrov, Plamen G.; Hugonin, Jean-Paul; Vynck, Kevin; Bernon, Simon; Bouyer, Philippe; Boyer, Vincent; Lalanne, Philippe

    2016-02-01

    The emerging field of on-chip integration of nanophotonic devices and cold atoms offers extremely strong and pure light-matter interaction schemes, which may have a profound impact on quantum information science. In this context, a long-standing obstacle is to achieve a strong interaction between single atoms and single photons and at the same time trap atoms in a vacuum at large separation distances from dielectric surfaces. In this work, we study waveguide geometries that challenge these conflicting objectives. The designed photonic-crystal waveguide is expected to offer a good compromise, which additionally allows for easy manipulation of atomic clouds around the structure, while being tolerant to fabrication imperfections.

  1. Designing and building a permanent magnet Zeeman slower for calcium atoms using a 3D printer

    NASA Astrophysics Data System (ADS)

    Parsagian, Alexandria; Kleinert, Michaela

    2015-10-01

    We present the design of a Zeeman slower for calcium atoms using permanent magnets instead of more traditional electromagnets and the novel technique of 3D printing to create a very robust and flexible structure for these magnets. Zeeman slowers are ideal tools to slow atoms from several hundreds of meters per second to just a few tens of meters per second. These slower atoms can then easily be trapped in a magneto-optical trap, making Zeeman slowers a very valuable tool in many cold atom labs. The use of permanent magnets and 3D printing results in a highly stable and robust slower that is suitable for undergraduate laboratories. In our design, we arranged 28 magnet pairs, 2.0 cm apart along the axis of the slower and at varying radial distances from the axis. We determined the radial position of the magnets by simulating the combined field of all magnet pairs using Mathematica and comparing it to the ideal theoretical field for a Zeeman slower. Finally, we designed a stable, robust, compact, and easy-to-align mounting structure for the magnets in Google Sketchup, which we then printed using a commercially available 3D printer by Solidoodle. The resulting magnetic field is well suited to slow calcium atoms from the 770 m/s rms velocity at a temperature of 950 K, down to the capture velocity of the magneto-optical trap.

  2. Visualization of Atomization Gas Flow and Melt Break-up Effects in Response to Nozzle Design

    SciTech Connect

    Anderson, Iver; Rieken, Joel; Meyer, John; Byrd, David; Heidloff, Andy

    2011-04-01

    Both powder particle size control and efficient use of gas flow energy are highly prized goals for gas atomization of metal and alloy powder to minimize off-size powder inventory (or 'reverb') and excessive gas consumption. Recent progress in the design of close-coupled gas atomization nozzles and the water model simulation of melt feed tubes were coupled with previous results from several types of gas flow characterization methods, e.g., aspiration measurements and gas flow visualization, to make progress toward these goals. Size distribution analysis and high speed video recordings of gas atomization reaction synthesis (GARS) experiments on special ferritic stainless steel alloy powders with an Ar+O{sub 2} gas mixture were performed to investigate the operating mechanisms and possible advantages of several melt flow tube modifications with one specific gas atomization nozzle. In this study, close-coupled gas atomization under closed wake gas flow conditions was demonstrated to produce large yields of ultrafine (dia.<20 {mu}m) powders (up to 32%) with moderate standard deviations (1.62 to 1.99). The increased yield of fine powders is consistent with the dual atomization mechanisms of closed wake gas flow patterns in the near-field of the melt orifice. Enhanced size control by stabilized pre-filming of the melt with a slotted trumpet bell pour tube was not clearly demonstrated in the current experiments, perhaps confounded by the influence of the melt oxidation reaction that occurred simultaneously with the atomization process. For this GARS variation of close-coupled gas atomization, it may be best to utilize the straight cylindrical pour tube and closed wake operation of an atomization nozzle with higher gas mass flow to promote the maximum yields of ultrafine powders that are preferred for the oxide dispersion strengthened alloys made from these powders.

  3. 30 CFR 20.8 - Class 1 lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... required. Alternative designs will be evaluated by mechanical impact tests, temperature tests and thermal shock tests to determine that the protection provided is no less effective than a safety device. (2.... Lamps passing a laboratory spilling test will be considered satisfactory in this respect,...

  4. 30 CFR 20.8 - Class 1 lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hazard is chiefly due to the possible burning of the user by electrolyte spilled from the battery. MSHA, therefore, requires that: (1) Spilling of electrolyte. The lamp shall be so designed and constructed that when properly filled the battery will neither leak nor spill electrolyte under conditions of normal...

  5. Evaluating fluorescent lamp options under EPACT

    SciTech Connect

    Palko, E.

    1994-02-01

    The National Energy Policy Act (EPACT) sweeps the full spectrum of energy use in all forms, prescribing minimum efficiency standards for energy-consuming products. Notable among the products covered under EPACT are general-purpose fluorescent lamps commonly used to illuminate manufacturing, storage, laboratory, and office areas of industrial plants. Some specialty fluorescent lamp categories are exempt from the provisions of EPACT. Included in this specialty group are plant-growth, reflectorized or aperture, colored, reprographic, cold-temperature, and impact-resistant lamps. EPACT decrees moratorium dates on the manufacture of many types of lamps in common use in plants today. Lamps proscribed by EPACT, and their effective manufacturing cutoff dates, are given in the accompanying section, Fluorescent Lamps Outlawed Under EPACT. Noncomplying lamps, however, are permitted to remain in service, and can continue to be sold until stock is depleted. This paper explains the provisions of the Act.

  6. Giant Atomic and Molecular Models and Other Lecture Demonstration Devices Designed for Concrete Operational Students.

    ERIC Educational Resources Information Center

    Battino, Rubin

    1983-01-01

    Describes the design, construction, and use of oversize lecture-demonstration atomic/molecular models. These models appeal to both concrete and formal operational students. Also describes construction and use of an "spdf" sandwich board and an experiment using attribute blocks. (JN)

  7. Quartz lamp thermocycling rig for combustion liners

    SciTech Connect

    Pfeifer, G.D.

    1986-01-01

    Improved combustor liner durability is a major design objective for advanced combustors. Combinations of low cycle fatigue, creep, oxidation and crack propagation are the damage mechanisms that reduce durability. Each of these mechanisms is a consequence of cyclic thermal loading. Closely controlled rig tests can simulate these damage mechanisms. Although rig testing requires duplicating the actual thermal strain range on a full size liner, it is economically more attractive than full-engine testing. A suitable rig for controlled cyclic thermal loading of large size cylindrical test specimens is developed using a 672 KW electric quartz lamp radiant heat source. The design objectives, operational features and development shake-down test results are presented in this paper. The development discusses deals specifically with combustor liner test specimens. The rig is also suitable for high temperature testing of large advanced material specimens including composite ceramics.

  8. Generation of ion-acoustic waves in an inductively coupled, low-pressure discharge lamp

    SciTech Connect

    Camparo, J. C.; Klimcak, C. M.

    2006-04-15

    For a number of years it has been known that the alkali rf-discharge lamps used in atomic clocks can exhibit large amplitude intensity oscillations. These oscillations arise from ion-acoustic plasma waves and have typically been associated with erratic clock behavior. Though large amplitude ion-acoustic plasma waves are clearly deleterious for atomic clock operation, it does not follow that small amplitude oscillations have no utility. Here, we demonstrate two easily implemented methods for generating small amplitude ion-acoustic plasma waves in alkali rf-discharge lamps. Furthermore, we demonstrate that the frequency of these waves is proportional to the square root of the rf power driving the lamp and therefore that their examination can provide an easily accessible parameter for monitoring and controlling the lamp's plasma conditions. This has important consequences for precise timekeeping, since the atomic ground-state hyperfine transition, which is the heart of the atomic clock signal, can be significantly perturbed by changes in the lamp's output via the ac-Stark shift.

  9. Temperature measurement on and inside lamps

    SciTech Connect

    Wallin, B.

    1994-12-31

    The use of thermography within the lamp manufacturing industry can improve the quality of many types of lamps ranging from normal incandescent lamps to highly specialized lamps for sports arenas, airports or small lamps for cars. There is a strong demand for more light for the same energy input. Specialized lamps for all possible purposes are developed. But it also forces the lamp manufacturers to utilize the available materials to their extremes. The exact control of the temperatures inside or on the lamp shell has therefore become increasingly necessary as temperatures in lamps can be rather extreme. In plasma lamps for example, the plasma can have a temperature of 6,000 C, the bulk around 700 C and the electrodes inside the bulb can have temperatures in excess of 2,000 C. Thermographic methods have shown their applicability for a large number of measurement cases. Some of these methods and measurement cases are described. As these applications put very special demands on the measurement equipment, these demands are explained in more detail.

  10. Design of magnetic traps for neutral atoms with vortices in type-II superconducting microstructures

    SciTech Connect

    Zhang, B.; Dumke, R.; Fermani, R.; Mueller, T.; Lim, M. J.

    2010-06-15

    We design magnetic traps for atoms based on the average magnetic field of vortices induced in a type-II superconducting thin film. This magnetic field is the critical ingredient of the demonstrated vortex-based atom traps, which operate without transport current. We use Bean's critical-state method to model the vortex field through mesoscopic supercurrents induced in the thin strip. The resulting inhomogeneous magnetic fields are studied in detail and compared to those generated by multiple normally conducting wires with transport currents. Various vortex patterns can be obtained by programing different loading-field and transport-current sequences. These variable magnetic fields are employed to make versatile trapping potentials.

  11. Design of a laser-assisted tomographic atom probe at Muenster University

    SciTech Connect

    Schlesiger, Ralf; Oberdorfer, Christian; Greiwe, Gerd; Stender, Patrick; Artmeier, Michael; Pelka, Patrick; Spaleck, Frank; Schmitz, Guido; Wuerz, Roland

    2010-04-15

    To benefit from the latest technical improvements in atom probe analysis, a new tomographic atom probe has been built at the University of Muenster, Germany. The instrument utilizes a femtosecond laser system with a high repetition rate combined with the ability of using a micrometer-sized extraction electrode and a wide angle configuration. Since field evaporation is triggered by laser pulses instead of high-voltage pulses, the instrument offers the ability to expand the range of analyzed materials to poorly conducting or insulating materials such as oxides, glasses, ceramics, and polymeric materials. The article describes the design of the instrument and presents characterizing measurements on metals, semiconductors, and oxide ceramic.

  12. New generation of medium wattage metal halide lamps and spectroscopic tools for their diagnostics

    NASA Astrophysics Data System (ADS)

    Dunaevsky, A.; Tu, J.; Gibson, R.; Steere, T.; Graham, K.; van der Eyden, J.

    2010-11-01

    A new generation of ceramic metal halide high intensity discharge (HID) lamps has achieved high efficiencies by implementing new design concepts. The shape of the ceramic burner is optimized to withstand high temperatures with minimal thermal stress. Corrosion processes with the ceramic walls are slowed down via adoption of non-aggressive metal halide chemistry. Light losses over life due to tungsten deposition on the walls are minimized by maintaining a self-cleaning chemical process, known as tungsten cycle. All these advancements have made the new ceramic metal halide lamps comparable to high pressure sodium lamps for luminous efficacy, life, and maintenance while providing white light with high color rendering. Direct replacement of quartz metal halide lamps and systems results in the energy saving from 18 up to 50%. High resolution spectroscopy remains the major non-destructive tool for the ceramic metal halide lamps. Approaches to reliable measurements of relative partial pressures of the arc species are discussed.

  13. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of common genetically modified organisms (GMOs).

    PubMed

    Feng, Jiawang; Tang, Shiming; Liu, Lideng; Kuang, Xiaoshan; Wang, Xiaoyu; Hu, Songnan; You, Shuzhu

    2015-03-01

    Here, we developed a loop-mediated isothermal amplification (LAMP) assay for 11 common transgenic target DNA in GMOs. Six sets of LAMP primer candidates for each target were designed and their specificity, sensitivity, and reproductivity were evaluated. With the optimized LAMP primers, this LAMP assay was simply run within 45-60 min to detect all these targets in GMOs tested. The sensitivity, specificity, and reproductivity of the LAMP assay were further analyzed in comparison with those of Real-Time PCR. In consistent with real-time PCR, detection of 0.5% GMOs in equivalent background DNA was possible using this LAMP assay for all targets. In comparison with real-time PCR, the LAMP assay showed the same results with simple instruments. Hence, the LAMP assay developed can provide a rapid and simple approach for routine screening as well as specific events detection of many GMOs. PMID:25582179

  14. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of common genetically modified organisms (GMOs).

    PubMed

    Feng, Jiawang; Tang, Shiming; Liu, Lideng; Kuang, Xiaoshan; Wang, Xiaoyu; Hu, Songnan; You, Shuzhu

    2015-03-01

    Here, we developed a loop-mediated isothermal amplification (LAMP) assay for 11 common transgenic target DNA in GMOs. Six sets of LAMP primer candidates for each target were designed and their specificity, sensitivity, and reproductivity were evaluated. With the optimized LAMP primers, this LAMP assay was simply run within 45-60 min to detect all these targets in GMOs tested. The sensitivity, specificity, and reproductivity of the LAMP assay were further analyzed in comparison with those of Real-Time PCR. In consistent with real-time PCR, detection of 0.5% GMOs in equivalent background DNA was possible using this LAMP assay for all targets. In comparison with real-time PCR, the LAMP assay showed the same results with simple instruments. Hence, the LAMP assay developed can provide a rapid and simple approach for routine screening as well as specific events detection of many GMOs.

  15. Effect of flash lamp annealing on electrical activation in boron-implanted polycrystalline Si thin films

    SciTech Connect

    Do, Woori; Jin, Won-Beom; Choi, Jungwan; Bae, Seung-Muk; Kim, Hyoung-June; Kim, Byung-Kuk; Park, Seungho; Hwang, Jin-Ha

    2014-10-15

    Highlights: • Intensified visible light irradiation was generated via a high-powered Xe arc lamp. • The disordered Si atomic structure absorbs the intensified visible light. • The rapid heating activates electrically boron-implanted Si thin films. • Flash lamp heating is applicable to low temperature polycrystalline Si thin films. - Abstract: Boron-implanted polycrystalline Si thin films on glass substrates were subjected to a short duration (1 ms) of intense visible light irradiation generated via a high-powered Xe arc lamp. The disordered Si atomic structure absorbs the intense visible light resulting from flash lamp annealing. The subsequent rapid heating results in the electrical activation of boron-implanted Si thin films, which is empirically observed using Hall measurements. The electrical activation is verified by the observed increase in the crystalline component of the Si structures resulting in higher transmittance. The feasibility of flash lamp annealing has also been demonstrated via a theoretical thermal prediction, indicating that the flash lamp annealing is applicable to low-temperature polycrystalline Si thin films.

  16. Table lamp with dynamically controlled lighting distribution and uniformly illuminated luminous shade

    SciTech Connect

    Siminovitch, Michael J.; Page, Erik R.

    2002-01-01

    A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) or other lamps arranged vertically, i.e. one lamp above the other, with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum ensures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. In a particular configuration, the reflective septum is bowl shaped, with the upper CFL sitting in the bowl, and a luminous shade hanging down from the bowl. The lower CFL provides both task lighting and uniform shade luminance. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. However, other types of lamps, including incandescent, halogen, and LEDs can also be used in the fixture. The lighting system may be designed for the home, hospitality, office or other environments.

  17. Quadrichromatic white solid state lamp with digital feedback

    NASA Astrophysics Data System (ADS)

    Zukauskas, Arturas; Vaicekauskas, Rimantas; Ivanauskas, Felikas; Kurilcik, Genadij; Bliznikas, Zenius; Breive, Kestutis; Krupic, Jevgenij; Rupsys, Andrius; Novickovas, Algirdas; Vitta, Pranciskus; Navickas, Alvydas; Raskauskas, Vytautas; Shur, Michael S.; Gaska, Remis

    2004-01-01

    White light with high color rendering indices can be produced by additive color mixing of emissions from several light-emitting diodes (LEDs) having different primary colors. White Versatile Solid-State Lamps (VSSLs) with variable color temperature, constant-chromaticity dimming, and efficiency/color-rendering trade-off can be developed using pulse-width modulation (PWM) driving technique. However, such lamps exhibit chromaticity shifts caused by different temperature and aging coefficients of the optical output for primary LEDs of different colors. To overcome this drawback, we developed a polychromatic white solid-state lamp with an internal digital feedback. The lamp features a quadrichromatic (red-amber-green-blue) design based on commercially available high-power LEDs. The design is optimized to achieve high values of the general color rendering index (69 to 79 points) in the color-temperature range of 2856 to 6504 K. A computer-controlled driving circuit contains a pulse-width modulator and a photodiode-based meter. The software performs periodical measurement of the radiant flux from primary LEDs of each color and adjusts the widths of the driving pulses. These VSSLs with feedback found application in phototherapy of seasonal affective disorder (SAD).

  18. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    SciTech Connect

    Sloan Roberts, F.; Anderson, Scott L.

    2013-12-15

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  19. Miniature Bose-Einstein condensate system design based on a transparent atom chip

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Li, Xiaolin; Zhang, Jingfang; Xu, Xinping; Jiang, Xiaojun; Zhang, Haichao; Wang, Yuzhu

    2016-08-01

    We propose a new miniature Bose-Einstein condensate (BEC) system based on a transparent atom chip with a compact external coil structure. A standard six-beam macroscopic magneto-optical trap (MOT) is able to be created near the chip surface due to the chip’s transparency. A novel wire pattern consisting of a double-z wire and a z-shaped wire is designed on the transparent atom chip. With a vertical bias magnetic field, the double-z wire can create the quadrupole magnetic field of an intermediate chip MOT, which is suitable for transporting atoms from the macroscopic MOT to the chip z-wire trap efficiently. The compact external coil structure is designed with a rectangular frameless geometry consisting of only four coil pairs and its volume is less than 0.3 liters. The maximum system power consumption during the BEC generation procedure is about 45 W. The miniature system is evaluated, and about 3 × 106 atoms can be loaded into the chip z-wire trap. The miniature chip BEC system has the advantages of small volume and low power consumption, and it has great potential for practical applications of BEC.

  20. Miniature Bose–Einstein condensate system design based on a transparent atom chip

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Li, Xiaolin; Zhang, Jingfang; Xu, Xinping; Jiang, Xiaojun; Zhang, Haichao; Wang, Yuzhu

    2016-08-01

    We propose a new miniature Bose–Einstein condensate (BEC) system based on a transparent atom chip with a compact external coil structure. A standard six-beam macroscopic magneto-optical trap (MOT) is able to be created near the chip surface due to the chip’s transparency. A novel wire pattern consisting of a double-z wire and a z-shaped wire is designed on the transparent atom chip. With a vertical bias magnetic field, the double-z wire can create the quadrupole magnetic field of an intermediate chip MOT, which is suitable for transporting atoms from the macroscopic MOT to the chip z-wire trap efficiently. The compact external coil structure is designed with a rectangular frameless geometry consisting of only four coil pairs and its volume is less than 0.3 liters. The maximum system power consumption during the BEC generation procedure is about 45 W. The miniature system is evaluated, and about 3 × 106 atoms can be loaded into the chip z-wire trap. The miniature chip BEC system has the advantages of small volume and low power consumption, and it has great potential for practical applications of BEC.

  1. Lamp bulb with integral reflector

    DOEpatents

    Levin, Izrail; Shanks, Bruce; Sumner, Thomas L.

    2001-01-01

    An improved electrodeless discharge lamp bulb includes an integral ceramic reflector as a portion of the bulb envelope. The bulb envelope further includes two pieces, a reflector portion or segment is cast quartz ceramic and a light transmissive portion is a clear fused silica. In one embodiment, the cast quartz ceramic segment includes heat sink fins or stubs providing an increased outside surface area to dissipate internal heat. In another embodiment, the quartz ceramic segment includes an outside surface fused to eliminate gas permeation by polishing.

  2. 10 CFR 429.40 - Candelabra base incandescent lamps and intermediate base incandescent lamps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Candelabra base incandescent lamps and intermediate base....40 Candelabra base incandescent lamps and intermediate base incandescent lamps. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to candelabra...

  3. 10 CFR 429.40 - Candelabra base incandescent lamps and intermediate base incandescent lamps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Candelabra base incandescent lamps and intermediate base....40 Candelabra base incandescent lamps and intermediate base incandescent lamps. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to candelabra...

  4. 10 CFR 429.40 - Candelabra base incandescent lamps and intermediate base incandescent lamps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Candelabra base incandescent lamps and intermediate base....40 Candelabra base incandescent lamps and intermediate base incandescent lamps. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to candelabra...

  5. Iodine atoms: a new molecular feature for the design of potent transthyretin fibrillogenesis inhibitors.

    PubMed

    Mairal, Teresa; Nieto, Joan; Pinto, Marta; Almeida, Maria Rosário; Gales, Luis; Ballesteros, Alfredo; Barluenga, José; Pérez, Juan J; Vázquez, Jesús T; Centeno, Nuria B; Saraiva, Maria Joao; Damas, Ana M; Planas, Antoni; Arsequell, Gemma; Valencia, Gregorio

    2009-01-01

    The thyroid hormone and retinol transporter protein known as transthyretin (TTR) is in the origin of one of the 20 or so known amyloid diseases. TTR self assembles as a homotetramer leaving a central hydrophobic channel with two symmetrical binding sites. The aggregation pathway of TTR into amiloid fibrils is not yet well characterized but in vitro binding of thyroid hormones and other small organic molecules to TTR binding channel results in tetramer stabilization which prevents amyloid formation in an extent which is proportional to the binding constant. Up to now, TTR aggregation inhibitors have been designed looking at various structural features of this binding channel others than its ability to host iodine atoms. In the present work, greatly improved inhibitors have been designed and tested by taking into account that thyroid hormones are unique in human biochemistry owing to the presence of multiple iodine atoms in their molecules which are probed to interact with specific halogen binding domains sitting at the TTR binding channel. The new TTR fibrillogenesis inhibitors are based on the diflunisal core structure because diflunisal is a registered salicylate drug with NSAID activity now undergoing clinical trials for TTR amyloid diseases. Biochemical and biophysical evidence confirms that iodine atoms can be an important design feature in the search for candidate drugs for TTR related amyloidosis. PMID:19125186

  6. Iodine Atoms: A New Molecular Feature for the Design of Potent Transthyretin Fibrillogenesis Inhibitors

    PubMed Central

    Pinto, Marta; Almeida, Maria Rosário; Gales, Luis; Ballesteros, Alfredo; Barluenga, José; Pérez, Juan J.; Vázquez, Jesús T.; Centeno, Nuria B.; Saraiva, Maria Joao; Damas, Ana M.; Planas, Antoni; Arsequell, Gemma; Valencia, Gregorio

    2009-01-01

    The thyroid hormone and retinol transporter protein known as transthyretin (TTR) is in the origin of one of the 20 or so known amyloid diseases. TTR self assembles as a homotetramer leaving a central hydrophobic channel with two symmetrical binding sites. The aggregation pathway of TTR into amiloid fibrils is not yet well characterized but in vitro binding of thyroid hormones and other small organic molecules to TTR binding channel results in tetramer stabilization which prevents amyloid formation in an extent which is proportional to the binding constant. Up to now, TTR aggregation inhibitors have been designed looking at various structural features of this binding channel others than its ability to host iodine atoms. In the present work, greatly improved inhibitors have been designed and tested by taking into account that thyroid hormones are unique in human biochemistry owing to the presence of multiple iodine atoms in their molecules which are probed to interact with specific halogen binding domains sitting at the TTR binding channel. The new TTR fibrillogenesis inhibitors are based on the diflunisal core structure because diflunisal is a registered salicylate drug with NSAID activity now undergoing clinical trials for TTR amyloid diseases. Biochemical and biophysical evidence confirms that iodine atoms can be an important design feature in the search for candidate drugs for TTR related amyloidosis. PMID:19125186

  7. Discharge lamp with reflective jacket

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Kipling, Kent

    2001-01-01

    A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

  8. Note: Design and development of an integrated three-dimensional scanner for atomic force microscopy

    SciTech Connect

    Rashmi, T.; Dharsana, G.; Sriramshankar, R.; Sri Muthu Mrinalini, R.; Jayanth, G. R.

    2013-11-15

    A compact scanning head for the Atomic Force Microscope (AFM) greatly enhances the portability of AFM and facilitates easy integration with other tools. This paper reports the design and development of a three-dimensional (3D) scanner integrated into an AFM micro-probe. The scanner is realized by means of a novel design for the AFM probe along with a magnetic actuation system. The integrated scanner, the actuation system, and their associated mechanical mounts are fabricated and evaluated. The experimentally calibrated actuation ranges are shown to be over 1 μm along all the three axes.

  9. 49 CFR 393.23 - Power supply for lamps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.23 Power supply for lamps. All required lamps must be powered by the electrical system of the motor vehicle with...

  10. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification....

  11. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification....

  12. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification....

  13. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification....

  14. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification....

  15. Today`s fluorescent lamp choice

    SciTech Connect

    Foszcz, J.L.

    1997-10-01

    The choice of fluorescent lamps to replace the old standbys presents an opportunity to improve the quality of lighting, make a significant reduction in electrical bills, and contribute to improvement of the environment. The paper discusses the new electronic ballasts available today, the Green Light program to encourage US corporations to install energy efficient lighting in their facilities, and disposal of fluorescent lamps.

  16. Primer of School Lighting Lamps and Maintenance.

    ERIC Educational Resources Information Center

    Allphin, Willard

    The basic principles of the most commonly used lamp types and the circuitry which makes them operate are discussed. The two objectives of this book are to serve as a--(1) guide to economical lighting, and (2) a permanent reference source for troubleshooting. Areas dealt with include--(1) lighting fundamentals, (2) incandescent lamps, (3)…

  17. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp....

  18. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp....

  19. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp....

  20. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp....

  1. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp....

  2. Design and optimization of a harmonic probe with step cross section in multifrequency atomic force microscopy

    SciTech Connect

    Cai, Jiandong; Zhang, Li; Wang, Michael Yu

    2015-12-15

    In multifrequency atomic force microscopy (AFM), probe’s characteristic of assigning resonance frequencies to integer harmonics results in a remarkable improvement of detection sensitivity at specific harmonic components. The selection criterion of harmonic order is based on its amplitude’s sensitivity on material properties, e.g., elasticity. Previous studies on designing harmonic probe are unable to provide a large design capability along with maintaining the structural integrity. Herein, we propose a harmonic probe with step cross section, in which it has variable width in top and bottom steps, while the middle step in cross section is kept constant. Higher order resonance frequencies are tailored to be integer times of fundamental resonance frequency. The probe design is implemented within a structural optimization framework. The optimally designed probe is micromachined using focused ion beam milling technique, and then measured with an AFM. The measurement results agree well with our resonance frequency assignment requirement.

  3. Design and optimization of a harmonic probe with step cross section in multifrequency atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Cai, Jiandong; Wang, Michael Yu; Zhang, Li

    2015-12-01

    In multifrequency atomic force microscopy (AFM), probe's characteristic of assigning resonance frequencies to integer harmonics results in a remarkable improvement of detection sensitivity at specific harmonic components. The selection criterion of harmonic order is based on its amplitude's sensitivity on material properties, e.g., elasticity. Previous studies on designing harmonic probe are unable to provide a large design capability along with maintaining the structural integrity. Herein, we propose a harmonic probe with step cross section, in which it has variable width in top and bottom steps, while the middle step in cross section is kept constant. Higher order resonance frequencies are tailored to be integer times of fundamental resonance frequency. The probe design is implemented within a structural optimization framework. The optimally designed probe is micromachined using focused ion beam milling technique, and then measured with an AFM. The measurement results agree well with our resonance frequency assignment requirement.

  4. Optimization of white polychromatic semiconductor lamps

    NASA Astrophysics Data System (ADS)

    Žukauskas, A.; Vaicekauskas, R.; Ivanauskas, F.; Gaska, R.; Shur, M. S.

    2002-01-01

    A stochastic method of optimization of a white-light source that relies on additive color mixing of the emissions from colored light-emitting diodes (LEDs) was developed. The method allows for finding the optimal wavelengths of LEDs in order to obtain the best possible trade off between luminous efficacy and the general color rendering index (CRI) of the white source for an arbitrary number of primary LEDs. Optimal solid-state lamps composed of two, three, four, and five different LEDs were analyzed. We show that a dichromatic LED lamp can only provide high efficacy with a general CRI close to zero, whereas trichromatic and quadrichromatic lamps are able to cover the entire range of reasonable general CRI values. The optimization of quintichromatic LED lamps and lamps with a higher number of primary color LEDs yields a negligible benefit in improving CRI but provides for quasicontinuous spectra that might be required for special lighting needs.

  5. User manual for SPLASH (Single Panel Lamp and Shroud Helper).

    SciTech Connect

    Larsen, Marvin Elwood

    2006-02-01

    The radiant heat test facility develops test sets providing well-characterized thermal environments, often representing fires. Many of the components and procedures have become standardized to such an extent that the development of a specialized design tool to determine optimal configurations for radiant heat experiments was appropriate. SPLASH (Single Panel Lamp and Shroud Helper) is that tool. SPLASH is implemented as a user-friendly, Windows-based program that allows a designer to describe a test setup in terms of parameters such as number of lamps, power, position, and separation distance. This document is a user manual for that software. Any incidental descriptions of theory are only for the purpose of defining the model inputs. The theory for the underlying model is described in SAND2005-2947 (Ref. [1]). SPLASH provides a graphical user interface to define lamp panel and shroud designs parametrically, solves the resulting radiation enclosure problem for up to 2500 surfaces, and provides post-processing to facilitate understanding and documentation of analyzed designs.

  6. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    NASA Astrophysics Data System (ADS)

    de Vos, Marc; Torah, Russel; Tudor, John

    2016-04-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps.

  7. Computational design of an unnatural amino acid dependent metalloprotein with atomic level accuracy.

    PubMed

    Mills, Jeremy H; Khare, Sagar D; Bolduc, Jill M; Forouhar, Farhad; Mulligan, Vikram Khipple; Lew, Scott; Seetharaman, Jayaraman; Tong, Liang; Stoddard, Barry L; Baker, David

    2013-09-11

    Genetically encoded unnatural amino acids could facilitate the design of proteins and enzymes of novel function, but correctly specifying sites of incorporation and the identities and orientations of surrounding residues represents a formidable challenge. Computational design methods have been used to identify optimal locations for functional sites in proteins and design the surrounding residues but have not incorporated unnatural amino acids in this process. We extended the Rosetta design methodology to design metalloproteins in which the amino acid (2,2'-bipyridin-5yl)alanine (Bpy-Ala) is a primary ligand of a bound metal ion. Following initial results that indicated the importance of buttressing the Bpy-Ala amino acid, we designed a buried metal binding site with octahedral coordination geometry consisting of Bpy-Ala, two protein-based metal ligands, and two metal-bound water molecules. Experimental characterization revealed a Bpy-Ala-mediated metalloprotein with the ability to bind divalent cations including Co(2+), Zn(2+), Fe(2+), and Ni(2+), with a Kd for Zn(2+) of ∼40 pM. X-ray crystal structures of the designed protein bound to Co(2+) and Ni(2+) have RMSDs to the design model of 0.9 and 1.0 Å respectively over all atoms in the binding site.

  8. Tungsten wire for incandescent lamps

    SciTech Connect

    Walter, J.L.; Briant, C.L. )

    1990-09-01

    Tungsten wire for incandescent lamp filaments must operate at high temperatures and for long times. To meet these requirements, the grain morphology of the wire must be controlled to reduce the propensity for grain boundary sliding. The morphology is a function of the distribution of very small pockets of potassium in the wire and the mechanical processing from ingot to wire. The behavior of the filament is directly related to the grain morphology. This paper describes the mechanism by which the potassium is incorporated into and distributed in the ingot. The elongation and spheroidization of the bubbles during hot rolling and swaging is also examined and related to the grain morphology of wire. Some indications of the relationship between grain morphology and filament behavior are also given.

  9. Temperature profiles and thermal losses in 150 W high-intensity discharge lamps

    NASA Astrophysics Data System (ADS)

    Curry, J. J.; Sansonetti, Craig J.; Wang, J.

    2005-09-01

    A series of 150 W quartz metal-halide test lamps containing four different chemistries has been studied with optical emission spectroscopy and x-ray absorption imaging. The four chemistries are pure Hg, Hg-HgI2, Hg-NaI and Hg-NaI-DyI3. Core temperatures and comprehensive distributions of Hg vapour densities were measured and combined to obtain comprehensive gas temperature distributions. The concentrations of additives in these specially designed test lamps were found to be much smaller than is typical for a commercial metal-halide lamp. As a consequence, the core temperatures in all lamps are largely characteristic of a pure Hg discharge. The gas temperature distributions have been used to determine power losses resulting from thermal conduction through the Hg vapour. The fraction of total input power dissipated thermally was found to be 0.49 ± 0.01 in pure Hg, similar to published measurements for such lamps. In the Hg-NaI and Hg-NaI-DyI3 lamps, thermal losses are 0.41 ± 0.01 and 0.42 ± 0.01, respectively. The Hg-HgI2 lamp has thermal losses of 0.29 ± 0.03.

  10. Design of multilamp nonimaging laser pump cavities

    SciTech Connect

    Kuppenheimer, J.D. Jr.

    1989-12-01

    A technique has been developed to design single laser rod, multiple flash lamp pump cavities that allow all of the energy generated by the lamp to pass through the laser rod before entering another lamp cavity. The effective lamp and rod perimeters are matched, guaranteeing maximal concentration and uniformity of pumping.

  11. Intensified phototherapy using daylight fluorescent lamps.

    PubMed

    De Carvalho, M; De Carvalho, D; Trzmielina, S; Lopes, J M; Hansen, T W

    1999-07-01

    Jaundice is a common reason for therapeutic intervention in newborn infants and phototherapy is effective treatment if enough light energy is delivered to a skin surface area of sufficient size. Narrow spectrum blue light is superior to white light, but in developing countries fluorescent blue lamps often have to be imported and are much more expensive than white lamps. We developed a phototherapy unit in which seven daylight fluorescent tubes are placed immediately under the floor of a transparent plexiglass crib. The efficacy of this unit, delivering approximately 19 microW/cm2/nm, was compared with that of two conventional phototherapy units using overhead lamps placed 35 cm above the infants. One unit used daylight fluorescent tubes and delivered approximately 4 microW/cm2/nm, the other unit used special blue fluorescent tubes and delivered approximately 22 microW/cm2/nm. Fifty-one infants were included in the analyses, all of them breastfed on demand. Serum bilirubin levels were determined spectrophotometrically at 0, 12 and 24 h. The decrement in serum bilirubin concentrations was significantly greater in infants undergoing phototherapy with the new device or with special blue lamps compared to conventional overhead daylight lamps (p < 0.001 both at 12 and at 24 h). We conclude that highly efficient phototherapy may be delivered with daylight fluorescent lamps placed in very close proximity to the patient. Thus, lack of access to expensive imported special blue lamps does not preclude delivery of effective phototherapy in developing countries.

  12. Atomic force microscopy reveals the mechanical design of a modular protein

    NASA Astrophysics Data System (ADS)

    Li, Hongbin; Oberhauser, Andres F.; Fowler, Susan B.; Clarke, Jane; Fernandez, Julio M.

    2000-06-01

    Tandem modular proteins underlie the elasticity of natural adhesives, cell adhesion proteins, and muscle proteins. The fundamental unit of elastic proteins is their individually folded modules. Here, we use protein engineering to construct multimodular proteins composed of Ig modules of different mechanical strength. We examine the mechanical properties of the resulting tandem modular proteins by using single protein atomic force microscopy. We show that by combining modules of known mechanical strength, we can generate proteins with novel elastic properties. Our experiments reveal the simple mechanical design of modular proteins and open the way for the engineering of elastic proteins with defined mechanical properties, which can be used in tissue and fiber engineering.

  13. DESIGN OF ATOMIZERS AND BURNERS FOR COAL-WATER SLURRY COMBUSTION

    SciTech Connect

    1998-07-01

    A new, miniature variation on the Triple-Concentric atomizer (TCA) was designed and constructed. This prototype will be used to test the applicability of the TCA concept to very fine sprays such as medical nebulizers. Preliminary tests of its performance with plain water were conducted. Atomization tests of an aqueous polymer solution were conducted using the existing TCA. These tests show that there is little change in the Sauter Mean diameter as polymer concentration or molecular weight are increased until the polymer molecules become highly intertwined. This report documents the activities and results from the period 1 April 1998 to 30 June 1998 and the planned activities for the next period, 1 July 1998 to 30 September 1998. Two primary activities were undertaken in this period: investigation of the variation in performance of a miniature TCA with variation in air flow rate and center air tube location; and droplet size measurements of water and aqueous polymer solutions generated by the existing triple-concentric atomizer.

  14. Lamp system for uniform semiconductor wafer heating

    SciTech Connect

    Zapata, Luis E.; Hackel, Lloyd

    2001-01-01

    A lamp system with a very soft high-intensity output is provided over a large area by water cooling a long-arc lamp inside a diffuse reflector of polytetrafluorethylene (PTFE) and titanium dioxide (TiO.sub.2) white pigment. The water is kept clean and pure by a one micron particulate filter and an activated charcoal/ultraviolet irradiation system that circulates and de-ionizes and biologically sterilizes the coolant water at all times, even when the long-arc lamp is off.

  15. LRO-LAMP Observations of Lunar Exospheric Helium

    NASA Astrophysics Data System (ADS)

    Grava, Cesare; Retherford, Kurt D.; Hurley, Dana M.; Feldman, Paul D.; Gladstone, Randy; Greathouse, Thomas K.; Cook, Jason C.; Stern, Alan; Pryor, Wayne R.; Halekas, Jasper S.; Kaufmann, David E.

    2015-11-01

    We present results from Lunar Reconnaissance Orbiter’s (LRO) UV spectrograph LAMP (Lyman-Alpha Mapping Project) campaign to study the lunar atmosphere. Two kinds of off-nadir maneuvers (lateral rolls and pitches towards and opposite the direction of motion of LRO) were performed to search for resonantly scattering species, increasing the illuminated line-of-sight (and hence the signal from atoms resonantly scattering the solar photons) compared to previously reported LAMP “twilight observations” [Cook & Stern, 2014]. Helium was the only element distinguishable on a daily basis, and we present latitudinal profiles of its line-of-sight column density in December 2013. We compared the helium line-of-sight column densities with solar wind alpha particle fluxes measured from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon’s Interaction with the Sun) twin spacecraft. Our data show a correlation with the solar wind alpha particle flux, confirming that the solar wind is the main source of the lunar helium, but not with a 1:1 relationship. Assuming that the lunar soil is saturated with helium atoms, our results suggest that not all of the incident alpha particles are converted to thermalized helium, allowing for a non-negligible fraction (~50 %) to escape as suprathermal helium or simply backscattered from the lunar surface. We also support the finding by Benna et al. [2015] and Hurley et al. [2015], that a non-zero contribution from endogenic helium, coming from radioactive decay of 232Th and 238U within the mantle, is present, and is estimated to be (4.5±1.2) x 106 He atoms cm-2 s-1. Finally, we compare LAMP-derived helium surface density with the one recorded by the mass spectrometer LACE (Lunar Atmospheric Composition Experiment) deployed on the lunar surface during the Apollo 17 mission, finding good agreement between the two measurements. These LRO off-nadir maneuvers allow LAMP to provide unique coverage of local solar time and

  16. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25.

    PubMed

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-11-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg(-1) GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25.

  17. Rapid measurement of spatial light distribution of a short-arc xenon flash lamp.

    PubMed

    Zhao, Youquan; Guo, Dexia; Liu, Xiao; Wang, Lingli; Jiang, Nan; Wang, Xianquan

    2016-08-20

    Small short-arc xenon flash lamps, yielding high energy and ultraviolet radiation without cooling structures, provide ideal analytic-instrument light. Improving instrument designs requires accurately determining spatial optical-flux distribution. Thus, this paper presents rapid scanning of a xenon lamp's central light intensity using a high-sensitivity photodiode to capture short light pulses. Results show two-dimensional optical illumination patterns. In the horizontal mode, the anode and cathode lie in the target plane. In the vertical mode, the two electrodes are centered in a circle. Thus, because the xenon lamp's spatial light flux varies by orientation and main driving voltage, we recommend sampling light horizontally in front of the lamp across small angles. PMID:27556976

  18. Assessing occupational mercury exposures during the on-site processing of spent fluorescent lamps.

    PubMed

    Lucas, Alan; Emery, Robert

    2006-03-01

    On-site processing of spent fluorescent lamps reduces storage space requirements and prevents mercury-containing lamp contents from entering the municipal waste stream, but such processing activities are typically not carried out in facilities specifically designed for the operation. This circumstance is of particular concern because lamp-handling and -crushing operations can release mercury vapors and aerosols that constitute an occupational exposure risk. In the study reported here, sampling for airborne mercury was performed during the processing of fluorescent lamps in an enclosed work area and in an open, outdoor work environment. In both enclosed and open work environments, exposures in excess of the established mercury exposure limit were detected. Simple interventions to prevent this possible unanticipated source of mercury exposure are described.

  19. System design and new applications for atomic force microscope based on tunneling

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, A. P.; Yang, X. H.

    2015-09-01

    The design of atomic force microscopy (AFM) with high resolution is introduced in this paper. Mainly, we have developed the system design of the apparatus based on tunneling. AFM.IPC-208B, this kind of apparatus combines scanning tunnel microscopy (STM) and AFM availability, and its lens body with original frame enhances the capability of the machine. In order to analyze the performance of AFM.IPC-208B, as a new tool in the field of Life Science, we make use of the system to study natural mica and molecular protein structures of Cattle-insulin and human antibody immunoglobulin G (IgG) coupled with staphylococcus protein A (SPA). As the results of new applications, the resolution of AFM.IPC-208B is proved to be 0.1 nm, and these nanometer measurement results provide much valuable information for the study of small molecular proteins and HIV experiments.

  20. Design of an atomic layer deposition reactor for hydrogen sulfide compatibility

    NASA Astrophysics Data System (ADS)

    Dasgupta, Neil P.; Mack, James F.; Langston, Michael C.; Bousetta, Al; Prinz, Fritz B.

    2010-04-01

    A customized atomic layer deposition (ALD) reactor was designed with components compatible with hydrogen sulfide (H2S) chemistry. H2S is used as a reactant for the ALD of metal sulfides. The use of H2S in an ALD reactor requires special attention to safety issues due to its highly toxic, flammable, and corrosive nature. The reactor was designed with respect to materials compatibility of all wetted components with H2S. A customized safety interlock system was developed to shut down the system in the event of toxic gas leakage, power outage, loss of building ventilation or compressed air pressure. ALD of lead sulfide (PbS) and zinc sulfide (ZnS) were demonstrated with no chemical contamination or detectable release of H2S.

  1. Characterizing risk factors for pediatric lamp oil product exposures

    PubMed Central

    SHEIKH, S.; CHANG, A.; KIESZAK, S.; LAW, R.; BENNETT, H. K. W.; ERNST, E.; BOND, G. R.; SPILLER, H. A.; SCHURZ-ROGERS, H.; CHU, A.; BRONSTEIN, A. C.; SCHIER, J. G.

    2015-01-01

    Poisonings from lamp oil ingestion continue to occur worldwide among the pediatric population despite preventive measures such as restricted sale of colored and scented lamp oils. This suggests that optimal prevention practices for unintentional pediatric exposures to lamp oil have yet to be identified and/or properly implemented. Objective To characterize demographic, health data, and potential risk factors associated with reported exposures to lamp oil by callers to poison centers (PCs) in the US and discuss their public health implications. Study design . This was a two part study in which the first part included characterizing all exposures to a lamp oil product reported to the National Poison Data System (NPDS) with regard to demographics, exposure, health, and outcome data from 1/1/2000 to 12/31/2010. Regional penetrance was calculated using NPDS data by grouping states into four regions and dividing the number of exposure calls by pediatric population per region (from the 2000 US census). Temporal analyses were performed on NPDS data by comparing number of exposures by season and around the July 4th holiday. Poisson regression was used to model the count of exposures for these analyses. In the second part of this project, in order to identify risk factors we conducted a telephone-based survey to the parents of children from five PCs in five different states. The 10 most recent lamp oil product exposure calls for each poison center were systematically selected for inclusion. Calls in which a parent or guardian witnessed a pediatric lamp oil product ingestion were eligible for inclusion. Data on demographics, exposure information, behavioral traits, and health were collected. A descriptive analysis was performed and Fisher’s exact test was used to evaluate associations between variables. All analyses were conducted using SAS v9.3. Results Among NPDS data, 2 years was the most common patient age reported and states in the Midwestern region had the highest

  2. An alternative lamp for fluorescence microscopy

    PubMed Central

    Brighton, W. D.; Grulich, R.

    1972-01-01

    There has been marked development in reagents, filters and microscope equipment for fluorescence microscopy and particularly for immunofluorescence studies. The use of a different and more efficient lamp for excitation of fluorochromes is now reported. PMID:4550854

  3. Low energy lamps and eye lens autofluorescence.

    PubMed

    Walsh, Glyn; Pearce, E Ian

    2010-10-01

    Tungsten filament lamps are rapidly being displaced from the market-place by compact fluorescent lamps. Although the colour temperature and total luminous output of a fluorescent lamp may be similar to that of an incandescent lamp, the output spectrum is very different. The peaks of the mercury vapour spectrum at 365.4nm (UV) and at 435.8nm (blue) are close to the peak fluorescence excitation wavelengths in the human lens, and it has been shown that such fluorescence can lower sensitivity to low contrast objects. This effect could also explain the reported preference for brown, red and yellow tinted lenses often reported by elderly patients, as these coincidentally block the ultraviolet and blue exciting wavelengths.

  4. LED lamp power management system and method

    DOEpatents

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  5. UHP lamps for projection systems: getting always brighter, smaller, and even more colorful

    NASA Astrophysics Data System (ADS)

    Weichmann, Ulrich; Giese, Hermann; Hechtfischer, Ulrich; Heusler, Gero; Koerber, Achim; Moench, Holger; Noertemann, Folke-Charlotte; Pekarski, Pavel; Pollmann-Retsch, Jens; Ritz, Arnd

    2004-05-01

    The past decade has seen a rapid development of projection systems. Projectors as small as only a few liters in size deliver several thousand screen lumens and are, with an efficacy of over 10 lm/W, the most efficient display systems realized today. This has been made possible by breakthroughs in lamp technology, particularly by the development of the UHP-lamp. This broadband light source with its outstanding brightness and lifetimes of over 10000 hours is ideal for projection applications. In this paper we want to describe three major technological trend lines in the development of UHP-lamps over the past decade: First, there is a trend towards brighter projectors, which is fostered by a brightness increase of the UHP-lamps. At the same time, projectors have seen a dramatic reduction in size, which has been made possible mostly by reducing lamp- and driver-size by even a factor of 10. This was only possible by the development of new ignition concepts as well as new optical designs of the reflector. And finally, UHP-lamps have seen quite some improvement in color rendering by using even higher pressures and shorter arc gaps. This allows for more colorful pictures and even more efficient projector designs.

  6. Spectral comparisons of sunlight and different lamps

    NASA Technical Reports Server (NTRS)

    Deitzer, Gerald

    1994-01-01

    The tables in this report were compiled to characterize the spectra of available lamp types and provide comparison to the spectra of sunlight. Table 1 reports the spectral distributions for various lamp sources and compares them to those measured for sunlight. Table 2 provides the amount of energy in Wm(exp -2) relative to the number of photons of PAR (photosynthetically active radiation) (400-700 nm) for each light source.

  7. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  8. Corneal astigmatism measuring module for slit lamps

    NASA Astrophysics Data System (ADS)

    Ventura, L.; Riul, C.; Sousa, S. J. F.; DeGroote, J. G. S.; Rosa Filho, A. B.; Oliveira, G. C. D.

    2006-06-01

    We have developed an automatic keratometer module for slit lamps that provides automatic measurements of the radii of the corneal curvature. The system projects 72 light spots displayed in a precise circle at the examined cornea. The displacement and deformation of the reflected image of these light spots are analysed providing the keratometry. Measurements in the range of 26.8-75 D can be obtained and a self-calibration system has been specially designed in order to keep the system calibrated. Infrared LEDs indicate automatically which eye is being examined. Volunteer patients (492) have been submitted to the system and the results show that our system has a high correlation factor with the commercially available manual keratometers and the keratometry measurements from a topographer. Our developed system is 95% in agreement with the corneal topographer (Humphrey—Atlas 995 CZM) and the manual keratometer (Topcon OM-4). The system's nominal precision is 0.05 mm for the radii of curvature and 1° for the associated axis. This research has been supported by Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP).

  9. Strong-LAMP: A LAMP Assay for Strongyloides spp. Detection in Stool and Urine Samples. Towards the Diagnosis of Human Strongyloidiasis Starting from a Rodent Model

    PubMed Central

    Gandasegui, Javier; Bajo Santos, Cristina; López-Abán, Julio; Saugar, José María; Rodríguez, Esperanza; Vicente, Belén; Muro, Antonio

    2016-01-01

    Background Strongyloides stercoralis, the chief causative agent of human strongyloidiasis, is a nematode globally distributed but mainly endemic in tropical and subtropical regions. Chronic infection is often clinically asymptomatic but it can result in severe hyperinfection syndrome or disseminated strongyloidiasis in immunocompromised patients. There is a great diversity of techniques used in diagnosing the disease, but definitive diagnosis is accomplished by parasitological examination of stool samples for morphological identification of parasite. Until now, no molecular method has been tested in urine samples as an alternative to stool samples for diagnosing strongyloidiasis. This study aimed to evaluate the use of a new molecular LAMP assay in a well-established Wistar rat experimental infection model using both stool and, for the first time, urine samples. The LAMP assay was also clinically evaluated in patients´ stool samples. Methodology/Principal Findings Stool and urine samples were obtained daily during a 28-day period from rats infected subcutaneously with different infective third-stage larvae doses of S. venezuelensis. The dynamics of parasite infection was determined by daily counting the number of eggs per gram of feces from day 1 to 28 post-infection. A set of primers for LAMP assay based on a DNA partial sequence in the 18S rRNA gene from S. venezuelensis was designed. The set up LAMP assay (namely, Strong-LAMP) allowed the sensitive detection of S. venezuelensis DNA in both stool and urine samples obtained from each infection group of rats and was also effective in S. stercoralis DNA amplification in patients´ stool samples with previously confirmed strongyloidiasis by parasitological and real-time PCR tests. Conclusions/Significance Our Strong-LAMP assay is an useful molecular tool in research of a strongyloidiasis experimental infection model in both stool and urine samples. After further validation, the Strong-LAMP could also be potentially

  10. Hollow cathode lamp based Faraday anomalous dispersion optical filter.

    PubMed

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-01-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the (88)Sr (5s(2))(1)S0 - (5s5p)(1)P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization. PMID:27418112

  11. Hollow cathode lamp based Faraday anomalous dispersion optical filter

    PubMed Central

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-01-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 − (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization. PMID:27418112

  12. Hollow cathode lamp based Faraday anomalous dispersion optical filter.

    PubMed

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-01-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the (88)Sr (5s(2))(1)S0 - (5s5p)(1)P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  13. Hollow cathode lamp based Faraday anomalous dispersion optical filter

    NASA Astrophysics Data System (ADS)

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-07-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 ‑ (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  14. Hollow cathode lamp based Faraday anomalous dispersion optical filter

    NASA Astrophysics Data System (ADS)

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-07-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 - (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  15. Xenon arc lamp spectral radiance modelling for satellite instrument calibration

    NASA Astrophysics Data System (ADS)

    Rolt, Stephen; Clark, Paul; Schmoll, Jürgen; Shaw, Benjamin J. R.

    2016-07-01

    Precise radiometric measurements play a central role in many areas of astronomical and terrestrial observation. We focus on the use of continuum light sources in the absolute radiometric calibration of detectors in an imaging spectrometer for space applications. The application, in this instance, revolves around the ground based calibration of the Sentinel-4/UVN instrument. This imaging spectrometer instrument is expected to be deployed in 2019 and will make spatially resolved spectroscopic measurements of atmospheric chemistry. The instrument, which operates across the UV/VIS and NIR spectrum from 305-775 nm, is designed to measure the absolute spectral radiance of the Earth and compare it with the absolute spectral irradiance of the Sun. Of key importance to the fidelity of these absolute measurements is the ground based calibration campaign. Continuum lamp sources that are temporally stable and are spatially well defined are central to this process. Xenon short arc lamps provide highly intense and efficient continuum illumination in a range extending from the ultra-violet to the infra-red and their spectrum is well matched to this specific application. Despite their widespread commercial use, certain aspects of their performance are not well documented in the literature. One of the important requirements in this calibration application is the delivery of highly uniform, collimated illumination at high radiance. In this process, it cannot be assumed that the xenon arc is a point source; the spatial distribution of the radiance must be characterised accurately. We present here careful measurements that thoroughly characterise the spatial distribution of the spectral radiance of a 1000W xenon lamp. A mathematical model is presented describing the spatial distribution. Temporal stability is another exceptionally important requirement in the calibration process. As such, the paper also describes strategies to re-inforce the temporal stability of the lamp output by

  16. [Purkinje images in slit lamp videography : Video article].

    PubMed

    Gellrich, M-M; Kandzia, C

    2016-09-01

    Reflexes that accompany every examination with the slit lamp are usually regarded as annoying and therefore do not receive much attention. In the video available online, clinical information "hidden" in the Purkinje images is analyzed according to our concept of slit lamp videography. In the first part of the video, the four Purkinje images which are reflections on the eye's optical surfaces are introduced for the phakic eye. In the pseudophakic eye, however, the refracting surfaces of the intraocular lens (IOL) have excellent optical properties and therefore form Purkinje images 3 and 4 of high quality. Especially the third Purkinje image from the anterior IOL surface, which is usually hardly visible in the phakic eye can be detected deep in the vitreous, enlarged through the eye's own optics like a magnifying glass. Its area of reflection can be used to visualize changes of the anterior segment at high contrast. The third Purkinje image carries valuable information about the anterior curvature and, thus, about the power of the IOL. If the same IOL type is implanted in a patient, often a difference between right and left of 0.5 diopter in its power can be detected by the difference in size of the respective third Purkinje image. In a historical excursion to the "prenatal phase" of the slit lamp in Uppsala, we show that our most important instrument in clinical work was originally designed for catoptric investigations (of specular reflections). Accordingly A. Gullstrand called it an ophthalmometric Nernst lamp. PMID:27558688

  17. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor.

    PubMed

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnO(x)-CVD layers. PMID:24089868

  18. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor.

    PubMed

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnO(x)-CVD layers.

  19. Metrological characterization of custom-designed 894.6 nm VCSELs for miniature atomic clocks.

    PubMed

    Gruet, F; Al-Samaneh, A; Kroemer, E; Bimboes, L; Miletic, D; Affolderbach, C; Wahl, D; Boudot, R; Mileti, G; Michalzik, R

    2013-03-11

    We report on the characterization and validation of custom-designed 894.6 nm vertical-cavity surface-emitting lasers (VCSELs), for use in miniature Cs atomic clocks based on coherent population trapping (CPT). The laser relative intensity noise (RIN) is measured to be 1 × 10(-11) Hz(-1) at 10 Hz Fourier frequency, for a laser power of 700 μW. The VCSEL frequency noise is 10(13) · f(-1) Hz(2)/Hz in the 10 Hz < f < 10(5) Hz range, which is in good agreement with the VCSEL’s measured fractional frequency instability (Allan deviation) of ≈ 1 × 10(-8) at 1 s, and also is consistent with the VCSEL’s typical optical linewidth of 20-25 MHz. The VCSEL bias current can be directly modulated at 4.596 GHz with a microwave power of -6 to +6 dBm to generate optical sidebands for CPT excitation. With such a VCSEL, a 1.04 kHz linewidth CPT clock resonance signal is detected in a microfabricated Cs cell filled with Ne buffer gas. These results are compatible with state-of-the-art CPT-based miniature atomic clocks exhibiting a short-term frequency instability of 2-3 × 10(-11) at τ = 1 s and few 10(-12) at τ = 10(4) s integration time..

  20. Metrological characterization of custom-designed 894.6 nm VCSELs for miniature atomic clocks.

    PubMed

    Gruet, F; Al-Samaneh, A; Kroemer, E; Bimboes, L; Miletic, D; Affolderbach, C; Wahl, D; Boudot, R; Mileti, G; Michalzik, R

    2013-03-11

    We report on the characterization and validation of custom-designed 894.6 nm vertical-cavity surface-emitting lasers (VCSELs), for use in miniature Cs atomic clocks based on coherent population trapping (CPT). The laser relative intensity noise (RIN) is measured to be 1 × 10(-11) Hz(-1) at 10 Hz Fourier frequency, for a laser power of 700 μW. The VCSEL frequency noise is 10(13) · f(-1) Hz(2)/Hz in the 10 Hz < f < 10(5) Hz range, which is in good agreement with the VCSEL’s measured fractional frequency instability (Allan deviation) of ≈ 1 × 10(-8) at 1 s, and also is consistent with the VCSEL’s typical optical linewidth of 20-25 MHz. The VCSEL bias current can be directly modulated at 4.596 GHz with a microwave power of -6 to +6 dBm to generate optical sidebands for CPT excitation. With such a VCSEL, a 1.04 kHz linewidth CPT clock resonance signal is detected in a microfabricated Cs cell filled with Ne buffer gas. These results are compatible with state-of-the-art CPT-based miniature atomic clocks exhibiting a short-term frequency instability of 2-3 × 10(-11) at τ = 1 s and few 10(-12) at τ = 10(4) s integration time.. PMID:23482148

  1. Compensator design for improved counterbalancing in high speed atomic force microscopy

    PubMed Central

    Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.

    2011-01-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds. PMID:22128989

  2. Perceptions of compact fluorescent lamps in the residential market. Final report

    SciTech Connect

    Weiner, J.; Campbell, C.J.

    1992-07-01

    Compact fluorescent lamps offer significant energy savings over other forms of residential lighting and last up to 10 times longer than conventional incandescent bulbs. In order to better understand existing barriers to acceptance and future opportunities for growth of compact fluorescent lighting in the residential retrofit sector, a three stage research project was designed and conducted by MACRO Consulting, Inc. Assessment of whether or not the benefits of compact fluorescent lamps are sufficient to overcome price resistance was one of the major purposes of this project. Residential customers were interviewed in focus group sessions to help determine key issues and motivating forces in the lighting/energy saving/cost saving equation. Residential customers in 5 major market areas were contacted by telephone, and data about their awareness, knowledge and use of compact fluorescent lighting were collected. These customers also participated in an attribute rating exercise in which compact fluorescent lamps were compared with fluorescent tubes and incandescent bulbs on a series of product attributes. A price elasticity exercise was also conducted. Teleconferences with retailers of compact fluorescent lamps were conducted in order to explore their knowledge of and attitudes towards compact fluorescent lamps. Customers agree that energy savings and longer life are both positive attributes for residential lighting products, but they are not yet ready to make the switch away from inexpensive, versatile and readily available incandescent bulbs to compact fluorescent lamps. Compact fluorescent lamps are rated poorly (even by ``satisfied`` users) on each of seven positive attributes of home lighting. Major barriers to increased use of compact fluorescent lamps include price, convenience, and performance. Prices above $10 are considered ``outrageous``. Product improvements are needed for appearance, light output and versatility.

  3. An Open Source "Smart Lamp" for the Optimization of Plant Systems and Thermal Comfort of Offices.

    PubMed

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2016-03-07

    The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called "Smart Lamp", useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment.

  4. An Open Source "Smart Lamp" for the Optimization of Plant Systems and Thermal Comfort of Offices.

    PubMed

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2016-01-01

    The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called "Smart Lamp", useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment. PMID:26959035

  5. Rapid and specific identification of Brucella abortus using the loop-mediated isothermal amplification (LAMP) assay.

    PubMed

    Kang, Sung-Il; Her, Moon; Kim, Ji-Yeon; Lee, Jin Ju; Lee, Kichan; Sung, So-Ra; Jung, Suk Chan

    2015-06-01

    A rapid and accurate diagnosis of brucellosis is required to reduce and prevent the spread of disease among animals and the risk of transfer to humans. In this study, a Brucella abortus-specific (Ba) LAMP assay was developed, that had six primers designed from the BruAb2_0168 region of chromosome I. The specificity of this LAMP assay was confirmed with Brucella reference strains, B. abortus vaccine strains, B. abortus isolates and phylogenetically or serologically related strains. The detection limit of target DNA was up to 20 fg/μl within 60 min. The sensitivity of the new LAMP assay was equal to or slightly higher than other PCR based assays. Moreover, this Ba-LAMP assay could specifically amplify all B. abortus biovars compared to previous PCR assays. To our knowledge, this is the first report of specific detection of B. abortus using a LAMP assay. The Ba-LAMP assay can offer a rapid, sensitive and accurate diagnosis of bovine brucellosis in the field.

  6. Lamp pumped Nd:YAG laser. Space-qualifiable Nd:YAG laser for optical communications

    NASA Technical Reports Server (NTRS)

    Ward, K. B.

    1973-01-01

    Results are given of a program concerned with the design, fabrication, and evaluation of alkali pump lamps for eventual use in a space qualified Nd:YAG laser system. The study included evaluation of 2mm through 6mm bore devices. Primary emphasis was placed upon the optimization of the 4mm bore lamp and later on the 6mm bore lamp. As part of this effort, reference was made to the Sylvania work concerned with the theoretical modeling of the Nd:YAG laser. With the knowledge gained, a projection of laser performance was made based upon realistic lamp parameters which should easily be achieved during following developmental efforts. Measurements were made on the lamp performance both in and out of the cavity configuration. One significant observation was that for a constant vapor pressure device, the spectral and fluorescent output did not vary for vacuum or argon environment. Therefore, the laser can be operated in an inert environment (eg. argon) with no degradation in output. Laser output of 3.26 watts at 430 watts input was obtained for an optimized 4mm bore lamp.

  7. Performance of multimirror quartzline lamps in a high-pressure, underwater environment

    NASA Technical Reports Server (NTRS)

    Slater, Howard A.

    1988-01-01

    Multimirror Quartzline Lamps are extremely versatile and effective for nonconventional imaging requirements such as high-speed photo and video instrumentation and high-magnification imaging. The lamps' versatility though, is not limited to conventional environments. Many research experiments and projects require a high pressure environment. Continuous photographic data acquisition in a high-pressure vessel requires wall penetrations and creates design problems as well as potential failure sites. Underwater photography adds the extra consideration of a liquid. This report expands upon the basic research presented in, Performance of Multimirror Quartzline Lamps in High-Pressure Environments, (NASA-TM-83793, Ernie Walker and Howard Slater, 1984). The report provides information to professional industrial, scientific, and technical photographers as well as research personnel on the survivability of lighting a multimirror quartzline lamp in a nonconventional high-pressure underwater environment. Test results of lighted ELH 300 W multimirror quartzline lamps under high-pressure conditions are documented and general information on the lamps' intensity (footcandle output), cone of light coverage, approximate color temperature is provided. Continuous lighting considerations in liquids are also discussed.

  8. Performance Of Multimirror Quartzline Lamps In A High-Pressure, Underwater Environment

    NASA Astrophysics Data System (ADS)

    Slater, Howard A.

    1988-12-01

    Multimirror Quartzline Lamps are extremely versatile and effective for nonconventional imaging requirements such as high-speed photo and video instrumentation and high-magnification imaging. The lamps' versatility though, is not limited to conventional environments. Many research experiments and projects require a high-pressure environment. Continuous photographic data acquisition in a high-pressure vessel requires wall penetrations and creates design problems as well as potential failure sites. Underwater photography adds the extra consideration of a liquid. This report expands upon the basic research presented in "Performance of Multimirror Quartzline Lamps in High-Pressure Environments" (NASA TM-83793, Ernie Walker and Howard Slater, 1984). The report provides information to professional industrial, scientific, and technical photographers as well as research personnel on the survivability of lighting a multimirror quartzline lamp in a nonconventional high-pressure underwater environment. Test results of lighted ELH 300 W multimirror quartzline lamps under high-pressure conditions are documented and general information on the lamp's intensity (footcandle output), cone of light coverage, approximate color temperature is provided. Continuous lighting considerations in liquids are also discussed.

  9. Performance of multimirror quartzline lamps in a high-pressure, underwater environment

    NASA Astrophysics Data System (ADS)

    Slater, Howard A.

    Multimirror Quartzline Lamps are extremely versatile and effective for nonconventional imaging requirements such as high-speed photo and video instrumentation and high-magnification imaging. The lamps' versatility though, is not limited to conventional environments. Many research experiments and projects require a high pressure environment. Continuous photographic data acquisition in a high-pressure vessel requires wall penetrations and creates design problems as well as potential failure sites. Underwater photography adds the extra consideration of a liquid. This report expands upon the basic research presented in, Performance of Multimirror Quartzline Lamps in High-Pressure Environments, (NASA-TM-83793, Ernie Walker and Howard Slater, 1984). The report provides information to professional industrial, scientific, and technical photographers as well as research personnel on the survivability of lighting a multimirror quartzline lamp in a nonconventional high-pressure underwater environment. Test results of lighted ELH 300 W multimirror quartzline lamps under high-pressure conditions are documented and general information on the lamps' intensity (footcandle output), cone of light coverage, approximate color temperature is provided. Continuous lighting considerations in liquids are also discussed.

  10. Molecular Mechanism for LAMP1 Recognition by Lassa Virus

    PubMed Central

    Cohen-Dvashi, Hadas; Cohen, Nadav; Israeli, Hadar

    2015-01-01

    ABSTRACT Lassa virus is a notorious human pathogen that infects many thousands of people each year in West Africa, causing severe viral hemorrhagic fevers and significant mortality. The surface glycoprotein of Lassa virus mediates receptor recognition through its GP1 subunit. Here we report the crystal structure of GP1 from Lassa virus, which is the first representative GP1 structure for Old World arenaviruses. We identify a unique triad of histidines that forms a binding site for LAMP1, a known lysosomal protein recently discovered to be a critical receptor for internalized Lassa virus at acidic pH. We demonstrate that mutation of this histidine triad, which is highly conserved among Old World arenaviruses, impairs LAMP1 recognition. Our biochemical and structural data further suggest that GP1 from Lassa virus may undergo irreversible conformational changes that could serve as an immunological decoy mechanism. Together with a variable region that we identify on the surface of GP1, those could be two distinct mechanisms that Lassa virus utilizes to avoid antibody-based immune response. IMPORTANCE Structural data at atomic resolution for viral proteins is key for understanding their function at the molecular level and can facilitate novel avenues for combating viral infections. Here we used X-ray protein crystallography to decipher the crystal structure of the receptor-binding domain (GP1) from Lassa virus. This is a pathogenic virus that causes significant illness and mortality in West Africa. This structure reveals the overall architecture of GP1 domains from the group of viruses known as the Old World arenaviruses. Using this structural information, we elucidated the mechanisms for pH switch and binding of Lassa virus to LAMP1, a recently identified host receptor that is critical for successful infection. Lastly, our structural analysis suggests two novel immune evasion mechanisms that Lassa virus may utilize to escape antibody-based immune response. PMID

  11. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  12. Microhollow Cathode Discharge Excimer Lamps

    NASA Astrophysics Data System (ADS)

    Schoenbach, Karl H.

    1999-10-01

    Reducing the diameter of the cathode hole in hollow cathode discharge geometry to values on the order of 100 μm has allowed us to extend the pressure range of stable, direct current hollow cathode discharges up to atmospheric pressure. The large concentration of high-energy electrons in the nonthermal discharge, in combination with the high neutral gas density favors three-body processes such as rare gas excimer formation. Excimer emission in argon and xenon discharges peaking at 130 nm and 172 nm, respectively, was observed with an efficiency for xenon excimer emission between 6% and 9% in a pressure range from 250 Torr and 450 Torr. Typical forward voltages are 200 V at dc currents of up to 8 mA. Pulsed operation allowed us to extend the current range in xenon discharges to 80 mA. At pressures in the hundreds of Torr range the source of the excimer radiation extends over an area of several times the cathode opening. With increasing pressure the source is reduced in size and eventually, at pressures exceeding atmospheric becomes confined to the cathode opening. For a specific pressure the radiative power increases linearly with current at constant radiant emittance. For atmospheric pressure discharges in xenon the radiative emittance is approximately 20 W/cm^2. In addition to operating the discharge in rare gases, we have also explored its use as rare gas-halide excimer source. In a gas mixture containing 1 % ArF we were able to generate stable dc discharges in flowing gas at pressures ranging from 100 Torr to atmospheric pressure. The spectra of the high-pressure ArF discharges are dominated by excimer radiation peaking at 193 nm. The excimer emission of an ArF discharge at 700 Torr was measured as 150 mW. With a discharge voltage of 500 V, and a current of 10 mA the efficiency is 3 %. Parallel operation of the micro-discharges by means of a resistive anode offers the possibility to use microhollow cathode discharge arrays as dc-excimer lamps, with estimated

  13. Microhollow Cathode Discharge Excimer Lamps

    NASA Astrophysics Data System (ADS)

    Schoenbach, K. H.

    1999-11-01

    character. Reducing the diameter of the cathode hole in a hollow cathode discharge geometry to values on the order of 100 μm has allowed us to extend the pressure range of stable, direct current hollow cathode gas discharges up to atmospheric pressure. The large concentration of high-energy electrons generated in the cathode fall, in combination with the high neutral gas density favors three-body processes such as excimer formation. Excimer emission in xenon discharges peaking at 172 nm, was observed with efficiencies between 6% and 9% at pressures of several hundred Torr. Typical forward voltages are 200 V at dc currents up to 8 mA. Pulsed operation allowed us to extend the current range to 80 mA with corresponding linear increase in optical power. Spatially resolved measurements showed that the source of the excimer radiation at atmospheric pressure and currents of less than 8 mA is confined to the cathode opening. The radiative emittance at 8 mA and atmospheric pressure is approximately 20 W/cm^2. With reduced pressure and increased current, respectively, the excimer source extends into the area outside the cathode hole. Besides in xenon, excimer emission in argon at a peak wavelength of 128 nm has been recorded. In addition to operating the discharge in rare gases, we have also explored its use as rare gas-halide excimer source. In a gas mixture containing 1% ArF we were able to generate stable dc discharges in flowing gas at pressures ranging from 100 Torr to atmospheric pressure. The spectra of the high-pressure ArF discharges are dominated by excimer radiation peaking at 193 nm. The excimer emission of a single ArF discharge at 700 Torr was measured as 150 mW at an efficiency of 3%. Parallel operation of these discharges by means of a resistive anode, which has recently been demonstrated for argon discharges, offers the possibility to use microhollow cathode discharge arrays as dc-excimer lamps, with estimated power densities exceeding 10 W/cm^2. abstract

  14. Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps

    SciTech Connect

    Royer, Michael P.; Poplawski, Michael E.; Brown, Charles C.

    2014-12-01

    To date, all three reports in the retail lamps series have focused on basic performance parameters, such as lumen output, efficacy, and color quality. This report goes a step further, examining the photoelectric characteristics (i.e., dimming and flicker) of a subset of lamps from CALiPER Retails Lamps Study 3. Specifically, this report focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers. The results demonstrate notable variation across the various lamps, but little variation between the four dimmers. Overall, the LED lamps: ~tended to have higher relative light output compared to the incandescent and halogen benchmark at the same dimmer output signal (RMS voltage). The lamps’ dimming curves (i.e., the relationship between control signal and relative light output) ranged from linear to very similar to the square-law curve typical of an incandescent lamp. ~generally exhibited symmetrical behavior—the same dimming curve—when measured proceeding from maximum to minimum or minimum to maximum control signal. ~mostly dimmed below 10% of full light output, with some exceptions for specific lamp and dimmer combinations ~exhibited a range of flicker characteristics, with many comparing favorably to the level typical of a magnetically-ballasted fluorescent lamp through at least a majority of the dimming range. ~ always exceeded the relative (normalized) efficacy over the dimming range of the benchmark lamps, which rapidly decline in efficacy when they are dimmed. This report generally does not attempt to rank the performance of one product compared to another, but instead focuses on the collective performance of the group versus conventional incandescent or halogen lamps, the performance of which is likely to be the baseline for a majority of consumers. Undoubtedly, some LED lamps perform better—or more similar to conventional lamps—than others. Some perform desirably for one

  15. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    PubMed

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  16. Atomic switch networks-nanoarchitectonic design of a complex system for natural computing.

    PubMed

    Demis, E C; Aguilera, R; Sillin, H O; Scharnhorst, K; Sandouk, E J; Aono, M; Stieg, A Z; Gimzewski, J K

    2015-05-22

    Self-organized complex systems are ubiquitous in nature, and the structural complexity of these natural systems can be used as a model to design new classes of functional nanotechnology based on highly interconnected networks of interacting units. Conventional fabrication methods for electronic computing devices are subject to known scaling limits, confining the diversity of possible architectures. This work explores methods of fabricating a self-organized complex device known as an atomic switch network and discusses its potential utility in computing. Through a merger of top-down and bottom-up techniques guided by mathematical and nanoarchitectonic design principles, we have produced functional devices comprising nanoscale elements whose intrinsic nonlinear dynamics and memorization capabilities produce robust patterns of distributed activity and a capacity for nonlinear transformation of input signals when configured in the appropriate network architecture. Their operational characteristics represent a unique potential for hardware implementation of natural computation, specifically in the area of reservoir computing-a burgeoning field that investigates the computational aptitude of complex biologically inspired systems.

  17. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    SciTech Connect

    Loganathan, Muthukumaran; Bristow, Douglas A.

    2014-04-15

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  18. Ethylene Decomposition Initiated by Ultraviolet Radiation from Low Pressure Mercury Lamps: Kinetics Model Prediction and Experimental Verification.

    NASA Astrophysics Data System (ADS)

    Jozwiak, Zbigniew Boguslaw

    1995-01-01

    Ethylene is an important auto-catalytic plant growth hormone. Removal of ethylene from the atmosphere surrounding ethylene-sensitive horticultural products may be very beneficial, allowing an extended period of storage and preventing or delaying the induction of disorders. Various ethylene removal techniques have been studied and put into practice. One technique is based on using low pressure mercury ultraviolet lamps as a source of photochemical energy to initiate chemical reactions that destroy ethylene. Although previous research showed that ethylene disappeared in experiments with mercury ultraviolet lamps, the reactions were not described and the actual cause of ethylene disappearance remained unknown. Proposed causes for this disappearance were the direct action of ultraviolet rays on ethylene, reaction of ethylene with ozone (which is formed when air or gas containing molecular oxygen is exposed to radiation emitted by this type of lamp), or reactions with atomic oxygen leading to formation of ozone. The objective of the present study was to determine the set of physical and chemical actions leading to the disappearance of ethylene from artificial storage atmosphere under conditions of ultraviolet irradiation. The goal was achieved by developing a static chemical model based on the physical properties of a commercially available ultraviolet lamp, the photochemistry of gases, and the kinetics of chemical reactions. The model was used to perform computer simulations predicting time dependent concentrations of chemical species included in the model. Development of the model was accompanied by the design of a reaction chamber used for experimental verification. The model provided a good prediction of the general behavior of the species involved in the chemistry under consideration; however the model predicted lower than measured rate of ethylene disappearance. Some reasons for the model -experiment disagreement are radiation intensity averaging, the experimental

  19. Optical radiation emissions from compact fluorescent lamps.

    PubMed

    Khazova, M; O'Hagan, J B

    2008-01-01

    There is a drive to energy efficiency to mitigate climate change. To meet this challenge, the UK Government has proposed phasing out incandescent lamps by the end of 2011 and replacing them with energy efficient fluorescent lighting, including compact fluorescent lamps (CFLs) with integrated ballasts. This paper presents a summary of an assessment conducted by the Health Protection Agency in March 2008 to evaluate the optical radiation emissions of CFLs currently available in the UK consumer market. The study concluded that the UV emissions from a significant percentage of the tested CFLs with single envelopes may result in foreseeable overexposure of the skin when these lamps are used in desk or task lighting applications. The optical output of all tested CFLs, in addition to high-frequency modulation, had a 100-Hz envelope with modulation in excess of 15%. This degree of modulation may be linked to a number of adverse effects.

  20. Atomic models of de novo designed cc beta-Met amyloid-like fibrils.

    PubMed

    Steinmetz, Michel O; Gattin, Zrinka; Verel, Rene; Ciani, Barbara; Stromer, Thusnelda; Green, Janelle M; Tittmann, Peter; Schulze-Briese, Clemens; Gross, Heinz; van Gunsteren, Wilfred F; Meier, Beat H; Serpell, Louise C; Müller, Shirley A; Kammerer, Richard A

    2008-02-22

    The common characteristics of amyloid and amyloid-like fibrils from disease- and non-disease-associated proteins offer the prospect that well-defined model systems can be used to systematically dissect the driving forces of amyloid formation. We recently reported the de novo designed cc beta peptide model system that forms a native-like coiled-coil structure at low temperatures and which can be switched to amyloid-like fibrils by increasing the temperature. Here, we report a detailed molecular description of the system in its fibrillar state by characterizing the cc beta-Met variant using several microscopic techniques, circular dichroism spectroscopy, X-ray fiber diffraction, solid-state nuclear magnetic resonance, and molecular dynamics calculations. We show that cc beta-Met forms amyloid-like fibrils of different morphologies on both the macroscopic and atomic levels, which can be controlled by variations of assembly conditions. Interestingly, heterogeneity is also observed along single fibrils. We propose atomic models of the cc beta-Met amyloid-like fibril, which are in good agreement with all experimental data. The models provide a rational explanation why oxidation of methionine residues completely abolishes cc beta-Met amyloid fibril formation, indicating that a small number of site-specific hydrophobic interactions can play a major role in the packing of polypeptide-chain segments within amyloid fibrils. The detailed structural information available for the cc beta model system provides a strong molecular basis for understanding the influence and relative contribution of hydrophobic interactions on native-state stability, kinetics of fibril formation, fibril packing, and polymorphism.

  1. Application of novel loop-mediated isothermal amplification (LAMP) for rapid authentication of the herbal tea ingredient Hedyotis diffusa Willd.

    PubMed

    Li, Ming; Wong, Yuk-Lau; Jiang, Li-Li; Wong, Ka-Lok; Wong, Yuen-Ting; Lau, Clara Bik-San; Shaw, Pang-Chui

    2013-12-01

    Hedyotis diffusa Willd. (Baihuasheshecao) is an ingredient of herbal teas commonly consumed in the Orient and tropical Asia for cancer treatment and health maintenance. In the market, this ingredient is frequently adulterated by the related species Hedyotis corymbosa (L.) Lam. The objective of this study is to develop a novel loop-mediated isothermal amplification (LAMP) technique to differentiate H. diffusa from its adulterant H. corymbosa. A set of four internal control primers (F3, FIP, BIP and B3) were designed based on six loci in the internal transcribed spacer (ITS) for LAMP of both H. diffusa and H. corymbosa. Two specific primers (S_F3 and S_FIP) were designed for specific LAMP detection of H. diffusa only. Our data showed that LAMP was successful for both H. diffusa and H. corymbosa in internal control. In contrast, only H. diffusa was detected in specific LAMP using the specific primers S_F3 and S_FIP. This study showed that LAMP was useful to differentiate H. diffusa from its adulterant H. corymbosa. This study is significant for the verification of the authenticity for better quality control of this common herbal tea ingredient. The strategy of including an internal control assures the quality of the concerned DNA region for LAMP.

  2. Characterization of FEL Lamps as Secondary Standard of Luminous Intensity

    NASA Astrophysics Data System (ADS)

    Junior, Antonio F. G. Ferreira; Machado, Ilomar E. C.

    2008-04-01

    This work presents a study comparing the drift during seasoning of four of 1000W FEL-type lamp regarding the use of theses lamps as secondary luminous intensity standard. Three of these lamps are manufactured by Philips and the other lamp is manufactured by ORIEL. The lamps seasoning takes normally 30 hours and during the seasoning period relative drift of the lamp luminous intensity, lamp current and voltage are measured at each 5 minutes. The correlated color temperature of the lamps is measured at the end of lamp seasoning period. The luminous intensity is measured using a 4 1/2 digits photometer with thermal stabilized detector head, the lamp voltage is measured using a 6 1/2 digits voltmeter and the current is measured and controlled by a calibrated current power source shunt. The lamp sockets are adapted to a cinematic positioning device which is placed on an adjustable mounting device. A cross target is used as reference for alignment with a He-Ne Laser. In the 1st group of three lamps from Philips the minimum relative drift in luminous intensity per hour at the end of seasoning period was 0,0075 percent and the maximum relative drift was 0,02 percent. Voltage relative drift of the lamps were very similar in shape on the last few hours of the seasoning period, but different for one lamp at the beginning. The lamp current remained practically constant at 8 A which was the current adjusted in the current power source. One lamp had the luminous intensity calibrated by the National Institute of Metrology from Argentina and is used as a transfer standard for the other lamps.

  3. LAMP proteins are required for fusion of lysosomes with phagosomes.

    PubMed

    Huynh, Kassidy K; Eskelinen, Eeva-Liisa; Scott, Cameron C; Malevanets, Anatoly; Saftig, Paul; Grinstein, Sergio

    2007-01-24

    Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) are delivered to phagosomes during the maturation process. We used cells from LAMP-deficient mice to analyze the role of these proteins in phagosome maturation. Macrophages from LAMP-1- or LAMP-2-deficient mice displayed normal fusion of lysosomes with phagosomes. Because ablation of both the lamp-1 and lamp-2 genes yields an embryonic-lethal phenotype, we were unable to study macrophages from double knockouts. Instead, we reconstituted phagocytosis in murine embryonic fibroblasts (MEFs) by transfection of FcgammaIIA receptors. Phagosomes formed by FcgammaIIA-transfected MEFs obtained from LAMP-1- or LAMP-2- deficient mice acquired lysosomal markers. Remarkably, although FcgammaIIA-transfected MEFs from double-deficient mice ingested particles normally, phagosomal maturation was arrested. LAMP-1 and LAMP-2 double-deficient phagosomes acquired Rab5 and accumulated phosphatidylinositol 3-phosphate, but failed to recruit Rab7 and did not fuse with lysosomes. We attribute the deficiency to impaired organellar motility along microtubules. Time-lapse cinematography revealed that late endosomes/lysosomes as well as phagosomes lacking LAMP-1 and LAMP-2 had reduced ability to move toward the microtubule-organizing center, likely precluding their interaction with each other. PMID:17245426

  4. Efficiency and efficacy of incandescent lamps

    NASA Astrophysics Data System (ADS)

    Agrawal, D. C.; Leff, Harvey S.; Menon, V. J.

    1996-05-01

    Planck's radiation formula is used to estimate the dimensionless efficiency of incandescent lamps as a function of filament temperature, with typical values of 2%-13%. Similarly, using the known spectral luminous efficiency of the eye, the efficacy of incandescent light bulbs is estimated as a function of temperature, showing values of 8-24 L W-1 for bulbs of 10-1000 W. The efficiency and efficacy results compare favorably with published data and enable estimation of the filament temperature for any lamp of known efficacy.

  5. Ocular complications of malfunctioning mercury vapor lamps.

    PubMed

    Thun, M J; Altman, R; Ellingson, O; Mills, L F; Talansky, M L

    1982-11-01

    We report an outbreak of keratoconjunctivitis and skin erythema caused by ultraviolet radiation from a damaged high-intensity mercury vapor lamp. Twenty-six persons became ill after using a basketball court; symptoms included conjunctivitis (100%), skin erythema (54%), and punctate keratitis (19%). This outbreak is one of 37 similar episodes involving at least 629 persons reported to the Food and Drug Administration since 1969. Physicians should be aware that damaged high-intensity mercury vapor lamps are a continuing public health problem with substantial morbidity. Measures to prevent such occurrences are suggested. PMID:7181332

  6. Orienting Arc Lamps for Longest Life

    NASA Technical Reports Server (NTRS)

    Kiss, J.

    1985-01-01

    Temperature distribution strongly affects performance. Tests on floodlights for Space Shuttle payload bay show useful life of metal halide dc arc lamp prolonged by mounting "anode down" and wiring for maximum heat conduction away from electrodes. Anode-down configuration, anode and cathode temperatures stabilize at 333 degrees and 313 degrees C, respectively, after 1 hour of operation. Temperatures both below limit for quartz-to-metal seals, and lamps able to withstand a 2,000-hour life test with satisfactory light output at end.

  7. Ocular complications of malfunctioning mercury vapor lamps.

    PubMed

    Thun, M J; Altman, R; Ellingson, O; Mills, L F; Talansky, M L

    1982-11-01

    We report an outbreak of keratoconjunctivitis and skin erythema caused by ultraviolet radiation from a damaged high-intensity mercury vapor lamp. Twenty-six persons became ill after using a basketball court; symptoms included conjunctivitis (100%), skin erythema (54%), and punctate keratitis (19%). This outbreak is one of 37 similar episodes involving at least 629 persons reported to the Food and Drug Administration since 1969. Physicians should be aware that damaged high-intensity mercury vapor lamps are a continuing public health problem with substantial morbidity. Measures to prevent such occurrences are suggested.

  8. Free-form lenses for high illumination quality light-emitting diode MR16 lamps

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Liu, Sheng; Wang, Kai; Liu, Zongyuan; Luo, Xiaobing

    2009-12-01

    Light-emitting diode (LED) MR16 lamps, regarded as one typical general lighting product of LEDs, are being widely used in many applications. Light efficiency into a main beam and uniformity are two key issues for high quality illumination of LED MR16 lamps. In this study, a practical and precise nonimaging optical design method is presented, and two novel 90- and 120-deg free-form lenses for high illumination quality LED MR16 lamps are designed according to this method. Based on the Monte-Carlo ray-tracing method, numerical simulation results demonstrate that the light output efficiencies of these novel lenses reach as high as 98% and are 17% higher than that of traditional total internal reflection (TIR) MR16 lens. Moreover, more than 89% of light exiting from the surfaces of these novel lenses irradiate within the desired receive target, while only 60% irradiate for traditional TIR lens. The uniformities of illuminance distribution across the target of these novel MR16 lamps also are much higher. In addition, these novel lenses are both quite compact and no more than 1/5 of that of the TIR lens. Therefore, these LED MR16 lamps integrated by novel lenses provide an effective solution to high quality illumination.

  9. Application of Wireless Intelligent Control System for HPS Lamps and LEDs Combined Illumination in Road Tunnel

    PubMed Central

    Lai, Jinxing; Qiu, Junling; Chen, Jianxun; Wang, Yaqiong; Fan, Haobo

    2014-01-01

    Because of the particularity of the environment in the tunnel, the rational tunnel illumination system should be developed, so as to optimize the tunnel environment. Considering the high cost of traditional tunnel illumination system with high-pressure sodium (HPS) lamps as well as the effect of a single light source on tunnel entrance, the energy-saving illumination system with HPS lamps and LEDs combined illumination in road tunnel, which could make full use of these two kinds of lamps, was proposed. The wireless intelligent control system based on HPS lamps and LEDs combined illumination and microcontrol unit (MCU) Si1000 wireless communication technology was designed. And the remote monitoring, wireless communication, and PWM dimming module of this system were designed emphatically. Intensity detector and vehicle flow detector can be configured in wireless intelligent control system, which gather the information to the master control unit, and then the information is sent to the monitoring center through the Ethernet. The control strategies are got by the monitoring center according to the calculated results, and the control unit wirelessly sends parameters to lamps, which adjust the luminance of each segment of the tunnel and realize the wireless intelligent control of combined illumination in road tunnel. PMID:25587266

  10. LRO-LAMP observations of the LCROSS impact plume.

    PubMed

    Gladstone, G Randall; Hurley, Dana M; Retherford, Kurt D; Feldman, Paul D; Pryor, Wayne R; Chaufray, Jean-Yves; Versteeg, Maarten; Greathouse, Thomas K; Steffl, Andrew J; Throop, Henry; Parker, Joel Wm; Kaufmann, David E; Egan, Anthony F; Davis, Michael W; Slater, David C; Mukherjee, Joey; Miles, Paul F; Hendrix, Amanda R; Colaprete, Anthony; Stern, S Alan

    2010-10-22

    On 9 October 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) sent a kinetic impactor to strike Cabeus crater, on a mission to search for water ice and other volatiles expected to be trapped in lunar polar soils. The Lyman Alpha Mapping Project (LAMP) ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO) observed the plume generated by the LCROSS impact as far-ultraviolet emissions from the fluorescence of sunlight by molecular hydrogen and carbon monoxide, plus resonantly scattered sunlight from atomic mercury, with contributions from calcium and magnesium. The observed light curve is well simulated by the expansion of a vapor cloud at a temperature of ~1000 kelvin, containing ~570 kilograms (kg) of carbon monoxide, ~140 kg of molecular hydrogen, ~160 kg of calcium, ~120 kg of mercury, and ~40 kg of magnesium. PMID:20966244

  11. LRO-LAMP observations of the LCROSS impact plume.

    PubMed

    Gladstone, G Randall; Hurley, Dana M; Retherford, Kurt D; Feldman, Paul D; Pryor, Wayne R; Chaufray, Jean-Yves; Versteeg, Maarten; Greathouse, Thomas K; Steffl, Andrew J; Throop, Henry; Parker, Joel Wm; Kaufmann, David E; Egan, Anthony F; Davis, Michael W; Slater, David C; Mukherjee, Joey; Miles, Paul F; Hendrix, Amanda R; Colaprete, Anthony; Stern, S Alan

    2010-10-22

    On 9 October 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) sent a kinetic impactor to strike Cabeus crater, on a mission to search for water ice and other volatiles expected to be trapped in lunar polar soils. The Lyman Alpha Mapping Project (LAMP) ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO) observed the plume generated by the LCROSS impact as far-ultraviolet emissions from the fluorescence of sunlight by molecular hydrogen and carbon monoxide, plus resonantly scattered sunlight from atomic mercury, with contributions from calcium and magnesium. The observed light curve is well simulated by the expansion of a vapor cloud at a temperature of ~1000 kelvin, containing ~570 kilograms (kg) of carbon monoxide, ~140 kg of molecular hydrogen, ~160 kg of calcium, ~120 kg of mercury, and ~40 kg of magnesium.

  12. Detail view of lamp in law library; Jennewein modeled symbols ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of lamp in law library; Jennewein modeled symbols of the four seasons on the lamp's aluminum supports - United States Department of Justice, Constitution Avenue between Ninth & Tenth Streets, Northwest, Washington, District of Columbia, DC

  13. 2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP AND CHIMNEY COMPANY IN BACKGROUND. - Bridgeport Lamp Chimney Company, Simpson Creek Bridge, Spanning Simpson Creek, State Route 58 vicinity, Bridgeport, Harrison County, WV

  14. Lamp automatically switches to new filament on burnout

    NASA Technical Reports Server (NTRS)

    Ingle, W. B.

    1966-01-01

    Lamp with primary and secondary filaments has a means for automatic switching to the secondary filament at primary filament burnout. Lamp failures and resultant expenses during oscillograph printing are appreciably reduced.

  15. Circular, explosion-proof lamp provides uniform illumination

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Circular explosion-proof fluorescent lamp is fitted around a TV camera lens to provide shadowless illumination with a low radiant heat flux. The lamp is mounted in a transparent acrylic housing sealed with clear silicone rubber.

  16. 75 FR 22213 - Energy Conservation Program: Test Procedures for General Service Fluorescent Lamps, Incandescent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... procedures for general service fluorescent lamps, incandescent reflector lamps, and general service... final rule in the Federal Register titled, ``Test Procedures for General Service Fluorescent Lamps... titled, ``Fluorescent and Incandescent Lamp Test Procedures'' (hereafter the ``May 1997 final rule'')....

  17. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    SciTech Connect

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J.; Denissen, C.; Suijker, J.

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  18. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    NASA Astrophysics Data System (ADS)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Denissen, C.; Suijker, J.; Awakowicz, P.; Mentel, J.

    2015-08-01

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  19. Acute And Long-Term Bioeffects And Lamp Safety

    NASA Astrophysics Data System (ADS)

    Andersen, F. Alan

    1980-10-01

    Knowledge of both acute and chronic biological effects is currently used to evaluate lamp safety. In some cases, a quantitative basis for avoiding exposures greater than a certain value can be stated. In other cases, however, only a qualitative estimate of the hazard is available. In a discussion that uses mercury vapor lamps, tanning booths, and sodium vapor lamps as examples, the interplay between the two types of data leading to an evaluation of lamp safety is described.

  20. High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues

    NASA Astrophysics Data System (ADS)

    Bazaei, A.; Yong, Yuen K.; Moheimani, S. O. Reza

    2012-06-01

    Tracking of triangular or sawtooth waveforms is a major difficulty for achieving high-speed operation in many scanning applications such as scanning probe microscopy. Such non-smooth waveforms contain high order harmonics of the scan frequency that can excite mechanical resonant modes of the positioning system, limiting the scan range and bandwidth. Hence, fast raster scanning often leads to image distortion. This paper proposes analysis and design methodologies for a nonlinear and smooth closed curve, known as Lissajous pattern, which allows much faster operations compared to the ordinary scan patterns. A simple closed-form measure is formulated for the image resolution of the Lissajous pattern. This enables us to systematically determine the scan parameters. Using internal model controllers (IMC), this non-raster scan method is implemented on a commercial atomic force microscope driven by a low resonance frequency positioning stage. To reduce the tracking errors due to actuator nonlinearities, higher order harmonic oscillators are included in the IMC controllers. This results in significant improvement compared to the traditional IMC method. It is shown that the proposed IMC controller achieves much better tracking performances compared to integral controllers when the noise rejection performances is a concern.

  1. Evaluation of effervescent atomizer internal design on the spray unsteadiness using a phase/Doppler particle analyzer

    SciTech Connect

    Liu, Meng; Duan, YuFeng; Zhang, TieNan

    2010-09-15

    The purpose of this research was to investigate the dependence of effervescent spray unsteadiness on operational conditions and atomizer internal design by the ideal spray theory of Edwards and Marx. The convergent-divergent effervescent atomizer spraying water with air as atomizing medium in the ''outside-in'' gas injection was used in this study. Results demonstrated that droplet formation process at various air to liquid ratio (ALR) led to the spray unsteadiness and all droplet size classes exhibited unsteadiness behavior in spray. The spray unsteadiness reduced quickly at ALR of 3% and decreased moderately at ALR of other values as the axial distance increased. When the axial distance was 200 mm, the spray unsteadiness reduced dramatically with the increase in radial distance, but lower spray unsteadiness at the center of spray and higher spray unsteadiness at the edge of spray were shown as the axial distance increased. The spray unsteadiness at the center region of spray increased with the injection pressure. Low spray unsteadiness and good atomization performance can be obtained when the diameter of incline aeration holes increased at ALR of 10%. Although short mixing chamber with large discharge orifice diameter for convergent-divergent effervescent atomizer produced good atomization, the center region of spay showed high spray unsteadiness and maybe formed the droplet clustering. (author)

  2. Cold Light from Hot Atoms and Molecules

    SciTech Connect

    Lister, Graeme; Curry, John J.

    2011-05-11

    The introduction of rare earth atoms and molecules into lighting discharges led to great advances in efficacy of these lamps. Atoms such as Dy, Ho and Ce provide excellent radiation sources for lighting applications, with rich visible spectra, such that a suitable combination of these elements can provide high quality white light. Rare earth molecules have also proved important in enhancing the radiation spectrum from phosphors in fluorescent lamps. This paper reviews some of the current aspects of lighting research, particularly rare earth chemistry and radiation, and the associated fundamental atomic and molecular data.

  3. CW arc-lamp-pumped alexandrite lasers

    SciTech Connect

    Samelson, H.; Walling, J.C.; Wernikowski, T.; Harter, D.J.

    1988-06-01

    The performance characteristics of arc-lamp- (Xe and Hg) pumped, CW alexandrite lasers are described in detail. The modes of operation considered are free running, tuned, and repetitively Q-switched. The experimental arrangement and apparatus are also outlined. The experimental results are discussed in terms of a steady-state model, and the areas of agreement and difficulty are pointed out.

  4. Blackbody Radiation from an Incandescent Lamp

    ERIC Educational Resources Information Center

    Ribeiro, C. I.

    2014-01-01

    In this article we propose an activity aimed at introductory students to help them understand the Stefan-Boltzmann and Wien's displacement laws. It only requires simple materials that are available at any school: an incandescent lamp, a variable dc energy supply, and a computer to run an interactive simulation of the blackbody spectrum.…

  5. 49 CFR 234.221 - Lamp voltage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Lamp voltage. 234.221 Section 234.221 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY AND STATE ACTION PLANS...

  6. 49 CFR 234.221 - Lamp voltage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lamp voltage. 234.221 Section 234.221 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY AND STATE ACTION PLANS...

  7. Heat Lamps Solder Solar Array Quickly

    NASA Technical Reports Server (NTRS)

    Coyle, P. J.; Crouthamel, M. S.

    1982-01-01

    Interconnection tabs in a nine-solar-cell array have been soldered simultaneously with radiant heat. Cells and tabs are held in position for soldering by sandwiching them between compliant silicone-rubber vacuum platen and transparent polyimide sealing membrane. Heat lamps warm cells, producing smooth, flat solder joints of high quality.

  8. Breakdown characteristics of xenon HID Lamps

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  9. A prototype high power portable lamp

    NASA Technical Reports Server (NTRS)

    Sammis, J. C.

    1969-01-01

    Portable lighting system serves the combined work and photographic needs of manned spacecraft efforts. This system enables the lamps to be momentarily brightened while the camera shutter is opened. The brightness is adequate for black and white or color photography and yet the increased heat load is nil.

  10. LRO-LAMP Determination of FUV Reflectances in the Moon's Permanently Shadowed Regions

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Retherford, K. D.; Stern, S. A.; Egan, A. F.; Miles, P. F.; Versteeg, M. H.; Slater, D. C.; Davis, M. W.; Parker, J. W.; Kaufmann, D. E.; Greathouse, T. K.; Steffl, A. J.; Mukherjee, J.; Horvath, D. G.; Rojas, P. M.; Feldman, P. D.; Hurley, D. M.; Pryor, W. R.; Hendrix, A. R.

    2011-10-01

    The Moon's permanently shadowed regions (PSRs) near each pole present difficult targets for remote sensing. The Lyman Alpha Mapping Project (LAMP) instrument on the Lunar Reconnaissance Orbiter (LRO) mission is able to map PSRs at far-ultraviolet (FUV) wavelengths using faint sources of illumination from the night sky; the all-sky Lyα glow produced as interplanetary H atoms scatter the Sun's bright Lyα emission line, and the much fainter source from UV-bright stars.

  11. CALiPER Report 20.2: Dimming, Flicker, and Power Quality Characteristics of LED PAR38 Lamps

    SciTech Connect

    None, None

    2014-03-31

    This report focuses on the flicker and power quality performance of the Series 20 lamps at full output and various dimmed levels. All of the Series 20 PAR38 lamps that manufacturers claimed to be dimmable (including all halogen lamps) were evaluated individually (one lamp at a time) both on a switch and under the control of a phase-cut dimmer designed for use with "all classes of bulbs." Measurements of luminous flux, flicker, and power quality were taken at 10 target dimmed settings and compared with operation on a switch. Because only a single unit of each product was evaluated on a single dimmer that may or may not have been recommended by its manufacturer, this report focuses on the performance of the products relative to each other, rather than the best-case performance of each lamp or variation in performance delivered from each lamp. Despite these limitations, the results suggest that LED performance is improving, and performance trends are beginning to emerge, perhaps due in part to the identification of preferred LED driver strategies for lamp products.

  12. Loop-mediated isothermal amplification (LAMP) assay for detection of Theileria sergenti infection targeting the p33 gene.

    PubMed

    Wang, L X; He, L; Fang, R; Song, Q Q; Tu, P; Jenkins, A; Zhou, Y Q; Zhao, J L

    2010-07-15

    Theileria is a widespread, intraerythrocytic tick-borne protozoan parasite. Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method offering rapid, accurate and cost-effective diagnosis of infectious diseases. In this study, the LAMP method was developed for detecting Theileria sergenti. Four primers were designed from six distinct regions of the target gene, a 33-kDa major piroplasm surface protein (p33) gene in T. sergenti. The specificity assay showed it was specific for T. sergenti whilst the LAMP was able to detect a parasitemia level of 0.000002% which was more sensitive than conventional PCR. 154 field samples from water buffalo and 159 field samples from cattle were analyzed using the LAMP method. About 60.4% (96/159) of cattle samples were positive by LAMP, compared to 30.0% (46/154) of water buffalo samples that were positive. Compared with conventional PCR, the LAMP method exhibited higher detection abilities than conventional PCR. All the results indicated that the LAMP assay is a simple and convenient diagnostic tool for theileriosis.

  13. 40 CFR 273.5 - Applicability-lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Applicability-lamps. 273.5 Section 273.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.5 Applicability—lamps. (a) Lamps covered under...

  14. 49 CFR 230.56 - Water glass lamps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Water glass lamps. 230.56 Section 230.56... Water Glasses and Gauge Cocks § 230.56 Water glass lamps. All water glasses must be supplied with a suitable lamp properly located to enable the engine crew to easily see the water in the glass....

  15. 49 CFR 230.56 - Water glass lamps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Water glass lamps. 230.56 Section 230.56... Water Glasses and Gauge Cocks § 230.56 Water glass lamps. All water glasses must be supplied with a suitable lamp properly located to enable the engine crew to easily see the water in the glass....

  16. 49 CFR 230.56 - Water glass lamps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Water glass lamps. 230.56 Section 230.56... Water Glasses and Gauge Cocks § 230.56 Water glass lamps. All water glasses must be supplied with a suitable lamp properly located to enable the engine crew to easily see the water in the glass....

  17. 49 CFR 230.56 - Water glass lamps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Water glass lamps. 230.56 Section 230.56... Water Glasses and Gauge Cocks § 230.56 Water glass lamps. All water glasses must be supplied with a suitable lamp properly located to enable the engine crew to easily see the water in the glass....

  18. 49 CFR 230.56 - Water glass lamps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Water glass lamps. 230.56 Section 230.56... Water Glasses and Gauge Cocks § 230.56 Water glass lamps. All water glasses must be supplied with a suitable lamp properly located to enable the engine crew to easily see the water in the glass....

  19. 30 CFR 75.522-1 - Incandescent and fluorescent lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Incandescent and fluorescent lamps. 75.522-1...-1 Incandescent and fluorescent lamps. (a) Except for areas of a coal mine inby the last open... or fluorescent lamps may be used inside underground structures (except magazines used for the...

  20. 10 CFR 429.26 - Fluorescent lamp ballasts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Fluorescent lamp ballasts. 429.26 Section 429.26 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.26 Fluorescent lamp ballasts. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to fluorescent lamp...

  1. 10 CFR 429.26 - Fluorescent lamp ballasts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Fluorescent lamp ballasts. 429.26 Section 429.26 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.26 Fluorescent lamp ballasts. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to fluorescent lamp...

  2. 30 CFR 75.522-1 - Incandescent and fluorescent lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Incandescent and fluorescent lamps. 75.522-1...-1 Incandescent and fluorescent lamps. (a) Except for areas of a coal mine inby the last open... or fluorescent lamps may be used inside underground structures (except magazines used for the...

  3. 30 CFR 75.522-1 - Incandescent and fluorescent lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Incandescent and fluorescent lamps. 75.522-1...-1 Incandescent and fluorescent lamps. (a) Except for areas of a coal mine inby the last open... or fluorescent lamps may be used inside underground structures (except magazines used for the...

  4. 10 CFR 429.26 - Fluorescent lamp ballasts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Fluorescent lamp ballasts. 429.26 Section 429.26 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.26 Fluorescent lamp ballasts. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to fluorescent lamp...

  5. 30 CFR 75.522-1 - Incandescent and fluorescent lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Incandescent and fluorescent lamps. 75.522-1...-1 Incandescent and fluorescent lamps. (a) Except for areas of a coal mine inby the last open... or fluorescent lamps may be used inside underground structures (except magazines used for the...

  6. 30 CFR 75.522-1 - Incandescent and fluorescent lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Incandescent and fluorescent lamps. 75.522-1...-1 Incandescent and fluorescent lamps. (a) Except for areas of a coal mine inby the last open... or fluorescent lamps may be used inside underground structures (except magazines used for the...

  7. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. Persons underground shall use only permissible electric lamps approved by the Secretary for...

  8. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. Persons underground shall use only permissible electric lamps approved by the Secretary for...

  9. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. Persons underground shall use only permissible electric lamps approved by the Secretary for...

  10. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. Persons underground shall use only permissible electric lamps approved by the Secretary for...

  11. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. Persons underground shall use only permissible electric lamps approved by the Secretary for...

  12. 146. DETAIL VIEW, LOOKING STRAIGHT ON, OF CAST IRON LAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. DETAIL VIEW, LOOKING STRAIGHT ON, OF CAST IRON LAMP STANDARD. THIS AND OTHER LAMP STANDARDS WERE REMOVED FROM THE LAMP COLUMNS ON THE PARAPET WALLS DURING WORLD WAR II AND STORED INSIDE THE DAM (January 1991) - Coolidge Dam, Gila River, Peridot, Gila County, AZ

  13. DESIGN OF ATOMIZERS AND BURNERS FOR COAL-WATER SLURRY COMBUSTION

    SciTech Connect

    Rony Hitron; William Humphrey; Norman Chigier

    1999-01-05

    The Falling Droplet device was used to measure the extensional viscosity of a variety of aqueous polymer solutions. These solutions were atomized with the miniature ''inverse'' twin-fluid atomizer. Droplet size measurements were made with a Malvern laser diffraction particle sizing device. Droplet sizes measured did not rank strictly according to either low-shear rate shear viscosity or extensional viscosity.

  14. CALiPER Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps

    SciTech Connect

    none,

    2014-12-31

    This CALiPER report examines the characteristics of a subset of lamps from CALiPER Retail Lamps Study 3 in more detail. Specifically, it focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers.

  15. WFC3 SMOV Proposals 11423/ 11543: IR FSM and Lamp Checks

    NASA Astrophysics Data System (ADS)

    Baggett, S.

    2009-11-01

    This report summarizes the results obtained from the SMOV IR FSM (Filter Select Mecha- nism) and internal lamp check proposals, programs designed to verify the operability of the IR filter wheel and the health of the primary and backup IR internal lamps. A tungsten flatfield was taken in each filter of the wheel, excluding the grisms. The wheel performed as expected and all data were successfully acquired. The resulting flatfield features, e.g the scratches, areas of lower QE, bad and unresponsive pixels, were similar to those seen in ground testing. However, some flatfields (F098M, F130N, F132N, and F167N) showed what appear to be glints and reflections at the few percent level or less, possibly caused by a light leak around the diffuser paddle used to acquire the internal flatfields. The output flux of both lamps is 6-10% higher than it was on the ground, likely due to the lamps run- ning hotter in the space environment than they did in the thermal vacuum test chamber. The relative output of the primary to spare lamp is the same as it was on the ground, to within 1-2%. On a more general note, the behavior of the early reads in the IR multiaccum files could benefit from a closer investigation: there appears to be a significant non-lin- earity in sequences where the first two reads are taken within 5 seconds or less of each other.

  16. Energy-Efficient, High-Color-Rendering LED Lamps Using Oxyfluoride and Fluoride Phosphors

    SciTech Connect

    Setlur, A.; Radkov, E; Henderson, C; Her, J; Srivastava, A; Karkada, N; Kishore, M; Kumar, N; Aesram, D; et al.

    2010-01-01

    LED lamps using phosphor downconversion can be designed to replace incandescent or halogen sources with a 'warm-white' correlated color temperature (CCT) of 2700-3200 K and a color rendering index (CRI) greater than 90. However, these lamps have efficacies of {approx}70% of standard 'cool-white' LED packages (CCT = 4500-6000 K; CRI = 75-80). In this report, we describe structural and luminescence properties of fluoride and oxyfluoride phosphors, specifically a (Sr,Ca){sub 3}(Al,Si)O{sub 4}(F,O):Ce{sup 3+} yellow-green phosphor and a K{sub 2}TiF{sub 6}:Mn{sup 4+} red phosphor, that can reduce this gap and therefore meet the spectral and efficiency requirements for high-efficacy LED lighting. LED lamps with a warm-white color temperature (3088 K), high CRI (90), and an efficacy of {approx}82 lm/W are demonstrated using these phosphors. This efficacy is {approx}85% of comparable cool-white lamps using typical Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+}-based phosphors, significantly reducing the efficacy gap between warm-white and cool-white LED lamps that use phosphor downconversion.

  17. Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps

    SciTech Connect

    Vasilyak, L. M.; Vasiliev, A. I. Kostyuchenko, S. V.; Sokolov, D. V.; Startsev, A. Yu.; Kudryavtsev, N. N.

    2011-12-15

    For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

  18. Controlling the vapor pressure of a mercury lamp

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

  19. Controlling the vapor pressure of a mercury lamp

    DOEpatents

    Grossman, M.W.; George, W.A.

    1988-05-24

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

  20. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok Srivatava

    2007-03-31

    This is the Final Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet (UV) emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. Our work started by investigating through modeling calculations the requirement for the particle size of the NCP. Our work to develop suitable nanocrystalline phosphors started with the known oxide quantum splitting and UV emitting phosphors. We demonstrated several synthesis techniques for the production of high quality nanocrystalline materials that crystallizes in the desired phase and with the desired particle size. In collaboration with our subcontractor we demonstrated the feasibility for the manufacture of NC phosphors. We also demonstrated novel techniques of coating the NCP on the surface of micron sized phosphors. Our chief achievement pertains to the successful testing of the coated hybrid phosphor systems in linear fluorescent lamps. In linear fluorescent lamp tests, we have demonstrated up to 7% increase in the efficacy of hybrid phosphors over the conventional (uncoated) phosphors. We have also demonstrated the improvement in the lumen maintenance of the coated phosphors. A hybrid phosphor system based on the commercial red emitting phosphor, Y{sub 2}O{sub 3}:Eu{sup 3+} did not show the anticipated improvement in lamp efficacy. We explored the reasons for this observation

  1. High Throughput Atomic Layer Deposition Processes: High Pressure Operations, New Reactor Designs, and Novel Metal Processing

    NASA Astrophysics Data System (ADS)

    Mousa, MoatazBellah Mahmoud

    Atomic Layer Deposition (ALD) is a vapor phase nano-coating process that deposits very uniform and conformal thin film materials with sub-angstrom level thickness control on various substrates. These unique properties made ALD a platform technology for numerous products and applications. However, most of these applications are limited to the lab scale due to the low process throughput relative to the other deposition techniques, which hinders its industrial adoption. In addition to the low throughput, the process development for certain applications usually faces other obstacles, such as: a required new processing mode (e.g., batch vs continuous) or process conditions (e.g., low temperature), absence of an appropriate reactor design for a specific substrate and sometimes the lack of a suitable chemistry. This dissertation studies different aspects of ALD process development for prospect applications in the semiconductor, textiles, and battery industries, as well as novel organic-inorganic hybrid materials. The investigation of a high pressure, low temperature ALD process for metal oxides deposition using multiple process chemistry revealed the vital importance of the gas velocity over the substrate to achieve fast depositions at these challenging processing conditions. Also in this work, two unique high throughput ALD reactor designs are reported. The first is a continuous roll-to-roll ALD reactor for ultra-fast coatings on porous, flexible substrates with very high surface area. While the second reactor is an ALD delivery head that allows for in loco ALD coatings that can be executed under ambient conditions (even outdoors) on large surfaces while still maintaining very high deposition rates. As a proof of concept, part of a parked automobile window was coated using the ALD delivery head. Another process development shown herein is the improvement achieved in the selective synthesis of organic-inorganic materials using an ALD based process called sequential vapor

  2. Automated Reflectance Measurement System Designed and Fabricated to Determine the Limits of Atomic Oxygen Treatment of Art Through Contrast Optimization

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Stueber, Thomas J.; Rutledge, Sharon K.

    2000-01-01

    Atomic oxygen generated in ground-based research facilities has been used to not only test erosion of candidate spacecraft materials but as a noncontact technique for removing organic deposits from the surfaces of artwork. NASA has patented the use of atomic oxygen to remove carbon-based soot contamination from fire-damaged artwork. The process of cleaning soot-damaged paintings with atomic oxygen requires exposures for variable lengths of time, dependent on the condition of a painting. Care must be exercised while cleaning to prevent the removal of pigment. The cleaning process must be stopped as soon as visual inspection or surface reflectance measurements indicate that cleaning is complete. Both techniques rely on optical comparisons of known bright locations against known dark locations on the artwork being cleaned. Difficulties arise with these techniques when either a known bright or dark location cannot be determined readily. Furthermore, dark locations will lighten with excessive exposure to atomic oxygen. Therefore, an automated test instrument to quantitatively characterize cleaning progression was designed and developed at the NASA Glenn Research Center at Lewis Field to determine when atomic oxygen cleaning is complete.

  3. Electronic screw-in ballast and improved circline lamp phase I. Final report

    SciTech Connect

    Kohler, T.P.

    1980-09-01

    A solid state ballast has been designed for the efficient operation of a 10 in circline fluorescent lamp. The circuit can be manufactured using power hybrid technology. Eight discrete component versions of the ballasts have been delivered to LBL for testing. The results show the solid state fluorescent ballast system is more efficient than the core-coil ballasted systems on the market.

  4. A LAMP-based schematic prototype instrument for detection of microorganisms in human outer space activities

    NASA Astrophysics Data System (ADS)

    Hu, Yongfei; Liu, Zhiheng; Li, Junxiong; Zhu, Baoli

    One of the main tasks of human outer space exploration is to detect signs of life. Based on meteoritic evidence, common ancestry hypothesis has been posed. Therefore, searching for the fundamental molecules (DNA, RNA, and proteins) that constitute life as we know on Earth is feasible and now the typical approach. To achieve this goal, portable, robust, and highly sensitive instrument is also needed. In this study, based on Loop mediated isothermal amplification (LAMP) technique that targets life information storage molecular, DNA, we designed a schematic prototype instrument for microorganism detection. First, we designed LAMP primers used for amplification of DNA markers of Bacteria, Archaea, and Fungus; then, we optimized the LAMP reaction system for space using; and finally, we designed a prototype instrument and operating software system that are compatible with the LAMP reaction system. The results of simulation experiments showed that our instrument performed well for detecting representative microorganisms and the device can achieve semi-automatization. The detection process, from sample preparation to signal visualization, was completed in 1.5 hour. Our study provides a new method and corresponding device for detection of DNA molecular, which has great potential for applications in outer space exploration. Besides, the instrument we designed can also been used for monitoring changes of terrestrial microorganisms in outer space, for example in aircraft.

  5. Identifying Churches for Community-Based Mammography Promotion: Lessons from the LAMP Study

    ERIC Educational Resources Information Center

    Duan, Naihua; Fox, Sarah; Derose, Kathryn Pitkin; Carson, Sally; Stockdale, Susan

    2005-01-01

    There is great potential in public health and faith communities partnering to promote health education and research. This article describes lessons learned from the design and implementation of such a partnership, the Los Angeles Mammography Promotion in Churches Program (LAMP). It is feasible, although challenging, to enumerate and survey…

  6. CALiPER Report 20.3: Robustness of LED PAR38 Lamps

    SciTech Connect

    none,

    2014-12-30

    A small sample of each of the CALiPER Application Summary Report 20 PAR38 lamp types underwent stress testing that included substantial temperature and humidity changes, electrical variation, and vibration. The results do not directly address expected lifetime, but can be compared with one another, as well as with benchmark conventional products, to assess the relative robustness of the product designs.

  7. Fluorescent lamps and lighting systems. (Latest citations from the INSPEC database). Published Search

    SciTech Connect

    1996-04-01

    The bibliography contains citations concerning fluorescent lamp and fluorescent lighting system technology. Design, development, manufacture, and applications are presented. Characteristics, performance evaluations, energy efficiency, controls, materials, trends and innovations are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. From LAMP to Koha: Case Study of the Pakistan Legislative Assembly Libraries

    ERIC Educational Resources Information Center

    Shafi-Ullah, Farasat; Qutab, Saima

    2012-01-01

    Purpose: This paper aims to elaborate the library data migration process from LAMP (Library Automation Management Program) to the open source software Koha's (2.2.8 Windows based) Pakistani flavour PakLAG-Koha in six legislative assembly libraries of Pakistan. Design/methodology/approach: The paper explains different steps of the data migration…

  9. Comparison of two pyrometers used to calibrate Primary Standards Laboratory's tungsten filament lamps

    SciTech Connect

    Odom, M.K.

    1987-01-01

    The Primary Standards Laboratory presently uses an automatic optical pyrometer with a photomultiplier tube photodetector to calibrate tungsten filament lamps. This pyrometer is compared to a newly designed direct optical pyrometer with a photodiode photodetector. Though the direct pyrometer looks promising, final improvements are necessary to make a conclusive comparison.

  10. Colour-rendition properties of solid-state lamps

    NASA Astrophysics Data System (ADS)

    Žukauskas, A.; Vaicekauskas, R.; Shur, M. S.

    2010-09-01

    The applicability of colour-quality metrics to solid-state light sources is validated and the results of the assessment of colour-rendition characteristics of various lamps are presented. The standard colour-rendering index metric or a refined colour-quality scale metric fails to distinguish between two principle colour-rendition properties of illumination: the ability to render object colours with high fidelity and the ability to increase chromatic contrast, especially when the spectra of light sources contain a few narrow-band electroluminescence components. Supplementing these metrics by the known figures of merit that measure the gamut area of a small number of test colour samples does not completely resolve this issue. In contrast, the statistical approach, which is based on sorting a very large number of test colour samples in respect of just-perceivable colour distortions of several kinds, offers a comprehensive assessment of colour-rendition properties of solid-state light sources. In particular, two statistical indices, colour-fidelity index (CFI) and colour-saturation index (CSI), which are the relative numbers of object colours rendered with high fidelity and increased saturation, respectively, are sufficient to reveal and assess three distinct types of solid-state light sources. These are (i) high-fidelity lamps, which cover the entire spectrum with the spectral components present in the wavelength ranges of both 530-610 nm and beyond 610 nm (e.g. trichromatic warm white phosphor-converted (pc) light-emitting diodes (LEDs), red-amber-green-blue LED clusters, complementary clusters of white and coloured LEDs); (ii) colour-saturating lamps, which lack power in the 530-610 nm wavelength range (e.g. red-green-blue or red-cyan-blue LED clusters) and (iii) colour-dulling lamps, which lack power for wavelengths longer than 610 nm (dichromatic daylight pc LEDs and amber-green-blue LED clusters). Owing to a single statistical format, CSI and CFI can be used for

  11. Hamiltonian design in readout from room-temperature Raman atomic memory.

    PubMed

    Dąbrowski, Michał; Chrapkiewicz, Radosław; Wasilewski, Wojciech

    2014-10-20

    We present an experimental demonstration of the Hamiltonian manipulation in light-atom interface in Raman-type warm rubidium-87 vapor atomic memory. By adjusting the detuning of the driving beam we varied the relative contributions of the Stokes and anti-Stokes scattering to the process of four-wave mixing which reads out a spatially multimode state of atomic memory. We measured the temporal evolution of the readout fields and the spatial intensity correlations between write-in and readout as a function of detuning with the use of an intensified camera. The correlation maps enabled us to resolve between the anti-Stokes and the Stokes scattering and to quantify their contributions. Our experimental results agree quantitatively with a simple, plane-wave theoretical model we provide. They allow for a simple interpretation of the coaction of the anti-Stokes and the Stokes scattering at the readout stage. The Stokes contribution yields additional, adjustable gain at the readout stage, albeit with inevitable extra noise. Here we provide a simple and useful framework to trace it and the results can be utilized in the existing atomic memories setups. Furthermore, the shown Hamiltonian manipulation offers a broad range of atom-light interfaces readily applicable in current and future quantum protocols with atomic ensembles.

  12. Lamp-life predictive model for avionics backlights

    NASA Astrophysics Data System (ADS)

    Webster, Richard P.; Nelson, Leonard Y.

    1998-09-01

    Active Matrix Liquid Crystal Displays (AMLCDs) used in avionics applications require high luminance, high efficacy, and long-life backlights. Currently, fluorescent lamps are the favored light sources for these high performance avionics backlights. Their spectral characteristics and high electrical efficiency are well suited to illuminating AMLCDs used in avionics applications. Fluorescent lamps, however, suffer gradual reduction in luminance output caused by various degradation mechanisms. Korry Electronics Co. recently developed a mathematical model for predicting fluorescent lamp life. The model's basis is the well characterized exponential decay of the phosphor output. The primary luminance degradation mechanism of a fluorescent lamp is related to the arc discharge. Consequently, phosphor depreciation is proportional to the discharge arc power divided by the phosphor surface area. This 'wall loading' is a parameter in the computer model developed to extrapolate long-term luminance performance. Our model predicts a rapidly increasing decay rate of the lamp output as the input power is increased to sustain constant luminance. Eventually, a run-away condition occurs -- lamp arc power must be increased by unrealistically large factors (greater than 5x) to maintain the required luminance output. This condition represents the end of the useful lamp life. The lamp life model requires the definition of several key parameters in order to accurately predict the useful lamp life of an avionics backlight. These important factors include the construction of the lamp, lamp arc power, a decay constant based on the phosphor loading, and the operational profile. Based on the above-mentioned factors, our model approximates the useful lamp life of an avionics backlight using fluorescent lamp technology. Comparisons between calculated and experimental lamp depreciation are presented.

  13. LED lamp color control system and method

    DOEpatents

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.

    2013-02-05

    An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.

  14. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, D.A.; Turner, B.; Kipling, K.

    1999-05-11

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible is disclosed. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture. 20 figs.

  15. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, Donald A.; Turner, Brian; Kipling, Kent

    1999-01-01

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture.

  16. CALiPER Retail Lamps Study 3

    SciTech Connect

    none,

    2014-02-01

    This is a special CALiPER report on LED lamps available through the retail marketplace and targeted toward general consumers. It follows similar reports published in 2011 and 2012 (products purchased in 2010 and 2011), and is intended as a continuation that identifies long-term trends. For this report, products were selected to investigate specific hypotheses, rather than represent a sample of the increasingly large retail LED market.

  17. Fluorescent ballast and lamp disposal issues

    SciTech Connect

    Leishman, D.L.

    1996-05-01

    All around the world, governments, utility companies, and private businesses are attempting to reduce the amount of energy consumed. In the United States alone, new economic strategies and programs are being created to facilitate this process. For instance, the recent enactment of the National Energy Policy Act, the Environmental Protection Agency`s (EPA) Green Lights Program, and a surge of utility involvement in Demand Side Management (DSM) Commercial/Industrial Direct Install and Rebate Programs. Many of these programs target Commercial/Industrial lighting system retrofits as one of the most cost effective avenues for reducing the consumption of energy. Due to this trend, hundreds of millions of lighting ballasts and lamps are being pulled out of existing buildings and discarded. The benefits of these programs result in enormous reductions in fossil fuels (and subsequent carbon dioxide, sulfur dioxide, and nitrogen oxide emissions) required to generate the displaced electricity. Throughout the United States, however, there is an increasing concern for the environmental impacts surrounding the accelerated disposal of both lighting ballasts and lamps. Regulations initially established were for a {open_quotes}one by one,{close_quotes} retirement (failure) process rather than promoted obsolescence and forced retirement of lamp groups or entire systems (truckloads of old technologies). Recognizing this trend and the potential negative environmental effects federal state, and local regulators are in the process of reevaluating the impacts and are being asked to promulgate policies to specifically address this situation. While it is anticipated that regulations pertaining to PCB ballasts will become better focused, the regulations regarding fluorescent lamps are, really, yet to be finalized. As interested and involved parties continue to become more aware of all the impacts, we can expect clearer direction.

  18. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  19. High output lamp with high brightness

    DOEpatents

    Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.

    2002-01-01

    An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.

  20. Fluorescent ballast and lamp disposal issues

    SciTech Connect

    Leishman, D.L.

    1996-12-01

    All around the world, governments, utility companies, and private businesses are attempting to reduce the amount of energy consumed. In the US alone, new economic strategies and programs are being created to facilitate this process. For instance, the recent enactment of the National Energy Policy Act, the Environmental Protection Agency`s (EPA) Green Lights Program, and a surge of utility involvement in Demand Side Management (DSM) Commercial/Industrial Direct Install and Rebate Programs. Many of these problems target commercial/industrial lighting system retrofits as one of the most cost effective avenues for reducing the consumption of energy. Due to this trend, hundreds of millions of lighting ballasts and lamps are being discarded. The benefits of these programs result in enormous reductions in fossil fuels (and subsequent carbon dioxide, sulfur dioxide, and nitrogen oxide emissions) required to generate the displaced electricity. Throughout the US, however, there is an increasing concern for the environmental impacts surrounding the accelerated disposal of both lighting ballasts and lamps. Regulations initially established were for a one by one, retirement (failure) process rather than promoted obsolescence and forced retirement of lamp groups or entire systems (truckloads of old technologies). Recognizing this trend and the potential negative environmental effects, federal, state, and local regulators are reevaluating the impacts and are being asked to promulgate policies to specifically address this situation.

  1. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok M. Srivastava

    2005-09-30

    This is the Yearly Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. Our chief achievement, during the current contract period, pertains to the successful synthesis and characterization of coated phosphors. We demonstrated several synthesis techniques for the coating of micron sized commercial phosphors with quantum-splitting and UV emitting nanophosphors. We have also continued our fundamental investigations into the physical processes that determine the quantum efficiency of the nanophosphors and this has further helped codify a set of rules for the host lattice that support efficient quantum splitting and UV emission at room temperature. In this report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

  2. Investigation of structure in the modular light pipe component for LED automotive lamp

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Zhou, Yang; Huang, Chien-Sheng; Jhong, Wan-Ling; Cheng, Bo-Wei; Jhang, Jhe-Ming

    2014-09-01

    Light-Emitting Diodes (LEDs) have the advantages of small length, long lifetime, fast response time (μs), low voltage, good mechanical properties and environmental protection. Furthermore, LEDs could replace the halogen lamps to avoid the mercury pollution and economize the use of energy. Therefore, the LEDs could instead of the traditional lamp in the future and became an important light source. The proposal of this study was to investigate the effects of the structure and length of the reflector component for a LED automotive lamp. The novel LED automotive lamp was assembled by several different modularization columnar. The optimized design of the different structure and the length to the reflector was simulated by software TracePro. The design result must met the vehicle regulation of United Nations Economic Commission for Europe (UNECE) such as ECE-R19 etc. The structure of the light pipe could be designed by two steps structure. Then constitute the proper structure and choose different power LED to meet the luminous intensity of the vehicle regulation. The simulation result shows the proper structure and length has the best total luminous flux and a high luminous efficiency for the system. Also, the stray light could meet the vehicle regulation of ECE R19. Finally, the experimental result of the selected structure and length of the light pipe could match the simulation result above 80%.

  3. Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites

    PubMed Central

    Li, Z. K.; Fu, H. M.; Sha, P. F.; Zhu, Z. W.; Wang, A. M.; Li, H.; Zhang, H. W.; Zhang, H. F.; Hu, Z. Q.

    2015-01-01

    The interaction between active element Zr and W damages the W fibers and the interface and decreases the mechanical properties, especially the tensile strength of the W fibers reinforced Zr-based bulk metallic glass composites (BMGCs). From the viewpoint of atomic interaction, the W-Zr interaction can be restrained by adding minor elements that have stronger interaction with W into the alloy. The calculation about atomic interaction energy indicates that Ta and Nb preferred to segregate on the W substrate surface. Sessile drop experiment proves the prediction and corresponding in-situ coating appears at the interface. Besides, the atomic interaction mechanism was proven to be effective in many other systems by the sessile drop technique. Considering the interfacial morphology, Nb was added into the alloy to fabricate W/Zr-based BMGCs. As expected, the Nb addition effectively suppressed the W-Zr reaction and damage to W fibers. Both the compressive and tensile properties are improved obviously. PMID:25758910

  4. Design and performance of atomizing nozzles for spray calcination of high-level wastes

    SciTech Connect

    Miller, F.A.; Stout, L.A.

    1981-05-01

    A key aspect of high-level liquid-waste spray calcination is waste-feed atomization by using air atomizing nozzles. Atomization substantially increases the heat transfer area of the waste solution, which enhances rapid drying. Experience from the spray-calciner operations has demonstrated that nozzle flow conditions that produce 70-..mu.. median-volume-diameter or smaller spray droplets are required for small-scale spray calciners (drying capacity less than 80 L/h). For large-scale calciners (drying capacity greater than 300 L/h), nozzle flow conditions that produce 100-..mu.. median-volume-diameter or smaller spray droplets are required. Mass flow ratios of 0.2 to 0.4, depending on nozzle size, are required for proper operation of internal-mix atomizing nozzles. Both internal-mix and external-mix nozzles have been tested at PNL. Due to the lower airflow requirements and fewer large droplets produced, the internal-mix nozzle has been chosen for primary development in the spray calciner program at PNL. Several nozzle air-cap materials for internal-mix nozzles have been tested for wear resistance. Results show that nozzle air caps of stainless steel and Cer-vit (a machineable glass ceramic) are suceptible to rapid wear by abrasive slurries, whereas air caps of alumina and reaction-bonded silicon nitride show only slow wear. Longer-term testing is necessary to determine more accurately the actual frequency of nozzle replacement. Atomizing nozzle air caps of alumina are subject to fracture from thermal shock, whereas air caps of silicon nitride and Cer-vit are not. Fractured nozzles are held in place by the air-cap retaining ring and continue to atomize satisfactorily. Therefore, fractures caused by thermal shocking do not necessarily result in nozzle failure.

  5. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  6. Max Tech and Beyond: High-Intensity Discharge Lamps

    SciTech Connect

    Scholand, Michael

    2012-04-01

    High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. With the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating conditions, and

  7. The Effect of Nozzle Design and Operating Conditions on the Atomization and Distribution of Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1933-01-01

    The atomization and distribution characteristics of fuel sprays from automatic injection valves for compression-ignition engines were determined by catching the fuel drops on smoked-glass plates, and then measuring and counting the impressions made in the lampblack. The experiments were made in an air-tight chamber in which the air density was raised to values corresponding to engine conditions.

  8. Characterization and recovery of mercury from spent fluorescent lamps.

    PubMed

    Jang, Min; Hong, Seung Mo; Park, Jae K

    2005-01-01

    Fluorescent lamps rely on mercury as the source of ultraviolet radiation for the production of visible light. Partitioning of mercury among vapor phase, loose phosphor powders produced during breaking and washing steps, glass matrices, phosphor powders attached on the glass and aluminum end caps was examined from simulated laboratory lamp recycling tests for different types of spent and new fluorescent lamps. Mercury concentrations in lamp glasses taken from commercial lamp recyclers were also analyzed for comparison with the simulated results of spent and new lamps of different types. The mercury content of the glass from spent lamps was highly variable depending on the lamp type and manufacturer; the median values of the mercury concentration in glasses for spent 26- (T8) and 38-mm (T12) diameter fluorescent lamps were approximately 30 and 45 microg/g, respectively. The average mercury concentration of samples taken from recycler A was 29.6 microg/g, which was about 64% of median value measured from the spent T12 lamps. Over 94% of total mercury in lamps remained either as a component of phosphor powders attached inside the lamp or in glass matrices. New T12 lamps had a higher partitioning percentage of elemental mercury in the vapor phase (0.17%) than spent T12 lamps (0.04%), while spent lamps had higher partitioning percentages of mercury resided on end-caps and phosphor powders detached from the breaking and washing steps. The TCLP values of simulated all lamp-glasses and samples obtained from recyclers were higher than the limit of LDR standard (0.025 mg/L). After investigating acid treatment and high temperature treatment as mercury reclamation techniques, it was found that heating provided the most effective mercury capture. Although the initial mercury concentrations of individual sample were different, the mercury concentrations after 1 h exposure at 100 degrees C were below 4 mug/g for all samples (i.e., <1% remaining). Therefore, it is recommended that

  9. The Novel Multiple Inner Primers-Loop-Mediated Isothermal Amplification (MIP-LAMP) for Rapid Detection and Differentiation of Listeria monocytogenes.

    PubMed

    Wang, Yi; Wang, Yan; Ma, Aijing; Li, Dongxun; Luo, Lijuan; Liu, Dongxin; Hu, Shoukui; Jin, Dong; Liu, Kai; Ye, Changyun

    2015-12-03

    Here, a novel model of loop-mediated isothermal amplification (LAMP), termed multiple inner primers-LAMP (MIP-LAMP), was devised and successfully applied to detect Listeria monocytogenes. A set of 10 specific MIP-LAMP primers, which recognized 14 different regions of target gene, was designed to target a sequence in the hlyA gene. The MIP-LAMP assay efficiently amplified the target element within 35 min at 63 °C and was evaluated for sensitivity and specificity. The templates were specially amplified in the presence of the genomic DNA from L. monocytogenes. The limit of detection (LoD) of MIP-LAMP assay was 62.5 fg/reaction using purified L. monocytogenes DNA. The LoD for DNA isolated from serial dilutions of L. monocytogenes cells in buffer and in milk corresponded to 2.4 CFU and 24 CFU, respectively. The amplified products were analyzed by real-time monitoring of changes in turbidity, and visualized by adding Loop Fluorescent Detection Reagent (FD), or as a ladder-like banding pattern on gel electrophoresis. A total of 48 pork samples were investigated for L. monocytogenes by the novel MIP-LAMP method, and the diagnostic accuracy was shown to be 100% when compared to the culture-biotechnical method. In conclusion, the MIP-LAMP methodology was demonstrated to be a reliable, sensitive and specific tool for rapid detection of L. monocytogenes strains.

  10. Development and evaluation of multiplex RT-LAMP assays for rapid and sensitive detection of foot-and-mouth disease virus.

    PubMed

    Yamazaki, Wataru; Mioulet, Valérie; Murray, Lee; Madi, Mikidache; Haga, Takeshi; Misawa, Naoaki; Horii, Yoichiro; King, Donald P

    2013-09-01

    This paper describes the evaluation of four novel real-time multiplex reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for rapid and sensitive diagnosis of foot-and-mouth disease (FMD). In order to overcome the genetic diversity of FMD viruses (FMDV), these multiplex RT-LAMP assay pairs were established by combining four newly designed primer sets with two primer sets that had been previously published. Using a real-time turbidimeter to detect amplification products and a panel of 300 samples collected throughout the world over a 78-year period, the performance of the multiplex RT-LAMP assays was compared with a FMDV-specific real-time RT-PCR assay. The most successful of the four multiplex RT-LAMP assays achieved a diagnostic sensitivity and specificity of 98.0% and 98.1%, and did not falsely detect FMDV in known negatives or samples containing swine vesicular disease virus, vesicular stomatitis virus or vesicular exanthema of swine virus. Furthermore, the analytical sensitivity of this multiplex RT-LAMP assay was at least as good as the individual component RT-LAMP tests. This is the first report of the development of a multiplex RT-LAMP to accommodate the high sequence variability encountered in RNA virus genomes and these results support the use of RT-LAMP as a cost-effective tool for simple diagnosis of FMD. PMID:23583488

  11. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  12. Design and construction of a sample preparation chamber for atomic beam scattering

    NASA Astrophysics Data System (ADS)

    Nielsen, C.

    1992-05-01

    A new type of atomic beam scattering spectrometer was built to advance the usefulness of the atomic beam scattering technique as a surface dynamics probe. The facility was not only built to investigate the typical alkali halide samples such as NaCl, NaF, and LiF, but also to investigate metallic surfaces. Metal samples are more complicated to study, due to their reactive surfaces and the sample preparation process. A surface analysis chamber was constructed as an attachment to the scattering facility to treat samples under ultra high vacuum (UHV) and then transfer these samples into the scattering facility. This surface analysis chamber is referred to as the sample preparation chamber and is the basis for this thesis.

  13. Heat transfer assembly for a fluorescent lamp and fixture

    DOEpatents

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  14. Heat transfer assembly for a fluorescent lamp and fixture

    DOEpatents

    Siminovitch, Michael J.; Rubenstein, Francis M.; Whitman, Richard E.

    1992-01-01

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

  15. Fluorescent lamp unit with magnetic field generating means

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope.

  16. Fluorescent lamp unit with magnetic field generating means

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-08-08

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope. 4 figs.

  17. Automated Multiple-Sample Tray Manipulation Designed and Fabricated for Atomic Oxygen Facility

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Stueber, Thomas J.; Dever, Joyce A.; Banks, Bruce A.; Rutledge, Sharon K.

    2000-01-01

    Extensive improvements to increase testing capacity and flexibility and to automate the in situ Reflectance Measurement System (RMS) are in progress at the Electro-Physics Branch s Atomic Oxygen (AO) beam facility of the NASA Glenn Research Center at Lewis Field. These improvements will triple the system s capacity while placing a significant portion of the testing cycle under computer control for added reliability, repeatability, and ease of use.

  18. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    SciTech Connect

    Du, Y. E-mail: scott.chambers@pnnl.gov; Liyu, A. V.; Droubay, T. C.; Chambers, S. A. E-mail: scott.chambers@pnnl.gov; Li, G.

    2014-04-21

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  19. Self-corrected Sensors Based On Atomic Absorption Spectroscopy For Atom Flux Measurements In Molecular Beam Epitaxy

    SciTech Connect

    Du, Yingge; Droubay, Timothy C.; Liyu, Andrey V.; Li, Guosheng; Chambers, Scott A.

    2014-04-24

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device (CCD) detector in a double-beam configuration, we employ a non-resonant line or a resonant line with lower absorbance from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  20. 49 CFR 393.17 - Lamps and reflectors-combinations in driveaway-towaway operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... two tail lamps, one at each side, and two stop lamps, one at each side. (b) Except as provided in... near the rear of the vehicle. (2) On the rear, there must be at least two tail lamps, two stop lamps... under § 392.30, it must have on the rear— (i) Two stop lamps, one on each side of the...

  1. 49 CFR 393.17 - Lamps and reflectors-combinations in driveaway-towaway operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... two tail lamps, one at each side, and two stop lamps, one at each side. (b) Except as provided in... near the rear of the vehicle. (2) On the rear, there must be at least two tail lamps, two stop lamps... under § 392.30, it must have on the rear— (i) Two stop lamps, one on each side of the...

  2. Allvar Gullstrand and the slit lamp 1911.

    PubMed

    Timoney, P J; Breathnach, C S

    2013-06-01

    The Swedish ophthalmologist and self-taught mathematician Allvar Gullstrand (1862-1930) invented the slit lamp to illuminate the anterior of the eye. With its rectangular beam of very bright light, he studied the structure of the cornea and the function of the lens. His dioptric investigations showed that, as well as the extracapsular mechanism described by Helmholtz, changes in the substance of the lens, that he termed intracapsular, also contribute to accommodation. However, his invention has been appropriated by clinical ophthalmologists and is now routinely used in examination of the eye. PMID:23264115

  3. Hazards from High Intensity Lamps and Arcs

    NASA Technical Reports Server (NTRS)

    Sliney, D. H.

    1970-01-01

    The principal occupational health problem generally associated with high intensity arc lamps results from exposure of the eye and skin to ultraviolet radiation. Occasionally, the chorioretinal burns are of concern. The eye is generally more susceptible than the skin to injury from high intensity optical radiation sources whether ultraviolet, visible or infrared. Recent developments in technology have shown that some high intensity optical radiation sources which have output parameters greatly different from those encountered in the natural environment present a serious chorioretinal burn hazard.

  4. RF driven sulfur lamp having driving electrodes arranged to cool the lamp

    DOEpatents

    Gabor, G.; Orr, T.R.; Greene, C.M.; Crawford, D.G.; Berman, S.M.

    1998-10-20

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance. 17 figs.

  5. RF driven sulfur lamp having driving electrodes arranged to cool the lamp

    DOEpatents

    Gabor, George; Orr, Thomas Robert; Greene, Charles Maurice; Crawford, Douglas Gordon; Berman, Samuel Maurice

    1998-01-01

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance.

  6. Compact microwave lamp having a tuning block and a dielectric located in a lamp cavity

    DOEpatents

    Simpson, James E.

    2000-01-01

    A microwave lamp having a compact structure utilizing a coupling slot which has a dielectric member extending therethrough and a tuning block adjoining the coupling slot. A non-conventional waveguide is used which has about the width of a WR-284 waveguide and about the length of a WR-340 waveguide.

  7. Combining Peyton's four-step approach and Gagne's instructional model in teaching slit-lamp examination.

    PubMed

    Ng, Jia Yu

    2014-12-01

    Developing skills in performing basic slit-lamp biomicroscopy is an important element of the ophthalmology undergraduate curriculum. As a doctor working in an ophthalmology department, I often provide slit-lamp teaching for medical students. This paper describes a lesson plan for this technique using Gagne's nine events of instruction. The presented lesson plan is a combination of Gagne's nine events of instruction and Peyton's four-step approach. Gagne's nine events of instruction correlate with and address the mental conditions of learning when adult learners are presented with various stimuli. Peyton's four-step approach is a model for teaching practical skills that consists of demonstration, deconstruction, explanation, and performance. This article describes a slit-lamp biomicroscopy teaching session using Gagne's nine events of instruction. Each step is carefully elaborated with relevant activities to suit learners with various learning styles. Peyton's approach is used to teach the actual skill. This lesson plan is particularly relevant for tutors designing slit-lamp biomicroscopy teaching for undergraduate students, foundation doctors, general practitioners and emergency department staff. Ultimately, this lesson plan also serves as a model that is applicable for acquiring many other practical skills. The flexible adoption of Gagne's nine events of instruction in combination with other teaching models helps in the planning of effective teaching sessions.

  8. Molecular detection of Coxiella burnetii using an alternative loop-mediated isothermal amplification assay (LAMP).

    PubMed

    Raele, Donato Antonio; Garofolo, Giuliano; Galante, Domenico; Cafiero, Maria Assunta

    2015-01-01

    Q fever, caused by Coxiella burnetii, is a worldwide zoonosis with important consequences for human and animal health. In livestock, the diagnosis, using direct and indirect techniques, is challenging even if to tackle coxiellosis in domesticated animals a rapid diagnosis is crucial. In the recent years, new molecular methods have been developed to overcome these issues. Several polymerase chain reaction (PCR) assays have been studied, but loop mediated isothermal amplification (LAMP) has not been fully developed. This new methodology is emerging due to simplicity and speed in diagnosis of microbial diseases. In this study, we design a new LAMP assay against C. burnetii targeting the com1 gene as an actual alternative to conventional PCR. The assay was specific to C. burnetii reactive with sensitivity comparable to standard PCR. The application of the com1 LAMP on 10 clinical samples from water buffalo, sheep, and goats, previously tested positive, confirmed the presence of C. burnetii. To our knowledge, this study is the first report of LAMP targeting C. burnetii in Europe and the results also suggest that it may be an useful and cost-effective tool for the clinical and epidemiological surveillance of Q Fever.

  9. Calibration of fiber-optic shock pyrometer using high-power coiled tungsten lamp

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Asimow, P. D.

    2015-06-01

    Comparison of all known calibration sources indicates that coiled standards of spectral irradiance, despite their very non-uniform brightness, are currently the best practical choice for accurate shock temperature measurements above 3000 K by optical pyrometry. We review all three documented methods of shock pyrometer calibration to a coiled lamp and show that only one technique, with no fiber-optics employed, is free of major radiometric errors. We report the development of a new, accurate to 5% and precise to 1-1.5% calibration procedure for the modified Caltech 6-channel, 3-ns temporal resolution combined open beam and fiber-coupled instrument. A designated central area of an 0.7x demagnified image of 900 W coiled-coil lamp filament is used, cross-calibrated against a NIST-traceable tungsten ribbon lamp. The results of two slightly different cross-calibrations are reported and the procedure to characterize the difference between the static and dynamic response of NewFocus 1801 amplified photodetectors. The most essential requirements for error-free calibration of a fiber-optic pyrometer using a coiled irradiance standard lamp are discussed. All these conditions are validated in actual radiometric tests and shock temperature experiments on single-crystal NaCl and MgO.

  10. Perspective: Toward "synthesis by design": Exploring atomic correlations during inorganic materials synthesis

    NASA Astrophysics Data System (ADS)

    Soderholm, L.; Mitchell, J. F.

    2016-05-01

    Synthesis of inorganic extended solids is a critical starting point from which real-world functional materials and their consequent technologies originate. However, unlike the rich mechanistic foundation of organic synthesis, with its underlying rules of assembly (e.g., functional groups and their reactivities), the synthesis of inorganic materials lacks an underpinning of such robust organizing principles. In the latter case, any such rules must account for the diversity of chemical species and bonding motifs inherent to inorganic materials and the potential impact of mass transport on kinetics, among other considerations. Without such assembly rules, there is less understanding, less predictive power, and ultimately less control of properties. Despite such hurdles, developing a mechanistic understanding for synthesis of inorganic extended solids would dramatically impact the range of new material discoveries and resulting new functionalities, warranting a broad call to explore what is possible. Here we discuss our recent approaches toward a mechanistic framework for the synthesis of bulk inorganic extended solids, in which either embryonic atomic correlations or fully developed phases in solutions or melts can be identified and tracked during product selection and crystallization. The approach hinges on the application of high-energy x-rays, with their penetrating power and large Q-range, to explore reaction pathways in situ. We illustrate this process using two examples: directed assembly of Zr clusters in aqueous solution and total phase awareness during crystallization from K-Cu-S melts. These examples provide a glimpse of what we see as a larger vision, in which large scale simulations, data-driven science, and in situ studies of atomic correlations combine to accelerate materials discovery and synthesis, based on the assembly of well-defined, prenucleated atomic correlations.

  11. [Near infrared light irradiator using halogen lamp].

    PubMed

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  12. [Near infrared light irradiator using halogen lamp].

    PubMed

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer. PMID:22860296

  13. Lamp for generating high power ultraviolet radiation

    DOEpatents

    Morgan, Gary L.; Potter, James M.

    2001-01-01

    The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

  14. A high-accuracy algorithm for designing arbitrary holographic atom traps.

    PubMed

    Pasienski, Matthew; Demarco, Brian

    2008-02-01

    We report the realization of a new iterative Fourier-transform algorithm for creating holograms that can diffract light into an arbitrary two-dimensional intensity profile. We show that the predicted intensity distributions are smooth with a fractional error from the target distribution at the percent level. We demonstrate that this new algorithm outperforms the most frequently used alternatives typically by one and two orders of magnitude in accuracy and roughness, respectively. The techniques described in this paper outline a path to creating arbitrary holographic atom traps in which the only remaining hurdle is physical implementation.

  15. Bottom-up Approach Design, Band Structure, and Lithium Storage Properties of Atomically Thin γ-FeOOH Nanosheets.

    PubMed

    Song, Yun; Cao, Yu; Wang, Jing; Zhou, Yong-Ning; Fang, Fang; Li, Yuesheng; Gao, Shang-Peng; Gu, Qin-Fen; Hu, Linfeng; Sun, Dalin

    2016-08-24

    As a novel class of soft matter, two-dimensional (2D) atomic nanosheet-like crystals have attracted much attention for energy storage devices due to the fact that nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. Herein, atomically thin γ-FeOOH nanosheets with a thickness of ∼1.5 nm are synthesized in a high yield, and the band and electronic structures of the γ-FeOOH nanosheet are revealed using density-functional theory calculations for the first time. The rationally designed γ-FeOOH@rGO composites with a heterostacking structure are used as an anode material for lithium-ion batteries (LIBs). A high reversible capacity over 850 mAh g(-1) after 100 cycles at 200 mA g(-1) is obtained with excellent rate capability. The remarkable performance is attributed to the ultrathin nature of γ-FeOOH nanosheets and 2D heterostacking structure, which provide the minimized Li(+) diffusion length and buffer zone for volume change. Further investigation on the Li storage electrochemical mechanism of γ-FeOOH@rGO indicates that the charge-discharge processes include both conversion reaction and capacitive behavior. This synergistic effect of conversion reaction and capacitive behavior originating from 2D heterostacking structure casts new light on the development of high-energy anode materials. PMID:27471909

  16. Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy

    SciTech Connect

    King, Neil P.; Sheffler, William; Sawaya, Michael R.; Vollmar, Breanna S.; Sumida, John P.; André, Ingemar; Gonen, Tamir; Yeates, Todd O.; Baker, David

    2015-09-17

    We describe a general computational method for designing proteins that self-assemble to a desired symmetric architecture. Protein building blocks are docked together symmetrically to identify complementary packing arrangements, and low-energy protein-protein interfaces are then designed between the building blocks in order to drive self-assembly. We used trimeric protein building blocks to design a 24-subunit, 13-nm diameter complex with octahedral symmetry and a 12-subunit, 11-nm diameter complex with tetrahedral symmetry. The designed proteins assembled to the desired oligomeric states in solution, and the crystal structures of the complexes revealed that the resulting materials closely match the design models. The method can be used to design a wide variety of self-assembling protein nanomaterials.

  17. Fabrication and design of metal nano-accordion structures using atomic layer deposition and interference lithography

    NASA Astrophysics Data System (ADS)

    Min, J.-H.; Bagal, A.; Mundy, J. Z.; Oldham, C. J.; Wu, B.-I.; Parsons, G. N.; Chang, C.-H.

    2016-02-01

    Metal nanostructures have attractive electrical and thermal properties as well as structural stability, and are important for applications in flexible conductors. In this study, we have developed a method to fabricate and control novel complex platinum nanostructures with accordion-like profile using atomic layer deposition on lithographically patterned polymer templates. The template removal process results in unique structural transformation of the nanostructure profile, which has been studied and modeled. Using different template duty cycles and aspect ratios, we have demonstrated a wide variety of cross-sectional profiles from wavy geometry to pipe array patterns. These complex thin metal nanostructures can find applications in flexible/stretchable electronics, photonics and nanofluidics.Metal nanostructures have attractive electrical and thermal properties as well as structural stability, and are important for applications in flexible conductors. In this study, we have developed a method to fabricate and control novel complex platinum nanostructures with accordion-like profile using atomic layer deposition on lithographically patterned polymer templates. The template removal process results in unique structural transformation of the nanostructure profile, which has been studied and modeled. Using different template duty cycles and aspect ratios, we have demonstrated a wide variety of cross-sectional profiles from wavy geometry to pipe array patterns. These complex thin metal nanostructures can find applications in flexible/stretchable electronics, photonics and nanofluidics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08566g

  18. 78 FR 14357 - Certain Compact Fluorescent Reflector Lamps, Products Containing Same and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... COMMISSION Certain Compact Fluorescent Reflector Lamps, Products Containing Same and Components Thereof... importation of certain compact fluorescent reflector lamps, products containing same and components thereof by... importation of certain compact fluorescent reflector lamps, products containing same and components thereof...

  19. Computational Design of an Unnatural Amino Acid Dependent Metalloprotein with Atomic Level Accuracy

    PubMed Central

    Mills, Jeremy H.; Khare, Sagar D.; Bolduc, Jill M.; Forouhar, Farhad; Mulligan, Vikram Khipple; Lew, Scott; Seetharaman, Jayaraman; Tong, Liang; Stoddard, Barry L.; Baker, David

    2013-01-01

    Genetically encoded unnatural amino acids could facilitate the design of proteins and enzymes of novel function, but correctly specifying sites of incorporation, and the identities and orientations of surrounding residues represents a formidable challenge. Computational design methods have been used to identify optimal locations for functional sites in proteins and design the surrounding residues, but have not incorporated unnatural amino acids in this process. We extended the Rosetta design methodology to design metalloproteins in which the amino acid (2,2’-bipyridin-5yl)alanine (Bpy-Ala) is a primary ligand of a bound metal ion. Following initial results that indicated the importance of buttressing the Bpy-Ala amino acid, we designed a buried metal binding site with octahedral coordination geometry consisting of Bpy-Ala, two protein based metal ligands, and two metal bound water molecules. Experimental characterization revealed a Bpy-Ala mediated metalloprotein with the ability to bind divalent cations including Co2+, Zn2+, Fe2+, and Ni2+, with a Kd for Zn2+ of ~40 pM. X-ray crystallographic analysis of the designed protein shows only slight deviation from the computationally designed model. PMID:23924187

  20. Excimer UV lamp irradiation induced grafting on synthetic polymers

    NASA Astrophysics Data System (ADS)

    Praschak, D.; Bahners, T.; Schollmeyer, E.

    Surface modifications on polyethyleneterephthalate (PET) films following excimer UV lamp irradiation induced grafting were studied. Characteristics of the modifications depending on the conditions during the irradiation were analysed using contact-angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). Depending on the conditions during the irradiation different surface modifications were obtained, which can generally be classified regarding the hydrophilic or hydrophobic characteristics of the resulting surface. It is shown that not every substance that meets the general demands will be grafted on synthetic polymers using excimer UV radiation. Examples of agents that can simply be grafted onto polymer surfaces and those that undergo further crosslinking, building up thin films are listed. Agents used for grafting on polymers are 1,5-hexadiene, perfluoro-4-methyl-pent-2-ene, polyethyleneglycol 200, monosilane and polyethylene. The transferability of the effects achieved to substrates such as polyparaphenylene terephthalamide or polymetaphenylene isophthalamide is shown.

  1. Convection venting lensed reflector-type compact fluorescent lamp system

    DOEpatents

    Pelton, B.A.; Siminovitch, M.

    1997-07-29

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures. 12 figs.

  2. Fluorescent lamp with static magnetic field generating means

    DOEpatents

    Moskowitz, P.E.; Maya, J.

    1987-09-08

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  3. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  4. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  5. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  6. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  7. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  8. Convection venting lensed reflector-type compact fluorescent lamp system

    DOEpatents

    Pelton, Bruce A.; Siminovitch, Michael

    1997-01-01

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures.

  9. Fluorescent lamp with static magnetic field generating means

    DOEpatents

    Moskowitz, Philip E.; Maya, Jakob

    1987-01-01

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed.

  10. The Moon's Permanently Shadowed Regions as Observed by LRO's Lyman Alpha Mapping Project (LAMP) Instrument

    NASA Astrophysics Data System (ADS)

    Gladstone, R.; Retherford, K. D.; Stern, S. A.; Egan, A.; Miles, P. F.; Versteeg, M.; Slater, D.; Davis, M. W.; Parker, J.; Kaufmann, D.; Greathouse, T. K.; Steffl, A. J.; Mukherjee, J.; Horvath, D.; Rojas, P.; Feldman, P. D.; Hurley, D. M.; Pryor, W. R.; Hendrix, A. R.

    2011-12-01

    Although of great interest for science and resource utilization, the Moon's permanently shadowed regions (PSRs) near each pole present difficult targets for remote sensing. The Lyman Alpha Mapping Project (LAMP) instrument on the Lunar Reconnaissance Orbiter (LRO) mission is able to map PSRs at far-ultraviolet (FUV) wavelengths using two faint sources of illumination from the night sky: the all-sky Lyα glow produced as interplanetary medium (IPM) H atoms scatter the Sun's Lyα emissions, and the much fainter source from UV-bright stars. Since the reflected light from these two sources produces only a few hundred events per second in the photon-counting LAMP instrument, building maps with useful signal-to-noise (SNR) ratios requires the careful accumulation of the observations from thousands of individual LRO orbits. In this talk we present the latest FUV albedo maps obtained by LAMP of the Moon's southern and northern polar regions. The results show that 1) most PSR regions are darker at all FUV wavelengths, consistent with their surface soils having much larger porosities than non-PSR regions (e.g., P~0.9 or so), and 2) most PSRs are somewhat "redder" (i.e., more reflective at the longer FUV wavelengths) than non-PSR regions, consistent with the presence of ~1-2% water frost at the surface.

  11. Neutral atom traps.

    SciTech Connect

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  12. Commercially available sun lamps and vitamin D formation

    PubMed Central

    Devgun, M. S.; Johnson, B. E.; Cruickshank, Alison J. M.; Paterson, C. R.

    1981-01-01

    Four commercially available, medium pressure mercury sun lamps were used to assess their effects on promoting vitamin D synthesis in the skin. It was found that all the lamps studied had vitamin D synthesizing spectral wavelengths and caused an increase in the serum concentrations of 25-hydroxyvitamin D. However, the ultraviolet and visible irradiance measurements showed that a considerable proportion of the ultraviolet radiation was below 290 nm. It was not surprising, therefore, to find that these lamps caused adverse skin reactions. While a useful rise in vitamin D production can be obtained with these sun lamps, the difficulty involved in avoiding skin reaction limits their usefulness. Such lamps are unlikely to provide a safe practical routine method for the prevention of vitamin D deficiency in the home. PMID:7329878

  13. Tanning lamps ultraviolet emissions and compliance with technical standards.

    PubMed

    Bonino, A; Facta, S; Saudino, S; Anglesio, L; D'Amore, G

    2009-12-01

    In this work the compliance of tanning lamps with technical standards EN 60335-2-27 'Household and similar electrical appliances-Safety. Part 2: Particular requirements for appliances for skin exposure to ultraviolet and infrared radiation' was analysed. Results of this analysis showed that none of the examined technical documentation produced by the lamps manufacturers is fully compliant with the standard technique. Furthermore data reported in the same manuals, such as effective radiant exposure or irradiance, would indicate that these sources may be the cause of undue exposure to ultraviolet (UV) radiation. For this reason a measurement campaign on UV lamps used in tanning salons was organised. The first results of these measurements seem to confirm the doubts raised from the analysis of the lamp manuals: the use of a tanning lamp can lead to UV radiation exposure levels higher than reference maximum values recommended by EN 60335-2-27. PMID:19880416

  14. Frequency domain fluorimetry using a mercury vapor lamp

    NASA Astrophysics Data System (ADS)

    Bohn, Matthew J.; Lundin, Michael A.; Marciniak, Michael A.

    2009-04-01

    Frequency Domain (FD) fluorimetry, capitalizes on the frequency response function of a fluorophore and offers independence from light scatter and excitation/emission intensity variations in order to extract the sample's fluorescent lifetime. Mercury vapor lamps, a common source of industrial facility lighting, emit radiation that overlaps the UV/blue absorption spectrum of many fluorophores and may be used as an efficient and portable excitation source. The AC power modulation of mercury vapor lamps modulates the lamp's intensity at 120 Hz (in the United States) and higher harmonics. The fluorescent lifetimes for 3 different materials (willemite, uranium doped glass and U3O8) are measured with conventional techniques and compared with the FD technique using the power harmonics from a mercury vapor lamp. The mercury lamp measurements agree to within 25% of the conventional methods.

  15. Direct current ballast circuit for metal halide lamp

    NASA Technical Reports Server (NTRS)

    Lutus, P. (Inventor)

    1981-01-01

    A direct current ballast circuit for a two electrode metal halide lamp is described. Said direct current ballast circuit includes a low voltage DC input and a high frequency power amplifier and power transformer for developing a high voltage output. The output voltage is rectified by diodes and filtered by inductor and capacitor to provide a regulated DC output through commutating diodes to one terminal of the lamp at the output terminal. A feedback path from the output of the filter capacitor through the bias resistor to power the high frequency circuit which includes the power amplifier and the power transformer for sustaining circuit operations during low voltage transients on the input DC supply is described. A current sensor connected to the output of the lamp through terminal for stabilizing lamp current following breakdown of the lamp is described.

  16. Contrast between the vertical and horizontal mercury discharge lamps

    SciTech Connect

    Ben Hamida, M. B.; Helali, H.; Araoud, Z.; Charrada, K.

    2011-06-15

    This paper discusses the thermal behavior of a high pressure mercury lamp in a horizontal position, compared with that of a vertical lamp. The model adopted is three-dimensional, steady, and powered DC. After the model validation, we analyzed temperature fields and velocities for the case of the lamp in a horizontal position by comparing it with those of a lamp in vertical position. This setting initially fixed the wall temperature equal to 1000 K. However, the morphology of the temperature profile in the case of the horizontal lamp indicates that the temperature of the wall cannot be uniform. Thus, we have, in a second time, performed an energy balance at the wall to calculate its temperature. This aims to understand the influence of convection on the thermal properties of the source.

  17. Designing high performance precursors for atomic layer deposition of silicon oxide

    SciTech Connect

    Mallikarjunan, Anupama Chandra, Haripin; Xiao, Manchao; Lei, Xinjian; Pearlstein, Ronald M.; Bowen, Heather R.; O'Neill, Mark L.; Derecskei-Kovacs, Agnes; Han, Bing

    2015-01-15

    Conformal and continuous silicon oxide films produced by atomic layer deposition (ALD) are enabling novel processing schemes and integrated device structures. The increasing drive toward lower temperature processing requires new precursors with even higher reactivity. The aminosilane family of precursors has advantages due to their reactive nature and relative ease of use. In this paper, the authors present the experimental results that reveal the uniqueness of the monoaminosilane structure [(R{sub 2}N)SiH{sub 3}] in providing ultralow temperature silicon oxide depositions. Disubstituted aminosilanes with primary amines such as in bis(t-butylamino)silane and with secondary amines such as in bis(diethylamino)silane were compared with a representative monoaminosilane: di-sec-butylaminosilane (DSBAS). DSBAS showed the highest growth per cycle in both thermal and plasma enhanced ALD. These findings show the importance of the arrangement of the precursor's organic groups in an ALD silicon oxide process.

  18. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter; K. Streib

    1999-09-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg(OH){sub 2} carbonation is a leading process candidate, which generates the stable naturally occurring mineral magnesite (MgCO{sub 3}) and water. Key to process cost and viability are the carbonation reaction rate and its degree of completion. This process, which involves simultaneous dehydroxylation and carbonation is very promising, but far from optimized. In order to optimize the dehydroxylation/carbonation process, an atomic-level understanding of the mechanisms involved is needed. Since Mg(OH){sub 2} dehydroxylation is intimately associated with the carbonation process, its mechanisms are also of direct interest in understanding and optimizing the process. In the first project year, our investigations have focused on developing an atomic-level understanding of the dehydroxylation/carbonation reaction mechanisms that govern the overall carbonation reaction process in well crystallized material. In years two and three, we will also explore the roles of crystalline defects and impurities. Environmental-cell, dynamic high-resolution transmission electron microscopy has been used to directly observe the dehydroxylation process at the atomic-level for the first time. These observations were combined with advanced computational modeling studies to better elucidate the atomic-level process. These studies were combined with direct carbonation studies to better elucidate dehydroxylation/carbonation reaction mechanisms. Dehydroxylation follows a lamellar nucleation and growth process involving oxide layer formation. These layers form lamellar oxyhydroxide regions, which can

  19. Designing Ratchets in Ultra-cold Atoms for the Advanced Undergraduate Laboratory

    NASA Astrophysics Data System (ADS)

    Hachtel, Andrew; Gillette, Matthew; Clements, Ethan; Zhong, Shan; Ducay, Rey; Bali, Samir

    2014-05-01

    We propose to perform ratchet experiments in cold Rubidium atoms using state-of-the-art home-built tapered amplifier and imaging systems. Our tapered amplifier system amplifies the output from home-built external cavity tunable diode lasers up to a factor 100 and costs less than 5,000, in contrast to commercial tapered amplifier systems, which cost upward of 20,000. We have developed an imaging system with LabVIEW integration, which allows for approximately 2 millisecond exposures and microsecond control of experimental parameters. Our imaging system also costs less than 5,000 in comparison to commercial options, which cost between 40-50,000. Progress toward implementation of a one-dimensional rocking ratchet is described. We gratefully acknowledge funding from the American Chemical Society Petroleum Research Fund and Miami University. We also acknowledge the Miami University Instrumentation Laboratory for their invaluable contributions.

  20. Fabrication and design of metal nano-accordion structures using atomic layer deposition and interference lithography.

    PubMed

    Min, J-H; Bagal, A; Mundy, J Z; Oldham, C J; Wu, B-I; Parsons, G N; Chang, C-H

    2016-03-01

    Metal nanostructures have attractive electrical and thermal properties as well as structural stability, and are important for applications in flexible conductors. In this study, we have developed a method to fabricate and control novel complex platinum nanostructures with accordion-like profile using atomic layer deposition on lithographically patterned polymer templates. The template removal process results in unique structural transformation of the nanostructure profile, which has been studied and modeled. Using different template duty cycles and aspect ratios, we have demonstrated a wide variety of cross-sectional profiles from wavy geometry to pipe array patterns. These complex thin metal nanostructures can find applications in flexible/stretchable electronics, photonics and nanofluidics. PMID:26863903

  1. Reduced atomic pair-interaction design (RAPID) model for simulations of proteins.

    PubMed

    Ni, Boris; Baumketner, Andrij

    2013-02-14

    Increasingly, theoretical studies of proteins focus on large systems. This trend demands the development of computational models that are fast, to overcome the growing complexity, and accurate, to capture the physically relevant features. To address this demand, we introduce a protein model that uses all-atom architecture to ensure the highest level of chemical detail while employing effective pair potentials to represent the effect of solvent to achieve the maximum speed. The effective potentials are derived for amino acid residues based on the condition that the solvent-free model matches the relevant pair-distribution functions observed in explicit solvent simulations. As a test, the model is applied to alanine polypeptides. For the chain with 10 amino acid residues, the model is found to reproduce properly the native state and its population. Small discrepancies are observed for other folding properties and can be attributed to the approximations inherent in the model. The transferability of the generated effective potentials is investigated in simulations of a longer peptide with 25 residues. A minimal set of potentials is identified that leads to qualitatively correct results in comparison with the explicit solvent simulations. Further tests, conducted for multiple peptide chains, show that the transferable model correctly reproduces the experimentally observed tendency of polyalanines to aggregate into β-sheets more strongly with the growing length of the peptide chain. Taken together, the reported results suggest that the proposed model could be used to succesfully simulate folding and aggregation of small peptides in atomic detail. Further tests are needed to assess the strengths and limitations of the model more thoroughly.

  2. Reduced atomic pair-interaction design (RAPID) model for simulations of proteins

    NASA Astrophysics Data System (ADS)

    Ni, Boris; Baumketner, Andrij

    2013-02-01

    Increasingly, theoretical studies of proteins focus on large systems. This trend demands the development of computational models that are fast, to overcome the growing complexity, and accurate, to capture the physically relevant features. To address this demand, we introduce a protein model that uses all-atom architecture to ensure the highest level of chemical detail while employing effective pair potentials to represent the effect of solvent to achieve the maximum speed. The effective potentials are derived for amino acid residues based on the condition that the solvent-free model matches the relevant pair-distribution functions observed in explicit solvent simulations. As a test, the model is applied to alanine polypeptides. For the chain with 10 amino acid residues, the model is found to reproduce properly the native state and its population. Small discrepancies are observed for other folding properties and can be attributed to the approximations inherent in the model. The transferability of the generated effective potentials is investigated in simulations of a longer peptide with 25 residues. A minimal set of potentials is identified that leads to qualitatively correct results in comparison with the explicit solvent simulations. Further tests, conducted for multiple peptide chains, show that the transferable model correctly reproduces the experimentally observed tendency of polyalanines to aggregate into β-sheets more strongly with the growing length of the peptide chain. Taken together, the reported results suggest that the proposed model could be used to succesfully simulate folding and aggregation of small peptides in atomic detail. Further tests are needed to assess the strengths and limitations of the model more thoroughly.

  3. Ionization processes in fluorescent lamps: evaluation of the Hg chemi-ionization rate coefficients.

    PubMed

    Sheverev, Valery A; Lister, Graeme G; Stepaniuk, Vadim

    2005-05-01

    Chemi-ionization by two mercury atoms to produce mercury atomic and molecular ions has been considered an important process in fluorescent lamps (FLs) for a quarter of a century. Despite the absence of reliable data, these processes have been included in a number of numerical models to help explain some of the experimental observations. These models have shown that the most important process is the Penning ionization of two Hg metastable atoms Hg(6(3)P2)+Hg(6(3)P2) --> Hg(+)+Hg(6(1)S0)+e. Although there is no experimental measurement of this cross section, modelers have typically used values implied from measurements of other chemi-ionization cross sections, or values obtained by fitting parameters to numerical models to obtain agreement with experiment. Recent theoretical investigations have indicated that the cross sections for the important processes may not be as large as previously thought. The aim of the present paper is to critically review the historical development of studies of chemi-ionization in fluorescent lamps and to present new experimental evidence which is consistent with the theoretical calculations and contradicts the conclusions from previously published experiments.

  4. Ionization processes in fluorescent lamps: Evaluation of the Hg chemi-ionization rate coefficients

    SciTech Connect

    Sheverev, Valery A.; Stepaniuk, Vadim; Lister, Graeme G.

    2005-05-01

    Chemi-ionization by two mercury atoms to produce mercury atomic and molecular ions has been considered an important process in fluorescent lamps (FLs) for a quarter of a century. Despite the absence of reliable data, these processes have been included in a number of numerical models to help explain some of the experimental observations. These models have shown that the most important process is the Penning ionization of two Hg metastable atoms Hg(6 {sup 3}P{sub 2})+Hg(6 {sup 3}P{sub 2}){yields}Hg{sup +}+Hg(6 {sup 1}S{sub 0})+e. Although there is no experimental measurement of this cross section, modelers have typically used values implied from measurements of other chemi-ionization cross sections, or values obtained by fitting parameters to numerical models to obtain agreement with experiment. Recent theoretical investigations have indicated that the cross sections for the important processes may not be as large as previously thought. The aim of the present paper is to critically review the historical development of studies of chemi-ionization in fluorescent lamps and to present new experimental evidence which is consistent with the theoretical calculations and contradicts the conclusions from previously published experiments.

  5. Stress Testing of the Philips 60W Replacement Lamp L Prize Entry

    SciTech Connect

    Poplawski, Michael E.; Ledbetter, Marc R.; Smith, Mark

    2012-04-24

    The Pacific Northwest National Laboratory, operated by Battelle for the U.S. Department of Energy, worked with Intertek to develop a procedure for stress testing medium screw-base light sources. This procedure, composed of alternating stress cycles and performance evaluation, was used to qualitatively compare and contrast the durability and reliability of the Philips 60W replacement lamp L Prize entry with market-proven compact fluorescent lamps (CFLs) with comparable light output and functionality. The stress cycles applied simultaneous combinations of electrical, thermal, vibration, and humidity stresses of increasing magnitude. Performance evaluations measured relative illuminance, x chromaticity and y chromaticity shifts after each stress cycle. The Philips L Prize entry lamps appear to be appreciably more durable than the incumbent energy-efficient technology, as represented by the evaluated CFLs, and with respect to the applied stresses. Through the course of testing, all 15 CFL samples permanently ceased to function as a result of the applied stresses, while only 1 Philips L Prize entry lamp exhibited a failure, the nature of which was minor, non-destructive, and a consequence of a known (and resolved) subcontractor issue. Given that current CFL technology appears to be moderately mature and no Philips L Prize entry failures could be produced within the stress envelope causing 100 percent failure of the benchmark CFLs, it seems that, in this particular implementation, light-emitting diode (LED) technology would be much more durable in the field than current CFL technology. However, the Philips L Prize entry lamps used for testing were carefully designed and built for the competition, while the benchmark CFLs were mass produced for retail sale—a distinction that should be taken into consideration. Further reliability testing on final production samples would be necessary to judge the extent to which the results of this analysis apply to production versions

  6. A Loop-Mediated Isothermal Amplification (LAMP) Assay for Early Detection of Schistosoma mansoni in Stool Samples: A Diagnostic Approach in a Murine Model

    PubMed Central

    Fernández-Soto, Pedro; Gandasegui Arahuetes, Javier; Sánchez Hernández, Alicia; López Abán, Julio; Vicente Santiago, Belén; Muro, Antonio

    2014-01-01

    Background Human schistosomiasis, mainly due to Schistosoma mansoni species, is one of the most prevalent parasitic diseases worldwide. To overcome the drawbacks of classical parasitological and serological methods in detecting S. mansoni infections, especially in acute stage of the disease, development of cost-effective, simple and rapid molecular methods is still needed for the diagnosis of schistosomiasis. A promising approach is the loop-mediated isothermal amplification (LAMP) technology. Compared to PCR-based assays, LAMP has the advantages of reaction simplicity, rapidity, specificity, cost-effectiveness and higher amplification efficiency. Additionally, as results can be inspected by the naked eye, the technique has great potential for use in low-income countries. Methodology/Principal findings A sequence corresponding to a mitochondrial S. mansoni minisatellite DNA region was selected as a target for designing a LAMP-based method to detect S. mansoni DNA in stool samples. We used a S. mansoni murine model to obtain well defined stool and sera samples from infected mice with S. mansoni cercariae. Samples were taken weekly from week 0 to 8 post-infection and the Kato-Katz and ELISA techniques were used for monitoring the infection. Primer set designed were tested using a commercial reaction mixture for LAMP assay and an in house mixture to compare results. Specificity of LAMP was tested using 16 DNA samples from different parasites, including several Schistosoma species, and no cross-reactions were found. The detection limit of our LAMP assay (SmMIT-LAMP) was 1 fg of S. mansoni DNA. When testing stool samples from infected mice the SmMIT-LAMP detected S. mansoni DNA as soon as 1 week post-infection. Conclusions/Significance We have developed, for the first time, a cost-effective, easy to perform, specific and sensitive LAMP assay for early detection of S. mansoni in stool samples. The method is potentially and readily adaptable for field diagnosis and

  7. High passive-stability diode-laser design for use in atomic-physics experiments.

    PubMed

    Cook, Eryn C; Martin, Paul J; Brown-Heft, Tobias L; Garman, Jeffrey C; Steck, Daniel A

    2012-04-01

    We present the design and performance characterization of an external-cavity diode-laser system optimized for high stability, low passive spectral linewidth, low cost, and ease of in-house assembly. The main cavity body is machined from a single aluminum block for robustness to temperature changes and mechanical vibrations, and features a stiff and light diffraction-grating arm to suppress low-frequency mechanical resonances. The cavity is vacuum sealed, and a custom-molded silicone external housing further isolates the system from acoustic noise and temperature fluctuations. Beam shaping, optical isolation, and fiber coupling are integrated, and the design is easily adapted to many commonly used wavelengths. Resonance data, passive-linewidth data, and passive stability characterization of the new design demonstrate that its performance exceeds published specifications for commercial precision diode-laser systems. The design is fully documented and freely available. PMID:22559509

  8. The influence of an external cavity on the emission spectrum of a mercury germicidal lamp

    NASA Astrophysics Data System (ADS)

    Solomonov, V. I.; Surkov, Yu. S.; Gorbunkov, V. I.

    2016-09-01

    The spectrum of emission from the cylindrical duralumin cavity of a TUV 8wG8 T5 UV industrial germicidal mercury lamp is studied. It is shown that, due to reflection from the inner surface of the cavity and reabsorption in the gas discharge, the resonance line of a mercury atom is significantly weakened. The dependence of the resonance line intensity on the discharge current has a maximum, and the discharge current corresponding to the intensity maximum depends on the reflection coefficient of the inner surface of the cavity.

  9. CALiPER Benchmark Report: Performance of Incandescent A Type and Decorative Lamps and LED Replacements

    SciTech Connect

    Lingard, R. D.; Myer, M. A.; Paget, M. L.

    2008-11-01

    This benchmark report addresses common omnidirectional incandescent lamps - A-type and small decorative, candelabra-type lamps - and their commercially available light-emitting diode (LED) replacements.

  10. Design of activated serine-containing catalytic triads with atomic level accuracy

    PubMed Central

    Rajagopalan, Sridharan; Wang, Chu; Yu, Kai; Kuzin, Alexandre P.; Richter, Florian; Lew, Scott; Miklos, Aleksandr E.; Matthews, Megan L.; Seetharaman, Jayaraman; Su, Min; Hunt, John. F.; Cravatt, Benjamin F.; Baker, David

    2014-01-01

    A challenge in the computational design of enzymes is that multiple properties must be simultaneously optimized -- substrate-binding, transition state stabilization, and product release -- and this has limited the absolute activity of successful designs. Here, we focus on a single critical property of many enzymes: the nucleophilicity of an active site residue that initiates catalysis. We design proteins with idealized serine-containing catalytic triads, and assess their nucleophilicity directly in native biological systems using activity-based organophosphate probes. Crystal structures of the most successful designs show unprecedented agreement with computational models, including extensive hydrogen bonding networks between the catalytic triad (or quartet) residues, and mutagenesis experiments demonstrate that these networks are critical for serine activation and organophosphate-reactivity. Following optimization by yeast-display, the designs react with organophosphate probes at rates comparable to natural serine hydrolases. Co-crystal structures with diisopropyl fluorophosphate bound to the serine nucleophile suggest the designs could provide the basis for a new class of organophosphate captures agents. PMID:24705591

  11. AMO Physics of Metal-Halide High-Intensity-Discharge Lamps

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.

    2003-05-01

    Metal Halide High Intensity Discharge (MH-HID) lamps are widely used today, and are being studied for continued development, because of their superior color and efficacy [1]. MH-HID lamps are high pressure (many bar) mercury arc lamps with metal halide additives such as ScI3 or rare earth iodides. These additive salts evaporate at arc tube temperatures, the salt molecules dissociate in the arc, and the metal atoms and ions radiate strongly from the arc core to produce a pleasing white light with an excellent color temperature and color rendering index. Transition metals (e.g. Sc) and rare earth metals (e.g. Dy) have rich visible spectra. Although the plasma in these lamps is in local thermodynamic equilibrium, it is by no means easy to model due to huge temperature gradients, plasma segregation of additives, free convection cells, complex radiation transport, and other effects. Diagnostic experiments, especially in the lamps with translucent poly-crystalline alumina arc tubes [1], are equally challenging. Recent progress in the development of X-ray and optical-UV diagnostic experiments using synchrotron radiation will be summarized [2,3,4]. A possibility for combining these diagnostics to get a first look at the molecules and molecular radicals in the mantle of the arc will be described. The spectra of the metal halide molecules and radicals are almost completely unknown, but the formation of these species in the mantle is thought to protect the arc tube from chemical attack by reactive metal atoms. Recent progress toward the development of a quantitative microscopic understanding of infrared losses from the arc will be reported. [1] W. J. van den Hoek, A. G. Jack, & G. M. J. F. Luijks 2001, in Ullmann's Encyclopedia of Industrial Chemistry, 6th Ed. (Weinheim: Wiley-VCH) [2] J. J. Curry, M. Sakai, and J. E. Lawler, J. Appl. Phys. 84, 3066 (1998) [3] J. J. Curry, H. Adler, S. D. Shastri, and J. E. Lawler, Appl. Phys. Lett. 79, 1974 (2001) [4] G. A. Bonvallet, D. J

  12. Laser-excited fluorescence spectra of atomic uranium

    SciTech Connect

    Wang Songyue; Jin Changtai; Shen Mingtao; Wang Xiulan

    1987-05-01

    Using a dc-supply hollow-cathode lamp as a source of uranium vapor and a rhodamine 6G dye laser to excite the vapor optically, it was simple and convenient to detect fluorescence from uranium atoms at 753.393, 763.175, and 763.954 nm. We give a detailed discussion of how we eliminated the intense background emissions, which were principally due to the lamp.

  13. Detection of spring viraemia of carp virus (SVCV) by loop-mediated isothermal amplification (LAMP) in koi carp, Cyprinus carpio L

    USGS Publications Warehouse

    Shivappa, R.B.; Savan, R.; Kono, T.; Sakai, M.; Emmenegger, E.; Kurath, G.; Levine, J.F.

    2008-01-01

    Spring viraemia of carp virus (SVCV) is a rhabdovirus associated with systemic illness and mortality in cyprinids. Several diagnostic tests are available for detection of SVCV. However, most of these tests are time consuming and are not well adapted for field-based diagnostics. In this study, a diagnostic tool for SVCV detection based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) has been developed. Based on the nucleotide sequence of the glycoprotein (G) gene of SVCV North Carolina (NC) isolate, four sets (each set containing two outer and two inner) of primers were designed. Temperature and time conditions were optimized to 65 ??C and 60 min, respectively, for LAMP and RT-LAMP using one primer set. In vitro specificity was evaluated using four different strains of fish rhabdoviruses and RT-LAMP was found to be specific to SVCV. Serial dilutions of SVCV NC isolate was used to evaluate the in vitro sensitivity of RT-LAMP. Sensitivity of the assays was similar to RT-PCR and detected SVCV even at the lowest dilution of 10 1 TCID50 mL-1. The ability of RT-LAMP to detect SVCV from infected carp was also tested and the assay detected SVCV from all infected fish. The isothermal temperature requirements, high specificity and sensitivity, and short incubation time of the RT-LAMP assay make it an excellent choice as a field diagnostic test for SVCV. ?? 2008 The Authors.

  14. Rapid authentication of the precious herb saffron by loop-mediated isothermal amplification (LAMP) based on internal transcribed spacer 2 (ITS2) sequence.

    PubMed

    Zhao, Mingming; Shi, Yuhua; Wu, Lan; Guo, Licheng; Liu, Wei; Xiong, Chao; Yan, Song; Sun, Wei; Chen, Shilin

    2016-01-01

    Saffron is one of the most expensive species of Chinese herbs and has been subjected to various types of adulteration because of its high price and limited production. The present study introduces a loop-mediated isothermal amplification (LAMP) technique for the differentiation of saffron from its adulterants. This novel technique is sensitive, efficient and simple. Six specific LAMP primers were designed on the basis of the nucleotide sequence of the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA of Crocus sativus. All LAMP amplifications were performed successfully, and visual detection occurred within 60 min at isothermal conditions of 65 °C. The results indicated that the LAMP primers are accurate and highly specific for the discrimination of saffron from its adulterants. In particular, 10 fg of genomic DNA was determined to be the limit for template accuracy of LAMP in saffron. Thus, the proposed novel, simple, and sensitive LAMP assay is well suited for immediate on-site discrimination of herbal materials. Based on the study, a practical standard operating procedure (SOP) for utilizing the LAMP protocol for herbal authentication is provided. PMID:27146605

  15. Rapid authentication of the precious herb saffron by loop-mediated isothermal amplification (LAMP) based on internal transcribed spacer 2 (ITS2) sequence

    PubMed Central

    Zhao, Mingming; Shi, Yuhua; Wu, Lan; Guo, Licheng; Liu, Wei; Xiong, Chao; Yan, Song; Sun, Wei; Chen, Shilin

    2016-01-01

    Saffron is one of the most expensive species of Chinese herbs and has been subjected to various types of adulteration because of its high price and limited production. The present study introduces a loop-mediated isothermal amplification (LAMP) technique for the differentiation of saffron from its adulterants. This novel technique is sensitive, efficient and simple. Six specific LAMP primers were designed on the basis of the nucleotide sequence of the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA of Crocus sativus. All LAMP amplifications were performed successfully, and visual detection occurred within 60 min at isothermal conditions of 65 °C. The results indicated that the LAMP primers are accurate and highly specific for the discrimination of saffron from its adulterants. In particular, 10 fg of genomic DNA was determined to be the limit for template accuracy of LAMP in saffron. Thus, the proposed novel, simple, and sensitive LAMP assay is well suited for immediate on-site discrimination of herbal materials. Based on the study, a practical standard operating procedure (SOP) for utilizing the LAMP protocol for herbal authentication is provided. PMID:27146605

  16. 49 CFR 571.108, Nt. - Standard No. 108; Lamps, reflective devices, and associated equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Flash means a cycle of activation and deactivation of a lamp by automatic means continuing until stopped... equipped with a turn signal operating unit designed to complete a durability test of 100,000 cycles. S5.1.1... shall not exceed 0.8 volt. S5.1.1.21A motor-driven cycle whose speed attainable in 1 mile is 30 mph...

  17. Application Summary Report 22: LED MR16 Lamps

    SciTech Connect

    Royer, Michael P.

    2014-07-23

    This report analyzes the independently tested photometric performance of 27 LED MR16 lamps. It describes initial performance based on light output, efficacy, distribution, color quality, electrical characteristics, and form factor, with comparisons to a selection of benchmark halogen MR16s and ENERGY STAR qualification thresholds. Three types of products were targeted. First, CALiPER sought 3000 K lamps with the highest rated lumen output (i.e., at least 500 lm) or a claim of equivalency to a 50 W halogen MR16 or higher. The test results indicate that while the initial performance of LED MR16s has improved across the board, market-available products still do not produce the lumen output and center beam intensity of typical 50 W halogen MR16 lamps. In fact, most of the 18 lamps in this category had lower lumen output and center beam intensity than a typical 35 W halogen MR16 lamp. Second, CALiPER sought lamps with a CRI of 90 or greater. Only four manufacturers were identified with a product in this category. CALiPER testing confirmed the performance of these lamps, which are a good option for applications where high color fidelity is needed. A vast majority of the LED MR16 lamps have a CRI in the low 80s; this is generally acceptable for ambient lighting, but may not always be acceptable for focal lighting. For typical LED packages, there is a fundamental tradeoff between CRI and efficacy, but the lamps in the high-CRI group in this report still offer comparable performance to the rest of the Series 22 products in other performance areas. Finally, CALiPER sought lamps with a narrow distribution, denoted as a beam angle less than 15°. Five such lamps were purchased. Notably, no lamp was identified as having high lumen output (500 lumens or greater), high CRI (90 or greater), a narrow distribution (15° or less), and an efficacy greater than 60 lm/W. This would be an important achievement for LED MR16s especially if output could reach approximately 700 800 lumens

  18. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2000-08-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation before and/or during carbonation may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (i) its structural and chemical simplicity, (ii) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (iii) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for cost optimization of any lamellar-hydroxide-based mineral carbonation sequestration process.

  19. Design and control of multi-actuated atomic force microscope for large-range and high-speed imaging.

    PubMed

    Soltani Bozchalooi, I; Careaga Houck, A; AlGhamdi, J; Youcef-Toumi, K

    2016-01-01

    This paper presents the design and control of a high-speed and large-range atomic force microscopy (AFM). A multi-actuation scheme is proposed where several nano-positioners cooperate to achieve the range and speed requirements. A simple data-based control design methodology is presented to effectively operate the AFM scanner components. The proposed controllers compensate for the coupled dynamics and divide the positioning responsibilities between the scanner components. As a result, the multi-actuated scanner behavior is equivalent to that of a single X-Y-Z positioner with large range and high speed. The scanner of the designed AFM is composed of five nano-positioners, features 6 μm out-of-plane and 120 μm lateral ranges and is capable of high-speed operation. The presented AFM has a modular design with laser spot size of 3.5 μm suitable for small cantilever, an optical view of the sample and probe, a conveniently large waterproof sample stage and a 20 MHz data throughput for high resolution image acquisition at high imaging speeds. This AFM is used to visualize etching of calcite in a solution of sulfuric acid. Layer-by-layer dissolution and pit formation along the crystalline lines in a low pH environment is observed in real time. PMID:26547505

  20. Theory and experimental validation of SPLASH (Single Panel Lamp and Shroud Helper).

    SciTech Connect

    Larsen, Marvin Elwood; Porter, Jason M.

    2005-06-01

    The radiant heat test facility develops test sets providing well-characterized thermal environments, often representing fires. Many of the components and procedures have become standardized to such an extent that the development of a specialized design tool was appropriate. SPLASH (Single Panel Lamp and Shroud Helper) is that tool. SPLASH is implemented as a user-friendly program that allows a designer to describe a test setup in terms of parameters such as lamp number, power, position, and separation distance. Thermal radiation is the dominant mechanism of heat transfer and the SPLASH model solves a radiation enclosure problem to estimate temperature distributions in a shroud providing the boundary condition of interest. Irradiance distribution on a specified viewing plane is also estimated. This document provides the theoretical development for the underlying model. A series of tests were conducted to characterize SPLASH's ability to analyze lamp and shroud systems. The comparison suggests that SPLASH succeeds as a design tool. Simplifications made to keep the model tractable are demonstrated to result in estimates that are only approximately as uncertain as many of the properties and characteristics of the operating environment.

  1. General and plastic surgery devices: reclassification of ultraviolet lamps for tanning, henceforth to be known as sunlamp products and ultraviolet lamps intended for use in sunlamp products. Final order.

    PubMed

    2014-06-01

    The Food and Drug Administration (FDA or the Agency) is reclassifying ultraviolet (UV) lamps intended to tan the skin from class I (general controls) exempt from premarket notification to class II (special controls) and subject to premarket notification, and renaming them sunlamp products and UV lamps intended for use in sunlamp products. FDA is designating special controls that are necessary to provide a reasonable assurance of safety and effectiveness of the device. FDA is reclassifying this device on its own initiative based on new information.

  2. Development of a LAMP assay for rapid detection of different intimin variants of attaching and effacing microbial pathogens.

    PubMed

    Xue-han, Zhang; Qing, Ye; Ya-dong, Liu; Bin, Li; Renata, Ivanek; Kong-wang, He

    2013-11-01

    Intimin harboured by pathogenic Escherichia coli (E. coli) strains is a key virulence factor involved in host cell adherence and colonization. Twenty-seven intimin-encoding E. coli attaching and effacing (eae) gene variants have been reported according to their 3' binding domain sequences. In our study, we developed a specific and sensitive loop-mediated isothermal amplification (LAMP) assay to detect all known intimin variants. Four primers specific for six regions of eae genes were designed using online software. The eae-LAMP assay was highly specific and detected all 27 tested eae variants; no cross-reactions were observed with genes from enterotoxigenic E. coli (ETEC), E. coli BL21, Salmonella, Shigella, Listeria monocytogenes, or Streptococcus suis type 2 (SS2). With the lowest detection limit of approximately 10 copies per reaction the eae-LAMP assay was 100 times more sensitive than conventional PCR. These results, and the results of tests involving food and faecal samples artificially contaminated with E. coli O157 : H7 (eaeγ+), show that the eae-LAMP assay is a simple, rapid, sensitive and specific tool for detecting intimin variants from pathogenic strains of E. coli. The eae-LAMP assay has great potential for wider applications, not only in the laboratory but also in the field setting, as it does not require specialized equipment. PMID:23893919

  3. Highly Efficient Small Form Factor LED Retrofit Lamp

    SciTech Connect

    Steven Allen; Fred Palmer; Ming Li

    2011-09-11

    This report summarizes work to develop a high efficiency LED-based MR16 lamp downlight at OSRAM SYLVANIA under US Department of Energy contract DE-EE0000611. A new multichip LED package, electronic driver, and reflector optic were developed for these lamps. At steady-state, the lamp luminous flux was 409 lumens (lm), luminous efficacy of 87 lumens per watt (LPW), CRI (Ra) of 87, and R9 of 85 at a correlated color temperature (CCT) of 3285K. The LED alone achieved 120 lumens per watt efficacy and 600 lumen flux output at 25 C. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.90 at a power of only 5 watts. Compared to similar existing MR16 lamps using LED sources, these lamps had much higher efficacy and color quality. The objective of this work was to demonstrate a LED-based MR16 retrofit lamp for replacement of 35W halogen MR16 lamps having (1) luminous flux of 500 lumens, (2) luminous efficacy of 100 lumens per watt, (3) beam angle less than 40{sup o} and center beam candlepower of at least 1000 candelas, and (4) excellent color quality.

  4. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2002-11-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (1) its structural and chemical simplicity, (2) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (3) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This final report covers the overall progress of this grant.

  5. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2001-10-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (i) its structural and chemical simplicity, (ii) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (iii) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This report covers the third year progress of this grant, as well as providing an integrated overview of the progress in years 1-3, as we have been granted a one-year no-cost extension to wrap up a few studies and publications to optimize project impact.

  6. Interaction-Driven Topological Insulator in Fermionic Cold Atoms on an Optical Lattice: A Design with a Density Functional Formalism.

    PubMed

    Kitamura, Sota; Tsuji, Naoto; Aoki, Hideo

    2015-07-24

    We design an interaction-driven topological insulator for fermionic cold atoms in an optical lattice; that is, we pose the question of whether we can realize in a continuous space a spontaneous symmetry breaking induced by the interatom interaction into a topological Chern insulator. Such a state, sometimes called a "topological Mott insulator," has yet to be realized in solid-state systems, since this requires, in the tight-binding model, large off-site interactions on top of a small on-site interaction. Here, we overcome the difficulty by introducing a spin-dependent potential, where a spin-selective occupation of fermions in A and B sublattices makes the on-site interaction Pauli forbidden, while a sizeable intersite interaction is achieved by a shallow optical potential with a large overlap between neighboring Wannier orbitals. This puts the system away from the tight-binding model, so that we adopt density functional theory for cold atoms, here extended to accommodate noncollinear spin structures emerging in the topological regime, to quantitatively demonstrate the phase transition to the topological Mott insulator.

  7. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  8. Compact Yb+ optical atomic clock project: design principle and current status

    NASA Astrophysics Data System (ADS)

    Lacroûte, Clément; Souidi, Maël; Bourgeois, Pierre-Yves; Millo, Jacques; Saleh, Khaldoun; Bigler, Emmanuel; Boudot, Rodolphe; Giordano, Vincent; Kersalé, Yann

    2016-06-01

    We present the design of a compact optical clock based on the 2 S 1/2→2 D 3/2 435.5 nm transition in 171 Yb+. The ion trap will be based on a micro-fabricated circuit, with surface electrodes generating a trapping potential to localize a single Yb ion a few hundred μm from the electrodes. We present our trap design as well as simulations of the resulting trapping pseudo-potential. We also present a compact, multi-channel wavelength meter that will permit the frequency stabilization of the cooling, repumping and clear-out lasers at 369.5 nm, 935.2 nm and 638.6 nm needed to cool the ion. We use this wavelength meter to characterize and stabilize the frequency of extended cavity diode lasers at 369.5 nm and 638.6 nm.

  9. Atomic-scale insight and design principles for turbine engine thermal barrier coatings from theory

    PubMed Central

    Marino, Kristen A.; Hinnemann, Berit; Carter, Emily A.

    2011-01-01

    To maximize energy efficiency, gas turbine engines used in airplanes and for power generation operate at very high temperatures, even above the melting point of the metal alloys from which they are comprised. This feat is accomplished in part via the deposition of a multilayer, multicomponent thermal barrier coating (TBC), which lasts up to approximately 40,000 h before failing. Understanding failure mechanisms can aid in designing circumvention strategies. We review results of quantum mechanics calculations used to test hypotheses about impurities that harm TBCs and transition metal (TM) additives that render TBCs more robust. In particular, we discovered a number of roles that Pt and early TMs such as Hf and Y additives play in extending the lifetime of TBCs. Fundamental insight into the nature of the bonding created by such additives and its effect on high-temperature evolution of the TBCs led to design principles that can be used to create materials for even more efficient engines.

  10. 16 CFR 305.22 - Required testing by designated laboratory.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... general service fluorescent lamps, the color rendering index, disclosed on the label or fact sheet or in... light output, energy usage and life ratings or, for general service fluorescent lamps, the color rendering index, for each basic model or lamp type was derived. A representative designated by...

  11. Investigation of pitch and angle in the gradual-triangle lenticular lens for point-blank LED fog lamp.

    PubMed

    Chen, Hsi-Chao; Yang, Chi-Hao

    2014-05-10

    The effects of different pitch and angle of gradual-triangle lenticular lens for the point-blank LED fog lamp were investigated under the standard of ECE R19. The novel LED fog lamp was assembled from a point-blank LED light source, a parabolic reflector, and a gradual-triangle lenticular lens. Light tracing analysis was used for the design of the gradual-triangle lenticular lens. The pitch, which varied from 1 to 6 mm, and the apex angle, which changed from 5 to 32 deg, were both investigated in regard to the gradual-triangle lenticular lens. The optimum pitch was 5 mm, and the efficiency of the lamp system and lenticular lens could reach 93% and 98.1% by simulation, respectively. The results of experiment had over 94%, which is similar to that of simulation by normalized cross correlation (NCC) for the light intensity.

  12. Arc lamp power supply using a voltage multiplier

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.

    1988-01-01

    A power supply is provided for an arc discharge lamp which includes a relatively low voltage high current power supply section and a high voltage starter circuit. The low voltage section includes a transformer, rectifier, variable resistor and a bank of capacitors, while the starter circuit comprises several diodes and capacitors connected as a Cockcroft-Walton multiplier. The starting circuit is effectively bypassed when the lamp arc is established and serves to automatically provide a high starting voltage to re-strike the lamp arc if the arc is extinguished by a power interruption.

  13. Lightweight LED Fluorescent lamp using engineering poly carbonate

    NASA Astrophysics Data System (ADS)

    Cho, Hyun-Ju; Lee, Jong-Phil

    2014-09-01

    In this study, we developed lightweight LED fluorescent lamp using thermally conductive engineering PC a heat sink instead of metal. In order to secure price competitiveness, we used double extrusion molding which extrude both the heat sink plate and diffuser plate simultaneously. Fabricated fluorescent lamp has less than 20% of weight as compare to glass fluorescent lamp and power consumption is 20.2 watts, luminous efficiency 123.9 lm/W, respectively. Despite the heat conductive plastic is adopted, the system temperature is maintained less than 35° and the thermal resistance is 25 °/W.

  14. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    NASA Astrophysics Data System (ADS)

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sönke; Schlepütz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  15. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    SciTech Connect

    Klug, Jeffrey A. Emery, Jonathan D.; Martinson, Alex B. F.; Proslier, Thomas; Weimer, Matthew S.; Yanguas-Gil, Angel; Elam, Jeffrey W.; Seifert, Sönke; Schlepütz, Christian M.; Hock, Adam S.

    2015-11-15

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er{sub 2}O{sub 3} ALD on amorphous ALD alumina and single crystalline sapphire.

  16. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes.

    PubMed

    Klug, Jeffrey A; Weimer, Matthew S; Emery, Jonathan D; Yanguas-Gil, Angel; Seifert, Sönke; Schlepütz, Christian M; Martinson, Alex B F; Elam, Jeffrey W; Hock, Adam S; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  17. A modular reactor design for in situ synchrotron X-ray investigation of atomic layer deposition processes

    SciTech Connect

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sonke; Schleputz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present \\textit{in situ} results for 1.) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, 2.) grazing-incidence small angle scattering of MnO nucleation on silicon, and 3.) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  18. High-stroke silicon-on-insulator MEMS nanopositioner: Control design for non-raster scan atomic force microscopy

    SciTech Connect

    Maroufi, Mohammad Fowler, Anthony G. Bazaei, Ali Moheimani, S. O. Reza

    2015-02-15

    A 2-degree of freedom microelectromechanical systems nanopositioner designed for on-chip atomic force microscopy (AFM) is presented. The device is fabricated using a silicon-on-insulator-based process and is designed as a parallel kinematic mechanism. It contains a central scan table and two sets of electrostatic comb actuators along each orthogonal axis, which provides displacement ranges greater than ±10 μm. The first in-plane resonance modes are located at 1274 Hz and 1286 Hz for the X and Y axes, respectively. To measure lateral displacements of the stage, electrothermal position sensors are incorporated in the design. To facilitate high-speed scans, the highly resonant dynamics of the system are controlled using damping loops in conjunction with internal model controllers that enable accurate tracking of fast sinusoidal set-points. To cancel the effect of sensor drift on controlled displacements, washout controllers are used in the damping loops. The feedback controlled nanopositioner is successfully used to perform several AFM scans in contact mode via a Lissajous scan method with a large scan area of 20 μm × 20 μm. The maximum scan rate demonstrated is 1 kHz.

  19. Application of factorial design in optimization of preconcentration procedure for copper determination in soft drink by flame atomic absorption spectrometry.

    PubMed

    Castro, Martha T P O; Baccan, Nivaldo

    2005-03-15

    In the present paper, a procedure for preconcentration and determination of copper in soft drink using flame atomic absorption spectrometry (FAAS) is proposed, which is based on solid-phase extraction of copper(II) ions as its ion pair of 1,10-phenanthroline complexes with the anionic surfactant sodium dodecil sulphate (SDS), by Amberlite XAD-2 resin. The optimization process was carried out using 2(4-1) factorial and 2(2) factorial with a center point designs. Four variables (XAD-2 mass, copper mass, sample flow rate and elution flow rate) were regarded as factors in the optimization. Student's t-test on the results of the 2(4-1) factorial design with eight runs for copper extraction, demonstrated that the factors XAD-2 mass and sample flow rate in the levels studied are statistically significant. The 2(2) factorial with a center point design was applied in order to determine the optimum conditions for extraction. The procedure proposed allowed the determination of copper with detection limits (3alpha/S) of 3.9mugl(-1). The precision, calculated as relative standard deviation (R.S.D.) was 1.8% for 20.0mugl(-1) of copper. The preconcentration factor was 100. The robustness of this procedure is demonstrated by the recovery achieved for determination of copper in the presence of several cations. This procedure was applied to the determination of copper in soft drink samples collected in Campinas, SP, Brazil. PMID:18969940

  20. High-stroke silicon-on-insulator MEMS nanopositioner: control design for non-raster scan atomic force microscopy.

    PubMed

    Maroufi, Mohammad; Fowler, Anthony G; Bazaei, Ali; Moheimani, S O Reza

    2015-02-01

    A 2-degree of freedom microelectromechanical systems nanopositioner designed for on-chip atomic force microscopy (AFM) is presented. The device is fabricated using a silicon-on-insulator-based process and is designed as a parallel kinematic mechanism. It contains a central scan table and two sets of electrostatic comb actuators along each orthogonal axis, which provides displacement ranges greater than ±10 μm. The first in-plane resonance modes are located at 1274 Hz and 1286 Hz for the X and Y axes, respectively. To measure lateral displacements of the stage, electrothermal position sensors are incorporated in the design. To facilitate high-speed scans, the highly resonant dynamics of the system are controlled using damping loops in conjunction with internal model controllers that enable accurate tracking of fast sinusoidal set-points. To cancel the effect of sensor drift on controlled displacements, washout controllers are used in the damping loops. The feedback controlled nanopositioner is successfully used to perform several AFM scans in contact mode via a Lissajous scan method with a large scan area of 20 μm × 20 μm. The maximum scan rate demonstrated is 1 kHz.

  1. Determination of non-gaseous and gaseous mercury fractions in unused fluorescent lamps: a study of different lamp types.

    PubMed

    Figi, Renato; Nagel, Oliver; Schreiner, Claudia; Hagendorfer, Harald

    2015-03-01

    Since incandescent light bulbs have been phased out in the European Union from 2009, the use of fluorescent lamps has drastically increased as a reliable, more energy-efficient and cost-effective alternative. State-of-the-art fluorescent lamps are dependent on mercury/mercury alloys, posing a risk for the consumer and the environment, and appropriate waste management is challenging. Consequently analytical methods to determine possible mercury species (non-gaseous/gaseous) in these lamps are of need. Here, a straightforward and wet-chemistry-based analytical strategy for the determination of gaseous and non-gaseous mercury in commercially available fluorescent lamps is presented. It can be adapted in any analytical laboratory, without or with only minimum modifications of already installed equipment. The analytical figures of merit, as well as application of the method to a series of commercially available fluorescent lamps, are presented. Out of 14 analysed and commercially available lamp types, results from this study indicate that only one contains a slightly higher amount of mercury than set by the legislative force. In all new lamps the amount of gaseous mercury is negligible compared with the non-gaseous fraction (88%-99% of total mercury). PMID:25698790

  2. Determination of non-gaseous and gaseous mercury fractions in unused fluorescent lamps: a study of different lamp types.

    PubMed

    Figi, Renato; Nagel, Oliver; Schreiner, Claudia; Hagendorfer, Harald

    2015-03-01

    Since incandescent light bulbs have been phased out in the European Union from 2009, the use of fluorescent lamps has drastically increased as a reliable, more energy-efficient and cost-effective alternative. State-of-the-art fluorescent lamps are dependent on mercury/mercury alloys, posing a risk for the consumer and the environment, and appropriate waste management is challenging. Consequently analytical methods to determine possible mercury species (non-gaseous/gaseous) in these lamps are of need. Here, a straightforward and wet-chemistry-based analytical strategy for the determination of gaseous and non-gaseous mercury in commercially available fluorescent lamps is presented. It can be adapted in any analytical laboratory, without or with only minimum modifications of already installed equipment. The analytical figures of merit, as well as application of the method to a series of commercially available fluorescent lamps, are presented. Out of 14 analysed and commercially available lamp types, results from this study indicate that only one contains a slightly higher amount of mercury than set by the legislative force. In all new lamps the amount of gaseous mercury is negligible compared with the non-gaseous fraction (88%-99% of total mercury).

  3. Perpendicular-flow, single-wafer atomic layer deposition reactor chamber design for use with in situ diagnostics.

    PubMed

    Kimes, W A; Moore, E F; Maslar, J E

    2012-08-01

    A description is given of the design and performance of a diagnostic-accessible, perpendicular-flow, single-wafer deposition reactor for use with 50 mm wafers. The reactor chamber design is based on a simple flow tube, with diagnostic access achieved by replacing sections of the reactor chamber wall with recessed diagnostic ports. Reactor chamber performance is evaluated for the purpose of performing optical measurements during atomic layer deposition (ALD). Computational fluid dynamics simulations predict that the when used with windows the diagnostic port design produces minimal perturbations to the gas flow under typical deposition conditions, as compared to a design without diagnostic ports. Temperature measurements of the inside surface of a window installed in a diagnostic port suggest that for reactor chamber operation at 110 °C, under typical deposition conditions, the inside surface window temperature is approximately equal to or greater than the surrounding reactor chamber temperature, thereby minimizing possible species condensation on the window surface. As a consequence of using recessed diagnostic ports, an increase in the amplitude of optical intensity fluctuations was generally observed when performing measurements at elevated chamber temperatures. These intensity fluctuations could be readily reduced by enclosing the optical path to the exterior side of the windows. The performance of two straight-forward methods to reduce these intensity fluctuations is presented. The results outlined above demonstrate that this reactor design can be operated with short gas residence times and with all reactor surfaces at elevated temperatures, making it useful for simulating a wide range of gas flow conditions with relevance to microelectronics-related ALD processes.

  4. ATOMIC-LEVEL MODELING OF CO2 DISPOSAL AS A CARBONATE MINERAL: A SYNERGETIC APPROACH TO OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    A.V.G. Chizmeshya; M.J. McKelvy; J.B. Adams

    2001-11-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar hydroxide mineral carbonation is a leading process candidate, which generates the stable naturally occurring mineral magnesite (MgCO{sub 3}) and water. Key to process cost and viability are the carbonation reaction rate and its degree of completion. This process, which involves simultaneous dehydroxylation and carbonation is very promising, but far from optimized. In order to optimize the dehydroxylation/carbonation process, an atomic-level understanding of the mechanisms involved is needed. In this investigation Mg(OH){sub 2} was selected as a model Mg-rich lamellar hydrocide carbonation feedstock material due to its chemical and structural simplicity. Since Mg(OH){sub 2} dehydroxylation is intimately associated with the carbonation process, its mechanisms are also of direct interest in understanding and optimizing the process. The aim of the current innovative concepts project is to develop a specialized advanced computational methodology to complement the ongoing experimental inquiry of the atomic level processes involved in CO{sub 2} mineral sequestration. The ultimate goal is to integrate the insights provided by detailed predictive simulations with the data obtained from optical microscopy, FESEM, ion beam analysis, SIMS, TGA, Raman, XRD, and C and H elemental analysis. The modeling studies are specifically designed to enhance the synergism with, and complement the analysis of, existing mineral-CO{sub 2} reaction process studies being carried out under DOE UCR Grant DE-FG2698-FT40112. Direct contact between the simulations and the experimental

  5. Development of a highly sensitive loop-mediated isothermal amplification (LAMP) method for the detection of Loa loa.

    PubMed

    Fernández-Soto, Pedro; Mvoulouga, Prosper Obolo; Akue, Jean Paul; Abán, Julio López; Santiago, Belén Vicente; Sánchez, Miguel Cordero; Muro, Antonio

    2014-01-01

    The filarial parasite Loa loa, the causative agent of loiasis, is endemic in Central and Western Africa infecting 3-13 million people. L. loa has been associated with fatal encephalopathic reactions in high Loa-infected individuals receiving ivermectin during mass drug administration programs for the control of onchocerciasis and lymphatic filariasis. In endemic areas, the only diagnostic method routinely used is the microscopic examination of mid-day blood samples by thick blood film. Improved methods for detection of L. loa are needed in endemic regions with limited resources, where delayed diagnosis results in high mortality. We have investigated the use of a loop-mediated isothermal amplification (LAMP) assay to facilitate rapid, inexpensive, molecular diagnosis of loiasis. Primers for LAMP were designed from a species-specific repetitive DNA sequence from L. loa retrieved from GenBank. Genomic DNA of a L. loa adult worm was used to optimize the LAMP conditions using a thermocycler or a conventional heating block. Amplification of DNA in the LAMP mixture was visually inspected for turbidity as well as addition of fluorescent dye. LAMP specificity was evaluated using DNA from other parasites; sensitivity was evaluated using DNA from L. loa 10-fold serially diluted. Simulated human blood samples spiked with DNA from L. loa were also tested for sensitivity. Upon addition of fluorescent dye, all positive reactions turned green while the negative controls remained orange under ambient light. After electrophoresis on agarose gels, a ladder of multiple bands of different sizes could be observed in positive samples. The detection limit of the assay was found to be as little as 0.5 ag of L. loa genomic DNA when using a heating block. We have designed, for the first time, a highly sensitive LAMP assay for the detection of L. loa which is potentially adaptable for field diagnosis and disease surveillance in loiasis-endemic areas. PMID:24722638

  6. Development of a Highly Sensitive Loop-Mediated Isothermal Amplification (LAMP) Method for the Detection of Loa loa

    PubMed Central

    Fernández-Soto, Pedro; Mvoulouga, Prosper Obolo; Akue, Jean Paul; Abán, Julio López; Santiago, Belén Vicente; Sánchez, Miguel Cordero; Muro, Antonio

    2014-01-01

    The filarial parasite Loa loa, the causative agent of loiasis, is endemic in Central and Western Africa infecting 3–13 million people. L. loa has been associated with fatal encephalopathic reactions in high Loa-infected individuals receiving ivermectin during mass drug administration programs for the control of onchocerciasis and lymphatic filariasis. In endemic areas, the only diagnostic method routinely used is the microscopic examination of mid-day blood samples by thick blood film. Improved methods for detection of L. loa are needed in endemic regions with limited resources, where delayed diagnosis results in high mortality. We have investigated the use of a loop-mediated isothermal amplification (LAMP) assay to facilitate rapid, inexpensive, molecular diagnosis of loiasis. Primers for LAMP were designed from a species-specific repetitive DNA sequence from L. loa retrieved from GenBank. Genomic DNA of a L. loa adult worm was used to optimize the LAMP conditions using a thermocycler or a conventional heating block. Amplification of DNA in the LAMP mixture was visually inspected for turbidity as well as addition of fluorescent dye. LAMP specificity was evaluated using DNA from other parasites; sensitivity was evaluated using DNA from L. loa 10-fold serially diluted. Simulated human blood samples spiked with DNA from L. loa were also tested for sensitivity. Upon addition of fluorescent dye, all positive reactions turned green while the negative controls remained orange under ambient light. After electrophoresis on agarose gels, a ladder of multiple bands of different sizes could be observed in positive samples. The detection limit of the assay was found to be as little as 0.5 ag of L. loa genomic DNA when using a heating block. We have designed, for the first time, a highly sensitive LAMP assay for the detection of L. loa which is potentially adaptable for field diagnosis and disease surveillance in loiasis-endemic areas. PMID:24722638

  7. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition

    SciTech Connect

    Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong; Koun Cho, Hyung

    2014-12-01

    In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a “step-composition gradient channel.” We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (−3.7 V) and good instability characteristics with a reduced threshold voltage shift (Δ 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm{sup 2}/V s. We presented a unique active layer of the “step-composition gradient channel” in the oxide TFTs and explained the mechanism of adequate channel design.

  8. Magical Mystery Devices or Not: How do LED Lamps and Luminaires Really Measure-Up?

    SciTech Connect

    Paget, Maria L.; McCullough, Jeffrey J.; Steward, Heidi E.

    2008-08-15

    Solid-state lighting products for general lighting applications are now gaining a market presence, and more and more people are asking, “Which of these are ‘good’ products? Do they perform as claimed? How do they compare? Light Emitting Diodes (LEDs) differ from other light sources enough to require new procedures for measuring their performance and comparing to other lighting options, so both manufacturers and buyers are facing a learning curve. The energy-efficiency community has traditionally compared light sources based on system efficacy: rated lamp lumens divided by power into the system. This doesn’t work for LEDs because there are no standard LED “lamp” packages and no lamp ratings, and because LED performance depends heavily on thermal, electrical, and optical design of complete lighting unit or ‘luminaire’. Luminaire efficacy is the preferred metric for LEDs because it measures the net light output from the luminaire divided by power into the system.

  9. Loop-mediated isothermal amplification (LAMP) for the rapid detection of Mycoplasma genitalium.

    PubMed

    Edwards, Thomas; Burke, Patricia; Smalley, Helen B; Gillies, Liz; Longhurst, Denise; Vipond, Barry; Hobbs, Glyn

    2015-09-01

    Mycoplasma genitalium is a sexually transmissible, pathogenic bacterium and a significant cause of nongonococcal urethritis in both men and women. Due to the difficulty of the culture of M. genitalium from clinical samples, the laboratory diagnosis of M. genitalium infection is almost exclusively carried out using nucleic acid amplification tests. Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification technology, utilising a set of 4 primers specific to 6 distinct regions of the target DNA sequence, in order to amplify target DNA in a highly specific and rapid manner. A LAMP assay was designed to the pdhD gene of M. genitalium, and the limit of detection of the assay was determined as 10 fg of M. genitalium genomic DNA, equating to ~16 copies of the M. genitalium genome, which was equally sensitive as a gold standard 16S rRNA polymerase chain reaction assay. PMID:26072150

  10. A study of the convective flow as a function of external parameters in a high-pressure metal halide discharge lamp (HgDyI3)

    NASA Astrophysics Data System (ADS)

    Hajji, S.; HadjSalah, S.; Benhalima, A.; Charrada, K.; Zissis, G.

    2016-06-01

    This paper deals with the modelling of the convection processes in metal-halide lamp discharges (HgDyI3). For this, we realized a 3D model, a steady, direct current powered and time-depending model for the solution of conservation equations relative to mass, momentum, and energy. After validation, this model was applied to the study of the effect of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp. Indeed, the electric current, the atomic ratio (Hg/Dy), and the effect of the convective transport have been studied.

  11. 75 FR 14287 - Energy Conservation Program: Test Procedures for Fluorescent Lamp Ballasts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... Framework Document for Fluorescent Lamp Ballasts,'') on January 22, 2008. 73 FR 3653. DOE has completed the... consumption for fluorescent lamp ballasts in the Federal Register on October 22, 2009. 74 FR 54445. II... service fluorescent lamps and incandescent reflector lamps (74 FR 34080) adopted a new definition...

  12. 46 CFR 32.85-1 - Fireproofing of lamp, oil and paint rooms-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Fireproofing of lamp, oil and paint rooms-T/ALL. 32.85-1..., MACHINERY, AND HULL REQUIREMENTS Lamp and Paint Rooms and Similar Compartments on Tankships § 32.85-1 Fireproofing of lamp, oil and paint rooms—T/ALL. Lamp, oil and paint rooms shall be wholly and tightly...

  13. 46 CFR 32.85-1 - Fireproofing of lamp, oil and paint rooms-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fireproofing of lamp, oil and paint rooms-T/ALL. 32.85-1..., MACHINERY, AND HULL REQUIREMENTS Lamp and Paint Rooms and Similar Compartments on Tankships § 32.85-1 Fireproofing of lamp, oil and paint rooms—T/ALL. Lamp, oil and paint rooms shall be wholly and tightly...

  14. 46 CFR 32.85-1 - Fireproofing of lamp, oil and paint rooms-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Fireproofing of lamp, oil and paint rooms-T/ALL. 32.85-1..., MACHINERY, AND HULL REQUIREMENTS Lamp and Paint Rooms and Similar Compartments on Tankships § 32.85-1 Fireproofing of lamp, oil and paint rooms—T/ALL. Lamp, oil and paint rooms shall be wholly and tightly...

  15. 46 CFR 32.85-1 - Fireproofing of lamp, oil and paint rooms-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Fireproofing of lamp, oil and paint rooms-T/ALL. 32.85-1..., MACHINERY, AND HULL REQUIREMENTS Lamp and Paint Rooms and Similar Compartments on Tankships § 32.85-1 Fireproofing of lamp, oil and paint rooms—T/ALL. Lamp, oil and paint rooms shall be wholly and tightly...

  16. 46 CFR 32.85-1 - Fireproofing of lamp, oil and paint rooms-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Fireproofing of lamp, oil and paint rooms-T/ALL. 32.85-1..., MACHINERY, AND HULL REQUIREMENTS Lamp and Paint Rooms and Similar Compartments on Tankships § 32.85-1 Fireproofing of lamp, oil and paint rooms—T/ALL. Lamp, oil and paint rooms shall be wholly and tightly...

  17. 34. VIEW TO EAST; DETAIL OF LAMP ON VEHICULAR RAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW TO EAST; DETAIL OF LAMP ON VEHICULAR RAMP LIGHTING PYLON (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  18. 11. Detail of horse lamp fixture in original Clubhouse bar. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Detail of horse lamp fixture in original Clubhouse bar. Fixture is at north end of bar. Camera pointed up and NW. (July 1993) - Longacres, Clubhouse & Additions, 1621 Southwest Sixteenth Street, Renton, King County, WA

  19. VIEW OF LAMP FIXTURE (EXTERIOR) ADJACENT TO ENTRANCE AT SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LAMP FIXTURE (EXTERIOR) ADJACENT TO ENTRANCE AT SOUTHWEST CORNER OF BUILDING 23, FACING NORTH - Roosevelt Base, Auditorium-Gymnasium, West Virginia Street between Richardson & Reeves Avenues, Long Beach, Los Angeles County, CA

  20. Ti:sapphire laser with long-pulse lamp pumping

    NASA Astrophysics Data System (ADS)

    Koselja, Michael P.; Kubelka, Jiri; Kvapil, Jiri

    1992-06-01

    Lamp pumping of Ti:Sapphire has some advantages over laser pumping and represents some interest due to possible applications. The paper will present laser behavior of Ti:Sapphire under very long lamp pulse pumping. Pulse lamp duration (FWHM) was more than 100 times greater than the lifetime of Ti3+. Output energy with no tuning element was achieved greater than 1.5 J with 0.12% electrical-to-optical efficiency. Dimensions of the rod used was 7 mm in diameter and 148 mm in length. The doping level of Ti3+ was 0.09% Ti2O3 in the rod. Tuning characteristics with different tuning elements are also presented. Further development to obtain CW lamp pumping operation will be discussed.

  1. 25. Detail of cast iron lamp post base with fluted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Detail of cast iron lamp post base with fluted wooded post at top, located at north end of bridge. VIEW NORTHEAST - Chelsea Street Bridge & Draw Tender's House, Spanning Chelsea River, Boston, Suffolk County, MA

  2. Closeup view of EPA Farm cattle shelter lamp, facing west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of EPA Farm cattle shelter lamp, facing west - Nevada Test Site, Environmental Protection Agency Farm, Shelter Unit Type, Area 15, Yucca Flat, 10-2 Road near Circle Road, Mercury, Nye County, NV

  3. Dysprosium oxide ceramic arc tube for HID lamps

    NASA Astrophysics Data System (ADS)

    Wei, G. C.; Lapatovich, W. P.; Browne, J.; Snellgrove, R.

    2008-07-01

    Polycrystalline dysprosium oxide is a candidate arc tube material for advanced metal halide lamps because of high transparency, low thermodynamic driving potentials for corrosion and reaction with the salt fills, satisfactory mechanical strength and resistance to thermal shock. This material is cubic and can be polished to achieve higher in-line transmittance than the conventional polycrystalline alumina arc tubes. Rare-earth halide fills, glass frit seals and niobium leads were used in the construction of the Dy2O3 lamps. The experimental lamps exhibited a colour temperature of ~2500 K and CRI of ~90 with rapid warm-up behaviour. The transparent Dy2O3 ceramic offers opportunities to push the limit of ceramic envelopes for improved discharge lamps.

  4. One piece microwave container screens for electrodeless lamps

    DOEpatents

    Turner, Brian; Ury, Michael

    1998-01-01

    A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. Replacing mesh material by solid metal material as part of the screen unit significantly reduces leakage of microwave energy from the lamp. The solid section has multiple compliant fingers defined therein for engaging the periphery of a flange on the waveguide unit so that a hose clamp can easily secure the screen to the assembly. Screen units of this type having different mesh section configurations can be interchanged in the lamp assembly to produce different respective illumination patterns.

  5. High-luminance LEDs replace incandescent lamps in new applications

    NASA Astrophysics Data System (ADS)

    Evans, David L.

    1997-04-01

    The advent of high luminance AlInGaP and InGaN LED technologies has prompted the use of LED devices in new applications formally illuminated by incandescent lamps. The luminous efficiencies of these new LED technologies equals or exceeds that attainable with incandescent sources, with reliability factors that far exceed those of incandescent sources. The need for a highly efficient, dependable, and cost effective replacement for incandescent lamps is being fulfilled with high luminance LED lamps. This paper briefly described some of the new applications incorporating high luminance LED lamps, traffic signals and roadway signs for traffic management, automotive exterior lighting, active matrix and full color displays for commercial advertising, and commercial aircraft panel lighting and military aircraft NVG compatible lighting.

  6. Light shield and cooling apparatus. [high intensity ultraviolet lamp

    NASA Technical Reports Server (NTRS)

    Meador, T. G., Jr. (Inventor)

    1974-01-01

    A light shield and cooling apparatus was developed for a high intensity ultraviolet lamp including water and high pressure air for cooling and additional apparatus for shielding the light and suppressing the high pressure air noise.

  7. Lunar exospheric helium observations of LRO/LAMP coordinated with ARTEMIS

    NASA Astrophysics Data System (ADS)

    Grava, C.; Retherford, K. D.; Hurley, D. M.; Feldman, P. D.; Gladstone, G. R.; Greathouse, T. K.; Cook, J. C.; Stern, S. A.; Pryor, W. R.; Halekas, J. S.; Kaufmann, D. E.

    2016-07-01

    We present results from Lunar Reconnaissance Orbiter's (LRO) UV spectrograph LAMP (Lyman-Alpha Mapping Project) campaign to study the lunar atmosphere. Several off-nadir maneuvers (lateral rolls) were performed to search for resonantly scattering species, increasing the illuminated line-of-sight (and hence the signal from atoms resonantly scattering the solar photons) compared to previously reported LAMP's "twilight observations" (Cook, J.C., Stern, S.A. [2014]. Icarus 236, 48-55). Helium was the only element distinguishable on a daily basis, and we present latitudinal profiles of its line-of-sight column density in December 2013. We compared the helium line-of-sight column densities with solar wind alpha particle fluxes measured from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon's Interaction with the Sun) twin spacecraft. Our data show a correlation with the solar wind alpha particle flux, confirming that the solar wind is the main source of the lunar helium. We also support the finding by Benna et al. (Benna, M. et al. [2015]. Geophys. Res. Lett. 42, 3723-3729) and Hurley et al. (Hurley, D.M. et al. [2015]. Icarus, this issue), that a non-zero contribution from endogenic helium, coming from radioactive decay of 232Th and 238U, is present. Moreover, our results suggest that not all of the incident alpha particles are converted to thermalized helium, allowing for a non-negligible fraction to escape as suprathermal helium or simply backscattered from the lunar surface. We compare LAMP-derived helium surface density with the one recorded by the mass spectrometer LACE (Lunar Atmospheric Composition Experiment) deployed on the lunar surface during the Apollo 17 mission, finding good agreement between the two measurements. The LRO/LAMP roll observations presented here are in agreement with the most recent lunar exospheric helium model (Hurley, D.M. et al. [2015]. Icarus, this issue) around mid- to high-latitudes (50-70°) regardless of

  8. Life of fluorescent lamps operated at high frequencies with solid-state ballasts

    NASA Astrophysics Data System (ADS)

    Verderber, R. R.; Morse, O.; Rubinstein, F. M.

    1985-07-01

    Standard 40-watt, F-40, rapid-start, fluorescent lamps were operated with solid-state ballasts following the standard life-testing cycle of 3 hours on and 20 minutes off for more than 20,000 hours at high frequency. Lamp operating characteristics (starting voltage, filament voltage, arc current, and current-crest factor) were studied as factors affecting lamp life. Measurements show that fluorescent lamps can attain rated life at high frequency using solid-state ballasts. When lamps are operated in the dimmed mode, full filament power is required to sustain lamplife. The rate of lamp lumen depreciation is dependent on the lamp loading and not the operating frequency.

  9. Mercury reduction studies to facilitate the thermal decontamination of phosphor powder residues from spent fluorescent lamps

    SciTech Connect

    Alves Durao, Walter; Andreva de Castro, Camila; Carvalhinho Windmoeller, Claudia

    2008-11-15

    This work investigates the thermal release of mercury from phosphor powder of spent fluorescent lamps. The treatment conditions and the ability of various reducing agents (primarily sodium borohydride) to lower the overall heating temperature required to improve the release of Hg have been evaluated. Hg species in samples were monitored in a thermal desorption atomic absorption spectrometer system, and total mercury was analyzed in a cold vapor atomic absorption spectrometer. Sodium borohydride was the best reducing agent among the ones studied. However, citric acid presented a high capacity to weaken mercury bonds with the matrix. When the sample was crushed with sodium borohydride for 40 min in a mass ratio of 10:1 (sample:reducing agent) and submitted to thermal treatment at 300 deg. C for 2 h, the concentration of mercury in a phosphor powder sample with 103 mg kg{sup -1} of mercury reached 6.6 mg kg{sup -1}.

  10. Mercury reduction studies to facilitate the thermal decontamination of phosphor powder residues from spent fluorescent lamps.

    PubMed

    Durão, Walter Alves; de Castro, Camila Andreva; Windmöller, Cláudia Carvalhinho

    2008-11-01

    This work investigates the thermal release of mercury from phosphor powder of spent fluorescent lamps. The treatment conditions and the ability of various reducing agents (primarily sodium borohydride) to lower the overall heating temperature required to improve the release of Hg have been evaluated. Hg species in samples were monitored in a thermal desorption atomic absorption spectrometer system, and total mercury was analyzed in a cold vapor atomic absorption spectrometer. Sodium borohydride was the best reducing agent among the ones studied. However, citric acid presented a high capacity to weaken mercury bonds with the matrix. When the sample was crushed with sodium borohydride for 40 min in a mass ratio of 10:1 (sample:reducing agent) and submitted to thermal treatment at 300 degrees C for 2 h, the concentration of mercury in a phosphor powder sample with 103 mg kg(-1) of mercury reached 6.6 mg kg(-1).

  11. Lamp method and apparatus using multiple reflections

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.

    2001-01-01

    An electrodeless microwave discharge lamp includes an envelope with a discharge forming fill disposed therein which emits light, the fill being capable of absorbing light at one wavelength and re-emitting the absorbed light at a different wavelength, the light emitted from the fill having a first spectral power distribution in the absence of reflection of light back into the fill, a source of microwave energy coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed within the microwave cavity and configured to reflect at least some of the light emitted by the fill back into the fill while allowing some light to exit, the exiting light having a second spectral power distribution with proportionately more light in the visible region as compared to the first spectral power distribution, wherein the light re-emitted by the fill is shifted in wavelength with respect to the absorbed light and the magnitude of the shift is in relation to an effective optical path length.

  12. The LAMP instrument at the LCLS

    NASA Astrophysics Data System (ADS)

    Osipov, Timur; Castagna, Jean-Charles; Bostedt, Christoph; Xiong, Hui; Ferguson, Ken; Bucher, Maximilian; Berrah, Nora

    2015-05-01

    We have commissioned and used a new instrument at the Linac Coherent Light (LCLS) Source at SLAC National Laboratory called LAMP. It consists of several detectors housed in a double chambered vacuum system. One detection scheme offered relies on the use of a double velocity map imaging (VMI) spectrometer which enables research in the gas phase such as molecular dynamics experiments. The latter are monitored via the detection of electron and ionic fragments resulting from x-ray photo-absorption of x-ray photons. With this new tool, we can record the different fragmentation pathways by measuring multi-particles ion-ion coincidences/multi-particle correlations. We can also simultaneously image the electrons momenta to capture the most detailed x-ray induced reaction in molecules and nano-systems. The other detection scheme offered consists of two imaging detectors of the pnCCD type for diffraction experiments of clusters and bio-specimens. This instrument, available to any users, has the possibility to uncover new mechanisms in physics, chemistry and biology. This work is funded in part by the Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under a SISGR grant and funds from the LCLS, funded by DOE-BES.

  13. Management of fluorescent lamps in controlled environment chambers

    NASA Technical Reports Server (NTRS)

    Romer, Mark

    1994-01-01

    Management of fluorescent lights is recommended to (1) maintain uniformity of light intensity over time and (2) permit reproducibility of lighting conditions during experimental replications. At the McGill Phytotron, the lighting intensity can be controlled to desired level because any individual pair of the 40 lamps in each chamber can be set to be 'on' at any particular time. A lamp canopy service history is maintained for each experiment permitting accurate replication of lighting conditions for subsequent replicate trials.

  14. Magnetic fluorescent lamp having reduced ultraviolet self-absorption

    DOEpatents

    Berman, Samuel M.; Richardson, Robert W.

    1985-01-01

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly (10) is enhanced by providing means (30) for establishing a magnetic field with lines of force along the path of electron flow through the bulb (12) of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  15. Addressing the challenges of solar thermal fuels via atomic-scale computational design and experiment

    NASA Astrophysics Data System (ADS)

    Kolpak, Alexie; Kucharski, Timothy; Grossman, Jeffrey

    2012-02-01

    By reversibly storing solar energy in the conformations of photo-isomers, solar thermal fuels (STFs) provide a mechanism for emissions-free, renewable energy storage and conversion in a single system. Development of STFs as a large-scale energy technology has been hampered by technical challenges that beset the photo-isomers of interest: low energy density, storage lifetime, and quantum yield; UV absorption; and irreversible degradation upon repeated cycling. In this talk, we discuss our efforts to design new STFs that overcome these hurdles. We present computational results on various STFs based on our recently proposed photo-isomer/template STF concept [Kolpak and Grossman, Nano Letters 11, 3156 (2011)], as well as new experimental results on azobenzene-functionalized carbon nanotube STFs. Our approach yields significant improvements with respect to STFs studied in the past, with energy densities similar to Li-ion batteries, storage lifetimes > 1 year, and increased quantum yield and absorption efficiency. Our strategy also suggests mechanisms for inhibiting photo-isomer degradation. With a large phase space yet to be explored, there remain numerous possibilites for property enhancement, suggesting that STFs could become a competitive renewable energy technology.

  16. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  17. CALiPER Benchmark Report: Performance of T12 and T8 Fluorescent Lamps and Troffers and LED Linear Replacement Lamps

    SciTech Connect

    Myer, M. A.; Paget, M. L.; Lingard, R. D.

    2009-01-01

    This report examines standard fluorescent lamps, the recessed troffers they are commonly used in, and available LED replacements for T12 and T8 fluorescent lamps and their application in fluorescent troffers.

  18. Miniature UV lamp excited by subnanosecond voltage pulses

    SciTech Connect

    Erofeev, M V; Baksht, E Kh; Tarasenko, Viktor F; Shut'ko, Yu V

    2010-08-27

    Energy, time, and spectral characteristics of emission of the second positive system of N{sub 2} molecules in gaseous nitrogen, Ar - N{sub 2} mixture, and air are investigated. An FPG-10 generator with voltage pulse FWHM of 200 and 400 ps and matched-load amplitudes of 14 and 6 kV, respectively, is used to excite gases. It is shown that excitation can be performed in two regimes using this generator. In the first regime a diffuse discharge is formed at atmospheric pressure, which opens ways to design miniature nanosecond UV lamps. A diffuse discharge is formed due to the generation of runaway electrons, with the aid of electrodes having a small radius of curvature and voltage pulses with a sharp leading edge. In the second regime an elevated average radiation power is obtained under excitation by a barrier discharge. However, the operating pressure is lower in this case, and the sizes of the emitting region and the UV pulse width significantly increase. (laser applications and other topics in quantum electronics)

  19. Characterization of a FEL lamp type source towards a blue light irradiance intercomparison in medical field

    NASA Astrophysics Data System (ADS)

    Ferreira, A. F. G., Jr.

    2011-01-01

    This work presents the characterization of modified FEL 1000W lamp housing to be used as a transference standard in the blue light irradiance intercomparison. It aims to support the metrological issues of medical equipment manufactures concerning the phototherapy treatment stated on the standard NBR/IEC 60601-2-50. The light source characterization consists of lamp seasoning, lamp short-term drift and lamp irradiance relative spatial distribution at the plane of measurement. The lamp seasoning is performed by a software developed in LabView® which measures the lamp voltage, current and irradiance at each 5 minutes during 25 hours of seasoning. The lamp short-term drift is evaluated by measuring the lamp irradiance during a sequence of 2 hours of lamp using. The lamp irradiance relative spatial distribution is verified using a radiometer head with a reduced aperture attached to an YZ positing system at each 2 mm in an interval of 24 mm. The lamp presented variation of about 0.1%/h during seasoning. Short-term drift for the lamp after a warm-up of 20 minutes was less than 0.9% for series of 4 lamp switching cycles. Lamp irradiance relative spatial distribution showed a variation of ±1.25% for a circular diameter of 20 mm. The overall uncertainty for lamp irradiance was 3.65%.

  20. LRO Lyman-Alpha Mapping Project (LAMP): Exploration of Permanently Shadowed Regions and the Lunar Atmosphere

    NASA Astrophysics Data System (ADS)

    Retherford, K. D.; Stern, S. A.; Black, R. K.; Slater, D. C.; Gladstone, G. R.; Feldman, P. D.; Crider, D. H.; Parker, J. W.; Dirks, G. J.; Versteeg, M. H.; Persson, K. B.; Sykes, H. A.; Davis, M. W.; Stack, J. A.; Case, T. R.; McCullough, L. D.; de Los Santos, A.; Kaufmann, D. E.; Andrews, P. M.

    2006-12-01

    LRO/LAMP is a UV spectrograph designed to address how water is formed on the moon, transported through the lunar atmosphere, and deposited in permanently shadowed regions (PSRs). Its main objectives are to 1) identify exposed water frost in PSRs, 2) characterize landforms and albedos in PSRs, 3) demonstrate the feasibility of using natural starlight and sky-glow illumination for future lunar surface mission applications, and 4) to assay the lunar atmosphere and its variability. The LAMP spectrograph will accomplish the first three objectives by measuring interplanetary HI Lyα sky-glow and FUV starlight reflected from the PSRs. Both of these light sources provide fairly uniform, but faint, illumination (e.g., the reflected Lyα signal is expected to be ~10~R). Thanks to LAMP's sensitivity, however, by the end of the nominal 1-year mission the SNR for a Lyα albedo map will be >100/km2 in the polar regions, allowing the characterization of subtle compositional and structural features. Dayside and nightside lunar surface reflectance measurements of other regions are also planned to measure variations in the illumination sources for improved accuracy. The production and transport of Lunar atmosphere constituents H and Ar will be investigated by observation of their resonantly scattered FUV emissions. The detection and discovery of other constituent emissions is also expected. LAMP albedo maps of PSR landforms and potential surface water ice will be used to identify landing sites for future scientific exploration of these regions and investigation of the intriguing processes that occur within them.

  1. A high-efficiency indirect lighting system utilizing the solar 1000 sulfur lamp

    SciTech Connect

    Siminovitch, M.; Gould, C.; Page, E.

    1997-06-01

    High-lumen light sources represent unique challenges and opportunities for the design of practical and efficient interior lighting systems. High-output sources require a means of large-scale distribution and avoidance of high-luminance glare while providing efficient delivery. An indirect lighting system has been developed for use with a 1,000 Watt sulfur lamp that efficiently utilizes the high-output source to provide quality interior lighting. This paper briefly describes the design and initial testing of this new system.

  2. Loop-mediated isothermal amplification (LAMP) detection of Babesia orientalis in water buffalo (Bubalus babalis, Linnaeus, 1758) in China.

    PubMed

    He, Lan; Zhou, Yan-Qin; Oosthuizen, Marinda C; Zhao, Jun-Long

    2009-10-28

    Loop-mediated isothermal amplification (LAMP) is a rapid method with high specificity and efficiency under isothermal condition using a set of four specifically designed primers that recognize six distinct sequences on the target gene. In this study, a LAMP method was developed for specific detection of Babesia orientalis in water buffalo (Bubalus babalis, Linnaeus, 1758). Four primers were designed from the V4 hypervariable region of the 18S rRNA gene of B. orientalis. Blood samples were collected from B. orientalis experimentally infected water buffalo as well as from 165 water buffalo from eight different regions of the Hubei province, south China. Genomic DNA was extracted, subjected to the LAMP assay and compared with results obtained using a previously described semi-nested PCR. The LAMP assay proofed to be B. orientalis specific and more sensitive than the semi-nested PCR. While previously B. orientalis had not been reported north of the Yangtse River, our results show that B. orientalis has spread to the north of the river. This could pose a serious threat to the water buffalo industry.

  3. Performance of the FOS and GHRS Pt/(Cr)-Ne Hollow-cathode Lamps after their Return from Space and Comparison with Archival Data

    NASA Technical Reports Server (NTRS)

    Kerber, Florian; Lindler, Don; Bristow, Paul; Lembke, Dominik; Nave, Gillian; Reader, Joseph; Sansonetti, Craig J.; Heap, Sara R.; Rosa, Michael R.; Wood, H. John

    2006-01-01

    The Space Telescope European Coordinating Facility (ST-ECF) and National Institute of Standards and Technology (NIST) are collaborating to study hollow cathode calibration lamps as used onboard the Hubble Space Telescope (HST). As part of the STIS Calibration Enhancement (STIS-CE) Project we are trying to improve our understanding of the performance of hollow cathode lamps and the physical processes involved in their long term operation. The original flight lamps from the Faint Object Spectrograph (FOS) and the Goddard High Resolution Spectrograph (GHRS) are the only lamps that have ever been returned to Earth after extended operation in space. We have taken spectra of all four lamps using NIST s 10.7-m normal-incidence spectrograph and Fourier transform spectrometer (FTS) optimized for use in the ultraviolet (UV). These spectra, together with spectra archived from six years of on-orbit operations and pre-launch spectra, provide a unique data set - covering a period of about 20 years - for studying aging effects in these lamps. Our findings represent important lessons for the choice and design of calibration sources and their operation in future UV and optical spectrographs in space.

  4. Development of a loop-mediated isothermal amplification (LAMP) for the detection of F5 fimbriae gene in enterotoxigenic Escherichia coli (ETEC).

    PubMed

    Jiang, Kuiyu; Zhu, Ying; Liu, Wenxin; Feng, Yufei; He, Lili; Guan, Weikun; Hu, Wenxia; Shi, Dongfang

    2012-11-01

    The objective of this study was to establish a loop-mediated isothermal amplification (LAMP) method for the detection of F5 fimbriae gene in Enterotoxigenic Escherichia coli. A set of four primers were designed based on the conservative sequence of coding F5 fimbriae. Temperature and time condition, specificity test, and sensitivity test were performed with the DNA of Escherichia coli (F5+). The results showed that the optimal reaction condition for LAMP was achieved at 61 °C for 45 min in a water bath. Ladder-like products were produced with those F5-positive samples by LAMP, while no product was generated with other negative samples. The assay of LAMP had a detection limit equivalent to 72 cfu/tube, which was more sensitive than PCR (7.2 × 10(2) cfu/tube). The agreement rate between LAMP and PCR was 100 % in detecting simulation samples. Thus, the LAMP assay may be a new method for rapid detection of F5 fimbriae gene of ETEC. PMID:22890294

  5. Development of a Loop Mediated Isothermal Amplification (LAMP) - Surface Enhanced Raman spectroscopy (SERS) Assay for the Detection of Salmonella Enterica Serotype Enteritidis.

    PubMed

    Draz, Mohamed Shehata; Lu, Xiaonan

    2016-01-01

    As a major foodborne pathogen, Salmonella enterica serotype Enteritidis is increasingly rising as a global health concern. Here, we developed an integrated assay that combines loop mediated isothermal amplification (LAMP) and surface enhanced Raman spectroscopy (SERS) for DNA detection of S. Enteritidis using specifically designed Raman active Au-nanoprobes. The target DNA was amplified by LAMP and then labeled with Au-nanoprobes comprised of gold nanoparticle-modified with specific cy5/DNA probes to allow the detection by SERS. The sensitivity of the developed LAMP-SERS detection assay (66 CFU/mL) was ~100-fold higher than the conventional polymerase chain reaction (PCR) method. Significantly, this technique allowed highly specific detection of the target DNA of S. Enteritidis and could differentiate it from the DNA of closely related bacterial species or non-specific contamination, making it more accurate and reliable than the standard LAMP technique. The applicability of detection of S. Enteritidis in milk samples using LAMP-SERS assay was validated as well. In sum, the developed LAMP-SERS assay is highly specific and sensitive, and has the potential to be applied for rapid detection of different foodborne pathogens and other microbial contaminants. PMID:26941845

  6. Development of a Loop Mediated Isothermal Amplification (LAMP) - Surface Enhanced Raman spectroscopy (SERS) Assay for the Detection of Salmonella Enterica Serotype Enteritidis

    PubMed Central

    Draz, Mohamed Shehata; Lu, Xiaonan

    2016-01-01

    As a major foodborne pathogen, Salmonella enterica serotype Enteritidis is increasingly rising as a global health concern. Here, we developed an integrated assay that combines loop mediated isothermal amplification (LAMP) and surface enhanced Raman spectroscopy (SERS) for DNA detection of S. Enteritidis using specifically designed Raman active Au-nanoprobes. The target DNA was amplified by LAMP and then labeled with Au-nanoprobes comprised of gold nanoparticle-modified with specific cy5/DNA probes to allow the detection by SERS. The sensitivity of the developed LAMP-SERS detection assay (66 CFU/mL) was ~100-fold higher than the conventional polymerase chain reaction (PCR) method. Significantly, this technique allowed highly specific detection of the target DNA of S. Enteritidis and could differentiate it from the DNA of closely related bacterial species or non-specific contamination, making it more accurate and reliable than the standard LAMP technique. The applicability of detection of S. Enteritidis in milk samples using LAMP-SERS assay was validated as well. In sum, the developed LAMP-SERS assay is highly specific and sensitive, and has the potential to be applied for rapid detection of different foodborne pathogens and other microbial contaminants. PMID:26941845

  7. Elegant design of electrode and electrode/electrolyte interface in lithium-ion batteries by atomic layer deposition.

    PubMed

    Liu, Jian; Sun, Xueliang

    2015-01-16

    Lithium-ion batteries (LIBs) are very promising power supply systems for a variety of applications, such as electric vehicles, plug-in hybrid electric vehicles, grid energy storage, and microelectronics. However, to realize these practical applications, many challenges need to be addressed in LIBs, such as power and energy density, cycling lifetime, safety, and cost. Atomic layer deposition (ALD) is emerging as a powerful technique for solving these problems due to its exclusive advantages over other film deposition counterparts. In this review, we summarize the state-of-the-art progresses of employing ALD to design novel nanostructured electrode materials and solid-state electrolytes and to tailor electrode/electrolyte interface by surface coatings in order to prevent unfavorable side reactions and achieve optimal performance of the electrode. Insights into the future research and development of the ALD technique for LIB applications are also discussed. We expect that this review article will provide resourceful information to researchers in both fields of LIBs and ALD and also will stimulate more insightful studies of using ALD for the development of next-generation LIBs.

  8. Atomic scale design and control of cation distribution in hexagonal ferrites for passive and tunable microwave magnetic device applications

    NASA Astrophysics Data System (ADS)

    Geiler, Anton L.

    A vast body of knowledge on the structure and properties of hexagonal ferrites has been accumulated in the last sixty years driven in part by the technological significance of these materials in diverse applications, such as permanent magnets, microwave devices, and magnetic recording media. In this work, the Alternating Target Laser Ablation Deposition (ATLAD) technique is applied in the growth of epitaxial hexagonal ferrite films. As a result, unique magnetic properties, including 50 degrees increase in the Neel temperature and 20% increase in the saturation magnetization compared to conventionally prepared materials, are realized by controlling the cation distribution at the atomic scale. Lowest energy distributions resulting from the localization of Mn cations in the spinel block of the hexagonal M-type unit cell were theoretically determined by ab-initio calculations. ATLAD deposition routine was designed to deposit epitaxial thin films with the cation distribution identified by ab-initio calculations. The films were fully characterized in terms of composition, crystal structure, surface morphology, static and dynamic magnetic properties, and cation distribution. Enhanced magnetic moment (+20%) and Neel temperature (+50 K) were measured in the films. These improved magnetic properties were correlated with the occupation and valence of specific interstitial sites by Mn cations, in good agreement with theoretical predictions. The localization of Mn cations in 4fIV and 12k sublattices has fundamentally modified superexchange interactions in the unit cell, as confirmed by spinwave resonance measurements. A novel approach to the design of tunable microwave devices based on hexagonal and cubic ferrites by taking advantage of the magnetoelectric effect is presented. The proposed planar and compact devices, including phase shifters and filters, were designed in microstrip geometry with low magnetic bias field requirements. The devices were designed and simulated using

  9. Limit of detection of 15{sub N} by gas-chromatography atomic emission detection: Optimization using an experimental design

    SciTech Connect

    Deruaz, D.; Bannier, A.; Pionchon, C.

    1995-08-01

    This paper deals with the optimal conditions for the detection of {sup 15}N determined using a four-factor experimental design from [2{sup 13}C,-1,3 {sup 15}N] caffeine measured with an atomic emission detector (AED) coupled to gas chromatography (GC). Owing to the capability of a photodiodes array, AED can simultaneously detect several elements using their specific emission lines within a wavelength range of 50 nm. So, the emissions of {sup 15}N and {sup 14}N are simultaneously detected at 420.17 nm and 421.46 nm respectively. Four independent experimental factors were tested (1) helium flow rate (plasma gas); (2) methane pressure (reactant gas); (3) oxygen pressure; (4) hydrogen pressure. It has been shown that these four gases had a significant influence on the analytical response of {sup 15}N. The linearity of the detection was determined using {sup 15}N amounts ranging from 1.52 pg to 19 ng under the optimal conditions obtained from the experimental design. The limit of detection was studied using different methods. The limits of detection of {sup 15}N was 1.9 pg/s according to the IUPAC method (International-Union of Pure and Applied Chemistry). The method proposed by Quimby and Sullivan gave a value of 2.3 pg/s and that of Oppenheimer gave a limit of 29 pg/s. For each determination, and internal standard: 1-isobutyl-3.7 dimethylxanthine was used. The results clearly demonstrate that GC AED is sensitive and selective enough to detect and measure {sup 15}N-labelled molecules after gas chromatographic separation.

  10. Atomic Transition Probabilities for Neutral Cerium

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; den Hartog, E. A.; Wood, M. P.; Nitz, D. E.; Chisholm, J.; Sobeck, J.

    2009-10-01

    The spectra of neutral cerium (Ce I) and singly ionized cerium (Ce II) are more complex than spectra of other rare earth species. The resulting high density of lines in the visible makes Ce ideal for use in metal halide (MH) High Intensity Discharge (HID) lamps. Inclusion of cerium-iodide in a lamp dose can improve both the Color Rendering Index and luminous efficacy of a MH-HID lamp. Basic spectroscopic data including absolute atomic transition probabilities for Ce I and Ce II are needed for diagnosing and modeling these MH-HID lamps. Recent work on Ce II [1] is now being augmented with similar work on Ce I. Radiative lifetimes from laser induced fluorescence measurements [2] on neutral Ce are being combined with emission branching fractions from spectra recorded using a Fourier transform spectrometer. A total of 14 high resolution spectra are being analyzed to determine branching fractions for 2000 to 3000 lines from 153 upper levels in neutral Ce. Representative data samples and progress to date will be presented. [4pt] [1] J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, Astrophys. J. Suppl. Ser. 182, 51-79 (2009). [0pt] [2] E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, J. Phys. B: Atomic, Molecular & Optical Physics 42, 085006 (7pp) (2009).

  11. Dimmable Electronic Ballast for a Gas Discharge Lamp

    NASA Technical Reports Server (NTRS)

    Raducanu, Marius; Hennings, Brian D.

    2013-01-01

    Titanium dioxide (TiO2) is the most efficient photocatalyst for organic oxidative degradation. TiO2 is effective not only in aqueous solution, but also in nonaqueous solvents and in the gas phase. It is photostable, biologically and chemically inert, and non-toxic. Low-energy UV light (approximately 375 nm, UV-A) can be used to photoactivate TiO2. TiO2 photocatalysis has been used to mineralize most types of organic compounds. Also, TiO2 photocatalysis has been effectively used in sterilization. This effectiveness has been demonstrated by its aggressive destruction of microorganisms, and aggressive oxidation effects of toxins. It also has been used for the oxidation of carbon monoxide to carbon dioxide, and ammonia to nitrogen. Despite having many attractive features, advanced photocatalytic oxidation processes have not been effectively used for air cleaning. One of the limitations of the traditional photocatalytic systems is the ballast that powers (lights) the bulbs. Almost all commercial off-the-shelf (COTS) ballasts are not dimmable and do not contain safety features. COTS ballasts light the UV lamp as bright as the bulb can be lit, and this results in shorter bulb lifetime and maximal power consumption. COTS magnetic ballasts are bulky, heavy, and inefficient. Several iterations of dimmable electronic ballasts have been developed. Some manifestations have safety features such as broken-bulb or over-temperature warnings, replace-bulb alert, logbulb operational hours, etc. Several electronic ballast boards capable of independently lighting and controlling (dimming) four fluorescent (UV light) bulbs were designed, fabricated, and tested. Because of the variation in the market bulb parameters, the ballast boards were designed with a very broad range output. The ballast boards can measure and control the current (power) for each channel.

  12. Red phosphors for use in high CRI fluorescent lamps

    DOEpatents

    Srivastava, Alok; Comanzo, Holly; Manivannan, Vankatesan; Setlur, Anant Achyut

    2005-11-15

    Novel red emitting phosphors for use in fluorescent lamps resulting in superior color rendering index values compared to conventional red phosphors. Also disclosed is a fluorescent lamp including a phosphor layer comprising blends of one or more of a blue phosphor, a blue-green phosphor, a green phosphor and a red a phosphor selected from the group consisting of SrY.sub.2 O.sub.4 :Eu.sup.3+, (Y,Gd)Al.sub.3 B.sub.4 O.sub.12 :Eu.sup.3+, and [(Y.sub.1-x-y-m La.sub.y)Gd.sub.x ]BO.sub.3 :Eu.sub.m wherein y<0.50 and m=0.001-0.3. The phosphor layer can optionally include an additional deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of the disclosed red phosphors in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over the course of the lamp life.

  13. Designing nanoscale constructs from atomic thin sheets of graphene, boron nitride and gold nanoparticles for advanced material applications

    NASA Astrophysics Data System (ADS)

    Jasuja, Kabeer

    2011-12-01

    Nanoscale materials invite immense interest from diverse scientific disciplines as these provide access to precisely understand the physical world at their most fundamental atomic level. In concert with this aim of enhancing our understanding of the fundamental behavior at nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles (GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which drive this research are: incorporating mobility in nanoparticle based single-electron junction constructs, developing effective strategies to functionalize graphene with nano-forms of metal, and exfoliating ultrathin sheets of Boron Nitride. Gold nanoparticle based electronic constructs can achieve a new degree of operational freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-electromechanical construct by incorporating elastic polymer molecules between GNPs to form 2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues to maneuver nano components and store energy at nano-scale. Graphene is the first isolated nanomaterial that displays single-atom thickness. It exhibits quantum confinement that enables it to possess a unique combination of fascinating electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely significant to enable its incorporation into applications of interest. We demonstrated the ability of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively studied to understand the effect and nature of GNPs

  14. Personal protection against mosquitoes in Dar es Salaam, Tanzania, by using a kerosene oil lamp to vaporize transfluthrin.

    PubMed

    Pates, H V; Line, J D; Keto, A J; Miller, J E

    2002-09-01

    The effectiveness of a cheap and easy method of household protection against Culex quinquefasciatus Say and other mosquitoes (Diptera: Culicidae) was investigated in Dar es Salaam, Tanzania. Kerosene-burning lamps (korobois) were modified to heat and vaporize transfluthrin, a volatile pyrethroid insecticide. When transfluthrin was added to fuel of the lamp, protection against biting was poor unless a very high concentration of insecticide was used. A modified lamp (= vaporizing koroboi) was designed to overcome this problem by mixing the insecticide with vegetable oil and heating it to 120 degrees C in a tin held just above the flame. The concentration of 0.1% transfluthrin in vegetable oil gave 50-75% reduction in biting, a similar degree of protection to that obtained from burning a mosquito coil containing a synthetic pyrethroid (0.25% d-allethrin) and significantly better protection than a locally bought coil (brand 'White Crane', probably containing DDT). Greater protection (consistently > 90%) was achieved with a higher concentration of transfluthrin (0.5%) in the vegetable oil. This modified lamp is simple, cheap and employs locally available technology. With further development, and due regard to inhalation toxicity of the vaporized materials, it may offer a more cost-effective alternative to a mosquito coil as a means of personal protection, and a useful complement to a net for the early part of the evening before bedtime.

  15. Remote sensing phase fluorimetry using mercury vapor lamp

    NASA Astrophysics Data System (ADS)

    Lundin, Michael A.; Bohn, Matthew J.

    2007-04-01

    Phase Fluorimetry, or Frequency Domain (FD) Fluorimetry, capitalizes on the phase delay from excitation modulation of fluorescent media and offers independence from light scatter and excitation/emission intensity variations in order to extract the sample's fluorescent lifetime. Samples which fluoresce in the UV are commonly excited with UV laser sources, which are not necessarily high power, portable devices. Mercury vapor lamps, a common source of industrial facility lighting, emit wavelengths (365 nm, 405 nm, and 436 nm) that overlap the UV/blue spectrum and may be used as an efficient and portable excitation source. Mercury vapor lamps show strong peak intensities at 120 Hz and higher harmonics, due to the modulation of facility power at 60 Hz in the United States. For this research effort, single exponential decay will be assumed and lifetime calculation will be performed by least squares analysis with corrections made for lamp intensity variations at the harmonics of facility power.

  16. Cyclotron resonance effects in a fluorescent lamp plasma

    NASA Astrophysics Data System (ADS)

    Orr, Julie; Wolfson, Richard

    1990-10-01

    A plasma physics experiment is described, which is suitable for undergraduate courses in electromagnetism as well as for independent projects. Using the plasma of a fluorescent lamp inside a conducting cavity that is immersed in a magnetic field, the experiment shows the effect of electron cyclotron motion of plasma electrons on the resonant modes of the cavity. An added benefit of the magnetic field is the ability to measure the plasma density through a frequency shift technique, but without having to know the mode frequencies in the absence of plasma. Density measurements made using this technique are consistent with those described in an earlier article on the unmagnetized fluorescent lamp plasma, and with the literature on fluorescent lamps and gas discharges. Understanding the experiment described here will give the advanced undergraduate experience in the theory of electromagnetic wave propagation in magnetized plasma, in the theory of resonant cavities, and in microwave and instrumentation techniques.

  17. Detection of Acute HIV-1 Infection by RT-LAMP.

    PubMed

    Rudolph, Donna L; Sullivan, Vickie; Owen, S Michele; Curtis, Kelly A

    2015-01-01

    A rapid, cost-effective diagnostic test for the detection of acute HIV-1 infection is highly desired. Isothermal amplification techniques, such as reverse-transcription loop-mediated isothermal amplification (RT-LAMP), exhibit characteristics that are ideal for the development of a rapid nucleic acid amplification test (NAAT) because they are quick, easy to perform and do not require complex, dedicated equipment and laboratory space. In this study, we assessed the ability of the HIV-1 RT-LAMP assay to detect acute HIV infection as compared to a representative rapid antibody test and several FDA-approved laboratory-based assays. The HIV-1 RT-LAMP assay detected seroconverting individuals one to three weeks earlier than a rapid HIV antibody test and up to two weeks earlier than a lab-based antigen/antibody (Ag/Ab) combo enzyme immunoassay (EIA). RT-LAMP was not as sensitive as a lab-based qualitative RNA assay, which could be attributed to the significantly smaller nucleic acid input volume. To our knowledge, this is the first demonstration of detecting acute HIV infection using the RT-LAMP assay. The availability of a rapid NAAT, such as the HIV-1 RT-LAMP assay, at the point of care (POC) or in laboratories that do not have access to large platform NAAT could increase the percentage of individuals who receive an acute HIV infection status or confirmation of their HIV status, while immediately linking them to counseling and medical care. In addition, early knowledge of HIV status could lead to reduced high-risk behavior at a time when individuals are at a higher risk for transmitting the virus. PMID:25993381

  18. Investigating antennas as ignition aid for automotive HID lamps

    NASA Astrophysics Data System (ADS)

    Bergner, A.; Engelhardt, M.; Bienholz, S.; Ruhrmann, C.; Hoebing, T.; Groeger, S.; Mentel, J.; Awakowicz, P.

    2015-01-01

    This paper considers the ignition of mercury-free high-intensity discharge (HID) lamps for car headlights. Due to safety reasons, these lamps need to have a fast run-up phase which is ensured, amongst other things, by a high Xe pressure of roughly 15 bar (cold) in the discharge vessel. The high Xe pressure causes an increased ignition voltage compared with former mercury-containing automotive HID lamps or low-pressure lamps used for general-lighting applications. The increase in ignition voltage can be limited if the electric field in front of the electrodes is raised by an uplifting of the electrical conductivity along the outer wall of the inner bulb either by a conductive layer on its surface or by a dielectric barrier discharge (DBD) within the outer bulb. This paper considers on the one hand conventional antennas deposited by physical vapour deposition (PVD) and on the other hand a combination of these antennas with a DBD within the outer-bulb operated in 100 mbar Ar as ignition aids. In both cases the antenna potential and antenna width are varied. Additionally, the effects of antenna thickness and antenna material are investigated. The ignition voltage, ignition current and light emission during ignition are measured on a nanosecond timescale. Furthermore, for the very first time, the ignition process is recorded in four consecutive intensified charge-coupled device images using a high-speed camera system with a time resolution in the range of nanoseconds. It was found that antennas strongly reduce the ignition voltage of automotive HID lamps. Active antennas reduce the ignition voltage significantly more than passive antennas, proportional to the conductance of the antenna. Combining conventional antennas with an outer-bulb discharge reduces the ignition voltage from 19 kV without any ignition aid to the intrinsic ignition voltage of the lamp below 10 kV, in the best case.

  19. LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium

    PubMed Central

    Lee, Eun-Ju; Park, Kwan-Sik; Jeon, In-Sook; Choi, Jae-Woon; Lee, Sang-Jeon; Choy, Hyun E.; Song, Ki-Duk; Lee, Hak-Kyo; Choi, Joong-Kook

    2016-01-01

    Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella-induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation. PMID:27329040

  20. Very high efficacy electrodeless high intensity discharge lamps

    DOEpatents

    Johnson, P.D.

    1985-10-03

    An electrodeless arc lamp comprises an outer jacket hermetically sealing and thermally protecting an arc tube inside which has an upwardly convex bottom center section. The absence of chemically reactive electrode material makes it possible to use metal halides other than iodides. The tube contains chlorides, bromides or a mixture thereof of scandium and sodium in a nearly equimolar relationship in addition to mercury and an inert gas. Good color balance can be obtained at reduced reservoir temperature and with less power loss. Reduction in wall temperature makes it possible to attain longer lamp life.