Hansen, Michael J.; Madenjian, Charles P.; Slade, Jeffrey W.; Steeves, Todd B.; Almeida, Pedro R.; Quintella, Bernardo R.
2016-01-01
The sea lamprey Petromyzon marinus (Linnaeus) is both an invasive non-native species in the Laurentian Great Lakes of North America and an imperiled species in much of its native range in North America and Europe. To compare and contrast how understanding of population ecology is useful for control programs in the Great Lakes and restoration programs in Europe, we review current understanding of the population ecology of the sea lamprey in its native and introduced range. Some attributes of sea lamprey population ecology are particularly useful for both control programs in the Great Lakes and restoration programs in the native range. First, traps within fish ladders are beneficial for removing sea lampreys in Great Lakes streams and passing sea lampreys in the native range. Second, attractants and repellants are suitable for luring sea lampreys into traps for control in the Great Lakes and guiding sea lamprey passage for conservation in the native range. Third, assessment methods used for targeting sea lamprey control in the Great Lakes are useful for targeting habitat protection in the native range. Last, assessment methods used to quantify numbers of all life stages of sea lampreys would be appropriate for measuring success of control in the Great Lakes and success of conservation in the native range.
Hanson, Lee H.; Manion, Patrick J.
1980-01-01
The sterility method of pest control could be an effective tool in the sea lamprey (Petromyzon marinus) control program in the Great Lakes. Some of the requirements for its successful application have been met. A field study demonstrated that the release of male sea lampreys, sterilized by the injection of 100 mg/kg of P,P-bis(1-aziridinyl)-N-methylphosphinothioic amide (bisazir), will reduce the number of viable larvae produced. The actual reduction in reproductive success that occurred was directly related to the ratio of sterile to normal males in the population. The technique can be used in many ways in an integrated control program and has considerable potential for the more effective control of the sea lamprey. Eradication is a distinct possibility.Key words: sea lamprey, Petromyzon marinus; pest control, fish control, sterile-male technique, sterilization, chemosterilants, bisazir, Great Lakes
Sea lamprey abundance and management in Lake Superior 1957-1999
Heinrich, John W.; Mullett, Katherine M.; Hansen, Michael J.; Adams, Jean V.; Klar, Gerald T.; Johnson, David A.; Christie, Gavin C.; Young, Robert J.
2003-01-01
The international sea lamprey (Petromyzon marinus) control program successfully laid the foundation for rehabilitation of lake trout (Salvelinus namaycush) in Lake Superior and was well coordinated among management agencies during 1957–1999. The lampricide TFM was the primary control tool, with recurring treatments in 52 larval-producing streams. Barriers and sterile-male-release, as alternative control technologies, were significant elements of the program. Barriers blocked spawning sea lampreys from substantial areas of habitat for sea lamprey larvae during 1966–1999, and the sterile-male-release technique was used to reduce larval production during 1991–1996. Sea lamprey control resulted in the suppression of sea lamprey populations in Lake Superior, as evidenced by the linear decline in spawner abundance during 1962–1999. However, sea lamprey abundance was not as low as the targets specified in the fish community objectives. Most of the parasitic sea lampreys in Lake Superior probably originated from survivors of lampricide treatments. Self-sustaining populations of lake trout were restored in most of the lake by 1996, although many were killed annually by sea lampreys. Economic injury levels for damage to fish populations by sea lampreys are being developed and will be used to distribute sea lamprey control resources among the Great Lakes.
Role of physical barriers in the control of sea lamprey (Petromyzon marinus)
Hunn, J.B.; Youngs, W.D.
1980-01-01
Mechanical and electromechanical barriers played a significant role in the initial attempts to control sea lamprey (Petromyzon marinus) populations in the upper Great Lakes. More recently electromechanical weirs have been used to assess the relative abundance of spawning-run sea lampreys in Lake Superior. Development of an integrated control approach to sea lamprey control has stimulated an ongoing research program to define structural and/or velocity criteria that can be used to design barrier dams that block spawning runs of sea lamprey
Adams, Jean V.; Bergstedt, Roger A.; Christie, Gavin C.; Cuddy, Douglas W.; Fodale, Michael F.; Heinrich, John W.; Jones, Michael L.; McDonald, Rodney B.; Mullett, Katherine M.; Young, Robert J.
2003-01-01
In 1997 the Great Lakes Fishery Commission approved a 5-year (1998 to 2002) control strategy to reduce sea lamprey (Petromyzon marinus) production in the St. Marys River, the primary source of parasitic sea lampreys in northern Lake Huron. An assessment plan was developed to measure the success of the control strategy and decide on subsequent control efforts. The expected effects of the St. Marys River control strategy are described, the assessments in place to measure these effects are outlined, and the ability of these assessments to detect the expected effects are quantified. Several expected changes were predicted to be detectable: abundance of parasitic-phase sea lampreys and annual mortality of lake trout (Salvelinus namaycush) by 2001, abundance of spawning-phase sea lampreys by 2002, and relative return rates of lake trout and sea lamprey wounding rates on lake trout by 2005. Designing an effective assessment program to quantify the consequences of fishery management actions is a critical, but often overlooked ingredient of sound fisheries management.
Miehls, Scott M.; Johnson, Nicholas S.; Hrodey, Pete J.
2017-01-01
Control of the invasive Sea Lamprey Petromyzon marinus is critical for management of commercial and recreational fisheries in the Laurentian Great Lakes. Use of physical barriers to block Sea Lampreys from spawning habitat is a major component of the control program. However, the resulting interruption of natural streamflow and blockage of nontarget species present substantial challenges. Development of an effective nonphysical barrier would aid the control of Sea Lampreys by eliminating their access to spawning locations while maintaining natural streamflow. We tested the effect of a nonphysical barrier consisting of strobe lights, low-frequency sound, and a bubble screen on the movement of Sea Lampreys in an experimental raceway designed as a two-choice maze with a single main channel fed by two identical inflow channels (one control and one blocked). Sea Lampreys were more likely to move upstream during trials when the strobe light and low-frequency sound were active compared with control trials and trials using the bubble screen alone. For those Sea Lampreys that did move upstream to the confluence of inflow channels, no combination of stimuli or any individual stimulus significantly influenced the likelihood that Sea Lampreys would enter the blocked inflow channel, enter the control channel, or return downstream.
Fine-scale pathways used by adult sea lampreys during riverine spawning migrations
Holbrook, Christopher; Bergstedt, Roger A.; Adams, Noah S.; Hatton, Tyson; McLaughlin, Robert L.
2015-01-01
Better knowledge of upstream migratory patterns of spawning Sea Lampreys Petromyzon marinus, an invasive species in the Great Lakes, is needed to improve trapping for population control and assessment. Although trapping of adult Sea Lampreys provides the basis for estimates of lake-wide abundance that are used to evaluate the Sea Lamprey control program, traps have only been operated at dams due to insufficient knowledge of Sea Lamprey behavior in unobstructed channels. Acoustic telemetry and radiotelemetry were used to obtain movement tracks for 23 Sea Lampreys in 2008 and 18 Sea Lampreys in 2009 at two locations in the Mississagi River, Ontario. Cabled hydrophone arrays provided two-dimensional geographic positions from acoustic transmitters at 3-s intervals; depth-encoded radio tag detections provided depths. Upstream movements occurred at dusk or during the night (2015–0318 hours). Sea Lampreys were closely associated with the river bottom and showed some preference to move near banks in shallow glide habitats, suggesting that bottom-oriented gears could selectively target adult Sea Lampreys in some habitats. However, Sea Lampreys were broadly distributed across the river channel, suggesting that the capture efficiency of nets and traps in open channels would depend heavily on the proportion of the channel width covered. Lack of vertical movements into the water column may have reflected lamprey preference for low water velocities, suggesting that energy conservation was more beneficial for lampreys than was vertical searching in rivers. Improved understanding of Sea Lamprey movement will assist in the development of improved capture strategies for their assessment and control in the Great Lakes.
Boll weevil eradication: a model for sea lamprey control?
Smith, James W.; Swink, William D.
2003-01-01
Invasions of boll weevil (Anthonomus grandis) into the United States and sea lamprey (Petromyzon marinus) into the Great Lakes were similar in many ways. Important species (American cotton, Gossypium hirsutum, and lake trout, Salvelinus namaycush) and the industries they supported were negatively affected. Initial control efforts were unsuccessful until pesticides and application technologies were developed. For boll weevils, controls relying on pesticides evolved into an integrated program that included recommended farming practices and poisoned baits. However, the discovery of a boll weevil sex pheromone in 1964 allowed adoption of an ongoing program of eradication. Despite opposition over concept and cost, insecticides, pheromone traps, poisoned baits, and approved farming practices were used to eradicate boll weevils from Virginia, North Carolina, South Carolina, Georgia, Florida, and Alabama by 1999. Using the working back approach along the path of the original invasion, eradication was nearly completed by 2002 in Mississippi and eradication programs were underway in Arkansas, Tennessee, Oklahoma, Louisiana, and parts of Texas. Insecticide use for cotton production decreased 50 to 90%, and cotton yields and farm income increased an average of 78 kg/ha and $190 U.S./ha in areas where boll weevils were eradicated. For sea lampreys, integrated management uses lampricides, barriers to migration, trapping, and release of sterilized males. Although sea lamprey eradication is not currently feasible, recent research on larval and sex pheromones might provide the tools to make it possible. A successful eradication program for sea lampreys starting in Lake Superior and expanding to the lower Great Lakes would ultimately provide huge ecological and economic benefits by eliminating lampricide applications, removing barriers that block teleost fishes, and facilitating the recovery of lake trout. Should the opportunity arise, the concept of sea lamprey eradication should not be rejected out of hand. The successful boll weevil eradication program shows that sea lamprey eradication might be achievable.
Robinson, Jason M.; Wilberg, Michael J.; Adams, Jean V.; Jones, Michael L.
2016-01-01
Allocating resources between the gathering of information to guide management actions and implementing those actions presents an inherent tradeoff. This tradeoff is evident for control of the Sea Lamprey Petromyzon marinus in the St. Marys River, connecting Lakes Huron and Superior and a major source of parasitic Sea Lampreys to Lake Huron and northern Lake Michigan. Larval Sea Lampreys in the St. Marys River are controlled through the application of Bayluscide, which is applied to areas of high larval density. Bayluscide applications are guided with an annual deepwater electrofishing survey to estimate larval Sea Lamprey density at relatively fine spatial scales. We took a resampling approach to describe the effect of sampling intensity on the success of the larval Sea Lamprey management program and explicitly incorporated the economic tradeoff between assessment and control efforts to maximize numbers of larvae killed in the St. Marys River. When no tradeoff between assessment and control was incorporated, increasing assessment always led to more larvae killed for the same treatment budget. When the tradeoff was incorporated, the sampling intensity that maximized the number of larvae killed depended on the overall budget available. Increased sampling intensities maximized effectiveness under medium to large budgets (US \\$0.4 to \\$2.0 million), and intermediate sampling intensities maximized effectiveness under low budgets. Sea Lamprey control actions based on assessment information outperformed those that were implemented with no assessment under all budget scenarios.
Estimating parasitic sea lamprey abundance in Lake Huron from heterogenous data sources
Young, Robert J.; Jones, Michael L.; Bence, James R.; McDonald, Rodney B.; Mullett, Katherine M.; Bergstedt, Roger A.
2003-01-01
The Great Lakes Fishery Commission uses time series of transformer, parasitic, and spawning population estimates to evaluate the effectiveness of its sea lamprey (Petromyzon marinus) control program. This study used an inverse variance weighting method to integrate Lake Huron sea lamprey population estimates derived from two estimation procedures: 1) prediction of the lake-wide spawning population from a regression model based on stream size and, 2) whole-lake mark and recapture estimates. In addition, we used a re-sampling procedure to evaluate the effect of trading off sampling effort between the regression and mark-recapture models. Population estimates derived from the regression model ranged from 132,000 to 377,000 while mark-recapture estimates of marked recently metamorphosed juveniles and parasitic sea lampreys ranged from 536,000 to 634,000 and 484,000 to 1,608,000, respectively. The precision of the estimates varied greatly among estimation procedures and years. The integrated estimate of the mark-recapture and spawner regression procedures ranged from 252,000 to 702,000 transformers. The re-sampling procedure indicated that the regression model is more sensitive to reduction in sampling effort than the mark-recapture model. Reliance on either the regression or mark-recapture model alone could produce misleading estimates of abundance of sea lampreys and the effect of the control program on sea lamprey abundance. These analyses indicate that the precision of the lakewide population estimate can be maximized by re-allocating sampling effort from marking sea lampreys to trapping additional streams.
Schleen, Larry P.; Christie, Gavin C.; Heinrich, John W.; Bergstedt, Roger A.; Young, Robert J.; Morse, Terry J.; Lavis, Dennis S.; Bills, Terry D.; Johnson, James E.; Ebener, Mark P.
2003-01-01
The development and implementation of a strategy for control of sea lampreys (Petromyzon marinus) in the St. Marys River formed the basis for rehabilitation of lake trout (Salvelinus namaycush) and other fish in Lakes Huron and Michigan. The control strategy was implemented by the Great Lakes Fishery Commission (GLFC) upon recommendations by the interagency Sea Lamprey Integration Committee, and many managers and scientists from United States and Canada federal, state, provincial, tribal, and private institutions. Analyses of benefits vs. costs of control options and modeling of the cumulative effects on abundance of parasitic-phase sea lampreys and lake trout produced a strategy that involved an integration of control technologies that included long- and short-term measures. The longterm measures included interference with sea lamprey reproduction by the trapping and removal of spawning-phase sea lampreys from the river and the sterilization and release of the trapped male sea lampreys. The theoretical reduction of larvae produced in the river from these two combined techniques averaged almost 90% during 1997 to 1999. Lampricide treatment with granular Bayluscide of 880 ha of plots densely populated with larvae occurred during 1998, 1999, and 2001 because modeling showed the sooner parasitic-phase sea lamprey populations declined in Lake Huron the greater the improvement for restoration of lake trout during 1995 to 2015. Post-treatment assessments showed about 55% of the larvae had been removed from the river. An adaptive assessment plan predicted high probability of detection of control effects because of many available indicators. The GLFC will face several critical decisions beyond 2001, and initiated a decision analysis project to aid in those decisions.
Research to support sterile-male-release and genetic alteration techniques for sea lamprey control
Bergstedt, Roger A.; Twohey, Michael B.
2007-01-01
Integrated pest management of sea lampreys in the Laurentian Great Lakes has recently been enhanced by addition of a sterile-male-release program, and future developments in genetic approaches may lead to additional methods for reducing sea lamprey reproduction. We review the development, implementation, and evaluation of the sterile-male-release technique (SMRT) as it is being applied against sea lampreys in the Great Lakes, review the current understanding of SMRT efficacy, and identify additional research areas and topics that would increase either the efficacy of the SMRT or expand its geographic potential for application. Key areas for additional research are in the sterilization process, effects of skewed sex ratios on mating behavior, enhancing attractiveness of sterilized males, techniques for genetic alteration of sea lampreys, and sources of animals to enhance or expand the use of sterile lampreys.
Habituation of adult sea lamprey repeatedly exposed to damage-released alarm and predator cues
Imre, Istvan; Di Rocco, Richard T.; Brown, Grant E.; Johnson, Nicholas
2016-01-01
Predation is an unforgiving selective pressure affecting the life history, morphology and behaviour of prey organisms. Selection should favour organisms that have the ability to correctly assess the information content of alarm cues. This study investigated whether adult sea lamprey Petromyzon marinus habituate to conspecific damage-released alarm cues (fresh and decayed sea lamprey extract), a heterospecific damage-released alarm cue (white sucker Catostomus commersoniiextract), predator cues (Northern water snake Nerodia sipedon washing, human saliva and 2-phenylethylamine hydrochloride (PEA HCl)) and a conspecific damage-released alarm cue and predator cue combination (fresh sea lamprey extract and human saliva) after they were pre-exposed 4 times or 8 times, respectively, to a given stimulus the previous night. Consistent with our prediction, adult sea lamprey maintained an avoidance response to conspecific damage-released alarm cues (fresh and decayed sea lamprey extract), a predator cue presented at high relative concentration (PEA HCl) and a conspecific damage-released alarm cue and predator cue combination (fresh sea lamprey extract plus human saliva), irrespective of previous exposure level. As expected, adult sea lamprey habituated to a sympatric heterospecific damage-released alarm cue (white sucker extract) and a predator cue presented at lower relative concentration (human saliva). Adult sea lamprey did not show any avoidance of the Northern water snake washing and the Amazon sailfin catfish extract (heterospecific control). This study suggests that conspecific damage-released alarm cues and PEA HCl present the best options as natural repellents in an integrated management program aimed at controlling the abundance of sea lamprey in the Laurentian Great Lakes.
Jones, Michael L.; Bergstedt, R.A.; Twohey, Michael B.; Fodale, Michael F.; Cuddy, Douglas W.; Slade, Jeffrey W.
2003-01-01
Compensatory mechanisms are demographic processes that tend to increase population growth rates at lower population density. These processes will tend to reduce the effectiveness of actions that use controls on reproductive success to suppress sea lamprey (Petromyzon marinus), an economically important pest in the Great Lakes. Historical evidence for compensatory mechanisms in sea lamprey populations was reviewed, and revealed: (1) strong evidence for shifts in sex ratios as sea lamprey abundance was reduced in the early years of the control program; (2) weak and equivocal evidence for increased growth rates of sea lamprey cohorts re-colonizing streams following a lampricide treatment; and (3) suggestions of other compensatory processes, such as earlier ages at metamorphosis, but with little empirical evidence. Larval size distribution data for cohorts in the first and second years following a lampricide treatment (26 pairs of cohorts in 20 streams) was analyzed and did not indicate a consistent pattern of more rapid growth of the first colonizing cohort (only 11 of 33 cases). To test for compensation between spawning and age-1 in sea lamprey populations, data were analyzed for 49 stream-years for which spawning female abundance was known and age-1 abundance was estimated in the following year. A fit of these data to a Ricker stock-recruitment function showed evidence for compensation, measured as reduced survival to age 1 at higher abundance of spawning females. More obvious, however, was a large amount of density-independent variation in survival, which tends to mask evidence for compensatory survival. The results were applied to a simple model that simulates sea lamprey populations and their control in a hypothetical lake. Control strategies that targeted reproductive success performed far less well than comparable strategies that targeted larval populations, because density-independent recruitment variation leads to occasional strong year classes even when spawner abundance is reduced to low levels through alternative control. It is concluded that further study of recruitment variation in lamprey populations is critical to rationalizing alternative controls that target reproductive success, and that recruitment variation needs to be incorporated into models used to evaluate sea lamprey control options.
Sterilization of sea lampreys (Petromyzon marinus) by immersion in an aqueous solution of bisazir
Hanson, Lee H.
1981-01-01
Groups of sea lamprey (Petromyzon marinus) eggs fertilized by males previously immersed in an aqueous solution of p,p-bis(1-aziridinyl)-N-methylphosphinothioic amide (bisazir) at concentrations of 10–100 mg/L produced fewer normal, live prolarvae after 15–17 d of incubation than did groups of eggs fertilized by normal males. Mortality of embryos or prolarvae was nearly 100% in groups of eggs fertilized by males that had been immersed in a 50 mg/L solution of bisazir for 4 h or in a 100 mg/L solution for 2 h. The immersion technique appears to be an efficient method of sterilizing large numbers of male sea lampreys for use in a proposed sterile-male-release program.Key words: sea lamprey, Petromyzon marinus; pest control, fish control, sterile-male technique, sterilization, chemosterilants, bisazir, Great Lakes
Sterilizing effects of cobalt-60 and cesium-137 radiation on male sea lampreys
Hanson, L.H.
1990-01-01
Male spawning-run sea lampreys Petromyzon marinus were exposed to various doses of cobalt-60 or cesium-137 radiation in an attempt to sterilize them for use in a program for controlling sea lampreys through the release of sterile males. Males captured and irradiated during the early part of the upstream migration were not effectively sterilized at the doses tested. After irradiation, the sea lampreys were more susceptible to fungal infections by Saprolegnia sp., and many died without attempting to spawn. Males captured and irradiated during the middle and late parts of the spawning migration were effectively sterilized at a dose of 2,000 rads. However, some radiation-induced mortality was observed in males captured and irradiated during the middle part of the spawning migration. Radiation is not as effective as the chemosterilant bisazir for sterilizing male sea lampreys.
Optimizing larval assessment to support sea lamprey control in the Great Lakes
Hansen, Michael J.; Adams, Jean V.; Cuddy, Douglas W.; Richards, Jessica M.; Fodale, Michael F.; Larson, Geraldine L.; Ollila, Dale J.; Slade, Jeffrey W.; Steeves, Todd B.; Young, Robert J.; Zerrenner, Adam
2003-01-01
Elements of the larval sea lamprey (Petromyzon marinus) assessment program that most strongly influence the chemical treatment program were analyzed, including selection of streams for larval surveys, allocation of sampling effort among stream reaches, allocation of sampling effort among habitat types, estimation of daily growth rates, and estimation of metamorphosis rates, to determine how uncertainty in each element influenced the stream selection program. First, the stream selection model based on current larval assessment sampling protocol significantly underestimated transforming sea lam-prey abundance, transforming sea lampreys killed, and marginal costs per sea lamprey killed, compared to a protocol that included more years of data (especially for large streams). Second, larval density in streams varied significantly with Type-I habitat area, but not with total area or reach length. Third, the ratio of larval density between Type-I and Type-II habitat varied significantly among streams, and that the optimal allocation of sampling effort varied with the proportion of habitat types and variability of larval density within each habitat. Fourth, mean length varied significantly among streams and years. Last, size at metamorphosis varied more among years than within or among regions and that metamorphosis varied significantly among streams within regions. Study results indicate that: (1) the stream selection model should be used to identify streams with potentially high residual populations of larval sea lampreys; (2) larval sampling in Type-II habitat should be initiated in all streams by increasing sampling in Type-II habitat to 50% of the sampling effort in Type-I habitat; and (3) methods should be investigated to reduce uncertainty in estimates of sea lamprey production, with emphasis on those that reduce the uncertainty associated with larval length at the end of the growing season and those used to predict metamorphosis.
75 FR 82061 - Lake Champlain Sea Lamprey Control Alternatives Workgroup
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
...] Lake Champlain Sea Lamprey Control Alternatives Workgroup AGENCY: Fish and Wildlife Service, Interior... of the Lake Champlain Sea Lamprey Control Alternatives Workgroup (Workgroup). The Workgroup's purpose... sea lamprey control techniques alternative to lampricide that are technically feasible, cost effective...
76 FR 43698 - Lake Champlain Sea Lamprey Control Alternatives Workgroup
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-21
...] Lake Champlain Sea Lamprey Control Alternatives Workgroup AGENCY: Fish and Wildlife Service, Interior... of the Lake Champlain Sea Lamprey Control Alternatives Workgroup (Workgroup). The Workgroup's purpose... implementation of sea lamprey control techniques alternative to lampricide that are technically feasible, cost...
Siefkes, Michael J
2017-01-01
Sea lamprey ( Petromyzon marinus ) control in the Laurentian Great Lakes of North America is an example of using physiological knowledge to successfully control an invasive species and rehabilitate an ecosystem and valuable fishery. The parasitic sea lamprey contributed to the devastating collapse of native fish communities after invading the Great Lakes during the 1800s and early 1900s. Economic tragedy ensued with the loss of the fishery and severe impacts to property values and tourism resulting from sea lamprey-induced ecological changes. To control the sea lamprey and rehabilitate the once vibrant Great Lakes ecosystem and economy, the Great Lakes Fishery Commission (Commission) was formed by treaty between Canada and the United States in 1955. The Commission has developed a sea lamprey control programme based on their physiological vulnerabilities, which includes (i) the application of selective pesticides (lampricides), which successfully kill sedentary sea lamprey larvae in their natal streams; (ii) barriers to spawning migrations and associated traps to prevent infestations of upstream habitats and remove adult sea lamprey before they reproduce; and (iii) the release of sterilized males to reduce the reproductive potential of spawning populations in select streams. Since 1958, the application of the sea lamprey control programme has suppressed sea lamprey populations by ~90% from peak abundance. Great Lakes fish populations have rebounded and the economy is now thriving. In hopes of further enhancing the efficacy and selectivity of the sea lamprey control programme, the Commission is exploring the use of (i) sea lamprey chemosensory cues (pheromones and alarm cues) to manipulate behaviours and physiologies, and (ii) genetics to identify and manipulate genes associated with key physiological functions, for control purposes. Overall, the Commission capitalizes on the unique physiology of the sea lamprey and strives to develop a diverse integrated programme to successfully control a once devastating invasive species.
2017-01-01
Abstract Sea lamprey (Petromyzon marinus) control in the Laurentian Great Lakes of North America is an example of using physiological knowledge to successfully control an invasive species and rehabilitate an ecosystem and valuable fishery. The parasitic sea lamprey contributed to the devastating collapse of native fish communities after invading the Great Lakes during the 1800s and early 1900s. Economic tragedy ensued with the loss of the fishery and severe impacts to property values and tourism resulting from sea lamprey-induced ecological changes. To control the sea lamprey and rehabilitate the once vibrant Great Lakes ecosystem and economy, the Great Lakes Fishery Commission (Commission) was formed by treaty between Canada and the United States in 1955. The Commission has developed a sea lamprey control programme based on their physiological vulnerabilities, which includes (i) the application of selective pesticides (lampricides), which successfully kill sedentary sea lamprey larvae in their natal streams; (ii) barriers to spawning migrations and associated traps to prevent infestations of upstream habitats and remove adult sea lamprey before they reproduce; and (iii) the release of sterilized males to reduce the reproductive potential of spawning populations in select streams. Since 1958, the application of the sea lamprey control programme has suppressed sea lamprey populations by ~90% from peak abundance. Great Lakes fish populations have rebounded and the economy is now thriving. In hopes of further enhancing the efficacy and selectivity of the sea lamprey control programme, the Commission is exploring the use of (i) sea lamprey chemosensory cues (pheromones and alarm cues) to manipulate behaviours and physiologies, and (ii) genetics to identify and manipulate genes associated with key physiological functions, for control purposes. Overall, the Commission capitalizes on the unique physiology of the sea lamprey and strives to develop a diverse integrated programme to successfully control a once devastating invasive species. PMID:28580146
Selgeby, James H.
1995-01-01
Lake trout (Salvelinus namaycush) restoration in the Great Lakes began in the 1950s when stocking of artificially propagated lake trout was coupled with the first attempts at sea lamprey (Petromyzon marinus) control. A major milestone in the restoration process was recorded when a selective sea lamprey larvicide was identified in 1958 (Applegate et al. 1958) and then applied broad scale in Lake Superior in 1958-60 (Applegate et al. 1961). Other milestones include the expansion of the sea lamprey control programs into Lakes Michigan and Huron in 1960 (sustained usage in Lake Huron began in 1966, Smith and Tibbles 1980), Lake Ontario in 1971-72 (Elrod et al. 1995), and Lake Erie in 1986 (Cornelius et al. 1995). Following the collapse of lake trout in the Great Lakes and the implementation of massive stocking of hatchery-reared fish and effective sea lamprey control, the first documented evidence of nearshore natural reproduction of lake trout was in Lake Superior in 1965 (Dryer and King 1968), in Lake Michigan in 1980 (Jude et al. 1981), in Lake Huron in 1981-82 (Nester and Poe 1984), and in Lake Ontario in 1986 (Marsden et al. 1988).
Application of theory and research in fishery management of the Laurentian Great Lakes
Smith, Stanford H.
1973-01-01
Three examples are used to illustrate these problems: (1) Sea lamprey (Petromyzon marinus) research was not initiated until 50 years after the destructiveness of the sea lamprey was recognized, and control measures were not developed or applied until species most vulnerable to the lamprey had been greatly reduced or eliminated. (2) Most research on the alewife (Alosa pseudoharengus) has been directed toward determining why large numbers of alewives die during the spring and summer, but has not provided the information most urgently needed by management to use alewives to best advantage, or to reduce the biological or human problems that alewives cause. (3) After a study during 1926-30 to determine if pollution was affecting fish in Lake Erie, it was concluded that the detrimental effects of pollution in certain regions were offset by the benefits of enrichment in other areas, but managers were not warned that areas of pollution might expand, and eventually influence the entire lake. The Great Lakes ecosystem is complex and in a state of rapid change. Thus, the outcome from the application of theory is uncertain at best and there can be no assurance that the desired results will be attained. The programs for sea lamprey control and salmonid restoration are a current example of difficulty in application of theory in management. Superficially the sea lamprey appears to be under control and salmonids have been restored. The postcontrol abundance of sea lampreys, however, is equal to the abundance that caused the initial collapse of the lake trout (Salvelinus namaycush), and there is evidence that the damage lampreys are inflicting on lake trout is as heavy as it was in the precontrol period. Also, in the presence of an abundance of hatchery-reared salmonids, the lamprey is reproducing and thriving as well as or better than it did during its initial population explosion, and indications are that it will increase rather than decrease under the present method and level of control. Successful application of theory and research to fishery management has always been impeded by lack of continued and close coordination among some 30-40 state, provincial, and federal governmental units that have varying degrees of influence on fishery programs of the Great Lakes. Frequently agreements that have been reached among conservation agencies were not sustained by legislative units, or were nullified by organizational changes. As a result, conflicting approaches were sometimes taken by management agencies with jurisdiction in different areas of the same lake. Sustained and compatible management objectives and practices can, however, contribute to greater stability, and optimum usefulness and productivity.
The sterile-male-release technique in Great Lakes sea lamprey management
Bergstedt, Roger A.; Twohey, Michael B.
2005-01-01
The parasitic sea lamprey (Petromyzon marinus) has been a serious pest since its introduction into the Great Lakes, where it contributed to severe imbalances in the fish communities by selectively removing large predators (Smith 1968; Christie 1974; Schneider et al.1996). Since the 1950s, restoration and maintenance of predator-prey balance has depended on the Great Lakes Fishery Commission (GLFC) sea lamprey management program. Initially, management relied primarily on stream treatments with a selective lampricide to kill larvae, on barriers to migration, and on trapping to remove potential spawners (Smith and Tibbles 1980). By the late 1970s, however, it was clear that the future of sea lamprey management lay in development of a larger array of control strategies, including more alternatives to lampricide applications (Sawyer 1980). Since then the only new alternative to chemical control to reach operational status is the release of sterilized male sea lampreys. Research on the concept began at the USGS, Hammond Bay Biological Station in Millersburg, MI (HBBS) during the 1970s (Hanson and Manion 1980). Development and evaluation continued through the 1980s, leading to the release of sterilized males in Great Lakes tributaries since 1991 (Twohey et al. 2003a). The objectives of this paper are 1) to review the implementation and evaluations of sterile-male-release technique (SMRT) as it is being applied against sea lampreys in the Great Lakes, 2) to review our current understanding of its efficacy, and 3) to identify additional research areas and topics that would increase either the efficacy of SMRT or expand its geographic potential for application.
Mesa, Matthew G.; Weiland, Lisa K.; Christiansen, Helena E.
2016-01-01
We compiled and summarized previous sources of data and research results related to the presence, numbers, and migration timing characteristics of juvenile (eyed macropthalmia) and larval (ammocoetes) Pacific lamprey Entosphenus tridentatus, in the Columbia River basin (CRB). Included were data from various screw trap collections, data from historic fyke net studies, catch records of lampreys at JBS facilities, turbine cooling water strainer collections, and information on the occurrence of lampreys in the diets of avian and piscine predators. We identified key data gaps and uncertainties that should be addressed in a juvenile lamprey passage research program. The goal of this work was to summarize information from disparate sources so that managers can use it to prioritize and guide future research and monitoring efforts related to the downstream migration of juvenile Pacific lamprey within the CRB. A common finding in all datasets was the high level of variation observed for CRB lamprey in numbers present, timing and spatial distribution. This will make developing monitoring programs to accurately characterize lamprey migrations and passage more challenging. Primary data gaps centered around our uncertainty on the numbers of juvenile and larval present in the system which affects the ability to assign risk to passage conditions and prioritize management actions. Recommendations include developing standardized monitoring methods, such as at juvenile bypass systems (JBS’s), to better document numbers and timing of lamprey migrations at dams, and use biotelemetry tracking techniques to estimate survival potentials for different migration histories.
Evidence that lake trout served as a buffer against sea lamprey predation on burbot in Lake Erie
Stapanian, M.A.; Madenjian, C.P.
2007-01-01
The population of burbot Lota lota in Lake Erie recovered during 1986–2003, mainly because of the control of sea lamprey Petromyzon marinus, which began in 1986. Burbot populations continued to grow during 1996–1998, when sea lamprey control was substantially reduced. We calculated mortality parameters for burbot in Lake Erie by estimating age at capture for 2,793 burbot caught in annual gill-net surveys of eastern Lake Erie from 1994 to 2003. Based on catch-curve analysis, annual mortality in Lake Erie during 1994–2003 was estimated as 33%. Annual mortality of the 1992 year-class of burbot was estimated as 30%. The mortality of burbot during the years of reduced sea lamprey control was not different from that during the 3 years preceding reduced control and was significantly lower than that during the entire portion of the time series in which full sea lamprey control was conducted. These results suggest that the reduction in sea lamprey control did not lead to increased burbot mortality. The catch per gill-net lift of large burbot (total length > 600 mm), the size preferred by sea lampreys, was lower than that of adult lake trout Salvelinus namaycush (age 5 and older; total length > 700 mm) before lampricide application was reduced. Although adult lake trout populations declined, the abundance of large burbot did not change during the period of reduced lampricide application. These results support a hypothesis that a healthy population of adult lake trout can serve as a buffer species, acting to reduce predation of burbot by sea lampreys when sea lamprey populations increase. Burbot attained sexual maturity at a relatively early age (3 or 4 years) and a total length (approximately 500 mm) that was smaller than the preferred prey size for sea lampreys. These characteristics and the buffering effect of the lake trout population enabled growth of the burbot population during the brief period when lamprey control was reduced.
Olfactory sensitivity of Pacific Lampreys to lamprey bile acids
Robinson, T. Craig; Sorensen, Peter W.; Bayer, Jennifer M.; Seelye, James G.
2009-01-01
Pacific lampreys Lampetra tridentata are in decline throughout much of their historical range in the Columbia River basin. In support of restoration efforts, we tested whether larval and adult lamprey bile acids serve as migratory and spawning pheromones in adult Pacific lampreys, as they do in sea lampreys Petromyzon marinus. The olfactory sensitivity of adult Pacific lampreys to lamprey bile acids was measured by electro-olfactogram recording from the time of their capture in the spring until their spawning in June of the following year. As controls, we tested L-arginine and a non-lamprey bile acid, taurolithocholic acid 3-sulfate (TLS). Migrating adult Pacific lampreys were highly sensitive to petromyzonol sulfate (a component of the sea lamprey migratory pheromone) and 3-keto petromyzonol sulfate (a component of the sea lamprey sex pheromone) when first captured. This sensitivity persisted throughout their long migratory and overwinter holding period before declining to nearly unmeasurable levels by the time of spawning. The absolute magnitudes of adult Pacific lamprey responses to lamprey bile acids were smaller than those of the sea lamprey, and unlike the sea lamprey, the Pacific lamprey did not appear to detect TLS. No sexual dimorphism was noted in olfactory sensitivity. Thus, Pacific lampreys are broadly similar to sea lampreys in showing sensitivity to the major lamprey bile acids but apparently differ in having a longer period of sensitivity to those acids. The potential utility of bile acid-like pheromones in the restoration of Pacific lampreys warrants their further investigation in this species.
Johnson, Nicholas S.; Swink, William D.; Brenden, Travis O.; Slade, Jeffrey W.; Steeves, Todd B.; Fodale, Michael F.; Jones, Michael L.
2014-01-01
Sea lamprey Petromyzon marinus control in the Great Lakes primarily involves application of lampricides to streams where larval production occurs to kill larvae prior to their metamorphosing and entering the lakes as parasites (juveniles). Because lampricides are not 100% effective, larvae that survive treatment maymetamorphose before streams are again treated. Larvae that survive treatment have not beenwidely studied, so their dynamics are notwell understood.Wetagged and released larvae in six Great Lake tributaries following lampricide treatment and estimated vital demographic rates using multistate tag-recovery models. Model-averaged larval survivals ranged from 56.8 to 57.6%. Model-averaged adult recovery rates, which were the product of juvenile survivals and adult capture probabilities, ranged from 6.8 to 9.3%. Using stochastic simulations, we estimated production of juvenile sea lampreys from a hypothetical population of treatment survivors under different growth conditions based on parameter estimates from this research. For fast-growing populations, juvenile production peaked 2 years after treatment. For slow-growing populations, juvenile production was approximately one-third that of fast-growing populations,with production not peaking until 4 years after treatment. Our results suggest that dynamics (i.e., survival, metamorphosis) of residual larval populations are very similar to those of untreated larval populations. Consequently, residual populations do not necessarily warrant special consideration for the purpose of sea lamprey control and can be ranked for treatment along with other populations. Consecutive lampricide treatments, which are under evaluation by the sea lamprey control program, would bemost effective for reducing juvenile production in large, fast-growing populations.
Toxicity of 4,346 chemicals to larval lampreys and fishes
Applegate, Vernon C.; Howell, John H.; Hall, A.E.; Smith, Manning A.
1957-01-01
The problem of controlling the sea lamprey in the upper Great Lakes has received considerable attention in recent years and requires no review here (Applegate and Moffett. 1955). Electromechanical weirs and traps and electrical barriers have been developed which can be successfully employed to block and/or destroy spawning runs of adult sea lampreys. These devices. when installed in all known $pawning streams. provide an effective method of reducing the numbers of sea lampreys in each lake basin. Initial efforts at control of the lamprey have employed these devices (Applegate. Smith. and Nielsen. 1952; Erkkila. Smith. and McLain. 1956).
Holbrook, Christopher; Jubar, Aaron K.; Barber, Jessica M.; Tallon, Kevin; Hondorp, Darryl W.
2016-01-01
Adult sea lamprey (Petromyzon marinus) abundance in Lake Erie has remained above targets set by fishery managers since 2005, possibly due to increased recruitment in the St. Clair-Detroit River System (SCDRS). Sea lamprey recruitment in the SCDRS poses an enormous challenge to sea lamprey control and assessment in Lake Erie because the SCDRS contains no dams to facilitate capture and discharge is at least an order of magnitude larger in the SCDRS than most other sea lamprey-producing tributaries in the Great Lakes. As a first step toward understanding population size, spatial distribution, and spawning habitat of adult sea lampreys in the SCDRS, we used acoustic telemetry to determine where sea lampreys ceased migration (due to spawning, death, or both) among major regions of the SCDRS. All tagged sea lampreys released in the lower Detroit River (N = 27) moved upstream through the Detroit River and entered Lake St. Clair. After entering Lake St. Clair, sea lampreys entered the St. Clair River (N = 22), Thames River (N = 1), or were not detected again (N = 4). Many sea lampreys (10 of 27) were last observed moving downstream (“fallback”) but we were unable to determine if those movements occurred before or after spawning, or while sea lampreys were dead or alive. Regardless of whether estimates of locations where sea lampreys ceased migration were based on the most upstream region occupied or final region occupied, most sea lampreys ceased migration in the St. Clair River or Lake St. Clair. Results suggest that spawning and rearing in the St. Clair River could be an important determinant of sea lamprey recruitment in the SCDRS and may direct future assessment and control activities in that system.
Madenjian, C.P.; Chipman, B.D.; Marsden, J.E.
2008-01-01
Sea lamprey (Petromyzon marinus) control in North America costs millions of dollars each year, and control measures are guided by assessment of lamprey-induced damage to fisheries. The favored prey of sea lamprey in freshwater ecosystems has been lake trout (Salvelinus namaycush). A key parameter in assessing sea lamprey damage, as well as managing lake trout fisheries, is the probability of an adult lake trout surviving a lamprey attack. The conventional value for this parameter has been 0.55, based on laboratory experiments. In contrast, based on catch curve analysis, mark-recapture techniques, and observed wounding rates, we estimated that adult lake trout in Lake Champlain have a 0.74 probability of surviving a lamprey attack. Although sea lamprey growth in Lake Champlain was lower than that observed in Lake Huron, application of an individual-based model to both lakes indicated that the probability of surviving an attack in Lake Champlain was only 1.1 times higher than that in Lake Huron. Thus, we estimated that lake trout survive a lamprey attack in Lake Huron with a probability of 0.66. Therefore, our results suggested that lethality of a sea lamprey attack on lake trout has been overestimated in previous model applications used in fisheries management. ?? 2008 NRC.
Experimental hybridization among five species of lampreys from the Great Lakes
Piavis, George W.; Howell, John H.; Smith, Allen J.
1970-01-01
Experimental hybridization among five species of lampreys of the Upper Great Lakes routinely produced embryos through stage 8, and four crosses produced embryos to the larval stage. Three critical periods in the embryogenesis of hybrid lampreys were between stages 8 and 9, among stages 10, 11, and 12, and at stage 15. Embryonic development in hybrid lamprey embryos is basically identical to that of controls and is identical to that of the sea lamprey (Petromyzon marinus). Synchrony of development was observed among stages of viable hybrids and their controls but lethal hybrids generally did not maintain such synchrony. The derivative species concept has been confirmed experimentally. Questions have been raised concerning some evidence cited in behalf of the appropriateness of the concept that nonparasitic lampreys are the derived species.
RNA interference technology to control pest sea lampreys--a proof-of-concept.
Heath, George; Childs, Darcy; Docker, Margaret F; McCauley, David W; Whyard, Steven
2014-01-01
The parasitic sea lamprey (Petromyzon marinus) has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol) to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs) into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin) reduced transcript levels 2.5, 3.6, and 5.0-fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species.
RNA Interference Technology to Control Pest Sea Lampreys - A Proof-of-Concept
Heath, George; Childs, Darcy; Docker, Margaret F.; McCauley, David W.; Whyard, Steven
2014-01-01
The parasitic sea lamprey (Petromyzon marinus) has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol) to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs) into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin) reduced transcript levels 2.5, 3.6, and 5.0–fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species. PMID:24505485
Control of the sea lamprey (Petromyzon marinus) in Lake Superior, 1953-70
Smith, Bernard R.; Tibbles, J. James; Johnson, B.G.H.
1974-01-01
Although sea lamprey control and heavy plantings of hatchery-reared stock had restored lake trout abundance to prelamprey levels in many areas by 1970, the trout had not yet become self-sustaining. Additional effort will be required to further reduce the effects of lamprey predation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-03
... (Workgroup) for 2 years. The Workgroup provides an opportunity for stakeholders to give policy and technical advice on efforts to develop and implement sea lamprey control techniques alternative to lampricides in... Workgroup provides recommendations and advice to the Cooperative on: Feasible and appropriate sea lamprey...
Johnson, Nicholas S.; Siefkes, Michael J.; Wagner, C. Michael; Dawson, Heather; Wang, Huiyong; Steeves, Todd; Twohey, Michael; Li, Weiming
2013-01-01
Application of chemical cues to manipulate adult sea lamprey (Petromyzon marinus) behavior is among the options considered for new sea lamprey control techniques in the Laurentian Great Lakes. A male mating pheromone component, 7a,12a,24-trihydroxy-3-one-5a-cholan-24-sulfate (3kPZS), lures ovulated female sea lamprey upstream into baited traps in experimental contexts with no odorant competition. A critical knowledge gap is whether this single pheromone component influences adult sea lamprey behavior in management contexts containing free-ranging sea lampreys. A solution of 3kPZS to reach a final in-stream concentration of 10-12 mol·L-1 was applied to eight Michigan streams at existing sea lamprey traps over 3 years, and catch rates were compared between paired 3kPZS-baited and unbaited traps. 3kPZS-baited traps captured significantly more sexually immature and mature sea lampreys, and overall yearly trapping efficiency within a stream averaged 10% higher during years when 3kPZS was applied. Video analysis of a trap funnel showed that the likelihood of sea lamprey trap entry after trap encounter was higher when the trap was 3kPZS baited. Our approach serves as a model for the development of similar control tools for sea lamprey and other aquatic invaders.
Lampreys as Diverse Model Organisms in the Genomics Era.
McCauley, David W; Docker, Margaret F; Whyard, Steve; Li, Weiming
2015-11-01
Lampreys, one of the two surviving groups of ancient vertebrates, have become important models for study in diverse fields of biology. Lampreys (of which there are approximately 40 species) are being studied, for example, (a) to control pest sea lamprey in the North American Great Lakes and to restore declining populations of native species elsewhere; (b) in biomedical research, focusing particularly on the regenerative capability of lampreys; and (c) by developmental biologists studying the evolution of key vertebrate characters. Although a lack of genetic resources has hindered research on the mechanisms regulating many aspects of lamprey life history and development, formerly intractable questions are now amenable to investigation following the recent publication of the sea lamprey genome. Here, we provide an overview of the ways in which genomic tools are currently being deployed to tackle diverse research questions and suggest several areas that may benefit from the availability of the sea lamprey genome.
Lampreys as Diverse Model Organisms in the Genomics Era
McCauley, David W.; Docker, Margaret F.; Whyard, Steve; Li, Weiming
2015-01-01
Lampreys, one of the two surviving groups of ancient vertebrates, have become important models for study in diverse fields of biology. Lampreys (of which there are approximately 40 species) are being studied, for example, (a) to control pest sea lamprey in the North American Great Lakes and to restore declining populations of native species elsewhere; (b) in biomedical research, focusing particularly on the regenerative capability of lampreys; and (c) by developmental biologists studying the evolution of key vertebrate characters. Although a lack of genetic resources has hindered research on the mechanisms regulating many aspects of lamprey life history and development, formerly intractable questions are now amenable to investigation following the recent publication of the sea lamprey genome. Here, we provide an overview of the ways in which genomic tools are currently being deployed to tackle diverse research questions and suggest several areas that may benefit from the availability of the sea lamprey genome. PMID:26951616
Imre, I.; Brown, G.E.; Bergstedt, R.A.; McDonald, R.
2010-01-01
Sea lamprey invaded the Great Lakes in the early 20th century and caused an abrupt decline in the population densities of several native fish species. The integrated management of this invasive species is composed of chemical (lampricide) applications, low-head barrier dams, adult trapping and sterile male release. Recently, there has been an increased emphasis on the development of control methods alternative to lampricide applications. We propose as an alternative-control method the use of chemosensory cues as repellents for sea lamprey population management. Based on the available evidence at this time, we suggest that injury-released chemical alarm cues show promise as repellents for sea lamprey and further research should be directed at determining whether sea lamprey show an avoidance response to these types of chemosensory cues. From a management perspective, these chemosensory cues could be used to restrict sea lamprey access to spawning grounds. Repellents could also be used together with attractants like sex pheromones to manipulate sea lamprey behavior, similar to the "push-pull" strategies utilized with insect pests. ?? 2010 Elsevier B.V.
Jones, Michael L.; Brenden, Travis O.; Irwin, Brian J.
2015-01-01
The St. Marys River (SMR) historically has been a major producer of sea lampreys (Petromyzon marinus) in the Laurentian Great Lakes. In the early 2000s, a decision analysis (DA) project was conducted to evaluate sea lamprey control policies for the SMR; this project suggested that an integrated policy of trapping, sterile male releases, and Bayluscide treatment was the most cost-effective policy. Further, it concluded that formal assessment of larval sea lamprey abundance and distribution in the SMR would be valuable for future evaluation of control strategies. We updated this earlier analysis, adding information from annual larval assessments conducted since 1999 and evaluating additional control policies. Bayluscide treatments continued to be critical for sea lamprey control, but high recruitment compensation minimized the effectiveness of trapping and sterile male release under current feasible ranges. Because Bayluscide control is costly, development of strategies to enhance trapping success remains a priority. This study illustrates benefits of an adaptive management cycle, wherein models inform decisions, are updated based on learning achieved from those decisions, and ultimately inform future decisions.
Burrowing activities of the larval lamprey
Sawyer, Philip J.
1959-01-01
Since the appearance in 1950 of Applegate's work on the sea lamprey in Michigan (U. S. Fish and Wildl. Serv., Spec. Sci. Rept.; Fish, No. 55) and the subsequent development of means to control lampreys in the Great Lakes, biologists have accumulated much additional information on adult lampreys. Larval lampreys, however, are difficult animals to observe in the field, and many facets of their behavior are still unknown. While working with the U. S. Fish and Wildlife Service, I kept ammocetes in captivity, and was able to observe their burrowing activities.
An electric beam trawl for the capture of larval lampreys
McLain, Alberton; Dahl, Frederick H.
1968-01-01
The chemicals used to control the sea lamprey, Petromyzon marinus, in the Great Lakes have drastically reduced populations of larval lampreys in tributary streams. These larvicides are too costly and difficult to apply, however, in inland lakes, estuaries, and bays. Populations of sea lampreys in these areas constitute a threat to the refinement of the control. The gear available to locate, ample, and evaluate larval populations in deep water are inefficient. Electric shockers, satisfactory for collecting ammocoetes in streams, are limited to shallow water. The use of mechanical devices such as the Petersen dredge, anchor dredge, and the orange-peel dredge is time consuming, inefficient, and relatively ineffective in providing reliable quantitative evaluation of population size and composition over large areas of bottom. A device was required to sample adequately many areas in a short period of time, regardless of the depth of water. Mobility also was essential to permit operation of the unit in the various Great Lakes and in inland waters. An electrified beam trawl has been developed that most nearly meets these requirements. It has been used successfully to collect larvae of the sea lamprey, American brook lamprey (Lampetra lamottei), northern brook lamprey (Ichthyomyzon fossor), and silver lamprey (I. unicuspis). Effectiveness of the trawl did not appear to differ with species.
Life history of the sea lamprey of Cayugaf Lake, New York
Wigley, Roland L.
1959-01-01
A life history study of the sea lamprey, Petromyson marinus Linnaeus, in Cayuga Lake, N.Y., was conducted during 1950, 1951, and 1952. One of the major objectives was to obtain biological data concerning this endemic stock of sea lampreys for comparison with the newly established stocks in the Great Lakes. Sexually mature sea lampreys captured on their spawning migration in Cayuga Inlet were the basis of much of this study. Such items as meristic counts, body proportions, body color, sex ratios, lengths and weights, fecundity, rate of upstream travel, effect of dams in retarding upstream movement, nesting habits, parasites, predators, estimates of abundance, and morphological changes were based on mature upstream migrants. Sea lampreys were procured by weir and trap operations and captured by hand. Tagging and marking' programs each spring made it possible to determine movements and morphological changes of individual lampreys, in addition to estimating the number of upstream migrants. Growth of parasitic-phase sea lampreys was estimated from measurements of specimens captured in Cayuga Inlet and Cayuga Lake proper. The incubation period of lamprey eggs and the habits of ammocoetes and transforming lampreys were ascertained from specimens kept in hatchery troughs and raceways. Length-frequency and weight-frequency distributions, together with the length-weight regression, of ammocoetes from Cayuga Inlet were utilized for estimating the duration of their larval life. Lake trout, Salvelinus n. namayc"Ush (Walbaum), from Cayuga Lake and Seneca Lake were the subject of an inquiry into the effects of sea lamprey attacks. Incidence of sea lamprey attacks on the white sucker, Catosto7llus c. commerson/: (LacepMe), was investigated. Three methods are suggested for reducing the number of sea lampreys in Cayuga Lake.
Dunlop, Erin S.; McLaughlin, Robert L.; Adams, Jean V.; Jones, Michael L.; Birceanu, Oana; Christie, Mark R.; Criger, Lori A.; Hinderer, Julia L.M.; Hollingworth, Robert M.; Johnson, Nicholas; Lantz, Stephen R.; Li, Weiming; Miller, James R.; Morrison, Bruce J.; Mota-Sanchez, David; Muir, Andrew M.; Sepulveda, Maria S.; Steeves, Todd B.; Walter, Lisa; Westman, Erin; Wirgin, Isaac; Wilkie, Michael P.
2018-01-01
Rapid evolution of pest, pathogen and wildlife populations can have undesirable effects; for example, when insects evolve resistance to pesticides or fishes evolve smaller body size in response to harvest. A destructive invasive species in the Laurentian Great Lakes, the sea lamprey (Petromyzon marinus) has been controlled with the pesticide 3-trifluoromethyl-4-nitrophenol (TFM) since the 1950s. We evaluated the likelihood of sea lamprey evolving resistance to TFM by (1) reviewing sea lamprey life history and control; (2) identifying physiological and behavioural resistance strategies; (3) estimating the strength of selection from TFM; (4) assessing the timeline for evolution; and (5) analyzing historical toxicity data for evidence of resistance. The number of sea lamprey generations exposed to TFM was within the range observed for fish populations where rapid evolution has occurred. Mortality from TFM was estimated as 82-90%, suggesting significant selective pressure. However, 57 years of toxicity data revealed no increase in lethal concentrations of TFM. Vigilance and the development of alternative controls are required to prevent this aquatic invasive species from evolving strategies to evade control.
Holbrook, Christopher M.; Johnson, Nicholas S.; Steibel, Juan P.; Twohey, Michael B.; Binder, Thomas R.; Krueger, Charles C.; Jones, Michael L.
2014-01-01
Improved methods are needed to evaluate barriers and traps for control and assessment of invasive sea lamprey (Petromyzon marinus) in the Great Lakes. A Bayesian state-space model provided reach-specific probabilities of movement, including trap capture and dam passage, for 148 acoustic tagged invasive sea lamprey in the lower Cheboygan River, Michigan, a tributary to Lake Huron. Reach-specific movement probabilities were combined to obtain estimates of spatial distribution and abundance needed to evaluate a barrier and trap complex for sea lamprey control and assessment. Of an estimated 21 828 – 29 300 adult sea lampreys in the river, 0%–2%, or 0–514 untagged lampreys, could have passed upstream of the dam, and 46%–61% were caught in the trap. Although no tagged lampreys passed above the dam (0/148), our sample size was not sufficient to consider the lock and dam a complete barrier to sea lamprey. Results also showed that existing traps are in good locations because 83%–96% of the population was vulnerable to existing traps. However, only 52%–69% of lampreys vulnerable to traps were caught, suggesting that traps can be improved. The approach used in this study was a novel use of Bayesian state-space models that may have broader applications, including evaluation of barriers for other invasive species (e.g., Asian carp (Hypophthalmichthys spp.)) and fish passage structures for other diadromous fishes.
Sea lamprey avoid areas scented with conspecific tissue extract in Michigan streams
Di Rocco, Richard; Johnson, Nicholas; Brege, Linnea; Imre, I.; Brown, G.E.
2016-01-01
Three in-stream experiments were conducted to determine whether sea lamprey, Petromyzon marinus L., tissue extract (alarm cue) and 2-phenylethylamine hydrochloride (PEA HCl, a putative predator cue) influenced the distribution of migrating adult sea lamprey. Experiments evaluated sea lamprey movement when an odour was applied to (1) a tributary of a larger stream; and (2) half of a stream channel. Fewer sea lamprey entered the tributary and side of the river scented with sea lamprey tissue extract compared to the control treatment. Sea lamprey did not avoid the tributary and side of the river scented with PEA HCl. A final laboratory experiment found no difference in the avoidance response of sea lamprey to PEA HCl mixed with river water vs PEA HCl mixed with water from Lake Huron. As such, the lack of sea lamprey response to PEA HCl in the stream was unlikely to have been caused by the presence of the river water. Rather, the difference between laboratory and field results may be attributed to the complexity of the physical environment.
Jordbro, Ethan J.; Di Rocco, Richard T.; Imre, Istvan; Johnson, Nicholas; Brown, Grant E.
2016-01-01
Recent studies proposed the use of chemosensory alarm cues to control the distribution of invasive sea lamprey Petromyzon marinus populations in the Laurentian Great Lakes and necessitate the evaluation of sea lamprey chemosensory alarm cues on valuable sympatric species such as white sucker. In two laboratory experiments, 10 replicate groups (10 animals each) of migratory white suckers were exposed to deionized water (control), conspecific whole-body extract, heterospecific whole-body extract (sea lamprey) and two potential predator cues (2-phenylethylamine HCl (PEA HCl) and human saliva) during the day, and exposed to the first four of the above cues at night. White suckers avoided the conspecific and the sea lamprey whole-body extract both during the day and at night to the same extent. Human saliva did not induce avoidance during the day. PEA HCl did not induce avoidance at a higher concentration during the day, or at night at the minimum concentration that was previously shown to induce maximum avoidance by sea lamprey under laboratory conditions. Our findings suggest that human saliva and PEA HCl may be potential species-specific predator cues for sea lamprey.
Henson, Mary P.; Bergstedt, Roger A.; Adams, Jean V.
2003-01-01
The ability to predict when sea lampreys (Petromyzon marinus) will metamorphose from the larval phase to the parasitic phase is essential to the operation of the sea lamprey control program. During the spring of 1994, two populations of sea lamprey larvae from two rivers were captured, measured, weighed, implanted with coded wire tags, and returned to the same sites in the streams from which they were taken. Sea lampreys were recovered in the fall, after metamorphosis would have occurred, and checked for the presence of a tag. When the spring data were compared to the fall data it was found that the minimum requirements (length ≥ 120 mm, weight ≥ 3 g, and condition factor ≥ 1.50) suggested for metamorphosis did define a pool of larvae capable of metamorphosing. However, logistic regressions that relate the probability of metamorphosis to size are necessary to predict metamorphosis in a population. The data indicated, based on cross-validation, that weight measurements alone predicted metamorphosis with greater precision than length or condition factor in both the Marengo and Amnicon rivers. Based on the Akaike Information Criterion, weight alone was a better predictor in the Amnicon River, but length and condition factor combined predicted metamorphosis better in the Marengo River. There would be no additional cost if weight alone were used instead of length. However, if length and weight were measured the gain in predictive power would not be enough to justify the additional cost.
Milt, Austin W; Diebel, Matthew W; Doran, Patrick J; Ferris, Michael C; Herbert, Matthew; Khoury, Mary L; Moody, Allison T; Neeson, Thomas M; Ross, Jared; Treska, Ted; O'Hanley, Jesse R; Walter, Lisa; Wangen, Steven R; Yacobson, Eugene; McIntyre, Peter B
2018-03-08
Controlling invasive species is critical for conservation but can have unintended consequences for native species and divert resources away from other efforts. This dilemma occurs on a grand scale in the North American Great Lakes, where dams and culverts block tributary access to habitat of desirable fish species and are a lynchpin of long-standing efforts to limit ecological damage inflicted by the invasive, parasitic sea lamprey (Petromyzon marinus). Habitat restoration and sea-lamprey control create conflicting goals for managing aging infrastructure. We used optimization to minimize opportunity costs of habitat gains for 37 desirable migratory fishes that arose from restricting sea lamprey access (0-25% increase) when selecting barriers for removal under a limited budget (US$1-105 million). Imposing limits on sea lamprey habitat reduced gains in tributary access for desirable species by 15-50% relative to an unconstrained scenario. Additional investment to offset the effect of limiting sea-lamprey access resulted in high opportunity costs for 30 of 37 species (e.g., an additional US$20-80 million for lake sturgeon [Acipenser fulvescens]) and often required ≥5% increase in sea-lamprey access to identify barrier-removal solutions adhering to the budget and limiting access. Narrowly distributed species exhibited the highest opportunity costs but benefited more at less cost when small increases in sea-lamprey access were allowed. Our results illustrate the value of optimization in limiting opportunity costs when balancing invasion control against restoration benefits for diverse desirable species. Such trade-off analyses are essential to the restoration of connectivity within fragmented rivers without unleashing invaders. © 2018 Society for Conservation Biology.
A spatial age-structured model for describing sea lamprey (Petromyzon marinus) population dynamics
Robinson, Jason M.; Wilberg, Michael J.; Adams, Jean V.; Jones, Michael L.
2013-01-01
The control of invasive sea lampreys (Petromyzon marinus) presents large scale management challenges in the Laurentian Great Lakes. No modeling approach has been developed that describes spatial dynamics of lamprey populations. We developed and validated a spatial and age-structured model and applied it to a sea lamprey population in a large river in the Great Lakes basin. We considered 75 discrete spatial areas, included a stock-recruitment function, spatial recruitment patterns, natural mortality, chemical treatment mortality, and larval metamorphosis. Recruitment was variable, and an upstream shift in recruitment location was observed over time. From 1993–2011 recruitment, larval abundance, and the abundance of metamorphosing individuals decreased by 80, 84, and 86%, respectively. The model successfully identified areas of high larval abundance and showed that areas of low larval density contribute significantly to the population. Estimated treatment mortality was less than expected but had a large population-level impact. The results and general approach of this work have applications for sea lamprey control throughout the Great Lakes and for the restoration and conservation of native lamprey species globally.
Movement of parasitic-phase sea lampreys in Lakes Huron and Michigan
Smith, Bernard R.; Elliott, Oliver R.
1953-01-01
A program of tagging was carrie dout in the waters of northern Lake Huron during the fall and winter of 1951-52 in order to supplement the small amount of information available on movement of sea lampreys during their parasitic phase. A total of 219 parasitic-phase sea lampreys were tagged and released at three localities. Of this number 38 or 17.2 percent were recovered. One tag was recovered near North Manitou Island, Lake Michigan. The remaining 37 were take in Lake Huron or in streams tributary to that lake. The dispersal of tagged lampreys throughout Lake Huron was wide. Five marked individuals were taken in the southern part of the lake over 150 miles from the point of tagging; 4 of these 5 were captured in Canadian waters. The marked lampreys exhibited no distinct pattern of migration other than a tendency toward a general southeasterly movement in Lake Huron.
Johnson, Nicholas; Twohey, Michael B.; Miehls, Scott M.; Cwalinski, Tim A; Godby, Neal A; Lochet, Aude; Slade, Jeffrey W.; Jubar, Aaron K.; Siefkes, Michael J.
2016-01-01
The sea lamprey (Petromyzon marinus) invaded the upper Laurentian Great Lakes and feeds on valued fish. The Cheboygan River, Michigan, USA, is a large sea lamprey producing tributary to Lake Huron and despite having a renovated dam 2 km from the river mouth that presumably blocks sea lamprey spawning migrations, the watershed upstream of the dam remains infested with larval sea lamprey. A navigational lock near the dam has been hypothesized as the means of escapement of adult sea lampreys from Lake Huron and source of the upper river population (H1). However, an alternative hypothesis (H2) is that some sea lampreys complete their life cycle upstream of the dam, without entering Lake Huron. To evaluate the alternative hypothesis, we gathered angler reports of lamprey wounds on game fishes upstream of the dam, and captured adult sea lampreys downstream and upstream of the dam to contrast abundance, run timing, size, and statolith microchemistry. Results indicate that a small population of adult sea lampreys (n < 200) completed their life cycle upstream of the dam during 2013 and 2014. This is the most comprehensive evidence that sea lampreys complete their life history within a tributary of the upper Great Lakes, and indicates that similar landlocked populations could occur in other watersheds. Because the adult sea lamprey population upstream of the dam is small, complete elimination of the already low adult escapement from Lake Huron might allow multiple control tactics such as lampricides, trapping, and sterile male release to eradicate the population.
Development of sea lamprey (Petromyzon marinus) larvicides
Howell, John H.; Lech, John J.; Allen, John L.
1980-01-01
Larvicides are used to control sea lamprey (Petromyzon marinus) in the Great Lakes. These larvicides are useful because they are more toxic to sea lamprey than fish species found in the same habitat. The lampricides come from two classes of chemical compounds: (1) halonitrophenols, and (2) halonitrosalicylanilides. Selectivity of the larvicides appears to be based on the differences in the ability of sea lamprey larvae and fishes to detoxify and/or excrete the chemicals. Glucuronide conjugation is an important mechanism for detoxification of these larvicides by fish, and selectivity of larvicides may be due to differences in glucuronyl transferase activity between lamprey and fishes. If more detailed information were available on uptake, metabolism, excretion, and the biochemistry and physiology of lamprey as compared to fishes, it might be possible to design chemicals that would be more selective than those now in use.
Assessing occupational exposure to sea lamprey pesticides.
Ceballos, Diana M; Beaucham, Catherine C; Kurtz, Kristine; Musolin, Kristin
2015-01-01
Sea lampreys are parasitic fish found in lakes of the United States and Canada. Sea lamprey is controlled through manual application of the pesticides 3-trifluoromethyl-4-nitrophenol (TFM) and Bayluscide(TM) into streams and tributaries. 3-Trifluoromethyl-4-nitrophenol may cause irritation and central nervous system depression and Bayluscide may cause irritation, dermatitis, blisters, cracking, edema, and allergic skin reactions. To assess occupational exposures to sea lamprey pesticides. We developed a wipe method for evaluating surface and skin contamination with these pesticides. This method was field tested at a biological field station and at a pesticide river application. We also evaluated exposures using control banding tools. We verified TFM surface contamination at the biological station. At the river application, we found surfaces and worker's skin contaminated with pesticides. We recommended minimizing exposures by implementing engineering controls and improved use of personal protective equipment.
A review of the literature on the use of Bayluscide in fisheries
Hamilton, Sandra E.
1974-01-01
In the United States Bayluscide has had multiple uses. The 70% wettable powder has been used in Puerto Rico for snail control and the 5% granular formulation has been tested in Michigan and Wisconsin against freshwater snails serving as inter mediate hosts of the trematode causing swimmers' itch. Bayluscide has also been used in field trials as a fish toxicant. Its most important use in North America, however, has been to control sea lampreys, Petromyzon marinus, in the Great Lakes, a necessary prerequisite for the restoration of Great Lakes sport and commercial fisheries. Since 1966 the 5% granular formulation has been used by the U.S. Fish and Wildlife Service and the Canadian Department of Environment as a toxicant to survey populations of larval sea lampreys in Great Lakes estuaries and deepwater tributaries. The Canadian Government also uses Bayluscide to control sea lampreys, but in the United States the present registration restricts use to population surveys only. Literature on the mixtures of Bayluscide and the selective lamprey toxicant, TFM, used since 1964 by both the U.S. and Canadian agencies to control larval sea lampreys in the Great Lakes, has been reviewed elsewhere and is not included in this review.
Holbrook, Christopher; Bergstedt, Roger A.; Barber, Jessica M.; Bravener, Gale A; Jones, Michael L.; Krueger, Charles C.
2016-01-01
Physical removal (e.g., harvest via traps or nets) of mature individuals may be a cost-effective or socially acceptable alternative to chemical control strategies for invasive species, but requires knowledge of the spatial distribution of a population over time. We used acoustic telemetry to determine the current and possible future role of traps to control and assess invasive sea lampreys, Petromyzon marinus, in the St. Marys River, the connecting channel between Lake Superior and Lake Huron. Exploitation rates (i.e., fractions of an adult sea lamprey population removed by traps) at two upstream locations were compared among three years and two points of entry to the system. Telemetry receivers throughout the drainage allowed trap performance (exploitation rate) to be partitioned into two components: proportion of migrating sea lampreys that visited trap sites (availability) and proportion of available sea lampreys that were caught by traps (local trap efficiency). Estimated exploitation rates were well below those needed to provide population control in the absence of lampricides and were limited by availability and local trap efficiency. Local trap efficiency estimates for acoustic-tagged sea lampreys were lower than analogous estimates regularly obtained using traditional mark–recapture methods, suggesting that abundance had been previously underestimated. Results suggested major changes would be required to substantially increase catch, including improvements to existing traps, installation of new traps, or other modifications to attract and retain more sea lampreys. This case study also shows how bias associated with telemetry tags can be estimated and incorporated in models to improve inferences about parameters that are directly relevant to fishery management.
Holbrook, Christopher M; Bergstedt, Roger A; Barber, Jessica; Bravener, Gale A; Jones, Michael L; Krueger, Charles C
2016-09-01
Physical removal (e.g., harvest via traps or nets) of mature individuals may be a cost-effective or socially acceptable alternative to chemical control strategies for invasive species, but requires knowledge of the spatial distribution of a population over time. We used acoustic telemetry to determine the current and possible future role of traps to control and assess invasive sea lampreys, Petromyzon marinus, in the St. Marys River, the connecting channel between Lake Superior and Lake Huron. Exploitation rates (i.e., fractions of an adult sea lamprey population removed by traps) at two upstream locations were compared among three years and two points of entry to the system. Telemetry receivers throughout the drainage allowed trap performance (exploitation rate) to be partitioned into two components: proportion of migrating sea lampreys that visited trap sites (availability) and proportion of available sea lampreys that were caught by traps (local trap efficiency). Estimated exploitation rates were well below those needed to provide population control in the absence of lampricides and were limited by availability and local trap efficiency. Local trap efficiency estimates for acoustic-tagged sea lampreys were lower than analogous estimates regularly obtained using traditional mark-recapture methods, suggesting that abundance had been previously underestimated. Results suggested major changes would be required to substantially increase catch, including improvements to existing traps, installation of new traps, or other modifications to attract and retain more sea lampreys. This case study also shows how bias associated with telemetry tags can be estimated and incorporated in models to improve inferences about parameters that are directly relevant to fishery management. © 2016 by the Ecological Society of America.
76 FR 12129 - Lake Champlain Sea Lamprey Control Alternatives Workgroup
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
... priorities for research to be control methods alternative to lampricides, to recommend priorities for... Workgroup's purpose is to provide, in an advisory capacity, recommendations and advice on research and... research initiatives that may enhance alternative sea lamprey control techniques. The meeting is open to...
Rous, Andrew M.; McLean, Adrienne R.; Barber, Jessica; Bravener, Gale; Castro-Santos, Theodore; Holbrook, Christopher M.; Imre, Istvan; Pratt, Thomas C.; McLaughlin, Robert L.
2017-01-01
Crucial to the management of invasive species is understanding space use and the environmental features affecting space use. Improved understanding of space use by invasive sea lamprey (Petromyzon marinus) could help researchers discern why trap success in large rivers is lower than needed for effective control. We tested whether manipulating discharge nightly could increase trap success at a hydroelectric generating station on the St. Marys River. We quantified numbers of acoustically tagged sea lampreys migrating up to, and their space use at, the hydroelectric generating station. In 2011 and 2012, 78% and 68%, respectively, of tagged sea lampreys reached the generating station. Sea lampreys were active along the face, but more likely to occur at the bottom and away from the traps near the surface, especially when discharge was high. Our findings suggest that a low probability of encountering traps was due to spatial (vertical) mismatch between space use by sea lamprey and trap locations and that increasing discharge did not alter space use in ways that increased trap encounter. Understanding space use by invasive species can help managers assess the efficacy of trapping and ways of improving trapping success.
Smith, Allen J.
1967-01-01
The chemical compound 3-trifluoromethyl-4-nitrophenol (TFM) is used to control the sea lamprey (Petromyzon marinus) in the upper Great Lakes. It is introduced into streams in which sea lampreys have spawned, to kill the larvae. These 'treatments' are carried out at intervals shorter than the larval phase of the sea lamprey's life cycle (about 4 to 7 years) to prevent movement of the metamorphosed parasitic lampreys into the lakes. Most of the streams which contain sea lamprey larvae also have valuable resident fish or serve as spawning and nursery areas for fish of the Great Lakes. These species must be protected from both the direct toxic effects of the control method and from indirect effects such as destruction of food supplies. Studies have shown that TFM is nontoxic to most species of fish when used at the concentrations that kill larval lampreys. Information on the effect of TFM on aquatic invertebrates is meager. Applegate et al. reported that TFM was not harmful to selected invertebrates which they included in simulated stream tests. They also stated that no harmful effects to invertebrates were observed during actual stream application. The variety of invertebrate species used in simulated stream tests was limited, and close observation of invertebrates under stream conditions is difficult. Therefore, the present laboratory bioassays were conducted to determine the toxicity of TFM to representatives of a number of groups of invertebrates.
Tessier, Laura R; Long, Tristan A F; Wilkie, Michael P
2018-01-01
Invasive sea lamprey (Petromyzon marinus) are controlled in the Great Lakes using the lampricide 3-trifluoromethyl-4-nitrophenol (TFM), which is applied to streams infested with larval lamprey. However, lamprey that survive treatments (residuals) remain a challenge because they may subsequently undergo metamorphosis into parasitic juvenile animals that migrate downstream to the Great Lakes, where they feed on important sport and commercial fishes. The goal of this study was to determine if body size and life stage could potentially influence sea lamprey tolerance to TFM by influencing patterns of TFM uptake and elimination. Because mass specific rates of oxygen consumption (M˙O 2 ) are lower in larger compared to smaller lamprey, we predicted that TFM uptake would be negatively correlated to body size, suggesting that large larvae would be more tolerant to TFM exposure. Accordingly, TFM uptake and M˙O 2 were measured in larvae ranging in size from 0.2-4.2g using radio-labelled TFM ( 14 C-TFM) and static respirometry. Both were inversely proportional to wet mass (M), and could be described usingthe allometric power relationship: Y=aM b , in which M˙O 2 =1.86M 0.53 and TFM Uptake=7.24M 0.34 . We also predicted that body size would extend to rates of TFM elimination, which was measured following the administration of 14 C-TFM (via intraperitoneal injection). However, there were no differences in the half-lives of elimination of TFM (T 1/2 -TFM). There were also no differences in M˙O 2 or TFM uptake amongst size-matched larval, metamorphosing (stages 6-7), or post-metamorphic (juvenile) sea lamprey. However, the T 1/2 -TFM was significantly lower in larval than post-metamorphic lamprey (juvenile), indicating the larval lamprey cleared TFM more efficiently than juvenile lamprey. We conclude that larger larval sea lamprey are more likely to survive TFM treatments suggesting that body size might be an important variable to consider when treating streams with TFM to control these invasive species. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Isolation and characterization of lymphocyte-like cells from a lamprey
Mayer, Werner E.; Uinuk-ool, Tatiana; Tichy, Herbert; Gartland, Lanier A.; Klein, Jan; Cooper, Max D.
2002-01-01
Lymphocyte-like cells in the intestine of the sea lamprey, Petromyzon marinus, were isolated by flow cytometry under light-scatter conditions used for the purification of mouse intestinal lymphocytes. The purified lamprey cells were morphologically indistinguishable from mammalian lymphocytes. A cDNA library was prepared from the lamprey lymphocyte-like cells, and more than 8,000 randomly selected clones were sequenced. Homology searches comparing these ESTs with sequences deposited in the databases led to the identification of numerous genes homologous to those predominantly or characteristically expressed in mammalian lymphocytes, which included genes controlling lymphopoiesis, intracellular signaling, proliferation, migration, and involvement of lymphocytes in innate immune responses. Genes closely related to those that in gnathostomes control antigen processing and transport of antigenic peptides could be ascertained, although no sequences with significant similarity to MHC, T cell receptor, or Ig genes were found. The data suggest that the evolution of lymphocytes in the lamprey has reached a stage poised for the emergence of adaptive immunity. PMID:12388781
Hume, John B.; Meckley, Trevor D.; Johnson, Nicholas; Luhring, Thomas M; Siefkes, Michael J; Wagner, C. Michael
2015-01-01
The sea lamprey Petromyzon marinus is an invasive pest in the Laurentian Great Lakes basin, threatening the persistence of important commercial and recreational fisheries. There is substantial interest in developing effective trapping practices via the application of behavior-modifying semiochemicals (odors). Here we report on the effectiveness of utilizing repellent and attractant odors in a push–pull configuration, commonly employed to tackle invertebrate pests, to improve trapping efficacy at permanent barriers to sea lamprey migration. When a half-stream channel was activated by a naturally derived repellent odor (a putative alarm cue), we found that sea lamprey located a trap entrance significantly faster than when no odor was present as a result of their redistribution within the stream. The presence of a partial sex pheromone, acting as an attractant within the trap, was not found to further decrease the time to when sea lamprey located a trap entrance relative to when the alarm cue alone was applied. Neither the application of alarm cue singly nor alarm cue and partial sex pheromone in combination was found to improve the numbers of sea lamprey captured in the trap versus when no odor was present — likely because nominal capture rate during control trials was unusually high during the study period. Behavioural guidance using these odors has the potential to both improve control of invasive non-native sea lamprey in the Great Lakes as well as improving the efficiency of fish passage devices used in the restoration of threatened lamprey species elsewhere.
Johnson, Nicholas S.; Brenden, Travis O.; Swink, William D.; Lipps, Mathew A.
2016-01-01
Although population demographics of larval lampreys in streams have been studied extensively, demographics in lake environments have not. Here, we estimated survival and rates of metamorphosis for larval sea lamprey (Petromyzon marinus) populations residing in the Great Lakes near river mouths (hereafter termed lentic areas). Tagged larvae were stocked and a Bayesian multi-state tag-recovery model was used to investigate population parameters associated with tag recovery, including survival and metamorphosis probabilities. Compared to previous studies of larvae in streams, larval growth in lentic areas was substantially slower (Brody growth coefficient = 0.00132; estimate based on the recovery of six tagged larvae), survival was slightly greater (annual survival = 63%), and the length at which 50% of the larvae would be expected to metamorphose was substantially shorter (126 mm). Stochastic simulations were used to estimate the production of parasitic stage (juvenile) sea lamprey from a hypothetical population of larvae in a lentic environment. Production of juvenile sea lamprey was substantial because, even though larval growth in these environments was slow relative to stream environments, survival was high and length at metamorphosis was less. However, estimated production of juvenile sea lamprey was less for the lentic environment than for similar simulations for river environments where larvae grew faster. In circumstances where the cost to kill a larva with lampricide was equal and control funds are limited, sea lamprey control effort may be best directed toward larvae in streams with fast-growing larvae, because stream-produced larvae will most likely contribute to juvenile sea lamprey populations.
Assessing occupational exposure to sea lamprey pesticides
Ceballos, Diana M; Beaucham, Catherine C; Kurtz, Kristine; Musolin, Kristin
2015-01-01
Background: Sea lampreys are parasitic fish found in lakes of the United States and Canada. Sea lamprey is controlled through manual application of the pesticides 3-trifluoromethyl-4-nitrophenol (TFM) and BayluscideTM into streams and tributaries. 3-Trifluoromethyl-4-nitrophenol may cause irritation and central nervous system depression and Bayluscide may cause irritation, dermatitis, blisters, cracking, edema, and allergic skin reactions. Objectives: To assess occupational exposures to sea lamprey pesticides. Methods: We developed a wipe method for evaluating surface and skin contamination with these pesticides. This method was field tested at a biological field station and at a pesticide river application. We also evaluated exposures using control banding tools. Results: We verified TFM surface contamination at the biological station. At the river application, we found surfaces and worker’s skin contaminated with pesticides. Conclusion: We recommended minimizing exposures by implementing engineering controls and improved use of personal protective equipment. PMID:25730600
Lateral and vertical distribution of downstream migrating juvenile sea lamprey
Sotola, V. Alex; Miehls, Scott M.; Simard, Lee G.; Marsden, J. Ellen
2018-01-01
Sea lamprey is considered an invasive and nuisance species in the Laurentian Great Lakes, Lake Champlain, and the Finger Lakes of New York and is a major focus of control efforts. Currently, management practices focus on limiting the area of infestation using barriers to block migratory adults, and lampricides to kill ammocoetes in infested tributaries. No control efforts currently target the downstream-migrating post-metamorphic life stage which could provide another management opportunity. In order to apply control methods to this life stage, a better understanding of their downstream movement patterns is needed. To quantify spatial distribution of downstream migrants, we deployed fyke and drift nets laterally and vertically across the stream channel in two tributaries of Lake Champlain. Sea lamprey was not randomly distributed across the stream width and lateral distribution showed a significant association with discharge. Results indicated that juvenile sea lamprey is most likely to be present in the thalweg and at midwater depths of the stream channel. Further, a majority of the catch occurred during high flow events, suggesting an increase in downstream movement activity when water levels are higher than base flow. Discharge and flow are strong predictors of the distribution of out-migrating sea lamprey, thus managers will need to either target capture efforts in high discharge areas of streams or develop means to guide sea lamprey away from these areas.
Testing and extension of a sea lamprey feeding model
Cochran, Philip A.; Swink, William D.; Kinziger, Andrew P.
1999-01-01
A previous model of feeding by sea lamprey Petromyzon marinus predicted energy intake and growth by lampreys as a function of lamprey size, host size, and duration of feeding attachments, but it was applicable only to lampreys feeding at 10°C and it was tested against only a single small data set of limited scope. We extended the model to other temperatures and tested it against an extensive data set (more than 700 feeding bouts) accumulated during experiments with captive sea lampreys. Model predictions of instantaneous growth were highly correlated with observed growth, and a partitioning of mean squared error between model predictions and observed results showed that 88.5% of the variance was due to random variation rather than to systematic errors. However, deviations between observed and predicted values varied substantially, especially for short feeding bouts. Predicted and observed growth trajectories of individual lampreys during multiple feeding bouts during the summer tended to correspond closely, but predicted growth was generally much higher than observed growth late in the year. This suggests the possibility that large overwintering lampreys reduce their feeding rates while attached to hosts. Seasonal or size-related shifts in the fate of consumed energy may provide an alternative explanation. The lamprey feeding model offers great flexibility in assessing growth of captive lampreys within various experimental protocols (e.g., different host species or thermal regimes) because it controls for individual differences in feeding history.
Slade, Jeffrey W.; Adams, Jean V.; Christie, Gavin C.; Cuddy, Douglas W.; Fodale, Michael F.; Heinrich, John W.; Quinlan, Henry R.; Weise, Jerry G.; Weisser, John W.; Young, Robert J.
2003-01-01
Before 1995, Great Lakes streams were selected for lampricide treatment based primarily on qualitative measures of the relative abundance of larval sea lampreys, Petromyzon marinus. New integrated pest management approaches required standardized quantitative measures of sea lamprey. This paper evaluates historical larval assessment techniques and data and describes how new standardized methods for estimating abundance of larval and metamorphosed sea lampreys were developed and implemented. These new methods have been used to estimate larval and metamorphosed sea lamprey abundance in about 100 Great Lakes streams annually and to rank them for lampricide treatment since 1995. Implementation of these methods has provided a quantitative means of selecting streams for treatment based on treatment cost and estimated production of metamorphosed sea lampreys, provided managers with a tool to estimate potential recruitment of sea lampreys to the Great Lakes and the ability to measure the potential consequences of not treating streams, resulting in a more justifiable allocation of resources. The empirical data produced can also be used to simulate the impacts of various control scenarios.
Johnson, Nicholas; Siefkes, Michael J.; Wagner, C. Michael; Bravener, Gale; Steeves, Todd; Twohey, Michael; Li, Weiming
2015-01-01
The sea lamprey, Petromyzon marinus, is emerging as a model organism for understanding how pheromones can be used for manipulating vertebrate behavior in an integrated pest management program. In a previous study, a synthetic sex pheromone component 7α,12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3kPZS) was applied to sea lamprey traps in eight streams at a final in-stream concentration of 10−12 M. Application of 3kPZS increased sea lamprey catch, but where and when 3kPZS had the greatest impact was not determined. Here, by applying 3kPZS to additional streams, we determined that overall increases in yearly exploitation rate (proportion of sea lampreys that were marked, released, and subsequently recaptured) were highest (20–40 %) in wide streams (~40 m) with low adult sea lamprey abundance (<1000). Wide streams with low adult abundance may be representative of low-attraction systems for adult sea lamprey and, in the absence of other attractants (larval odor, sex pheromone), sea lamprey may have been more responsive to a partial sex pheromone blend emitted from traps. Furthermore, we found that the largest and most consistent responses to 3kPZS were during nights early in the trapping season, when water temperatures were increasing. This may have occurred because, during periods of increasing water temperatures, sea lamprey become more active and males at large may not have begun to release sex pheromone. In general, our results are consistent with those for pheromones of invertebrates, which are most effective when pest density is low and when pheromone competition is low.
Boogaard, Michael A.; Rivera, Jane E.
2011-01-01
We conducted a series of toxicological treatments with 3-trifluoromethyl-4-nitrophenol (TFM) and a TFM:1% 2′,5-dichloro-4′-nitrosalicylanilide (niclosamide) mixture, two compounds used to control larval sea lamprey (Petromyzon marinus) in Great Lakes tributaries, to evaluate the acute toxicity of the lampricides to a number of nontarget species of concern. Treatments were conducted with yellow stage American eel (Anguilla rostrata), adult and larval haliplid water beetles (Haliplus spp.), a surrogate for the endangered Hungerford’s crawling water beetle (Brychius hungerfordi), and adults of three unionid species—giant floater (Pyganadon grandis), fragile papershell (Leptodea fragilis), and pink heelsplitter (Potamilus alatus). Treatments were conducted using a serial dilution system consisting of nine test concentrations and an untreated control with 20% dilution between concentrations. Narcosis was evident among giant floaters exposed to the TFM and the TFM:1% niclosamide mixture and among pink heelsplitters exposed to the TFM:1% niclosamide mixture only but mostly at concentrations greater than 2-fold that required to kill 100% of larval sea lamprey (minimum lethal concentration (MLC)). Tests with the haliplid beetle suggest the risks to the Hungerford’s crawling water beetle associated with TFM applications are minimal. Concentrations over 2-fold the sea lamprey MLC did not kill adult or larval water beetles. Preliminary behavioral observations suggest water beetles may avoid treatment by crawling out of the water. Adult water beetles exposed to TFM at 3-fold the sea lamprey MLC were observed above the water line more often than controls. The lampricide TFM was not acutely toxic to American eel. Mortalities were rare among American eel exposed to TFM concentrations up to 7-fold the observed sea lamprey MLC. Similarly, for the TFM:1% niclosamide mixture, mortalities were rare among American eel exposed to nearly 5-fold the observed sea lamprey MLC. Overall, acute TFM toxicity was not evident among any of the species examined in this study at concentrations targeted to control larval sea lamprey. Results for the adult unionids should be viewed with caution due to the lack of replication in the treatments.
Di Rocco, Richard T.; Imre, Istvan; Johnson, Nicholas; Brown, Grant B
2016-01-01
Sea lampreys Petromyzon marinus, an invasive pest in the Upper Great Lakes, avoid odours that represent danger in their habitat. These odours include conspecific alarm cues and predator cues, like 2-phenylethylamine hydrochloride (PEA HCl), which is found in the urine of mammalian predators. Whether conspecific alarm cues and predator cues function additively or synergistically when mixed together is unknown. The objectives of this experimental study were to determine if the avoidance response of sea lamprey to PEA HCl is proportional to the concentration delivered, and if the avoidance response to the combination of a predator cue (PEA HCl) and sea lamprey alarm cue is additive. To accomplish the first objective, groups of ten sea lampreys were placed in an artificial stream channel and presented with stepwise concentrations of PEA HCl ranging from 5 × 10−8 to 5 × 10−10 M and a deionized water control. Sea lampreys exhibited an increase in their avoidance behaviour in response to increasing concentrations of PEA HCl. To accomplish the second objective, sea lampreys were exposed to PEA HCl, conspecific alarm cue and a combination of the two. Sea lampreys responded to the combination of predator cue and conspecific alarm cue in an additive manner.
Mesa, Matthew G.; Copeland, Elizabeth S.; Christiansen, Helena E.; Gregg, Jacob L.; Roon, Sean R.; Hershberger, Paul K.
2012-01-01
Tagging methods are needed for both adult and juvenile life stages of Pacific lampreys Lampetra tridentata to better understand their biology and factors contributing to their decline. We developed a safe and efficient technique for tagging juvenile Pacific lampreys with passive integrated transponder (PIT) tags. We tested the short-term survival of PIT-tagged juvenile lampreys in freshwater at four temperatures (9, 12, 15, and 18°C) and their long-term growth and survival in seawater. For both experiments there was little to no tag loss, and juvenile lampreys in freshwater showed high survival at all temperatures at 7 d (95–100%) and 14 d (88–100%) posttagging. Prolonged holding (40 d) resulted in significantly lower survival (28–79%) at warmer temperatures (12–18°C). For juvenile lampreys tagged in freshwater and then transitioned to seawater, survival was 97% for tagged fish until day 94, and at the end of 6 months, survival was about 58% for both tagged and control fish. About half of the tagged and control fish that survived in seawater grew, but there was no difference in growth between the two groups. In freshwater, but not in seawater, most fish that died had an aquatic fungal infection. In both experiments, survival increased with increasing fish length at tagging. Our results indicate that tags similar in size to a 9-mm PIT tag are a feasible option for tagging metamorphosed juvenile lampreys migrating downstream and that when fungal infections are mitigated—as in seawater—long-term (at least 6 months) survival of tagged juvenile lampreys is high.
Characterization of Sea Lamprey stream entry using dual‐frequency identification sonar
McCain, Erin L.; Johnson, Nicholas; Hrodey, Peter J.; Pangle, Kevin L.
2018-01-01
Effective methods to control invasive Sea Lampreys Petromyzon marinus in the Laurentian Great Lakes often rely on knowledge of the timing of the Sea Lamprey spawning migration, which has previously been characterized using data gathered from traps. Most assessment traps are located many kilometers upstream from the river mouth, so less is known about when Sea Lampreys enter spawning streams and which environmental cues trigger their transition from lakes to rivers. To decide how to develop barriers and traps that target Sea Lampreys when they enter a stream, the stream entry of Sea Lampreys into a Lake Huron tributary during 2 years was assessed using dual‐frequency identification sonar (DIDSON). Sea Lampreys entered the stream in low densities when temperatures first reached 4°C, which was up to 6 weeks and a mean of 4 weeks earlier than when they were first captured in traps located upstream. The probability of stream entry was significantly affected by stream temperature and discharge, and stream entry timing peaked when stream temperatures rose to 12°C and discharge was high. Examination of the entry at a finer temporal resolution (i.e., minutes) indicated that Sea Lampreys did not exhibit social behavior (e.g., shoaling) during stream entry. Our findings indicate that Sea Lampreys may be vulnerable to alternative trap types near river mouths and hydraulic challenges associated with traditional traps. Also, seasonal migration barriers near stream mouths may need to be installed soon after ice‐out to effectively block the entire adult Sea Lamprey cohort from upstream spawning habitat.
PCB concentrations and activity of sea lamprey Petromyzon marinus vary by sex
Madenjian, Charles P.; Johnson, Nicholas S.; Binder, Thomas R.; Rediske, Richard R.; O'Keefe, James P.
2013-01-01
We determined the polychlorinated biphenyl (PCB) concentrations of 40 male and 40 female adult sea lampreys Petromyzon marinus captured in the Cheboygan River, a tributary to Lake Huron, during May 2011. In addition, we performed a laboratory experiment using passive integrated transponder tags to determine whether male adult sea lampreys were more active than female adult sea lampreys. Sex had a significant effect on PCB concentration, and PCB concentration at a given level of sea lamprey condition was approximately 25 % greater in males than in females. Adjusting for the difference in condition between the sexes, males averaged a 17 % greater PCB concentration compared with females. Results from the laboratory experiment indicated that males were significantly more active than females. The observed sex difference in PCB concentrations was not due to female sea lampreys releasing eggs at spawning because the sea lamprey is semelparous, and we caught the sea lampreys before spawning. Rather, we attributed the sex difference in PCB concentrations to a greater rate of energy expenditure in males compared with females. We proposed that this greater rate of energy expenditure was likely due to greater activity. Our laboratory experiment results supported this hypothesis. A greater resting metabolic rate may also have contributed to a greater rate of energy expenditure. Our findings should eventually be applicable toward improving control of sea lamprey, a pest responsible for considerable damage to fisheries in lakes where it is not native.
Assessment of PIT tag retention and post-tagging survival in metamorphosing juvenile Sea Lamprey
Simard, Lee G.; Sotola, V. Alex; Marsden, J. Ellen; Miehls, Scott M.
2017-01-01
Background: Passive integrated transponder (PIT) tags have been used to document and monitor the movement or behavior of numerous species of fishes. Data on short-term and long-term survival and tag retention are needed before initiating studies using PIT tags on a new species or life stage. We evaluated the survival and tag retention of 153 metamorphosing juvenile Sea Lamprey Petromyzon marinus tagged with 12 mm PIT tags on three occasions using a simple surgical procedure. Results: Tag retention was 100% and 98.6% at 24 h and 28-105 d post-tagging. Of the lamprey that retained their tags, 87.3% had incisions sufficiently healed to prevent further loss. Survival was 100% and 92.7% at 24 h and 41-118 d post-tagging with no significant difference in survival between tagged and untagged control lamprey. Of the 11 lamprey that died, four had symptoms that indicated their death was directly related to tagging. Survival was positively correlated with Sea Lamprey length. Conclusions: Given the overall high level of survival and tag retention in this study, future studies can utilize 12 mm PIT tags to monitor metamorphosing juvenile Sea Lamprey movement and migration patterns.
Mesa, M.G.; Bayer, J.M.; Seelye, J.G.
2003-01-01
Populations of Pacific lamprey Lampetra tridentata have declined in the Columbia River basin. One factor that may have contributed to this reduction in population size is an excessive use of energy by adult lampreys as they negotiate fishways at dams during spawning migrations. To gain an understanding of the performance capacity of Pacific lampreys, we estimated the critical swimming speed (Ucrit) and documented physiological responses of radio-tagged and untagged adult lampreys exercised to exhaustion. The mean (??SD) Ucrit of untagged lampreys was 86.2 ?? 7.5 cm/s at 15??C, whereas the Ucrit for radio-tagged lampreys was 81.5 ?? 7.0 cm/s, a speed that was significantly lower than that of untagged fish. The physiological responses of tagged and untagged lampreys subjected to exhaustive exercise included decreases in blood pH of 0.3-0.5 units, a 40% decrease in muscle glycogen levels, a 22% increase in hematocrit for untagged fish only, and a 4- to 5-fold increase in muscle and a 40- to 100-fold increase in plasma lactate concentrations. These physiological changes were significant compared with resting control fish and usually returned to resting levels by 1-4 h after fatigue. Our estimates of Ucrit for Pacific lampreys are the first quantitative measures of their swimming performance and suggest that these fish may have difficulty negotiating fishways at dams on the Columbia River, which can have water velocities approaching 2 m/s. Our physiological results indicate that tagged and untagged Pacific lampreys show similar metabolic dysfunction after exhaustive exercise but recover quickly from a single exposure to such a stressor.
The sterile-male-release technique in Great Lakes sea lamprey management
Twohey, Michael B.; Heinrich, John W.; Seelye, James G.; Fredricks, Kim T.; Bergstedt, Roger A.; Kaye, Cheryl A.; Scholefield, Ron J.; McDonald, Rodney B.; Christie, Gavin C.
2003-01-01
The implementation of a sterile-male-release technique from 1991 through 1999 and evaluation of its effectiveness in the Great Lakes sea lamprey (Petromyzon marinus) management program is reviewed. Male sea lampreys were injected with the chemosterilant bisazir (P,P-bis(1-aziridinyl)-N-methylphosphinothioic amide) using a robotic device. Quality assurance testing indicated the device delivered a consistent and effective dose of bisazir. Viability of embryos in an untreated control group was 64% compared to 1% in a treatment group. A task force developed nine hypotheses to guide implementation and evaluation of the technique. An annual average of 26,000 male sea lampreys was harvested from as many as 17 Great Lakes tributaries for use in the technique. An annual average of 16,100 sterilized males was released into 33 tributaries of Lake Superior to achieve a theoretical 59% reduction in larval production during 1991 to 1996. The average number of sterile males released in the St. Marys River increased from 4,000 during 1991 to 1996 to 20,100 during 1997 to 1999. The theoretical reduc-stertion in reproduction when combined with trapping was 57% during 1991 to 1996 and 86% during 1997 to 1999. Evaluation studies demonstrated that sterilized males were competitive and reduced production of larvae in streams. Field studies and simulation models suggest reductions in reproduction will result in fewer recruits, but there is risk of periodic high recruitment events independent of sterile-male release. Strategies to reduce reproduction will be most reliable when low densities of reproducing females are achieved. Expansion of the technique is limited by access to additional males for sterilization. Sterile-male release and other alternative controls are important in delivering integrated pest management and in reducing reliance on pesticides.
Reproductive ecology of lampreys
Johnson, Nicholas S.; Buchinger, Tyler J.; Li, Weiming
2014-01-01
Lampreys typically spawn in riffle habitats during the spring. Spawning activity and diel (i.e., during daylight and at night) behavioral patterns are initiated when spring water temperatures increase to levels that coincide with optimal embryologic development. Nests are constructed in gravel substrate using the oral disc to move stones and the tail to fan sediment out of the nest. Spawning habitat used by individual species is generally a function of adult size, where small-bodied species construct nests in shallower water with slower flow and smaller gravel than large-bodied species. The mating system of lampreys is primarily polygynandrous (i.e., where multiple males mate with multiple females). Lamprey species with adult total length less than 30 cm generally spawn communally, where a nest may contain 20 or more individuals of both sexes. Lamprey species with adult sizes greater than 35 cm generally spawn in groups of two to four. Operational sex ratios of lampreys are highly variable across species, populations, and time, but are generally male biased. The act of spawning typically starts with the male attaching with his oral disc to the back of the female’s head; the male and female then entwine and simultaneously release gametes. However, alternative mating behaviors (e.g., release of gametes without paired courtship and sneaker males) have been observed. Future research should determine how multiple modalities of communication among lampreys (including mating pheromones) are integrated to inform species recognition and mate choice. Such research could inform both sea lamprey control strategies and provide insight into possible evolution of reproductive isolation mechanisms between paired lamprey species in sympatry.
Sea lamprey (Petromyzon marinus) parasite-host interactions in the Great Lakes
Bence, James R.; Bergstedt, Roger A.; Christie, Gavin C.; Cochran, Phillip A.; Ebener, Mark P.; Koonce, Joseph F.; Rutter, Michael A.; Swink, William D.
2003-01-01
Prediction of how host mortality responds to efforts to control sea lampreys (Petromyzon marinus) is central to the integrated management strategy for sea lamprey (IMSL) in the Great Lakes. A parasite-host submodel is used as part of this strategy, and this includes a type-2 multi-species functional response, a developmental response, but no numerical response. General patterns of host species and size selection are consistent with the model assumptions, but some observations appear to diverge. For example, some patterns in sea lamprey marking on hosts suggest increases in selectivity for less preferred hosts and lower host survival when preferred hosts are scarce. Nevertheless, many of the IMSL assumptions may be adequate under conditions targeted by fish community objectives. Of great concern is the possibility that the survival of young parasites (parasitic-phase sea lampreys) varies substantially among lakes or over time. Joint analysis of abundance estimates for parasites being produced in streams and returning spawners could address this. Data on sea lamprey marks is a critical source of information on sea lamprey activity and potential effects. Theory connecting observed marks to sea lamprey feeding activity and host mortality is reviewed. Uncertainties regarding healing and attachment times, the probability of hosts surviving attacks, and problems in consistent classification of marks have led to widely divergent estimates of damages caused by sea lamprey. Laboratory and field studies are recommended to provide a firmer linkage between host blood loss, host mortality, and observed marks on surviving hosts, so as to improve estimates of damage.
Diseases and parasites of the sea lamprey, Petromyzon marinus, in the Lake Huron basin
McLain, Alberton L.
1952-01-01
Sea lampreys from the Lake Huron basin carried no external parasites and showed a fairly low degree of infection by internal parasites. The material examined represented three life-history stages of the sea lamprey. Recently transformed downstream migrants (215 specimens) harbored only nematodes belonging to the genus Camallanus. The percentage of infection was 2.3. Active feeders from the lake (29 lampreys) revealed the highest degree of parasitism (31.0 percent) with the following parasites present: Echinorhynchus coregoni Linkins; Triaenophorus crassus Forel; and Camallanus sp. Among the 257 sexually mature upstream migrants (14.8 percent infected) Echinorhynchus coregoni and E. leidyi Van Cleave were the most common. Only occasional nematodes and cestodes were found, which fact indicates a failure of the lamprey to carry these parasites to the end of its natural life. Of the parasites observed, only the nematodes gave evidence of serious damage to the host. The study suggests that the role played by parasites in the natural control of the sea lamprey in its new habitat in the upper Great Lakes is of minor importance.
Evidence that sea lamprey control led to recovery of the burbot population in Lake Erie
Stapanian, M.A.; Madenjian, C.P.; Witzel, L.D.
2006-01-01
Between 1987 and 2003, the abundance of burbot Lota lota in eastern Lake Erie increased significantly, especially in Ontario waters. We considered four hypotheses to explain this increase: (1) reduced competition with lake trout Salvelinus namaycush, the other major coldwater piscivore in Lake Erie; (2) increased abundance of the two main prey species, rainbow smelt Osmerus mordax and round goby Neogobius melanostomus; (3) reduced interference with burbot reproduction by alewives Alosa pseudoharengus; and (4) reduced predation by sea lampreys Petromyzon marinus on burbot. Species abundance data did not support the first three hypotheses. Our results suggested that the apparent recovery of the burbot population of Lake Erie was driven by effective sea lamprey control. Sea lamprey predation appeared to be the common factor affecting burbot abundance in Lakes Michigan, Huron, Erie, and Ontario. In addition, relatively high alewife density probably depressed burbot abundance in Lakes Ontario and Michigan. We propose that a healthy adult lake trout population may augment burbot recovery in some lakes by serving as a buffer against sea lamprey predation and will not negatively impact burbot through competition.
Deep ancestry of programmed genome rearrangement in lampreys.
Timoshevskiy, Vladimir A; Lampman, Ralph T; Hess, Jon E; Porter, Laurie L; Smith, Jeramiah J
2017-09-01
In most multicellular organisms, the structure and content of the genome is rigorously maintained over the course of development. However some species have evolved genome biologies that permit, or require, developmentally regulated changes in the physical structure and content of the genome (programmed genome rearrangement: PGR). Relatively few vertebrates are known to undergo PGR, although all agnathans surveyed to date (several hagfish and one lamprey: Petromyzon marinus) show evidence of large scale PGR. To further resolve the ancestry of PGR within vertebrates, we developed probes that allow simultaneous tracking of nearly all sequences eliminated by PGR in P. marinus and a second lamprey species (Entosphenus tridentatus). These comparative analyses reveal conserved subcellular structures (lagging chromatin and micronuclei) associated with PGR and provide the first comparative embryological evidence in support of the idea that PGR represents an ancient and evolutionarily stable strategy for regulating inherent developmental/genetic conflicts between germline and soma. Copyright © 2017 Elsevier Inc. All rights reserved.
Johnson, Nicholas S.; Tix, John A.; Hlina, Benjamin L.; Wagner, C. Michael; Siefkes, Michael J.; Wang, Huiyong; Li, Weiming
2015-01-01
Spermiating male sea lamprey (Petromyzon marinus) release a sex pheromone, of which a component, 7α, 12α, 24-trihydoxy-3-one-5α-cholan-24-sulfate (3kPZS), has been identified and shown to induce long distance preference responses in ovulated females. However, other pheromone components exist, and when 3kPZS alone was used to control invasive sea lamprey populations in the Laurentian Great Lakes, trap catch increase was significant, but gains were generally marginal. We hypothesized that free-ranging sea lamprey populations discriminate between a partial and complete pheromone while migrating to spawning grounds and searching for mates at spawning grounds. As a means to test our hypothesis, and to test two possible uses of sex pheromones for sea lamprey control, we asked whether the full sex pheromone mixture released by males (spermiating male washings; SMW) is more effective than 3kPZS in capturing animals in traditional traps (1) en route to spawning grounds and (2) at spawning grounds. At locations where traps target sea lampreys en route to spawning grounds, SMW-baited traps captured significantly more sea lampreys than paired 3kPZS-baited traps (~10 % increase). At spawning grounds, no difference in trap catch was observed between 3kPZS and SMW-baited traps. The lack of an observed difference at spawning grounds may be attributed to increased pheromone competition and possible involvement of other sensory modalities to locate mates. Because fishes often rely on multiple and sometimes redundant sensory modalities for critical life history events, the addition of sex pheromones to traditionally used traps is not likely to work in all circumstances. In the case of the sea lamprey, sex pheromone application may increase catch when applied to specifically designed traps deployed in streams with low adult density and limited spawning habitat.
Boomer, Laura A; Bellister, Seth A; Stephenson, Linda L; Hillyard, Stanley D; Khoury, Joseph D; Youson, John H; Gosche, John R
2010-01-01
Research in biliary atresia has been hindered by lack of a suitable animal model. Lampreys are primitive vertebrates with distinct larval and adult life cycle stages. During metamorphosis the biliary system of the larval lamprey disappears. Lamprey metamorphosis has been proposed as a model for biliary atresia. We have begun to explore cellular events during lamprey metamorphosis by assessing for cholangiocyte apoptosis. Sea lamprey larvae were housed under controlled environmental conditions. Premetamorphic larvae were induced to undergo metamorphosis by exposure to 0.01% KClO(4). Animals were photographed weekly, and the stage of metamorphosis was assigned based upon external features. Livers were harvested and processed for routine histology and immunohistochemistry. DNA fragmentation was detected using deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assays and cholangiocytes were identified with antibodies to cytokeratin-19. Percent TUNEL+ cholangiocytes at different stages of metamorphosis was determined. The percentage of TUNEL+ cholangiocytes was 10% in premetamorphic (stage 0) lamprey (n = 6), 51% at stage 1 (n = 6), 40% at stage 2 (n = 5), 18% at stage 3 (n = 5), and 9% stage 4 (n = 4). Routine hemotoxylin and eosin stained paraffin-embedded tissue sections revealed frequent apoptotic bodies at stages 3 and 4 of metamorphosis without histologic evidence of necrosis. DNA fragmentation is identified at the earliest stages of metamorphosis during induced metamorphosis in lampreys. Additional studies are necessary to validate this potentially valuable animal model. Copyright 2010 Elsevier Inc. All rights reserved.
Moser, M.L.; Matter, A.L.; Stuehrenberg, L.C.; Bjornn, T.C.
2002-01-01
We used an extensive network of more than 170 radio receiving stations to document fine-scale passage efficiency of adult anadromous Pacific lamprey at Bonneville and The Dalles Dams in the lower Columbia River in the northwestern U.S.A. Each spring from 1997 to 2000, we released 197-299 lamprey with surgically implanted radio transmitters. Unique transmitter codes and the date and time of reception at each antenna site were downloaded electronically, and initial processing was conducted to eliminate false positive signals. The resulting large Oracle database was analyzed using an Arc View-based coding protocol. Underwater antennas positioned outside the fishway entrances detected lamprey approaches, and antennas positioned immediately inside the entrances indicated successful entries. Entrance efficiency (the number of lamprey that successfully entered a fishway divided by the number that approached that fishway) was compared for different types of entrances (main entrances versus orifice entrances) and entrance locations (powerhouse versus spillway). Lamprey used orifice-type entrances less frequently than main entrances, and passage success was generally low (< 50%) at all entrances to fishways at Bonneville Dam (the lowest dam in the system). Lamprey activity at the entrances was highest at night, and entrance success was significantly higher at The Dalles Dam (the next dam upstream from Bonneville Dam) than at Bonneville Dam. In 1999 and 2000, construction modifications were made to Bonneville Dam spillway entrances, and water velocity at these entrances was reduced at night. Modifications to increase lamprey attachment at the entrances improved lamprey entrance efficiency, but entrance efficiency during reduced velocity tests was not significantly higher than during control conditions.
Weaver, Daniel M.; Coghlan, Stephen M.; Zydlewski, Joseph D.
2018-01-01
Aquatic macroinvertebrates respond to patch dynamics arising from interactions of physical and chemical disturbances across space and time. Anadromous fish, such as sea lamprey, Petromyzon marinus, migrate from the ocean and alter physical and chemical properties of recipient spawning streams. Sea lamprey disturb stream benthos physically through nest construction and spawning, and enrich food webs through nutrient deposition from decomposing carcasses. Sea lamprey spawning nests support greater macroinvertebrate abundance than adjacent reference areas, but concurrent effects of stream bed modification and nutrient supplementation have not been examined sequentially. We added carcasses and cleared substrate experimentally to mimic the physical disturbance and nutrient enrichment associated with lamprey spawning, and characterized effects on macroinvertebrate assemblage structure. We found that areas receiving cleared substrate and carcass nutrients were colonized largely by Simuliidae compared to upstream and downstream control areas that were colonized largely by Hydropsychidae, Philopotamidae, and Chironomidae. Environmental factors such as stream flow likely shape assemblages by physically constraining macroinvertebrate establishment and feeding. Our results indicate potential changes in macroinvertebrate assemblages from the physical and chemical changes to streams brought by spawning populations of sea lamprey.
Blocking and guiding adult sea lamprey with pulsed direct current from vertical electrodes
Johnson, Nicholas S.; Thompson, Henry T.; Holbrook, Christopher M.; Tix, John A.
2014-01-01
Controlling the invasion front of aquatic nuisance species is of high importance to resource managers. We tested the hypothesis that adult sea lamprey (Petromyzon marinus), a destructive invasive species in the Laurentian Great Lakes, would exhibit behavioral avoidance to dual-frequency pulsed direct current generated by vertical electrodes and that the electric field would not injure or kill sea lamprey or non-target fish. Laboratory and in-stream experiments demonstrated that the electric field blocked sea lamprey migration and directed sea lamprey into traps. Rainbow trout (Oncorhynchus mykiss) and white sucker (Catostomus commersoni), species that migrate sympatrically with sea lamprey, avoided the electric field and had minimal injuries when subjected to it. Vertical electrodes are advantageous for fish guidance because (1) the electric field produced varies minimally with depth, (2) the electric field is not grounded, reducing power consumption to where portable and remote deployments powered by solar, wind, hydro, or a small generator are feasible, and (3) vertical electrodes can be quickly deployed without significant stream modification allowing rapid responses to new invasions. Similar dual-frequency pulsed direct current fields produced from vertical electrodes may be advantageous for blocking or trapping other invasive fish or for guiding valued fish around dams.
A back-pack shocker for collecting lamprey ammocoetes
Braem, Robert A.; Ebel, Wesley J.
1961-01-01
IN 1958, THE BUREAU OF COMMERCIAL FISHERIES began to use specific larvicides for sea lamprey control in streams tributary to the Great Lakes. The successful application of larvicides required treatment of all areas of the streams infested by sea lamprey ammocoetes. Intensive surveys were needed to determine distribution of the larvae. The use of electrical methods to determinelarval distribution has been described (Stauffer and Hansen 1958). A light portable shocker was needed for these surveys because of the difficulty of access to some of the watersheds tributary to Lake Superior.
Moffett, James W.
1953-01-01
Vampire-like sea lampreys look somewhat like short sections of garden hose, swim like eels, and live solely on the blood of fishes. Their voracious appetites have been especially harmful to fish in the Great Lakes, and it is there that methods of underwater electrocution are being applied in their control.
Christiansen, H.E.; Gee, L.P.; Mesa, M.G.
2012-01-01
Pacific lamprey Entosphenus tridentatus are facing severe population declines, yet little is known about juvenile lamprey passage, life history, or adult return rates because until now, these small fish could not be tagged for unique identification of live individuals. Previously, we developed a simple and effective method for tagging juvenile lampreys with passive integrated transponder (PIT) tags and showed that tagging per se did not affect survival. Mortality in tagged and untagged control fish, however, was frequently associated with fungal infection. In this study, we addressed two outstanding issues related to handling and tagging juvenile lampreys. First, we tried to mitigate freshwater fungal infections by reducing irritation and stress from anesthesia and by treating tagged fish briefly with a prophylactic immediately after tagging. We tested four anesthetics at three concentrations each and determined that 100 mg/L MS-222 and 60 mg/L BENZOAK® (benzocaine) were the most effective for anesthetizing juvenile lampreys to handleable while minimizing irritation. We also showed that fish anesthetized with BENZOAK® may have lower rates of fungal infection than those anesthetized with MS-222 or AQUI-S® 20E (eugenol). When fish anesthetized with MS-222 or BENZOAK® were given a 30 min prophylactic treatment with Stress Coat®, hydrogen peroxide, or salt immediately after tagging, few fish presented with fungal infections. However, untreated, tagged control fish also showed few fungal infections, making it difficult to determine if the prophylactic treatments were successful. The second question we addressed was whether activity would increase tag loss in PIT-tagged lampreys. We found that active swimming did not cause tag loss if fish were first held for 20–24 h after tagging. Therefore, we recommend anesthesia with MS-222 or BENZOAK® and then tagging with a 20–24 h recovery period followed by immediate release. If field studies show that lampreys are not reaching salt water (where fungal infections are mitigated) within 1–2 weeks after release, further study of prophylactic treatments may be warranted.
HPLC and ELISA analyses of larval bile acids from Pacific and western brook lampreys
Yun, S.-S.; Scott, A.P.; Bayer, J.M.; Seelye, J.G.; Close, D.A.; Li, W.
2003-01-01
Comparative studies were performed on two native lamprey species, Pacific lamprey (Lampetra tridentata) and western brook lamprey (Lampetra richardsoni) from the Pacific coast along with sea lamprey (Petromyzon marinus) from the Great Lakes, to investigate their bile acid production and release. HPLC and ELISA analyses of the gall bladders and liver extract revealed that the major bile acid compound from Pacific and western brook larval lampreys was petromyzonol sulfate (PZS), previously identified as a migratory pheromone in larval sea lamprey. An ELISA for PZS has been developed in a working range of 20pg-10ng per well. The tissue concentrations of PZS in gall bladder were 127.40, 145.86, and 276.96??g/g body mass in sea lamprey, Pacific lamprey, and western brook lamprey, respectively. Releasing rates for PZS in the three species were measured using ELISA to find that western brook and sea lamprey released PZS 20 times higher than Pacific lamprey did. Further studies are required to determine whether PZS is a chemical cue in Pacific and western brook lampreys. ?? 2003 Elsevier Inc. All rights reserved.
Dawson, Heather A.; Bravener, Gale; Beaulaurier, Joshua; Johnson, Nicholas S.; Twohey, Michael; McLaughlin, Robert L.; Brenden, Travis O.
2017-01-01
We identified aspects of the trapping process that afforded opportunities for improving trap efficiency of invasive sea lamprey (Petromyzon marinus) in a Great Lake's tributary. Capturing a sea lamprey requires it to encounter the trap, enter, and be retained until removed. Probabilities of these events depend on the interplay between sea lamprey behavior, environmental conditions, and trap design. We first tested how strongly seasonal patterns in daily trap catches (a measure of trapping success) were related to nightly rates of trap encounter, entry, and retention (outcomes of sea lamprey behavior). We then tested the degree to which variation in rates of trap encounter, entry, and retention were related to environmental features that control agents can manipulate (attractant pheromone addition, discharge) and features agents cannot manipulate (water temperature, season), but could be used as indicators for when to increase trapping effort. Daily trap catch was most strongly associated with rate of encounter. Relative and absolute measures of predictive strength for environmental factors that managers could potentially manipulate were low, suggesting that opportunities to improve trapping success by manipulating factors that affect rates of encounter, entry, and retention are limited. According to results at this trap, more sea lamprey would be captured by increasing trapping effort early in the season when sea lamprey encounter rates with traps are high. The approach used in this study could be applied to trapping of other invasive or valued species.
Meeuwig, M.H.; Bayer, J.M.; Seelye, J.G.; Reiche, R.A.
2003-01-01
Two fundamental aspects of lamprey biology were examined to provide tools for population assessment and determination of critical habitat needs of Columbia River Basin (CRB) lampreys (the Pacific lamprey, Lampetra tridentata, and the western brook lamprey, L. richardsoni). We evaluated the usefulness of current diagnostic characteristics for identification of larval lampreys (i.e., pigment patterns) and collected material for development of meristic and morphometric descriptions of early life stage CRB lampreys, and we determined the effects of temperature on survival and development of early life stage CRB lampreys. Thirty-one larval lampreys were collected from locations throughout the CRB and transported to the Columbia River Research Laboratory. Lampreys were sampled at six-week intervals at which time they were identified to the species level based on current diagnostic characteristics. Sampling was repeated until lampreys metamorphosed, at which time species identification was validated based on dentition, or until they died, at which time they were preserved for genetic examination. These lampreys were sampled 30 times with two individuals metamorphosing, both of which were consistently identified, and subsequently validated, as Pacific lampreys. Of the remaining lampreys, only one was inconsistently identified (Pacific lamprey in 83% of the sampling events and western brook lamprey in 17% of the sampling events). These data suggest that pigmentation patterns do not change appreciably through time. In 2001 and 2002 we artificially spawned Pacific and western brook lampreys in the laboratory to provide material for meristic and morphometric descriptions. We collected, digitized, preserved, and measured the mean chorion diameter of Pacific and western brook lamprey embryos. Embryos ranged in development from 1 d post fertilization to just prior to hatch, and were incubated at 14 C. Mean chorion diameter was greater and more variable for Pacific lampreys (mean {+-} SD; 1.468 {+-} 0.107 mm, N = 320) than for western brook lampreys (1.237 {+-} 0.064 mm, N = 280). An unpaired t-test showed that the difference in mean chorion diameter between species was highly significant (t = 32.788, df = 528.62, P < 0.0001). For larvae, we collected, digitized, and preserved 156 individuals from each species. Eight homologous landmarks defining a two-cell truss network with two appended triangles were selected for morphometric analyses and species discrimination. A full model discriminant analysis correctly classified 92% of the Pacific lampreys and 93% of the western brook lampreys in a classification data set. When applied to a test data set, the classification functions correctly classified 91% of the Pacific lampreys and 85% of the western brook lampreys. A backward elimination discriminant analysis removed four variables from the full model, and the reduced model correctly classified 91% of the Pacific lampreys and 93% of the western brook lampreys in a classification data set. The reduced model classification functions correctly classified 91% of the Pacific lampreys and 85% of the western brook lampreys in a test data set. In 2001 and 2002 Pacific and western brook lampreys were artificially spawned and resulting progeny were reared in the laboratory at 10 C, 14 C, 18 C, and 22 C. The estimated temperature for zero development was 4.85 C for Pacific and 4.97 C for western brook lampreys. Survival was greatest at 18 C followed by 14 C, 10 C, and 22 C, with significant differences observed between 22 C and other temperatures. Overall survival was significantly greater for western brook than for Pacific lampreys, although the difference in proportion of individuals surviving was only 0.02. Survival to hatch was significantly greater than survival to the larval stage with a difference of only 0.03. The proportion of individuals exhibiting abnormalities at the larval stage was greatest at 22 C followed by 18 C, 10 C, and 14 C, with significant differences observed between 22 C and other temperatures.
Gilderhus, P.A.; Johnson, B.G.H.
1980-01-01
The chemicals 3-trifluoromethyl-4-nitrophenol (TFM) or a combination of TFM and 2a??,5-dichloro-4a??-nitrosalicylanilide (Bayer 73) have been used to control the sea lamprey (Petromyzon marinus) in the Great Lakes for about 20 yr. These chemicals cause some mortalities of Oligochaeta and Hirudinea, immature forms of Ephemeroptera (Hexagenia sp.), and certain Trichoptera, Simuliidae, and Amphibia (Necturus sp.). The combination of TFM and Bayer 73 may affect some Pelecypoda and Gastropoda, but its overall effects on invertebrates are probably less than those of TFM alone. Granular Bayer 73 is likely to induce mortalities among oligochaetes, microcrustaceans, chironomids, and pelecypods. No evidence exists that the lampricides have caused the catastrophic decline or disappearance of any species. The overall impact of chemical control of sea lampreys on aquatic communities has been minor compared with the benefits derived.
Available benthic habitat type may influence predation risk in larval lampreys
Smith, Dustin M.; Welsh, Stuart A.; Turk, Philip J.
2012-01-01
Population declines of lamprey species have largely been attributed to habitat degradation, yet there still remain many unanswered questions about the relationships between lampreys and their habitats (Torgensen & Close 2004; Smith et al. 2011). One scarcely researched area of lamprey ecology is the effect of predation on lampreys (Cochran 2009). Specifically, the influence of available habitat on predation risk has not been documented for larval lampreys but may be important to the management and conservation of lamprey populations.
Sea lamprey orient toward a source of a synthesized pheromone using odor-conditioned rheotaxis
Johnson, Nicholas S.; Muhammad, Azizah; Thompson, Henry; Choi, Jongeun; Li, Weiming
2012-01-01
Characterization of vertebrate chemo-orientation strategies over long distances is difficult because it is often not feasible to conduct highly controlled hypothesis-based experiments in natural environments. To overcome the challenge, we couple in-stream behavioral observations of female sea lampreys (Petromyzon marinus) orienting to plumes of a synthesized mating pheromone, 7a,12a,24-trihydroxy-5a-cholan-3-one-24-sulfate (3kPZS), and engineering algorithms to systematically test chemo-orientation hypotheses. In-stream field observations and simulated movements of female sea lampreys according to control algorithms support that odor-conditioned rheotaxis is a component of the mechanism used to track plumes of 3kPZS over hundreds of meters in flowing water. Simulated movements of female sea lampreys do not support that rheotaxis or klinotaxis alone is sufficient to enable the movement patterns displayed by females in locating 3kPZS sources in the experimental stream. Odor-conditioned rheotaxis may not only be effective at small spatial scales as previous described in crustaceans, but may also be effectively used by fishes over hundreds of meters. These results may prove useful for developing management strategies for the control of invasive species that exploit the odor-conditioned tracking behavior and for developing biologically inspired navigation strategies for robotic fish.
Hayes, Michael C.; Hays, Richard; Rubin, Stephen P.; Chase, Dorothy M.; Hallock, Molly; Cook-Tabor, Carrie; Luzier, Christina W.; Moser, Mary L.
2013-01-01
Lamprey populations are in decline worldwide and the status of Pacific lamprey (Entosphenus tridentatus) is a topic of current interest. They and other lamprey species cycle nutrients and serve as prey in riverine ecosystems. To determine the current distribution of Pacific lamprey in major watersheds flowing into Puget Sound, Washington, we sampled lamprey captured during salmonid smolt monitoring that occurred from late winter to mid-summer. We found Pacific lamprey in 12 of 18 watersheds and they were most common in southern Puget Sound watersheds and in watersheds draining western Puget Sound (Hood Canal). Two additional species, western brook lamprey (Lampetra richardsoni) and river lamprey (L. ayresii) were more common in eastern Puget Sound watersheds. Few Pacific lamprey macrophthalmia were found, suggesting that the majority of juveniles migrated seaward during other time periods. In addition, “dwarf” adult Pacific lamprey (< 300 mm) were observed in several watersheds and may represent an alternate life history for some Puget Sound populations. Based on genetic data, the use of visual techniques to identify lamprey ammocoetes as Entosphenus or Lampetra was successful for 97% (34 of 35) of the samples we evaluated.
Flexibility in the patterning and control of axial locomotor networks in lamprey.
Buchanan, James T
2011-12-01
In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two ipsilateral burst generators may be modifiable and weakening when greater swimming maneuverability is required. Variable coupling of intrasegmental burst generators in the lamprey may be a precursor to the variable coupling of burst generators observed in the control of locomotion in the joints of limbed vertebrates.
Similarities and Differences for Swimming in Larval and Adult Lampreys.
McClellan, Andrew D; Pale, Timothée; Messina, J Alex; Buso, Scott; Shebib, Ahmad
2016-01-01
The spinal locomotor networks controlling swimming behavior in larval and adult lampreys may have some important differences. As an initial step in comparing the locomotor systems in lampreys, in larval animals the relative timing of locomotor movements and muscle burst activity were determined and compared to those previously published for adults. In addition, the kinematics for free swimming in larval and adult lampreys was compared in detail for the first time. First, for swimming in larval animals, the neuromechanical phase lag between the onsets or terminations of muscle burst activity and maximum concave curvature of the body increased with increasing distance along the body, similar to that previously shown in adults. Second, in larval lampreys, but not adults, absolute swimming speed (U; mm s(-1)) increased with animal length (L). In contrast, normalized swimming speed (U'; body lengths [bl] s(-1)) did not increase with L in larval or adult animals. In both larval and adult lampreys, U' and normalized wave speed (V') increased with increasing tail-beat frequency. Wavelength and mechanical phase lag did not vary significantly with tail-beat frequency but were significantly different in larval and adult animals. Swimming in larval animals was characterized by a smaller U/V ratio, Froude efficiency, and Strouhal number than in adults, suggesting less efficient swimming for larval animals. In addition, during swimming in larval lampreys, normalized lateral head movements were larger and normalized lateral tail movements were smaller than for adults. Finally, larval animals had proportionally smaller lateral surface areas of the caudal body and fin areas than adults. These differences are well suited for larval sea lampreys that spend most of the time buried in mud/sand, in which swimming efficiency is not critical, compared to adults that would experience significant selection pressure to evolve higher-efficiency swimming to catch up to and attach to fish for feeding as well as engage in long-distance migration during spawning. Finally, the differences in swim efficiency for larval and adult lampreys are compared to other animals employing the anguilliform mode of swimming.
Chemosterilization of the sea lamprey (Petromyzon marinus)
Hanson, Lee H.; Manion, Patrick J.
1978-01-01
The chemical, P,P-bis(1-aziridinyl)-N-methylphosphinothioic amide (bisazir), was found in laboratory studies to be an effective sterilant for both sexes of adult sea lampreys (Petromyzon marinus) when given intraperitoneally at a dosage of 100 mg per kilogram of body weight. A total of 300 normal spawning-run sea lampreys and 300 injected with bisazir were released into the Big Garlic River, Marquette County, Michigan, (a small stream divided into five sections by natural barriers), to determine the effect of bisazir on the nesting and spawning behavior of the adults and on the production of larvae. The lampreys constructed and spawned in 95 nests. Sterile adults showed no abnormal nest building or spawning behavior. Sterile males competed effectively with normal males for females. Egg samples taken from nests indicated that eggs in nests where sterile males spawned with sterile or normal females did not hatch, although some embryonic development occurred. Extensive surveys with electric shockers produced no larvae in stream sections where sterile males spawned, but yielded numerous larvae in sections where normal males spawned with normal females. These findings suggest that the release of sterile males may be an effective tool in an integrated approach to control of sea lampreys in the Great Lakes.
Odor-conditioned rheotaxis of the sea lamprey: modeling, analysis and validation
Choi, Jongeun; Jean, Soo; Johnson, Nicholas S.; Brant, Cory O.; Li, Weiming
2013-01-01
Mechanisms for orienting toward and locating an odor source are sought in both biology and engineering. Chemical ecology studies have demonstrated that adult female sea lamprey show rheotaxis in response to a male pheromone with dichotomous outcomes: sexually mature females locate the source of the pheromone whereas immature females swim by the source and continue moving upstream. Here we introduce a simple switching mechanism modeled after odor-conditioned rheotaxis for the sea lamprey as they search for the source of a pheromone in a one-dimensional riverine environment. In this strategy, the females move upstream only if they detect that the pheromone concentration is higher than a threshold value and drifts down (by turning off control action to save energy) otherwise. In addition, we propose various uncertainty models such as measurement noise, actuator disturbance, and a probabilistic model of a concentration field in turbulent flow. Based on the proposed model with uncertainties, a convergence analysis showed that with this simplistic switching mechanism, the lamprey converges to the source location on average in spite of all such uncertainties. Furthermore, a slightly modified model and its extensive simulation results explain the behaviors of immature female lamprey near the source location.
Mercury accumulation in sea lamprey (Petromyzon marinus) from Lake Huron
Madenjian, Charles P.; Johnson, Nicholas S.; Siefkes, Michael J.; Dettmers, John M.; Blum, Joel D.; Johnson, Marcus W.
2014-01-01
We determined whole-fish total mercury (Hg) concentrations of 40 male and 40 female adult sea lampreys (Petromyzon marinus) captured in the Cheboygan River, a tributary to Lake Huron, during May 2011. In addition, bioenergetics modeling was used to explore the effects of sex-related differences in activity and resting (standard) metabolic rate (SMR) on mercury accumulation. The grand mean for Hg concentrations was 519 ng/g (standard error of the mean = 46 ng/g). On average, males were 16% higher in Hg concentration than females. Bioenergetics modeling results indicated that 14% higher activity and SMR in males would account for this observed sex difference in Hg concentrations. We concluded that the higher Hg concentration in males was most likely due to higher rate of energy expenditure in males, stemming from greater activity and SMR. Our findings have implications for estimating the effects of sea lamprey populations on mercury cycling within ecosystems, as well as for the proposed opening of sea lamprey fisheries. Eventually, our results may prove useful in improving control of sea lamprey, a pest responsible for substantial damage to fisheries in lakes where it is not native.
Contributions of identifiable neurons and neuron classes to lamprey vertebrate neurobiology.
Buchanan, J T
2001-03-01
Among the advantages offered by the lamprey brainstem and spinal cord for studies of the structure and function of the nervous system is the unique identifiability of several pairs of reticulospinal neurons in the brainstem. These neurons have been exploited in investigations of the patterns of sensory input to these cells and the patterns of their outputs to spinal neurons, but no doubt these cells could be used much more effectively in exploring their roles in descending control of the spinal cord. The variability of cell positions of neurons in the spinal cord has precluded the recognition of unique spinal neurons. However, classes of nerve cells can be readily defined and characterized within the lamprey spinal cord and this has led to progress in understanding the cellular and synaptic mechanisms of locomotor activity. In addition, both the identifiable reticulospinal cells and the various spinal nerve cell classes and their known synaptic interactions have been used to demonstrate the degree and specificity of regeneration within the lamprey nervous system. The lack of uniquely identifiable cells within the lamprey spinal cord has hampered progress in these areas, especially in gaining a full understanding of the locomotor network and how neuromodulation of the network is accomplished.
11-Deoxycortisol is a corticosteroid hormone in the lamprey
Close, D.A.; Yun, S.-S.; McCormick, S.D.; Wildbill, A.J.; Li, W.
2010-01-01
Corticosteroid hormones are critical for controlling metabolism, hydromineral balance, and the stress response in vertebrates. Although corticosteroid hormones have been well characterized in most vertebrate groups, the identity of the earliest vertebrate corticosteroid hormone has remained elusive. Here we provide evidence that 11-deoxycortisol is the corticosteroid hormone in the lamprey, a member of the agnathans that evolved more than 500 million years ago. We used RIA, HPLC, and mass spectrometry analysis to determine that 11-deoxycortisol is the active corticosteroid present in lamprey plasma. We also characterized an 11-deoxycortisol receptor extracted from sea lamprey gill cytosol. The receptor was highly specific for 11-deoxycortisol and exhibited corticosteroid binding characteristics, including DNA binding. Furthermore, we observed that 11-deoxycortisol was regulated by the hypothalamus-pituitary axis and responded to acute stress. 11-Deoxycortisol implants reduced sex steroid concentrations and upregulated gill Na+, K+-ATPase, an enzyme critical for ion balance. We show here that 11-deoxycortisol functioned as both a glucocorticoid and a mineralocorticoid in the lamprey. Our findings indicate that a complex and highly specific corticosteroid signaling pathway evolved at least 500 million years ago with the arrival of the earliest vertebrate.
Dawson, Heather; Jones, Michael L.; Irwin, Brian J.; Johnson, Nicholas; Wagner, Michael C.; Szymanski, Melissa
2016-01-01
We applied a management strategy evaluation (MSE) model to examine the potential cost-effectiveness of using pheromone-baited trapping along with conventional lampricide treatment to manage invasive sea lamprey. Four pheromone-baited trapping strategies were modeled: (1) stream activation wherein pheromone was applied to existing traps to achieve 10−12 mol/L in-stream concentration, (2) stream activation plus two additional traps downstream with pheromone applied at 2.5 mg/hr (reverse-intercept approach), (3) trap activation wherein pheromone was applied at 10 mg/hr to existing traps, and (4) trap activation and reverse-intercept approach. Each new strategy was applied, with remaining funds applied to conventional lampricide control. Simulating deployment of these hybrid strategies on fourteen Lake Michigan streams resulted in increases of 17 and 11% (strategies 1 and 2) and decreases of 4 and 7% (strategies 3 and 4) of the lakewide mean abundance of adult sea lamprey relative to status quo. MSE revealed performance targets for trap efficacy to guide additional research because results indicate that combining lampricides and high efficacy trapping technologies can reduce sea lamprey abundance on average without increasing control costs.
A portable trap with electric lead catches up to 75% of an invasive fish species.
Johnson, Nicholas S; Miehls, Scott; O'Connor, Lisa M; Bravener, Gale; Barber, Jessica; Thompson, Henry; Tix, John A; Bruning, Tyler
2016-06-24
A novel system combining a trap and pulsed direct current electricity was able to catch up to 75% of tagged invasive sea lamprey Petromyzon marinus in free-flowing streams. Non-target mortality was rare and impacts to non-target migration were minimal; likely because pulsed direct current only needed to be activated at night (7 hours of each day). The system was completely portable and the annual cost of the trapping system was low ($4,800 U.S. dollars). Use of the technology is poised to substantially advance integrated control of sea lamprey, which threaten a fishery valued at 7 billion U.S. dollars annually, and help restore sea lamprey populations in Europe where they are native, but imperiled. The system may be broadly applicable to controlling invasive fishes and restoring valued fishes worldwide, thus having far reaching effects on ecosystems and societies.
A portable trap with electric lead catches up to 75% of an invasive fish species
Johnson, Nicholas S.; Miehls, Scott; O’Connor, Lisa M.; Bravener, Gale; Barber, Jessica; Thompson, Henry; Tix, John A.; Bruning, Tyler
2016-01-01
A novel system combining a trap and pulsed direct current electricity was able to catch up to 75% of tagged invasive sea lamprey Petromyzon marinus in free-flowing streams. Non-target mortality was rare and impacts to non-target migration were minimal; likely because pulsed direct current only needed to be activated at night (7 hours of each day). The system was completely portable and the annual cost of the trapping system was low ($4,800 U.S. dollars). Use of the technology is poised to substantially advance integrated control of sea lamprey, which threaten a fishery valued at 7 billion U.S. dollars annually, and help restore sea lamprey populations in Europe where they are native, but imperiled. The system may be broadly applicable to controlling invasive fishes and restoring valued fishes worldwide, thus having far reaching effects on ecosystems and societies. PMID:27341485
A portable trap with electric lead catches up to 75% of an invasive fish species
Johnson, Nicholas; Miehls, Scott M.; O'Connor, Lisa M; Bravener, Gale; Barber, Jessica; Thompson, Henry T.; Tix, John A.; Bruning, Tyler
2016-01-01
A novel system combining a trap and pulsed direct current electricity was able to catch up to 75% of tagged invasive sea lamprey Petromyzon marinus in free-flowing streams. Non-target mortality was rare and impacts to non-target migration were minimal; likely because pulsed direct current only needed to be activated at night (7 hours of each day). The system was completely portable and the annual cost of the trapping system was low ($4,800 U.S. dollars). Use of the technology is poised to substantially advance integrated control of sea lamprey, which threaten a fishery valued at 7 billion U.S. dollars annually, and help restore sea lamprey populations in Europe where they are native, but imperiled. The system may be broadly applicable to controlling invasive fishes and restoring valued fishes worldwide, thus having far reaching effects on ecosystems and societies.
Bjerselius , Rickard; Li, Weiming; Teeter, John H.; Seelye, James G.; Johnson, Peter B.; Maniak, Peter J.; Grant, Gerold C.; Polkinghorne, Christine N.; Sorensen, Peter W.
2000-01-01
Four behavioral experiments conducted in both the laboratory and the field provide evidence that adult sea lamprey (Petromyzon marinus) select spawning rivers based on the odor of larvae that they contain and that bile acids released by the larvae are part of this pheromonal odor. First, when tested in a recirculating maze, migratory adult lamprey spent more time in water scented with larvae. However, when fully mature, adults lost their responsiveness to larvae and preferred instead the odor of mature individuals. Second, when tested in a flowing stream, migratory adults swam upstream more actively when the water was scented with larvae. Third, when migratory adults were tested in a laboratory maze containing still water, they exhibited enhanced swimming activity in the presence of a 0.1 nM concentration of the two unique bile acids released by larvae and detected by adult lamprey. Fourth, when adults were exposed to this bile acid mixture within flowing waters, they actively swam into it. Taken together, these data suggest that adult lamprey use a bile acid based larval pheromone to help them locate spawning rivers and that responsiveness to this cue is influenced by current flow, maturity, and time of day. Although the precise identity and function of the larval pheromone remain to be fully elucidated, we believe that this cue will ultimately prove useful as an attractant in sea lamprey control.
Hlina, Benjamin L; Tessier, Laura R; Wilkie, Michael P
2017-10-01
Invasive sea lamprey (Petromyzon marinus) populations in the Great Lakes are controlled by applying the piscicide, 3-trifluoromethyl-4-nitrophenol (TFM), to infested streams with larval sea lamprey (ammocoetes). While treatment mortality is >90%, surviving lamprey, called residuals, can undermine control efforts. A key determinant of TFM effectiveness is water pH, which can fluctuate daily and seasonally in surface waters. The objectives of this research were to evaluate the influence of pH on the uptake, elimination, and accumulation of TFM by larval sea lamprey using radio-labeled TFM ( 14 C-TFM), when exposed to a nominal concentration of 4.6mgTFML -1 or 7.6mgTFML -1 , 3h or 1h, respectively. TFM uptake rates were approximately 5.5-fold greater at low pH (6.86) compared to the high pH (8.78), most likely due to the unionized, lipophilic form of TFM existing in greater amounts at a lower pH. In contrast, elimination rates following the injection of 85nmolTFMg -1 body mass were 1.7-1.8 fold greater at pH8.96 than at pH6.43 during 2-4h of depuration in TFM-free water. Greater initial excretion rates at pH8.96 were presumably due to predicted increases in outward concentration gradients of un-ionized TFM. The present findings suggest that TFM is mainly taken-up in its un-ionized form, more lipophilic form, but there is also significant uptake of the ionized form of TFM via an unknown mechanism. Moreover, we provide an explanation to how small increases in pH can undermine lampricide treatment success increasing residual lamprey populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Moody, E.K.; Weidel, B.C.; Ahrenstorff, T.D.; Mattes, W.P.; Kitchell, J.F.
2011-01-01
Differences in the preferred thermal habitat of Lake Superior lake trout morphotypes create alternative growth scenarios for parasitic sea lamprey (Petromyzon marinus) attached to lake trout hosts. Siscowet lake trout (Salvelinus namaycush) inhabit deep, consistently cold water (4–6 °C) and are more abundant than lean lake trout (Salvelinus namaycush) which occupy temperatures between 8 and 12 °C during summer thermal stratification. Using bioenergetics models we contrasted the growth potential of sea lampreys attached to siscowet and lean lake trout to determine how host temperature influences the growth and ultimate size of adult sea lamprey. Sea lampreys simulated under the thermal regime of siscowets are capable of reaching sizes within the range of adult sea lamprey sizes observed in Lake Superior tributaries. High lamprey wounding rates on siscowets suggest siscowets are important lamprey hosts. In addition, siscowets have higher survival rates from lamprey attacks than those observed for lean lake trout which raises the prospect that siscowets serve as a buffer to predation on more commercially desirable hosts such as lean lake trout, and could serve to subsidize lamprey growth.
Comparative embryology of five species of lampreys of the upper Great Lakes
Smith, Allen J.; Howell, John H.; Piavis, George W.
1968-01-01
The four species of lampreys native to the upper Great Lakes (American brook lamprey, Lampetra lamotteni; chestnut lamprey, Ichthyomyzon castaneus; northern brook lamprey, I. fossor; and silver lamprey, I. unicuspis) were collected in various stages of their life cycle and maintained in the laboratory until sexually mature. Secondary sex characters of the four native species are compared. Several batches of eggs of each species were reared at 18.4A?C and their development was compared to that of the exotic sea lamprey, Petromyzon marinus. The temperature of 18.4A?C was previously determined to be optimum for development of the sea lamprey. The high percentage survival of many batches of eggs of native species to prolarvae indicated that 18.4A?C was near the optimum for them. Survival to the burrowing stage varied considerably among different batches of eggs from the same species; some batches failed to produce prolarvae. The staging characteristics used for the sea lamprey were applicable to the native species, except for the end point of the burrowing stage. Embryos of the native species in each stage of development appeared according to the time sequence established for the sea lamprey.
Contribution of supraspinal systems to generation of automatic postural responses
Deliagina, Tatiana G.; Beloozerova, Irina N.; Orlovsky, Grigori N.; Zelenin, Pavel V.
2014-01-01
Different species maintain a particular body orientation in space due to activity of the closed-loop postural control system. In this review we discuss the role of neurons of descending pathways in operation of this system as revealed in animal models of differing complexity: lower vertebrate (lamprey) and higher vertebrates (rabbit and cat). In the lamprey and quadruped mammals, the role of spinal and supraspinal mechanisms in the control of posture is different. In the lamprey, the system contains one closed-loop mechanism consisting of supraspino-spinal networks. Reticulospinal (RS) neurons play a key role in generation of postural corrections. Due to vestibular input, any deviation from the stabilized body orientation leads to activation of a specific population of RS neurons. Each of the neurons activates a specific motor synergy. Collectively, these neurons evoke the motor output necessary for the postural correction. In contrast to lampreys, postural corrections in quadrupeds are primarily based not on the vestibular input but on the somatosensory input from limb mechanoreceptors. The system contains two closed-loop mechanisms – spinal and spino-supraspinal networks, which supplement each other. Spinal networks receive somatosensory input from the limb signaling postural perturbations, and generate spinal postural limb reflexes. These reflexes are relatively weak, but in intact animals they are enhanced due to both tonic supraspinal drive and phasic supraspinal commands. Recent studies of these supraspinal influences are considered in this review. A hypothesis suggesting common principles of operation of the postural systems stabilizing body orientation in a particular plane in the lamprey and quadrupeds, that is interaction of antagonistic postural reflexes, is discussed. PMID:25324741
Inhibitory descending rhombencephalic projections in larval sea lamprey.
Valle-Maroto, S M; Fernández-López, B; Villar-Cerviño, V; Barreiro-Iglesias, A; Anadón, R; Rodicio, M Celina
2011-10-27
Lampreys are jawless vertebrates, the most basal group of extant vertebrates. This phylogenetic position makes them invaluable models in comparative studies of the vertebrate central nervous system. Lampreys have been used as vertebrate models to study the neuronal circuits underlying locomotion control and axonal regeneration after spinal cord injury. Inhibitory inputs are key elements in the networks controlling locomotor behaviour, but very little is known about the descending inhibitory projections in lampreys. The aim of this study was to investigate the presence of brain-spinal descending inhibitory pathways in larval stages of the sea lamprey Petromyzon marinus by means of tract-tracing with neurobiotin, combined with immunofluorescence triple-labeling methods. Neurobiotin was applied in the rostral spinal cord at the level of the third gill, and inhibitory populations were identified by the use of cocktails of antibodies raised against glycine and GABA. Glycine-immunoreactive (-ir) neurons that project to the spinal cord were observed in three rhombencephalic reticular nuclei: anterior, middle and posterior. Spinal-projecting GABA-ir neurons were observed in the anterior and posterior reticular nuclei. Double glycine-ir/GABA-ir spinal cord-projecting neurons were only observed in the posterior reticular nucleus, and most glycine-ir neurons did not display GABA immunoreactivity. The present results reveal the existence of inhibitory descending projections from brainstem reticular neurons to the spinal cord, which were analyzed in comparative and functional contexts. Further studies should investigate which spinal cord circuits are affected by these descending inhibitory projections. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Experimental control of sea lampreys with electricity on the south shore of Lake Superior, 1953-60
McLain, Alberton L.; Smith, Bernard R.; Moore, Harry H.
1965-01-01
Electric devices of the type and design used are capable of blocking entire runs of adult sea lampreys. An accurate appraisal of the effectiveness of the barrier system is impossible, however. Most of the barriers were not operated long enough to reduce the contribution of parasites from the streams. Furthermore, a complete system of efficient electric barriers was never realized. The greatest weakness of this method of control lies in maintenance of the units in continuous, uninterrupted operation through consecutive migratory seasons.
Biology of the sea lamprey in its parasitic phase
Parker, Phillip S.; Lennon, Robert E.
1956-01-01
The investigations conducted on sea lampreys in aquariums were concerned with the duration of the parasitic phase of life, feeding, growth, and the interrelations between predator and host fish. Observations on lampreys reared from metamorphosis to maturity were made at the Fish and Wildlife Service Laboratory at Hammond Bay, Michigan. Most of the experimental lampreys were mature and ripe after 14 to 18 months of parasitic life. They exhibited signs of irreversible physical degeneration which precedes death. Three specimens were immature after 14, 18, and 26 months in aquariums, thus indicating that under certain conditions, lampreys may extend their parasitic phase. The feeding activity, growth, and shrinkage in size of aquarium specimens were considered typical of lampreys in the Great Lakes, although the wild lampreys achieve greater average size. Female lampreys made more attacks, fed more, killed more fish, and grew larger than males. They also shrank proportionately more in length and weight as they approached sexual maturity, but their terminal average size was slightly larger than that of males. It is estimated that the average fish-kill by a wild lamprey exceeds, and could be approximately double, the 18.5 pounds of fish killed by a laboratory lamprey. The rate and extent of fish destruction depended on the size, sex, and stage in the parasitic phase of the lampreys, and on the species and size of the fish. There was an increase in the number of fish killed as the lampreys grew, and the fish were killed more quickly. Attacks made by experimental lampreys at any stage of their parasitic phase up to full maturity, and on any part of a prey fish except fins, usually resulted in death to the host. Some fish which survived lamprey attacks succumbed to fungus infections of the wounds. A small number of trout recovered from attacks, and their wounds healed.
Foulds, William L.; Lucas, Martyn C.
2014-01-01
A reoccurring conservation problem is the resolution of consumptive use of threatened wildlife and is especially difficult to defend when it occurs for recreational practices. We explored the commercial capture and supply of threatened European river lamprey (Lampetra fluviatilis) to anglers, to determine the extent of exploitation and seek opportunities for improved conservation. The trade began in 1995 from England, but by 2012 involved sale of lamprey from England, The Netherlands and Estonia, including from protected populations. Lamprey are sold frozen for the capture of predatory fish, mostly in freshwater. In the year 2011/2012 9 tonnes (>90,000 lampreys) of river lamprey were supplied, almost exclusively to British anglers. Although annual catches in the main English lamprey fishery (River Ouse) have varied widely since 1995, catch per unit effort did not decline between 2000 and 2012. Conservation actions since 2011 have included a cap on fishing licenses, catch quotas and restricted fishing seasons. Now, 86% of lamprey bait is imported to Britain. Most bait sellers interviewed would not stock lamprey if they knew they were from threatened populations; many felt their trade would not be impacted if lamprey were not stocked. This facilitates opportunities to enter into dialogue with anglers over alternative baits to threatened lamprey. The study emphasises the need to inform stakeholders about conservation species subjected to market-driven exploitation. PMID:24936643
Foulds, William L; Lucas, Martyn C
2014-01-01
A reoccurring conservation problem is the resolution of consumptive use of threatened wildlife and is especially difficult to defend when it occurs for recreational practices. We explored the commercial capture and supply of threatened European river lamprey (Lampetra fluviatilis) to anglers, to determine the extent of exploitation and seek opportunities for improved conservation. The trade began in 1995 from England, but by 2012 involved sale of lamprey from England, The Netherlands and Estonia, including from protected populations. Lamprey are sold frozen for the capture of predatory fish, mostly in freshwater. In the year 2011/2012 9 tonnes (>90,000 lampreys) of river lamprey were supplied, almost exclusively to British anglers. Although annual catches in the main English lamprey fishery (River Ouse) have varied widely since 1995, catch per unit effort did not decline between 2000 and 2012. Conservation actions since 2011 have included a cap on fishing licenses, catch quotas and restricted fishing seasons. Now, 86% of lamprey bait is imported to Britain. Most bait sellers interviewed would not stock lamprey if they knew they were from threatened populations; many felt their trade would not be impacted if lamprey were not stocked. This facilitates opportunities to enter into dialogue with anglers over alternative baits to threatened lamprey. The study emphasises the need to inform stakeholders about conservation species subjected to market-driven exploitation.
Burns, Aaron C.; Sorensen, Peter W.
2011-01-01
A variety of unnatural bile acid derivatives (9a–9f) were synthesized and used to examine the specificity with which the sea lamprey (Petromyzon marinus) olfactory system detects these compounds. These compounds are analogs of petromyzonol sulfate (PS, 1), a component of the sea lamprey migratory pheromone. Both the stereochemical configuration at C5 (i.e., 5α vs. 5β) and the extent and sites of oxygenation (hydroxylation or ketonization) of the bile acid derived steroid skeleton were evaluated by screening the compounds for olfactory activity using electro-olfactogram recording. 5β-Petromyzonol sulfate (9a) elicited a considerable olfactory response at sub-nanomolar concentration. In addition, less oxygenated systems (i.e., 9b–9e) elicited olfactory responses, albeit with less potency. The sea lamprey sex pheromone mimic 9f (5β-3-ketopetromyzonol sulfate) was also examined and found to produce a much lower olfactory response. Mixture studies conducted with 9a and PS (1) suggest that stimulation is occurring via similar modes of activation, demonstrating a relative lack of specificity for recognition of the allo-configuration (i.e., 5α) in sea lamprey olfaction. This attribute could facilitate design of pheromone analogs to control this invasive species. PMID:21145335
Conservation challenges and research needs for Pacific lamprey in the Columbia River Basin
Clemens, Benjamin J.; Beamish, Richard J.; Coates, Kelly C.; Docker, Margaret F.; Dunham, Jason B.; Gray, Ann E.; Hess, Jon E.; Jolley, Jeffrey C.; Lampman, Ralph T.; McIlraith, Brian J.; Moser, Mary L.; Murauskas, Joshua G.; Noakes, David L. G.; Schaller, Howard A.; Schreck, Carl B.; Starcevich, Steven J.; Streif, Bianca; van de Wetering, Stan J.; Wade, Joy; Weitkamp, Laurie A.; Wyss, Lance A.
2017-01-01
The Pacific Lamprey Entosphenus tridentatus, an anadromous fish native to the northern Pacific Ocean and bordering freshwater habitats, has recently experienced steep declines in abundance and range contractions along the West Coast of North America. During the early 1990s, Native American tribes recognized the declining numbers of lamprey and championed their importance. In 2012, 26 entities signed a conservation agreement to coordinate and implement restoration and research for Pacific Lamprey. Regional plans have identified numerous threats, monitoring needs, and strategies to conserve and restore Pacific Lamprey during their freshwater life stages. Prime among these are needs to improve lamprey passage, restore freshwater habitats, educate stakeholders, and implement lamprey-specific research and management protocols. Key unknowns include range-wide trends in status, population dynamics, population delineation, limiting factors, and marine influences. We synthesize these key unknowns, with a focus on the freshwater life stages of lamprey in the Columbia River basin.
Wagner, Michael C.; Hanson, James E.; Meckley, Trevor D.; Johnson, Nicholas; Bals, Jason D.
2018-01-01
Semiochemicals that elicit species-specific attraction or repulsion have proven useful in the management of terrestrial pests and hold considerable promise for control of nuisance aquatic species, particularly invasive fishes. Because aquatic ecosystems are typically large and open, use of a semiochemical to control a spatially dispersed invader will require the development of a cost-effective emitter that is easy to produce, environmentally benign, inexpensive, and controls the release of the semiochemical without altering its structure. We examined the release properties of five polymers, and chose polyethylene glycol (PEG) as the best alternative. In a series of laboratory and field experiments, we examined the response of the invasive sea lamprey to PEG, and to a partial sex pheromone emitted from PEG that has proven effective as a trap bait to capture migrating sea lamprey prior to spawning. Our findings confirm that the sea lamprey does not behaviorally respond to PEG, and that the attractant response to the pheromone component was conserved when emitted from PEG. Further, we deployed the pheromone-PEG emitters as trap bait during typical control operations in three Great Lakes tributaries, observing similar improvements in trap performance when compared to a previous study using mechanically pumped liquid pheromone. Finally, the polymer emitters tended to dissolve unevenly in high flow conditions. We demonstrate that housing the emitter stabilizes the dissolution rate at high water velocity. We conclude the performance characteristics of PEG emitters to achieve controlled-release of a semiochemical are sufficient to recommend its use in conservation and management activities related to native and invasive aquatic organisms.
Meckley, Trevor D.; Johnson, Nicholas S.; Bals, Jason D.
2018-01-01
Semiochemicals that elicit species-specific attraction or repulsion have proven useful in the management of terrestrial pests and hold considerable promise for control of nuisance aquatic species, particularly invasive fishes. Because aquatic ecosystems are typically large and open, use of a semiochemical to control a spatially dispersed invader will require the development of a cost-effective emitter that is easy to produce, environmentally benign, inexpensive, and controls the release of the semiochemical without altering its structure. We examined the release properties of five polymers, and chose polyethylene glycol (PEG) as the best alternative. In a series of laboratory and field experiments, we examined the response of the invasive sea lamprey to PEG, and to a partial sex pheromone emitted from PEG that has proven effective as a trap bait to capture migrating sea lamprey prior to spawning. Our findings confirm that the sea lamprey does not behaviorally respond to PEG, and that the attractant response to the pheromone component was conserved when emitted from PEG. Further, we deployed the pheromone-PEG emitters as trap bait during typical control operations in three Great Lakes tributaries, observing similar improvements in trap performance when compared to a previous study using mechanically pumped liquid pheromone. Finally, the polymer emitters tended to dissolve unevenly in high flow conditions. We demonstrate that housing the emitter stabilizes the dissolution rate at high water velocity. We conclude the performance characteristics of PEG emitters to achieve controlled-release of a semiochemical are sufficient to recommend its use in conservation and management activities related to native and invasive aquatic organisms. PMID:29897927
Wagner, C Michael; Hanson, James E; Meckley, Trevor D; Johnson, Nicholas S; Bals, Jason D
2018-01-01
Semiochemicals that elicit species-specific attraction or repulsion have proven useful in the management of terrestrial pests and hold considerable promise for control of nuisance aquatic species, particularly invasive fishes. Because aquatic ecosystems are typically large and open, use of a semiochemical to control a spatially dispersed invader will require the development of a cost-effective emitter that is easy to produce, environmentally benign, inexpensive, and controls the release of the semiochemical without altering its structure. We examined the release properties of five polymers, and chose polyethylene glycol (PEG) as the best alternative. In a series of laboratory and field experiments, we examined the response of the invasive sea lamprey to PEG, and to a partial sex pheromone emitted from PEG that has proven effective as a trap bait to capture migrating sea lamprey prior to spawning. Our findings confirm that the sea lamprey does not behaviorally respond to PEG, and that the attractant response to the pheromone component was conserved when emitted from PEG. Further, we deployed the pheromone-PEG emitters as trap bait during typical control operations in three Great Lakes tributaries, observing similar improvements in trap performance when compared to a previous study using mechanically pumped liquid pheromone. Finally, the polymer emitters tended to dissolve unevenly in high flow conditions. We demonstrate that housing the emitter stabilizes the dissolution rate at high water velocity. We conclude the performance characteristics of PEG emitters to achieve controlled-release of a semiochemical are sufficient to recommend its use in conservation and management activities related to native and invasive aquatic organisms.
Kuratani, Shigeru
2005-01-01
The evolution of animal morphology can be understood as a series of changes in developmental programs. Among vertebrates, some developmental stages are conserved across species, representing particular developmental constraints. One of the most conserved stages is the vertebrate pharyngula, in which similar embryonic morphology is observed and the Hox code is clearly expressed. The oral developmental program also appears to be constrained to some extent, as both its morphology and the the Hox-code-default state of the oropharyngeal region are well conserved between the lamprey and gnathostome embryos. These features do not by themselves explain the evolution of jaws, but should be regarded as a prerequisite for evolutionary diversification of the mandibular arch. By comparing the pharyngula morphology of the lamprey and gnathostomes, it has become clear that the oral pattern is not entirely identical; in particular, the positional differentiation of the rostral ectomesenchyme is shifted between these animals. Therefore, the jaw seems to have arisen as an evolutionary novelty by overriding ancestral constraints, a process in which morphological homologies are partially lost. This change involves the heterotopic shift of tissue interaction, which appears to have been preceded by the transition from monorhiny to diplorhiny, as well as separation of the hypophysis. When gene expression patterns are compared between the lamprey and gnathostomes, cell-autonomously functioning genes tend to be associated with identical cell types or equivalent anatomical domains, whereas growth-factor-encoding genes have changed their expression domains during evolution. Thus, the heterotopic evolution may be based on changes in the regulation of signalling-molecule-encoding genes. PMID:16313390
Schultz, Luke; Heck, Michael; Kowalski, Brandon M; Eagles-Smith, Collin A.; Coates, Kelly C.; Dunham, Jason B.
2017-01-01
Nonnative fishes have been increasingly implicated in the decline of native fishes in the Pacific Northwest. Smallmouth Bass Micropterus dolomieu were introduced into the Umpqua River in southwest Oregon in the early 1960s. The spread of Smallmouth Bass throughout the basin coincided with a decline in counts of upstream-migrating Pacific Lampreys Entosphenus tridentatus. This suggested the potential for ecological interactions between Smallmouth Bass and Pacific Lampreys, as well as freshwater-resident Western Brook Lampreys Lampetra richardsoni. To evaluate the potential effects of Smallmouth Bass on lampreys, we sampled diets of Smallmouth Bass and used bioenergetics models to estimate consumption of larval lampreys in a segment of Elk Creek, a tributary to the lower Umpqua River. We captured 303 unique Smallmouth Bass (mean: 197 mm and 136 g) via angling in July and September. We combined information on Smallmouth Bass diet and energy density with other variables (temperature, body size, growth, prey energy density) in a bioenergetics model to estimate consumption of larval lampreys. Larval lampreys were found in 6.2% of diet samples, and model estimates indicated that the Smallmouth Bass we captured consumed 925 larval lampreys in this 2-month study period. When extrapolated to a population estimate of Smallmouth Bass in this segment, we estimated 1,911 larval lampreys were consumed between July and September. Although the precision of these estimates was low, this magnitude of consumption suggests that Smallmouth Bass may negatively affect larval lamprey populations.
Spice, Erin K; Whyard, Steven; Docker, Margaret F
2014-11-01
Lampreys diverged from the jawed vertebrate lineage approximately 500million years ago. Lampreys undergo sex differentiation much later than most other vertebrates, and ovarian differentiation occurs several years before testicular differentiation. The genetic basis of lamprey sex differentiation is of particular interest both because of the phylogenetic importance of lampreys and because of their unusual pattern of sex differentiation. As well, differences between parasitic and non-parasitic lampreys may first become evident at ovarian differentiation. However, nothing is known about the genetic basis of ovarian differentiation in lampreys. This study examined potential differences in gene expression before, during, and after ovarian differentiation in parasitic chestnut lamprey Ichthyomyzon castaneus and non-parasitic northern brook lamprey Ichthyomyzonfossor. Eight target genes (17β-hydroxysteroid dehydrogenase, germ cell-less, estrogen receptor β, insulin-like growth factor 1 receptor, daz-associated protein 1, cytochrome c oxidase subunit III, Wilms' tumour suppressor protein 1, and dehydrocholesterol reductase 7) were examined. Northern brook lamprey displayed higher expression of cytochrome c oxidase subunit III, whereas chestnut lamprey displayed higher expression of insulin-like growth factor 1 receptor; these genes may be involved in apoptosis and oocyte growth, respectively. Presumptive male larvae had higher expression of Wilms' tumour suppressor protein 1, which may be involved in the undifferentiated gonad and/or later testicular development. Differentiated females had higher expression of 17β hydroxysteroid dehydrogenase and daz-associated protein 1, which may be involved in female development. This study is the first to identify genes that may be involved in ovarian differentiation and fecundity in lampreys. Copyright © 2014 Elsevier Inc. All rights reserved.
Kavanaugh, Scott I; Nozaki, Masumi; Sower, Stacia A
2008-08-01
We cloned a cDNA encoding a novel (GnRH), named lamprey GnRH-II, from the sea lamprey, a basal vertebrate. The deduced amino acid sequence of the newly identified lamprey GnRH-II is QHWSHGWFPG. The architecture of the precursor is similar to that reported for other GnRH precursors consisting of a signal peptide, decapeptide, a downstream processing site, and a GnRH-associated peptide; however, the gene for lamprey GnRH-II does not have introns in comparison with the gene organization for all other vertebrate GnRHs. Lamprey GnRH-II precursor transcript was widely expressed in a variety of tissues. In situ hybridization of the brain showed expression and localization of the transcript in the hypothalamus, medulla, and olfactory regions, whereas immunohistochemistry using a specific antiserum showed only GnRH-II cell bodies and processes in the preoptic nucleus/hypothalamus areas. Lamprey GnRH-II was shown to stimulate the hypothalamic-pituitary axis using in vivo and in vitro studies. Lamprey GnRH-II was also shown to activate the inositol phosphate signaling system in COS-7 cells transiently transfected with the lamprey GnRH receptor. These studies provide evidence for a novel lamprey GnRH that has a role as a third hypothalamic GnRH. In summary, the newly discovered lamprey GnRH-II offers a new paradigm of the origin of the vertebrate GnRH family. We hypothesize that due to a genome/gene duplication event, an ancestral gene gave rise to two lineages of GnRHs: the gnathostome GnRH and lamprey GnRH-II.
Ostberg, Carl O.; Chase, Dorothy M.; Hayes, Michael C.; Duda, Jeffrey J.
2018-01-01
Lampreys have a worldwide distribution, are functionally important to ecological communities and serve significant roles in many cultures. In Pacific coast drainages of North America, lamprey populations have suffered large declines. However, lamprey population status and trends within many areas of this region are unknown and such information is needed for advancing conservation goals. We developed two quantitative PCR-based, aquatic environmental DNA (eDNA) assays for detection of Pacific Lamprey (Entosphenus tridentatus) and Lampetra spp, using locked nucleic acids (LNAs) in the probe design. We used these assays to characterize the spatial distribution of lamprey in 18 watersheds of Puget Sound, Washington, by collecting water samples in spring and fall. Pacific Lamprey and Lampetraspp were each detected in 14 watersheds and co-occurred in 10 watersheds. Lamprey eDNA detection rates were much higher in spring compared to fall. Specifically, the Pacific Lamprey eDNA detection rate was 3.5 times higher in spring and the Lampetra spp eDNA detection rate was 1.5 times higher in spring even though larval lamprey are present in streams year-round. This significant finding highlights the importance of seasonality on eDNA detection. Higher stream discharge in the fall likely contributed to reduced eDNA detection rates, although seasonal life history events may have also contributed. These eDNA assays differentiate Pacific Lamprey and Lampetra spp across much of their range along the west coast of North America. Sequence analysis indicates the Pacific Lamprey assay also targets other Entosphenus spp and indicates the Lampetra spp assay may have limited or no capability of detecting Lampetra in some locations south of the Columbia River Basin. Nevertheless, these assays will serve as a valuable tool for resource managers and have direct application to lamprey conservation efforts, such as mapping species distributions, occupancy modeling, and monitoring translocations and reintroductions.
Survival and spawning of gill-net-marked red salmon
Nelson, Philip R.; Abegglen, Carl E.
1955-01-01
The investigations conducted on sea lampreys in aquariums were concerned with the duration of the parasitic phase of life, feeding, growth, and the interrelations between predator and host fish. Observations on lampreys reared from metamorphosis to maturity were made at the Fish and Wildlife Service Laboratory at Hammond Bay, Michigan. Most of the experimental lampreys were mature and ripe after 14 to 18 months of parasitic life. They exhibited signs of irreversible physical degeneration which precedes death. Three specimens were immature after 14, 18, and 26 months in aquariums, thus indicating that under certain conditions, lampreys may extend their parasitic phase. The feeding activity, growth, and shrinkage in size of aquarium specimens were considered typical of lampreys in the Great Lakes, although the wild lampreys achieve greater average size. Female lampreys made more attacks, fed more, killed more fish, and grew larger than males. They also shrank proportionately more in length and weight as they approached sexual maturity, but their terminal average size was slightly larger than that of males. It is estimated that the average fish-kill by a wild lamprey exceeds, and could be approximately double, the 18.5 pounds of fish killed by a laboratory lamprey. The rate and extent of fish destruction depended on the size, sex, and stage in the parasitic phase of the lampreys, and on the species and size of the fish. There was an increase in the number of fish killed as the lampreys grew, and the fish were killed more quickly. Attacks made by experimental lampreys at any stage of their parasitic phase up to full maturity, and on any part of a prey fish except fins, usually resulted in death to the host. Some fish which survived lamprey attacks succumbed to fungus infections of the wounds. A small number of trout recovered from attacks, and their wounds healed.
Comparison of synthesis of 15α-hydroxylated steroids in males of four North American lamprey species
Bryan, Mara B.; Young, Bradley A.; Close, David A.; Semeyn, Jesse; Robinson, T. Craig; Bayer, Jennifer M.; Li, Weiming
2006-01-01
Recent studies have provided evidence that 15α-hydroxytestosterone (15α-T) and 15α-hydroxyprogesterone (15α-P) are produced in vitro and in vivo in adult male sea lampreys (Petromyzonmarinus), and that circulatory levels increase in response to injections with gonadotropin-releasing hormone (GnRH). We examined four species from the Petromyzontidae family including silver lampreys (Ichthyomyzon unicuspis), chestnut lampreys (I. castaneus), American brook lampreys (Lethenteron appendix), and Pacific lampreys (Entosphenus tridentatus) to determine if these unusual steroids were unique to sea lampreys or a common feature in lamprey species. In vitro production was examined through incubations of testis with tritiated precursors, and 15α-T and 15α-P production was confirmed in all species through co-elution with standards on both high performance liquid chromatography (HPLC) and thin layerchromatography. In vivo production was proven by demonstrating that HPLC-fractionated plasma had peaks of immunoreactive 15α-T and 15α-P that co-eluted with standards through using previously developed radioimmunoassays for 15α-T and 15α-P. The possible functionality of 15α-T and 15α-P was further examined in silver and Pacific lampreys by investigating the effect of injection of either type of lamprey GnRH on plasma concentrations of 15α-T and 15α-P. Injections with exogenous GnRH did not affect circulatory levels of either steroid in silver lampreys, and only GnRH III elicited higher levels of both steroids in Pacific lampreys. The 15α-hydroxylase enzyme(s) for steroids appeared to present in adult males of all species examined, but the question of whether 15α-hydroxylated steroids are functional in these lamprey species, and the significance of the 15-hydroxyl group, requires further research.
Hayes, Michael C.; Duda, Jeffrey J.
2018-01-01
Lampreys have a worldwide distribution, are functionally important to ecological communities and serve significant roles in many cultures. In Pacific coast drainages of North America, lamprey populations have suffered large declines. However, lamprey population status and trends within many areas of this region are unknown and such information is needed for advancing conservation goals. We developed two quantitative PCR-based, aquatic environmental DNA (eDNA) assays for detection of Pacific Lamprey (Entosphenus tridentatus) and Lampetra spp, using locked nucleic acids (LNAs) in the probe design. We used these assays to characterize the spatial distribution of lamprey in 18 watersheds of Puget Sound, Washington, by collecting water samples in spring and fall. Pacific Lamprey and Lampetra spp were each detected in 14 watersheds and co-occurred in 10 watersheds. Lamprey eDNA detection rates were much higher in spring compared to fall. Specifically, the Pacific Lamprey eDNA detection rate was 3.5 times higher in spring and the Lampetra spp eDNA detection rate was 1.5 times higher in spring even though larval lamprey are present in streams year-round. This significant finding highlights the importance of seasonality on eDNA detection. Higher stream discharge in the fall likely contributed to reduced eDNA detection rates, although seasonal life history events may have also contributed. These eDNA assays differentiate Pacific Lamprey and Lampetra spp across much of their range along the west coast of North America. Sequence analysis indicates the Pacific Lamprey assay also targets other Entosphenus spp and indicates the Lampetra spp assay may have limited or no capability of detecting Lampetra in some locations south of the Columbia River Basin. Nevertheless, these assays will serve as a valuable tool for resource managers and have direct application to lamprey conservation efforts, such as mapping species distributions, occupancy modeling, and monitoring translocations and reintroductions. PMID:29576966
Olfactory-mediated stream-finding behavior of migratory adult sea lamprey (Petromyzon marinus)
Vrieze, L.A.; Bergstedt, R.A.; Sorensen, P.W.
2011-01-01
Stream-finding behavior of adult sea lamprey (Petromyzon marinus), an anadromous fish that relies on pheromones to locate spawning streams, was documented in the vicinity of an important spawning river in the Great Lakes. Untreated and anosmic migrating sea lampreys were implanted with acoustic transmitters and then released outside the Ocqueoc River. Lampreys swam only at night and then actively. When outside of the river plume, lampreys pursued relatively straight bearings parallel to the shoreline while making frequent vertical excursions. In contrast, when within the plume, lampreys made large turns and exhibited a weak bias towards the river mouth, which one-third of them entered. The behavior of anosmic lampreys resembled that of untreated lampreys outside of the plume, except they pursued a more northerly compass bearing. To locate streams, sea lampreys appear to employ a three-phase odor-mediated strategy that involves an initial search along shorelines while casting vertically, followed by river-water-induced turning that brings them close to the river's mouth, which they then enter using rheotaxis. This novel strategy differs from that of salmonids and appears to offer this poor swimmer adaptive flexibility and suggests ways that pheromonal odors might be used to manage this invasive species.
Dunham, Jason B.; Chelgren, Nathan D.; Heck, Michael P.; Clark, Steven M.
2013-01-01
We evaluated the probability of detecting larval lampreys using different methods of backpack electrofishing in wadeable streams in the U.S. Pacific Northwest. Our primary objective was to compare capture of lampreys using electrofishing with standard settings for salmon and trout to settings specifically adapted for capture of lampreys. Field work consisted of removal sampling by means of backpack electrofishing in 19 sites in streams representing a broad range of conditions in the region. Captures of lampreys at these sites were analyzed with a modified removal-sampling model and Bayesian estimation to measure the relative odds of capture using the lamprey-specific settings compared with the standard salmonid settings. We found that the odds of capture were 2.66 (95% credible interval, 0.87–78.18) times greater for the lamprey-specific settings relative to standard salmonid settings. When estimates of capture probability were applied to estimating the probabilities of detection, we found high (>0.80) detectability when the actual number of lampreys in a site was greater than 10 individuals and effort was at least two passes of electrofishing, regardless of the settings used. Further work is needed to evaluate key assumptions in our approach, including the evaluation of individual-specific capture probabilities and population closure. For now our results suggest comparable results are possible for detection of lampreys by using backpack electrofishing with salmonid- or lamprey-specific settings.
Mixtures of Two Bile Alcohol Sulfates Function as a Proximity Pheromone in Sea Lamprey.
Brant, Cory O; Huertas, Mar; Li, Ke; Li, Weiming
2016-01-01
Unique mixtures of pheromone components are commonly identified in insects, and have been shown to increase attractiveness towards conspecifics when reconstructed at the natural ratio released by the signaler. In previous field studies of pheromones that attract female sea lamprey (Petromyzon marinus, L.), putative components of the male-released mating pheromone included the newly described bile alcohol 3,12-diketo-4,6-petromyzonene-24-sulfate (DkPES) and the well characterized 3-keto petromyzonol sulfate (3kPZS). Here, we show chemical evidence that unequivocally confirms the elucidated structure of DkPES, electrophysiological evidence that each component is independently detected by the olfactory epithelium, and behavioral evidence that mature female sea lamprey prefer artificial nests activated with a mixture that reconstructs the male-released component ratio of 30:1 (3kPZS:DkPES, molar:molar). In addition, we characterize search behavior (sinuosity of swim paths) of females approaching ratio treatment sources. These results suggest unique pheromone ratios may underlie reproductive isolating mechanisms in vertebrates, as well as provide utility in pheromone-integrated control of invasive sea lamprey in the Great Lakes.
Guiding out-migrating juvenile sea lamprey (Petromyzon marinus) with pulsed direct current
Johnson, Nicholas S.; Miehls, Scott M.
2014-01-01
Non-physical stimuli can deter or guide fish without affecting water flow or navigation and therefore have been investigated to improve fish passage at anthropogenic barriers and to control movement of invasive fish. Upstream fish migration can be blocked or guided without physical structure by electrifying the water, but directional downstream fish guidance with electricity has received little attention. We tested two non-uniform pulsed direct current electric systems, each having different electrode orientations (vertical versus horizontal), to determine their ability to guide out-migrating juvenile sea lamprey (Petromyzon marinus) and rainbow trout (Oncorhynchus mykiss). Both systems guided significantly more juvenile sea lamprey to a specific location in our experimental raceway when activated than when deactivated, but guidance efficiency decreased at the highest water velocities tested. At the electric field setting that effectively guided sea lamprey, rainbow trout were guided by the vertical electrode system, but most were blocked by the horizontal electrode system. Additional research should characterize the response of other species to non-uniform fields of pulsed DC and develop electrode configurations that guide fish over a range of water velocity.
,; ,; ,; ,; ,
2011-01-01
The impetus for developing this document is through implementing the Rocky Reach Pacific Lamprey Management Plan (PLMP), a component of the Rocky Reach Comprehensive Settlement Agreement, both of which are discussed more thoroughly in Section 1.2. The ultimate goal of the PLMP is to achieve No Net Impact (NNI) to Pacific lamprey of ongoing operations of the Rocky Reach Hydroelectric Project. Conducting artificial propagation of Pacific lamprey was considered by the state and federal fishery agencies and Tribes that are parties to the Settlement Agreement as a potential Protection, Mitigation, and Enhancement measure (PME) for achieving NNI during the term of the current Rocky Reach license. This document is intended to provide guidance as to the feas ibility of culturing Pacific lamprey, the associated facilities necessary for culture practices, and identifying uncertainties for monitoring culture efficacy and rationale for implementing Pacific lamprey artificial propagation
Spice, E K; Whitesel, T A; McFarlane, C T; Docker, M F
2011-12-22
The Pacific lamprey (Entosphenus tridentatus) is an anadromous fish that is of conservation concern in North America and Asia. Data on Pacific lamprey population structure are scarce and conflicting, impeding conservation efforts. We optimized 12 polymorphic microsatellite loci for the Pacific lamprey. Three to 13 alleles per locus were observed in a sample of 51 fish collected from the West Fork Illinois River, Oregon. Observed heterozygosity ranged from 0.235 to 0.902 and expected heterozygosity ranged from 0.214 to 0.750. Cross-species amplification produced 8 to 12 polymorphic loci in four other Entosphenus species and in the western brook lamprey (Lampetra richardsoni). Two loci appear to be diagnostic for distinguishing Entosphenus from Lampetra. These markers will be valuable for evaluating population structure and making conservation decisions for E. tridentatus and other lamprey species.
Growth and survival of sea lampreys from metamorphosis to spawning in Lake Huron
Swink, William D.; Johnson, Nicholas S.
2014-01-01
Larval Sea Lampreys Petromyzon marinus live burrowed in stream bottoms and then metamorphose into their parasitic stage. Among larvae that metamorphose in a given year (i.e., parasitic cohort), autumn out-migrants (October–December) to the Laurentian Great Lakes can feed on fish for up to 6 months longer than spring outmigrants (March–May), which overwinter in streams without feeding. We evaluated whether the season of outmigration affected growth or survival of newlymetamorphosed Sea Lampreys in LakeHuron. Newlymetamorphosed individuals (n=2,718) from three parasitic cohorts were netted during their out-migration from BlackMallard Creek, Michigan, to LakeHuron during autumn 1997 through spring 2000; each out-migrant was injected with a sequentially numbered coded wire tag and was released back into the creek. After up to 18 months of feeding in the Great Lakes, 224 (8.2%) Sea Lampreys were recaptured (in 1999–2001) as upstream-migrating adults in tributaries to Lakes Huron and Michigan. Recovery rates of autumn and spring out-migrants as adults were 9.4% and 7.8%, respectively, and these rates did not significantly differ. Overwinter feeding (i.e., as parasites) by autumn out-migrants did not produce adult mean sizes greater than those of spring out-migrants. Because we detected no growth or survival differences between autumn and spring out-migrants, the capture of newly metamorphosed Sea Lampreys at any point during their out-migration should provide equal reductions in damage to Great Lakes fisheries. The absence of a difference in growth or survival between autumn and spring out-migrants is an aspect of Sea Lamprey life history that yields resiliency to this invasive parasite and complicates efforts for its control in the Great Lakes.
Bills, Terry D.; Boogaard, Michael A.; Johnson, David A.; Brege, Dorance C.; Scholefield, Ronald J.; Westman, R. Wayne; Stephens, Brian E.
2003-01-01
It has long been known that the toxicity of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) is influenced by chemical and physical properties of water. As the pH, conductivity, and alkalinity of water increase, greater concentrations of TFM are required to kill sea lamprey (Petromyzon marinus) larvae. Consequently, the concentration of TFM required for effective treatment varies among streams. Brown trout (Salmo trutta) and sea lamprey larvae were exposed to a series of TFM concentrations in a continuous-flow diluter for 12 h. Twenty five exposures were conducted at various water alkalinities and pHs that treatment personnel encounter during lampricide treatments. Survival/mortality data were analyzed for lampricide concentrations that produced 50 and 99.9% mortality (LC50 and LC99.9) for sea lamprey larvae and 25 and 50% mortality (LC25 and LC50) for brown trout. Linear regression analyses were performed for each set of tests for each selected alkalinity by comparing the 12-h post exposure LC99.9 sea lamprey data and LC25 brown trout data at each pH. Mortality data from on-site toxicity tests conducted by lampricide control personnel were compared to predicted values from the pH/alkalinity prediction model. Of the 31 tests examined, 27 resulted in the LC100s (lowest TFM concentration where 100% mortality of sea lamprey was observed after 12 h of exposure) falling within 0.2 mg/L of the predicted sea lamprey minimum lethal (LC99.9) range. The pH/alkalinity prediction model provides managers with an operational tool that reduces the amount of TFM required for effective treatment while minimizing the impact on non-target organisms.
Lantry, Brian F.; Adams, Jean; Christie, Gavin; Schaner, Teodore; Bowlby, James; Keir, Michael; Lantry, Jana; Sullivan, Paul; Bishop, Daniel; Treska, Ted; Morrison, Bruce
2015-01-01
We examined how attack frequency by sea lampreys on fishes in Lake Ontario varied in response to sea lamprey abundance and preferred host abundance (lake trout > 433 mm). For this analysis we used two gill net assessment surveys, one angler creel survey, three salmonid spawning run datasets, one adult sea lamprey assessment, and a bottom trawl assessment of dead lake trout. The frequency of fresh sea lamprey marks observed on lake trout from assessment surveys was strongly related to the frequency of sea lamprey attacks observed on salmon and trout from the creel survey and spawning migrations. Attack frequencies on all salmonids examined were related to the ratio between the abundances of adult sea lampreys and lake trout. Reanalysis of the susceptibility to sea lamprey attack for lake trout strains stocked into Lake Ontario reaffirmed that Lake Superior strain lake trout were among the most and Seneca Lake strain among the least susceptible and that Lewis Lake strain lake trout were even more susceptible than the Superior strain. Seasonal attack frequencies indicated that as the number of observed sea lamprey attacks decreased during June–September, the ratio of healing to fresh marks also decreased. Simulation of the ratios of healing to fresh marks indicated that increased lethality of attacks by growing sea lampreys contributed to the decline in the ratios and supported laboratory studies about wound healing duration.
Lantry, Brian F.; Adams, Jean V.; Christie, Gavin; Schaner, Teodore; Bowlby, James; Keir, Michael; Lantry, Jana; Sullivan, Paul; Bishop, Daniel; Treska, Ted; Morrison, Bruce
2015-01-01
We examined how attack frequency by sea lampreys on fishes in Lake Ontario varied in response to sea lamprey abundance and preferred host abundance (lake trout > 433 mm). For this analysis we used two gill net assessment surveys, one angler creel survey, three salmonid spawning run datasets, one adult sea lamprey assessment, and a bottom trawl assessment of dead lake trout. The frequency of fresh sea lamprey marks observed on lake trout from assessment surveys was strongly related to the frequency of sea lamprey attacks observed on salmon and trout from the creel survey and spawning migrations. Attack frequencies on all salmonids examined were related to the ratio between the abundances of adult sea lampreys and lake trout. Reanalysis of the susceptibility to sea lamprey attack for lake trout strains stocked into Lake Ontario reaffirmed that Lake Superior strain lake trout were among the most and Seneca Lake strain among the least susceptible and that Lewis Lake strain lake trout were even more susceptible than the Superior strain. Seasonal attack frequencies indicated that as the number of observed sea lamprey attacks decreased during June–September, the ratio of healing to fresh marks also decreased. Simulation of the ratios of healing to fresh marks indicated that increased lethality of attacks by growing sea lampreys contributed to the decline in the ratios and supported laboratory studies about wound healing duration.
Behavior and potential threats to survival of migrating lamprey ammocoetes and macrophthalmia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Mary L.; Jackson, Aaron D.; Lucas, Martyn C.
2015-03-01
Upon metamorphosis, anadromous juvenile lamprey (macrophthalmia) exhibit distinct migration behaviors that take them from larval rearing habitats in streams to the open ocean. While poorly studied, lamprey larvae (ammocoetes) also engage in downstream movement to some degree. Like migrating salmon smolts, lamprey macrophthalmia undergo behavioral changes associated with a highly synchronized metamorphosis. Unlike salmon smolts, the timing of juvenile migration in lamprey is protracted and poorly documented. Lamprey macrophthalmia and ammocoetes are not strong swimmers, attaining maximum individual speeds of less than 1 m s-1, and sustained speeds of less than 0.5 m s-1. They are chiefly nocturnal and distributemore » throughout the water column, but appear to concentrate near the bottom in the thalweg of deep rivers. At dams and irrigation diversions, macrophthalmia can become impinged on screens or entrained in irrigation canals, suffer increased predation, and experience physical injury that may result in direct or delayed mortality. The very structures designed to protect migrating juvenile salmonids can be harmful to juvenile lamprey. Yet at turbine intakes and spillways, lampreys, which have no swim bladder, can withstand changes in pressure and shear stress large enough to injure or kill most teleosts. Lamprey populations are in decline in many parts of the world, with some species designated as species of concern for conservation that merit legally mandated protections. Hence, provisions for safe passage of juvenile lamprey are being considered at dams and water diversions in North America and Europe.« less
Behavioral responses of Pacific lamprey to alarm cues
Porter, Laurie L.; Hayes, Michael C.; Jackson, Aaron D.; Burke, Brian J.; Moser, Mary L.; Wagner, R. Steven
2017-01-01
Pacific lamprey (Entosphenus tridentatus), an anadromous ectoparasite, faces several challenges during adult migration to spawning grounds. Developing methods to address these challenges is critical to the success of ongoing conservation efforts. The challenges are diverse, and include anthropogenic alterations to the ecosystem resulting in loss of habitat, impassable barriers such as dams, climate change impacts, and altered predator fields. We conducted a behavioral study to understand how adult migrating Pacific lamprey respond to potential alarm cues: White Sturgeon (Acipenser transmontanus), human saliva, decayed Pacific lamprey, and river otter (Lontra canadensis). Research has shown that some species of lamprey can be guided to a location using odors and similar cues may be useful as a management tool for Pacific lamprey. Experiments were conducted over 2 nights and measured the number of entries (count) and duration of time spent (occupancy) by adult lamprey in each arm of a two-choice maze. During the first night, no odor was added to test for selection bias between arms. During the second night odor was added to one arm of the maze. Contrary to expectations, lamprey were significantly attracted to the river otter odor in both count and occupancy. No significant differences were found in the response of lamprey to the other three odors. Results from this study indicate that Pacific lamprey do respond to some odors; however, additional tests are necessary to better identify the types of odors and concentrations that elicit a repeatable response.
Birceanu, Oana; McClelland, Grant B; Wang, Yuxiang S; Wilkie, Michael P
2009-10-04
Although the pesticide, 3-trifluoromethyl-4-nitrophenol (TFM), has been extensively used to control invasive sea lamprey (Petromyzon marinus) populations in the Great Lakes, it is surprising that its mechanism(s) of toxicity is unresolved. A better knowledge of the mode of toxicity of this pesticide is needed for predicting and improving the effectiveness of TFM treatments on lamprey, and for risk assessments regarding potential adverse effects on invertebrate and vertebrate non-target organisms. We investigated two hypotheses of TFM toxicity in larval sea lamprey. The first was that TFM interferes with oxidative ATP production by mitochondria, causing rapid depletion of energy stores in vital, metabolically active tissues such as the liver and brain. The second was that TFM toxicity resulted from disruption of gill-ion uptake, adversely affecting ion homeostasis. Exposure of larval sea lamprey to 4.6 m gl(-1) TFM (12-h LC50) caused glycogen concentrations in the brain to decrease by 80% after 12h, suggesting that the animals increased their reliance on glycolysis to generate ATP due to a shortfall in ATP supply. This conclusion was reinforced by a 9-fold increase in brain lactate concentration, a 30% decrease in brain ATP concentration, and an 80% decrease in phosphocreatine (PCr) concentration after 9 and 12h. A more pronounced trend was noted in the liver, where glycogen decreased by 85% and ATP was no longer detected after 9 and 12h. TFM led to marginal changes in whole body Na(+), Cl(-), Ca(2+) and K(+), as well as in plasma Na(+) and Cl(-), which were unlikely to have contributed to toxicity. TFM had no adverse effect on Na(+) uptake rates or gill Na(+)/K(+)-ATPase activity. We conclude that TFM toxicity in the sea lamprey is due to a mismatch between ATP consumption and ATP production rates, leading to a depletion of glycogen in the liver and brain, which ultimately leads to neural arrest and death.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linley, Timothy; Krogstad, Eirik; Mueller, Robert
2016-06-21
We investigated mercury accumulation in Pacific lamprey and sediments in the Columbia River basin. Mercury concentrations in larval lamprey differed significantly among sample locations (P < 0.001) and were correlated with concentrations in sediments (r 2 = 0.83), whereas adult concentrations were highly variable (range 0.1–9.5 µg/g) and unrelated to holding time after collection. The results suggest that Pacific lamprey in the Columbia River basin may be exposed to mercury levels that have adverse ecological effects.
Schultz, Luke; Mayfield, Mariah P.; Sheoships, Gabe T.; Wyss, Lance A.; Clemens, Benjamin J.; Whitlock, Steven L.; Schreck, Carl B.
2016-01-01
Pacific lamprey Entosphenus tridentatus is an anadromous fish native to the Pacific Northwest of the USA. That has declined substantially over the last 40 years. Effective conservation of this species will require an understanding of the habitat requirements for each life history stage. Because its life cycle contains extended freshwater rearing (3–8 years), the larval stage may be a critical factor limiting abundance of Pacific lamprey. The objective of our study was to estimate the influence of barriers and habitat characteristics on the catch-per-unit-effort (CPUE) of larval Pacific lamprey in the Willamette River Basin, Oregon, USA. We sampled lampreys at multiple locations in wadeable streams throughout the basin in 2011–13 and used an information theoretic approach to examine the relative influence of fine- and large-scale predictors of CPUE. Pacific lamprey was observed across the basin, but its relative abundance appeared to be limited by the presence of natural and artificial barriers in some sub-basins. Lower velocity habitats such as off-channel areas and pools contained higher densities of larval lamprey; mean Pacific lamprey CPUE in off-channel habitats was 4 and 32 times greater than in pools and riffles respectively. Restoration and conservation strategies that improve fish passage, enhance natural hydrologic and depositional processes and increase habitat heterogeneity will likely benefit larval Pacific lamprey.
Kurath, Gael; Jolley, C J.; Thompson, Tarin M.; Thompson, D.; Whitesel, A.T.; Gutenberger, S.; Winton, James R.
2013-01-01
Pacific Lampreys Entosphenus tridentatus have experienced severe population declines in recent years and efforts to develop captive rearing programs are under consideration. However, there is limited knowledge of their life history, ecology, and potential to harbor or transmit pathogens that may cause infectious disease. As a measure of the possible risks associated with introducing wild lampreys into existing fish culture facilities, larval lampreys (ammocoetes) were tested for susceptibility to infection and mortality caused by experimental exposures to the fish rhabdovirus pathogens: infectious hematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV). Two IHNV isolates, representing the U and M genogroups, and one VHSV isolate from the IVa genotype were each delivered to groups of ammocoetes by immersion at moderate and high viral doses, and by intraperitoneal injection. Ammocoetes were then held in triplicate tanks with no substrate or sediment. During 41 d of observation postchallenge there was low or no mortality in all groups, and no virus was detected in the small number of fish that died. Ammocoetes sampled for incidence of infection at 6 and 12 d after immersion challenges also had no detectable virus, and no virus was detected in surviving fish from any group. A small number of ammocoetes sampled 6 d after the injection challenge had detectable virus, but at levels below the original quantity of virus injected. Overall there was no evidence of infection, replication, or persistence of any of the viruses in any of the treatment groups. Our results suggest that Pacific Lampreys are highly unlikely to serve as hosts that maintain or transmit these viruses.
Liedtke, Theresa L.; Weiland, Lisa K.; Mesa, Matthew G.
2015-08-27
Numbers of adult and juvenile Pacific lamprey ( Entosphenus tridentatus ) in the upper Columbia River Basin of the interior Pacific Northwest have decreased from historical levels (Close and others, 2002), raising concerns f rom State and Federal agencies and Tribal entities. In 1994, the U.S. Fish and Wildlife Service designated Pacific lamprey as a Category 2 candidate species and in 2003, the species was petitioned for listing under the Endangered Species Act. Listing consideration and potential recovery planning are significantly hindered by a lack of information on the basic biology and ecology of lampreys, including limiting factors. To date (2015), several factors that may limit lamprey production require study, including dam passage issues, contaminants, and effects on habitat.
Newton, Teresa; Boogaard, Michael A.; Gray, Brian R.; Hubert, Terrance D.; Schloesser, Nicholas
2017-01-01
The invasive sea lamprey (Petromyzon marinus) poses a substantial threat to fish communities in the Great Lakes. Efforts to control sea lamprey populations typically involve treating tributary streams with lampricides on a recurring cycle. The presence of a substantial population of larval sea lampreys in the aquatic corridor between Lakes Huron and Erie prompted managers to propose a treatment using the granular formulation of Bayluscide® that targets larval sea lampreys that reside in sediments. However, these treatments could cause adverse effects on native freshwater mussels—imperiled animals that also reside in sediments. We estimated the risk of mortality and sub-lethal effects among eight species of adult and sub-adult mussels exposed to Bayluscide® for durations up to 8 h to mimic field applications. Mortality was appreciable in some species, especially in sub-adults (range, 23–51%). The lethal and sub-lethal effects were positively associated with the duration of exposure in most species and life stage combinations. Estimates of the median time of exposure that resulted in lethal and sub-lethal effects suggest that sub-adults were often affected by Bayluscide® earlier than adults. Siphoning activity and burrowing position of mussels during exposure may have moderated the uptake of Bayluscide® and may have influenced lethal and sub-lethal responses. Given that the various species and life stages were differentially affected, it will be difficult to predict the effects of Bayluscide® treatments on mussels.
Wilkie, Michael P; Claude, Jaime F; Cockshutt, Amanda; Holmes, John A; Wang, Yuxiang S; Youson, John H; Walsh, Patrick J
2006-01-01
The jawless fish, the sea lamprey (Petromyzon marinus), spends part of its life as a burrow-dwelling, suspension-feeding larva (ammocoete) before undergoing a metamorphosis into a free swimming, parasitic juvenile that feeds on the blood of fishes. We predicted that animals in this juvenile, parasitic stage have a great capacity for catabolizing amino acids when large quantities of protein-rich blood are ingested. The sixfold to 20-fold greater ammonia excretion rates (J(Amm)) in postmetamorphic (nonfeeding) and parasitic lampreys compared with ammocoetes suggested that basal rates of amino acid catabolism increased following metamorphosis. This was likely due to a greater basal amino acid catabolizing capacity in which there was a sixfold higher hepatic glutamate dehydrogenase (GDH) activity in parasitic lampreys compared with ammocoetes. Immunoblotting also revealed that GDH quantity was 10-fold and threefold greater in parasitic lampreys than in ammocoetes and upstream migrant lampreys, respectively. Higher hepatic alanine and aspartate aminotransferase activities in the parasitic lampreys also suggested an enhanced amino acid catabolizing capacity in this life stage. In contrast to parasitic lampreys, the twofold larger free amino acid pool in the muscle of upstream migrant lampreys confirmed that this period of natural starvation is accompanied by a prominent proteolysis. Carbamoyl phosphate synthetase III was detected at low levels in the liver of parasitic and upstream migrant lampreys, but there was no evidence of extrahepatic (muscle, intestine) urea production via the ornithine urea cycle. However, detection of arginase activity and high concentrations of arginine in the liver at all life stages examined infers that arginine hydrolysis is an important source of urea. We conclude that metamorphosis is accompanied by a metabolic reorganization that increases the capacity of parasitic sea lampreys to catabolize intermittently large amino acid loads arising from the ingestion of protein rich blood from their prey/hosts. The subsequent generation of energy-rich carbon skeletons can then be oxidized or retained for glycogen and fatty acid synthesis, which are essential fuels for the upstream migratory and spawning phases of the sea lamprey's life cycle.
Liquid chromatographic method for determining the concentration of bisazir in water
Scholefield, Ronald J.; Slaght, Karen S.; Allen, John L.
1997-01-01
Barrier dams, traps, and lampricides are the techniques currently used by the Great Lakes Fishery Commission to control sea lampreys (Petromyzon marinus) in the Great Lakes. To augment these control techniques, a sterile-male-release research program was initiated at the Lake Huron Biological Station. Male sea lampreys were sterilized by intraperitoneal injection of the chemical sterilant P,P-bis(1-aziridinyl)-N-methylphosphinothioic amide (bisazir). An analytical method was needed to quantitate the concentration of bisazir in water and to routinely verify that bisazir (>25 μg/L) does not persist in the treated effluent discharged from the sterilization facility to Lake Huron. A rapid, accurate, and sensitive liquid chromatographic (LC) method was developed for determining bisazir in water. Bisazir was dissolved in Lake Huron water; extracted and concentrated on a C18 solid-phase extraction column; eluted with methanol; and quantitated by reversed-phase LC using a C18 column, a mobile phase of 70% water and 30% methanol (v/v), and UV detection (205 nm). Bisazir retention time was 7-8 min; total run time was about 20 min. Method detection limit for bisazir dissolved in Lake Huron water was about 15 μg/L. Recovery from Lake Huron water fortified with bisazir at 100 μg/L was 94% (95% confidence interval, 90.2-98.2%).
Ecology of the Lake Huron fish community, 1970-1999
Dobiesz, Norine E.; McLeish, David A.; Eshenroder, Randy L.; Bence, James R.; Mohr, Lloyd C.; Ebener, Mark P.; Nalepa, Thomas F.; Woldt, Aaron P.; Johnson, James E.; Argyle, Ray L.; Makarewicz, Joseph C.
2005-01-01
We review the status of the Lake Huron fish community between 1970 and 1999 and explore the effects of key stressors. Offshore waters changed little in terms of nutrient enrichment, while phosphorus levels declined in inner Saginaw Bay. Introduced mussels (Dreissena spp.) proliferated and may have caused a decline in Diporeia spp. This introduction could have caused a decline in lake whitefish (Coregonus clupeaformis) growth and condition, with serious repercussions for commercial fisheries. Bythotrephes, an exotic predatory cladoceran, and other new exotics may be influencing the fish community. Sea lampreys (Petromyzon marinus) remained prevalent, but intensive control efforts on the St. Mary's River may reduce their predation on salmonines. Overfishing was less of a problem than in the past, although fishing continued to reduce the amount of lake trout (Salvelinus namaycush) spawning biomass resulting from hatchery-reared fish planted to rehabilitate this species. Massive stocking programs have increased the abundance of top predators, but lake trout were rehabilitated in only one area. Successful lake trout rehabilitation may require lower densities of introduced pelagic prey fish than were seen in the 1990s, along with continued stocking of hatchery-reared lake trout and control of sea lamprey. Such reductions in prey fish could limit Pacific salmon (Oncorhynchus spp.) fisheries.
Relatively rapid loss of lampricide residues from fillet tissue of fish after routine treatment
Vue, C.; Bernardy, J.A.; Hubert, T.D.; Gingerich, W.H.; Stehly, G.R.
2002-01-01
The selective sea lamprey (Petromyzon marinus) larvicide 3-trifluoromethyl-4-nitrophenol (TFM) is currently used to control parasitic sea lampreys in tributaries to the Great Lakes basin. The concentration and persistence of TFM and its major metabolite, TFM glucuronide (TFM-glu), was determined in fillet tissue of fish after a typical stream application. Rainbow trout (Oncorhynchus mykiss) and channel catfish (Ictalurus punctatus) were exposed to a nominal concentration of 12.6 nmol/mL TFM for about 12 h during a sea lamprey control treatment of the Ford River in Michigan. Concentrations of TFM and TFM-glu were greatest in the fillet tissues during the exposure period, with greater residues in channel catfish (wet wt; mean, 6.95 nmol/g TFM; mean, 2.40 nmol/g TFM-glu) than in rainbow trout (wet wt; mean, 1.45 nmol/g TFM; mean, 0.93 nmol/g TFM-glu). After the exposure period, residues in both species decreased by 90-99% within 6-12 h and were less than the quantitation limit (<0.03 nmol/g) within 36 h.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colotelo, Alison; Deters, Kate
2017-05-26
Pacific Northwest National Laboratory has developed a super-small acoustic tracking tag designed just for juvenile lamprey. In this video, PNNL researcher Alison Colotelo describes how she and her colleague Kate Deters inject young lamprey with the PNNL tag.
Gonzalez, Rosalinda; Dunham, Jason B.; Lightcap, Scott W.; McEnroe, Jeffery R.
2017-01-01
The influences of large wood on Pacific salmon are well-studied, but studies of nonsalmonid species such as lampreys are uncommon. To address this need, we evaluated the potential effects of large wood on larval lampreys (Pacific Lamprey, Entosphenus tridentatus; and potentially Western Brook Lamprey Lampetra richardsoni), as well as juvenile Coho Salmon Oncorhynchus kisutch, in a small coastal Oregon stream. Our objectives were to 1) identify in-stream habitat characteristics associated with the presence of larval lampreys and abundance of juvenile Coho Salmon; and 2) evaluate how these characteristics were associated with in-stream wood. To address habitat use, we quantified presence of larval lampreys in 92 pools and abundance of juvenile Coho Salmon in 44 pools during summer low flows. We focused on a study reach where large wood was introduced into the stream between 2008 and 2009. Results indicated that presence of larval lampreys was significantly associated with availability of fine sediment and deeper substrate. The abundance of juvenile Coho Salmon (fish/pool) was strongly associated with pool surface area and to a weaker extent with the proportion of cobble and boulder substrates in pools. Pools with wood, regardless of whether they were formed by wood, had significantly greater coverage of fine sediment, deeper substrate, and greater pool surface area. Taken together, these results suggest that in-stream wood can provide habitat associated with presence of larval lampreys and greater abundance of juvenile Coho Salmon.
A surface tow net for collection of parasitic-phase sea lampreys
Dahl, Frederick H.
1968-01-01
A STUDY OF MIGRATORY BEHAVIOR of parasitic sea lampreys (Petromyzon marinus) in the Great Lakes required a means of capturing lampreys for tagging and releasing in St. Marys River, Lake Huron. Smith and Elliott (1953) fished specially made gill and trap nets for sea lampreys, but stationary nets could not be used in the St. Marys River because of boat traffic, interference with sport fishermen, and fast currents.
Haro, A.; Kynard, B.
1997-01-01
Movement and behavior of adult American shad Alosa sapidissima and sea lamprey Petromyzon marinus were monitored by closed-circuit video at several locations within a modified Ice Harbor fishway. American shad ascended and descended the fishway exclusively by surface weirs, while sea lampreys used both surface weirs and submerged orifices. Upstream movement of American shad during the day was higher than at night at both lower and middle fishway observation sites. Peak downstream movement of American shad at both locations was associated with decreasing light levels in the evening. Sea lampreys moved primarily at night at the lower and middle fishway sites. Mean daily passage efficiency was low (1% for American shad, -2% for sea lamprey) at the lower fishway surface weir, but passage efficiency at the middle fishway surface weir was moderate (70% for American shad, 35% for sea lamprey). High water velocity, air entrainment, and turbulence of the modified Ice Harbor fishway design appeared to inhibit American shad and sea lamprey passage by disrupting upstream migratory motivation and visual and rheotactic orientation.
Hahn, Mark E.; Woodin, Bruce R.; Stegeman, John J.; Tillitt, Donald E.
1998-01-01
The mammalian aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that controls the expression of cytochrome P450 1A (CYP1A) genes in response to halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The natural ligand and normal physiologic function of this protein are as yet unknown. One approach to understanding AHR function and significance is to determine the evolutionary history of this receptor and of processes such as CYP1A induction that are controlled by the AHR in mammals. In these studies, AHR function was evaluated in representative cartilaginous fish (little skate, Raja erinacea) and jawless fish (sea lamprey, Petromyzon marinus and Atlantic hagfish, Myxine glutinosa), using CYP1A induction as a model AHR-dependent response. Treatment of skate with β-naphthoflavone (BNF) caused an 8-fold increase in hepatic ethoxyresorufin O-deethylase (EROD) activity as well as a 37-fold increase in the content of immunodetectable CYP1A protein. Evidence of CYP1A inducibility was also obtained for another cartilaginous fish, the smooth dogfish Mustelus canis. In contrast, hepatic EROD activity was not detected in untreated lamprey nor in lamprey treated with 3,3′,4,4′-tetrachlorobiphenyl (TCB), a potent AHR agonist in teleosts. A possible CYP1A homolog was detected in lamprey hepatic microsomes by one of three antibodies to teleost CYP1A, but expression of this protein was not altered by TCB treatment. CYP1A protein and catalytic activity were measurable in hagfish, but neither was induced after treatment with TCB. These results suggest that the AHR-CYP1A signal transduction pathway is highly conserved in gnathostomes, but that there may be fundamental differences in AHR signaling or AHR-CYP1A coupling in agnathan fish. Agnathan fish such as hagfish and lamprey may be interesting model species for examining possible ancestral AHR functions not related to CYP1A regulation.
Lamprey: tracking users on the World Wide Web.
Felciano, R M; Altman, R B
1996-01-01
Tracking individual web sessions provides valuable information about user behavior. This information can be used for general purpose evaluation of web-based user interfaces to biomedical information systems. To this end, we have developed Lamprey, a tool for doing quantitative and qualitative analysis of Web-based user interfaces. Lamprey can be used from any conforming browser, and does not require modification of server or client software. By rerouting WWW navigation through a centralized filter, Lamprey collects the sequence and timing of hyperlinks used by individual users to move through the web. Instead of providing marginal statistics, it retains the full information required to recreate a user session. We have built Lamprey as a standard Common Gateway Interface (CGI) that works with all standard WWW browsers and servers. In this paper, we describe Lamprey and provide a short demonstration of this approach for evaluating web usage patterns.
Discovery of fossil lamprey larva from the Lower Cretaceous reveals its three-phased life cycle
Chang, Mee-mann; Wu, Feixiang; Miao, Desui; Zhang, Jiangyong
2014-01-01
Lampreys are one of the two surviving jawless vertebrate groups and one of a few vertebrate groups with the best exemplified metamorphosis during their life cycle, which consists of a long-lasting larval stage, a peculiar metamorphosis, and a relatively short adulthood with a markedly different anatomy. Although the fossil records have revealed that many general features of extant lamprey adults were already formed by the Late Devonian (ca. 360 Ma), little is known about the life cycle of the fossil lampreys because of the lack of fossilized lamprey larvae or transformers. Here we report the first to our knowledge discovery of exceptionally preserved premetamorphic and metamorphosing larvae of the fossil lamprey Mesomyzon mengae from the Lower Cretaceous of Inner Mongolia, China. These fossil ammocoetes look surprisingly modern in having an eel-like body with tiny eyes, oral hood and lower lip, anteriorly positioned branchial region, and a continuous dorsal skin fin fold and in sharing a similar feeding habit, as judged from the detritus left in the gut. In contrast, the larger metamorphosing individuals have slightly enlarged eyes relative to large otic capsules, thickened oral hood or pointed snout, and discernable radials but still anteriorly extended branchial area and lack a suctorial oral disk, which characterize the early stages of the metamorphosis of extant lampreys. Our discovery not only documents the larval conditions of fossil lampreys but also indicates the three-phased life cycle in lampreys emerged essentially in their present mode no later than the Early Cretaceous. PMID:25313060
Maklad, Adel; Reed, Caitlyn; Johnson, Nicholas S.; Fritzsch, Bernd
2014-01-01
In jawed (gnathostome) vertebrates, the inner ears have three semicircular canals arranged orthogonally in the three Cartesian planes: one horizontal (lateral) and two vertical canals. They function as detectors for angular acceleration in their respective planes. Living jawless craniates, cyclostomes (hagfish and lamprey) and their fossil records seemingly lack a lateral horizontal canal. The jawless vertebrate hagfish inner ear is described as a torus or doughnut, having one vertical canal, and the jawless vertebrate lamprey having two. These observations on the anatomy of the cyclostome (jawless vertebrate) inner ear have been unchallenged for over a century, and the question of how these jawless vertebrates perceive angular acceleration in the yaw (horizontal) planes has remained open. To provide an answer to this open question we reevaluated the anatomy of the inner ear in the lamprey, using stereoscopic dissection and scanning electron microscopy. The present study reveals a novel observation: the lamprey has two horizontal semicircular ducts in each labyrinth. Furthermore, the horizontal ducts in the lamprey, in contrast to those of jawed vertebrates, are located on the medial surface in the labyrinth rather than on the lateral surface. Our data on the lamprey horizontal duct suggest that the appearance of the horizontal canal characteristic of gnathostomes (lateral) and lampreys (medial) are mutually exclusive and indicate a parallel evolution of both systems, one in cyclostomes and one in gnathostome ancestors.
Klassen, Waldemar; Adams, Jean V.; Twohey, Michael B.
2004-01-01
The suppressive effects of trapping adult sea lampreys, Petromyzon marinus Linnaeus, and releasing sterile males (SMRT) or females (SFRT) into a closed system were expressed in deterministic models. Suppression was modeled as a function of the proportion of the population removed by trapping, the number of sterile animals released, the reproductive rate and sex ratio of the population, and (for the SFRT) the rate of polygyny. Releasing sterile males reduced populations more quickly than did the release of sterile females. For a population in which 30% are trapped, sterile animals are initially released at ratio of 10 sterile to 1 fertile animal, 5 adult progeny are produced per fertile mating, 60% are male, and males mate with an average of 1.65 females, the initial population is reduced 87% by SMRT and 68% by SFRT in one generation. The extent of suppression achieved is most sensitive to changes in the initial sterile release ratio. Given the current status of sea lamprey populations and trapping operations in the Great Lakes, the sterile-male-release technique has the best chance for success on a lake-wide basis if implemented in Lake Michigan. The effectiveness of the sterile-female-release technique should be investigated in a controlled study. Advancing trapping technology should be a high priority in the near term, and artificial rearing of sea lampreys to the adult stage should be a high priority in the long term. The diligent pursuit of sea lamprey suppression over a period of several decades can be expected to yield great benefits.
Progress toward lake trout restoration in Lake Michigan
Holey, Mark E.; Rybicki, Ronald W.; Eck, Gary W.; Brown, Edward H.; Marsden, J. Ellen; Lavis, Dennis S.; Toneys, Michael L.; Trudeau, Tom N.; Horrall, Ross M.
1995-01-01
Progress toward lake trout restoration in Lake Michigan is described through 1993. Extinction of the native lake trout fishery by sea lamprey predation, augmented by exploitation and habitat destruction, resulted in an extensive stocking program of hatchery-reared lake trout that began in 1965. Sea lamprey abundance was effectively controlled using selective chemical toxicants. The initial stocking produced a measurable wild year class of lake trout by 1976 in Grand Traverse Bay, but failed to continue probably due to excessive exploitation. The overall lack of successful reproduction lakewide by the late 1970s led to the development and implementation in 1985 of a focused inter-agency lakewide restoration plan by a technical committee created through the Lake Committee structure of the Great Lakes Fishery Commission. Strategies implemented in 1985 by the plan included setting a 40% total mortality goal lakewide, creating two large refuges designed to encompass historically the most productive spawning habitat and protect trout stocked over their home range, evaluating several lake trout strains, and setting stocking priorities throughout the lake. Target levels for stocking in the 1985 Plan have never been reached, and are much less than the estimated lakewide recruitment of yearlings by the native lake trout stocks. Since 1985, over 90% of the available lake trout have been stocked over the best spawning habitat, and colonization of the historically productive offshore reefs has occurred. Concentrations of spawning lake trout large enough for successful reproduction, based on observations of successful hatchery and wild stocks, have developed at specific reefs. Continued lack of recruitment at these specific sites suggests that something other than stotk abundance has limited success. Poor survival of lake trout eggs, assumed to be related to contaminant burden, occurred in the late 1970s and early 1980s, but survival has since increased to equal survival in the hatchery. A recent increase in lamprey wounding rates in northern Lake Michigan appears to be related to the uncontrolled build-up of lampreys in the St. Marys River a tributary of Lake Huron. If left uncontrolled, further progress toward restoration in the Northern Refuge may be limited.
Early evolution of multifocal optics for well-focused colour vision in vertebrates.
Gustafsson, O S E; Collin, S P; Kröger, R H H
2008-05-01
Jawless fishes (Agnatha; lampreys and hagfishes) most closely resemble the earliest stage in vertebrate evolution and lamprey-like animals already existed in the Lower Cambrian [about 540 million years ago (MYA)]. Agnathans are thought to have separated from the main vertebrate lineage at least 500 MYA. Hagfishes have primitive eyes, but the eyes of adult lampreys are well-developed. The southern hemisphere lamprey, Geotria australis, possesses five types of opsin genes, three of which are clearly orthologous to the opsin genes of jawed vertebrates. This suggests that the last common ancestor of all vertebrate lineages possessed a complex colour vision system. In the eyes of many bony fishes and tetrapods, well-focused colour images are created by multifocal crystalline lenses that compensate for longitudinal chromatic aberration. To trace the evolutionary origins of multifocal lenses, we studied the optical properties of the lenses in four species of lamprey (Geotria australis, Mordacia praecox, Lampetra fluviatilis and Petromyzon marinus), with representatives from all three of the extant lamprey families. Multifocal lenses are present in all lampreys studied. This suggests that the ability to create well-focused colour images with multifocal optical systems also evolved very early.
Daytime avoidance of chemosensory alarm cues by adult sea lamprey (Petromyzon marinus)
Di Rocco, Richard; Belanger, Cowan; Imre, István; Brown, Grant; Johnson, Nicholas S.
2014-01-01
Sea lamprey (Petromyzon marinus) avoid damage-released and predator chemosensory cues at night, but their response to these cues during the day is unknown. Here, we explored (i) whether sea lamprey avoid these cues during the day and (ii) the effect of water temperature on the avoidance of chemosensory alarm cues in two diurnal laboratory experiments. We hypothesized that daytime activity would be temperature-dependent and that only sea lamprey vulnerable to predation (i.e., not hiding) would behaviourally respond to chemosensory alarm cues. Ten groups of ten sea lamprey were exposed to one of a variety of potential chemosensory cues. The experiments were conducted over a range of temperatures to quantify the effect of temperature on avoidance behaviour. Consistent with our hypothesis, a higher proportion of animals were active during daytime as water temperature increased. Moving sea lamprey showed an avoidance response to 2-phenylethylamine (a compound found in mammalian urine) and human saliva once water temperatures had risen to mean (±SD) = 13.7 (±1.4) °C. Resting and hiding sea lamprey did not show an avoidance response to any of the experimental stimuli.
Square, Tyler; Romášek, Marek; Jandzik, David; Cattell, Maria V.; Klymkowsky, Michael; Medeiros, Daniel M.
2015-01-01
Lamprey is one of only two living jawless vertebrates, a group that includes the first vertebrates. Comparisons between lamprey and jawed vertebrates have yielded important insights into the origin and evolution of vertebrate physiology, morphology and development. Despite its key phylogenetic position, studies of lamprey have been limited by their complex life history, which makes traditional genetic approaches impossible. The CRISPR/Cas9 system is a bacterial defense mechanism that was recently adapted to achieve high-efficiency targeted mutagenesis in eukaryotes. Here we report CRISPR/Cas9-mediated disruption of the genes Tyrosinase and FGF8/17/18 in the sea lamprey Petromyzon marinus, and detail optimized parameters for producing mutant F0 embryos. Using phenotype and genotype analyses, we show that CRISPR/Cas9 is highly effective in the sea lamprey, with a majority of injected embryos developing into complete or partial mutants. The ability to create large numbers of mutant embryos without inbred lines opens exciting new possibilities for studying development in lamprey and other non-traditional model organisms with life histories that prohibit the generation of mutant lines. PMID:26511928
Robinson, T. Craig; Bayer, J.M.
2005-01-01
Adult Pacific lamprey migration and habitat preferences for over-winter holding and spawning, and larval rearing in tributaries to the Columbia River are not well understood. The John Day River is one such tributary where larval and adult stages of this species have been documented, and its free-flowing character provided the opportunity to study migration of Pacific lampreys unimpeded by passage constraints. Forty-two adult Pacific lampreys were captured in the John Day River near its mouth during their upstream migration. Pacific lampreys were surgically implanted with radio transmitters and released onsite, and tracked by fixed-site, aerial, and terrestrial telemetry methods for nearly one year. Adults moved upstream exclusively at night, with a mean rate of 11.1 ?? 6.3 km/day. They halted upstream migration by September, and held a single position for approximately six months in the lateral margins of riffles and glides, using boulders for cover. More than half of Pacific lampreys resumed migration in March before ending movement in early May. Pacific lampreys that resumed migration in spring completed a median of 87% of their upstream migration before over-winter holding. Upon completing migration. Pacific lampreys briefly held position before beginning downstream movement at the end of May. Though not directly observed, halting migration and movement downstream were likely the result of spawning and death. Gains in adult Pacific lamprey passage through the Columbia River hydrosystem and tributaries may be made by improvements that would expedite migration during spring and summer and increase the quantity and variety of cover and refuge opportunities. ?? 2005 by the Northwest Scientific Association. All rights reserved.
Host selection and lethality of attacks by sea lampreys (Petromyzon marinus) in laboratory studies
Swink, William D.
2003-01-01
Parasitic-phase sea lampreys (Petromyzon marinus) are difficult to study in the wild. A series of laboratory studies (1984-1995) of single attacks on lake trout (Salvelinus namaycush), rainbow trout (Oncorhynchus mykiss), and burbot (Lota lota) examined host size selection; determined the effects of host size, host species, host strain, and temperature on host mortality; and estimated the weight of hosts killed per lamprey. Rainbow trout were more able and burbot less able to survive attacks than lake trout. Small sea lampreys actively selected the larger of two small hosts; larger sea lampreys attacked larger hosts in proportion to the hosts' body sizes, but actively avoided shorter hosts (a?? 600 mm) when larger were available. Host mortality was significantly less for larger (43-44%) than for smaller hosts (64%). However, the yearly loss of hosts per sea lamprey was less for small hosts (range, 6.8-14.2 kg per sea lamprey) than larger hosts (range, 11.4-19.3 kg per sea lamprey). Attacks at the lower of two temperature ranges (6.1-11.8A?C and 11.1-15.0A?C) did not significantly reduce the percentage of hosts killed (54% vs. 69%, p > 0.21), but longer attachment times at lower temperatures reduced the number of hosts attacked (33 vs. 45), and produced the lowest loss of hosts (6.6 kg per sea lamprey). Low temperature appeared to offset other factors that increase host mortality. Reanalysis of 789 attacks pooled from these studies, using forward stepwise logistic regression, also identified mean daily temperature as the dominant factor affecting host mortality. Observations in Lakes Superior, Huron, and Ontario support most laboratory results.
Smith, Jeramiah J; Kuraku, Shigehiro; Holt, Carson; Sauka-Spengler, Tatjana; Jiang, Ning; Campbell, Michael S; Yandell, Mark D; Manousaki, Tereza; Meyer, Axel; Bloom, Ona E; Morgan, Jennifer R; Buxbaum, Joseph D; Sachidanandam, Ravi; Sims, Carrie; Garruss, Alexander S; Cook, Malcolm; Krumlauf, Robb; Wiedemann, Leanne M; Sower, Stacia A; Decatur, Wayne A; Hall, Jeffrey A; Amemiya, Chris T; Saha, Nil R; Buckley, Katherine M; Rast, Jonathan P; Das, Sabyasachi; Hirano, Masayuki; McCurley, Nathanael; Guo, Peng; Rohner, Nicolas; Tabin, Clifford J; Piccinelli, Paul; Elgar, Greg; Ruffier, Magali; Aken, Bronwen L; Searle, Stephen MJ; Muffato, Matthieu; Pignatelli, Miguel; Herrero, Javier; Jones, Matthew; Brown, C Titus; Chung-Davidson, Yu-Wen; Nanlohy, Kaben G; Libants, Scot V; Yeh, Chu-Yin; McCauley, David W; Langeland, James A; Pancer, Zeev; Fritzsch, Bernd; de Jong, Pieter J; Zhu, Baoli; Fulton, Lucinda L; Theising, Brenda; Flicek, Paul; Bronner, Marianne E; Warren, Wesley C; Clifton, Sandra W; Wilson, Richard K; Li, Weiming
2013-01-01
Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ~500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms. PMID:23435085
Effects of nonlethal sea lamprey attack on the blood chemistry of lake trout
Edsall, Carol Cotant; Swink, William D.
2001-01-01
A laboratory study examined changes in the blood chemistry of field-caught and hatchery-reared lake trout Salvelinus namaycush subjected to a nonlethal attack by sea lampreys Petromyzon marinus. We measured glucose, total protein, amylase, alkaline phosphatase (ALKP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase, calcium, magnesium, triglycerides, sodium, and potassium with a Kodak Ektachem DT60 Analyzer, Ektachem DTSC Module, and the DTE Module. Mean levels of total protein, AST, ALKP, hematocrit, calcium, magnesium, and sodium decreased significantly (Pa?? 0.05), and mean levels of ALT and potassium increased significantly (Pa?? 0.05) after sea lamprey feeding. Lake trout condition (K) and hematocrit levels also decreased significantly (Pa?? 0.05) after the sea lamprey attack. Frequency distributions of eight lake trout blood chemistry variables and the hematocrit were significantly different before and after a sea lamprey attack. A second study that used hatchery lake trout broodstock measured changes in hematocrit before and after a sea lamprey attack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Close, David A.
2002-07-01
The cultural and ecological values of Pacific lamprey (Lampetra tridentata) have not been understood by Euro-Americans and thus their great decline has almost gone unnoticed except by Native Americans, who elevated the issue and initiated research to restore its populations, at least in the Columbia Basin. They regard Pacific lamprey as a highly valued resource and as a result ksuyas (lamprey) has become one of their cultural icons. Ksuyas are harvested to this day as a subsistence food by various tribes along the Pacific coast and are highly regarded for their cultural value. Interestingly, our review suggests that the Pacificmore » lamprey plays an important role in the food web, may have acted as a buffer for salmon from predators, and may have been an important source of marine nutrients to oligotrophic watersheds. This is very different from the Euro-American perception that lampreys are pests. We suggest that cultural biases affected management policies.« less
Evidence for lack of homing by sea lampreys
Bergstedt, Roger A.; Seelye, James G.
1995-01-01
Recently metamorphosed sea lampreys Petromyzon marinus were captured in the Devil River, a tributary to Lake Huron, during summer and autumn 1990. They were tagged with a coded wire tag and returned to the river to continue their migration to Lake Huron to begin the parasitic (juvenile) phase of their life. During the spawning run in spring 1992 when the tagged animals were expected to mature and return to spawn, sea lampreys were trapped in nine tributaries to Lake Huron, including the Devil River; 47,946 animals were examined for coded wire tags, and 41 tagged animals were recovered. None of the 45 mature sea lampreys captured in the Devil River in 1992 were tagged, a proportion (0%) significantly lower than the proportion of the recently metamorphosed sea lampreys tagged in 1990. The distribution of tag recoveries among streams lakewide, however, was proportional to catch. Tagged sea lampreys did not appear to home, but instead seemed to select spawning streams through innate attraction to other sensory cues.
Young, Michael K.; McKelvey, Kevin S.; Schwartz, Michael K.
2017-01-01
The Pacific lamprey (Entosphenus tridentatus) is an anadromous fish once abundant throughout coastal basins of western North America that has suffered dramatic declines in the last century due primarily to human activities. Here, we describe the development of an environmental DNA (eDNA) assay to detect Pacific lamprey in the Columbia River basin. The eDNA assay successfully amplified tissue derived DNA of Pacific lamprey collected from 12 locations throughout the Columbia River basin. The assay amplifies DNA from other Entosphenus species found outside of the Columbia River basin, but is species-specific within this basin. As a result, the assay presented here may be useful for detecting Entosphenus spp. in geographic range beyond the Columbia River Basin. The assay did not amplify tissue or synthetically derived DNA of 14 commonly sympatric non-target species, including lampreys of the genus Lampetra, which are morphologically similar to Pacific lamprey in the freshwater larval stage. PMID:28068358
Miehls, Scott M.; Johnson, Nicholas; Haro, Alexander
2017-01-01
We tested the efficacy of a vertically oriented field of pulsed direct current (VEPDC) created by an array of vertical electrodes for guiding downstream-moving juvenile Sea Lampreys Petromyzon marinus to a bypass channel in an artificial flume at water velocities of 10–50 cm/s. Sea Lampreys were more likely to be captured in the bypass channel than in other sections of the flume regardless of electric field status (on or off) or water velocity. Additionally, Sea Lampreys were more likely to be captured in the bypass channel when the VEPDC was active; however, an interaction between the effects of VEPDC and water velocity was observed, as the likelihood of capture decreased with increases in water velocity. The distribution of Sea Lampreys shifted from right to left across the width of the flume toward the bypass channel when the VEPDC was active at water velocities less than 25 cm/s. The VEPDC appeared to have no effect on Sea Lamprey distribution in the flume at water velocities greater than 25 cm/s. We also conducted separate tests to determine the threshold at which Sea Lampreys would become paralyzed. Individuals were paralyzed at a mean power density of 37.0 µW/cm3. Future research should investigate the ability of juvenile Sea Lampreys to detect electric fields and their specific behavioral responses to electric field characteristics so as to optimize the use of this technology as a nonphysical guidance tool across variable water velocities.
Meeuwig, M.H.; Bayer, J.M.; Seelye, J.G.
2005-01-01
We examined the effects of temperature (10, 14, 18, and 22??C) on survival and development of Pacific lampreys Lampetra tridentata and western brook lampreys L. richardsoni during embryological and early larval stages. The temperature for zero development was estimated for each species, and the response to temperature was measured as the proportion of individuals surviving to hatch, surviving to the larval stage, and exhibiting abnormalities at the larval stage (i.e., malformations of the body). The estimated temperature for zero development was 4.850C for Pacific lampreys and 4.97??C for western brook lampreys. Survival was greatest at 18??C, followed by 14, 10, and 22??C, significant differences being observed between 22??C and the other temperatures. Overall survival was significantly greater for western brook lampreys than for Pacific lampreys; however, the overall difference in proportion of individuals surviving was only 0.02. Overall survival significantly decreased from the time of hatch (proportion surviving = 0.85) to the larval stage (0.82; i.e., during the free-embryo stage). The proportion of individuals exhibiting abnormalities at the larval stage was greatest at 22??C, followed by 18, 10, and 14??C, significant differences being observed between 22??C and the other temperatures. These data provide baseline information on the thermal requirements of early life stage Pacific and western brook lampreys and will aid in assessment and prediction of suitable spawning and rearing habitats for these species.
Bartels, H; Docker, M F; Krappe, M; White, M M; Wrede, C; Potter, I C
2015-04-01
Although confined to fresh water, non-parasitic species of lampreys and the landlocked parasitic sea lamprey, all of which were derived relatively recently from an adromous ancestors, still develop chloride cells, whose function in their ancestors was for osmoregulation in marine waters during the adult parasitic phase. In contrast, such cells are not developed by the non-parasitic least brook lamprey Lampetra aepyptera, which has been separated from its ancestor for >2 million years, nor by the freshwater parasitic species of the genus Ichthyomyzon. The length of time that a non-parasitic species or landlocked parasitic form or species has spent in fresh water is thus considered the overriding factor determining whether chloride cells are developed by those lampreys.
An aquarium experiment on the American eel as a predator on larval lampreys
Perlmutter, Alfred
1951-01-01
The parasitic sea lamprey, Petromyzon marinus, has in recent years spread throughout Lakes Huron and Michigan and is now firmly established in these waters (Applegate, 1949, Mich. Cons., 18 (4): 13-15). Coincident with their spread, the abundance of lake trout, Salvelinus namaycush, has declined in both lakes (Hile, 1949, Trans. Amer. Fish. Soc., 76 (1946): 121-147) and the lake trout as well as other species of fishes are showing an increase in scarring from lamprey attacks. For Lake Michigan the analysis of fishermen's questionnaires gave an increase in percentage by weight of lamprey-scarred lake trout from 31 percent in 1947 to 41 percent in 1948. The sea lamprey is now spreading through Lake Superior, the last of the Great Lakes containing a large population of lake trout.
Investigations of novel unsaturated bile salts of male sea lamprey as potential chemical cues
Johnson, Nicholas S.; Yun, Sang-Seon; Li, Weiming
2014-01-01
Sulfated bile salts function as chemical cues that coordinate reproduction in sea lamprey, Petromyzon marinus. 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3kPZS) is the most abundant known bile salt released by sexually mature male sea lampreys and attracts ovulated females. However, previous studies showed that the male-produced pheromone consists of unidentified components in addition to 3kPZS. Here, analysis of water conditioned with mature male sea lampreys indicated the presence of 4 oxidized, unsaturated compounds with molecular weights of 466 Da, 468 Da, and 2 of 470 Da. These compounds were not detectable in water conditioned with immature male sea lampreys. By using mass spectrometry, 4 A-ring unsaturated sulfated bile salts were tentatively identified from male washings as 2 4-ene, a 1-ene, and a 1,4-diene analogs. These were synthesized to determine if they attracted ovulated female sea lampreys to spawning nests in natural streams. One of the novel synthetic bile salts, 3 keto-1-ene PZS, attracted ovulated females to the point of application at a concentration of 10-12 M. This study reveals the structural diversity of bile salts in sea lamprey, some of which have been demonstrated to be pheromonal cues.
The gustatory system of lampreys.
Barreiro-Iglesias, Antón; Anadón, Ramón; Rodicio, María Celina
2010-01-01
The present is a review of the gustatory system of lampreys, which are representative of the earliest vertebrates. They are the oldest extant vertebrates that possess taste buds. Because of the phylogenetic position of lampreys, the study of their gustatory system will provide important information to help understand the early evolution of this system in vertebrates. The taste buds of larval lampreys, which are papillae located on the first six pairs of gill arches facing the water current, respond to classical taste substances. They consist of two types of tall differentiated cells, serotonergic biciliated taste receptors ('light' cells) and microvillous sustentacular cells ('dark cells'). The taste buds also contain basal proliferative cells. Afferent gustatory fibers of the glossopharyngeal and vagal nerves innervate the taste buds of lampreys and contact the basal surface of the biciliated cells without entering the bud. Central processes of the glossopharyngeal and vagal cranial nerves terminate in a caudal rhombencephalic region that may correspond to the nucleus of the solitary tract of gnathostomes. To date, most studies in lampreys have focused on characterizing taste buds; future research should focus on the central processing of the gustatory information. Here we will review the current knowledge about the gustatory system of lampreys to provide a basis for establishing the direction of further studies of this chemosensory system. Copyright 2010 S. Karger AG, Basel.
King, Everett Louis
1980-01-01
Criteria for the classification of marks inflicted by sea lamprey (Petromyzon marinus) into nine categories were developed from laboratory studies in an attempt to refine the classification system used in field assessment work. These criteria were based on characteristics of the attachment site that could be identified under field conditions by unaided visual means and by touching the attachment site. Healing of these marks was somewhat variable and was influenced by the size of lamprey, duration of attachment, severity of the wound at lamprey detachment, season and water temperature, and by other less obvious factors. Even under laboratory conditions staging of some wounds was difficult, especially at low water temperatures. If these criteria are to be used effectively and with precision in the field, close examination of individual fish may be required. If the feeding and density of specific year-classes of sea lampreys are to be accurately assessed on an annual basis, close attention to the wound size (as it reflects the size of the lamprey's oral disc) and character of wounds on fish will be required as well as consideration of the season of the year in which they are observed.Key words: sea lamprey, attack marks, lake trout, Great Lakes
Madenjian, C.P.; Ebener, M.P.; Desorcie, T.J.
2008-01-01
The Drummond Island Refuge (DIR) was established in 1985 as part of the rehabilitation effort for lake trout Salvelinus namaycush in Lake Huron. Since then, several strains of hatchery-reared lake trout have been stocked annually at the DIR. An intensive lampricide treatment of the St. Marys River during 1998-2001 was expected to lower the abundance of sea lamprey Petromyzon marinus within the DIR by 2000. We conducted annual gill-net surveys during spring and fall to evaluate the performance of each of the strains of lake trout as well as that of the entire lake trout population (all strains pooled) in the DIR during 1991-2005. The criteria to evaluate performance included the proportion of "wild" fish within the population, spawner density, adult survival, growth, maturity, and wounding rate by sea lampreys. Wild lake trout did not recruit to the adult population to any detectable degree. During 1991-2005, the average density of spawning lake trout appeared to be marginally sufficient to initiate a self-sustaining population. Survival of the Seneca Lake (SEN) strain of lake trout was significantly higher than that of the Superior-Marquette (SUP) strain, in part because of the higher sea-lamprey-induced mortality suffered by the SUP strain. However, other factors were also involved. Apparently SUP fish were more vulnerable to fishing conducted in waters near the refuge boundaries than SEN fish. The St. Marys River treatment appeared to be effective in reducing the sea lamprey wounding rate on SEN fish. We recommend that the stocking of SEN lake trout in the DIR, control of sea lampreys in the St. Marys River, and reduction of commercial fishery effort in waters near the DIR be maintained. ?? Copyright by the American Fisheries Society 2008.
Xi, X.; Johnson, N.S.; Brant, C.O.; Yun, S.-S.; Chambers, K.L.; Jones, A.D.; Li, W.
2011-01-01
We developed an assay for measuring 7α,12α,24-trihydroxy-5a-cholan-3-one-24-sulfate (3kPZS), a mating pheromone released by male sea lampreys (Petromyzon marinus), at low picomolar concentrations in natural waters to assess the presence of invasive populations. 3kPZS was extracted from streamwater at a rate of recovery up to 90% using a single cation-exchange and reversed-phase mixed-mode cartridge, along with [2H5]3kPZS as an internal standard, and quantified using ultrahigh performance liquid chromatography-tandem mass spectrometry. The limit of detection was below 0.1 ng L–1 (210 fM), which was the lowest concentration tested. Intra- and interday coefficients of variation were between 0.3–11.6% and 4.8–9.8%, respectively, at 1 ng 3kPZS L–1 and 5 ng 3kPZS L–1. This assay was validated by repeat measurements of water samples from a stream spiked with synthesized 3kPZS to reach 4.74 ng L–1 or 0.24 ng L–1. We further verified the utility of this assay to detect spawning populations of lampreys; in the seven tributaries to the Laurentian Great Lakes sampled, 3kPZS concentrations were found to range between 0.15 and 2.85 ng L–1 during the spawning season in known sea lamprey infested segments and were not detectable in uninfested segments. The 3kPZS assay may be useful for the integrated management of sea lamprey, an invasive species in the Great Lakes where pheromone-based control and assessment techniques are desired.
Acute Toxicity of the Lampricides TFM and Niclosamide to Three Species of Unionid Mussels
Boogaard, Michael A.
2006-01-01
The sea lamprey (Petromyzon marinus), a jawless parasitic eel-like fish native to the Atlantic Ocean (fig. 1), was accidentally introduced into the Great Lakes in the early 20th century through the construction of shipping canals. A member of the Petromyzonidae family, the primitive parasite has been identified as a major cause of the collapse of the Great Lakes fishery in the 1940s and 1950s. The lampricides 3-trifluoromethyl-4-nitrophenol (TFM) and 2'5-dichloro-4'-nitrosalicylanilide (niclosamide) have been used to control larval sea lampreys in tributaries of the Great Lakes since the early 1960s. The lampricide TFM is the main compound used to keep sea lamprey populations in check while niclosamide is used primarily in combination with TFM as a cost-saving measure. The addition of niclosamide at a ratio of 1% to TFM will reduce the amount of TFM required for effective treatment by about 40%.
Corresponding long-term shifts in stream temperature and invasive fish migration
McCann, Erin L.; Johnson, Nicholas; Pangle, Kevin
2018-01-01
By investigating historic trapping records of invasive sea lamprey (Petromyzon marinus) throughout tributaries to the Laurentian Great Lakes, we found that upstream spawning migration timing was highly correlated with stream temperatures over large spatial and temporal scales. Furthermore, several streams in our study exceeded a critical spring thermal threshold (i.e., 15°C) and experienced peak spawning migration up to 30 days earlier since the 1980s, whereas others were relatively unchanged. Streams exhibiting warming trends and earlier migration were spatially clustered and generally found on the leeward side of the Great Lakes where the lakes most affect local climate. These findings highlight that all streams are not equally impacted by climate change and represent, to our knowledge, the first observation linking long-term changes in stream temperatures to shifts in migration timing of an invasive fish. Earlier sea lamprey migration in Great Lakes tributaries may improve young of the year growth and survival, but not limit their spatial distribution, making sea lamprey control more challenging.
Evidence for a receiver bias underlying female preference for a male mating pheromone in sea lamprey
Buchinger, Tyler J.; Wang, Huiyong; Li, Weiming; Johnson, Nicholas S.
2013-01-01
Receiver bias models suggest that a male sexual signal became exaggerated to match a pre-existing sensory, perceptual or cognitive disposition of the female. Accordingly, these models predict that females of related taxa possessing the ancestral state of signalling evolved preference for the male trait in a non-sexual context. We postulated that female preference for the male-released bile alcohol mating pheromone, 3 keto petromyzonol sulfate (3kPZS), of the sea lamprey (Petromyzon marinus) evolved as a result of a receiver bias. In particular, we propose that migratory silver lamprey (Ichthyomyzon unicuspis), a basal member of the Petromyzontidae, evolved a preference for 3kPZS released by stream-resident larvae as a means of identifying productive habitat for offspring. Larval silver lamprey released 3kPZS at rates sufficient to be detected by migratory lampreys. Females responded to 3kPZS by exhibiting upstream movement behaviours relevant in a migratory context, but did not exhibit proximate behaviours important to mate search and spawning. Male silver lamprey did not release 3kPZS at rates sufficient to be detected by females in natural high-volume stream environments. We infer that female silver lamprey cue onto 3kPZS excreted by stream-resident larvae as a mechanism to locate habitat conducive to offspring survival and that males do not signal with 3kPZS. We suggest that this female preference for a male signal in a non-sexual context represents a bias leading to the sexual signalling observed in sea lamprey.
Weisser, John W.; Adams, Jean V.; Schuldt, Richard J.; Baldwin, Gregg A.; Lavis, Dennis S.; Slade, Jeffrey W.; Heinrich, John W.
2003-01-01
As part of the sea lamprey control program in the Great Lakes, a suite of about 150 sea lamprey producing streams have been regularly treated with the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) every 3 to 5 years since 1958. State, provincial, and tribal agencies in the basin supported the use of TFM and urged that the risk to nontarget organisms be minimized. To determine the response of riffle macroinvertebrate communities to repeated TFM treatments over several years, paired samples were taken at control and treatment sites during 1986 to 1995 on four Great Lakes tributaries: the Bois Brule, West Branch Whitefish, Boardman, and Sturgeon (tributary to Cheboygan River system) rivers. Macroinvertebrates were collected in spring and fall by a standard traveling kick method. The communities were described with several metrics, and general linear models were used to test for different patterns of response in the paired control and treatment sites. Relative abundance of the class Oligochaeta, relative abundance of the genus Ephemerella, the Bray-Curtis similarity index (at the taxonomic level of order), EPT genus richness (the number of genera in the orders Ephemeroptera, Plecoptera, and Trichoptera), and total genus richness all increased more at the treatment sites than at the control sites after TFM application. The greater increase in abundance, similarity, and richness at the treatment sites was an indication of recovery in the treatment sites, where a short-term response to TFM was followed by a several-year rebound. TFM treatments in this study during the 1980s and 1990s had no long-lasting effects on riffle macroinvertebrate communities.
Anesthetic effect of 4-styrylpyridine on lamprey and fish
Howell, John H.; Thomas, Paul M.
1964-01-01
The anestheticp roperty of 4-styrylpyridine (4-SP) on fish and lamprey was first noticed during chemical screening search of a selective toxicant for larval lamprey (Applegate, Howell, Hall, and Smith, 1957). To assess the possible value of the compound as an anesthetic, we later conducted the experiments reviewed in this report.
Evidence for early metamorphosis of sea lampreys in the Chippewa River, Michigan
Morkert, Sidney B.; Swink, William D.; Seelye, James G.
1998-01-01
We determined age at metamorphosis to the juvenile or parasitic phase for sea lampreysPetromyzon marinus in a highly productive Great Lakes tributary to determine if the age at metamorphosis was earlier than expected. Ages determined from statoliths, a structure analogous to otoliths in teleost fishes, indicated that many sea lampreys collected from the Chippewa River, Michigan, in September 1995 were undergoing metamorphosis at age 2, at least 1 year earlier than previously observed. In all, 141 newly metamorphosed lampreys were examined, and 81% were estimated to be only 2 years old. The length-frequency distribution of newly metamorphosed sea lampreys in the Chippewa River also indicated the possibility of metamorphsis at age 2, but to a lesser extent than indicated by statolith aging. The Chippewa River is a highly productive stream that might require more frequent treatment than previously suspected. More careful examination of other highly productive streams is needed to determine if, and to what extent, sea lampreys metamorphose at age 2 in the Chippewa River and other Great Lakes tributaries.
Azodi, Christina B.; Sheldon, Sallie P.; Trombulak, Stephen C.; Ardren, William R.
2015-01-01
The origin of sea lamprey (Petromyzon marinus) in Lake Champlain has been heavily debated over the past decade. Given the lack of historical documentation, two competing hypotheses have emerged in the literature. First, it has been argued that the relatively recent population size increase and concomitant rise in wounding rates on prey populations are indicative of an invasive population that entered the lake through the Champlain Canal. Second, recent genetic evidence suggests a post-glacial colonization at the end of the Pleistocene, approximately 11,000 years ago. One limitation to resolving the origin of sea lamprey in Lake Champlain is a lack of historical and current measures of population size. In this study, the issue of population size was explicitly addressed using nuclear (nDNA) and mitochondrial DNA (mtDNA) markers to estimate historical demography with genetic models. Haplotype network analysis, mismatch analysis, and summary statistics based on mtDNA noncoding sequences for NCI (479 bp) and NCII (173 bp) all indicate a recent population expansion. Coalescent models based on mtDNA and nDNA identified two potential demographic events: a population decline followed by a very recent population expansion. The decline in effective population size may correlate with land-use and fishing pressure changes post-European settlement, while the recent expansion may be associated with the implementation of the salmonid stocking program in the 1970s. These results are most consistent with the hypothesis that sea lamprey are native to Lake Champlain; however, the credibility intervals around parameter estimates demonstrate that there is uncertainty regarding the magnitude and timing of past demographic events. PMID:26539334
Cornide-Petronio, María Eugenia; Fernández-López, Blanca; Barreiro-Iglesias, Antón; Rodicio, María Celina
2014-02-01
After spinal cord injury (SCI) in mammals, the loss of serotonin coming from the brainstem reduces the excitability of motor neurons and leads to a compensatory overexpression of serotonin receptors. Despite the key role of the serotonin receptor 1a in the control of locomotion, little attention has been put in the study of this receptor after SCI. In contrast to mammals, lampreys recover locomotion after a complete SCI, so, studies in this specie could help to understand events that lead to recovery of function. Here, we showed that in lampreys there is an acute increase in the expression of the serotonin 1A receptor transcript (5-ht1a) after SCI and a few weeks later expression levels go back to normal rostrally and caudally to the lesion. Overexpression of the 5-ht1a in rostral levels after SCI has not been reported in mammals, suggesting that this could be part of the plastic events that lead to the recovery of function in lampreys. The analysis of changes in 5-ht1a expression by zones (periventricular region and horizontally extended grey matter) showed that they followed the same pattern of changes detected in the spinal cord as a whole, with the exception of the caudal periventricular layer, where no significant differences were observed between control and experimental animals at any time post lesion. This suggests that different molecular signals act on the periventricular cells of the rostral and caudal regions to injury site and thus affecting their response to the injury in terms of expression of the 5-ht1a.
Bergstedt, Roger A.; Schneider, Clifford P.
1988-01-01
During 1982-85, 89 dead lake trout (Salvelinus namaycush) were recovered with bottom trawls in U.S. waters of Lake Ontario: 28 incidentally during four annual fish-stock assessment surveys and 61 during fall surveys for dead fish. During the assessment surveys, no dead lake trout were recovered in April-June, one was recovered in August, and 27 were recovered in October or November, implying that most mortality from causes other than fishing occurred in the fall. The estimated numbers of dead lake trout between the 30- and 100-m depth contours in U.S. waters ranged from 16 000 (0.08 carcass/ha) in 1983 to 94 000 (0.46 carcass/ha) in 1982. Of 76 carcasses fresh enough to enable recognition of sea lamprey (Petromyzon marinus) wounds, 75 bore fresh wounds. Assuming that sea lamprey wounding rates on dead fish were the same as on live ones of the same length range (430-740 mm), the probability of 75 of the 76 dead lake trout bearing sea lamprey wounds was 3.5 x 10-63 if death was independent of sea lamprey attack, thus strongly implicating sea lampreys as the primary cause of death of fish in the sample. The recovery of only one unwounded dead lake trout also suggested that natural mortality from causes other than sea lamprey attactks is negligible.
Bioinformatic Characterization of Genes and Proteins Involved in Blood Clotting in Lampreys.
Doolittle, Russell F
2015-10-01
Lampreys and hagfish are the earliest diverging of extant vertebrates and are obvious targets for investigating the origins of complex biochemical systems found in mammals. Currently, the simplest approach for such inquiries is to search for the presence of relevant genes in whole genome sequence (WGS) assemblies. Unhappily, in the past a high-quality complete genome sequence has not been available for either lampreys or hagfish, precluding the possibility of proving gene absence. Recently, improved but still incomplete genome assemblies for two species of lamprey have been posted, and, taken together with an extensive collection of short sequences in the NCBI trace archive, they have made it possible to make reliable counts for specific gene families. Particularly, a multi-source tactic has been used to study the lamprey blood clotting system with regard to the presence and absence of genes known to occur in higher vertebrates. As was suggested in earlier studies, lampreys lack genes for coagulation factors VIII and IX, both of which are critical for the "intrinsic" clotting system and responsible for hemophilia in humans. On the other hand, they have three each of genes for factors VII and X, participants in the "extrinsic" clotting system. The strategy of using raw trace sequence "reads" together with partial WGS assemblies for lampreys can be used in studies on the early evolution of other biochemical systems in vertebrates.
Boogaard, Michael A.; Newton, Teresa; Hubert, Terrance D.; Kaye, Cheryl A.; M. Christopher Barnhart,
2015-01-01
The present study evaluated the risk of 12-h exposures of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) to multiple life stages of the federally endangered snuffbox (Epioblasma triquetra) and its primary host fish the common logperch (Percina caprodes) as well as a surrogate to the snuffbox, the ellipse (Venustaconcha ellipsiformis). Life stages examined included free glochidia, 1-wk juveniles, and adults of the ellipse; free glochidia, glochidia on host fish, and 1-wk juveniles of the snuffbox; and adult logperch. Larval sea lampreys were also tested alongside adult ellipse and logperch for direct comparison. Survival exceeded 82% among all life stages in both mussel species at levels up to 1.8 times what would be applied during treatments, suggesting that routine sea lamprey control operations would not adversely affect mussels. However, substantial mortality of adult logperch was observed at TFM concentrations typically applied to streams, and loss of host fish could adversely affect snuffbox reproduction. In addition, TFM had no significant effect on the number of glochidia that metamorphosed on adult logperch. Although the snuffbox is not likely to be acutely affected from sea lamprey control operations, mitigation efforts to minimize impacts to the host fish should be considered.
[Parasite fauna of the European river lamprey Lampetra fluviatilis (L.) from Lake Onega].
Evseeva, N V
2007-01-01
Data on the parasite fauna of the adult European river lamprey Lampetra fluviatilis (L.) from Lake Onega are reported. Ten parasite species are found, including trematodes Diplostomum petromyzifluviatilis and D. spathaceum (metacercariae), cestode Proteocephalus longicollis, nematodes Cucullanus truttae and Raphidascaris acus, acanthocephalan Echinorhynchus salmonis, ectoparasitic infusoria Chilodonella hexastica, Trichodina tenuidens, and Trichodinella epizootica, and fungus Saprolegnia parasitica. Three species are found to be dominate, namely D. petromyzifluviatilis, Cucullanus truttae, and P. longicollis. Comparative analysis of the parasite faunas of the lampreys from other basins is carried out. Some similarity in the parasite faunas of lampreys and salmonids is discovered.
Linley, Timothy; Krogstad, Eirik; Mueller, Robert; Gill, Gary; Lasorsa, Brenda
2016-10-01
The accumulation of mercury was investigated in Pacific lamprey and stream sediments in the Columbia River basin. Mercury concentrations in larval lamprey differed significantly among sample locations (p < 0.001) and were correlated with concentrations in sediments (r 2 = 0.83). Adult concentrations were highly variable (range, 0.1-9.5 μg/g) and unrelated to holding time after collection. The results suggest that Pacific lamprey in the Columbia River basin may be exposed to mercury levels that have adverse ecological effects. Environ Toxicol Chem 2016;35:2571-2576. © 2016 SETAC. © 2016 SETAC.
Flowing recirculated-water system for inducing laboratory spawning of sea lampreys
Fredricks, Kim T.; Seelye, James G.
1995-01-01
We describe a water-recirculating system for inducing spawning of sea lampreys (Petromyzon marinus) held under laboratory conditions. Water temperature in the system was gradually increased to and maintained at 18 +/- 2 degrees C, the optimal temperature for spawning. About 10% freshwater was added daily to prevent buildup of waste products. Sea lampreys were provided substrate (approximately 3-6 cm in diameter) to build nests, and a water velocity of 0.2-0.3 m/s was maintained with an electric trolling motor. Sea lampreys held in this system exhibited characteristic spawning behavior. Prolarvae produced from artificial fertilization of gametes developed according to the standard timeline.
Anesthesia of juvenile Pacific Lampreys with MS-222, BENZOAK, AQUI-S 20E, and Aquacalm
Christiansen, Helena E.; Gee, Lisa P.; Mesa, Matthew G.
2013-01-01
Effective anesthetics are a critical component of safe and humane fish handling procedures. We tested three concentrations each of four anesthetics—Finquel (tricaine methanesulfonate, herein referred to as MS-222), BENZOAK (20% benzocaine), AQUI-S 20E (10% eugenol), and Aquacalm (metomidate hydrochloride)—for efficacy and safety in metamorphosed, outmigrating juvenile Pacific Lampreys Entosphenus tridentatus. The anesthetics MS-222 (100 mg/L) and BENZOAK (60 mg/L) were the most effective for anesthetizing juvenile Pacific Lampreys to a handleable state with minimal irritation to the fish. Fish anesthetized with BENZOAK also had lower rates of fungal infection than those exposed to MS-222, AQUI-S 20E, or no anesthetic. Exposure to AQUI-S 20E irritated juvenile Pacific Lampreys, causing them to leap or climb out of the anesthetic solution, and Aquacalm anesthetized fish to a handleable state too slowly and incompletely for effective use with routine handling procedures. Our results indicate that MS-222 and BENZOAK are effective anesthetics for juvenile Pacific Lampreys, but field studies are needed to determine whether exposure to MS-222 increases risk of fungal infection in juvenile Pacific Lampreys released to the wild.
Chung-Davidson, Yu-Wen; Davidson, Peter J.; Scott, Anne M.; Walaszczyk, Erin J.; Brant, Cory O.; Buchinger, Tyler; Johnson, Nicholas S.; Li, Weiming
2014-01-01
Biliary atresia is a rare disease of infancy, with an estimated 1 in 15,000 frequency in the southeast United States, but more common in East Asian countries, with a reported frequency of 1 in 5,000 in Taiwan. Although much is known about the management of biliary atresia, its pathogenesis is still elusive. The sea lamprey (Petromyzon marinus) provides a unique opportunity to examine the mechanism and progression of biliary degeneration. Sea lamprey develop through three distinct life stages: larval, parasitic, and adult. During the transition from larvae to parasitic juvenile, sea lamprey undergo metamorphosis with dramatic reorganization and remodeling in external morphology and internal organs. In the liver, the entire biliary system is lost, including the gall bladder and the biliary tree. A newly-developed method called “CLARITY” was modified to clarify the entire liver and the junction with the intestine in metamorphic sea lamprey. The process of biliary degeneration was visualized and discerned during sea lamprey metamorphosis by using laser scanning confocal microscopy. This method provides a powerful tool to study biliary atresia in a unique animal model.
Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho, Annual Report 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochnauer, Tim; Claire, Christopher
In 2002 Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South Fork Clearwater River, Lochsa River, Selway River, and Middle Fork Clearwater River subbasins. Five-hundred forty-one ammocoetes were captured electroshocking 70 sites in the South Fork Clearwater River, Lochsa River, Selway River, Middle Fork Clearwater River, Clearwater River, and their tributaries in 2002. Habitat utilization surveys in Red River support previous work indicating Pacific lamprey ammocoetemore » densities are greater in lateral scour pool habitats compared to riffles and rapids. Presence-absence survey findings in 2002 augmented 2000 and 2001 indicating Pacific lamprey macrothalmia and ammocoetes are not numerous or widely distributed. Pacific lamprey distribution was confined to the lower reaches of Red River below rkm 8.0, the South Fork Clearwater River, Lochsa River (Ginger Creek to mouth), Selway River (Race Creek to mouth), Middle Fork Clearwater River, and the Clearwater River (downstream to Potlatch River).« less
An Expanded Perspective of Fisheries Education.
ERIC Educational Resources Information Center
Lin, Leslie Y.
1980-01-01
Described are two curriculum units from the Michigan Sea Grant Program for middle school students: The Sea Lamprey in the Great Lakes, and Great Lakes Fisheries Transition. Topics discussed include fishery rights and responsibilities, where fisheries are, the modern fishery, buying and selling fish, and preserving fish. (DS)
Kellie J. Carim; J. Caleb Dysthe; Michael K. Young; Kevin S. McKelvey; Michael K. Schwartz
2017-01-01
The Pacific lamprey (Entosphenus tridentatus) is an anadromous fish once abundant throughout coastal basins of western North America that has suffered dramatic declines in the last century due primarily to human activities. Here, we describe the development of an environmental DNA (eDNA) assay to detect Pacific lamprey in the Columbia River basin. The eDNA assay...
Jason L. White; Bret C. Harvey
2003-01-01
We studied the distribution and abundance of drifting embryonic and larval fishes and lampreys in the Smith and Van Duzen rivers of northern California, U.S.A. We collected seven fish species in four families and at least one lamprey species in the drift. All taxa drifted almost exclusively at night. Sculpins, Cottus aleuticus and C. asper...
Status Report of the Pacific Lamprey (Lampetra Trzdentata) in the Columbia River Basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Close, David A.; Parker, Blaine; James, gary
1995-07-01
The widespread decline of Pacific lamprey (Lampetra tridentata) in the Pacific Northwest, especially in the Columbia River system has led to concerns and questions from a number of regional agencies, Native American tribes, and the public. To address these concerns, new research efforts must focus on specific problems associated with this understudied species. The preservation and restoration of this species is critical for a number of reasons, including its importance to the tribes and its importance as an indicator of ecosystem health. Historically lamprey have been labeled a pest species due to the problems associated with the exotic sea lamprey,more » (Petromyzon marinus), invading the Great Lakes.« less
Fredricks, Kim T.; Seelye, James G.
1995-01-01
We describe a water-recirculating system for inducing spawning of sea lampreys (Petromyzon marinus) held under laboratory conditions. Water temperature in the system was gradually increased to and maintained at 18 ± 2°C, the optimal temperature for spawning. About 10% freshwater was added daily to prevent buildup of waste products. Sea lampreys were provided substrate (approximately 3–6 cm in diameter) to build nests, and a water velocity of 0.2–0.3 m!s was maintained with an electric trolling motor. Sea lampreys held in this system exhibited characteristic spawning behavior. Prolarvae produced from artificial fertilization of gametes developed according to the standard timeline.
Walaszczyk, Erin J.; Johnson, Nicholas S.; Steibel, Juan Pedro; Li, Weiming
2013-01-01
Synchronization of male and female locomotor rhythmicity can play a vital role in ensuring reproductive success. Several physiological and environmental factors alter these locomotor rhythms. As sea lamprey, Petromyzon marinus, progress through their life cycle, their locomotor activity rhythm changes multiple times. The goal of this study was to elucidate the activity patterns of adult female sea lamprey during the sexual maturation process and discern the interactions of these patterns with exposure to male pheromones. During these stages, preovulated and ovulated adult females are exposed to sex pheromone compounds, which are released by spermiated males and attract ovulated females to the nest for spawning. The locomotor behavior of adult females was monitored in a natural stream with a passive integrated tag responder system as they matured, and they were exposed to a sex pheromone treatment (spermiated male washings) or a control (prespermiated male washings). Results showed that, dependent on the hour of day, male sex pheromone compounds reduce total activity (p < 0.05) and cause increases in activity during several daytime hours in preovulated and ovulated females. These results are one of the first examples of how sex pheromones modulate a locomotor rhythm in a vertebrate, and they suggest that the interaction between maturity stage and sex pheromone exposure contributes to the differential locomotor rhythms found in adult female sea lamprey. This phenomenon may contribute to the reproductive synchrony of mature adults, thus increasing reproductive success in this species.
Moses, Sara K; Polkinghorne, Christine N; Mattes, William P; Beesley, Kimberly M
2018-01-01
Mercury concentrations were measured in eggs, larvae, and adult spawning-phase sea lampreys (Petromyzon marinus) collected in tributaries of Lake Superior to investigate spatial and ontogenetic variation. There were significant differences in mercury concentrations between all three life stages, with levels highest in adults (mean = 3.01 µg/g), followed by eggs (mean = 0.942 µg/g), and lowest in larvae (mean = 0.455 µg/g). There were no significant differences in mercury concentrations by location for any life stage or by sex in adults. Mercury was not correlated with adult or larval lamprey length or mass. Mercury levels in adult lampreys exceeded U.S. and Canadian federal guidelines for human consumption. Mercury concentrations in all life stages exceeded criteria for the protection of piscivorous wildlife, posing a threat to local fish, birds, and mammals. High mercury levels in adult lampreys combined with their semelparous life history make them a potential source of lake-derived mercury to spawning streams.
Clemens, Benjamin J.; Wyss, Lance A.; McCoun, Rebecca; Courter, Ian; Schwabe, Lawrence; Peery, Christopher; Schreck, Carl B.; Spice, Erin K.; Docker, Margaret F.
2017-01-01
Studies using neutral loci suggest that Pacific lamprey, Entosphenus tridentatus, lack strong spatial genetic population structure. However, it is unknown whether temporal genetic population structure exists. We tested whether adult Pacific lamprey: (1) show temporal genetic population structure; and (2) migrate different distances between years. We non-lethally sampled lamprey for DNA in 2009 and 2010 and used eight microsatellite loci to test for genetic population structure. We used telemetry to record the migration behaviors of these fish. Lamprey were assignable to three moderately differentiated genetic clusters (FST = 0.16–0.24 for all pairwise comparisons): one cluster was composed of individuals from 2009, and the other two contained individuals from 2010. The FST value between years was 0.13 and between genetic clusters within 2010 was 0.20. A total of 372 (72.5%) fish were detected multiple times during their migrations. Most fish (69.9%) remained in the mainstem Willamette River; the remaining 30.1% migrated into tributaries. Eighty-two lamprey exhibited multiple back-and-forth movements among tributaries and the mainstem, which may indicate searching behaviors. All migration distances were significantly greater in 2010, when the amplitude of river discharge was greater. Our data suggest genetic structuring between and within years that may reflect different cohorts.
Weaver, Daniel M.; Coghlan, Stephen M.; Zydlewski, Joseph D.; Hogg, Robert S.; Canton, Michael
2015-01-01
Anadromous fishes serve as vectors of marine-derived nutrients into freshwaters that are incorporated into aquatic and terrestrial food webs. Pacific salmonines Oncorhynchus spp. exemplify the importance of migratory fish as links between marine and freshwater systems; however, little attention has been given to sea lamprey (Petromyzon marinus Linnaeus, 1758) in Atlantic coastal systems. A first step to understanding the role of sea lamprey in freshwater food webs is to characterize the composition and rate of nutrient inputs. We conducted laboratory and field studies characterizing the elemental composition and the decay rates and subsequent water enriching effects of sea lamprey carcasses. Proximate tissue analysis demonstrated lamprey carcass nitrogen:phosphorus ratios of 20.2:1 (±1.18 SE). In the laboratory, carcass decay resulted in liberation of phosphorus within 1 week and nitrogen within 3 weeks. Nutrient liberation was accelerated at higher temperatures. In a natural stream, carcass decomposition resulted in an exponential decline in biomass, and after 24 days, the proportion of initial biomass remaining was 27% (±3.0% SE). We provide quantitative results as to the temporal dynamics of sea lamprey carcass decomposition and subsequent nutrient liberation. These nutrient subsidies may arrive at a critical time to maximize enrichment of stream food webs.
Spawning patterns of Pacific Lamprey in tributaries to the Willamette River, Oregon
Mayfield, M.P.; Schultz, Luke; Wyss, Lance A.; Clemens, B. J.; Schreck, Carl B.
2014-01-01
Addressing the ongoing decline of Pacific Lamprey Entosphenus tridentatus across its range along the west coast of North America requires an understanding of all life history phases. Currently, spawning surveys (redd counts) are a common tool used to monitor returning adult salmonids, but the methods are in their infancy for Pacific Lamprey. To better understand the spawning phase, our objective was to assess temporal spawning trends, redd abundance, habitat use, and spatial patterns of spawning at multiple spatial scales for Pacific Lamprey in the Willamette River basin, Oregon. Although redd density varied considerably across surveyed reaches, the observed temporal patterns of spawning were related to physical habitat and hydrologic conditions. As has been documented in studies in other basins in the Pacific Northwest, we found that redds were often constructed in pool tailouts dominated by gravel, similar to habitat used by spawning salmonids. Across the entire Willamette Basin, Pacific Lampreys appeared to select reaches with alluvial geology, likely because this is where gravel suitable for spawning accumulated. At the tributary scale, spawning patterns were not as strong, and in reaches with nonalluvial geology redds were more spatially clumped than in reaches with alluvial geology. These results can be used to help identify and conserve Pacific Lamprey spawning habitat across the Pacific Northwest.
Chondrogenesis of the branchial skeleton in embryonic sea lamprey, Petromyzon marinus.
Morrison, S L; Campbell, C K; Wright, G M
2000-11-01
This study provides concise temporal and spatial characteristics of branchial chondrogenesis in embryonic sea lamprey, Petromyzon marinus, using high resolution light microscopy, transmission electron, and immunoelectron microscopy. Prechondrogenic condensations representing the first branchial arch appeared first in the mid-region of the third pharyngeal arch at 13 days post-fertilization (pf). Cartilage differentiation, defined by the presence of the unique, fibrillar, non-collagenous matrix protein characteristic of branchial cartilage, was first observed at 14 days pf. Development of lamprey branchial cartilage appeared unusual compared to that in jawed fishes, in that precartilage condensations appear as a one-cell wide orderly stack of flattened cells that extend by the addition of one dorsal and one ventral condensation. Development of lamprey gill arches from three condensations that fuse to form a single skeletal element differs from the developing gill arches of jawed fishes, where more than one skeletal element forms from a single condensation. The initial orderly arrangement of cells in the lamprey branchial prechondrogenic condensations remains throughout development. Once chondrification of the condensations begins, the branchial arches start to grow. Initially, growth occurs as a result of matrix secretion and cell migration. Later in development, the arches grow mainly by cell proliferation and enlargement. This study defines the morphology and timing of lamprey branchial chondrogenesis. Studies of lamprey chondrogenesis provide not only insight into the developmental biology of a unique non-collagenous cartilage in a primitive vertebrate but also into the general evolution of the skeletal system in vertebrates. Copyright 2000 Wiley-Liss, Inc.
A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates.
Parker, Hugo J; Bronner, Marianne E; Krumlauf, Robb
2014-10-23
A defining feature governing head patterning of jawed vertebrates is a highly conserved gene regulatory network that integrates hindbrain segmentation with segmentally restricted domains of Hox gene expression. Although non-vertebrate chordates display nested domains of axial Hox expression, they lack hindbrain segmentation. The sea lamprey, a jawless fish, can provide unique insights into vertebrate origins owing to its phylogenetic position at the base of the vertebrate tree. It has been suggested that lamprey may represent an intermediate state where nested Hox expression has not been coupled to the process of hindbrain segmentation. However, little is known about the regulatory network underlying Hox expression in lamprey or its relationship to hindbrain segmentation. Here, using a novel tool that allows cross-species comparisons of regulatory elements between jawed and jawless vertebrates, we report deep conservation of both upstream regulators and segmental activity of enhancer elements across these distant species. Regulatory regions from diverse gnathostomes drive segmental reporter expression in the lamprey hindbrain and require the same transcriptional inputs (for example, Kreisler (also known as Mafba), Krox20 (also known as Egr2a)) in both lamprey and zebrafish. We find that lamprey hox genes display dynamic segmentally restricted domains of expression; we also isolated a conserved exonic hox2 enhancer from lamprey that drives segmental expression in rhombomeres 2 and 4. Our results show that coupling of Hox gene expression to segmentation of the hindbrain is an ancient trait with origin at the base of vertebrates that probably led to the formation of rhombomeric compartments with an underlying Hox code.
Infection of sea lamprey with an unusual strain of Aeromonas salmonicida
Diamanka, Arfang; Loch, Thomas P.; Cipriano, Rocco C.; Winters, Andrew D.; Faisal, Mohamed
2014-01-01
The invasion of the Laurentian Great Lakes by the fish-parasitic sea lamprey has led to catastrophic consequences, including the potential introduction of fish pathogens. Aeromonas salmonicida is a bacterial fish pathogen that causes devastating losses worldwide. Currently, there are five accepted subspecies of Aeromonas salmonicida: A. salmonicida subsp. salmonicida, masoucida, smithia, achromogenes, and pectinolytica. We discuss the discovery of an isolate of A. salmonicida that is pathogenic to rainbow trout (Oncorhynchus mykiss) and exhibits unique phenotypic and molecular characteristics. We examined 181 adult sea lamprey (Petromyzon marinus) from the Humber River (Lake Ontario watershed) and 162 adult sea lamprey from Duffins Creek (Lake Ontario watershed) during the spring seasons of 2005–11. Among those, 4/343 (1.2%) sea lamprey were culture positive for A. salmonicida, whereby biochemical and molecular studies identified three of the isolates as A. salmonicida subsp. salmonicida. The remaining isolate (As-SL1) recovered from Humber River sea lamprey was phenotypically more similar to A. salmonicida subsp. salmonicida than to the four other A. salmonicida subspecies. However, unlike A. salmonicida subsp. salmonicida, As-SL1 was sucrose positive, produced an acid-over-acid reaction on triple-sugar iron medium and did not amplify with A. salmonicida subsp. salmonicida specific primers. Phylogenetic analysis based on partial stretches of the 16S rRNA and DNA gyrase subunit B genes further confirmed that the As-SL1 isolate was not A. salmonicida subsp. masoucida, smithia, achromogenes, or pectinolytica. Based on our analyses, the As-SL1 isolate is either an unusual strain of A. salmonicida subsp. salmonicida or a novel A. salmonicida subspecies. The four A. salmonicida isolates that were recovered from sea lamprey were pathogenic to rainbow trout in experimental challenge studies. Our study also underscores the potential role of sea lamprey in the ecology of infectious fish diseases.
Infection of sea lamprey with an unusual strain of Aeromonas salmonicida.
Diamanka, Arfang; Loch, Thomas P; Cipriano, Rocco C; Winters, Andrew D; Faisal, Mohamed
2014-04-01
The invasion of the Laurentian Great Lakes by the fish-parasitic sea lamprey has led to catastrophic consequences, including the potential introduction of fish pathogens. Aeromonas salmonicida is a bacterial fish pathogen that causes devastating losses worldwide. Currently, there are five accepted subspecies of Aeromonas salmonicida: A. salmonicida subsp. salmonicida, masoucida, smithia, achromogenes, and pectinolytica. We discuss the discovery of an isolate of A. salmonicida that is pathogenic to rainbow trout (Oncorhynchus mykiss) and exhibits unique phenotypic and molecular characteristics. We examined 181 adult sea lamprey (Petromyzon marinus) from the Humber River (Lake Ontario watershed) and 162 adult sea lamprey from Duffins Creek (Lake Ontario watershed) during the spring seasons of 2005-11. Among those, 4/343 (1.2%) sea lamprey were culture positive for A. salmonicida, whereby biochemical and molecular studies identified three of the isolates as A. salmonicida subsp. salmonicida. The remaining isolate (As-SL1) recovered from Humber River sea lamprey was phenotypically more similar to A. salmonicida subsp. salmonicida than to the four other A. salmonicida subspecies. However, unlike A. salmonicida subsp. salmonicida, As-SL1 was sucrose positive, produced an acid-over-acid reaction on triple-sugar iron medium and did not amplify with A. salmonicida subsp. salmonicida specific primers. Phylogenetic analysis based on partial stretches of the 16S rRNA and DNA gyrase subunit B genes further confirmed that the As-SL1 isolate was not A. salmonicida subsp. masoucida, smithia, achromogenes, or pectinolytica. Based on our analyses, the As-SL1 isolate is either an unusual strain of A. salmonicida subsp. salmonicida or a novel A. salmonicida subspecies. The four A. salmonicida isolates that were recovered from sea lamprey were pathogenic to rainbow trout in experimental challenge studies. Our study also underscores the potential role of sea lamprey in the ecology of infectious fish diseases.
Kusakabe, Rie; Kuraku, Shigehiro; Kuratani, Shigeru
2011-02-01
Gnathostomes (jawed vertebrates) possess skeletal muscles with unique functional and developmental features that are absent from cyclostomes-i.e., lamprey and hagfish. These gnathostome-specific traits include the epaxial and hypaxial division of myotomes, paired fin/limb muscles, shoulder girdle muscles, and the muscle associated with the tongue and the neck. Many of these muscles are derived from several rostral somites, specifically from their hypaxial myotomic domains. However, it has not been clarified how the complicated morphology of these muscles was acquired in the evolution of vertebrates. Here we describe the expression of lamprey homologs of transcription factor genes, including a myogenic regulatory factor of the Myod family (MRF), Pax3/7, Lbx, and Zic, which play important roles in the development of ep-/hypaxial somitic muscles in gnathostomes, and show that the ventral portion of lamprey somites is comparable to the ventral dermomyotome in gnathostomes. The supra- and infraoptic muscles, derived from the two anterior somites in the lamprey, are molecularly specified before their extensive invasion into the head region. Of these, the infraoptic myotomes are suggested to represent the cucullaris homologue in the lamprey based on their topographical position in the embryonic pattern. Slightly caudal myotomes in the lamprey give rise to the hypobranchial muscle, the developmental homologue of the gnathostome hypobranchial musculature. The dorsal moieties of the lamprey somites express a Zic gene, which in teleosts specifies the epaxial identities of the somites. These evidences suggest that, although the myotomes in the ancestral jawless vertebrates do not exhibit ep-/hypaxial distinction at the morphological level, their dorsoventral specification would have already been present at gene regulatory levels, prior to the cyclostome-gnathostome divergence, which may have functioned as the key innovation to establish the ep-/hypaxial distinction in gnathostomes. Copyright © 2010 Elsevier Inc. All rights reserved.
Evaluation of lamprey larvicides in the Big Garlic River and Saux Head Lake
Manion, Patrick J.
1969-01-01
Bayluscide (5,2'-dichloro-4'-nitrosalicylanilide) and TFM (3-trifluoromethyl-4-nitrophenol) were evaluated as selective larvicides for control of the sea lamprey, Petromyzon marinus, in the Big Garlic River and Saux Head Lake in Marquette County, Michigan. Population estimates and movement of ammocetes were determined from the recapture of marked ammocetes released before chemical treatment. In 1966 the estimated population of 3136 ammocetes off the stream mouth in Saux Head Lake was reduced 89% by treatment with granular Bayluscide; this percentage was supported by a population estimate of 120 ammocetes in 1967, an indicated reduction of 96% from 1966. Post-marking movement of ammocetes was greater upstream than downstream.
Artificial propagation of the sea lamprey Petromyzon marinus
Lennon, Robert E.
1955-01-01
Observations on the gland products, gonads, and general characteristics of sexually mature sea lampreys, Petromyzon marinus (Linnaeus), from Lake Huron, and a need to obtain some information on very young larval lampreys, prompted an experiment on the stripping and hatching of eggs. Seventeen specimens were selected from a group of spawning migrants which had been trapped in the Ocqueoc River, Michigan, during June and held in live-cars in the lake until early August.
Muzzall, Patrick M.; Hudson, Patrick L.
2004-01-01
Ergasilus megaceros (Copepoda: Ergasilidae) was recovered from the nasal fossae (lamellae) of the olfactory sac in 1 (1.8%) of 56 sea lampreys, Petromyzon marinus Linne, 1758, collected in May 2002 from the Cheboygan River, Michigan. Although the sea lamprey is a new host record for E. megaceros, this fish species may not be a preferred host because of its low prevalence. Ergasilus megaceros is the second ergasilid species reported from the sea lamprey in North America. This is the third report of an ergasilid species infecting the nasal fossae of fishes in North America, with E. rhinos being the only other species reported from this site.
Species succession and fishery exploitation in the Great Lakes
Smith, Stanford H.
1968-01-01
The species composition of fish in the Great Lakes has undergone continual change since the earliest records. Some changes were caused by enrichment of the environment, but others primarily by an intensive and selective fishery for certain species. Major changes related to the fishery were less frequent before the late 1930's than in recent years and involved few species. Lake sturgeon (Acipenser fulvescens) were overexploited knowingly during the late 1800's because they interfered with fishing for preferred species; sturgeon were greatly reduced in all lakes by the early 1900's. Heavy exploitation accompanied sharp declines of lake herring (Leucichthys artedi) in Lake Erie during the 1920's and lake whitefish (Coregonus clupeaformis) in Lake Huron during the 1930's. A rapid succession of fish species in Lakes Huron, Michigan, and Superior that started about 1940 has been caused by selective predation by the sea lamprey (Petromyzon marinus) on native predatory species, and the resultant shifting emphasis of the fishery and species interaction as various species declined. Lake trout (Salvelinus namaycush) and burbot (Lota lota), the deepwater predators, were depleted first; this favored their prey, the chubs (Leucichthys spp.). The seven species of chubs were influenced differently according to differences in size. Fishing emphasis and predation by sea lampreys were selective for the largest species of chubs as lake trout and burbot declined. A single slow-growing chub, the bloater, was favored and increased, but as the large chubs declined the bloater was exploited by a new trawl fishery. The growth rate and size of the bloater increased, making it more vulnerable to conventional gillnet fishery and lamprey predation. This situation in Lakes Michigan and Huron favored the small alewife (Alosa pseudoharengus) which had recently become established in the upper Great Lakes, and the alewife increased rapidly and dominated the fish stocks of the lakes. The successive collapses of various stocks after periods of stable production may give some indication of their sustainable yield. The sea lamprey is being brought under control in Lakes Superior, Michigan, and Huron; lake trout are being established; and chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), kokanee salmon (O. nerka), and the splake, a hybrid of lake trout and brook trout (Salvelinus fontinalis), are being introduced to reestablish a new species balance. Fish stocks are in a state of extreme instability in these lakes. Careful control of stocking programs and fisheries, and coordination of management among the various states of the United States and the province of Canada (Ontario) which manage the fish stocks, will be required to restore and maintain a useful fishery balance.
1987-04-01
Species Cypress Cypress Chestnut lamprey Ichthyomyzon castaneus X NC Spotted gar Lepisosteus oculatus 0 NC Longnose gar Lepisosteus osseus X NC Bowfin Amia ... calva 0 0 Gizzard shad Dorosoma cepedianum 0 0 Grass pickerel Esox americanus 0 0 vermiculatus Chain pickerel Esox niger 0 0 Black buffalo Ictiobus
Hsp90 and hepatobiliary transformation during sea lamprey metamorphosis.
Chung-Davidson, Yu-Wen; Yeh, Chu-Yin; Bussy, Ugo; Li, Ke; Davidson, Peter J; Nanlohy, Kaben G; Brown, C Titus; Whyard, Steven; Li, Weiming
2015-12-01
Biliary atresia (BA) is a human infant disease with inflammatory fibrous obstructions in the bile ducts and is the most common cause for pediatric liver transplantation. In contrast, the sea lamprey undergoes developmental BA with transient cholestasis and fibrosis during metamorphosis, but emerges as a fecund adult. Therefore, sea lamprey liver metamorphosis may serve as an etiological model for human BA and provide pivotal information for hepatobiliary transformation and possible therapeutics. We hypothesized that liver metamorphosis in sea lamprey is due to transcriptional reprogramming that dictates cellular remodeling during metamorphosis. We determined global gene expressions in liver at several metamorphic landmark stages by integrating mRNA-Seq and gene ontology analyses, and validated the results with real-time quantitative PCR, histological and immunohistochemical staining. These analyses revealed that gene expressions of protein folding chaperones, membrane transporters and extracellular matrices were altered and shifted during liver metamorphosis. HSP90, important in protein folding and invertebrate metamorphosis, was identified as a candidate key factor during liver metamorphosis in sea lamprey. Blocking HSP90 with geldanamycin facilitated liver metamorphosis and decreased the gene expressions of the rate limiting enzyme for cholesterol biosynthesis, HMGCoA reductase (hmgcr), and bile acid biosynthesis, cyp7a1. Injection of hsp90 siRNA for 4 days altered gene expressions of met, hmgcr, cyp27a1, and slc10a1. Bile acid concentrations were increased while bile duct and gall bladder degeneration was facilitated and synchronized after hsp90 siRNA injection. HSP90 appears to play crucial roles in hepatobiliary transformation during sea lamprey metamorphosis. Sea lamprey is a useful animal model to study postembryonic development and mechanisms for hsp90-induced hepatobiliary transformation.
Roberts, Brent W.; Didier, Wes; Satbir, Rai; Johnson, Nicholas S.; Libants, Scot V.; Sang-Seon, Yun; Close, David
2013-01-01
In higher vertebrates, in response to stress, the hypothalamus produces corticotropin-releasing hormone (CRH), which stimulates cells in the anterior pituitary to produce adrenocorticotropic hormone (ACTH), which in turn stimulates production of either cortisol (F) or corticosterone (B) by the adrenal tissues. In lampreys, however, neither of these steroids is present. Instead, it has been proposed that the stress steroid is actually 17,21-dihydroxypregn-4-ene-3,20-dione (11-deoxycortisol; S). However, there have been no studies yet to determine its mechanism of regulation or site of production. Here we demonstrate that (1) intraperitoneal injections of lamprey-CRH increase plasma S in a dose dependent manner, (2) intraperitoneal injections of four lamprey-specific ACTH peptides at 100 lg/kg, did not induce changes in plasma S concentrations in either males or females; (3) two lamprey-specific gonadotropin-releasing hormones (GnRH I and III) and arginine-vasotocin (AVT), all at single doses, stimulated S production as well as, or to an even greater extent than CRH; (4) sea lamprey mesonephric kidneys, in vitro, converted tritiated 17a-hydroxyprogesterone (17a-P) into a steroid that had the same chromatographic properties (on HPLC and TLC) as S; (5) kidney tissues released significantly more immunoassayable S into the incubation medium than gill, liver or gonad tissues. One interpretation of these results is that the corticosteroid production of the sea lamprey, one of the oldest extant vertebrates, is regulated through multiple pathways rather than the classical HPI-axis. However, the responsiveness of this steroid to the GnRH peptides means that a reproductive rather than a stress role for this steroid cannot yet be ruled out.
Wake structures behind a swimming robotic lamprey with a passively flexible tail
Leftwich, Megan C.; Tytell, Eric D.; Cohen, Avis H.; Smits, Alexander J.
2012-01-01
SUMMARY A robotic lamprey, based on the silver lamprey, Ichthyomyzon unicuspis, was used to investigate the influence of passive tail flexibility on the wake structure and thrust production during anguilliform swimming. A programmable microcomputer actuated 11 servomotors that produce a traveling wave along the length of the lamprey body. The waveform was based on kinematic studies of living lamprey, and the shape of the tail was taken from a computer tomography scan of the silver lamprey. The tail was constructed of flexible PVC gel, and nylon inserts were used to change its degree of flexibility. Particle image velocimetry measurements using three different levels of passive flexibility show that the large-scale structure of the wake is dominated by the formation of two pairs of vortices per shedding cycle, as seen in the case of a tail that flexed actively according to a pre-defined kinematic pattern, and did not bend in response to fluid forces. When the tail is passively flexible, however, the large structures are composed of a number of smaller vortices, and the wake loses coherence as the degree of flexibility increases. Momentum balance calculations indicate that, at a given tailbeat frequency, increasing the tail flexibility yields less net force, but changing the cycle frequency to match the resonant frequency of the tail increases the force production. PMID:22246250
Volumetric flow around a swimming lamprey
NASA Astrophysics Data System (ADS)
Lehn, Andrea M.; Colin, Sean P.; Costello, John H.; Leftwich, Megan C.; Tytell, Eric D.
2015-11-01
A primary experimental technique for studying fluid-structure interactions around swimming fish has been planar dimensional particle image velocimetry (PIV). Typically, two components of the velocity vector are measured in a plane, in the case of swimming studies, directly behind the animal. While useful, this approach provides little to no insight about fluid structure interactions above and below the fish. For fish with a small height relative to body length, such as the long and approximately cylindrical lamprey, 3D information is essential to characterize how these fish interact with their fluid environment. This study presents 3D flow structures along the body and in the wake of larval lamprey, P etromyzon m arinus , which are 10-15 cm long. Lamprey swim through a 1000 cm3 field of view in a standard 10 gallon tank illuminated by a green laser. Data are collected using the three component velocimeter V3V system by TSI, Inc. and processed using Insight 4G software. This study expands on previous works that show two pairs of vortices each tail beat in the mid-plane of the lamprey wake. NSF DMS 1062052.
Red List of lampreys and marine fishes of the Wadden Sea
NASA Astrophysics Data System (ADS)
Berg, S.; Krog, C.; Muus, B.; Nielsen, J.; Fricke, R.; Berghahn, R.; Neudecker, Th.; Wolff, W. J.
1996-10-01
In the Wadden Sea areas of Denmark, Germany and The Netherlands, a total of 162 fish and lamprey species is known. 72 of these species are migrants entering the area occasionally; the total number of resident species in the Wadden Sea area is 90. In the Wadden Sea, in total, 20 species of fish and lamprey species are threatened in at least one subregion. Of these, 19 species are threatened in the entire area and are therefore placed on the trilateral Red List. 2 species of the listed fish and lamprey species are (probably) extinct in the entire Wadden Sea area. The status of 5 species of fish and lamprey species is critical, 5 species are (probably) endangered, the status of 6 is vulnerable and of 1 species susceptible. For about 16 rare species which may also be threatened, data were not sufficient to estimate past and present population sizes. The contributors to the list would like to encourage researchers to intensify work on the ecology and the present population sizes of these rare Wadden Sea species (see Fricke et al., 1995).
Toxicity of TFM lampricide to early life stages of walleye
Seelye, J.G.; Marking, L.L.; King, E.L.; Hanson, L.H.; Bills, T.D.
1987-01-01
The authors studied the effects of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) on gametes, newly fertilized eggs, eyed eggs, larvae, and swim-up fry of the walleye Stizostedion vitreum . When gametes from sexually mature walleyes were stripped into solutions of TFM, no effects were observed during the fertilization process at concentrations up to 3.0 mg/L - three times the concentration lethal to 99.9% of larval sea lampreys Petromyzon marinus held 12 h (LC99.9) under the same test conditions. Newly fertilized eggs likewise were unaffected during water hardening by concentrations of TFM that were lethal to sea lamprey ammocoetes. Eyed eggs, sac fry, and swim-up fry yielded LC25 values that were 2.5 to 5 times greater than the 12-h LC99.9 for sea lamprey ammocoetes. The data thus indicated that all of the early life stages of walleyes tested were considerably more resistant than sea lamprey ammocoetes to TFM, and that it is unlikely they would be adversely affected by standard stream treatments to kill sea lamprey ammocoetes.
Production of sea lamprey larvae from nests in two Lake Superior streams
Manion, Patrick J.
1968-01-01
The life history of the landlocked sea lamprey, Petromyzon marinus, has been described by several authors, the two most recent of which are Applegate and Wigley. The only information on the production of larvae from nests of the sea lamprey was reported by Applegate, who counted the larvae from three nests in the Ocqueoc River, a tributary of Lake Huron. The present report presents data on the hatching success of sea lamprey larvae from 19 nests in two small tributaries of southern Lake Superior and indicates greater production per nest than that recorded by Applegate. Studies were conducted by personnel of the U.S. Bureau of Commercial Fisheries on the Little Garlic River, Marquette County, Michigan, and on the Traverse River, Keweenaw County, Michigan.
Loonen, Anton J M; Ivanova, Svetlana A
2015-01-01
The very first free-moving animals in the oceans over 540 million years ago must have been able to obtain food, territory, and shelter, as well as reproduce. Therefore, they would have needed regulatory mechanisms to induce movements enabling achievement of these prerequisites for survival. It can be useful to consider these mechanisms in primitive chordates, which represent our earliest ancestors, to develop hypotheses addressing how these essential parts of human behavior are regulated and relate to more sophisticated behavioral manifestations such as mood. An animal comparable to lampreys was the earliest known vertebrate with a modern forebrain consisting of old and new cortical parts. Lampreys have a separate dorsal pallium, the forerunner of the most recently developed part of the cerebral cortex. In addition, the lamprey extrapyramidal system (EPS), which regulates movement, is modern. However, in lampreys and their putative forerunners, the hagfishes, the striatum, which is the input part of this EPS, probably corresponds to the human centromedial amygdala, which in higher vertebrates is part of a system mediating fear and anxiety. Both animals have well-developed nuclear habenulae, which are involved in several critical behaviors; in lampreys this system regulates the reward system that reinforces appetitive-seeking behavior or the avoidance system that reinforces flight behavior resulting from negative inputs. Lampreys also have a distinct glutamatergic nucleus, the so-called habenula-projection globus pallidus, which receives input from glutamatergic and GABAergic signals and gives output to the lateral habenula. Via this route, this nucleus influences midbrain monoaminergic nuclei and regulates the food acquisition system. These various structures involved in motor regulation in the lampreys may be conserved in humans and include two complementary mechanisms for reward reinforcement and avoidance behaviors. The first system is associated with experiencing pleasure and the second with happiness. The activities of these mechanisms are regulated by a tract running via the habenula to the upper brainstem. Identifying the human correlate of the lamprey habenula-projecting globus pallidus may help in elucidating the mechanism of the antidepressant effects of glutamatergic drugs.
Dawson, Verdel K.; Cumming, Kenneth B.; Gilderhus, Philip A.
1977-01-01
The lampricidal effects of 3-trifluoromethyl-4-nitrophenol (TFM), 2',5-dichloro-4'nitrosalicylanilide (Bayer 73), and a 98:2 mixture of the two (TFM:2B) were tested against larvae of the sea lamprey (Petromyzon marinus) under controlled laboratory conditions. The lampricides were tested in water at temperatures of 7,12, and 17 C; total hardnesses of 44,170, and 300 mg/l as CaCOa; and pH's of 6.5, 7.5, and 8.5. Temperature had little influence on the toxicity of the lampricides, but the effect of Bayer 73was slowed in cold water. Water hardness did not significantly influence the activity of the 98:2 mixture. The toxicities ofTFM, Bayer 73, and TFM:2B were significantly reduced in water of high pH. Burrowed sea lamprey larvae were less vulnerabletoTFM, Bayer73,andTFM:2Bthanwerefree-swimminglarvae. TFMand TFM:2B were selective for free-swimming lampreys over the nontarget organisms used for comparison, but the margin of safety for nontarget organisms over burrowed sealampreys was narrow.
Metamorphosis of the landlocked sea lamprey, Petromyzon marinus
Manion, Patrick J.; Stauffer, Thomas M.
1970-01-01
The external metamorphosis of the sea lamprey was divided into four stages, based primarily on the condition of the mouth: mouth reduced, mouth fused, mouth enclosed, and mouth elongated. During metamorphosis, the eye enlarged greatly, the snout and mouth region changed from a fleshy hood enclosing a sieve apparatus to a large sucking disc, the nasopore membrane and the branchial area shrank, the branchiopores changed in shape, the general color changed from dark brown and yellow to an intense blue-black dorsally and white ventrally, and the total length increased. Metamorphosis began in early to mid-July and did not take place after August. The duration of external metamorphosis was about 3 months for lampreys transforming under natural conditions. The mean lengths of metamorphosing lampreys from tributaries of lakes Superior and Michigan were 145 and 136 mm, respectively.
Lethality of sea lamprey attacks on lake trout in relation to location on the body surface
Bergstedt, Roger A.; Schneider, Clifford P.; O'Gorman, Robert
2001-01-01
We compared the locations of healed attack marks of the sea lamprey Petromyzon marinus on live lake trout Salvelinus namaycush with those of unhealed attack marks on dead lake trout to determine if the lethality of a sea lamprey attack was related to attack location. Lake trout were collected from Lake Ontario, live fish with gill nets in September 1985 and dead fish with trawls in October 1983−1986. Attack location was characterized by the percent distances from snout to tail and from the ventral to the dorsal midline. Kolmogorov−Smirnov two-sample tests did not detect significant differences in the distribution of attack location along either the anteroposterior axis or the dorsoventral axis. When attack locations were grouped into six anatomical regions historically used to record sea lamprey attacks, dead fish did not exhibit a significantly higher proportion of attacks in the more anterior regions. Even if the differences in attack location on live and dead fish were significant, they were too small to imply substantial spatial differences in attack lethality that should be accounted for when modeling the effects of sea lampreys feeding on lake trout. We suggest that the tendency for sea lamprey attacks to occur on the anterior half of the fish is related to the lower amplitude of lateral body movement there during swimming and thus the lower likelihood of being dislodged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochnauer, Tim; Claire, Christopher
2009-05-07
Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based onmore » potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.« less
Covelo-Soto, Lara; Saura, María; Morán, Paloma
2015-07-01
Lampreys represent one of the most ancient vertebrate lineages enclosing a special interest for genetic and epigenetic studies. The sea lamprey (Petromyzon marinus) is an anadromous species that experiences metamorphosis all the way up to the adult stage. Although representing a gradual process, metamorphosis in this species involves dramatic conversions with regard to physiological together with structural body changes preparing individuals for a marine and parasitic life; in consequence, multiple gene expression modifications are expected. The implications of thyroid hormones and HOX gene expression changes have previously been reported in this species and also in other vertebrate species. Nonetheless, information lacks on how these genes are regulated in lampreys. We here report about the existence of methylation pattern differences between the adult and the larvae sea lamprey life cycle stages making use of the Methylation-Sensitive Amplified Polymorphism (MSAP) technique. Differentially methylated fragment sequencing allowed to establish homologous identities with HOX genes involved in morphogenesis, along with genes related to the water balance and to the osmotic homoeostasis, all associated to a marine environment adaptation. These results provide evidences revealing that DNA methylation plays a role in the epigenetic regulation of the P. marinus post-natal development representing a starting point for future studies. To the best of our knowledge, this is the first study which detects DNA methylation changes associated with metamorphosis in lampreys. Copyright © 2015 Elsevier Inc. All rights reserved.
Pombal, M A; Puelles, L
1999-11-22
The structural organization of the lamprey extratelencephalic forebrain is re-examined from the perspective of the prosomeric segmental paradigm. The question asked was whether the prosomeric forebrain model used for gnathostomes is of material advantage for interpreting subdivisions in the lamprey forebrain. To this aim, the main longitudinal and transverse landmarks recognized by the prosomeric model in other vertebrates were identified in Nissl-stained lamprey material. Lines of cytoarchitectural discontinuity and contours of migrated neuronal groups were mapped in a two-dimensional sagittal representation and were also classified according to their radial position. Immunocytochemical mapping of calretinin expression in adjacent sections served to define particular structural units better, in particular, the dorsal thalamus. These data were complemented by numerous other chemoarchitectonic observations obtained with ancillary markers, which identified additional specific formations, subdivisions, or boundaries. Emphasis was placed on studying whether such chemically defined neuronal groups showed boundaries aligned with the postulated inter- or intraprosomeric boundaries. The course of diverse axonal tracts was studied also with regard to their prosomeric topography. This analysis showed that the full prosomeric model applies straightforwardly to the lamprey forebrain. This finding implies that a common segmental and longitudinal organization of the neural tube may be primitive for all vertebrates. Interesting novel aspects appear in the interpretation of the lamprey pretectum, the dorsal and ventral thalami, and the hypothalamus. The topologic continuity of the prosomeric forebrain regions with evaginated or non-evaginated portions of the telencephalon was also examined. Copyright 1999 Wiley-Liss, Inc.
Kuratani, S; Nobusada, Y; Horigome, N; Shigetani, Y
2001-01-01
Evolution of the vertebrate jaw has been reviewed and discussed based on the developmental pattern of the Japanese marine lamprey, Lampetra japonica. Though it never forms a jointed jaw apparatus, the L. japonica embryo exhibits the typical embryonic structure as well as the conserved regulatory gene expression patterns of vertebrates. The lamprey therefore shares the phylotype of vertebrates, the conserved embryonic pattern that appears at pharyngula stage, rather than representing an intermediate evolutionary state. Both gnathostomes and lampreys exhibit a tripartite configuration of the rostral-most crest-derived ectomesenchyme, each part occupying an anatomically equivalent site. Differentiated oral structure becomes apparent in post-pharyngula development. Due to the solid nasohypophyseal plate, the post-optic ectomesenchyme of the lamprey fails to grow rostromedially to form the medial nasal septum as in gnathostomes, but forms the upper lip instead. The gnathostome jaw may thus have arisen through a process of ontogenetic repatterning, in which a heterotopic shift of mesenchyme-epithelial relationships would have been involved. Further identification of shifts in tissue interaction and expression of regulatory genes are necessary to describe the evolution of the jaw fully from the standpoint of evolutionary developmental biology. PMID:11604127
Whitlock, S.L.; Schultz, L.D.; Schreck, Carl B.; Hess, J.E.
2017-01-01
Redd surveys are a commonly used technique for indexing the abundance of sexually mature fish in streams; however, substantial effort is often required to link redd counts to actual spawner abundance. In this study, we describe how genetic pedigree reconstruction can be used to estimate effective spawner abundance in a stream reach, using Pacific lamprey (Entosphenus tridentatus) as an example. Lamprey embryos were sampled from redds within a 2.5 km reach of the Luckiamute River, Oregon, USA. Embryos were found in only 20 of the 48 redds sampled (suggesting 58% false redds); however, multiple sets of parents were detected in 44% of the true redds. Estimates from pedigree reconstruction suggested that there were 0.48 (95% CI: 0.29–0.88) effective spawners per redd and revealed that individual lamprey contributed gametes to a minimum of between one and six redds, and in one case, spawned in patches that were separated by over 800 m. Our findings demonstrate the utility of pedigree reconstruction techniques for both inferring spawning-ground behaviors and providing useful information for refining lamprey redd survey methodologies.
Evolution of the vestibulo-ocular system
NASA Technical Reports Server (NTRS)
Fritzsch, B.
1998-01-01
The evolutionary and developmental changes in the eye muscle innervation, the inner ear, and the vestibulo-ocular reflex are examined. Three eye muscle patterns, based on the innervation by distinct ocular motoneurons populations, can be identified: a lamprey, an elasmobranch, and a bony fish/tetrapod pattern. Four distinct patterns of variation in the vestibular system are described: a hagfish pattern, a lamprey pattern, an elasmobranch pattern, and a bony fish/tetrapod pattern. Developmental data suggest an influence of the hindbrain on ear pattern formation, thus potentially allowing a concomitant change of eye muscle innervation and ear variation. The connections between the ear and the vestibular nuclei and between the vestibular nuclei and ocular motoneurons are reviewed, and the role of neurotrophins for pattern specification is discussed. Three patterns are recognized in central projections: a hagfish pattern, a lamprey pattern, and a pattern for jawed vertebrates. Second-order connections show both similarities and differences between distantly related species such as lampreys and mammals. For example, elasmobranchs lack an internuclear system, which is at best poorly developed in lampreys. It is suggested that the vestibulo-ocular system shows only a limited degree of variation because of the pronounced functional constraints imposed on it.
Bussy, Ugo; Chung-Davidson, Yu-Wen; Buchinger, Tyler; Li, Ke; Smith, Scott A; Jones, A Daniel; Li, Weiming
2018-02-01
The sea lamprey (Petromyzon marinus) is a destructive invasive species in the Great Lakes that contributed to the collapse of native fish populations in the mid-1900s. 3-Trifluoromethyl-4-nitrophenol (TFM) is a selective pesticide that has been applied to sea lamprey infested tributaries of the Great Lakes to kill larvae since the 1960s and has reduced the populations by as much as 90%. However, the metabolism of TFM by sea lamprey and non-target species is not fully illuminated. Elucidation of TFM metabolism is critical for understanding its mode of action and possible environmental impact. Here, we describe the screening, identification, synthesis and structural characterization of TFM metabolites in livers from sea lamprey and three non-target species that differ in their ability to survive TFM exposure. We identified glucuronidation, sulfation, N-acetylation, glutathione conjugation, and aromatic nitro group reduction as potential detoxification mechanisms. Seven metabolites were synthesized for use as markers of TFM metabolism in fish. Quantitative 1 H NMR was used to assay synthesized metabolite stock solutions that were then used as standard material to develop a quantitative LC-MS/MS method for TFM metabolites.
Green, Stephen A; Bronner, Marianne E
2014-01-01
Lampreys are a group of jawless fishes that serve as an important point of comparison for studies of vertebrate evolution. Lampreys and hagfishes are agnathan fishes, the cyclostomes, which sit at a crucial phylogenetic position as the only living sister group of the jawed vertebrates. Comparisons between cyclostomes and jawed vertebrates can help identify shared derived (i.e. synapomorphic) traits that might have been inherited from ancestral early vertebrates, if unlikely to have arisen convergently by chance. One example of a uniquely vertebrate trait is the neural crest, an embryonic tissue that produces many cell types crucial to vertebrate features, such as the craniofacial skeleton, pigmentation of the skin, and much of the peripheral nervous system (Gans and Northcutt, 1983). Invertebrate chordates arguably lack unambiguous neural crest homologs, yet have cells with some similarities, making comparisons with lampreys and jawed vertebrates essential for inferring characteristics of development in early vertebrates, and how they may have evolved from nonvertebrate chordates. Here we review recent research on cyclostome neural crest development, including research on lamprey gene regulatory networks and differentiated neural crest fates. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Abnormal tooth development in a sea lamprey
Manion, Patrick J.; Hanson, Lee H.
1977-01-01
Sea lampreys en route to their spawning grounds have been captured at mechanical or electrical structures that have been in operation for 1 to 27 spawning seasons (1949-75) on some 167 tributaries of the upper Great Lakes; more than 750,000 were taken in 1949-70 (Smith 1971). Among these lampreys (all of which were routinely examined at the time of capture) was one female (length, 434 mm; weight, 130 g) with markedly underdeveloped teeth. It was captured in May 1968 at an electrical barrier in the Ocqueoc River, a Michigan tributary of Lake Huron
Zhang, Guixin; Jin, Li-qing; Hu, Jianli; Rodemer, William; Selzer, Michael E
2015-01-01
The sea lamprey has been used as a model for the study of axonal regeneration after spinal cord injury. Previous studies have suggested that, unlike developing axons in mammal, the tips of regenerating axons in lamprey spinal cord are simple in shape, packed with neurofilaments (NFs), and contain very little F-actin. Thus it has been proposed that regeneration of axons in the central nervous system of mature vertebrates is not based on the canonical actin-dependent pulling mechanism of growth cones, but involves an internal protrusive force, perhaps generated by the transport or assembly of NFs in the distal axon. In order to assess this hypothesis, expression of NFs was manipulated by antisense morpholino oligonucleotides (MO). A standard, company-supplied MO was used as control. Axon retraction and regeneration were assessed at 2, 4 and 9 weeks after MOs were applied to a spinal cord transection (TX) site. Antisense MO inhibited NF180 expression compared to control MO. The effect of inhibiting NF expression on axon retraction and regeneration was studied by measuring the distance of axon tips from the TX site at 2 and 4 weeks post-TX, and counting the number of reticulospinal neurons (RNs) retrogradely labeled by fluorescently-tagged dextran injected caudal to the injury at 9 weeks post-TX. There was no statistically significant effect of MO on axon retraction at 2 weeks post-TX. However, at both 4 and 9 weeks post-TX, inhibition of NF expression inhibited axon regeneration.
Luhring, Thomas M; Meckley, Trevor D.; Johnson, Nicholas S.; Siefkes, Michael J.; Hume, John B.; Wagner, C. Michael
2016-01-01
Animals make trade-offs between predation risk and pursuit of opportunities such as foraging and reproduction. Trade-offs between antipredator behaviours and foraging are well suited to manipulation in laboratory and field settings and have generated a vast compendium of knowledge. However, much less is known about how animals manage trade-offs between predation risk and pursuit of reproductive opportunities in the absence of the confounding effects of foraging. In the present study, we investigated how the nonfeeding migratory life stage of sea lamprey, Petromyzon marinus, responds to odour from dead conspecifics (a cue that induces avoidance behaviours in laboratory and field studies). We released groups of PIT-tagged sea lamprey 65 m from the shore of Lake Michigan or 287 m upstream in Carp Lake River and used antennas to detect their movements in the river. As the breeding season progressed, sea lamprey initiated upstream movement earlier and were more likely to enter the river. Sea lamprey that began the night in Lake Michigan entered Carp Lake River at higher rates and accelerated upstream when exposed to high concentrations of alarm cue, consistent with animals attempting to minimize time spent in risky areas. Sea lampreys that began the night in the river delayed upstream movement when exposed to alarm cue, consistent with animals sheltering and gathering information about a source of risk. We attribute this context-specific reaction to alarm cue to differences in perceived vulnerability to predation in sheltered positions in the river versus exposed positions in the lake. Once in the river, the vast majority of sea lamprey moved upstream independent of alarm cue or Julian date. Although life-history-induced time and energy budgets place rigid constraints on the direction of migration, sea lamprey attend to predation risk by modifying movement timing and speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Jennifer C.; Brun, Christopher V.
2006-05-01
Information about lamprey species composition, distribution, life history, abundance, habitat requirements, and exploitation in the lower Deschutes River Subbasin is extremely limited. During 2002, we began a multi-year study to assess the status of lamprey in the Deschutes River subbasin. The objectives of this project are to determine ammocoete (larval lamprey) distribution and associated habitats; Lampretra species composition; numbers of emigrants; adult escapement and harvest rates at Sherars Falls. This report describes the preliminary results of data collected during 2005. We continued documenting ammocoete (larval) habitat selection by surveying four perennial eastside tributaries to the Deschutes River (Warm Springs River,more » Badger, Beaver and Shitike creeks) within the known ammocoete distribution. The results of 2003-2005 sampling indicate that positive relationships exist between: presence of wood (P = < 0.001), depositional area (P = < 0.001), flow (P = < 0.001), and fine substrate (P = < 0.001). Out-migrants numbers were not estimated during 2005 due to our inability to recapture marked larvae. In Shitike Creek, ammocoete and microphthalmia out-migration peaked during November 2005. In the Warm Spring River, out-migration peaked for ammocoetes in April 2006 and December 2005 for microphthalmia. Samples of ammocoetes from each stream were retained in a permanent collection of future analysis. An escapement estimate was generated for adult Pacific lamprey in the lower Deschutes River using a two event mark-recapture experiment during run year 2005. A modified Peterson model was used to estimate the adult population of Pacific lamprey at 3,895 with an estimated escapement of 2,881 during 2005 (95% CI= 2,847; M = 143; C = 1,027 R = 37). A tribal creel was also conducted from mid-June through August. We estimated tribal harvest to be approximately 1,015 adult lamprey during 2005 (95% CI= +/- 74).« less
Elimination of super(14)C-bisazir residues in adult sea lamprey (Petromyzon marinus)
Allen, J.L.; Dawson, V.K.
1987-01-01
Bisazir (P.P-bis(1-aziridinyl)-N-methylphosphinothioic amide), a chemosterilant, was administered to sea lampreys (Petromyzon marinus ) by intraperitoneal injection of 100 mg/kg or by immersion for 2 h in a 100- mg/L aqueous solution of the chemical. Whole body analysis of the injected lampreys showed that total residue concentrations decreased to 4.65 in males and 10.07 in females during the first day after injection, and to 1.46 in males and 3.74 in females after 10 days of withdrawal. Lampreys exposed by bath immersion contained residues of about 25 mu g/g of tissue immediately after exposure. The concentration ( mu g/g) decreased to 1.02 in males and 2.11 in females after 1 day of withdrawal and to 0.51 in males and 0.85 in females after 10 days.
A pore-forming protein implements VLR-activated complement cytotoxicity in lamprey.
Wu, Fenfang; Feng, Bo; Ren, Yong; Wu, Di; Chen, Yue; Huang, Shengfeng; Chen, Shangwu; Xu, Anlong
2017-01-01
Lamprey is a basal vertebrate with a unique adaptive immune system, which uses variable lymphocyte receptors (VLRs) for antigen recognition. Our previous study has shown that lamprey possessed a distinctive complement pathway activated by VLR. In this study, we identified a natterin family member-lamprey pore-forming protein (LPFP) with a jacalin-like lectin domain and an aerolysin-like pore-forming domain. LPFP had a high affinity with mannan and could form oligomer in the presence of mannan. LPFP could deposit on the surface of target cells, form pore-like complex resembling a wheel with hub and spokes, and mediate powerful cytotoxicity on target cells. These pore-forming proteins along with VLRs and complement molecules were essential for the specific cytotoxicity against exogenous pathogens and tumor cells. This unique cytotoxicity implemented by LPFP might emerge before or in parallel with the IgG-based classical complement lytic pathway completed by polyC9.
Do summer temperatures trigger spring maturation in pacific lamprey, Entosphenus tridentatus?
Clemens, B.J.; Van De Wetering, S.; Kaufman, J.; Holt, R.A.; Schreck, C.B.
2009-01-01
Pacific lamprey, Entosphenus tridentatus, return to streams and use somatic energy to fuel maturation. Body size decreases, the lamprey mature, spawn, and then die. We predicted that warm, summer temperatures (>20 ??C) would accentuate shrinkage in body size, and expedite sexual maturation and subsequent death. We compared fish reared in the laboratory at diel fluctuating temperatures of 20-24 ??C (mean = 21.8 ??C) with fish reared at cooler temperatures (13.6 ??C). The results confirmed our predictions. Lamprey from the warm water group showed significantly greater proportional decreases in body weight following the summer temperature treatments than fish from the cool water group. A greater proportion of warm water fish sexually matured (100%) and died (97%) the following spring than cool water fish (53% sexually mature, 61% died). Females tended to mature and die earlier than males, most obviously in the warm water group. ?? 2009 John Wiley & Sons A/S.
Havixbeck, Jeffrey J.; Rieger, Aja M.; Wong, Michael E.; Wilkie, Michael P.; Barreda, Daniel R.
2014-01-01
In higher vertebrates, phagocytosis plays a critical role in development and immunity, based on the internalization and removal of apoptotic cells and invading pathogens, respectively. Previous studies describe the effective uptake of these particles by lower vertebrate and invertebrate phagocytes, and identify important molecular players that contribute to this internalization. However, it remains unclear if individual phagocytes mediate internalization processes in these ancient organisms, and how this impacts the balance of pro-inflammatory and homeostatic events within their infection sites. Herein we show that individual phagocytes of the jawless vertebrate Petromyzon marinus (sea lamprey), like those of teleost fish and mice, display the capacity for divergent pro-inflammatory and homeostatic responses following internalization of zymosan and apoptotic cells, respectively. Professional phagocytes (macrophages, monocytes, neutrophils) were the primary contributors to the internalization of pro-inflammatory particles among goldfish (C. auratus) and lamprey (P. marinus) hematopoietic leukocytes. However, goldfish showed a greater ability for zymosan phagocytosis when compared to their jawless counterparts. Coupled to this increase was a significantly lower sensitivity of goldfish phagocytes to homeostatic signals derived from apoptotic cell internalization. Together, this translated into a significantly greater capacity for induction of antimicrobial respiratory burst responses compared to lamprey phagocytes, but also a decreased efficacy in apoptotic cell-driven leukocyte homeostatic mechanisms that attenuate this pro-inflammatory process. Overall, our results show the long-standing evolutionary contribution of intrinsic phagocyte mechanisms for the control of inflammation, and illustrate one effective evolutionary strategy for increased responsiveness against invading pathogens. In addition, they highlight the need for development of complementary regulatory mechanisms of inflammation to ensure continued maintenance of host integrity amidst increasing challenges from invading pathogens. PMID:24465992
Havixbeck, Jeffrey J; Rieger, Aja M; Wong, Michael E; Wilkie, Michael P; Barreda, Daniel R
2014-01-01
In higher vertebrates, phagocytosis plays a critical role in development and immunity, based on the internalization and removal of apoptotic cells and invading pathogens, respectively. Previous studies describe the effective uptake of these particles by lower vertebrate and invertebrate phagocytes, and identify important molecular players that contribute to this internalization. However, it remains unclear if individual phagocytes mediate internalization processes in these ancient organisms, and how this impacts the balance of pro-inflammatory and homeostatic events within their infection sites. Herein we show that individual phagocytes of the jawless vertebrate Petromyzon marinus (sea lamprey), like those of teleost fish and mice, display the capacity for divergent pro-inflammatory and homeostatic responses following internalization of zymosan and apoptotic cells, respectively. Professional phagocytes (macrophages, monocytes, neutrophils) were the primary contributors to the internalization of pro-inflammatory particles among goldfish (C. auratus) and lamprey (P. marinus) hematopoietic leukocytes. However, goldfish showed a greater ability for zymosan phagocytosis when compared to their jawless counterparts. Coupled to this increase was a significantly lower sensitivity of goldfish phagocytes to homeostatic signals derived from apoptotic cell internalization. Together, this translated into a significantly greater capacity for induction of antimicrobial respiratory burst responses compared to lamprey phagocytes, but also a decreased efficacy in apoptotic cell-driven leukocyte homeostatic mechanisms that attenuate this pro-inflammatory process. Overall, our results show the long-standing evolutionary contribution of intrinsic phagocyte mechanisms for the control of inflammation, and illustrate one effective evolutionary strategy for increased responsiveness against invading pathogens. In addition, they highlight the need for development of complementary regulatory mechanisms of inflammation to ensure continued maintenance of host integrity amidst increasing challenges from invading pathogens.
Sugahara, Fumiaki; Aota, Shin-ichi; Kuraku, Shigehiro; Murakami, Yasunori; Takio-Ogawa, Yoko; Hirano, Shigeki; Kuratani, Shigeru
2011-03-01
Dorsoventral (DV) specification is a crucial step for the development of the vertebrate telencephalon. Clarifying the origin of this mechanism will lead to a better understanding of vertebrate central nervous system (CNS) evolution. Based on the lamprey, a sister group of the gnathostomes (jawed vertebrates), we identified three lamprey Hedgehog (Hh) homologues, which are thought to play central signalling roles in telencephalon patterning. However, unlike in gnathostomes, none of these genes, nor Lhx6/7/8, a marker for the migrating interneuron subtype, was expressed in the ventral telencephalon, consistent with the reported absence of the medial ganglionic eminence (MGE) in this animal. Homologues of Gsh2, Isl1/2 and Sp8, which are involved in the patterning of the lateral ganglionic eminence (LGE) of gnathostomes, were expressed in the lamprey subpallium, as in gnathostomes. Hh signalling is necessary for induction of the subpallium identity in the gnathostome telencephalon. When Hh signalling was inhibited, the ventral identity was disrupted in the lamprey, suggesting that prechordal mesoderm-derived Hh signalling might be involved in the DV patterning of the telencephalon. By blocking fibroblast growth factor (FGF) signalling, the ventral telencephalon was suppressed in the lamprey, as in gnathostomes. We conclude that Hh- and FGF-dependent DV patterning, together with the resultant LGE identity, are likely to have been established in a common ancestor before the divergence of cyclostomes and gnathostomes. Later, gnathostomes would have acquired a novel Hh expression domain corresponding to the MGE, leading to the obtainment of cortical interneurons.
Clemens, Benjamin J.; van de Wetering, Stan; Sower, Stacia A.; Schreck, Carl B.
2013-01-01
Lampreys (Petromyzontiformes) have persisted over millennia and now suffer a recent decline in abundance. Complex life histories may have factored in their persistence; anthropogenic perturbations in their demise. The complexity of life histories of lampreys is not understood, particularly for the anadromous Pacific lamprey, Entosphenus tridentatus Gairdner, 1836. Our goals were to describe the maturation timing and associated characteristics of adult Pacific lamprey, and to test the null hypothesis that different life histories do not exist. Females exhibited early vitellogenesis – early maturation stages; males exhibited spermatogonia – spermatozoa. Cluster analyses revealed an “immature” group and a “maturing–mature” group for each sex. We found statistically significant differences between these groups in the relationships between (i) body mass and total length in males; (ii) Fulton’s condition factor and liver lipids in males; (iii) the gonadosomatic index (GSI) and liver lipids in females; (iv) GSI and total length in females; (v) mean oocyte diameter and liver lipids; and (vi) mean oocyte diameter and GSI. We found no significant difference between the groups in the relationship of muscle lipids and body mass. Our analyses support rejection of the hypothesis of a single life history. We found evidence for an “ocean-maturing” life history that would likely spawn within several weeks of entering fresh water, in addition to the formerly recognized life history of spending 1 year in fresh water prior to spawning—the “stream-maturing” life history. Late maturity, semelparity, and high fecundity suggest that Pacific lamprey capitalize on infrequent opportunities for reproduction in highly variable environments.
Barreiro-Iglesias, Antón; Villar-Cerviño, Verona; Villar-Cheda, Begoña; Anadón, Ramón; Rodicio, María Celina
2008-12-01
Neuroactive substances such as serotonin and other monoamines have been suggested to be involved in the transmission of gustatory signals from taste bud cells to afferent fibers. Lampreys are the earliest vertebrates that possess taste buds, although these differ in structure from taste buds in jawed vertebrates, and their neurochemistry remains unknown. We used immunofluorescence methods with antibodies raised against serotonin, tyrosine hydroxylase (TH), gamma-aminobutyric acid (GABA), glutamate, calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), calretinin, and acetylated alpha-tubulin to characterize the neurochemistry and innervation of taste buds in the sea lamprey, Petromyzon marinus L. For localization of proliferative cells in taste buds we used bromodeoxyuridine labeling and proliferating cell nuclear antigen immunohistochemistry. Results with both markers indicate that proliferating cells are restricted to a few basal cells and that almost all cells in taste buds are nonproliferating. A large number of serotonin-, calretinin-, and CGRP-immunoreactive bi-ciliated cells were revealed in lamprey taste buds. This suggests that serotonin participates in the transmission of gustatory signals and indicates that this substance appeared early on in vertebrate evolution. The basal surface of the bi-ciliated taste bud cells was contacted by tubulin-immunoreactive fibers. Some of the fibers surrounding the taste bud were calretinin immunoreactive. Lamprey taste bud cells or afferent fibers did not exhibit TH, GABA, glutamate, or NPY immunoreactivity, which suggests that expression of these substances evolved in taste buds of some gnathostomes lines after the separation of gnathostomes and lampreys. (c) 2008 Wiley-Liss, Inc.
Gonadotropin-Releasing hormones in the brain and pituitary of the white sucker
Robinson, T. Craig; Tobet, Stuart A.; Chase, Cindy; Waldron, Travis; Sower, Stacia A.
2000-01-01
The present study investigated GnRH forms within the brain of a representative of the order Cypriniformes, the white sucker, Catostomus commersoni, using HPLC, RIA, andimmunocytochemistry. Several immunoreactive (ir) GnRH forms were identified in the brain of the white sucker by chromatography and radioimmunoassay, including ir-salmon GnRH, ir-lamprey GnRH-I and -III, and ir-chicken GnRH-II. Results from immunocytochemical studies were consistent with multiple GnRH forms distributed in different patterns, particularly for fibers. Neuronal perikarya containing ir-salmon GnRH and ir-lamprey-like GnRH were found laterally within the preoptic area and rostralhypothalamus. Cells containing exclusively ir-salmon GnRH appeared slightly more rostrally, but in the same region. Fibers containing ir-salmon GnRH and ir-lamprey-like GnRH were seen throughout the caudal telencephalon and extended into thediencephalon, toward the pituitary. Fibers containing ir-chicken-II-like GnRH were also seen in the caudal telencephalon, but were concentrated more dorsally in the diencephalon. Within the pituitary, fibers containing ir-salmon GnRH and ir-lamprey-like GnRH entered the neurohypophysis, but differed in their destinations. Fibers containing ir-salmon GnRH remained within the neurohypophysis, while fibers containing ir-lamprey-like GnRH targeted adenohypophyseal tissue. These findings are consistent with the hypothesis that multiple GnRH forms with multiple functions exist within the brain and pituitary of teleosts and provide further evidence of a lamprey-like GnRH within an early evolved teleost species.
Selecting Great Lakes streams for lampricide treatment based on larval sea lamprey surveys
Christie, Gavin C.; Adams, Jean V.; Steeves, Todd B.; Slade, Jeffrey W.; Cuddy, Douglas W.; Fodale, Michael F.; Young, Robert J.; Kuc, Miroslaw; Jones, Michael L.
2003-01-01
The Empiric Stream Treatment Ranking (ESTR) system is a data-driven, model-based, decision tool for selecting Great Lakes streams for treatment with lampricide, based on estimates from larval sea lamprey (Petromyzon marinus) surveys conducted throughout the basin. The 2000 ESTR system was described and applied to larval assessment surveys conducted from 1996 to 1999. A comparative analysis of stream survey and selection data was conducted and improvements to the stream selection process were recommended. Streams were selected for treatment based on treatment cost, predicted treatment effectiveness, and the projected number of juvenile sea lampreys produced. On average, lampricide treatments were applied annually to 49 streams with 1,075 ha of larval habitat, killing 15 million larval and 514,000 juvenile sea lampreys at a total cost of $5.3 million, and marginal and mean costs of $85 and $10 per juvenile killed. The numbers of juvenile sea lampreys killed for given treatment costs showed a pattern of diminishing returns with increasing investment. Of the streams selected for treatment, those with > 14 ha of larval habitat targeted 73% of the juvenile sea lampreys for 60% of the treatment cost. Suggested improvements to the ESTR system were to improve accuracy and precision of model estimates, account for uncertainty in estimates, include all potentially productive streams in the process (not just those surveyed in the current year), consider the value of all larvae killed during treatment (not just those predicted to metamorphose the following year), use lake-specific estimates of damage, and establish formal suppression targets.
How-to-Do-It: Maintaining Parasitic Lampreys in Closed Laboratory Systems.
ERIC Educational Resources Information Center
Cochran, Philip A.
1989-01-01
Describes modifications and procedures needed for parasitic lampreys to be kept in a closed system. Presents information dealing with obtaining the organisms, tank modifications, temperature, feeding, disease prevention, and animal welfare. A discussion is included. (RT)
Lake fisheries need lamprey control and research
Moffett, James W.
1953-01-01
Since 1921, when the first sea lamprey was recorded from Lake Erie, concern about this parasite in the Great Lakes above Niagara Falls, where previously it had never occurred, grew successively. At first, the concern was shared only in scientific circles, but as the parasite continued its persistent and rapid spread throughout the upper Great Lakes this concern was voiced by state conservation departments, the U.S. Fish and Wildlife Service, and interested fishermen. Catches of lake trout especially, and other species secondarily, began to fall below anything representing normal fluctuations in abundance. The fishing industry on Lake Huron and Lake Michigan became extremely concerned due to the fact that income was diminishing greatly. Producers on Lake Superior were fearful that the same decline in production would soon characterize their fishery.
Hodges, John W.
1972-01-01
After the Pere Marquette River was treated with a lampricide in May 1964, the number of recently transformed sea lampreys (Petromyzon marinus) collected in the water-intake structure of a chemical plant near the mouth of the stream dropped 99.5%, from 13,913 (average for 1962-63 and 1963-64) to 76 (average for the next four migration seasons). Average length of the lampreys caught increased markedly after the treatment. In five of the six migration seasons, the catch of downstream migrants was higher in the fall than in the spring.
Li, Ke; Scott, Anne M; Brant, Cory O; Fissette, Skye D; Riedy, Joseph J; Hoye, Thomas R; Li, Weiming
2017-09-01
Two novel sulfated bile salt-like dienones, featuring either a unique, rearranged side chain or a rare cis-11,12-diol on the steroidal C-ring, herein named petromyzene A (1) and B (2), respectively, were isolated from water conditioned with spawning male sea lamprey (Petromyzon marinus; a jawless vertebrate animal). The structures of these natural products were elucidated by mass spectrometry and NMR spectroscopy. Petromyzenes A and B exhibited high olfactory potency for adult sea lamprey and strong behavioral attraction for spawning females.
Development and Functional Organization of the Cranial Nerves in Lampreys.
Pombal, Manuel A; Megías, Manuel
2018-04-16
Lampreys, together with hagfishes, are the only extant representatives of the oldest branch of vertebrates, the agnathans, which are the sister group of gnathostomes; therefore, studies on these animals are of great evolutionary significance. Lampreys exhibit a particular life cycle with remarkable changes in their behavior, concomitant, in part, with important modifications in the head and its musculature, which might influence the development of the cranial nerves. In this context, some cranial nerves such as the optic nerve and the ocular motor nerves, which develop slowly during an extremely long larval period lasting more than five years, have been more thoroughly investigated; however, much less experimental information is available about others, such as the facial or the hypoglossal nerves. In addition, the possible existence of a "true" accessory nerve in these animals is still a matter of conjecture. Although growing in last decades, investigations on the physiology of the lamprey cranial nerves is scanty. This review focuses on past and recent findings that have contributed to characterize the anatomical organization of the cranial nerves in lampreys, including their components and nuclei, and their relations in the brain; in addition, comments on their development and functional role are also included. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Pérez-Fernández, Juan; Megías, Manuel; Pombal, Manuel A
2014-04-01
The NPY receptors known as Y receptors are classified into three subfamilies, Y1, Y2, and Y5, and are involved in different physiological functions. The Y5 receptor is the only member of the Y5 subfamily, and it is present in all vertebrate groups, except for teleosts. Both molecular and pharmacological studies show that Y5 receptor is highly conserved during vertebrate evolution. Furthermore, this receptor is widely expressed in the mammalian brain, including the hypothalamus, where it is thought to take part in feeding and homeostasis regulation. Lampreys belong to the agnathan lineage, and they are thought to have branched out between the two whole-genome duplications that occurred in vertebrates. Therefore, they are in a key position for studies on the evolution of gene families in vertebrates. Here we report the cloning, phylogeny, and brain expression pattern of the sea lamprey Y5 receptor. In phylogenetic studies, the lamprey Y5 receptor clusters in a basal position, together with Y5 receptors of other vertebrates. The mRNA of this receptor is broadly expressed in the lamprey brain, being especially abundant in hypothalamic areas. Its expression pattern is roughly similar to that reported for other vertebrates and parallels the expression pattern of the Y1 receptor subtype previously described by our group, as it occurs in mammals. Altogether, these results confirm that a Y5 receptor is present in lampreys, thus being highly conserved during the evolution of vertebrates, and suggest that it is involved in many brain functions, the only known exception being teleosts. Copyright © 2013 Wiley Periodicals, Inc.
Spice, Erin K; Goodman, Damon H; Reid, Stewart B; Docker, Margaret F
2012-06-01
Most species with lengthy migrations display some degree of natal homing; some (e.g. migratory birds and anadromous salmonids) show spectacular feats of homing. However, studies of the sea lamprey (Petromyzon marinus) indicate that this anadromous species locates spawning habitat based on pheromonal cues from larvae rather than through philopatry. Previous genetic studies in the anadromous Pacific lamprey (Entosphenus tridentatus) have both supported and rejected the hypothesis of natal homing. To resolve this, we used nine microsatellite loci to examine the population structure in 965 Pacific lamprey from 20 locations from central British Columbia to southern California and supplemented this analysis with mitochondrial DNA restriction fragment length polymorphism analysis on a subset of 530 lamprey. Microsatellite analysis revealed (i) relatively low but often statistically significant genetic differentiation among locations (97% pairwise F(ST) values were <0.04 but 73.7% were significant); and (ii) weak but significant isolation by distance (r(2) = 0.0565, P = 0.0450) but no geographic clustering of samples. The few moderate F(ST) values involved comparisons with sites that were geographically distant or far upstream. The mtDNA analysis--although providing less resolution among sites (only 4.7%F(ST) values were significant)--was broadly consistent with the microsatellite results: (i) the southernmost site and some sites tributary to the Salish Sea were genetically distinct; and (ii) southern sites showed higher haplotype and private haplotype richness. These results are inconsistent with philopatry, suggesting that anadromous lampreys are unusual among species with long migrations, but suggest that limited dispersal at sea precludes panmixia in this species. © 2012 Blackwell Publishing Ltd.
Lampreys, the jawless vertebrates, contain only two ParaHox gene clusters.
Zhang, Huixian; Ravi, Vydianathan; Tay, Boon-Hui; Tohari, Sumanty; Pillai, Nisha E; Prasad, Aravind; Lin, Qiang; Brenner, Sydney; Venkatesh, Byrappa
2017-08-22
ParaHox genes ( Gsx , Pdx , and Cdx ) are an ancient family of developmental genes closely related to the Hox genes. They play critical roles in the patterning of brain and gut. The basal chordate, amphioxus, contains a single ParaHox cluster comprising one member of each family, whereas nonteleost jawed vertebrates contain four ParaHox genomic loci with six or seven ParaHox genes. Teleosts, which have experienced an additional whole-genome duplication, contain six ParaHox genomic loci with six ParaHox genes. Jawless vertebrates, represented by lampreys and hagfish, are the most ancient group of vertebrates and are crucial for understanding the origin and evolution of vertebrate gene families. We have previously shown that lampreys contain six Hox gene loci. Here we report that lampreys contain only two ParaHox gene clusters (designated as α- and β-clusters) bearing five ParaHox genes ( Gsxα , Pdxα , Cdxα , Gsxβ , and Cdxβ ). The order and orientation of the three genes in the α-cluster are identical to that of the single cluster in amphioxus. However, the orientation of Gsxβ in the β-cluster is inverted. Interestingly, Gsxβ is expressed in the eye, unlike its homologs in jawed vertebrates, which are expressed mainly in the brain. The lamprey Pdxα is expressed in the pancreas similar to jawed vertebrate Pdx genes, indicating that the pancreatic expression of Pdx was acquired before the divergence of jawless and jawed vertebrate lineages. It is likely that the lamprey Pdxα plays a crucial role in pancreas specification and insulin production similar to the Pdx of jawed vertebrates.
Bergstedt, Roger A.; Swink, William D.
1995-01-01
We used lengths and weights of 2367 live parasitic-phase sea lampreys (Petromyzon marinus) collected from Lake Huron, 1984–1990, to calculate their mean size at half-month intervals. Growth in weight was linear during June through September; increments averaged 11.1 g per half month. Growth increased sharply in October to several times the summer rate. We speculate that the increase in growth in October is explained partly by water temperature and partly by an increase in appetite related to the onset of gonadal development. The greater compression of biomass accumulation in autumn than has been previously demonstrated better explains the autumn pulse of sea lamprey induced host mortality. Based on the seasonal pattern of growth and on recaptures of marked sea lampreys, we conclude that landlocked individuals grow to adult size and mature in one parasitic growth year. Regressions of weight (grams) on total length (millimetres) differed significantly among months, and the season of collection must be considered in predicting weight from length.
Nilsen, Elena B.; Hapke, Whitney B.; McIlraith, Brian; Markovchick, Dennis J.
2015-01-01
Pacific lampreys (Entosphenus tridentatus) have resided in the Columbia River Basin for millennia and have great ecological and cultural importance. The role of habitat contamination in the recent decline of the species has rarely been studied and was the main objective of this effort. A wide range of contaminants (115 analytes) was measured in sediments and tissues at 27 sites across a large geographic area of diverse land use. This is the largest dataset of contaminants in habitats and tissues of Pacific lamprey in North America and the first study to compare contaminant bioburden during the larval life stage and the anadromous, adult portion of the life cycle. Bioaccumulation of pesticides, flame retardants, and mercury was observed at many sites. Based on available data, contaminants are accumulating in larval Pacific lamprey at levels that are likely detrimental to organism health and may be contributing to the decline of the species.
Endocrine events associated with spawning behavior in the sea lamprey (Petromyzon marinus)
Linville, Jane E.; Hanson, Lee H.; Sower, Stacia A.
1987-01-01
Levels of estradiol, progesterone, and testosterone were determined in plasma of sea lamprey (Petromyzon marinus) undergoing certain behaviors associated with spawning in natural and artifical stream environments. Significantly higher levels of estradiol, progesterone, and testosterone were found in males than in females. In the artifical spawning channel, levels of estradiol were significantly higher in females exhibiting resting and swimming behaviors than in fanning, nest building, and spawning behaviors. No significant correlation was found with either progesterone or testosterone levels and the various reproductive behaviors. The data presented are the first experimental evidence that suggest gonadal steroids may be correlated with certain reproductive behaviors in the sea lamprey.
Manion, Patrick J.; McLain, Alberton L.
1971-01-01
The capture of four recently metamorphosed sea lampreys (two males and two females), 152-172 mm long, in the fall of 1965, established the minimum age at transformation for larvae in the Big Garlic River at 5 years. Age and length (with the exception of a possible minimum length) were determined not to be critical factors in metamorphosis. The presence of larvae 65-176 mm long (mean, 107 mm) in the river in 1965 indicated that metamorphosis of lampreys in a single year class takes place over a period of years.
Birceanu, Oana; McClelland, Grant B; Wang, Yuxiang S; Brown, Jason C L; Wilkie, Michael P
2011-04-01
The toxicity of 3-trifluoromethyl-4-nitrophenol (TFM) appears to be due to a mismatch between ATP supply and demand in lamprey, depleting glycogen stores and starving the nervous system of ATP. The cause of this TFM-induced ATP deficit is unclear. One possibility is that TFM uncouples mitochondrial oxidative phosphorylation, thus impairing ATP production. To test this hypothesis, mitochondria were isolated from the livers of sea lamprey and rainbow trout, and O(2) consumption rates were measured in the presence of TFM or 2,4-dinitrophenol (2,4-DNP), a known uncoupler of oxidative phosphorylation. TFM and 2,4-DNP markedly increased State IV respiration in a dose-dependent fashion, but had no effect on State III respiration, which is consistent with uncoupling of oxidative phosphorylation. To determine how TFM uncoupled oxidative phosphorylation, the mitochondrial transmembrane potential (TMP) was recorded using the mitochondria-specific dye rhodamine 123. Mitochondrial TMP decreased by 22% in sea lamprey, and by 28% in trout following treatment with 50μmolL(-1) TFM. These findings suggest that TFM acted as a protonophore, dissipating the proton motive force needed to drive ATP synthesis. We conclude that the mode of TFM toxicity in sea lamprey and rainbow trout is via uncoupling of oxidative phosphorylation, leading to impaired ATP production. Copyright © 2010 Elsevier Inc. All rights reserved.
Boguski, D A; Reid, S B; Goodman, D H; Docker, M F
2012-11-01
Phylogenetic structure of four Lampetra species from the Pacific drainage of North America (western brook lamprey Lampetra richardsoni, Pacific brook lamprey Lampetra pacifica, river lamprey Lampetra ayresii and Kern brook lamprey Lampetra hubbsi) and unidentified Lampetra specimens (referred to as Lampetra sp.) from 36 locations was estimated using the mitochondrial cytochrome b gene. Maximum parsimony and Bayesian inferences did not correspond with any taxonomic scheme proposed to date. Rather, although L. richardsoni (from Alaska to California) and L. ayresii (from British Columbia to California) together constituted a well-supported clade distinct from several genetically divergent Lampetra populations in Oregon and California, these two species were not reciprocally monophyletic. The genetically divergent populations included L. pacifica (from the Columbia River basin) and L. hubbsi (from the Kern River basin) and four Lampetra sp. populations in Oregon (Siuslaw River and Fourmile Creek) and California (Kelsey and Mark West Creeks). These four Lampetra sp. populations showed genetic divergence between 2.3 and 5.7% from any known species (and up to 8.0% from each other), and may represent morphologically cryptic and thus previously undescribed species. A fifth population (from Paynes Creek, California) may represent a range extension of L. hubbsi into the Upper Sacramento River. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Mesa, Matthew G.; Magie, Robert J.; Copeland, Elizabeth S.
2009-01-01
We used radio telemetry to monitor passage and describe behavior characteristics of adult Pacific lampreys, Entosphenus tridentata, during their upstream migration at the Willamette Falls Project (Project) on the Willamette River near Portland, Oregon. Our objectives were to document: (1) specific routes of passage at the dam and falls; (2) duration of passage through different routes; and (3) overall passage success. During the spring through autumn of 2005 and 2006, fish were captured in a trap located in the fishway at the Project or collected by hand from the falls, surgically implanted with a radio tag, and released 2 kilometers downstream of the Project. We radio tagged 136 lampreys in 2005 and 107 in 2006. In both years, more than 90 percent of the fish returned to the Project with a median travel time of 7-9 hours. Most fish were first detected at the Project from about 20:00-23:00 hours. In 2005, 43 fish (35 percent) successfully passed through the fishway of the Project, which has four separate entrances and three distinct passage channels or legs that converge at one exit. Prior to the installation of flashboards around the perimeter of the falls in July, lampreys used all three legs of the fishway to pass the Project. After flashboards were installed, only fishway leg 1 was used. The peak of passage occurred in August. No fish passed over the falls, but 13 percent of the lampreys that traveled to the Project ascended at least partway up the falls. In 2006, 24 fish (23 percent) passed the Project, again primarily using fishway leg 1. Most fish passed prior to June 9 when the powerhouse was shut down due to construction. Although 19 lampreys ascended the falls, only 2 passed through this route in late June and early July. Flashboards were not installed in 2006. For both years, the time it took for fish to pass through the fishway depended on which leg they used - the median passage time was at least 4-5 hours in fishway legs 2 and 3 and ranged from 23 to 74 hours in fishway leg 1. Many fish resided in the tailrace for times ranging from a few hours to almost a year and eventually left the Project and moved downstream. Collectively, our results indicate that passage of radio-tagged upstream migrating Pacific lamprey at the Willamette Falls Project is relatively poor compared to passage success of these fish at dams on the Columbia River. Factors contributing to the low passage of lampreys at the Project may include low flows and water levels at fishway entrances, impediments in the fishways, delayed tagging effects, changing environmental and operational conditions, a learned aversion to a fishway, difficult passage over the falls, or not all lamprey are destined to migrate upstream of the falls.
Messina, J. A.; St. Paul, Alison; Hargis, Sarah; Thompson, Wengora E.; McClellan, Andrew D.
2017-01-01
The contribution of left-right reciprocal coupling between spinal locomotor networks to the generation of locomotor activity was tested in adult lampreys. Muscle recordings were made from normal animals as well as from experimental animals with rostral midline (ML) spinal lesions (~13%→35% body length, BL), before and after spinal transections (T) at 35% BL. Importantly, in the present study actual locomotor movements and muscle burst activity, as well as other motor activity, were initiated in whole animals by descending brain-spinal pathways in response to sensory stimulation of the anterior head. For experimental animals with ML spinal lesions, sensory stimulation could elicit well-coordinated locomotor muscle burst activity, but with some significant differences in the parameters of locomotor activity compared to those for normal animals. Computer models representing normal animals or experimental animals with ML spinal lesions could mimic many of the differences in locomotor activity. For experimental animals with ML and T spinal lesions, right and left rostral hemi-spinal cords, disconnected from intact caudal cord, usually produced tonic or unpatterned muscle activity. Hemi-spinal cords sometimes generated spontaneous or sensory-evoked relatively high frequency “burstlet” activity that probably is analogous to the previously described in vitro “fast rhythm”, which is thought to represent lamprey locomotor activity. However, “burstlet” activity in the present study had parameters and features that were very different than those for lamprey locomotor activity: average frequencies were ~25 Hz, but individual frequencies could be >50 Hz; burst proportions (BPs) often varied with cycled time; “burstlet” activity usually was not accompanied by a rostrocaudal phase lag; and following ML spinal lesions alone, “burstlet” activity could occur in the presence or absence of swimming burst activity, suggesting the two were generated by different mechanisms. In summary, for adult lampreys, left and right hemi-spinal cords did not generate rhythmic locomotor activity in response to descending inputs from the brain, suggesting that left-right reciprocal coupling of spinal locomotor networks contributes to both phase control and rhythmogenesis. In addition, the present study indicates that extreme caution should be exercised when testing the operation of spinal locomotor networks using artificial activation of isolated or reduced nervous system preparations. PMID:29225569
Flowfield measurements in the wake of a robotic lamprey
Hultmark, Marcus; Leftwich, Megan
2009-01-01
Experiments are reported on the hydrodynamics of a swimming robotic lamprey under conditions of steady swimming and where the thrust exceeds the drag. The motion of the robot was based on the swimming of live lampreys, which is described by an equation similar to that developed for the American eel by Tytell and Lauder (J Exp Biol 207:1825–1841, 2004). For steady swimming, the wake structure closely resembles that of the American eel, where two pairs of same sign vortices are shed each tail beat cycle, giving the wake a 2P structure. Force estimates suggest that the major part of the thrust is produced at or close to the end of the tail. PMID:19946623
Ups and Downs of Burbot and their predator Lake Trout in Lake Superior, 1953-2011
Gorman, Owen T.; Sitar, Shawn P.
2013-01-01
The fish community of Lake Superior has undergone a spectacular cycle of decline and recovery over the past 60 years. A combination of Sea Lamprey Petromyzon marinus depredation and commercial overfishing resulted in severe declines in Lake Trout Salvelinus namaycush, which served as the primary top predator of the community. Burbot Lota lota populations also declined as a result of Sea Lamprey depredation, largely owing to the loss of adult fish. After Sea Lamprey control measures were instituted in the early 1960s, Burbot populations rebounded rapidly but Lake Trout populations recovered more slowly and recovery was not fully evident until the mid-1980s. As Lake Trout populations recovered, Burbot populations began to decline, and predation on small Burbot was identified as the most likely cause. By 2000, Burbot densities had dropped below their nadir in the early 1960s and have continued to decline, with the densities of juveniles and small adults falling below that of large adults. Although Burbot populations are at record lows in Lake Superior, the density of large reproductive adults remains stable and a large reserve of adult Burbot is present in deep offshore waters. The combination of the Burbot's early maturation, long life span, and high fecundity provides the species with the resiliency to remain a viable member of the Lake Superior fish community into the foreseeable future.
Experimental Investigation of the Opacity of Small Particles
1965-04-01
Ultrafine Particles , ed. by W. E. Kuhn, H. Lamprey and C. Sheer. John Wiley and Sons, New York, 1963, pp. 262-270. 14 12. Quantinetz, M., et al: The...713-716. 14. Loftman, K. A.: Coatings Incorporating Ultrafine Particles . Ultrafine Particles , ed. by W. Kuhn, H. Lamprey and C. Sheer, John Wiley and
Migratory behavior of adult sea lamprey and cumulative passage performance through four fishways
Castro-Santos, Theodore R.; Shi, Xiaotao; Haro, Alexander
2017-01-01
This article describes a study of PIT-tagged sea lamprey (Petromyzon marinus) ascending four fishways comprising three designs at two dams on the Connecticut River, USA. Migration between dams was rapid (median migration rate = 23 km·day−1). Movement through the fishways was much slower, however (median = 0.02–0.33 km·day−1). Overall delay at dams was substantial (median = 13.6–14.6 days); many fish failed to pass (percent passage ranged from 29% to 55%, depending on fishway), and repeated passage attempts compounded delay for both passers and failers. Cox regression revealed that fishway entry rates were influenced by flow, temperature, and diel cycle, with most lampreys entering at night and at elevated flows, but with no apparent effect of sex or length. Overall delay was influenced by slow movement through the fishways, but repeated failures were the primary factor determining delay. These data suggest that although some lamprey were able to pass fishways, they did so with difficulty, and delays incurred as they attempted to pass may act to limit their distribution within their native range.
Zydlewski, Joseph D.; Gardner, Cory; Coghlan, Stephen M.
2012-01-01
Dams fragment watersheds and prevent anadromous fishes from reaching historic spawning habitat. Sedgeunkedunk Stream, a small tributary to the Penobscot River (Maine), has been the focus of efforts to reestablish marine-freshwater connectivity and restore anadromous fishes via the removal of two barriers to fish migration. Currently, Petromyzon marinus (Sea Lamprey) is the only anadromous fish known to spawn successfully in the stream downstream of the lowermost dam. Here, we describe the distribution and abundance of a spawning population of Sea Lamprey in Sedgeunkedunk Stream, prior to and in anticipation of habitat increase after the completion of one barrier removal. In 2008, we estimated the abundance of Sea Lamprey and its nests using daily stream surveys and an open-population mark-recapture model. We captured 47 Sea Lamprey and implanted each with a PIT tag so that we could track movements and nest associations of individual fish. The spawning migration began on 18 June, and the last living individual was observed on 27 June. We located 31 nests, distributed from head-of-tide to the lowermost dam; no spawners or nests were observed in the tidally influenced zone or upstream of this dam. Mean longevity in the stream and the number of nests attended were correlated with arrival date; early migrants were alive longer and attended more nests than later migrants. Males were more likely to be observed away from a nest, or attending three or more nests, than were females, which attended usually one or two nests. We observed a negative association between nest abundance and substrate cover by fine sediment. Based on their observed movements in the system, and the extent of their habitat use, we anticipate that spawning Sea Lamprey will recolonize formerly inaccessible habitat after dam removals.
Anadromous sea lampreys recolonize a Maine coastal river tributary after dam removal
Hogg, Robert; Coghlan, Stephen M.; Zydlewski, Joseph D.
2013-01-01
Sedgeunkedunk Stream, a third-order tributary to the Penobscot River, Maine, historically supported several anadromous fishes, including the Atlantic Salmon Salmo salar, AlewifeAlosa pseudoharengus, and Sea Lamprey Petromyzon marinus. However, two small dams constructed in the 1800s reduced or eliminated spawning runs entirely. In 2009, efforts to restore marine–freshwater connectivity in the system culminated with removal of the lowermost dam, thus providing access to an additional 4.6 km of lotic habitat. Because Sea Lampreys utilized accessible habitat prior to dam removal, they were chosen as a focal species with which to quantify recolonization. During spawning runs of 2008–2011 (before and after dam removal), individuals were marked with PIT tags and their activity was tracked with daily recapture surveys. Open-population mark–recapture models indicated a fourfold increase in the annual abundance of spawning-phase Sea Lampreys, with estimates rising from 59±4 () before dam removal (2008) to 223±18 and 242±16 after dam removal (2010 and 2011, respectively). Accompanying the marked increase in annual abundance was a greater than fourfold increase in nesting sites: the number of nests increased from 31 in 2008 to 128 and 131 in 2010 and 2011, respectively. During the initial recolonization event (i.e., in 2010), Sea Lampreys took 6 d to move past the former dam site and 9 d to expand into the furthest upstream reaches. Conversely, during the 2011 spawning run, Sea Lampreys took only 3 d to penetrate into the upstream reaches, thus suggesting a potential positive feedback in which larval recruitment into the system may have attracted adult spawners via conspecific pheromone cues. Although more research is needed to verify the migratory pheromone hypothesis, our study clearly demonstrates that small-stream dam removal in coastal river systems has the potential to enhance recovery of declining anadromous fish populations.
Belyaeva, Elena A; Emelyanova, Larisa V; Korotkov, Sergey M; Brailovskaya, Irina V; Savina, Margarita V
2014-01-01
Previously we have shown that opening of the mitochondrial permeability transition pore in its low conductance state is the case in hepatocytes of the Baltic lamprey (Lampetra fluviatilis L.) during reversible metabolic depression taking place in the period of its prespawning migration when the exogenous feeding is switched off. The depression is observed in the last year of the lamprey life cycle and is conditioned by reversible mitochondrial dysfunction (mitochondrial uncoupling in winter and coupling in spring). To further elucidate the mechanism(s) of induction of the mitochondrial permeability transition pore in the lamprey liver, we used Cd(2+) and Ca(2+) plus Pi as the pore inducers. We found that Ca(2+) plus Pi induced the high-amplitude swelling of the isolated "winter" mitochondria both in isotonic sucrose and ammonium nitrate medium while both low and high Cd(2+) did not produce the mitochondrial swelling in these media. Low Cd(2+) enhanced the inhibition of basal respiration rate of the "winter" mitochondria energized by NAD-dependent substrates whereas the same concentrations of the heavy metal evoked its partial stimulation on FAD-dependent substrates. The above changes produced by Cd(2+) or Ca(2+) plus Pi in the "winter" mitochondria were only weakly (if so) sensitive to cyclosporine A (a potent pharmacological desensitizer of the nonselective pore) added alone and they were not sensitive to dithiothreitol (a dithiol reducing agent). Under monitoring of the transmembrane potential of the "spring" lamprey liver mitochondria, we revealed that Cd(2+) produced its decrease on both types of the respiratory substrates used that was strongly hampered by cyclosporine A, and the membrane potential was partially restored by dithiothreitol. The effects of different membrane permeability modulators on the lamprey liver mitochondria function and the seasonal changes in their action are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colotelo, Alison HA; Pflugrath, Brett D.; Brown, Richard S.
Fish passing downstream through hydroelectric facilities may pass through hydroturbines where they experience a rapid decrease in barometric pressure as they pass by turbine blades, which can lead to barotraumas including swim bladder rupture, exopthalmia, emboli, and hemorrhaging. In juvenile Chinook salmon, the main mechanism for injury is thought to be expansion of existing gases (particularly those present in the swim bladder) and the rupture of the swim bladder ultimately leading to exopthalmia, emboli and hemorrhaging. In fish that lack a swim bladder, such as lamprey, the rate and severity of barotraumas due to rapid decompression may be reduced however;more » this has yet to be extensively studied. Another mechanism for barotrauma can be gases coming out of solution and the rate of this occurrence may vary among species. In this study, juvenile brook and Pacific lamprey acclimated to 146.2 kPa (equivalent to a depth of 4.6 m) were subjected to rapid (<1 sec; brook lamprey only) or sustained decompression (17 minutes) to a very low pressure (13.8 kPa) using a protocol previously applied to juvenile Chinook salmon. No mortality or evidence of barotraumas, as indicated by the presence of hemorrhages, emboli or exopthalmia, were observed during rapid or sustained decompression, nor following recovery for up to 120 h following sustained decompression. In contrast, mortality or injury would be expected for 97.5% of juvenile Chinook salmon exposed to a similar rapid decompression to these very low pressures. Additionally, juvenile Chinook salmon experiencing sustained decompression died within 7 minutes, accompanied by emboli in the fins and gills and hemorrhaging in the tissues. Thus, juvenile lamprey may not be susceptible to barotraumas associated with hydroturbine passage to the same degree as juvenile salmonids, and management of these species should be tailored to their specific morphological and physiological characteristics.« less
Manzon, Lori A; Youson, John H; Holzer, Guillaume; Staiano, Leopoldo; Laudet, Vincent; Manzon, Richard G
2014-08-01
Sea lampreys (Petromyzon marinus) are members of the ancient class Agnatha and undergo a metamorphosis that transforms blind, sedentary, filter-feeding larvae into free-swimming, parasitic juveniles. Thyroid hormones (THs) appear to be important for lamprey metamorphosis, however, serum TH concentrations are elevated in the larval phase, decline rapidly during early metamorphosis and remain low until metamorphosis is complete; these TH fluctuations are contrary to those of other metamorphosing vertebrates. Moreover, thyroid hormone synthesis inhibitors (goitrogens) induce precocious metamorphosis and exogenous TH treatments disrupt natural metamorphosis in P. marinus. Given that THs exert their effects by binding to TH nuclear receptors (TRs) that often act as heterodimers with retinoid X receptors (RXRs), we cloned and characterized these receptors from P. marinus and examined their expression during metamorphosis. Two TRs (PmTR1 and PmTR2) and three RXRs (PmRXRs) were isolated from P. marinus cDNA. Phylogenetic analyses group the PmTRs together on a branch prior to the gnathostome TRα/β split. The three RXRs also group together, but our data indicated that these transcripts are most likely either allelic variants of the same gene locus, or the products of a lamprey-specific duplication event. Importantly, these P. marinus receptors more closely resemble vertebrate as opposed to invertebrate chordate receptors. Functional analysis revealed that PmTR1 and PmTR2 can activate transcription of TH-responsive genes when treated with nanomolar concentrations of TH and they have distinct pharmacological profiles reminiscent of vertebrate TRβ and TRα, respectively. Also similar to other metamorphosing vertebrates, expression patterns of the PmTRs during lamprey metamorphosis suggest that PmTR1 has a dynamic, tissue-specific expression pattern that correlates with tissue morphogenesis and biochemical changes and PmTR2 has a more uniform expression pattern. This TR expression data suggests that THs, either directly or via a metabolite, may function to positively modulate changes at the tissue or organ levels during lamprey metamorphosis. Collectively the results presented herein support the hypothesis that THs have a dual functional role in the lamprey life cycle whereby high levels promote larval feeding, growth and lipogenesis and low levels promote metamorphosis. Copyright © 2014 Elsevier Inc. All rights reserved.
Manion, Patrick J.; Smith, Bernard R.
1978-01-01
The 1960 year class of sea lampreys, Petromyzon marinus, isolated in a tributary of southern Lake Superior continued to yield information on the early life history of the sea lamprey. The larval population persisted and newly metamorphosed individuals were captured from 1966 until the study was terminated in 1972. The average lengths of larvae collected in October (when yearly growth is nearly complete) in successive years from 1966 to 1972 were 111, 113, 112, 114, 121, 128, and 129 mm. The average lengths of transforming lampreys during the same years were 150, 151, 145, 143, 144, 148, and 156 mm. A gradual downstream shift of the population took place. Catches in an inclined-plane trap at the lower end of the study area increased to a peak of 13,244 in the 1968-69 migration year (September 1-August 31), and then steadily decreased. As the number of lampreys decreased in the upper sections and increased in the lower ones, the changes in density were reflected in changes in growth rates. Although the mean length of ammocetes throughout the stream was 111 mm in 1966, it had increased by 1971 to 151 and 143 mm in the upstream sections (IV and V), but to only 115 mm in the densely populated area immediately above the trap. Of a total of 9,889 larvae marked in 1962-68 to study movement and distribution, 2,045 were recovered as larvae and 1,396 as newly transformed adults. Major downstream movements of larvae occurred during high water in April and May, and of transformed lampreys in mid-October through November. Each year about 40% (range, 30-68) of the annual production of transformed lampreys migrated from the Big Garlic River system in one 12-hour period, and 82% by the end of October. The Big Garlic River study proved conclusively that metamorphosis of a single year class occurs over a considerable number of years. Newly metamorphosed individuals were captured in almost steadily increasing numbers from 1965 (age V) to the termination of the study in 1972 (age XII). Many large ammocetes were still present in the study area in 1972, and it can safely be assumed that they would have continued to metamorphose for several more years.
Light adaptation and the evolution of vertebrate photoreceptors.
Morshedian, Ala; Fain, Gordon L
2017-07-15
Lamprey are cyclostomes, a group of vertebrates that diverged from lines leading to jawed vertebrates (including mammals) in the late Cambrian, 500 million years ago. It may therefore be possible to infer properties of photoreceptors in early vertebrate progenitors by comparing lamprey to other vertebrates. We show that lamprey rods and cones respond to light much like rods and cones in amphibians and mammals. They operate over a similar range of light intensities and adapt to backgrounds and bleaches nearly identically. These correspondences are pervasive and detailed; they argue for the presence of rods and cones very early in the evolution of vertebrates with properties much like those of rods and cones in existing vertebrate species. The earliest vertebrates were agnathans - fish-like organisms without jaws, which first appeared near the end of the Cambrian radiation. One group of agnathans became cyclostomes, which include lamprey and hagfish. Other agnathans gave rise to jawed vertebrates or gnathostomes, the group including all other existing vertebrate species. Because cyclostomes diverged from other vertebrates 500 million years ago, it may be possible to infer some of the properties of the retina of early vertebrate progenitors by comparing lamprey to other vertebrates. We have previously shown that rods and cones in lamprey respond to light much like photoreceptors in other vertebrates and have a similar sensitivity. We now show that these affinities are even closer. Both rods and cones adapt to background light and to bleaches in a manner almost identical to other vertebrate photoreceptors. The operating range in darkness is nearly the same in lamprey and in amphibian or mammalian rods and cones; moreover background light shifts response-intensity curves downward and to the right over a similar range of ambient intensities. Rods show increment saturation at about the same intensity as mammalian rods, and cones never saturate. Bleaches decrease sensitivity in part by loss of quantum catch and in part by opsin activation of transduction. These correspondences are so numerous and pervasive that they are unlikely to result from convergent evolution but argue instead that early vertebrate progenitors of both cyclostomes and mammals had photoreceptors much like our own. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Imre, Istvan; Di Rocco, Richard T.; McClure, Haley; Johnson, Nicholas; Brown, Grant E.
2016-01-01
This study investigated the length of avoidance response of migratory-stage sea lamprey Petromyzon marinus exposed continuously to conspecific damage-released alarm cues for varying lengths of time in laboratory stream channels. Ten replicate groups of P. marinus, separated by sex, were exposed to either deionized water control or to P. marinus extract for 0, 2 or 4 h continuously. Petromyzon marinus maintained their avoidance response to the conspecific damage-released alarm cue after continuous exposure to the alarm cue for 0 and 2 h but not 4 h. Beyond being one of the first studies in regards to sensory–olfactory adaptation–acclimation of fishes to alarm cues of any kind, these results have important implications for use of conspecific alarm cues in P. marinus control. For example, continuous application of conspecific alarm cue during the day, when P. marinus are inactive and hiding, may result in sensory adaptation to the odour by nightfall when they migrate upstream.
2012-01-01
sea lions (Zalophus californicus, Eumetopias jubatus) or white sturgeon (Acipenser transmontanus) in the tailrace, moved to spawning tributaries...and management of three parasitic lampreys of North America. Fisheries 35:580-594. Close, D. A., M. Fitzpatrick, and H. Li. 2002. The ecological
Suzuki, Daichi G; Murakami, Yasunori; Yamazaki, Yuji; Wada, Hiroshi
2015-01-01
Image-forming vision is crucial to animals for recognizing objects in their environment. In vertebrates, this type of vision is achieved with paired camera eyes and topographic projection of the optic nerve. Topographic projection is established by an orthogonal gradient of axon guidance molecules, such as Ephs. To explore the evolution of image-forming vision in vertebrates, lampreys, which belong to the basal lineage of vertebrates, are key animals because they show unique "dual visual development." In the embryonic and pre-ammocoete larval stage (the "primary" phase), photoreceptive "ocellus-like" eyes develop, but there is no retinotectal optic nerve projection. In the late ammocoete larval stage (the "secondary" phase), the eyes grow and form into camera eyes, and retinotectal projection is newly formed. After metamorphosis, this retinotectal projection in adult lampreys is topographic, similar to that of gnathostomes. In this study, we explored the involvement of Ephs in lamprey "dual visual development" and establishment of the image-form vision. We found that gnathostome-like orthogonal gradient expression was present in the retina during the "secondary" phase; i.e., EphB showed a gradient of expression along the dorsoventral axis, while EphC was expressed along the anteroposterior axis. However, no orthogonal gradient expression was observed during the "primary" phase. These observations suggest that Ephs are likely recruited de novo for the guidance of topographical "second" optic nerve projection. Transformations during lamprey "dual visual development" may represent "recapitulation" from a protochordate-like ancestor to a gnathostome-like vertebrate ancestor. © 2015 Wiley Periodicals, Inc.
Stilborn, S Salina M; Manzon, Lori A; Schauenberg, Jennifer D; Manzon, Richard G
2013-03-01
Thyroid hormones (THs) are crucial for normal vertebrate development and are the one obligate morphogen that drives amphibian metamorphosis. However, contrary to other metamorphosing vertebrates, lampreys exhibit a sharp drop in serum TH early in metamorphosis, and anti-thyroid agents such as potassium perchlorate (KClO(4)) induce metamorphosis. The type 2 deiodinase (D2) enzyme is a key regulator of TH availability during amphibian metamorphosis. We set out to determine how D2 may be involved in the regulation of lamprey metamorphosis and thyroid homeostasis. We cloned a 1.8Kb Petromyzon marinus D2 cDNA that includes the entire protein coding region and a selenocysteine (Sec) codon. Northern blotting indicated that the lamprey D2 mRNA is the longest reported to date (>9Kb). Using real-time PCR, we showed that intestinal and hepatic D2 mRNA levels were elevated prior to and during the early stages of metamorphosis and then declined dramatically to low levels that were sustained for the remainder of metamorphosis. These data are consistent with previously reported changes in serum TH levels and deiodinase activity. Treatment of larvae with either TH or KClO(4) significantly affected D2 mRNA levels in the intestine and liver. These D2 mRNA levels during metamorphosis and in response to thyroid challenges suggest that D2 may function in the regulation of TH levels during lamprey metamorphosis and the maintenance of TH homeostasis. Copyright © 2013 Elsevier Inc. All rights reserved.
THE METAMORPHOSIS OF VISUAL SYSTEMS IN THE SEA LAMPREY
Wald, George
1957-01-01
The life cycle of the sea lamprey, Petromyzon marinus, includes two metamorphoses. At the end of a period spent as a blind larva, buried in the mud of streams, a first metamorphosis prepares it to migrate downstream to the sea or a lake for its growth phase. Then, following a second metamorphosis, it migrates upstream as a sexually mature adult to spawn and die. The downstream migrants have a visual system based upon rhodopsin and vitamin A1, whereas that of the upstream migrants is based upon porphyropsin and vitamin A2. The livers contain vitamin A1 at all stages. The sea lamprey therefore exhibits a metamorphosis of visual systems, like those observed earlier among amphibia. The presence of porphyropsin in this member of the most primitive living group of vertebrates, as in fishes and amphibia, supports the notion that porphyropsin may have been the primitive vertebrate visual pigment. Its association with fresh water existence throughout this range of organisms also is consistent with the view that the vertebrate stock originated in fresh water. The observation that in the life cycle of the lamprey rhodopsin precedes porphyropsin is not at variance with the idea that porphyropsin is the more primitive pigment, since this change is part of the second metamorphosis, marking the return to the original environment. The observation that in lampreys, fishes, and amphibia, porphyropsin maintains the same general association with fresh water, and rhodopsin with marine and terrestrial habit, suggests that a single genetic mechanism may govern this association throughout this wide span of organisms. PMID:13439167
Suzuki, Daichi G; Murakami, Yasunori; Escriva, Hector; Wada, Hiroshi
2015-02-01
Vertebrates are equipped with so-called camera eyes, which provide them with image-forming vision. Vertebrate image-forming vision evolved independently from that of other animals and is regarded as a key innovation for enhancing predatory ability and ecological success. Evolutionary changes in the neural circuits, particularly the visual center, were central for the acquisition of image-forming vision. However, the evolutionary steps, from protochordates to jaw-less primitive vertebrates and then to jawed vertebrates, remain largely unknown. To bridge this gap, we present the detailed development of retinofugal projections in the lamprey, the neuroarchitecture in amphioxus, and the brain patterning in both animals. Both the lateral eye in larval lamprey and the frontal eye in amphioxus project to a light-detecting visual center in the caudal prosencephalic region marked by Pax6, which possibly represents the ancestral state of the chordate visual system. Our results indicate that the visual system of the larval lamprey represents an evolutionarily primitive state, forming a link from protochordates to vertebrates and providing a new perspective of brain evolution based on developmental mechanisms and neural functions. © 2014 Wiley Periodicals, Inc.
Zielinski, B.S.; Fredricks, Keith; McDonald, R.; Zaidi, A.U.
2005-01-01
This study examined olfactory sensory neuron morphology and physiological responsiveness in newly hatched sea lamprey, Petromyzon marinus L. These prolarvae hatch shortly after neural tube formation, and stay within nests for approximately 18 days, before moving downstream to silty areas where they burrow, feed and pass to the larval stage. To explore the possibility that the olfactory system is functioning during this prolarval stage, morphological and physiological development of olfactory sensory neurons was examined. The nasal cavity contained an olfactory epithelium with ciliated olfactory sensory neurons. Axons formed aggregates in the basal portion of the olfactory epithelium and spanned the narrow distance between the olfactory epithelium and the brain. The presence of asymmetric synapses with agranular vesicles within fibers in the brain, adjacent to the olfactory epithelium suggests that there was synaptic connectivity between olfactory sensory axons and the brain. Neural recordings from the surface of the olfactory epithelium showed responses following the application of L-arginine, taurocholic acid, petromyzonol sulfate (a lamprey migratory pheromone), and water conditioned by conspecifics. These results suggest that lampreys may respond to olfactory sensory input during the prolarval stage. ?? 2006 Springer Science + Business Media, LLC.
Weaver, Daniel M.; Coghlan, Stephen M.; Zydlewski, Joseph D.
2016-01-01
Resource flows from adjacent ecosystems are critical in maintaining structure and function of freshwater food webs. Migrating sea lamprey (Petromyzon marinus) deliver a pulsed marine-derived nutrient subsidy to rivers in spring when the metabolic demand of producers and consumers are increasing. However, the spatial and temporal dynamics of these nutrient subsidies are not well characterized. We used sea lamprey carcass additions in a small stream to examine changes in nutrients, primary productivity, and nutrient assimilation among consumers. Algal biomass increased 57%–71% immediately adjacent to carcasses; however, broader spatial changes from multiple-site carcass addition may have been influenced by canopy cover. We detected assimilation of nutrients (via δ13C and δ15N) among several macroinvertebrate families including Heptageniidae, Hydropsychidae, and Perlidae. Our research suggests that subsidies may evoke localized patch-scale effects on food webs, and the pathways of assimilation in streams are likely coupled to adjacent terrestrial systems. This research underscores the importance of connectivity in streams, which may influence sea lamprey spawning and elicit varying food web responses from carcass subsidies due to fine-scale habitat variables.
The evolution of early vertebrate photoreceptors.
Collin, Shaun P; Davies, Wayne L; Hart, Nathan S; Hunt, David M
2009-10-12
Meeting the challenge of sampling an ancient aquatic landscape by the early vertebrates was crucial to their survival and would establish a retinal bauplan to be used by all subsequent vertebrate descendents. Image-forming eyes were under tremendous selection pressure and the ability to identify suitable prey and detect potential predators was thought to be one of the major drivers of speciation in the Early Cambrian. Based on the fossil record, we know that hagfishes, lampreys, holocephalans, elasmobranchs and lungfishes occupy critical stages in vertebrate evolution, having remained relatively unchanged over hundreds of millions of years. Now using extant representatives of these 'living fossils', we are able to piece together the evolution of vertebrate photoreception. While photoreception in hagfishes appears to be based on light detection and controlling circadian rhythms, rather than image formation, the photoreceptors of lampreys fall into five distinct classes and represent a critical stage in the dichotomy of rods and cones. At least four types of retinal cones sample the visual environment in lampreys mediating photopic (and potentially colour) vision, a sampling strategy retained by lungfishes, some modern teleosts, reptiles and birds. Trichromacy is retained in cartilaginous fishes (at least in batoids and holocephalans), where it is predicted that true scotopic (dim light) vision evolved in the common ancestor of all living gnathostomes. The capacity to discriminate colour and balance the tradeoff between resolution and sensitivity in the early vertebrates was an important driver of eye evolution, where many of the ocular features evolved were retained as vertebrates progressed on to land.
Birceanu, Oana; Sorensen, Lisa A; Henry, Matthew; McClelland, Grant B; Wang, Yuxiang S; Wilkie, Michael P
2014-03-01
The pesticide 3-trifluoromethyl-4-nitrophenol (TFM) is used to control sea lamprey (Petromyzon marinus) populations in the Great Lakes through its application to nursery streams containing larval sea lampreys. TFM uncouples oxidative phosphorylation, impairing mitochondrial ATP production in sea lampreys and rainbow trout (Oncorhynchus mykiss). However, little else is known about its sub-lethal effects on non-target aquatic species. The present study tested the hypotheses that TFM exposure in hard water leads to (i) marked depletion of energy stores in metabolically active tissues (brain, muscle, kidney, liver) and (ii) disruption of active ion transport across the gill, adversely affecting electrolyte homeostasis in trout. Exposure of trout to 11.0mgl(-1) TFM (12-h LC50) led to increases in muscle TFM and TFM-glucuronide concentrations, peaking at 9h and 12h, respectively. Muscle and brain glycogen was reduced by 50%, while kidney and muscle lactate increased with TFM exposure. Kidney ATP and phosphocreatine decreased by 50% and 70%, respectively. TFM exposure caused no changes in whole body ion (Na(+), Cl(-), Ca(2+), K(+)) concentrations, gill Na(+)/K(+) ATPase activity, or unidirectional Na(+) movements across the gills. We conclude that TFM causes a mismatch between ATP supply and demand in trout, leading to increased reliance on glycolysis, but it does not have physiologically relevant effects on ion balance in hard water. © 2013.
Effects of salinity on upstream-migrating, spawning sea lamprey, Petromyzon marinus
Ferreira-Martins, D.; Coimbra, J.; Antunes, C.; Wilson, J. M.
2016-01-01
The sea lamprey, Petromyzon marinus, is an anadromous, semelparous species that is vulnerable to endangered in parts of its native range due in part to loss of spawning habitat because of man-made barriers. The ability of lampreys to return to the ocean or estuary and search out alternative spawning river systems would be limited by their osmoregulatory ability in seawater. A reduction in tolerance to salinity has been documented in migrants, although the underlying mechanisms have not been characterized. We examined the capacity for marine osmoregulation in upstream spawning migrants by characterizing the physiological effects of salinity challenge from a molecular perspective. Estuarine-captured migrants held in freshwater (FW) for ∼1 week (short-term acclimation) or 2 months (long-term acclimation) underwent an incremental salinity challenge until loss of equilibrium occurred and upper thresholds of 25 and 17.5, respectively, occurred. Regardless of salinity tolerance, all lamprey downregulated FW ion-uptake mechanisms [gill transcripts of Na+:Cl− cotransporter (NCC/slc12a3) and epithelial Na+ channel (ENaC/scnn1) and kidney Na+/K+-ATPase (NKA) protein and activity but not transcript]. At their respective salinity limits, lamprey displayed a clear osmoregulatory failure and were unable to regulate [Na+] and [Cl−] in plasma and intestinal fluid within physiological limits, becoming osmocompromised. A >90% drop in haematocrit indicated haemolysis, and higher plasma concentrations of the cytosolic enzymes alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase indicated damage to other tissues, including liver. However, >80% of short-term FW-acclimated fish were able to osmoregulate efficiently, with less haemolysis and tissue damage. This osmoregulatory ability was correlated with significant upregulation of the secretory form of Na+:K+:2Cl− cotransporter (NKCC1/slc12a2) transcript levels and the re-emergence of seawater-type ionocytes detected through immunohistochemical NKA immunoreactivity in the gill, the central ionoregulatory organ. This work sheds light on the molecular and physiological limits to the potential return to seawater for lampreys searching for alternative FW systems in which to spawn. PMID:27293744
Cornide-Petronio, María Eugenia; Anadón, Ramón; Barreiro-Iglesias, Antón; Rodicio, María Celina
2013-09-01
Serotonergic cells are among the earliest neurons to be born in the developing central nervous system and serotonin is known to regulate the development of the nervous system. One of the major targets of the activity of serotonergic cells is the serotonin 1A receptor (5-HT1A), an ancestral archetypical serotonin receptor. In this study, we cloned and characterized the 3D structure of the sea lamprey 5-HT1A, and studied the expression of its transcript in the central nervous system by means of in situ hybridization. In phylogenetic analyses, the sea lamprey 5-HT1A sequence clustered together with 5-HT1A sequences of vertebrates and emerged as an outgroup to all gnathostome sequences. In situ hybridization analysis during prolarval, larval and adult stages showed a widespread expression of the lamprey 5-ht1a transcript. In P1 prolarvae 5-ht1a mRNA expression was observed in diencephalic nuclei, the rhombencephalon and rostral spinal cord. At P2 prolarval stage the 5-ht1a expression extended to other brain areas including telencephalic regions. 5-ht1a expression in larvae was observed throughout almost all the main brain regions with the strongest expression in the olfactory bulbs, lateral pallium, striatum, preoptic region, habenula, prethalamus, thalamus, pretectum, hypothalamus, rhombencephalic reticular area, dorsal column nucleus and rostral spinal cord. In adults, the 5-ht1a transcript was also observed in cells of the subcommissural organ. Comparison of the expression of 5-ht1a between the sea lamprey and other vertebrates reveals a conserved pattern in most of the brain regions, likely reflecting the ancestral vertebrate condition.
Bracken, Fiona S A; Hoelzel, A Rus; Hume, John B; Lucas, Martyn C
2015-01-01
The tendency of many species to abandon migration remains a poorly understood aspect of evolutionary biology that may play an important role in promoting species radiation by both allopatric and sympatric mechanisms. Anadromy inherently offers an opportunity for the colonization of freshwater environments, and the shift from an anadromous to a wholly freshwater life history has occurred in many families of fishes. Freshwater-resident forms have arisen repeatedly among lampreys (within the Petromyzontidae and Mordaciidae), and there has been much debate as to whether anadromous lampreys, and their derived freshwater-resident analogues, constitute distinct species or are divergent ecotypes of polymorphic species. Samples of 543 European river lamprey Lampetra fluviatilis (mostly from anadromous populations) and freshwater European brook lamprey Lampetra planeri from across 18 sites, primarily in the British Isles, were investigated for 13 polymorphic microsatellite DNA loci, and 108 samples from six of these sites were sequenced for 829 bp of mitochondrial DNA (mtDNA). We found contrasting patterns of population structure for mtDNA and microsatellite DNA markers, such that low diversity and little structure were seen for all populations for mtDNA (consistent with a recent founder expansion event), while fine-scale structuring was evident for nuclear markers. Strong differentiation for microsatellite DNA loci was seen among freshwater-resident L. planeri populations and between L. fluviatilis and L. planeri in most cases, but little structure was evident among anadromous L. fluviatilis populations. We conclude that postglacial colonization founded multiple freshwater-resident populations with strong habitat fidelity and limited dispersal tendencies that became highly differentiated, a pattern that was likely intensified by anthropogenic barriers. PMID:25689694
Kao, Yung-Hsi; Sheridan, Mark A; Holmes, John A; Youson, John H
2010-11-01
This study was designed to examine the effect of thermal acclimation on the lipid composition of fat depot organs the liver and kidneys of larval sea lamprey, Petromyzon marinus. We found that 21 °C-acclimated larvae possessed lower total lipid amounts in the liver (39% lower) and kidneys (30% lower) than 13 °C-acclimated larvae. Relatively lower lipid contents in the liver and kidneys of 21 °C-acclimated lamprey primarily resulted from a reduction in stored lipid reserve, triacylglycerol, but not the structural lipid, phospholipid. Compared to 21 °C-acclimated larvae, 13 °C-acclimated larvae were found to possess fewer saturated fatty acids (SFAs) and more unsaturated fatty acids (USFAs) in renal triacylglycerol and phospholipid classes, while there were no significant differences in the SFAs and USFAs of hepatic triacylglycerol, phospholipid, cholesteryl ester, fatty acid, and monoacylglycerol classes. Fewer SFAs, found in the kidney triacylglycerol of 13 °C-acclimated lamprey, were due to lower 12:0 and 14:0 fatty acids, but those in the renal phospholipid class were characterized by fewer 14:0, 15:0, and 16:0 fatty acids. More USFAs in renal triacylglycerol, as indicated by a higher unsaturation index, primarily resulted from higher polyunsaturated fatty acids (18:2ω6, 18:3ω3, and 18:4ω3); whereas, in the renal phospholipid class, this was a result of higher monoenes (18:1, 20:1, and 22:1ω9) and ω3 polyunsaturated fatty acids (18:4ω3). These data suggest that the influence of thermal acclimation on the lipid composition of lamprey fat depot organs depends on tissue and lipid class.
An anti-steroidogenic inhibitory primer pheromone in male sea lamprey (Petromyzon marinus)
Chung-Davidson, Yu-Wen; Wang, Huiyong; Bryan, Mara B.; Wu, Hong; Johnson, Nicholas S.; Li, Weiming
2013-01-01
Reproductive functions can be modulated by both stimulatory and inhibitory primer pheromones released by conspecifics. Many stimulatory primer pheromones have been documented, but relatively few inhibitory primer pheromones have been reported in vertebrates. The sea lamprey male sex pheromone system presents an advantageous model to explore the stimulatory and inhibitory primer pheromone functions in vertebrates since several pheromone components have been identified. We hypothesized that a candidate sex pheromone component, 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3 keto-allocholic acid or 3kACA), exerts priming effects through the hypothalamic-pituitary-gonadal (HPG) axis. To test this hypothesis, we measured the peptide concentrations and gene expressions of lamprey gonadotropin releasing hormones (lGnRH) and the HPG output in immature male sea lamprey exposed to waterborne 3kACA. Exposure to waterborne 3kACA altered neuronal activation markers such as jun and jun N-terminal kinase (JNK), and lGnRH mRNA levels in the brain. Waterborne 3kACA also increased lGnRH-III, but not lGnRH-I or -II, in the forebrain. In the plasma, 3kACA exposure decreased all three lGnRH peptide concentrations after 1 h exposure. After 2 h exposure, 3kACA increased lGnRHI and -III, but decreased lGnRH-II peptide concentrations in the plasma. Plasma lGnRH peptide concentrations showed differential phasic patterns. Group housing condition appeared to increase the averaged plasma lGnRH levels in male sea lamprey compared to isolated males. Interestingly, 15α-hydroxyprogesterone (15α-P) concentrations decreased after prolonged 3kACA exposure (at least 24 h). To our knowledge, this is the only known synthetic vertebrate pheromone component that inhibits steroidogenesis in males.
Barreiro-Iglesias, Antón; Romaus-Sanjurjo, Daniel; Senra-Martínez, Pablo; Anadón, Ramón; Rodicio, María Celina
2011-01-01
Studies in lampreys have revealed interesting aspects of the evolution of the trigeminal system and the jaw. In the present study, we found a marker that distinguishes subpopulations of trigeminal motoneurons innervating two different kinds of oropharyngeal muscles. Immunofluorescence with an antibody against doublecortin (DCX; a neuron-specific phosphoprotein) enabled identification of the trigeminal motoneurons that innervate the velar musculature of larval and recently transformed sea lampreys. DCX-immunoreactive (-ir) motoneurons were observed in the rostro-lateral part of the trigeminal motor nucleus of these animals, but not in lampreys 1 month or more after metamorphosis. Combined double DCX/tubulin and serotonin/tubulin immunofluorescence and tract-tracing experiments with neurobiotin (NB) were also performed in larvae for further characterization of this system. Rich innervation by DCX-ir fibers was observed on the muscle fibers of the velum but not on the upper lip or lower lip muscles, which were innervated by tubulin-ir/DCX-negative fibers. No double-labelled DCX-ir motoneurons were observed in experiments in which the tracer NB was applied to the upper lip. Innervation of velar muscles by serotonergic fibers is also reported. The present results indicate that development of the trigeminal motoneurons innervating the velum differs from that of the trigeminal motoneurons innervating the lips, which is probably related to the dramatic regression of the velum during metamorphosis. The absence of data on a similar subsystem in the trigeminal motor nucleus of gnathostomes suggests that they may be lamprey-specific motoneurons. These results provide support for the "heterotopic theory" of jaw evolution and are inconsistent with the theories of a velar origin for the gnathostome jaw. © 2011 Wiley Periodicals, Inc.
Distribution of fishes in U. S. streams tributary to Lake Superior
Moore, Harry H.; Braem, Robert A.
1965-01-01
Experimental sea lamprey control by the Bureau of Commercial Fisheries on Lake Superior streams provided many new distributional records of the fish fauna. Seventy-one species were recorded from 175 streams. Specimens were collected at the electromechanical barriers, with electric shockers, with fyke nets, and during chemical treatment of streams. Maps showing stream records of each species are presented.
Hatfield, Laura A.; Gutreuter, Steve; Boogaard, Michael A.; Carlin, Bradley P.
2011-01-01
Estimation of extreme quantal-response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the presence of multiple covariates and complex study designs. Accurate and precise estimates of the LC99.9 for mixtures of toxicants are critical to ongoing control of a parasitic invasive species, the sea lamprey, in the Laurentian Great Lakes of North America. The toxicity of those chemicals is affected by local and temporal variations in water chemistry, which must be incorporated into the modeling. We develop multilevel empirical Bayes models for data from multiple laboratory studies. Our approach yields more accurate and precise estimation of the LC99.9 compared to alternative models considered. This study demonstrates that properly incorporating hierarchical structure in laboratory data yields better estimates of LC99.9 stream treatment values that are critical to larvae control in the field. In addition, out-of-sample prediction of the results of in situ tests reveals the presence of a latent seasonal effect not manifest in the laboratory studies, suggesting avenues for future study and illustrating the importance of dual consideration of both experimental and observational data.
Lake Michigan: Man's effects on native fish stocks and other biota
Wells, LaRue; McLain, Alberton L.
1973-01-01
Exploitation was largely responsible for the changes in Lake Michigan fish stocks before the invasion of the smelt, and probably before the invasion of the sea lamprey. The lamprey and alewife, however, have exerted a greater impact than the fishery on native fish populations in recent decades. Accelerated eutrophication and other pollution, although important, have not equalled the other factors in causing changes in native fish populations.
Barreiro-Iglesias, Antón; Zhang, Guixin; Selzer, Michael E; Shifman, Michael I
2014-10-14
After a complete spinal cord injury, sea lampreys at first are paralyzed below the level of transection. However, they recover locomotion after several weeks, and this is accompanied by short distance regeneration (a few mm) of propriospinal axons and spinal-projecting axons from the brainstem. Among the 36 large identifiable spinal-projecting neurons, some are good regenerators and others are bad regenerators. These neurons can most easily be identified in wholemount CNS preparations. In order to understand the neuron-intrinsic mechanisms that favor or inhibit axon regeneration after injury in the vertebrates CNS, we determine differences in gene expression between the good and bad regenerators, and how expression is influenced by spinal cord transection. This paper illustrates the techniques for housing larval and recently transformed adult sea lampreys in fresh water tanks, producing complete spinal cord transections under microscopic vision, and preparing brain and spinal cord wholemounts for in situ hybridization. Briefly, animals are kept at 16°C and anesthetized in 1% Benzocaine in lamprey Ringer. The spinal cord is transected with iridectomy scissors via a dorsal approach and the animal is allowed to recover in fresh water tanks at 23 °C. For in situ hybridization, animals are reanesthetized and the brain and cord removed via a dorsal approach.
High efficiency of meiotic gynogenesis in sea lamprey Petromyzon marinus
Rinchard, J.; Dabrowski, K.; Garcia-Abiado, M. -A.
2006-01-01
Induction of androgenesis and gynogenesis by applying a pressure (PS) or heat shock (HS) to double the haploid chromosomal set results in progenies possessing only chromosomes from a single parent. This has never been accomplished in representatives of Agnatha. The objective of this study was to induce gynogenesis and androgenesis in sea lamprey Petromyzon marinus. For gynogenesis experiments, ultraviolet (UV)-irradiated sperm was used to activate sea lamprey eggs and HS or PS were applied to inhibit the second meiotic division and consequently induce diploidy in the embryos. The UV irradiation of immobilized sperm was performed for 1 min at 1,719 J m-2. HS of 35 ?? 1??C for 2 min and PS of 9,000 psi for 4 min were applied at different times after egg activation (8, 12, 20, and 24 min or 8, 16, and 24 min for HS or PS, respectively). Regardless of the induction time of the HS, survivals at pre-hatching stage were similar. In contrast, PS applied 8 min after activation appears to increase survival rate of pre-hatched embryos in comparison to 16 and 24 min after activation. In control groups, without shock treatment (no diploidization), there were no survivors. All deformed, gynogenetic embryos were confirmed to be haploids and died prior to burying themselves in the sand. We confirmed by flow cytometry that progenies produced using both shock methods surviving to the next stage, burying in the substrate, were diploid gynogenetic. For the androgenesis experiments, UV-irradiated eggs (1,719 J m-2 for 1 min) were fertilized with non-treated sperm and HS was applied to restore diploidy of the eggs. Several attempts have been made to optimize the parameters used. HS of 35 ?? 1??C was applied 110, 140, 170, 200, and 230 min after activation for 2 min. Low yields of androgens were obtained and all animals died within a week after hatching. These techniques will allow to establish meiotic gynogenetic lines of sea lamprey for determining sex differentiation in this species and to analyze its hormonal and environmental regulation. ?? 2006 Wiley-Liss, Inc.
Reduction in sea lamprey hatching success due to release of sterilized males
Bergstedt, Roger A.; McDonald, Rodney B.; Twohey, Michael B.; Mullett, Katherine M.; Young, Robert J.; Heinrich, John W.
2003-01-01
Male sea lampreys (Petromyzon marinus), sterilized by injection with bisazir, were released in Lake Superior tributaries from 1991 to 1996 and exclusively in the St. Marys River (the outflow from Lake Superior to Lake Huron) since 1997 as an alternative to chemical control. To determine effectiveness in reducing reproductive potential through the time of hatch, males were observed on nests and egg viability was determined in nests in selected Lake Superior tributaries and the St. Marys River. The proportions of sterilized males observed on nests were not significantly different than their estimated proportion in the population for all streams and years combined or for the St. Marys River alone. It was concluded that sterilized males survive, appear on the spawning grounds, and nest at near their estimated proportion in the population. There was a significant reduction in egg viability corresponding with release of sterilized males for all streams and years combined or for the St. Marys River alone. In the St. Marys River from 1993 to 2000, the percent reduction in egg viability was significantly correlated with the observed proportion of sterile males on nests. It was further concluded that sterilized males remain sterile through nesting and attract and mate with females. Reduction in reproductive potential in the St. Marys River due to both removal of females by traps and sterile-male-release ranged from 34 to 92% from 1993 to 2001 and averaged 64%. From 1999 to 2001, when the program stabilized, reductions ranged from 71 to 92% and averaged 81%. The current release of sterile males in the St. Marys River effectively reduced reproductive potential through the time of hatch and did so near theoretical levels based on numbers released, estimates of population size, and the assumptions of full sterility and competitiveness.
Sanctuaries for lake trout in the Great Lakes
Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.
1987-01-01
Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.
Blood cell lineage in the sea lamprey, Petromyzon marinus (Pisces: Petromyzontidae)
Piavis, George W.; Hiatt, James L.
1971-01-01
Blood cell types of the sea lamprey, Petromyzon marinus, are described and identified and the lineage of mature circulating cells in peripheral blood is traced to blast cells in the hematopoietic fat body. The fat body appears to be the phylogenetic precursor of bone marrow in higher forms, since blood cells originate and begin maturation in this tissue. Experimental animals were injected first with a hematopoietic stimulant and then (at an experimentally determined time) with pertussis vaccine to release proliferated blood cells into peripheral blood. Peripheral blood for smears was collected by cardiac exsanguination; hematopoietic tissue was extirpated for imprints; and leucocyte preparations were made by a special technique. Blood cells of the sea lamprey are apparently products of at least four distinct blast cells, each of which has a 'one end' maturation process. Results of this investigation support the polyphyletic theory of blood cell formation.
Walaszczyk, Erin J; Goheen, Benjamin B; Steibel, Juan Pedro; Li, Weiming
2016-06-01
Synchronization of male and female locomotor activity plays a critical role in ensuring reproductive success, especially in semelparous species. The goal of this study was to elucidate the effects of individual chemical signals, or pheromones, on the locomotor activity in the sea lamprey (Petromyzon marinus). In their native habitat, adult preovulated females (POF) and ovulated females (OF) are exposed to sex pheromone compounds that are released from spermiated males and attract females to nests during their migration and spawning periods. In this study, locomotor activity of individual POF and OF was measured hourly in controlled laboratory conditions using an automated video-tracking system. Differences in the activity between a baseline day (no treatment exposure) and a treatment day (sex pheromone compound or control exposure) were examined for daytime and nighttime periods. Results showed that different pheromone compound treatments affected both POF and OF sea lamprey (p < 0.05) but in different ways. Spermiated male washings (SMW) and one of its main components, 7α,12α,24-trihydroxy-5α-cholan-3-one 24 sulfate (3kPZS), decreased activity of POF during the nighttime. SMW also reduced activity in POF during the daytime. In contrast, SMW increased activity of OF during the daytime, and an additional compound found in SMW, petromyzonol sulfate (PZS), decreased the activity during the nighttime. In addition, we examined factors that allowed us to infer the overall locomotor patterns. SMW increased the maximum hourly activity during the daytime, decreased the maximum hourly activity during the nighttime, and reduced the percentage of nocturnal activity in OF. Our findings suggest that adult females have evolved to respond to different male compounds in regards to their locomotor activity before and after final maturation. This is a rare example of how species-wide chemosensory stimuli can affect not only the amounts of activity but also the overall locomotor pattern in a vertebrate species. © 2016 The Author(s).
Federal Great Lakes fishery research objectives, priorities, and projects
Tait, Howard D.
1973-01-01
Fishery productivity of the Great Lakes has declined drastically since settlement of the area. Premium quality fishes of the Great Lakes such as whitefish, lake trout, and walleyes have been replaced by less desired species. This change is attributed to selective overfishing, pollution, and the extreme instability of fish populations. Sea lamprey predation is still a vexing problem but progress is being made in controlling this parasite. The federal fishery research program with headquarters in Ann Arbor, Michigan, has the objective of providing baseline information, needed in resource use decisions, about the fishes of the Great Lakes. Studies of the habitat requirements of fish are high priority. The program includes fish population assessments, studies of the effects of mercury and other contaminants on fish, thermal effects studies, and general investigation of the impact of engineering projects on Great Lakes fisheries. The work is closely coordinated with state and Canadian agencies through the Great Lakes Fishery Commission. Four small research vessels and four field stations are utilized with a staff of 90 and an annual budget of about $1.5 million.
Jandzik, David; Hawkins, M Brent; Cattell, Maria V; Cerny, Robert; Square, Tyler A; Medeiros, Daniel M
2014-02-01
A defining feature of vertebrates (craniates) is a pronounced head supported and protected by a cellularized endoskeleton. In jawed vertebrates (gnathostomes), the head skeleton is made of rigid three-dimensional elements connected by joints. By contrast, the head skeleton of modern jawless vertebrates (agnathans) consists of thin rods of flexible cellular cartilage, a condition thought to reflect the ancestral vertebrate state. To better understand the origin and evolution of the gnathostome head skeleton, we have been analyzing head skeleton development in the agnathan, lamprey. The fibroblast growth factors FGF3 and FGF8 have various roles during head development in jawed vertebrates, including pharyngeal pouch morphogenesis, patterning of the oral skeleton and chondrogenesis. We isolated lamprey homologs of FGF3, FGF8 and FGF receptors and asked whether these functions are ancestral features of vertebrate development or gnathostome novelties. Using gene expression and pharmacological agents, we found that proper formation of the lamprey head skeleton requires two phases of FGF signaling: an early phase during which FGFs drive pharyngeal pouch formation, and a later phase when they directly regulate skeletal differentiation and patterning. In the context of gene expression and functional studies in gnathostomes, our results suggest that these roles for FGFs arose in the first vertebrates and that the evolution of the jaw and gnathostome cellular cartilage was driven by changes developmentally downstream from pharyngeal FGF signaling.
Kuratani, Shigeru
2004-01-01
It is generally believed that the jaw arose through the simple transformation of an ancestral rostral gill arch. The gnathostome jaw differentiates from Hox-free crest cells in the mandibular arch, and this is also apparent in the lamprey. The basic Hox code, including the Hox-free default state in the mandibular arch, may have been present in the common ancestor, and jaw patterning appears to have been secondarily constructed in the gnathostomes. The distribution of the cephalic neural crest cells is similar in the early pharyngula of gnathostomes and lampreys, but different cell subsets form the oral apparatus in each group through epithelial–mesenchymal interactions: and this heterotopy is likely to have been an important evolutionary change that permitted jaw differentiation. This theory implies that the premandibular crest cells differentiate into the upper lip, or the dorsal subdivision of the oral apparatus in the lamprey, whereas the equivalent cell population forms the trabecula of the skull base in gnathostomes. Because the gnathostome oral apparatus is derived exclusively from the mandibular arch, the concepts ‘oral’ and ‘mandibular’ must be dissociated. The ‘lamprey trabecula’ develops from mandibular mesoderm, and is not homologous with the gnathostome trabecula, which develops from premandibular crest cells. Thus the jaw evolved as an evolutionary novelty through tissue rearrangements and topographical changes in tissue interactions. PMID:15575882
Evolution of the vertebrate claudin gene family: insights from a basal vertebrate, the sea lamprey.
Mukendi, Christian; Dean, Nicholas; Lala, Rushil; Smith, Jeramiah; Bronner, Marianne E; Nikitina, Natalya V
2016-01-01
Claudins are major constituents of tight junctions, contributing both to their intercellular sealing and selective permeability properties. While claudins and claudin-like molecules are present in some invertebrates, the association of claudins with tight junctions has been conclusively documented only in vertebrates. Here we report the sequencing, phylogenetic analysis and comprehensive spatiotemporal expression analysis of the entire claudin gene family in the basal extant vertebrate, the sea lamprey. Our results demonstrate that clear orthologues to about half of all mammalian claudins are present in the lamprey, suggesting that at least one round of whole genome duplication contributed to the diversification of this gene family. Expression analysis revealed that claudins are expressed in discrete and specific domains, many of which represent vertebrate-specific innovations, such as in cranial ectodermal placodes and the neural crest; whereas others represent structures characteristic of chordates, e.g. pronephros, notochord, somites, endostyle and pharyngeal arches. By comparing the embryonic expression of claudins in the lamprey to that of other vertebrates, we found that ancestral expression patterns were often preserved in higher vertebrates. Morpholino mediated loss of Cldn3b demonstrated a functional role for this protein in placode and pharyngeal arch morphogenesis. Taken together, our data provide novel insights into the origins and evolution of the claudin gene family and the significance of claudin proteins in the evolution of vertebrates.
Scholefield, R.J.; Slaght, K.S.; Stephens, B.E.
2008-01-01
We evaluated the sensitivity of larval sea lampreys Petromyzon marinus to the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) in a series of toxicity tests in spring and summer. Although noted previously, the seasonal variation in sensitivity to TFM had never been tested as a means of reducing TFM usage in stream treatments. A preliminary study consisted of three spring and four summer static toxicity tests conducted at 12??C. A more comprehensive study consisted of 12 spring and summer paired flow-through toxicity tests conducted both at seasonal water temperatures and at 12??C. The sensitivity of larval sea lampreys to TFM was greater in spring than in summer. The preliminary static toxicity tests indicated that the concentration of TFM needed to kill larval sea lampreys in spring (May and June) was about one-half that required in summer (August); the concentrations lethal to 50% and 99.9% of the test animals (the LC50 and LC99.9 values) were less in spring than in summer. Analysis of variance of the flow-through toxicity data indicated that season significantly affected both the LC50 and LC99.9 values. For all 12 paired flow-through toxicity tests, the spring LC50 and LC99.9 values were less than the corresponding summer values. For 9 of the 12 paired flow-through toxicity tests, the dose-response toxicity lines were parallel and allowed statistical comparison of the LC50 values. The spring LC50 values were significantly lower than the summer values in eight of the nine tests. Verification of a seasonal variation in the sensitivity of larval sea lampreys to TFM will allow inclusion of this factor in the selection model currently used by both the U.S. Fish and Wildlife Service and the Department of Fisheries and Oceans-Canada to schedule lampricide stream treatments. ?? Copyright by the American Fisheries Society 2008.
Applegate, Vernon C.; Brynildson, Clifford L.
1951-01-01
A total of 7,969 downstream migrants were taken in the 1948–49 season; 16,235 in 1949–50, and 15,103 in 1950–51. Measurements of representative samples from the total catch of sea lamprey migrants of the 1948–49 and 1949–50 seasons revealed a range in length of 95 to 190 millimeters and an average length of 145 millimeters (3.7 to 7.5 inches; mean –5.7 inches).
Hatfield, L.A.; Gutreuter, S.; Boogaard, M.A.; Carlin, B.P.
2011-01-01
Estimation of extreme quantal-response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the presence of multiple covariates and complex study designs. Accurate and precise estimates of the LC99.9 for mixtures of toxicants are critical to ongoing control of a parasitic invasive species, the sea lamprey, in the Laurentian Great Lakes of North America. The toxicity of those chemicals is affected by local and temporal variations in water chemistry, which must be incorporated into the modeling. We develop multilevel empirical Bayes models for data from multiple laboratory studies. Our approach yields more accurate and precise estimation of the LC99.9 compared to alternative models considered. This study demonstrates that properly incorporating hierarchical structure in laboratory data yields better estimates of LC99.9 stream treatment values that are critical to larvae control in the field. In addition, out-of-sample prediction of the results of in situ tests reveals the presence of a latent seasonal effect not manifest in the laboratory studies, suggesting avenues for future study and illustrating the importance of dual consideration of both experimental and observational data. ?? 2011, The International Biometric Society.
Dynamics of the Lake Michigan food web, 1970-2000
Madenjian, Charles P.; Fahnenstiel, Gary L.; Johengen, Thomas H.; Nalepa, Thomas F.; Vanderploeg, Henry A.; Fleischer, Guy W.; Schneeberger, Philip J.; Benjamin, Darren M.; Smith, Emily B.; Bence, James R.; Rutherford, Edward S.; Lavis, Dennis S.; Robertson, Dale M.; Jude, David J.; Ebener, Mark P.
2002-01-01
Herein, we document changes in the Lake Michigan food web between 1970 and 2000 and identify the factors responsible for these changes. Control of sea lamprey (Petromyzon marinus) and alewife (Alosa pseudoharengus) populations in Lake Michigan, beginning in the 1950s and 1960s, had profound effects on the food web. Recoveries of lake whitefish (Coregonus clupeaformis) and burbot (Lota lota) populations, as well as the buildup of salmonine populations, were attributable, at least in part, to sea lamprey control. Based on our analyses, predation by salmonines was primarily responsible for the reduction in alewife abundance during the 1970s and early 1980s. In turn, the decrease in alewife abundance likely contributed to recoveries of deepwater sculpin (Myoxocephalus thompsoni), yellow perch (Perca flavescens), and burbot populations during the 1970s and 1980s. Decrease in the abundance of all three dominant benthic macroinvertebrate groups, including Diporeia, oligochaetes, and sphaeriids, during the 1980s in nearshore waters (50 m deep) of Lake Michigan, was attributable to a decrease in primary production linked to a decline in phosphorus loadings. Continued decrease in Diporeia abundance during the 1990s was associated with the zebra mussel (Dreissena polymorpha) invasion, but specific mechanisms for zebra mussels affecting Diporeia abundance remain unidentified.
Fernández-López, Blanca; Villar-Cerviño, Verona; Valle-Maroto, Silvia M.; Barreiro-Iglesias, Antón; Anadón, Ramón; Rodicio, María Celina
2012-01-01
Glutamate is the main excitatory neurotransmitter involved in spinal cord circuits in vertebrates, but in most groups the distribution of glutamatergic spinal neurons is still unknown. Lampreys have been extensively used as a model to investigate the neuronal circuits underlying locomotion. Glutamatergic circuits have been characterized on the basis of the excitatory responses elicited in postsynaptic neurons. However, the presence of glutamatergic neurochemical markers in spinal neurons has not been investigated. In this study, we report for the first time the expression of a vesicular glutamate transporter (VGLUT) in the spinal cord of the sea lamprey. We also study the distribution of glutamate in perikarya and fibers. The largest glutamatergic neurons found were the dorsal cells and caudal giant cells. Two additional VGLUT-positive gray matter populations, one dorsomedial consisting of small cells and another one lateral consisting of small and large cells were observed. Some cerebrospinal fluid-contacting cells also expressed VGLUT. In the white matter, some edge cells and some cells associated with giant axons (Müller and Mauthner axons) and the dorsolateral funiculus expressed VGLUT. Large lateral cells and the cells associated with reticulospinal axons are in a key position to receive descending inputs involved in the control of locomotion. We also compared the distribution of glutamate immunoreactivity with that of γ-aminobutyric acid (GABA) and glycine. Colocalization of glutamate and GABA or glycine was observed in some small spinal cells. These results confirm the glutamatergic nature of various neuronal populations, and reveal new small-celled glutamatergic populations, predicting that some glutamatergic neurons would exert complex actions on postsynaptic neurons. PMID:23110124
The control of the upstream movement of fish with pulsated direct current
McLain, Alberton L.
1957-01-01
In the Silver River, 78,648 fish comprising 21 species were taken from the trap of the direct-current diversion device. The total kill of fish moving upstream, including 289 sea lampreys, was 1,016, or 1.3 percent. This river had presented a serious problem in the operation of an alternating-current control device during previous seasons. In 1955, 85.5 percent of three important species of fish were killed at the control structure. During 1956, this mortality was reduced to 8.1 percent by the operation of the direct-current equipment.
Identification and characterisation of ROS modulator 1 in Lampetra japonica.
Zhao, Chunhui; Feng, Bin; Cao, Ying; Xie, Peng; Xu, Jie; Pang, Yue; Liu, Xin; Li, Qingwei
2013-08-01
Reactive oxygen species (ROS) are a heterogeneous group of highly reactive molecules that oxidise targets in biological systems. ROS are also considered important immune regulators. In this study, we identified a homologue of reactive oxygen species modulator 1 (Romo1) in the Japanese lamprey (Lampetra japonica). The L japonica Romo1 (Lj-Romo1) gene shares high sequence homology with the Romo1 genes of jawed vertebrates. Real-time quantitative PCR demonstrated the wide distribution of Lj-Romo1 in lamprey tissues. Furthermore, after the lampreys were stimulated with lipopolysaccharide (LPS), the level of Lj-Romo1 mRNA was markedly up-regulated in the liver, gill, kidney, and intestine tissues. Lj-Romo1 was localised to the mitochondria and has the capacity to increase the ROS level in cells. The results obtained in the present study will help us to understand the roles of Romo1 in ROS production and innate immune responses in jawless vertebrates. Copyright © 2013 Elsevier Ltd. All rights reserved.
A pheromone outweighs temperature in influencing migration of sea lamprey
Brant, Cory O.; Li, Ke; Johnson, Nicholas S.; Li, Weiming
2015-01-01
Organisms continuously acquire and process information from surrounding cues. While some cues complement one another in delivering more reliable information, others may provide conflicting information. How organisms extract and use reliable information from a multitude of cues is largely unknown. We examined movement decisions of sea lampreys (Petromyzon marinus L.) exposed to a conspecific and an environmental cue during pre-spawning migration. Specifically, we predicted that the mature male-released sex pheromone 3-keto petromyzonol sulfate (3kPZS) will outweigh the locomotor inhibiting effects of cold stream temperature (less than 15°C). Using large-scale stream bioassays, we found that 3kPZS elicits an increase (more than 40%) in upstream movement of pre-spawning lampreys when the water temperatures were below 15°C. Both warming temperatures and conspecific cues increase upstream movement when the water temperature rose above 15°C. These patterns define an interaction between abiotic and conspecific cues in modulating animal decision-making, providing an example of the hierarchy of contradictory information.
Ontogenetic dynamics of mercury accumulation in Northwest Atlantic sea lamprey (Petromyzon marinus)
Drevnick, P.E.; Horgan, M.J.; Oris, J.T.; Kynard, B.E.
2006-01-01
We examined the ontogenetic dynamics of mercury accumulation in sea lamprey (Petromyzon marinus) from the Connecticut River, USA. Mercury concentrations in eggs (mean 84 ng??g-1 wet weight) were lowest of all life stages and correlated to concentrations in females. There was a higher rate of maternal transfer of mercury to eggs compared with teleosts. Ammocoetes had high mercury concentrations for their trophic level (e.g., mean of age-4 ammocoetes 492 ng??g-1 wet weight). A further investigation of four streams showed that ammocoetes reflected the level of contamination in their nursery streams. Concentrations of mercury decreased during metamorphosis from ammocoete to adult. Mercury concentrations in adults ranged from 83 to 942 ng??g-1 wet weight and, unlike teleosts, showed no relation to sex, length, or weight. We provide evidence from stable isotope analyses that this high variability is due to feeding ecology. There are fundamental differences in mercury accumulation between sea lamprey and teleosts. ?? 2006 NRC Canada.
A structural basis for antigen recognition by the T cell-like lymphocytes of sea lamprey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Lu; Velikovsky, C. Alejandro; Xu, Gang
Adaptive immunity in jawless vertebrates is mediated by leucine-rich repeat proteins called 'variable lymphocyte receptors' (VLRs). Two types of VLR (A and B) are expressed by mutually exclusive lymphocyte populations in lamprey. VLRB lymphocytes resemble the B cells of jawed vertebrates; VLRA lymphocytes are similar to T cells. We determined the structure of a high-affinity VLRA isolated from lamprey immunized with hen egg white lysozyme (HEL) in unbound and antigen-bound forms. The VLRA-HEL complex demonstrates that certain VLRAs, like {gamma}{delta} T-cell receptors (TCRs) but unlike {alpha}{beta} TCRs, can recognize antigens directly, without a requirement for processing or antigen-presenting molecules. Thus,more » these VLRAs feature the nanomolar affinities of antibodies, the direct recognition of unprocessed antigens of both antibodies and {gamma}{delta} TCRs, and the exclusive expression on the lymphocyte surface that is unique to {alpha}{beta} and {gamma}{delta} TCRs.« less
Early evolution of vertebrate photoreception: lessons from lampreys and lungfishes.
Collin, Shaun P
2009-03-01
Lampreys (Agnatha) and lungfish (Dipnoi) are representatives of the earliest and the intermediate stages in vertebrate evolution, respectively, and survived in the Cambrian (approximately 540 mA, lampreys) and Devonian (approximately 400 mA, lungfishes) Periods. The unique phylogenetic position of these two groups presents us with an exciting opportunity to understand life in ancient times and to begin to trace the evolution of vision and photoreception in vertebrates. Using a multidisciplinary approach employing anatomical and molecular techniques, the evolution of photoreception is explored in these extant, living fossils to predict the environmental lighting conditions to which our vertebrate ancestors were exposed. Contrary to expectations, the retinae of the southern hemisphere lamprey (Geotria australis Gray, 1851) and the Australian lungfish (Neoceratodus forsteri Krefft, 1870) are far from "primitive," each possessing five types of photoreceptors, many with spectral filters for tuning the light. Detailed ultrastructural analysis reveals that all five receptor types in G. australis are cone-like, whereas N. forsteri possesses four cone types and a single type of rod. Each receptor type also contains a different visual pigment (opsin gene); that is, LWS, SWS1, SWS2, RhA and RhB in G. australis and LWS, SWS1, SWS2, Rh1 and Rh2 in N. forsteri, all of which are expressed within the retina and are sensitive to different parts of the electromagnetic spectrum, providing the potential for pentachromatic and tetrachromatic color vision, respectively. © 2009 ISZS, Blackwell Publishing and IOZ/CAS.
Villar-Cerviño, Verona; Rocancourt, Claire; Menuet, Arnaud; Da Silva, Corinne; Wincker, Patrick; Anadón, Ramón; Mazan, Sylvie; Rodicio, Maria Celina
2010-09-01
Vesicular glutamate transporters (VGLUTs) accumulate glutamate into synaptic vesicles of glutamatergic neurons, and thus are considered to define the phenotype of these neurons. Glutamate also appears to play a role in the development of the nervous system of vertebrates. Here we report the characterization of a vesicular glutamate transporter of lamprey (lVGluT), a novel member of the VGluT gene family. Phylogenetic analysis indicates that lVGLUT cannot be assigned to any of the three VGLUT isoforms characterized in teleosts and mammals, suggesting that these classes may have been fixed after the splitting between cyclostomes and gnathostomes. Expression pattern analysis during lamprey embryogenesis and prolarval stages shows that lVGluT expression is restricted to the nervous system. The first structure to express lVGluT was the olfactory epithelium of late embryos. In the brain of early prolarvae, lVGluT was expressed in most of the neuronal populations that generate the early axonal scaffold. lVGluT expression was also observed in neuronal populations of the rhombencephalon and spinal cord and in ganglia of the branchiomeric, octaval and posterior lateral line nerves. In the rhombencephalon, lVGluT expression appears to be spatially restricted in dorsal and ventral longitudinal domains. Comparison of the early expression of VGluT genes between the lamprey and some anamniotan gnathostomes (frog, zebrafish) reveals a conserved expression pattern, likely to reflect ancestral vertebrate characteristics. 2010 Elsevier B.V. All rights reserved.
A sea lamprey glycoprotein hormone receptor similar with gnathostome thyrotropin hormone receptor.
Freamat, Mihael; Sower, Stacia A
2008-10-01
The specificity of the vertebrate hypothalamic-pituitary-gonadal and hypothalamic-pituitary-thyroid axes is explained by the evolutionary refinement of the specificity of expression and selectivity of interaction between the glycoprotein hormones GpH (FSH, LH, and TSH) and their cognate receptors GpH-R (FSH-R, LH-R, and TSH-R). These two finely tuned signaling pathways evolved by gene duplication and functional divergence from an ancestral GpH/GpH-R pair. Comparative analysis of the protochordate and gnathostome endocrine systems suggests that this process took place prior or concomitantly with the emergence of the gnathostome lineage. Here, we report identification and characterization of a novel glycoprotein hormone receptor (lGpH-R II) in the Agnathan sea lamprey. This 781 residue protein was found approximately 43% identical with mammalian TSH-R and FSH-R representative sequences, and similarly with these two classes of mammalian receptors it is assembled from ten exons. A synthetic ligand containing the lamprey glycoprotein hormone beta-chain tethered upstream of a mammalian alpha-chain activated the lGpH-R II expressed in COS-7 cells but in a lesser extent than lGpH-R I. Molecular phylogenetic analysis of vertebrate GpH-R protein sequences suggests a closer relationship between lGpH-R II and gnathostome thyrotropin receptors. Overall, the presence and characteristics of the lamprey glycoprotein hormone receptors suggest existence of a primitive functionally overlapping glycoprotein hormone/glycoprotein hormone receptor system in this animal.
Unrein, Julia R.; Morris, Jeffrey M.; Chitwood, Rob S.; Lipton, Joshua; Peers, Jennifer; van de Wetering, Stan; Schreck, Carl B.
2016-01-01
Many anthropogenic disturbances have contributed to the decline of Pacific lampreys (Entosphenus tridentatus), but potential negative effects of contaminants on lampreys are unclear. Lamprey ammocoetes are the only detritivorous fish in the lower Willamette River, Oregon, USA, and have been observed in Portland Harbor sediments. Their long benthic larval stage places them at risk from the effects of contaminated sediment. The authors developed experimental methods to assess the effects of contaminated sediment on the growth and behavior of field-collected ammocoetes reared in a laboratory. Specifically, they developed methods to assess individual growth and burrowing behavior. Burrowing performance demonstrated high variability among contaminated sediments; however, ammocoetes presented with noncontaminated reference sediment initiated burrowing more rapidly and completed it faster. Ammocoete reemergence from contaminated sediments suggests avoidance of some chemical compounds. The authors conducted long-term exposure experiments on individually held ammocoetes using sediment collected from their native Siletz River, which included the following: contaminated sediments collected from 9 sites within Portland Harbor, 2 uncontaminated reference sediments collected upstream, 1 uncontaminated sediment with characteristics similar to Portland Harbor sediments, and clean sand. They determined that a 24-h depuration period was sufficient to evaluate weight changes and observed no mortality or growth effects in fish exposed to any of the contaminated sediments. However, the effect on burrowing behavior appeared to be a sensitive endpoint, with potentially significant implications for predator avoidance.
Hess, Jon E; Campbell, Nathan R; Docker, Margaret F; Baker, Cyndi; Jackson, Aaron; Lampman, Ralph; McIlraith, Brian; Moser, Mary L; Statler, David P; Young, William P; Wildbill, Andrew J; Narum, Shawn R
2015-01-01
Next-generation sequencing data can be mined for highly informative single nucleotide polymorphisms (SNPs) to develop high-throughput genomic assays for nonmodel organisms. However, choosing a set of SNPs to address a variety of objectives can be difficult because SNPs are often not equally informative. We developed an optimal combination of 96 high-throughput SNP assays from a total of 4439 SNPs identified in a previous study of Pacific lamprey (Entosphenus tridentatus) and used them to address four disparate objectives: parentage analysis, species identification and characterization of neutral and adaptive variation. Nine of these SNPs are FST outliers, and five of these outliers are localized within genes and significantly associated with geography, run-timing and dwarf life history. Two of the 96 SNPs were diagnostic for two other lamprey species that were morphologically indistinguishable at early larval stages and were sympatric in the Pacific Northwest. The majority (85) of SNPs in the panel were highly informative for parentage analysis, that is, putatively neutral with high minor allele frequency across the species' range. Results from three case studies are presented to demonstrate the broad utility of this panel of SNP markers in this species. As Pacific lamprey populations are undergoing rapid decline, these SNPs provide an important resource to address critical uncertainties associated with the conservation and recovery of this imperiled species. © 2014 John Wiley & Sons Ltd.
Evidence for partial overlap of male olfactory cues in lampreys
Buchinger, Tyler J.; Li, Ke; Huertas, Mar; Baker, Cindy F.; Jia, Liang; Hayes, Michael C.; Li, Weiming; Johnson, Nicholas S.
2016-01-01
Animals rely on a mosaic of complex information to find and evaluate mates. Pheromones, often comprised of multiple components, are considered to be particularly important for species-recognition in many species. While the evolution of species-specific pheromone blends is well-described in many insects, very few vertebrate pheromones have been studied in a macro-evolutionary context. Here, we report a phylogenetic comparison of multi-component male odours that guide reproduction in lampreys. Chemical profiling of sexually mature males from eleven species of lamprey, representing six of ten genera and two of three families, indicated the chemical profiles of sexually mature male odours are partially shared among species. Behavioural assays conducted with four species sympatric in the Laurentian Great Lakes indicated asymmetric female responses to heterospecific odours, where Petromyzon marinus were attracted to male odour collected from all species tested but other species generally preferred only the odour of conspecifics. Electro-olfactogram recordings from P. marinusindicated that although P. marinus exhibited behavioural responses to odours from males of all species, at least some of the compounds that elicited olfactory responses were different in conspecific male odours compared to heterospecific male odours. We conclude that some of the compounds released by sexually mature males are shared among species and elicit olfactory and behavioural responses in P. marinus, and suggest that our results provide evidence for partial overlap of male olfactory cues among lampreys. Further characterization of the chemical identities of odour components is needed to confirm shared pheromones among species.
Mesa, M.G.; Magie, R.J.; Copeland, E.S.; Christiansen, H.E.
2011-01-01
Radio-tagged adult Pacific lamprey Entosphenus tridentatus held in a raceway with Plexiglas-lined walls and bottom healed more slowly and retained sutures longer than fish held in an all-concrete raceway or one with Plexiglas walls and a cobble-lined bottom. On all substrata, healing depended on when sutures were lost, and fish that lost their sutures in <14 days post-surgery healed faster than those that kept sutures longer. Long-term suture retention led to tissue trauma, infection and poor survival.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Columbia River System Operation Review
1995-11-01
This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings.
Boogaard, M.A.; Bills, T.D.; Johnson, D.A.
2003-01-01
The toxicity of the lampricides 3-trifluoromethyl-4-nitrophenol (TFM) and 2',5-dichloro-4'-nitrosalicylanilide (niclosamide) to non-target fishes has been a major point of concern since their use to control larval sea lamprey (Petromyzon marinus) populations began in the early 1960s. The toxicity of TFM to several non-target fish species has been demonstrated in previous studies. However, little information is available on the toxicity of the TFM/1% niclosamide mixture. One species of particular concern is the lake sturgeon (Acipenser fulvescens). Juvenile lake sturgeon of several size ranges were exposed to determine potential effects of the lampricides to individuals present in treatment streams. Sac fry were most resistant to the lampricides followed by fingerlings in the 200 to 225 mm size range. Swim-up fry and fingerlings less than 100 mm were the most sensitive. Concentrations that produced 50% mortality (LC50s) in juvenile lake sturgeon of these smaller size ranges were at or near the minimum lethal concentrations (MLCs) required for effective control of larval sea lampreys. The mudpuppy (Necturus maculosus), an amphibian native to several tributaries of the Great Lakes, have also become a species of interest in recent years. Laboratory tests conducted with TFM and a TFM/1% niclosamide mixture on adult mudpuppies indicate that although the amphibian is sensitive to the lampricides, an adequate margin of safety exists for adult mudpuppies to survive when exposed during stream treatments. Fifteen other fish species native to streams treated with lampricides were investigated in the laboratory to determine their sensitivity to the lampricides. Centrarchids, bluegill (Lepomis macrochirus) and green sunfish (Lepomis cyanellus) were the least sensitive to TFM, while ictalurids, black bullhead (Ictalurus melas), channel catfish (Ictalurus punctatus), and tadpole madtom (Notorus gyrinus) were the most sensitive. On-site bioassays conducted before lampricide treatments also revealed that lake sturgeon, channel catfish, and whitefish (Coregonus clupeaformis) were sensitive to the lampricides although considerably less sensitive compared to sea lamprey.
Boogaard, M.A.; Bills, T.D.; Johnson, D.A.
2003-01-01
The toxicity of the lampricides 3-trifluoromethyl-4-nitrophenol (TFM) and 2???,5-dichloro-4???-nitrosalicylanilide (niclosamide) to non-target fishes has been a major point of concern since their use to control larval sea lamprey (Petromyzon marinus) populations began in the early 1960s. The toxicity of TFM to several non-target fish species has been demonstrated in previous studies. However, little information is available on the toxicity of the TFM/1 % niclosamide mixture. One species of particular concern is the lake sturgeon (Acipenser fulvescens). Juvenile lake sturgeon of several size ranges were exposed to determine potential effects of the lampricides to individuals present in treatment streams. Sac fry were most resistant to the lampricides followed by fingerlings in the 200 to 225 mm size range. Swim-up fry and fingerlings less than 100 mm were the most sensitive. Concentrations that produced 50% mortality (LC50s) in juvenile lake sturgeon of these smaller size ranges were at or near the minimum lethal concentrations (MLCs) required for effective control of larval sea lampreys. The mudpuppy (Necturus maculosus), an amphibian native to several tributaries of the Great Lakes, have also become a species of interest in recent years. Laboratory tests conducted with TFM and a TFM/1 % niclosamide mixture on adult mudpuppies indicate that although the amphibian is sensitive to the lampricides, an adequate margin of safety exists for adult mudpuppies to survive when exposed during stream treatments. Fifteen other fish species native to streams treated with lampricides were investigated in the laboratory to determine their sensitivity to the lampricides. Centrarchids, bluegill (Lepomis macrochirus) and green sunfish (Lepomis cyanellus) were the least sensitive to TFM, while ictalurids, black bullhead (Ictalurus melas), channel catfish (Ictalurus punctatus), and tadpole madtom (Notorus gyrinus) were the most sensitive. On-site bioassays conducted before lampricide treatments also revealed that lake sturgeon, channel catfish, and whitefish (Coregonus clupeaformis) were sensitive to the lampricides although considerably less sensitive compared to sea lamprey.
Benthall, Katelyn N.; Hough, Ryan A.
2016-01-01
Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3–5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. NEW & NOTEWORTHY In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the experimental results. Thus, after disruption of long-axon projections from RS neurons in the lamprey, descending propriospinal (PS) neurons appear to be a viable compensatory mechanism for indirect activation of spinal locomotor networks. PMID:27760818
Benthall, Katelyn N; Hough, Ryan A; McClellan, Andrew D
2017-01-01
Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3-5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the experimental results. Thus, after disruption of long-axon projections from RS neurons in the lamprey, descending propriospinal (PS) neurons appear to be a viable compensatory mechanism for indirect activation of spinal locomotor networks. Copyright © 2017 the American Physiological Society.
Early Evolution of Conserved Regulatory Sequences Associated with Development in Vertebrates
McEwen, Gayle K.; Goode, Debbie K.; Parker, Hugo J.; Woolfe, Adam; Callaway, Heather; Elgar, Greg
2009-01-01
Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA. PMID:20011110
Campanini, Emeline B.; Vandewege, Michael W.; Pillai, Nisha E.; Tay, Boon-Hui; Jones, Justin L.; Venkatesh, Byrappa; Hoffmann, Federico G.
2015-01-01
Abstract The genes in the Myb superfamily encode for three related transcription factors in most vertebrates, A-, B-, and c-Myb, with functionally distinct roles, whereas most invertebrates have a single Myb. B-Myb plays an essential role in cell division and cell cycle progression, c-Myb is involved in hematopoiesis, and A-Myb is involved in spermatogenesis and regulating expression of pachytene PIWI interacting RNAs, a class of small RNAs involved in posttranscriptional gene regulation and the maintenance of reproductive tissues. Comparisons between teleost fish and tetrapods suggest that the emergence and functional divergence of the Myb genes were linked to the two rounds of whole-genome duplication early in vertebrate evolution. We combined phylogenetic, synteny, structural, and gene expression analyses of the Myb paralogs from elephant shark and lampreys with data from 12 bony vertebrates to reconstruct the early evolution of vertebrate Mybs. Phylogenetic and synteny analyses suggest that the elephant shark and Japanese lamprey have copies of the A-, B-, and c-Myb genes, implying their origin could be traced back to the common ancestor of lampreys and gnathostomes. However, structural and gene expression analyses suggest that their functional roles diverged between gnathostomes and cyclostomes. In particular, we did not detect A-Myb expression in testis suggesting that the involvement of A-Myb in the pachytene PIWI interacting RNA pathway is probably a gnathostome-specific innovation. We speculate that the secondary loss of a central domain in lamprey A-Myb underlies the functional differences between the cyclostome and gnathostome A-Myb proteins. PMID:26475318
Lança, Maria João; Rosado, C; Machado, M; Ferreira, R; Alves-Pereira, I; Quintella, B R; Almeida, P R
2011-05-01
Characterization of muscle and liver fatty acid profiles, determination of liver lipogenic and lipolytic activities and estimation of liver fatty elongases and desaturases activities of sea lamprey were realized at the beginning of the spawning migration. The muscle fatty acid profile was consistent with the location of capture, and revealed that animals captured far upstream from the river mouth presented the lowest C18:1ω9 levels and the highest relative proportions of C20:4ω6, C20:5ω3 (EPA), C22:5ω3 (DPA) and C22:6ω3 (DHA). These results suggest: (i) the vital importance of the conservation of C20:4ω6 as a precursor of eicosanoids; (ii) the retention of EPA, DPA and DHA for metabolic energy for reproduction; and (iii) the utilization of C18:1ω9 for metabolic fuel use in the beginning of the spawning period. Hepatic lipolysis and lipogenesis revealed significant differences which could, eventually, result from the diet during the parasitic phase of sea lamprey life cycle. Present results revealed that the muscle act as a fat depot site which explains the few significant correlations observed for fatty acids between muscle and liver. Muscle neutral lipids fatty acid signature at the beginning of the spawning migration can be used to distinguish differences in the diet of sea lampreys during the marine trophic phase of their life cycle. Copyright © 2011 Elsevier Inc. All rights reserved.
Applegate, Vernon C.; Johnson, B.G.H.; Smith, Manning A.
1966-01-01
The results of tests of the biological activity of certain nitrophenols containing halogen are reported. Some of these are shown to be significantly more toxic to larvae of the sea lamprey (Petromyzon marinus L.) than to fishes. It is proposed that the death of lamprey larvae exposed to these compounds results from an acute hypotension (shock) with concomitant circulatory and respiratory failure. Rainbow trout (Salmo gairdneri), on the other hand, appear to die, at higher concentrations of the toxin, due to a chemically-caused mechanical interference with respiration through the gills. A systematic series of studies of mononitrophenols containing halogens disclosed that those phenols having the nitro group in the para-position and a halogen atom or group in the meta-position are generally more toxic to lampreys than to fish. The halogens or halogen groups used in this study were fluorine, chlorine, bromine, and trifluormethyl. The same substituents in other positions only occasionally gave rise to selectively toxic compounds. The relationship between the selectively active class of nitrophenols containing halogens and other related structures is discussed.
Kempe, Lloyd L.
1973-01-01
The selective lampricide 3-trifluoromethyl-4-nitrophenol (TFM), maintained in the water at concentrations of 1 to 6 I?g/ml for several hours, kills larval sea lampreys (Petromyzon marinus) in tributaries of the Great Lakes. Because the fate of TFM in the environment is a matter of concern, the interactions of this chemical with river and lake sediments were studied in laboratory experiments. In mixtures of TFM, water, and sediment held in aquariums, the TFM decreased progressively and nearly or completely disappeared in 1 to 4 weeks; concentrations of the fluoride ion increased; and the systems became nontoxic for sea lamprey larvae and goldfish (Carassius auratus). If the reduction in TFM ceased before all of the chemical had disappeared, the process resumed when nutrient broth was added. Loss of TFM from the systems was prevented by the addition of an antiseptic (phenol) and by heat sterilization. Enrichment cultures of microorganisms isolated from stream and lake sediments degraded TFM in nutrient broths. I conclude that TFM is degraded by microorganisms that live in sediment-water systems.
Effects of coded-wire-tagging on stream-dwelling Sea Lamprey larvae
Johnson, Nicholas; Swink, William D.; Dawson, Heather A.; Jones, Michael L.
2016-01-01
The effects of coded wire tagging Sea Lamprey Petromyzon marinus larvae from a known-aged stream-dwelling population were assessed. Tagged larvae were significantly shorter on average than untagged larvae from 3 to 18 months after tagging. However, 30 months after tagging, the length distribution of tagged and untagged larvae did not differ and tagged Sea Lampreys were in better condition (i.e., higher condition factor) and more likely to have undergone metamorphosis than the untagged population. The reason why tagged larvae were more likely to metamorphose is not clear, but the increased likelihood of metamorphosis could have been a compensatory response to the period of slower growth after tagging. Slower growth after tagging was consistent across larval size-classes, so handling and displacement from quality habitat during the early part of the growing season was likely the cause rather than the tag burden. The tag effects observed in this study, if caused by displacement and handling, may be minimized in future studies if tagging is conducted during autumn after growth has concluded for the year.
Smith, D.M.; Welsh, S.A.; Turk, P.J.
2011-01-01
In this laboratory study, we quantified substrate selection by small (<50 mm) and large (100-150 mm) ammocoetes of the least brook lamprey (Lampetra aepyptera). In aquaria, ammocoetes were given a choice to burrow into six equally-available substrate types: small gravel (2.360-4.750 mm), coarse sand (0.500-1.400 mm), fine sand (0.125-0.500 mm), organic substrate (approximately 70% decomposing leaves/stems and organic sediment particles, and 30% silt and fine sand), an even mixture of silt, clay, and fine sand, and silt/clay (<0.063 mm). Fine sand was selected with a significantly higher probability than any other substrate. Fine sand habitat is limited in many streams, in part owing to geology, but also as a result of channelization and excessive silt/clay sedimentation, which is a conservation concern. Our results indicate that ammocoetes of least brook lampreys are habitat specialists that prefer fine sand habitat. Hence, availability of fine sand habitat may limit distributions and population sizes. ?? 2011 Springer Science+Business Media B.V.
Boogaard, Michael A; Rivera, Jane E; Gaikowski, Mark P
2008-01-01
Avoidance of juvenile lake sturgeons < 100 mm in length in response to application of the Bayluscide 3.2% Granular Sea Lamprey Larvicide was assessed. Clear plexiglas columns (107 cm in height, 30.5 cm in diameter) to evaluate the potential for the normally bottom-dwelling fishes to move vertically in the water column to avoid niclosamide dissolving from the Bayluscide granules. Vertical migration of lake sturgeons to > 15 cm off the bottom of the column was considered avoidance. Lake sturgeons began displaying avoidance behaviors within 4 to 8 min after the granules were applied and continued for up to 60 min. After 60 min, most or all of the sturgeons were near the surface in the treated columns. In contrast, little movement above the 15-cm mark was observed at any time in any of the control columns. The results of this study are similar to a previous study where juvenile lake sturgeons > 100 mm in length showed the ability to avoid granular Bayluscide. Taken together, we conclude that juvenile lake sturgeons of any size range can detect and avoid granular Bayluscide applications.
Carcass analog addition enhances juvenile Atlantic salmon (Salmo salar) growth and condition
Guyette, Margaret Q.; Loftin, Cynthia S.; Zydlewski, Joseph D.
2013-01-01
Our study used historic marine-derived nutrient (MDN) delivery timing to simulate potential effects of restored connectivity on juvenile Atlantic salmon (ATS; Salmo salar) growth and condition. Four headwater streams were stocked with ATS young of the year (YOY) and received carcass analog additions (0.10 kg·m–2 wetted area) in treatment reaches to match the timing of sea lamprey (Petromyzon marinus) spawning. Individual ATS mass was 33%–48% greater and standard length was 9%–15% greater in treatment reaches relative to control reaches for 4 months following nutrient additions. Percent total lipids in YOY ATS were twice as great in treatment reaches 1 month following carcass analog additions and remained elevated in treatment fish for 2 more months. Absolute growth rates, based on otolith microstructure analysis, correlated with water temperature fluctuations in all reaches and were elevated by an average of 0.07 mm·day–1 in treatment reaches for 1 month following carcass analog additions. Simulated sea lamprey MDNs increased juvenile ATS growth, which, via potential increases in overwinter survival and decreases in smolt age, may contribute to population persistence and ecosystem productivity.
Rougemont, Q; Gaigher, A; Lasne, E; Côte, J; Coke, M; Besnard, A-L; Launey, S; Evanno, G
2015-12-01
Ecologically based divergent selection is a factor that could drive reproductive isolation even in the presence of gene flow. Population pairs arrayed along a continuum of divergence provide a good opportunity to address this issue. Here, we used a combination of mating trials, experimental crosses and population genetic analyses to investigate the evolution of reproductive isolation between two closely related species of lampreys with distinct life histories. We used microsatellite markers to genotype over 1000 individuals of the migratory parasitic river lamprey (Lampetra fluviatilis) and freshwater-resident nonparasitic brook lamprey (Lampetra planeri) distributed in 10 sympatric and parapatric population pairs in France. Mating trials, parentage analyses and artificial fertilizations demonstrated a low level of reproductive isolation between species even though size-assortative mating may contribute to isolation. Most parapatric population pairs were strongly differentiated due to the joint effects of geographic distance and barriers to migration. In contrast, we found variable levels of gene flow between sympatric populations ranging from panmixia to moderate differentiation, which indicates a gradient of divergence with some population pairs that may correspond to alternative morphs or ecotypes of a single species and others that remain partially isolated. Ecologically based divergent selection may explain these variable levels of divergence among sympatric population pairs, but incomplete genome swamping following secondary contact could have also played a role. Overall, this study illustrates how highly differentiated phenotypes can be maintained despite high levels of gene flow that limit the progress towards speciation. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Identification and cloning of a glycoprotein hormone receptor from sea lamprey, Petromyzon marinus.
Freamat, Mihael; Kawauchi, Hiroshi; Nozaki, Masumi; Sower, Stacia A
2006-08-01
A full-length transcript encoding a functional lamprey glycoprotein hormone receptor I (lGpH-R I, GenBank AY750688) was cloned from the testes of the sea lamprey, Petromyzon marinus, using the GpH-R protein fingerprint GLYCHORMONER from the PRINTS database. The present study is the first to identify a GpH-R transcript in an agnathan, which is one of the only two representatives of the oldest lineage of vertebrates. The 719-amino acid full-length cDNA encoding lGpH-R I is highly similar and is likely a homolog of the vertebrate GpH-Rs (including LH, FSH, and TSH receptors). The key motifs, sequence comparisons, and characteristics of the identified GpH-R reveal a mosaic of features common to all other classes of GpH-Rs in vertebrates. The lGpH-R I was shown to activate the cAMP signaling system using human chorionic gonadotropin in transiently transfected COS-7 cells. The highest expression of the receptor transcript was demonstrated in the testes using reverse transcriptase-PCR. Lower levels of the receptor transcript were also detected in brain, heart, intestine, kidney, liver, muscle, and thyroid. The high expression of lGpH-R I in the testis and the high similarity with gnathostome gonadotropin hormone receptors suggest that lGpH-R I functions as a receptor for lamprey gonadotropin hormones. We hypothesize from these data that there is lower specificity of gonadotropin and its receptor in agnathans and that during co-evolution of the ligand and its receptor in gnathostomes, there were increased specificities of interactions between each GpH (TSH, LH, and FSH) and its receptor.
Hayes, D.B.; Baylis, J.R.; Carl, L.M.; Dodd, H.R.; Goldstein, J.D.; McLaughlin, R.L.; Noakes, D.L.G.; Porto, L.M.
2003-01-01
Four sampling designs for quantifying the effect of low-head sea lamprey (Petromyzon marinus) barriers on fish communities were evaluated, and the contribution of process-oriented research to the overall confidence of results obtained was discussed. The designs include: (1) sample barrier streams post-construction; (2) sample barrier and reference streams post-construction; (3) sample barrier streams pre- and post-construction; and (4) sample barrier and reference streams pre- and post-construction. In the statistical literature, the principal basis for comparison of sampling designs is generally the precision achieved by each design. In addition to precision, designs should be compared based on the interpretability of results and on the scale to which the results apply. Using data collected in a broad survey of streams with and without sea lamprey barriers, some of the tradeoffs that occur among precision, scale, and interpretability are illustrated. Although circumstances such as funding and availability of pre-construction data may limit which design can be implemented, a pre/post-construction design including barrier and reference streams provides the most meaningful information for use in barrier management decisions. Where it is not feasible to obtain pre-construction data, a design including reference streams is important to maintain the interpretability of results. Regardless of the design used, process-oriented research provides a framework for interpreting results obtained in broad surveys. As such, information from both extensive surveys and intensive process-oriented research provides the best basis for fishery management actions, and gives researchers and managers the most confidence in the conclusions reached regarding the effects of sea lamprey barriers.
Schilf, Paul; Peter, Annette; Hurek, Thomas; Stick, Reimer
2014-07-01
Lamin proteins are found in all metazoans. Most non-vertebrate genomes including those of the closest relatives of vertebrates, the cephalochordates and tunicates, encode only a single lamin. In teleosts and tetrapods the number of lamin genes has quadrupled. They can be divided into four sub-types, lmnb1, lmnb2, LIII, and lmna, each characterized by particular features and functional differentiations. Little is known when during vertebrate evolution these features have emerged. Lampreys belong to the Agnatha, the sister group of the Gnathostomata. They split off first within the vertebrate lineage. Analysis of the sea lamprey (Petromyzon marinus) lamin complement presented here, identified three functional lamin genes, one encoding a lamin LIII, indicating that the characteristic gene structure of this subtype had been established prior to the agnathan/gnathostome split. Two other genes encode lamins for which orthology to gnathostome lamins cannot be designated. Search for lamin gene sequences in all vertebrate taxa for which sufficient sequence data are available reveals the evolutionary time frame in which specific features of the vertebrate lamins were established. Structural features characteristic for A-type lamins are not found in the lamprey genome. In contrast, lmna genes are present in all gnathostome lineages suggesting that this gene evolved with the emergence of the gnathostomes. The analysis of lamin gene neighborhoods reveals noticeable similarities between the different vertebrate lamin genes supporting the hypothesis that they emerged due to two rounds of whole genome duplication and makes clear that an orthologous relationship between a particular vertebrate paralog and lamins outside the vertebrate lineage cannot be established. Copyright © 2014 Elsevier GmbH. All rights reserved.
Functional Diversification of Motor Neuron-specific Isl1 Enhancers during Evolution
Kim, Namhee; Park, Chungoo; Jeong, Yongsu; Song, Mi-Ryoung
2015-01-01
Functional diversification of motor neurons has occurred in order to selectively control the movements of different body parts including head, trunk and limbs. Here we report that transcription of Isl1, a major gene necessary for motor neuron identity, is controlled by two enhancers, CREST1 (E1) and CREST2 (E2) that allow selective gene expression of Isl1 in motor neurons. Introduction of GFP reporters into the chick neural tube revealed that E1 is active in hindbrain motor neurons and spinal cord motor neurons, whereas E2 is active in the lateral motor column (LMC) of the spinal cord, which controls the limb muscles. Genome-wide ChIP-Seq analysis combined with reporter assays showed that Phox2 and the Isl1-Lhx3 complex bind to E1 and drive hindbrain and spinal cord-specific expression of Isl1, respectively. Interestingly, Lhx3 alone was sufficient to activate E1, and this may contribute to the initiation of Isl1 expression when progenitors have just developed into motor neurons. E2 was induced by onecut 1 (OC-1) factor that permits Isl1 expression in LMCm neurons. Interestingly, the core region of E1 has been conserved in evolution, even in the lamprey, a jawless vertebrate with primitive motor neurons. All E1 sequences from lamprey to mouse responded equally well to Phox2a and the Isl1-Lhx3 complex. Conversely, E2, the enhancer for limb-innervating motor neurons, was only found in tetrapod animals. This suggests that evolutionarily-conserved enhancers permit the diversification of motor neurons. PMID:26447474
Functional Diversification of Motor Neuron-specific Isl1 Enhancers during Evolution.
Kim, Namhee; Park, Chungoo; Jeong, Yongsu; Song, Mi-Ryoung
2015-10-01
Functional diversification of motor neurons has occurred in order to selectively control the movements of different body parts including head, trunk and limbs. Here we report that transcription of Isl1, a major gene necessary for motor neuron identity, is controlled by two enhancers, CREST1 (E1) and CREST2 (E2) that allow selective gene expression of Isl1 in motor neurons. Introduction of GFP reporters into the chick neural tube revealed that E1 is active in hindbrain motor neurons and spinal cord motor neurons, whereas E2 is active in the lateral motor column (LMC) of the spinal cord, which controls the limb muscles. Genome-wide ChIP-Seq analysis combined with reporter assays showed that Phox2 and the Isl1-Lhx3 complex bind to E1 and drive hindbrain and spinal cord-specific expression of Isl1, respectively. Interestingly, Lhx3 alone was sufficient to activate E1, and this may contribute to the initiation of Isl1 expression when progenitors have just developed into motor neurons. E2 was induced by onecut 1 (OC-1) factor that permits Isl1 expression in LMCm neurons. Interestingly, the core region of E1 has been conserved in evolution, even in the lamprey, a jawless vertebrate with primitive motor neurons. All E1 sequences from lamprey to mouse responded equally well to Phox2a and the Isl1-Lhx3 complex. Conversely, E2, the enhancer for limb-innervating motor neurons, was only found in tetrapod animals. This suggests that evolutionarily-conserved enhancers permit the diversification of motor neurons.
Population dynamics of Lake Ontario lake trout during 1985-2007
Brenden, Travis O.; Bence, James R.; Lantry, Brian F.; Lantry, Jana R.; Schaner, Ted
2011-01-01
Lake trout Salvelinus namaycush were extirpated from Lake Ontario circa 1950 owing to commercial and recreational fishing, predation by sea lampreys Petromyzon marinus, and habitat degradation. Since the 1970s, substantial efforts have been devoted to reestablishing a self-sustaining population through stocking, sea lamprey control, and harvest reduction. Although a stocking-supported population has been established, only limited natural reproduction has been detected. Since the 1990s, surveys have indicated a continuing decline in overall abundance despite fairly static stocking levels. We constructed a statistical catch-at-age model to describe the dynamics of Lake Ontario lake trout from 1985 to 2007 and explore what factor(s) could be causing the declines in abundance. Model estimates indicated that abundance had declined by approximately 76% since 1985. The factor that appeared most responsible for this was an increase in age-1 natural mortality rates from approximately 0.9 to 2.5 between 1985 and 2002. The largest source of mortality for age-2 and older fish was sea lamprey predation, followed by natural and recreational fishing mortality. Exploitation was low, harvest levels being uncertain and categorized by length rather than age. Accurate predictions of fishery harvest and survey catch per unit effort were obtained despite low harvest levels by using atypical data (e.g., numbers stocked as an absolute measure of recruitment) and a flexible modeling approach. Flexible approaches such as this might allow similar assessments for a wide range of lightly exploited stocks. The mechanisms responsible for declining age-1 lake trout survival are unknown, but the declines were coincident with an increase in the proportion of stocked fish that were of the Seneca strain and a decrease in the overall stocking rate. It is possible that earlier studies suggesting that Seneca strain lake trout would be successful in Lake Ontario are no longer applicable given the large ecosystem changes that have occurred subsequent to invasion by dreissenid mussels.
NASA Astrophysics Data System (ADS)
Huang, Huiyang; Li, Linming; Ye, Haihui; Feng, Biyun; Li, Shaojing
2013-03-01
Gonadotropin-releasing hormone (GnRH) is a crucial peptide for the regulation of reproduction. Using immunological techniques, we investigated the presence of GnRH in horseshoe crab Tachypleus tridentatus. Octopus GnRH-like immunoreactivity, tunicate GnRH-like immunoreactivity, and lamprey GnRH-I-like immunoreactivity were detected in the neurons and fibers of the protocerebrum. However, no mammal GnRH-like immunoreactivity or lamprey GnRH-III-like immunoreactivity was observed. Our results suggest that a GnRH-like factor, an ancient peptide, existed in the brain of T. tridentatus and may be involved in the reproductive endocrine system.
Chemosterilization of male sea lampreys (Petromyzon marinus) does not affect sex pheromone release
Siefkes, Michael J.; Bergstedt, Roger A.; Twohey, Michael B.; Li, Weiming
2003-01-01
Release of males sterilized by injection with bisazir is an important experimental technique in management of sea lamprey (Petromyzon marinus), an invasive, nuisance species in the Laurentian Great Lakes. Sea lampreys are semelparous and sterilization can theoretically eliminate a male's reproductive capacity and, if the ability to obtain mates is not affected, waste the sex products of females spawning with him. It has been demonstrated that spermiating males release a sex pheromone that attracts ovulating females. We demonstrated that sterilized, spermiating males also released the pheromone and attracted ovulating females. In a two-choice maze, ovulating females increased searching behavior and spent more time in the side of the maze containing chemical stimuli from sterilized, spermiating males. This attraction response was also observed in spawning stream experiments. Also, electro-olfactograms showed that female olfactory organs were equally sensitive to chemical stimuli from sterilized and nonsterilized, spermiating males. Finally, fast atom bombardment mass spectrometry showed that extracts from water conditioned with sterilized and nonsterilized, spermiating males contained the same pheromonal molecule at similar levels. We concluded that injection of bisazir did not affect the efficacy of sex pheromone in sterilized males.
Modeling the suppression of sea lamprey populations by use of the male sex pheromone
Klassen, Waldemar; Adams, Jean V.; Twohey, Michael B.
2005-01-01
The suppression of sea lamprey populations, Petromyzon marinus (Linnaeus), was modeled using four different applications of the male sex pheromone: (1) pheromone-baited traps that remove females from the spawning population, (2) pheromone-baited decoys that exhaust females before they are able to spawn, (3) pheromone-enhanced sterile males that increase the proportion of non-fertile matings, and (4) camouflaging of the pheromone emitted by calling males to make it difficult for females to find a mate. The models indicated that thousands of traps or hundreds of thousands of decoys would be required to suppress a population of 100,000 animals. The potential efficacy of pheromone camouflages is largely unknown, and additional research is required to estimate how much pheromone is needed to camouflage the pheromone plumes of calling males. Pheromone-enhanced sterile males appear to be a promising application in the Great Lakes. Using this technique for three generations each of ca. 7 years duration could reduce sea lamprey populations by 90% for Lakes Huron and Ontario and by 98% for Lake Michigan, based on current trapping operations that capture 20 to 30% of the population each year.
Scholefield, Ronald J.; Fredricks, Kim T.; Slaght, Karen S.; Seelye, James G.
1999-01-01
The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) has been used in the United States and Canada for more than 35 years to control larval sea lampreys (Petromyzon marinus) in tributaries of the Great Lakes. Occasionally, during stream treatments with TFM, nontarget-fish mortality reaches unacceptable levels. These losses could be due to the presence of sensitive fish species, excess TFM, or a combination of factors that influence the toxicity of TFM, such as delays in daily stream reaeration by algae resulting in extended periods of low pH and low dissolved oxygen (DO). We determined the effects of a broad range of TFM concentrations on net DO production and respiration by two species of algae, in two culture media (high alkalinity and low alkalinity). The pH and DO in cultures of Chlorella pyrenoidosa and Selenastrum capricornutum were recorded at time zero and again after a 9-h exposure to TFM under either lighted or dark conditions. Algal cultures exposed to TFM concentrations typical of those used to control sea lampreys in streams showed only small changes in pH (<0.1) and small reductions in DO (about 8% in lighted conditions and 11% in dark conditions). Changes in pH and DO of this magnitude probably do not change the efficacy of TFM or cause nontarget fish mortality if algae are the predominant photosynthetic organisms in the stream.
Hsu, Li‐Ju; Zelenin, Pavel V.; Orlovsky, Grigori N.
2016-01-01
Key points Spinal reflexes are substantial components of the motor control system in all vertebrates and centrally driven reflex modifications are essential to many behaviours, but little is known about the neuronal mechanisms underlying these modifications.To study this issue, we took advantage of an in vitro brainstem–spinal cord preparation of the lamprey (a lower vertebrate), in which spinal reflex responses to spinal cord bending (caused by signals from spinal stretch receptor neurons) can be evoked during different types of fictive behaviour.Our results demonstrate that reflexes observed during fast forward swimming are reversed during escape behaviours, with the reflex reversal presumably caused by supraspinal commands transmitted by a population of reticulospinal neurons.NMDA receptors are involved in the formation of these commands, which are addressed primarily to the ipsilateral spinal networks.In the present study the neuronal mechanisms underlying reflex reversal have been characterized for the first time. Abstract Spinal reflexes can be modified during different motor behaviours. However, our knowledge about the neuronal mechanisms underlying these modifications in vertebrates is scarce. In the lamprey, a lower vertebrate, body bending causes activation of intraspinal stretch receptor neurons (SRNs) resulting in spinal reflexes: activation of motoneurons (MNs) with bending towards either the contralateral or ipsilateral side (a convex or concave response, respectively). The present study had two main aims: (i) to investigate how these spinal reflexes are modified during different motor behaviours, and (ii) to reveal reticulospinal neurons (RSNs) transmitting commands for the reflex modification. For this purpose in in vitro brainstem–spinal cord preparation, RSNs and reflex responses to bending were recorded during different fictive behaviours evoked by supraspinal commands. We found that during fast forward swimming MNs exhibited convex responses. By contrast, during escape behaviours, MNs exhibited concave responses. We found RSNs that were activated during both stimulation causing reflex reversal without initiation of any specific behaviour, and stimulation causing reflex reversal during escape behaviour. We suggest that these RSNs transmit commands for the reflex modification. Application of the NMDA antagonist (AP‐5) to the brainstem significantly decreased the reversed reflex, suggesting involvement of NMDA receptors in the formation of these commands. Longitudinal split of the spinal cord did not abolish the reflex reversal caused by supraspinal commands, suggesting an important role for ipsilateral networks in determining this type of motor response. This is the first study to reveal the neuronal mechanisms underlying supraspinal control of reflex reversal. PMID:27589479
Fish community response to dam removal in a Maine coastal river tributary
Zydlewski, Joseph D.; Hogg, Robert S.; Coghlan, Stephen M.; Gardner, Cory
2016-01-01
Sedgeunkedunk Stream, a third-order tributary to the Penobscot River in Maine, historically has supported several anadromous fishes including Atlantic Salmon Salmo salar, Alewife Alosa pseudoharengus, and Sea Lamprey Petromyzon marinus. Two small dams constructed in the 1800s reduced or eliminated spawning runs entirely. In 2009, efforts to restore marine–freshwater connectivity in the system culminated in removal of the lowermost dam (Mill Dam) providing access to 4.7 km of lotic habitat and unimpeded passage into the lentic habitat of Fields Pond. In anticipation of these barrier removals, we initiated a modified before-after-control-impact study, and monitored stream fish assemblages in fixed treatment and reference sites. Electrofishing surveys were conducted twice yearly since 2007. Results indicated that density, biomass, and diversity of the fish assemblage increased at all treatment sites upstream of the 2009 dam removal. No distinct changes in these metrics occurred at reference sites. We documented recolonization and successful reproduction of Atlantic Salmon, Alewife, and Sea Lamprey in previously inaccessible upstream reaches. These results clearly demonstrate that dam removal has enhanced the fish assemblage by providing an undisrupted stream gradient linking a small headwater lake and tributary with a large coastal river, its estuary, and the Atlantic Ocean.
Re-evaluation of the immunological Big Bang.
Flajnik, Martin F
2014-11-03
Classically the immunological 'Big Bang' of adaptive immunity was believed to have resulted from the insertion of a transposon into an immunoglobulin superfamily gene member, initiating antigen receptor gene rearrangement via the RAG recombinase in an ancestor of jawed vertebrates. However, the discovery of a second, convergent adaptive immune system in jawless fish, focused on the so-called variable lymphocyte receptors (VLRs), was arguably the most exciting finding of the past decade in immunology and has drastically changed the view of immune origins. The recent report of a new lymphocyte lineage in lampreys, defined by the antigen receptor VLRC, suggests that there were three lymphocyte lineages in the common ancestor of jawless and jawed vertebrates that co-opted different antigen receptor supertypes. The transcriptional control of these lineages during development is predicted to be remarkably similar in both the jawless (agnathan) and jawed (gnathostome) vertebrates, suggesting that an early 'division of labor' among lymphocytes was a driving force in the emergence of adaptive immunity. The recent cartilaginous fish genome project suggests that most effector cytokines and chemokines were also present in these fish, and further studies of the lamprey and hagfish genomes will determine just how explosive the Big Bang actually was. Copyright © 2014 Elsevier Ltd. All rights reserved.
Simulations of neuromuscular control in lamprey swimming.
Ekeberg, O; Grillner, S
1999-01-01
The neuronal generation of vertebrate locomotion has been extensively studied in the lamprey. Models at different levels of abstraction are being used to describe this system, from abstract nonlinear oscillators to interconnected model neurons comprising multiple compartments and a Hodgkin-Huxley representation of the most relevant ion channels. To study the role of sensory feedback by simulation, it eventually also becomes necessary to incorporate the mechanical movements in the models. By using simplifying models of muscle activation, body mechanics, counteracting water forces, and sensory feedback through stretch receptors and vestibular organs, we have been able to close the feedback loop to enable studies of the interaction between the neuronal and the mechanical systems. The neuromechanical simulations reveal that the currently known network is sufficient for generating a whole repertoire of swimming patterns. Swimming at different speeds and with different wavelengths, together with the performance of lateral turns can all be achieved by simply varying the brainstem input. The neuronal mechanisms behind pitch and roll manoeuvres are less clear. We have put forward a 'crossed-oscillators' hypothesis where partly separate dorsal and ventral circuits are postulated. Neuromechanical simulations of this system show that it is also capable of generating realistic pitch turns and rolls, and that vestibular signals can stabilize the posture during swimming. PMID:10382223
Hinkle, Karen L.; Anderson, Chad C.; Forkey, Blake; Griffin, Jacob; Cone, Kelsey; Vitzthum, Carl; Olsen, Darlene
2016-01-01
The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) is used to control sea lamprey (Petromyzon marinus) populations in freshwater lakes. While TFM can have sublethal and lethal effects, little is known about gene expression changes with TFM exposure. Microarray analysis was used to determine differential gene expression over 4 hours of exposure in S. cerevisiae. Among the most significantly up regulated genes were regulators of carbohydrate transport including HXT1, HXT3, HXT4, IMA5, MIG2, and YKR075C. PMID:26606276
Johnson, Nicholas S; Swink, William D; Brenden, Travis O
2017-03-29
Sex determination mechanisms in fishes lie along a genetic-environmental continuum and thereby offer opportunities to understand how physiology and environment interact to determine sex. Mechanisms and ecological consequences of sex determination in fishes are primarily garnered from teleosts, with little investigation into basal fishes. We tagged and released larval sea lamprey ( Petromyzon marinus ) into unproductive lake and productive stream environments. Sex ratios produced from these environments were quantified by recapturing tagged individuals as adults. Sex ratios from unproductive and productive environments were initially similar. However, sex ratios soon diverged, with unproductive environments becoming increasingly male-skewed and productive environments becoming less male-skewed with time. We hypothesize that slower growth in unproductive environments contributed to the sex ratio differences by directly influencing sex determination. To the best of our knowledge, this is the first study suggesting that growth rate in a fish species directly influences sex determination; other studies have suggested that the environmental variables to which sex determination is sensitive (e.g. density, temperature) act as cues for favourable or unfavourable growth conditions. Understanding mechanisms of sex determination in lampreys may provide unique insight into the underlying principles of sex determination in other vertebrates and provide innovative approaches for their management where valued and invasive. © 2017 The Author(s).
Multiple functions of a multi-component mating pheromone in sea lamprey Petromyzon marinus
Johnson, N.S.; Yun, S.-S.; Buchinger, T.J.; Li, W.
2012-01-01
The role of the C24 sulphate in the mating pheromone component, 7α,12α,24-trihydroxy-5α-cholan-3-one 24-sulphate (3kPZS), to specifically induce upstream movement in ovulated female sea lampreys Petromyzon marinus was investigated. 7α,12α-dihydroxy-5α-cholan-3-one 24-oic acid (3kACA), a structurally similar bile acid released by spermiated males, but lacking the C24 sulphate ester, was tested in bioassays at concentrations between 10−11 and 10−14 molar (M). 3kACA did not induce upstream movement in females or additional reproductive behaviours. In contrast, spermiated male washings induced upstream movement, prolonged retention on a nest and induced an array of nesting behaviours. Differential extraction and elution by solid-phase extraction resins showed that components other than 3kPZS + 3kACA are necessary to retain females on nests and induce nest cleaning behaviours. All pheromone components, including components in addition to 3kPZS + 3kACA that retain females and induce nest cleaning behaviours were released from the anterior region of the males, as had been reported for 3kPZS. It is concluded that the sea lamprey male mating pheromone has multiple functions and is composed of multiple components.
Mesa, Matthew G.; Copeland, Elizabeth S.
2009-01-01
Predation by pinnipeds, such as California sea lions Zalophus californianus, Pacific harbor seals Phoca vitulina, and Stellar sea lions Eumetopias jubatus on adult Pacific salmon Oncorhynchus spp in the lower Columbia River has become a serious concern for fishery managers trying to conserve and restore runs of threatened and endangered fish. As a result, Smith-Root, Incorporated (SRI; Vancouver, Washington), manufacturers of electrofishing and closely-related equipment, proposed a project to evaluate the potential of an electrical barrier to deter marine mammals and reduce the amount of predation on adult salmonids (SRI 2007). The objectives of their work were to develop, deploy, and evaluate a passive, integrated sonar and electric barrier that would selectively inhibit the upstream movements of marine mammals and reduce predation, but would not injure pinnipeds or impact anadromous fish migrations. However, before such a device could be deployed in the field, concerns by regional fishery managers about the potential effects of such a device on the migratory behavior of Pacific salmon, steelhead O. mykiss, Pacific lampreys Entoshpenus tridentata, and white sturgeon Acipenser transmontanus, needed to be addressed. In this report, we describe the results of laboratory research designed to evaluate the effects of prototype electric barriers on adult steelhead and Pacific lampreys.
A cytosolic carbonic anhydrase molecular switch occurs in the gills of metamorphic sea lamprey
Ferreira-Martins, D.; McCormick, Stephen; Campos, A.; Lopes-Marques, M.; Osorio, H.; Coimbra, J.; Castro, L.F.C.; Wilson, Jonthan M
2016-01-01
Carbonic anhydrase plays a key role in CO2 transport, acid-base and ion regulation and metabolic processes in vertebrates. While several carbonic anhydrase isoforms have been identified in numerous vertebrate species, basal lineages such as the cyclostomes have remained largely unexamined. Here we investigate the repertoire of cytoplasmic carbonic anhydrases in the sea lamprey (Petromyzon marinus), that has a complex life history marked by a dramatic metamorphosis from a benthic filter-feeding ammocoete larvae into a parasitic juvenile which migrates from freshwater to seawater. We have identified a novel carbonic anhydrase gene (ca19) beyond the single carbonic anhydrase gene (ca18) that was known previously. Phylogenetic analysis and synteny studies suggest that both carbonic anhydrase genes form one or two independent gene lineages and are most likely duplicates retained uniquely in cyclostomes. Quantitative PCR of ca19 and ca18 and protein expression in gill across metamorphosis show that the ca19 levels are highest in ammocoetes and decrease during metamorphosis while ca18 shows the opposite pattern with the highest levels in post-metamorphic juveniles. We propose that a unique molecular switch occurs during lamprey metamorphosis resulting in distinct gill carbonic anhydrases reflecting the contrasting life modes and habitats of these life-history stages.
Johnson, Nicholas; Swink, William D.; Brenden, Travis O.
2017-01-01
Sex determination mechanisms in fishes lie along a genetic-environmental continuum and thereby offer opportunities to understand how physiology and environment interact to determine sex. Mechanisms and ecological consequences of sex determination in fishes are primarily garnered from teleosts, with little investigation into basal fishes. We tagged and released larval sea lamprey (Petromyzon marinus) into unproductive lake and productive stream environments. Sex ratios produced from these environments were quantified by recapturing tagged individuals as adults. Sex ratios from unproductive and productive environments were initially similar. However, sex ratios soon diverged, with unproductive environments becoming increasingly male-skewed and productive environments becoming less male-skewed with time. We hypothesize that slower growth in unproductive environments contributed to the sex ratio differences by directly influencing sex determination. To the best of our knowledge, this is the first study suggesting that growth rate in a fish species directly influences sex determination; other studies have suggested that the environmental variables to which sex determination is sensitive (e.g. density, temperature) act as cues for favourable or unfavourable growth conditions. Understanding mechanisms of sex determination in lampreys may provide unique insight into the underlying principles of sex determination in other vertebrates and provide innovative approaches for their management where valued and invasive.
Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns
NASA Technical Reports Server (NTRS)
Meulemans, Daniel; Bronner-Fraser, Marianne
2002-01-01
The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the vertebrate dorsal neural tube and pharyngeal arches, implying co-option of AP-2 genes by neural crest cells early in vertebrate evolution. Expression in non-neural ectoderm is a conserved feature in amphioxus and vertebrates, suggesting an ancient role for AP-2 genes in this tissue. There is also common expression in subsets of ventrolateral neurons in the anterior neural tube, consistent with a primitive role in brain development. Comparison of AP-2 expression in axolotl and lamprey suggests an elaboration of cranial neural crest patterning in gnathostomes. However, migration of AP-2-expressing neural crest cells medial to the pharyngeal arch mesoderm appears to be a primitive feature retained in all vertebrates. Because AP-2 has essential roles in cranial neural crest differentiation and proliferation, the co-option of AP-2 by neural crest cells in the vertebrate lineage was a potentially crucial event in vertebrate evolution.
Square, Tyler; Jandzik, David; Cattell, Maria; Hansen, Andrew; Medeiros, Daniel Meulemans
2016-01-01
Neural crest cells (NCCs) are highly patterned embryonic cells that migrate along stereotyped routes to give rise to a diverse array of adult tissues and cell types. Modern NCCs are thought to have evolved from migratory neural precursors with limited developmental potential and patterning. How this occurred is poorly understood. Endothelin signaling regulates several aspects of NCC development, including their migration, differentiation, and patterning. In jawed vertebrates, Endothelin signaling involves multiple functionally distinct ligands (Edns) and receptors (Ednrs) expressed in various NCC subpopulations. To test the potential role of endothelin signaling diversification in the evolution of modern, highly patterned NCC, we analyzed the expression of the complete set of endothelin ligands and receptors in the jawless vertebrate, the sea lamprey (Petromyzon marinus). To better understand ancestral features of gnathostome edn and ednr expression, we also analyzed all known Endothelin signaling components in the African clawed frog (Xenopus laevis). We found that the sea lamprey has a gnathsotome-like complement of edn and ednr duplicates, and these genes are expressed in patterns highly reminiscent of their gnathostome counterparts. Our results suggest that the duplication and specialization of vertebrate Endothelin signaling coincided with the appearance of highly patterned and multipotent NCCs in stem vertebrates. PMID:27677704
Theory and application of semiochemicals in nuisance fish control
Sorensen, Peter W.; Johnson, Nicholas
2016-01-01
Controlling unwanted, or nuisance, fishes is becoming an increasingly urgent issue with few obvious solutions. Because fish rely heavily on semiochemicals, or chemical compounds that convey information between and within species, to mediate aspects of their life histories, these compounds are increasingly being considered as an option to help control wild fish. Possible uses of semiochemicals include measuring their presence in water to estimate population size, adding them to traps to count or remove specific species of fish, adding them to waterways to manipulate large-scale movement patterns, and saturating the environment with synthesized semiochemicals to disrupt responses to the natural cue. These applications may be especially appropriate for pheromones, chemical signals that pass between members of same species and which also have extreme specificity and potency. Alarm cues, compounds released by injured fish, and cues released by potential predators also could function as repellents and be especially useful if paired with pheromonal attractants in “push-pull” configurations. Approximately half a dozen attractive pheromones now have been partially identified in fish, and those for the sea lamprey and the common carp have been tested in the field with modest success. Alarm and predator cues for sea lamprey also have been tested in the laboratory and field with some success. Success has been hampered by our incomplete understanding of chemical identity, a lack of synthesized compounds, the fact that laboratory bioassays do not always reflect natural environments, and the relative difficulty of conducting trials on wild fishes because of short field seasons and regulatory requirements. Nevertheless, workers continue efforts to identify pheromones because of the great potential elucidated by insect control and the fact that few tools are available to control nuisance fish. Approaches developed for nuisance fish also could be applied to valued fishes, which suffer from a lack of powerful management tools.
Theory and Application of Semiochemicals in Nuisance Fish Control.
Sorensen, Peter W; Johnson, Nicholas S
2016-07-01
Controlling unwanted, or nuisance, fishes is becoming an increasingly urgent issue with few obvious solutions. Because fish rely heavily on semiochemicals, or chemical compounds that convey information between and within species, to mediate aspects of their life histories, these compounds are increasingly being considered as an option to help control wild fish. Possible uses of semiochemicals include measuring their presence in water to estimate population size, adding them to traps to count or remove specific species of fish, adding them to waterways to manipulate large-scale movement patterns, and saturating the environment with synthesized semiochemicals to disrupt responses to the natural cue. These applications may be especially appropriate for pheromones, chemical signals that pass between members of same species and which also have extreme specificity and potency. Alarm cues, compounds released by injured fish, and cues released by potential predators also could function as repellents and be especially useful if paired with pheromonal attractants in "push-pull" configurations. Approximately half a dozen attractive pheromones now have been partially identified in fish, and those for the sea lamprey and the common carp have been tested in the field with modest success. Alarm and predator cues for sea lamprey also have been tested in the laboratory and field with some success. Success has been hampered by our incomplete understanding of chemical identity, a lack of synthesized compounds, the fact that laboratory bioassays do not always reflect natural environments, and the relative difficulty of conducting trials on wild fishes because of short field seasons and regulatory requirements. Nevertheless, workers continue efforts to identify pheromones because of the great potential elucidated by insect control and the fact that few tools are available to control nuisance fish. Approaches developed for nuisance fish also could be applied to valued fishes, which suffer from a lack of powerful management tools.
Effectiveness of common fish screen materials to protect lamprey ammocoetes
Rose, Brien P.; Mesa, Matthew G.
2012-01-01
Understanding the effects of irrigation diversions on populations of Pacific lampreyLampetra tridentata in the Columbia River basin is needed for their recovery. We tested the effectiveness of five common fish screen materials for excluding lamprey ammocoetes: interlock (IL), vertical bar (VB), perforated plate (PP), and 12-gauge and 14-gauge wire cloth (WC12) and (WC14). When fish (28–153 mm) were exposed for 60 min to screen panels perpendicular to an approach velocity of 12 cm/s in a recirculating flume, the percentage of ammocoetes entrained (i.e., passed through the screen) was 26% for the IL, 18% for the PP, 33% for the VB, 62% for the WC14, and 65% for the WC12 screens. For all screens, most fish were entrained within the first 15–20 min. Fish length significantly influenced entrainment, with the PP, VB, and IL screens preventing fish greater than 50–65 mm from entrainment and the WC14 and WC12 screens preventing entrainment of fish greater than 90–110 mm. Fish of all sizes repeatedly became impinged (i.e., contacting the screen for more than 1 s) on the screens, with the frequency of impingement events increasing during the first 5 min and becoming relatively stable thereafter. Impingement ranges were highest on the IL screen (36–62%), lowest on the WC14 and WC12 screens (13–31%), and intermediate on the PP and VB screens (23–54%). However, the WC14 and WC12 screens had fewer and larger fish remaining as time elapsed because so many were entrained. For all screen types, injuries were rare and minor, and no fish died after overnight posttest holding. Our results indicate that wire cloth screens should be replaced, where practical, with perforated plate, vertical bar, or interlocking bar screens to reduce lamprey entrainment at water diversions.
Stearn, Olivia; Li, Yan; Campos, Maria Mercedes; Gentleman, Susan; Rogozin, Igor B.; Redmond, T. Michael
2012-01-01
In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE), a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT), which generates RPE65’s substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT) superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona) or cephalochordates (Branchiostoma), but occur in Petromyzon marinus (Sea Lamprey), a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa) (previously annotated as an RPE65) has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO) to the isomerohydrolase functionality (RPE65), coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates (tunicates, etc.) in the last common ancestor of the jawless and jawed vertebrates. PMID:23209628
Robertson, Brita; Huerta-Ocampo, Icnelia; Ericsson, Jesper; Stephenson-Jones, Marcus; Pérez-Fernández, Juan; Bolam, J. Paul; Diaz-Heijtz, Rochellys; Grillner, Sten
2012-01-01
All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the interplay with the dopamine system, and we explore here whether D2 receptors are expressed in the lamprey striatum and their potential role. We have identified a cDNA encoding the dopamine D2 receptor from the lamprey brain and the deduced protein sequence showed close phylogenetic relationship with other vertebrate D2 receptors, and an almost 100% identity within the transmembrane domains containing the amino acids essential for dopamine binding. There was a strong and distinct expression of D2 receptor mRNA in a subpopulation of striatal neurons, and in the same region tyrosine hydroxylase-immunoreactive synaptic terminals were identified at the ultrastructural level. The synaptic incidence of tyrosine hydroxylase-immunoreactive boutons was highest in a region ventrolateral to the compact layer of striatal neurons, a region where most striatal dendrites arborise. Application of a D2 receptor agonist modulates striatal neurons by causing a reduced spike discharge and a diminished post-inhibitory rebound. We conclude that the D2 receptor gene had already evolved in the earliest group of vertebrates, cyclostomes, when they diverged from the main vertebrate line of evolution (560 mya), and that it is expressed in striatum where it exerts similar cellular effects to that in other vertebrates. These results together with our previous published data (Stephenson-Jones et al. 2011, 2012) further emphasize the high degree of conservation of the basal ganglia, also with regard to the indirect loop, and its role as a basic mechanism for action selection in all vertebrates. PMID:22563388
Poliakov, Eugenia; Gubin, Alexander N; Stearn, Olivia; Li, Yan; Campos, Maria Mercedes; Gentleman, Susan; Rogozin, Igor B; Redmond, T Michael
2012-01-01
In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE), a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT), which generates RPE65's substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT) superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona) or cephalochordates (Branchiostoma), but occur in Petromyzon marinus (Sea Lamprey), a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa) (previously annotated as an RPE65) has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO) to the isomerohydrolase functionality (RPE65), coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates (tunicates, etc.) in the last common ancestor of the jawless and jawed vertebrates.
Mesa, Matthew G.; Liedtke, Theresa L.; Weiland, Lisa K.; Christiansen, Helena E.
2017-12-14
In previous tests of the effectiveness of four common fish screen materials for excluding lamprey ammocoetes, we determined that woven wire (WW) allowed substantially more entrainment than perforated plate (PP), profile bar (PB), or Intralox (IL) material. These tests were simplistic because they used small vertically-oriented screens positioned perpendicular to the flow without a bypass or a sweeping velocity (SV). In the subsequent test discussed in this report, we exposed ammocoetes to much larger (2.5-m-wide) screen panels with flows up to 10 ft3 /s, a SV component, and a simulated bypass channel. The addition of a SV modestly improved protection of lamprey ammocoetes for all materials tested. A SV of 35 cm/s with an approach velocity (AV) of 12 cm/s, was able to provide protection for fish about 5–15 mm smaller than the protection provided by an AV of 12 cm/s without a SV component. The best-performing screen panels (PP, IL, and PB) provided nearly complete protection from entrainment for fish greater than 50-mm toal length, but the larger openings in the WW material only protected fish greater than 100-mm total length. Decreasing the AV and SV by 50 percent expanded the size range of protected lampreys by about 10–15 mm for those exposed to IL and WW screens, and it decreased the protective ability of PP screens by about 10 mm. Much of the improvement for IL and WW screens under the reduced flow conditions resulted from an increase in the number of lampreys swimming away from the screen. Fish of all sizes became impinged (that is, stuck on the screen surface for more than 1 s) on the screens, with the rate of impingement highest on PP (39– 72 percent) and lowest on WW (7–22 percent). Although impingements were common, injuries were rare, and 24-h post-test survival was greater than 99 percent. Our results refined the level of protection provided by these screen materials when both an AV and SV are present and confirmed our earlier recommendation that WW screens be replaced with more effective materials. Future work should focus on determining the risks associated with other screen types (for example, rotary drum screens, horizontal flat plate screens) and exploring the effectiveness of higher SV:AV ratios, because it may help expand the range of sizes protected by the best performing materials.
Schreier, Theresa M.; Dawson, V.K.; Cho, Yirang; Spanjers, N.J.; Boogaard, M.A.
2000-01-01
Bayluscide [the ethanolamine salt of niclosamide (NIC)] is a registered piscicide used in combination with 3-(trifluoromethyl)-4-nitrophenol (TFM) to control sea lamprey populations in streams tributary to the Great Lakes. A high-performance liquid chromatography (HPLC) method was developed for the determination of NIC residues in muscle fillet tissues of fish exposed to NIC and TFM during sea lamprey control treatments. NIC was extracted from fortified channel catfish and rainbow trout fillet tissue with a series of acetone extractions and cleaned up on C-18 solid-phase extraction cartridges. NIC concentrations were determined by HPLC with detection at 360 and 335 nm for rainbow trout and catfish, respectively. Recovery of NIC from rainbow trout (n = 7) fortified at 0.04 mu g/g was 77 +/- 6.5% and from channel catfish (n = 7) fortified at 0.02 mu g/g was 113 +/- 11%. NIC detection limit was 0.0107 mu g/g for rainbow trout and 0.0063 mu g/g for catfish. Percent recovery of incurred radioactive residues by this method from catfish exposed to [C-14]NIC was 89.3 +/- 4.1%. Percent recoveries of NIC from fortified storage stability tissue samples for rainbow trout (n = 3) analyzed at 5 and 7.5 month periods were 78 +/- 5.1 and 68 +/- 2.4%, respectively. Percent recoveries of NIC from fortified storage stability tissue samples for channel catfish (n = 3) analyzed at 5 and 7.5 month periods were 88 +/- 13 and 76 +/- 21%, respectively.
Persistent organic pollutants in selected fishes of the Gulf of Finland
NASA Astrophysics Data System (ADS)
Järv, Leili; Kiviranta, Hannu; Koponen, Jani; Rantakokko, Panu; Ruokojärvi, Päivi; Radin, Maia; Raid, Tiit; Roots, Ott; Simm, Mart
2017-07-01
Fish samples of Baltic herring, sprat, flounder, perch, salmon, and river lamprey were collected from the Gulf of Finland in 2013 and 2014 with the aim to get an overview of the occurrence of pollutants in fish caught in Estonian waters. The content of non-dioxin-like polychlorinated biphenyls (ndl PCBs), polybrominated diphenyl ethers (PBDEs), organic tin (OT) and perfluorocompounds (PFAS) are examined and discussed in the study. The results revealed that potentially higher content of organo-tin compounds, perfluorocompounds and polybrominated diphenyl ethers in Baltic herring, salmon and river lamprey may cause concern regarding human exposure. It is important to link pollutant content to lipid content of fish taking into account their seasonal variation in different age classes.
Conservation of Pax gene expression in ectodermal placodes of the lamprey
NASA Technical Reports Server (NTRS)
McCauley, David W.; Bronner-Fraser, Marianne
2002-01-01
Ectodermal placodes contribute to the cranial ganglia and sense organs of the head and, together with neural crest cells, represent defining features of the vertebrate embryo. The identity of different placodes appears to be specified in part by the expression of different Pax genes, with Pax-3/7 class genes being expressed in the trigeminal placode of mice, chick, frogs and fish, and Pax-2/5/8 class genes expressed in the otic placode. Here, we present the cloning and expression pattern of lamprey Pax-7 and Pax-2, which mark the trigeminal and otic placodes, respectively, as well as other structures characteristic of vertebrate Pax genes. These results suggest conservation of Pax genes and placodal structures in basal and derived vertebrates.
Meeting future information needs for Great Lakes fisheries management
Christie, W.J.; Collins, John J.; Eck, Gary W.; Goddard, Chris I.; Hoenig, John M.; Holey, Mark; Jacobson, Lawrence D.; MacCallum, Wayne; Nepszy, Stephen J.; O'Gorman, Robert; Selgeby, James
1987-01-01
Description of information needs for management of Great Lakes fisheries is complicated by recent changes in biology and management of the Great Lakes, development of new analytical methodologies, and a transition in management from a traditional unispecies approach to a multispecies/community approach. A number of general problems with the collection and management of data and information for fisheries management need to be addressed (i.e. spatial resolution, reliability, computerization and accessibility of data, design of sampling programs, standardization and coordination among agencies, and the need for periodic review of procedures). Problems with existing data collection programs include size selectivity and temporal trends in the efficiency of fishing gear, inadequate creel survey programs, bias in age estimation, lack of detailed sea lamprey (Petromyzon marinus) wounding data, and data requirements for analytical techniques that are underutilized by managers of Great Lakes fisheries. The transition to multispecies and community approaches to fisheries management will require policy decisions by the management agencies, adequate funding, and a commitment to develop programs for collection of appropriate data on a long-term basis.
The Brain in its Body: Motor Control and Sensing in a Biomechanical Context
Chiel, Hillel J.; Ting, Lena H.; Ekeberg, Orjan; Hartmann, Mitra J. Z.
2009-01-01
Although it is widely recognized that adaptive behavior emerges from the ongoing interactions among the nervous system, the body, and the environment, it has only become possible in recent years to experimentally study and to simulate these interacting systems. We briefly review work on molluscan feeding, maintenance of postural control in cats and humans, simulations of locomotion in lamprey, insect, cat and salamander, and active vibrissal sensing in rats to illustrate the insights that can be derived from studies of neural control and sensing within a biomechanical context. These studies illustrate that control may be shared between the nervous system and the periphery, that neural activity organizes degrees of freedom into biomechanically meaningful subsets, that mechanics alone may play crucial roles in enforcing gait patterns, and that mechanics of sensors is crucial for their function. PMID:19828793
NASA Technical Reports Server (NTRS)
Meulemans, Daniel; McCauley, David; Bronner-Fraser, Marianne
2003-01-01
Neural crest cells are unique to vertebrates and generate many of the adult structures that differentiate them from their closest invertebrate relatives, the cephalochordates. Id genes are robust markers of neural crest cells at all stages of development. We compared Id gene expression in amphioxus and lamprey to ask if cephalochordates deploy Id genes at the neural plate border and dorsal neural tube in a manner similar to vertebrates. Furthermore, we examined whether Id expression in these cells is a basal vertebrate trait or a derived feature of gnathostomes. We found that while expression of Id genes in the mesoderm and endoderm is conserved between amphioxus and vertebrates, expression in the lateral neural plate border and dorsal neural tube is a vertebrate novelty. Furthermore, expression of lamprey Id implies that recruitment of Id genes to these cells occurred very early in the vertebrate lineage. Based on expression in amphioxus we postulate that Id cooption conferred sensory cell progenitor-like properties upon the lateral neurectoderm, and pharyngeal mesoderm-like properties upon cranial neural crest. Amphioxus Id expression is also consistent with homology between the anterior neurectoderm of amphioxus and the presumptive placodal ectoderm of vertebrates. These observations support the idea that neural crest evolution was driven in large part by cooption of multipurpose transcriptional regulators from other tissues and cell types.
Evolution of substrate specificity for the bile salt transporter ASBT (SLC10A2)[S
Lionarons, Daniël A.; Boyer, James L.; Cai, Shi-Ying
2012-01-01
The apical Na+-dependent bile salt transporter (ASBT/SLC10A2) is essential for maintaining the enterohepatic circulation of bile salts. It is not known when Slc10a2 evolved as a bile salt transporter or how it adapted to substantial changes in bile salt structure during evolution. We characterized ASBT orthologs from two primitive vertebrates, the lamprey that utilizes early 5α-bile alcohols and the skate that utilizes structurally different 5β-bile alcohols, and compared substrate specificity with ASBT from humans who utilize modern 5β-bile acids. Everted gut sacs of skate but not the more primitive lamprey transported 3H-taurocholic acid (TCA), a modern 5β-bile acid. However, molecular cloning identified ASBT orthologs from both species. Cell-based assays using recombinant ASBT/Asbt's indicate that lamprey Asbt has high affinity for 5α-bile alcohols, low affinity for 5β-bile alcohols, and lacks affinity for TCA, whereas skate Asbt showed high affinity for 5α- and 5β-bile alcohols but low affinity for TCA. In contrast, human ASBT demonstrated high affinity for all three bile salt types. These findings suggest that ASBT evolved from the earliest vertebrates by gaining affinity for modern bile salts while retaining affinity for older bile salts. Also, our results indicate that the bile salt enterohepatic circulation is conserved throughout vertebrate evolution. PMID:22669917
Chi, Xiaoyuan; Su, Peng; Bi, Dan; Tai, Zhao; Li, Yingying; Pang, Yue; Li, Qingwei
2018-04-01
The lamprey (Lampetra japonica), a representative of the jawless vertebrates, is the oldest extant species in the world. LIP-1, which has a jacalin-like domain and an aerolysin pore-forming domain, has previously been identified in Lampetra japonica. However, the structure and function of the LIP-1 protein have not been described. In this study, the LIP-1 gene was overexpressed in HeLa cells and H293T cells. The results showed that the overexpression of LIP-1 in HeLa cells significantly elevated LDH release (P < 0.05), phosphatidylserine exposure and ROS accumulation. The overexpression of LIP-1 also had remarkable effects on the organelles in HeLa cells, while it had no effect on H293T cell organelles. Array data indicated that overexpression of LIP-1 primarily upregulated P53 signaling pathways in HeLa cells. Cell cycle assay results confirmed that LIP-1 caused arrest in the G 2 /M phase of the cell cycle in HeLa cells. In summary, our findings provide insights into the function and characterization of LIP-1 genes in vertebrates and establish the foundation for further research into the biological function of LIP-1. Our observations suggest that this lamprey protein has the potential for use in new applications in the medical field. Copyright © 2018. Published by Elsevier Ltd.
Barnett, Matthew; Imre, Istvan; Wagner, Michael C.; Di Rocco, Richard T.; Johnson, Nicholas; Brown, Grant E.
2016-01-01
Sea lampreys (Petromyzon marinus L., 1758) are nocturnal, so experiments evaluating their behaviour to chemosensory cues have typically been conducted at night. However, given the brief timeframe each year that adult P. marinus are available for experimentation, we investigated whether P. marinus exposed to a 12 h shifted diurnal cycle (reversed photoperiod) could be tested in a darkened arena during the day and show the same response to chemosensory cues as natural photoperiod P. marinus that were tested during the night. Ten replicates of 10 P. marinus, from each photoperiod, were exposed to deionized water (negative control), 2-phenylethylamine hydrochloride (PEA HCl, putative predator cue), or P. marinus whole-body extract (conspecific alarm cue). All P. marinus demonstrated a significant avoidance response to both cues. No significant differences were found in avoidance to PEA HCl between photoperiods. Avoidance of P. marinus whole-body extract was significantly stronger in natural compared with reversed photoperiod P. marinus. The use of reversed photoperiod subjects is suitable for examining the presence or absence of avoidance in response to novel chemosensory alarm cues, or the change in the magnitude of antipredator response. Studies investigating the natural magnitude of antipredator response should use natural photoperiod experimental subjects.
Wilberg, Michael J.; Hansen, Michael J.; Bronte, Charles R.
2003-01-01
Populations of lake trout Salvelinus namaycush in Lake Superior collapsed in the late 1950s due to overfishing and predation by sea lampreys Petromyzon marinus. A binational effort to restore the lean morphotype of lake trout began with the stocking of hatchery-reared fish followed by the chemical control of sea lampreys and closure of the commercial fishery. Previous comparisons of the contemporary abundance of wild lean lake trout with that from historic commercial fishery statistics indicate that abundance was higher historically. However, this conclusion may be biased because several factors—the inclusion of siscowet (the “fat” morphotype of lake trout) in the catch statistics, the soak time of nets, seasonal effects on catch per effort, and the confounding effects of effort targeted at lake whitefish Coregonus clupeaformis—were not accounted for. We developed new indices of historic lean lake trout abundance that correct for these biases and compared them with the assessment data from 1984 to 1998 in Michigan waters of Lake Superior. The modern (1984–1998) abundance of wild lean lake trout is at least as high as that during 1929–1943 in six of eight management areas but lower in one area. Measures to promote and protect naturally reproducing populations have been more successful than previously realized.
Ultrastructure of the hepatocytes in a vertebrate liver without bile ducts.
Youson, J H; Sidon, E W; Peek, W D; Shivers, R R
1985-01-01
Thin sections and freeze fracture replicas were used to study the structure of the hepatocytes of the parasitic adult lamprey (Petromyzon marinus L.). Despite the absence of bile ducts and bile canaliculi, the hepatocytes have some features which resemble those of cells in the livers of other vertebrates. Hepatocytes are characterised by large gap junctions, many cytoplasmic inclusions, and large deposits of iron. The latter is present throughout the cytoplasmic matrix and within large inclusion bodies which may arise through sequestration of parts of the cytoplasm by membrane isolation. There is no evidence for the involvement of hepatocytes in glucose metabolism but their fine structure reflects the production of bile products and the processing of lipoproteins. The accumulation of bile products within cytoplasmic inclusions resembles the situation resulting from biliary atresia or other cholestatic conditions in higher organisms. There is little folding of the plasma membrane facing the perivascular space (of Dissé), perhaps indicating limited involvement of this surface in the transport of bile products. Nerve endings in close apposition to hepatocytes suggest possible nervous control or metabolic function or the presence of sensory receptors in lamprey liver. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 PMID:2999046
NASA Technical Reports Server (NTRS)
Anderson, M. K.; Sun, X.; Miracle, A. L.; Litman, G. W.; Rothenberg, E. V.
2001-01-01
T lymphocytes and B lymphocytes are present in jawed vertebrates, including cartilaginous fishes, but not in jawless vertebrates or invertebrates. The origins of these lineages may be understood in terms of evolutionary changes in the structure and regulation of transcription factors that control lymphocyte development, such as PU.1. The identification and characterization of three members of the PU.1 family of transcription factors in a cartilaginous fish, Raja eglanteria, are described here. Two of these genes are orthologs of mammalian PU.1 and Spi-C, respectively, whereas the third gene, Spi-D, is a different family member. In addition, a PU.1-like gene has been identified in a jawless vertebrate, Petromyzon marinus (sea lamprey). Both DNA-binding and transactivation domains are highly conserved between mammalian and skate PU.1, in marked contrast to lamprey Spi, in which similarity is evident only in the DNA-binding domain. Phylogenetic analysis of sequence data suggests that the appearance of Spi-C may predate the divergence of the jawed and jawless vertebrates and that Spi-D arose before the divergence of the cartilaginous fish from the lineage leading to the mammals. The tissue-specific expression patterns of skate PU.1 and Spi-C suggest that these genes share regulatory as well as structural properties with their mammalian orthologs.
Anderson, Michele K.; Sun, Xiao; Miracle, Ann L.; Litman, Gary W.; Rothenberg, Ellen V.
2001-01-01
T lymphocytes and B lymphocytes are present in jawed vertebrates, including cartilaginous fishes, but not in jawless vertebrates or invertebrates. The origins of these lineages may be understood in terms of evolutionary changes in the structure and regulation of transcription factors that control lymphocyte development, such as PU.1. The identification and characterization of three members of the PU.1 family of transcription factors in a cartilaginous fish, Raja eglanteria, are described here. Two of these genes are orthologs of mammalian PU.1 and Spi-C, respectively, whereas the third gene, Spi-D, is a different family member. In addition, a PU.1-like gene has been identified in a jawless vertebrate, Petromyzon marinus (sea lamprey). Both DNA-binding and transactivation domains are highly conserved between mammalian and skate PU.1, in marked contrast to lamprey Spi, in which similarity is evident only in the DNA-binding domain. Phylogenetic analysis of sequence data suggests that the appearance of Spi-C may predate the divergence of the jawed and jawless vertebrates and that Spi-D arose before the divergence of the cartilaginous fish from the lineage leading to the mammals. The tissue-specific expression patterns of skate PU.1 and Spi-C suggest that these genes share regulatory as well as structural properties with their mammalian orthologs. PMID:11149949
Sugahara, Fumiaki; Murakami, Yasunori; Adachi, Noritaka; Kuratani, Shigeru
2013-08-01
The telencephalon, the most anterior part of the vertebrate central nervous system (CNS), is a highly diversified region of the vertebrate body. Its evolutionary origin remains elusive, especially with regard to the ancestral state of its architecture as well as the origin of telencephalon-specific neuron subtypes. Cyclostomes (lampreys and hagfish), the sister group of the gnathostomes (jawed vertebrates), serve as valuable models for studying the evolution of the vertebrate CNS. Here, we summarize recent studies on the development of the telencephalon in the lamprey. By comparing detailed developmental studies in mammals, we illustrate a possible ancestral developmental plan underlying the diversification of the vertebrate telencephalon and propose possible approaches for understanding the early evolution of the telencephalon. Copyright © 2013 Elsevier Ltd. All rights reserved.
Folmar, L.D.; Denslow, N.D.; Wallace, R.A.; LaFleur, G.; Gross, T.S.; Bonomelli, S.; Sullivan, C.V.
1995-01-01
N-terminal amino acid sequences for vitellogenin (Vtg) from six species of teleost fish (striped bass, mummichog, pinfish, brown bullhead, medaka, yellow perch and the sturgeon) are compared with published N-terminal Vtg sequences for the lamprey, clawed frog and domestic chicken. Striped bass and mummichog had 100% identical amino acids between positions 7 and 21, while pinfish, brown bullhead, sturgeon, lamprey, Xenopus and chicken had 87%, 93%, 60%, 47%, 47-60%) for four transcripts and had 40% identical, respectively, with striped bass for the same positions. Partial sequences obtained for medaka and yellow perch were 100% identical between positions 5 to 10. The potential utility of this conserved sequence for studies on the biochemistry, molecular biology and pathology of vitellogenesis is discussed.
A thermogenic secondary sexual character in male sea lamprey
Chung-Davidson, Yu-Wen; Priess, M. Cody; Yeh, Chu-Yin; Brant, Cory O.; Johnson, Nicholas S.; Li, Ke; Nanlohy, Kaben G.; Bryan, Mara B.; Brown, C. Titus; Choi, Jongeun; Li, Weiming
2013-01-01
Secondary sexual characters in animals are exaggerated ornaments or weapons for intrasexual competition. Unexpectedly, we found that a male secondary sexual character in sea lamprey (Petromyzon marinus ) is a thermogenic adipose tissue that instantly increases its heat production during sexual encounters. This secondary sexual character, developed in front of the anterior dorsal fin of mature males, is a swollen dorsal ridge known as the ‘rope’ tissue. It contains nerve bundles, multivacuolar adipocytes and interstitial cells packed with small lipid droplets and mitochondria with dense and highly organized cristae. The fatty acid composition of the rope tissue is rich in unsaturated fatty acids. The cytochrome c oxidase activity is high but the ATP concentration is very low in the mitochondria of the rope tissue compared with those of the gill and muscle tissues. The rope tissue temperature immediately rose up to 0.3°C when the male encountered a conspecific. Mature males generated more heat in the rope and muscle tissues when presented with a mature female than when presented with a male (paired t-test, P-3 more heat than the muscle in 10 min. Transcriptome analyses revealed that genes involved in fat cell differentiation are upregulated whereas those involved in oxidative-phosphorylation-coupled ATP synthesis are downregulated in the rope tissue compared with the gill and muscle tissues. Sexually mature male sea lamprey possess the only known thermogenic secondary sexual character that shows differential heat generation toward individual conspecifics.
Bowen, Anjanette K.; Weisser, John W.; Bergstedt, Roger A.; Famoye, Felix
2003-01-01
Four electrical factors that are used in pulsed DC electrofishing for larval sea lampreys (Petromyzon marinus) were evaluated in two laboratory studies to determine the optimal values to induce larval emergence over a range of water temperatures and conductivities. Burrowed larvae were exposed to combinations of pulsed DC electrical factors including five pulse frequencies, three pulse patterns, and two levels of duty cycle over a range of seven voltage gradients in two separate studies conducted at water temperatures of 10, 15, and 20°C and water conductivities of 25, 200, and 900 μS/cm. A four-way analysis of variance was used to determine significant (α = 0.05) influences of each electrical factor on larval emergence. Multiple comparison tests with Bonferroni adjustments were used to determine which values of each factor resulted in significantly higher emergence at each temperature and conductivity. Voltage gradient and pulse frequency significantly affected emergence according to the ANOVA model at each temperature and conductivity tested. Duty cycle and pulse pattern generally did not significantly influence the model. Findings suggest that a setting of 2.0 V/cm, 3 pulses/sec, 10% duty, and 2:2 pulse pattern seems the most promising in waters of medium conductivity and across a variety of temperatures. This information provides a basis for understanding larval response to pulsed DC electrofishing gear factors and identifies electrofisher settings that show promise to increase the efficiency of the gear during assessments for burrowed sea lamprey larvae.
Wallén, Peter; Robertson, Brita; Cangiano, Lorenzo; Löw, Peter; Bhattacharjee, Arin; Kaczmarek, Leonard K; Grillner, Sten
2007-01-01
The slow afterhyperpolarization (sAHP) following the action potential is the main determinant of spike frequency regulation. The sAHP after single action potentials in neurons of the lamprey locomotor network is largely due to calcium-dependent K+ channels (80%), activated by calcium entering the cell during the spike. The residual (20%) component becomes prominent during high level activity (50% of the sAHP). It is not Ca2+ dependent, has a reversal potential like that of potassium, and is not affected by chloride injection. It is not due to rapid activation of Na+/K+-ATPase. This non-KCa-sAHP is reduced markedly in amplitude when sodium ions are replaced by lithium ions, and is thus sodium dependent. Quinidine also blocks this sAHP component, further indicating an involvement of sodium-dependent potassium channels (KNa). Modulators tested do not influence the KNa-sAHP amplitude. Immunofluorescence labelling with an anti-Slack antibody revealed distinct immunoreactivity of medium-sized and large neurons in the grey matter of the lamprey spinal cord, suggesting the presence of a Slack-like subtype of KNa channel. The results strongly indicate that a KNa potassium current contributes importantly to the sAHP and thereby to neuronal frequency regulation during high level burst activity as during locomotion. This is, to our knowledge, the first demonstration of a functional role for the Slack gene in contributing to the slow AHP. PMID:17884929
Mark-recapture population estimates of parasitic sea lampreys (Petromyzon marinus) in Lake Huron
Bergstedt, Roger A.; McDonald, Rodney B.; Mullett, Katherine M.; Wright, Gregory M.; Swink, William D.; Burnham, Kenneth P.
2003-01-01
Metamorphosed sea lampreys (Petromyzon marinus) were collected and marked at two points in their life cycle. Recently metamorphosed juveniles were collected from streams, marked with coded wire tags, and returned to migrate to the Great Lakes. Juveniles already in the lakes and feeding on teleost hosts were obtained from incidental catches by sport or commercial fisheries. Sea lampreys in the Great Lakes spend only 1 feeding year as parasites, and marked animals were recaptured during the spawning runs. For one marked group in each of four parasitic cohorts (feeding years 1991 to 1994) and two marked groups in each of three cohorts (feeding years 1998 to 2000) we recovered from 1.1 to 10.2 percent of marked animals. The number of metamorphosed animals present in autumn before migration to Lake Huron was estimated for five cohorts, with estimates ranging from 639 to 803 thousand. The number of feeding, parasitic animals present in Lake Huron in mid summer was estimated for five cohorts, with estimates ranging from 515,000 to 2,342,000. The larger estimates later in the parasitic year suggested that animals collected and marked from sport or commercial fisheries did not survive at the same rate as unmarked animals. It is recommended that only estimates from recaptures of animals marked in the streams before migration be used until it can be established why survival of juveniles obtained from sport or commercial fisheries might be affected.
The future of salmonid communities in the Laurentian Great Lakes
Smith, Stanford H.
1972-01-01
The effects of human population growth, industrialization, and the introduction of marine fishes have reduced the suitability of each of the Great Lakes for oligotrophic fish communities. The ultimate consequence has been a reduction of fishery productivity that has ranged from extreme in Lake Ontario to moderate in Lake Superior. If measures are not taken to alleviate the adverse effects of marine invaders and trends in environmental quality, a major reduction in fishery productivity can eventually be expected throughout the Great Lakes.Prospects for the next century will be improved if the lakes can be intensively managed. More stringent control of the sea lamprey (Petromyzon marinus), and subsequent reduction of the alewife (Alosa pseudoharengus), by the reestablishment of populations of large piscivores, should permit the recovery of some of the previous predator and prey species, or the development of populations of new species that are more compatible with a reduced number of lampreys. Even if marine species can be reduced greatly, the full restoration of the former fishery productivity remains uncertain and will require a high degree of coordination among all management and research agencies that have responsibilities on the Great Lakes.Unfavorable trends toward progressive degradation of water quality pose the greatest threat to restoration of the fishery resources of the Great Lakes. Where changes in water quality have been the greatest, oligotrophic species have become scarce or absent, and in the deepwater regions no other species have reoccupied the vacated niches.
NASA Astrophysics Data System (ADS)
Hamlet, C. L.; Hoffman, K.; Fauci, L.; Tytell, E.
2016-02-01
The lamprey is a model organism for both neurophysiology and locomotion studies. To study the role of sensory feedback as an organism moves through its environment, a 2D, integrative, multi-scale model of an anguilliform swimmer driven by neural activation from a central pattern generator (CPG) is constructed. The CPG in turn drives muscle kinematics and is fully coupled to the surrounding fluid. The system is numerically evolved in time using an immersed boundary framework producing an emergent swimming mode. Proprioceptive feedback to the CPG based on experimental observations adjust the activation signal as the organism interacts with its environment. Effects on the speed, stability and cost (metabolic work) of swimming due to nonlinear dependencies associated with muscle force development combined with proprioceptive feedback to neural activation are estimated and examined.
Wotton, Karl R; Shimeld, Sebastian M
2011-12-01
In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. One cluster contains the genes FOXQ1, FOXF2, FOXC1 and the second consists of FOXF1, FOXC2, and FOXL1. In jawed vertebrates these genes are known to be expressed in different pharyngeal tissues and all, except FoxQ1, are involved in patterning the early embryonic mesoderm. We have previously traced the evolution of this cluster in the bony vertebrates, and the gene content is identical in the dogfish, a member of the most basally branching lineage of the jawed vertebrates. Here we extend these analyses to jawless vertebrates. Using genomic searches and molecular approaches we have identified homologues of these genes from lampreys. We identify two FoxC genes, two FoxF genes, two FoxQ1 genes and single FoxL1 gene. We examine the embryonic expression of one predominantly mesodermally expressed gene family, FoxC, and the endodermally expressed member of the cluster, FoxQ1. We identified FoxQ1 transcripts in the pharyngeal endoderm, while the two FoxC genes are differentially expressed in the pharyngeal mesenchyme and ectoderm. Furthermore we identify conserved expression of lamprey FoxC genes in the paraxial and intermediate mesoderms. We interpret our results through a chordate-wide comparison of expression patterns and discuss gene content in the context of theories on the evolution of the vertebrate genome. 2011 Elsevier B.V. All rights reserved.
Evolution of Vertebrate Phototransduction: Cascade Activation
Lamb, Trevor D.; Patel, Hardip; Chuah, Aaron; Natoli, Riccardo C.; Davies, Wayne I. L.; Hart, Nathan S.; Collin, Shaun P.; Hunt, David M.
2016-01-01
We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analyzed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are consistent with the 2R WGD model of two rounds of whole genome duplication. Our analysis suggests that agnathans retain an additional representative (that has been lost in gnathostomes) in each of the gene families we studied; the evidence is strong for the G-protein α subunit (GNAT) and the cGMP phosphodiesterase (PDE6), and indicative for the cyclic nucleotide-gated channels (CNGA and CNGB). Two of the species (the hagfish Eptatretus cirrhatus and the lamprey Mordacia mordax) possess only a single class of photoreceptor, simplifying deductions about the composition of cascade protein isoforms utilized in their photoreceptors. For the other lamprey, Geotria australis, analysis of the ratios of transcript levels in downstream and upstream migrant animals permits tentative conclusions to be drawn about the isoforms used in four of the five spectral classes of photoreceptor. Overall, our results suggest that agnathan rod-like photoreceptors utilize the same GNAT1 as gnathostomes, together with a homodimeric PDE6 that may be agnathan-specific, whereas agnathan cone-like photoreceptors utilize a GNAT that may be agnathan-specific, together with the same PDE6C as gnathostomes. These findings help elucidate the evolution of the vertebrate phototransduction cascade from an ancestral chordate phototransduction cascade that existed prior to the vertebrate radiation. PMID:27189541
Anadromous sea lampreys (Petromyzon marinus) are ecosystem engineers in a spawning tributary
Hogg, Robert S.; Coghlan, Stephen M.; Zydlewski, Joseph D.; Simon, Kevin S.
2014-01-01
Sea lampreys (Petromyzon marinus) disturb the substratum during nest construction and alter the physical habitat, potentially affecting other stream organisms. We quantified differences in depth, velocity, fine-sediment coverage, embeddedness, intragravel permeability and benthic invertebrate assemblages (density and diversity) among nest mounds, nest pits and undisturbed reference locations over a 4-month period after June spawning. In 2010 and 2011, immediate and persistent effects of nest construction were assessed in summer (July) and in autumn (late September to early October), respectively. Randomly selected nests were sampled annually (25 each in summer and autumn). Nest construction increased stream-bed complexity by creating and juxtaposing shallow, swift, rocky habitat patches with deep, slow, sandy habitat patches. Mounds had a 50–143% less cover of fine sediment, and a 30–62% reduction in embeddedness, compared to pits and reference locations. These physical changes persisted into the autumn (almost 4 months). Five insect families contributed 74% of the benthic invertebrate abundance: Chironomidae (27%), Hydropsychidae (26%), Heptageniidae (8%), Philopotamidae (7%) and Ephemerellidae (6%). Densities of Hydropsychidae, Philopotamidae and Heptageniidae were up to 10 times greater in mounds than in pits and adjacent reference habitat. In summer, mounds had twice the density of Chironomidae than did pits, and 1.5 times more than reference habitats, but densities were similar among the habitats in autumn. These results suggest that spawning sea lampreys are ecosystem engineers. The physical disturbance caused by nest-building activity was significant and persistent, increasing habitat heterogeneity and favouring pollution-sensitive benthic invertebrates and, possibly, drift-feeding fish.
Bryan, M B; Zalinski, D; Filcek, K B; Libants, S; Li, W; Scribner, K T
2005-10-01
Invasions by exotic organisms have had devastating affects on aquatic ecosystems, both ecologically and economically. One striking example of a successful invader that has dramatically affected fish community structure in freshwater lakes of North America is the sea lamprey (Petromyzon marinus). We used eight microsatellite loci and multiple analytical techniques to examine competing hypotheses concerning the origins and colonization history of sea lamprey (n = 741). Analyses were based on replicated invasive populations from Lakes Erie, Huron, Michigan, and Superior, populations of unknown origins from Lakes Ontario, Champlain, and Cayuga, and populations of anadromous putative progenitor populations in North America and Europe. Populations in recently colonized lakes were each established by few colonists through a series of genetic bottlenecks which resulted in lower allelic diversity in more recently established populations. The spatial genetic structure of invasive populations differed from that of native populations on the Atlantic coast, reflecting founder events and connectivity of invaded habitats. Anadromous populations were found to be panmictic (theta(P) = 0.002; 95% CI = -0.003-0.006; P > 0.05). In contrast, there was significant genetic differentiation between populations in the lower and upper Great Lakes (theta(P) = 0.007; P < 0.05; 95% CI = 0.003-0.009). Populations in Lakes Ontario, Champlain, and Cayuga are native. Alternative models that describe different routes and timing of colonization of freshwater habitats were examined using coalescent-based analyses, and demonstrated that populations likely originated from natural migrations via the St Lawrence River.
Kolosov, Dennis; Bui, Phuong; Donini, Andrew; Wilkie, Mike P; Kelly, Scott P
2017-10-15
This study reports on tight junction-associated MARVEL proteins of larval sea lamprey ( Petromyzon marinus ) and their potential role in ammocoete osmoregulation. Two occludin isoforms (designated Ocln and Ocln-a) and a tricellulin (Tric) were identified. Transcripts encoding ocln , ocln-a and tric were broadly expressed in larval lamprey, with the greatest abundance of ocln in the gut, liver and kidney, ocln-a in the gill and skin, and tric in the kidney. Ocln and Ocln-a resolved as ∼63 kDa and ∼35 kDa MW proteins, respectively, while Tric resolved as a ∼50 kDa protein. Ocln immunolocalized to the gill vasculature and in gill mucous cells while Ocln-a localized to the gill pouch and gill epithelium. Both Ocln and Ocln-a localized in the nephron, the epidermis and the luminal side of the gut. In branchial tissue, Tric exhibited punctate localization, consistent with its presence at regions of tricellular contact. Following ion-poor water (IPW) acclimation of ammocoetes, serum [Na + ] and [Cl - ] decreased, but not [Ca 2+ ], and carcass moisture content increased. In association, Ocln abundance increased in the skin and kidney, but reduced in the gill of IPW-acclimated ammocoetes while Ocln-a abundance reduced in the kidney only. Tric abundance increased in the gill. Region-specific alterations in ocln , ocln-a and tric mRNA abundance were also observed in the gut. Data support a role for Ocln, Ocln-a and Tric in the osmoregulatory strategies of a basal vertebrate. © 2017. Published by The Company of Biologists Ltd.
Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species.
Hess, Jon E; Campbell, Nathan R; Close, David A; Docker, Margaret F; Narum, Shawn R
2013-06-01
Unlike most anadromous fishes that have evolved strict homing behaviour, Pacific lamprey (Entosphenus tridentatus) seem to lack philopatry as evidenced by minimal population structure across the species range. Yet unexplained findings of within-region population genetic heterogeneity coupled with the morphological and behavioural diversity described for the species suggest that adaptive genetic variation underlying fitness traits may be responsible. We employed restriction site-associated DNA sequencing to genotype 4439 quality filtered single nucleotide polymorphism (SNP) loci for 518 individuals collected across a broad geographical area including British Columbia, Washington, Oregon and California. A subset of putatively neutral markers (N = 4068) identified a significant amount of variation among three broad populations: northern British Columbia, Columbia River/southern coast and 'dwarf' adults (F(CT) = 0.02, P ≪ 0.001). Additionally, 162 SNPs were identified as adaptive through outlier tests, and inclusion of these markers revealed a signal of adaptive variation related to geography and life history. The majority of the 162 adaptive SNPs were not independent and formed four groups of linked loci. Analyses with matsam software found that 42 of these outlier SNPs were significantly associated with geography, run timing and dwarf life history, and 27 of these 42 SNPs aligned with known genes or highly conserved genomic regions using the genome browser available for sea lamprey. This study provides both neutral and adaptive context for observed genetic divergence among collections and thus reconciles previous findings of population genetic heterogeneity within a species that displays extensive gene flow. © 2012 John Wiley & Sons Ltd.
Neural crest contributions to the lamprey head
NASA Technical Reports Server (NTRS)
McCauley, David W.; Bronner-Fraser, Marianne
2003-01-01
The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.
Shi, Ying; Guo, Sicheng; Wang, Ying; Liu, Xin; Li, Qingwei; Li, Tiesong
2018-03-02
Prohibitin 2(PHB2) is a member of the SFPH trans-membrane family proteins. It is a highly conserved and functionally diverse protein that plays an important role in preserving the structure and function of the mitochondria. In this study, the lamprey PHB2 gene was expressed in HeLa cells to investigate its effect on cell proliferation. The effect of Lm-PHB2 on the proliferation of HeLa cells was determined by treating the cells with pure Lm-PHB2 protein followed by MTT assay. Using the synchronization method with APC-BrdU and PI double staining revealed rLm-PHB2 treatment induced the decrease of both S phase and G0/G1 phase and then increase of G2/M phase. Similarly, cells transfected with pEGFP-N1-Lm-PHB2 also exhibited remarkable reduction in proliferation. Western blot and quantitative real-time PCR(qRT-PCR) assays suggested that Lm-PHB2 caused cell cycle arrest in HeLa cells through inhibition of CDC25C and CCNB1 expression. According to our western blot analysis, Lm-PHB2 was also found to reduce the expression level of Wee1 and PLK1 and the phosphorylation level of CCNB1, CDC25C and CDK1 in HeLa cells. Lamprey prohibitin 2 could arrest G2/M phase transition of HeLa cells through down-regulating expression and phosphorylation level of cell cycle proteins.
EVOLUTION OF THE IMMUNE RESPONSE
Papermaster, Ben W.; Condie, Richard M.; Finstad, Joanne; Good, Robert A.
1964-01-01
1. The California hagfish, Eptatretus stoutii, seems to be completely lacking in adaptive immunity: it forms no detectable circulating antibody despite intensive stimulation with a range of antigens; it does not show reactivity to old tuberculin following sensitization with BCG; and gives no evidence of homograft immunity. 2. Studies on the sea lamprey, Petromyzon marinus, have been limited to the response to bacteriophage T2 and hemocyanin in small groups of spawning animals. They suggest that the lamprey may have a low degree of immunologic reactivity. 3. One holostean, the bowfin (Amia calva) and the guitarfish (Rhinobatos productus), an elasmobranch, showed a low level of primary response to phage and hemocyanin. The response is slow and antibody levels low. Both the bowfin and the guitarfish showed a vigorous secondary response to phage, but neither showed much enhancement of reactivity to hemocyanin in the secondary response. The bowfin formed precipitating antibody to hemocyanin, but the guitarfish did not. Both hemagglutinating and precipitating antibody to hemocyanin were also observed in the primary response of the black bass. 4. The bowfin was successfully sensitized to Ascaris antigen, and lesions of the delayed type developed after challenge at varying intervals following sensitization. 5. The horned shark (Heterodontus franciscii) regularly cleared hemocyanin from the circulation after both primary and secondary antigenic stimulation, and regularly formed hemagglutinating antibody, but not precipitating antibody, after both primary and secondary stimulation with this antigen. These animals regularly cleared bacteriophage from the circulation after both the primary and secondary stimulation with bacteriophage T2. Significant but small amounts of antibody were produced in a few animals in the primary response, and larger amounts in the responding animals after secondary antigenic stimulation. 6. Studies by starch gel and immunoelectrophoresis show that the hagfish has no bands with mobilities of mammalian gamma globulins; that the lamprey has a single, relatively faint band of this type; and that multiple gamma bands are characteristic of the holostean, elasmobranchs, and teleosts studied. By this method of study, the bowfin appeared to have substantial amounts of gamma2 globulin. 7. We conclude that adaptive immunity and its cellular and humoral correlates developed in the lowest vertebrates, and that a rising level of immunologic reactivity and an increasingly differentiated and complex immunologic mechanism are observed going up the phylogenetic scale from the hagfish, to the lamprey, to the elasmobranchs, to the holosteans, and finally the teleosts. PMID:14113107
28. Historic American Buildings Survey L. C. Durette, Photographer SOUTH ...
28. Historic American Buildings Survey L. C. Durette, Photographer SOUTH WINDOW OF EAST ROOM (See Description) First Floor, SPLIT BOARDS USED FOR LATHS ARE OLD OUTSIDE FINISH USED OVER. - Doe Garrison, Lamprey River & Great Bay, Newmarket, Rockingham County, NH
Thyroglobulin Represents a Novel Molecular Architecture of Vertebrates.
Holzer, Guillaume; Morishita, Yoshiaki; Fini, Jean-Baptiste; Lorin, Thibault; Gillet, Benjamin; Hughes, Sandrine; Tohmé, Marie; Deléage, Gilbert; Demeneix, Barbara; Arvan, Peter; Laudet, Vincent
2016-08-05
Thyroid hormones modulate not only multiple functions in vertebrates (energy metabolism, central nervous system function, seasonal changes in physiology, and behavior) but also in some non-vertebrates where they control critical post-embryonic developmental transitions such as metamorphosis. Despite their obvious biological importance, the thyroid hormone precursor protein, thyroglobulin (Tg), has been experimentally investigated only in mammals. This may bias our view of how thyroid hormones are produced in other organisms. In this study we searched genomic databases and found Tg orthologs in all vertebrates including the sea lamprey (Petromyzon marinus). We cloned a full-size Tg coding sequence from western clawed frog (Xenopus tropicalis) and zebrafish (Danio rerio). Comparisons between the representative mammal, amphibian, teleost fish, and basal vertebrate indicate that all of the different domains of Tg, as well as Tg regional structure, are conserved throughout the vertebrates. Indeed, in Xenopus, zebrafish, and lamprey Tgs, key residues, including the hormonogenic tyrosines and the disulfide bond-forming cysteines critical for Tg function, are well conserved despite overall divergence of amino acid sequences. We uncovered upstream sequences that include start codons of zebrafish and Xenopus Tgs and experimentally proved that these are full-length secreted proteins, which are specifically recognized by antibodies against rat Tg. By contrast, we have not been able to find any orthologs of Tg among non-vertebrate species. Thus, Tg appears to be a novel protein elaborated as a single event at the base of vertebrates and virtually unchanged thereafter. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears
NASA Technical Reports Server (NTRS)
Fritzsch, B.; Signore, M.; Simeone, A.
2001-01-01
We investigated the development of inner ear innervation in Otx1 null mutants, which lack a horizontal canal, between embryonic day 12 (E12) and postnatal day 7 (P7) with DiI and immunostaining for acetylated tubulin. Comparable to control animals, horizontal crista-like fibers were found to cross over the utricle in Otx1 null mice. In mutants these fibers extend toward an area near the endolymphatic duct, not to a horizontal crista. Most Otx1 null mutants had a small patch of sensory hair cells at this position. Measurement of the area of the utricular macula suggested it to be enlarged in Otx1 null mutants. We suggest that parts of the horizontal canal crista remain incorporated in the utricular sensory epithelium in Otx1 null mutants. Other parts of the horizontal crista appear to be variably segregated to form the isolated patch of hair cells identifiable by the unique fiber trajectory as representing the horizontal canal crista. Comparison with lamprey ear innervation reveals similarities in the pattern of innervation with the dorsal macula, a sensory patch of unknown function. SEM data confirm that all foramina are less constricted in Otx1 null mutants. We propose that Otx1 is not directly involved in sensory hair cell formation of the horizontal canal but affects the segregation of the horizontal canal crista from the utricle. It also affects constriction of the two main foramina in the ear, but not their initial formation. Otx1 is thus causally related to horizontal canal morphogenesis as well as morphogenesis of these foramina.
Offshore Fish Community: Ecological Interactions
The offshore (>80 m) fish community of Lake Superior is made up of predominately native species. The most prominent species are deepwater sculpin, kiyi, cisco, siscowet lake trout, burbot, and the exotic sea lamprey. Bloater and shortjaw cisco are also found in the offshore zone...
21. c, 1915 Historic plan, standard 2 beam girder bridge. ...
21. c, 1915 Historic plan, standard 2 beam girder bridge. United Construction Company, Albany, New York. Generic plan typical of Prescott Bridge. Source: New Hampshire Department of Transportation - Prescott Bridge, Spanning Lamprey River on Prescott Road, Raymond, Rockingham County, NH
Evolution of Vertebrate Phototransduction: Cascade Activation.
Lamb, Trevor D; Patel, Hardip; Chuah, Aaron; Natoli, Riccardo C; Davies, Wayne I L; Hart, Nathan S; Collin, Shaun P; Hunt, David M
2016-08-01
We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analyzed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are consistent with the 2R WGD model of two rounds of whole genome duplication. Our analysis suggests that agnathans retain an additional representative (that has been lost in gnathostomes) in each of the gene families we studied; the evidence is strong for the G-protein α subunit (GNAT) and the cGMP phosphodiesterase (PDE6), and indicative for the cyclic nucleotide-gated channels (CNGA and CNGB). Two of the species (the hagfish Eptatretus cirrhatus and the lamprey Mordacia mordax) possess only a single class of photoreceptor, simplifying deductions about the composition of cascade protein isoforms utilized in their photoreceptors. For the other lamprey, Geotria australis, analysis of the ratios of transcript levels in downstream and upstream migrant animals permits tentative conclusions to be drawn about the isoforms used in four of the five spectral classes of photoreceptor. Overall, our results suggest that agnathan rod-like photoreceptors utilize the same GNAT1 as gnathostomes, together with a homodimeric PDE6 that may be agnathan-specific, whereas agnathan cone-like photoreceptors utilize a GNAT that may be agnathan-specific, together with the same PDE6C as gnathostomes. These findings help elucidate the evolution of the vertebrate phototransduction cascade from an ancestral chordate phototransduction cascade that existed prior to the vertebrate radiation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Reis-Santos, P.; McCormick, S.D.; Wilson, J.M.
2008-01-01
Ammocoetes of the anadromous sea lamprey Petromyzon marinus L. spend many years in freshwater before metamorphosing and migrating to sea. Metamorphosis involves the radical transformation from a substrate-dwelling, filter feeder into a free-swimming, parasitic feeder. In the present work we examined osmoregulatory differences between ammocoetes and transformers (metamorphic juveniles), and the effects of salinity acclimation. We measured the expression of key ion-transporting proteins [Na+/K+-ATPase, vacuolar (V)-type H+-ATPase and carbonic anhydrase (CA)] as well as a number of relevant blood parameters (hematocrit, [Na+] and [Cl -]). In addition, immunofluorescence microscopy was used to identify and characterize the distributions of Na+/K+-ATPase, V-type H+-ATPase and CA immunoreactive cells in the gill. Ammocoetes did not survive in the experiments with salinities greater than 10???, whereas survival in high salinity (???25-35???) increased with increased degree of metamorphosis in transformers. Plasma [Na+] and [Cl -] of ammocoetes in freshwater was lower than transformers and increased markedly at 10???. In transformers, plasma ions increased only at high salinity (>25???). Branchial Na+/K+-ATPase levels were ??? tenfold higher in transformers compared to ammocoetes and salinity did not affect expression in either group. However, branchial H +-ATPase expression showed a negative correlation with salinity in both groups. Na+/K+-ATPase immunoreactivity was strongest in transformers and associated with clusters of cells in the interlamellar spaces. H+-ATPase (B subunit) immunoreactivity was localized to epithelial cells not expressing high Na+/K+-ATPase immunoreactivity and having a similar tissue distribution as carbonic anhydrase. The results indicate that branchial Na+/K+-ATPase and salinity tolerance increase in metamorphosing lampreys, and that branchial H+-ATPase is downregulated by salinity.
Lake trout rehabilitation in Lake Huron
Eshenroder, Randy L.; Payne, N. Robert; Johnson, James E.; Bowen, Charles; Ebener, Mark P.
1995-01-01
Efforts to restore lake trout (Salvelinus namaycush) in Lake Huron after their collapse in the 1940s were underway in the early 1970s with completion of the first round of lampricide applications in tributary streams and the stocking of several genotypes. We assess results of rehabilitation and establish a historical basis for comparison by quantifying the catch of spawning lake trout from Michigan waters in 1929-1932. Sixty-eight percent of this catch occurred in northern waters (MH-1) and most of the rest (15%) was from remote reefs in the middle of the main basin. Sea lampreys (Petromyzon marinus) increased in the early 1980s in the main basin and depressed spawning populations of lake trout. This increase was especially severe in northern waters and appeared to be associated with untreated populations in the St. Marys River. Excessive commercial fishing stemming from unresolved treaty rights also contributed to loss of spawning fish in northern Michigan waters. Seneca-strain lake trout did not appear to be attacked by sea lampreys until they reached a size > 532 mm. At sizes > 632 mm, Seneca trout were 40-fold more abundant than the Marquette strain in matched-planting experiments. Natural reproduction past the fry stage has occurred in Thunder Bay and South Bay, but prospects for self-sustaining populations of lake trout in the main basin are poor because sea lampreys are too abundant, only one side of the basin is stocked, and stocking is deferred to allow commercial gillnetting in areas where most of the spawning occurred historically. Backcross lake trout, a lake trout x splake (s. Fontinalis x s. Namaycush) hybrid, did not reproduce in Georgian Bay, but this genotype is being replaced with pure-strain lake trout, whose early performance appears promising.
Female sea lamprey shift orientation toward a conspecific chemical cue to escape a sensory trap
Brant, Cory O.; Johnson, Nicholas; Li, Ke; Buchinger, Tyler J.; Li, Weiming
2016-01-01
The sensory trap model of signal evolution hypothesizes that signalers adapt to exploit a cue used by the receiver in another context. Although exploitation of receiver biases can result in conflict between the sexes, deceptive signaling systems that are mutually beneficial drive the evolution of stable communication systems. However, female responses in the nonsexual and sexual contexts may become uncoupled if costs are associated with exhibiting a similar response to a trait in both contexts. Male sea lamprey (Petromyzon marinus) signal with a mating pheromone, 3-keto petromyzonol sulfate (3kPZS), which may be a match to a juvenile cue used by females during migration. Upstream movement of migratory lampreys is partially guided by 3kPZS, but females only move toward 3kPZS with proximal accuracy during spawning. Here, we use in-stream behavioral assays paired with gonad histology to document the transition of female preference for juvenile- and male-released 3kPZS that coincides with the functional shift of 3kPZS as a migratory cue to a mating pheromone. Females became increasingly biased toward the source of synthesized 3kPZS as their maturation progressed into the reproductive phase, at which point, a preference for juvenile odor (also containing 3kPZS naturally) ceased to exist. Uncoupling of female responses during migration and spawning makes the 3kPZS communication system a reliable means of synchronizing mate search. The present study offers a rare example of a transition in female responses to a chemical cue between nonsexual and sexual contexts, provides insights into the origins of stable communication signaling systems.
Ebener, Mark P.; Bence, James R.; Bergstedt, Roger A.; Mullet, Katherine M.
2003-01-01
In 1997 and 1998 two workshops were held to evaluate how consistent observers were at classifying sea lamprey (Petromyzon marinus) marks on Great Lakes lake trout (Salvelinus namaycush) as described in the King classification system. Two trials were held at each workshop, with group discussion between trials. Variation in counting and classifying marks was considerable, such that reporting rates for A1–A3 marks varied two to three-fold among observers of the same lake trout. Observer variation was greater for classification of healing or healed marks than for fresh marks. The workshops highlighted, as causes for inconsistent mark classification, both departures from the accepted protocol for classifying marks by some agencies, and differences in how sliding and multiple marks were interpreted. Group discussions led to greater agreement in classifying marks. We recommend ways to improve the reliability of marking statistics, including the use of a dichotomous key to classify marks. Laboratory data show that healing times of marks on lake trout were much longer at 4°C and 1°C than at 10°C and varied greatly among individuals. Reported A1–A3 and B1–B3 marks observed in late summer and fall collections likely result from a mixture of attacks by two year classes of sea lamprey. It is likely that a substantial but highly uncertain proportion of attacks that occur in late summer and fall lead to marks that are classified as A1–A3 the next spring. We recommend additional research on mark stage duration.
Substance P Depolarizes Lamprey Spinal Cord Neurons by Inhibiting Background Potassium Channels.
Thörn Pérez, Carolina; Hill, Russell H; Grillner, Sten
2015-01-01
Substance P is endogenously released in the adult lamprey spinal cord and accelerates the burst frequency of fictive locomotion. This is achieved by multiple effects on interneurons and motoneurons, including an attenuation of calcium currents, potentiation of NMDA currents and reduction of the reciprocal inhibition. While substance P also depolarizes spinal cord neurons, the underlying mechanism has not been resolved. Here we show that effects of substance P on background K+ channels are the main source for this depolarization. Hyperpolarizing steps induced inward currents during whole-cell voltage clamp that were reduced by substance P. These background K+ channels are pH sensitive and are selectively blocked by anandamide and AVE1231. These blockers counteracted the effect of substance P on these channels and the resting membrane potential depolarization in spinal cord neurons. Thus, we have shown now that substance P inhibits background K+ channels that in turn induce depolarization, which is likely to contribute to the frequency increase observed with substance P during fictive locomotion.
Substance P Depolarizes Lamprey Spinal Cord Neurons by Inhibiting Background Potassium Channels
Thörn Pérez, Carolina; Hill, Russell H.; Grillner, Sten
2015-01-01
Substance P is endogenously released in the adult lamprey spinal cord and accelerates the burst frequency of fictive locomotion. This is achieved by multiple effects on interneurons and motoneurons, including an attenuation of calcium currents, potentiation of NMDA currents and reduction of the reciprocal inhibition. While substance P also depolarizes spinal cord neurons, the underlying mechanism has not been resolved. Here we show that effects of substance P on background K+ channels are the main source for this depolarization. Hyperpolarizing steps induced inward currents during whole-cell voltage clamp that were reduced by substance P. These background K+ channels are pH sensitive and are selectively blocked by anandamide and AVE1231. These blockers counteracted the effect of substance P on these channels and the resting membrane potential depolarization in spinal cord neurons. Thus, we have shown now that substance P inhibits background K+ channels that in turn induce depolarization, which is likely to contribute to the frequency increase observed with substance P during fictive locomotion. PMID:26197458
NASA Astrophysics Data System (ADS)
Panksepp, Jaak; Davis, Ken
2014-12-01
In brain-based personality theory, two things seem certain: i) the evolved functional organization of our subcortical affective mind, and ii) the diverse potentials for developmental programming of our high cognitive minds (i.e., our initially empty - tabula rasa like - neocortical spaces are largely developmentally programed to manifest higher mental abilities). In considering these two global aspects of brain-mind functions, we can be confident that primal subcortical functions (e.g., the capacity for raw emotions/affects, evident in all vertebrate species) evolved. Indeed, ancient creatures such as lamprey eels, with whom we shared ancestry 560 million years ago, still posses most neural systems that are homologous to those that constitute our own primal affective capacities [1]. Considering that primal emotional affects arise from such systems, there appears to be some remarkable continuity in our primal mental origins. The neural foundations of human emotional feelings, long neglected by academic psychology (for lack of empirical accessibility), may contain the rudimentary neuro-affective substrates of personality [2].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dauble, D.
To help determine the Pacific lamprey’s ability to survive turbine passage, Pacific Northwest National Laboratory scientists conducted laboratory tests designed to simulate a fish’s passage through the turbine environment. Juvenile Pacific lamprey were subjected to two of three aspects of passage: pressure drop and shear stress. The third aspect, blade strike, was not tested.
46. Historic American Buildings Survey L. C. Durette, Photographer CHIMNEY ...
46. Historic American Buildings Survey L. C. Durette, Photographer CHIMNEY BASE LOOKING N.E. NOTE ORIGINAL HEWN TIMBER FRAMING THE STAIR, AND BEHIND IT A LATER SAWN TIMBER FOR PRESENT STAIR. BRICK UNDERPINNING OF CELLAR WALL COMPARATIVELY RECENT. - Doe Garrison, Lamprey River & Great Bay, Newmarket, Rockingham County, NH
Medeiros, Daniel Meulemans; Crump, J. Gage
2012-01-01
Patterning of the vertebrate facial skeleton involves the progressive partitioning of neural-crest-derived skeletal precursors into distinct subpopulations along the anteroposterior (AP) and dorsoventral (DV) axes. Recent evidence suggests that complex interactions between multiple signaling pathways, in particular Endothelin-1 (Edn1), Bone Morphogenetic Protein (BMP), and Jagged-Notch, are needed to pattern skeletal precursors along the DV axis. Rather than directly determining the morphology of individual skeletal elements, these signals appear to act through several families of transcription factors, including Dlx, Msx, and Hand, to establish dynamic zones of skeletal differentiation. Provocatively, this patterning mechanism is largely conserved from mouse and zebrafish to the jawless vertebrate, lamprey. This implies that the diversification of the vertebrate facial skeleton, including the evolution of the jaw, was driven largely by modifications downstream of a conversed pharyngeal DV patterning program. PMID:22960284
Aquatic Nuisance Species Locator
Data in this map has been collected by the United States Geological Survey's Nonindigenous Aquatic Species program located in Gainesville, Florida (http://nas.er.usgs.gov/default.aspx). This dataset may have some inaccuracies and is only current to June 15, 2012. The species identified in this dataset are not inclusive of all aquatic nuisance species, but rather a subset identified to be at risk for transport by recreational activities such as boating and angling. Additionally, the locations where organisims have been identified are also not inclusive and should be treated as a guide. Organisms are limited to the following: American bullfrog, Asian clam, Asian shore crab, Asian tunicate, Australian spotted jellyfish, Chinese mitten crab, New Zealand mudsnail, Colonial sea squirt, Alewife, Bighead carp, Black carp, Flathead catfish, Grass carp, Green crab, Lionfish, Northern snakehead, Quagga mussel, Round Goby, Ruffe, Rusty crayfish, Sea lamprey, Silver carp, Spiny water flea, Veined rapa whelk, Zebra mussel
Crossed reciprocal inhibition evoked by electrical stimulation of the lamprey spinal cord.
Fagerstedt, P; Zelenin, P V; Deliagina, T G; Orlovsky, G N; Grillner, S
2000-09-01
Activation of a motoneuron pool is often accompanied by inhibition of the antagonistic pool through a system of reciprocal inhibition between the two parts of the neuronal network controlling the antagonistic pools. In the present study, we describe the activity of such a system in the isolated spinal cord of the lamprey, when a tonic motor output is evoked by extracellular stimulation (0.5-1 s train of pulses, 20 Hz) of either end of the spinal cord. With two electrodes symmetrically positioned in relation to the midline, stimulation with either of them separately elicited prolonged (1-5 s) ipsilateral ventral root activity. Activity could be abolished by stronger, simultaneously applied, stimulation of the contralateral side of the cord, suggesting that reciprocal inhibition between hemisegments operates when a tonic motor output is generated. Simultaneous stimulation of both sides of the spinal cord with a single electrode with a large tip (300-400 microm in diameter), positioned over the anatomical midline, elicited inconsistent right-side, leftside, or bilateral ventral root responses. A minor displacement (10-20 microm) to the left or right from the midline resulted in activation of ipsilateral motoneurons, whereas the contralateral motoneurons were silent. These findings indicate that a small asymmetry in the excitatory drive to the left and right spinal hemisegments can be further amplified by reciprocal inhibition between the hemisegments. Longitudinal splitting of the spinal cord along the midline resulted in reduced reciprocal inhibition between the hemisegments separated by the lesion. The reduction was proportional to the extent of the split. The inhibition was abolished when the split reached nine segments in length. From these experiments, the longitudinal distribution of the commissural axons responsible for inhibition of contralateral motor output could be estimated.
2009-01-01
L. C. Stuehrenberg, and C. A. Peery. 2005. Late-season mortality during migration of radio-tagged sockeye salmon ( Oncorhynchus nerka ) in the...were 3-5 times longer than those recorded for radio-tagged summer Chinook salmon (O. tshawytscha) and sockeye salmon (O. nerka ) migrating during the
26. Historic American Buildings Survey L. C. Durette, Photographer MORTISE ...
26. Historic American Buildings Survey L. C. Durette, Photographer MORTISE HOLES IN GIRT OVER WINDOW, EAST ELEVATION, SHOWING PLAIN SOFFIT ABOVE ORIGINAL WINDOW. SMALL MORTISE FOR PLANK + WINDOW JAMB (MISSING), LARGER MORTISE FOR BRACE, ORIGINAL PLANK AT RIGHT OF WINDOW - Doe Garrison, Lamprey River & Great Bay, Newmarket, Rockingham County, NH
Wang, Huiyong; Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Weiming
2016-01-15
This study aims to provide a rapid, sensitive and precise UPLC-MS/MS method for target steroid quantitation in biological matrices. We developed and validated an UPLC-MS/MS method to simultaneously determine 16 steroids in plasma and tissue samples. Ionization sources of Electrospray Ionization (ESI) and Atmospheric Pressure Chemical Ionization (APCI) were compared in this study by testing their spectrometry performances at the same chromatographic conditions, and the ESI source was found up to five times more sensitive than the APCI. Different sample preparation techniques were investigated for an optimal extraction of steroids from the biological matrices. The developed method exhibited excellent linearity for all analytes with regression coefficients higher than 0.99 in broad concentration ranges. The limit of detection (LOD) was from 0.003 to 0.1ng/mL. The method was validated according to FDA guidance and applied to determine steroids in sea lamprey plasma and tissues (fat and testes) by the developed method. Copyright © 2015. Published by Elsevier B.V.
Evolution of myelin sheaths: both lamprey and hagfish lack myelin.
Bullock, T H; Moore, J K; Fields, R D
1984-07-27
Modern views of agnathan phylogeny consider Petromyzoniformes and Myxiniformes to belong to distinct classes that diverged from a common ancestor at a remote period, perhaps in the lower Cambrian, greater than 600 million years ago. Both are more primitive than elasmobranchs, holocephalans and bony fishes. Myelin is well developed in elasmobranchs and other fishes but was reported to be lacking in the spinal cord of lampreys. In order to search further for possible early myelin in some part of the nervous system of one of the agnathan stems, or for further evidence that it first appeared in chondrichthians, we extended the sampling to many parts of the brain and cord of hagfish. Transmission electron microscopy was used as a nearly ideal criterion. We find no trace or forerunner of the spiral, multilaminate glial wrapping. Many axons are embedded within one or more glial cells, like unmyelinated fibers in other vertebrates, or lie contiguously in bundles without an obviously complete glial investment. True myelin must be presumed to have been invented within the vertebrates, in ancestors of the living cartilaginous fishes after the agnathans branched from the vertebrate stem.
The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications.
Smith, Jeramiah J; Keinath, Melissa C
2015-08-01
It is generally accepted that many genes present in vertebrate genomes owe their origin to two whole-genome duplications that occurred deep in the ancestry of the vertebrate lineage. However, details regarding the timing and outcome of these duplications are not well resolved. We present high-density meiotic and comparative genomic maps for the sea lamprey (Petromyzon marinus), a representative of an ancient lineage that diverged from all other vertebrates ∼550 million years ago. Linkage analyses yielded a total of 95 linkage groups, similar to the estimated number of germline chromosomes (1n ∼ 99), spanning a total of 5570.25 cM. Comparative mapping data yield strong support for the hypothesis that a single whole-genome duplication occurred in the basal vertebrate lineage, but do not strongly support a hypothetical second event. Rather, these comparative maps reveal several evolutionarily independent segmental duplications occurring over the last 600+ million years of chordate evolution. This refined history of vertebrate genome duplication should permit more precise investigations of vertebrate evolution. © 2015 Smith and Keinath; Published by Cold Spring Harbor Laboratory Press.
Neuronal Control of Swimming Behavior: Comparison of Vertebrate and Invertebrate Model Systems
Mullins, Olivia J.; Hackett, John T.; Buchanan, James T.; Friesen, W. Otto
2010-01-01
Swimming movements in the leech and lamprey are highly analogous, and lack homology. Thus, similarities in mechanisms must arise from convergent evolution rather than from common ancestry. Despite over forty years of parallel investigations into this annelid and primitive vertebrate, a close comparison of the approaches and results of this research is lacking. The present review evaluates the neural mechanisms underlying swimming in these two animals and describes the many similarities that provide intriguing examples of convergent evolution. Specifically, we discuss swim initiation, maintenance and termination, isolated nervous system preparations, neural-circuitry, central oscillators, intersegmental coupling, phase lags, cycle periods and sensory feedback. Comparative studies between species highlight mechanisms that optimize behavior and allow us a broader understanding of nervous system function. PMID:21093529
Annual sex steroid and other physiological profiles of Pacific lampreys (Entosphenus tridentatus)
Mesa, Matthew G.; Bayer, Jennifer M.; Bryan, Mara B.; Sower, Stacia A.
2010-01-01
We documented changes in plasma levels of estradiol 17-β (E2), progesterone (P), 15α-hydroxytestosterone (15α-T), thyroxine (T4), triiodothyronine (T3), protein, triglycerides (TGs), and glucose in adult Pacific lampreys (Entosphenus tridentatus) held in the laboratory in two different years. Levels of E2 in both sexes ranged from 0.5 to 2 ng/mL from September to March, peaked in late April (2–4 ng/mL), and decreased in May, with levels higher in males than in females. Levels of P were low from September through April, but then increased substantially during May (2–4 ng/mL), with levels again highest in males. Levels of 15α-T in males were around 0.75 ng/mL through the winter before exceeding 1 ng/mL in April and decreasing thereafter, whereas females showed a gradual increase from 0.25 ng/mL in November to 0.5 ng/mL in April before decreasing. Thyroxine concentrations differed between fish in each year, with most having levels ranging from 0.75 to 2.5 ng/mL in the fall and winter, and only fish in 2003 showing distinct peaks (3–4 ng/mL) in early April or May. Plasma T3 was undetectable from November through mid-March before surging dramatically in April (ca. 150 ng/mL) and decreasing thereafter. Levels of protein, TGs, and glucose decreased or were stable during the fall and winter with TGs and glucose surging in late April to early May for some fish. Our study is the first to document long-term physiological changes in Pacific lampreys during overwintering and sexual maturation and increases our understanding of the life history of this unique fish.
Status of lake trout rehabilitation on Six Fathom Bank and Yankee Reef in Lake Huron
Madenjian, Charles P.; DeSorcie, Timothy J.; McClain, Jerry R.; Woldt, Aaron P.; Holuszko, Jeffrey D.; Bowen, Charles A.
2004-01-01
Six Fathom Bank, an offshore reef in the central region of Lake Huron's main basin, was stocked annually with hatchery-reared lake trout Salvelinus namaycush during 1985–1998, and nearby Yankee Reef was stocked with hatchery-reared lake trout in 1992, 1997, and annually during 1999–2001. We conducted gill-net surveys during spring and fall to evaluate performances of each of the various strains of lake trout, as well as the performance of the entire lake trout population (all strains pooled), on these two offshore reefs during 1992–2000. Criteria to evaluate performance included the proportion of “wild” fish within the population, spawner density, adult survival, growth, maturity, and wounding rate by sea lamprey Petromyzon marinus. Although naturally reproduced age-0 lake trout fry were caught on Six Fathom Bank and Yankee Reef, wild lake trout did not recruit to the adult population to any detectable degree. The density of spawning lake trout on Six Fathom Bank (>100 fish/305 m of gill net) during 1995–1998 appeared to be sufficiently high to initiate a self-sustaining population. However, annual mortality estimates for all lake trout strains pooled from catch curve analyses ranged from 0.48 to 0.62, well exceeding the target level of 0.40 suggested for lake trout rehabilitation. Annual mortality rate for the Seneca Lake strain (0.34) was significantly lower than that for the Superior–Marquette (0.69) and Lewis Lake (0.69) strains. This disparity in survival among strains was probably attributable to the lower sea-lamprey-induced mortality experienced by the Seneca Lake strain. The relatively high mortality experienced by adult lake trout partly contributed to the lack of successful natural recruitment to the adult population on these offshore reefs, but other factors were probably also involved. We recommend that both stocking of the Seneca Lake strain and enhanced efforts to reduce sea lamprey abundance in Lake Huron be continued.
Status of the deepwater cisco population of Lake Michigan
Smith, Stanford H.
1964-01-01
The species and size composition and the abundance of the cisco (Leucichthys spp.) population of Lake Michigan have undergone drastic changes since the sea lamprey became established in the 1940's. The changes were measured by the catches of gill nets of identical specifications fished at the same seasons, depths, and locations in 1930-32, 1954-55, and 1960-61. The two largest ciscoes (johannae and nigripinnis), exploited heavily in a highly selective fishery from the midnineteenth century to the early 1900's, were only sparsely represented in the catch in the 1930's and were absent from catches of the comparison surveys in 1954-55 and 1960-61. The species of intermediate size (alpenae, artedi, kiyi, reighardi, and zenithicus) constituted about two-thirds of the cisco stocks of the deepwater zone in the 1930's but declined to 23.9 and 6.4 percent in the 1950's and 1960's, respectively. Major causes of change were the increased fishing pressure and sea lamprey predation that accompanied the disappearance of the lake trout. The small, slow-growing cisco (hoyi) - the primary food of lake trout - which was not fished intensively, and was too small to suffer greatly from sea lamprey predation, increased from 31.0 percent of the catch in the 1930's to 76.1 percent in the 1950's and 93.6 percent in the 1960's. Consequences of the extreme imbalance of the cisco population have been a reduction in mean size of all species, extension of the range of the very abundant hoyi (formerly most abundant in moderately shallow areas) to almost all depths and sections of the lake, and possibly introgressive hybridization among the various species. The primary change in the fishery has been a shift from gill nets to more extensive use of trawls which can take the now abundant smaller fish.
Lake trout (Salvelinus namaycush) populations in Lake Superior and their restoration in 1959-1993
Hansen, Michael J.; Peck, James W.; Schorfhaar, Richard G.; Selgeby, James H.; Schreiner, Donald R.; Schram, Stephen T.; Swanson, Bruce L.; MacCallum, Wayne R.; Burnham-Curtis, Mary K.; Curtis, Gary L.; Heinrich, John W.; Young, Robert J.
1995-01-01
Naturally-reproducing populations of lake trout (Salvelinus namaycush) have been reestablished in most of Lake Superior, but have not been restored to 1929-1943 average abundance. Progress toward lake trout restoration in Lake Superior is described, management actions are reviewed, and the effectiveness of those actions is evaluated; especially stocking lake trout as a tool for building spawning stocks, and subsequently, populations of wild recruits. Widespread destruction of lake trout stocks in the 1950s due to an intense fishery and sea lamprey (Petromyzon marinus) predation resulted in lower overall phenotypic diversity than was previously present. Stocking of yearling lake trout, begun in the 1950s, produced high densities of spawners that reproduced wherever inshore spawning habitat was widespread. Sea lampreys were greatly reduced, beginning in 1961, using selective chemical toxicants and barrier dams, but continue to exert substantial mortality. Fishery regulation was least effective in Wisconsin, where excessive gillnet effort caused high by-catch of lake trout until 1991, and in eastern Michigan, where lake trout restoration was deferred in favor of a tribal fishery for lake whitefish (Coregonus clupeaformis) in 1985. Restoration of stocks was quicker in offshore areas where remnant wild lake trout survived and fishing intensity was low, and was slower in inshore areas where stocked lake trout reproduced successfully and fishing intensity was high. Inshore stocks of wild lake trout are currently about 61 % of historic abundance in Michigan and 53% in Wisconsin. Direct comparison of modern and historic abundances of inshore lake trout stocks in Minnesota and Ontario is impossible due to lack of historic stock assessment data. Stocks in Minnesota are less abundant at present than in Michigan or Wisconsin, and stocks in Ontario are similar to those in Michigan. Further progress in stock recovery can only be achieved if sea lampreys are depressed and if fisheries are constrained further than at present.
Fecundity of the sea lamprey (Petromyzon marinus) in Lake Superior
Manion, Patrick J.
1972-01-01
An infectious agent, which appears to be a virus (RJV) has been isolated from the liver of a wild raccoon which has led to a highly fatal type of disease characterized by conjunctivitis and an elevated serum bilirubin frequently accompanied by jaundice on inoculation of raccoons. Ferrets also appear to be susceptible to infections with this agent.
Environmental fate and effects of the lampricide TFM: a review
Hubert, T.D.
2003-01-01
Use of 3-trifluoromethyl-4-nitrophenol (TFM) is limited geographically to the Great Lakes basin where it is the principal agent used in control of the sea lamprey (Petromyzon marinus). It is clear from available data that TFM has effects on the environment, but the effects reported are transient. Individual organisms and aquatic communities return to pretreatment conditions after lampricide treatments have concluded. TFM is not persistent, is detoxified, and presents minimal long-term toxicological risk. TFM is relatively nontoxic to mammals. Treatment levels do not pose a threat to wildlife. However, TFM is an estrogen agonist and additional testing to define the nature and magnitude of this effect will likely be required. Because stream treatments are done on 3 to 5 year cycles, and exposures are limited to approximately 12 h, minimal risk to aquatic organisms is expected.
Environmental fate and effects of the lampricide TFM: A review
Hubert, T.D.
2003-01-01
Use of 3-trifluoromethyl-4-nitrophenol (TFM) is limited geographically to the Great Lakes basin where it is the principal agent used in control of the sea lamprey (Petromyzon marinus). It is clear from available data that TFM has effects on the environment, but the effects reported are transient. Individual organisms and aquatic communities return to pretreatment conditions after lampricide treatments have concluded. TFM is not persistent, is detoxified, and presents minimal long-term toxicological risk. TFM is relatively nontoxic to mammals. Treatment levels do not pose a threat to wildlife. However, TFM is an estrogen agonist and additional testing to define the nature and magnitude of this effect will likely be required. Because stream treatments are done on 3 to 5 year cycles, and exposures are limited to approximately 12 h, minimal risk to aquatic organisms is expected.
Characterisation of the bacterial community structures in the intestine of Lampetra morii.
Li, Yingying; Xie, Wenfang; Li, Qingwei
2016-07-01
The metagenomic analysis and 16S rDNA sequencing method were used to investigate the bacterial community in the intestines of Lampetra morii. The bacterial community structure in L. morii intestine was relatively simple. Eight different operational taxonomic units were observed. Chitinophagaceae_unclassified (26.5 %) and Aeromonas spp. (69.6 %) were detected as dominant members at the genus level. The non-dominant genera were as follows: Acinetobacter spp. (1.4 %), Candidatus Bacilloplasma (2.5 %), Enterobacteria spp. (1.5 %), Shewanella spp. (0.04 %), Vibrio spp. (0.09 %), and Yersinia spp. (1.8 %). The Shannon-Wiener (H) and Simpson (1-D) indexes were 0.782339 and 0.5546, respectively. The rarefaction curve representing the bacterial community richness and Shannon-Wiener curve representing the bacterial community diversity reached asymptote, which indicated that the sequence depth were sufficient to represent the majority of species richness and bacterial community diversity. The number of Aeromonas in lamprey intestine was two times higher after stimulation by lipopolysaccharide than PBS. This study provides data for understanding the bacterial community harboured in lamprey intestines and exploring potential key intestinal symbiotic bacteria essential for the L. morii immune response.
Cuhel, Russell L; Aguilar, Carmen
2013-01-01
Lake Michigan, a 58,000-km(2) freshwater inland sea, is large enough to have persistent basin-scale circulation yet small enough to enable development of approximately balanced budgets for water, energy, and elements including carbon and silicon. Introduction of nonindigenous species-whether through invasion, intentional stocking, or accidental transplantation-has transformed the lake's ecosystem function and habitat structure. Of the 79 nonindigenous species known to have established reproductive populations in the lake, only a few have brought considerable ecological pressure to bear. Four of these were chosen for this review to exemplify top-down (sea lamprey, Petromyzon marinus), middle-out (alewife, Alosa pseudoharengus), and bottom-up (the dreissenid zebra and quagga mussels, Dreissena polymorpha and Dreissena rostriformis bugensis, respectively) transformations of Lake Michigan ecology, habitability, and ultimately physical environment. Lampreys attacked and extirpated indigenous lake trout, the top predator. Alewives outcompeted native planktivorous fish and curtailed invertebrate populations. Dreissenid mussels-especially quagga mussels, which have had a much greater impact than the preceding zebra mussels-moved ecosystem metabolism basin-wide from water column to bottom dominance and engineered structures throughout the lake. Each of these non indigenous species exerted devastating effects on commercial and sport fisheries through ecosystem structure modification.
Wang, Huiyong; Johnson, Nicholas; Bernardy, Jeffrey; Hubert, Terry; Li, Weiming
2013-01-01
Pheromones guide adult sea lamprey (Petromyzon marinus) to suitable spawning streams and mates, and therefore, when quantified, can be used to assess population size and guide management. Here, we present an efficient sample preparation method where 100 mL of river water was spiked with deuterated pheromone as an internal standard and underwent rapid field-based SPE and elution in the field. The combination of field extraction with laboratory UPLC-MS/MS reduced the sample consumption from 1 to 0.1 L, decreased the sample process time from more than 1 h to 10 min, and increased the precision and accuracy. The sensitivity was improved more than one order of magnitude compared with the previous method. The influences of experimental conditions were assessed to optimize the separation and peak shapes. The analytical method has been validated by studies of stability, selectivity, precision, and linearity and by the determination of the limits of detection and quantification. The method was used to quantify pheromone concentration from five streams tributary to Lake Ontario and to estimate that the environmental half-life of 3kPZS is about 26 h.
Large and persistent electrical currents enter the transected lamprey spinal cord.
Borgens, R B; Jaffe, L F; Cohen, M J
1980-01-01
The electrical currents at the surface of the proximal portion of an isolated and transected lamprey spinal cord were measured with an extracellular vibrating probe. Soon after transection, currents of about 0.5 mA/cm2 enter the cut surface of the spinal cord. These currents fall to about a quarter of their initial value within an hour; within the next 2 days they gradually decline from about 100 microA/cm2 to about 4 microA/cm2; they then remain constant up to 6 days posttransection, when the measurements were ended. The pattern of current entry included substantial peaks opposite (and presumably into) the cut ends of giant axons. Response to changes in the ionic composition of the medium indicates that about half of the injury current consists of Na+, and that much of the rest may consist of Ca2+. The measured influx of ions, which adds up to several coulombs per cm2 in a few days, should radically alter the ionic composition of the terminal few millimeters of neural tissue. Thus it may be important in the degenerative and regenerative responses of neurons to axotomy. Images PMID:6928670
Morshedian, Ala; Toomery, Matthew B.; Pollock, Gabriel E.; Frederiksen, Rikard; Enright, Jennifer; McCormick, Stephen; Cornwall, M. Carter; Fain, Gordon L.; Corbo, Joseph C.
2017-01-01
The spectral composition of ambient light varies across both space and time. Many species of jawed vertebrates adapt to this variation by tuning the sensitivity of their photoreceptors via the expression of CYP27C1, an enzyme that converts vitamin A1 into vitamin A2, thereby shifting the ratio of vitamin A1-based rhodopsin to red-shifted vitamin A2-based porphyropsin in the eye. Here, we show that the sea lamprey (Petromyzon marinus), a jawless vertebrate that diverged from jawed vertebrates during the Cambrian period (approx. 500 Ma), dynamically shifts its photoreceptor spectral sensitivity via vitamin A1-to-A2 chromophore exchange as it transitions between photically divergent aquatic habitats. We further show that this shift correlates with high-level expression of the lamprey orthologue of CYP27C1, specifically in the retinal pigment epithelium as in jawed vertebrates. Our results suggest that the CYP27C1-mediated vitamin A1-to-A2 switch is an evolutionarily ancient mechanism of sensory plasticity that appeared not long after the origin of vertebrates.
Akins, Andrea L; Hansen, Michael J.; Seider, Michael J.
2015-01-01
Historically, Lake Superior supported one of the largest and most diverse Lake Trout Salvelinus namaycush fisheries in the Laurentian Great Lakes, but Lake Trout stocks collapsed due to excessive fishery exploitation and predation by Sea Lampreys Petromyzon marinus. Lake Trout stocking, Sea Lamprey control, and fishery regulations, including a refuge encompassing Gull Island Shoal (Apostle Islands region), were used to enable recovery of Lake Trout stocks that used this historically important spawning shoal. Our objective was to determine whether future sustainability of Lake Trout stocks will depend on the presence of the Gull Island Shoal Refuge. We constructed a stochastic age-structured simulation model to assess the effect of maintaining the refuge as a harvest management tool versus removing the refuge. In general, median abundances of age-4, age-4 and older (age-4+), and age-8+ fish collapsed at lower instantaneous fishing mortality rates (F) when the refuge was removed than when the refuge was maintained. With the refuge in place, the F that resulted in collapse depended on the rate of movement into and out of the refuge. Too many fish stayed in the refuge when movement was low (0–2%), and too many fish became vulnerable to fishing when movement was high (≥22%); thus, the refuge was more effective at intermediate rates of movement (10–11%). With the refuge in place, extinction did not occur at any simulated level of F, whereas refuge removal led to extinction at all combinations of commercial F and recreational F. Our results indicate that the Lake Trout population would be sustained by the refuge at all simulated F-values, whereas removal of the refuge would risk population collapse at much lower F (0.700–0.744). Therefore, the Gull Island Shoal Refuge is needed to sustain the Lake Trout population in eastern Wisconsin waters of Lake Superior.
2012-01-01
Mundy’s Welding and the University of Idaho machine shop who went out of their way to manufacture and modify our sampling gear. We also thank R. Poulin, C...Columbia River: 2008 radiotelemetry and half- duplex PIT tag studies. Technical Report 2009-8 of Idaho Cooperative Fish and Wildlife Research Unit to U.S
Adult Pacific Lamprey Migration in the Lower Columbia River: 2011 Half-Duplex Pit Tag Studies
2012-01-01
Technical Report 2012-3 IDAHO COOPERATIVE FISH AND WILDLIFE RESEARCH UNIT...Keefer, C. C. Caudill, E. L. Johnson, T. S. Clabough, M. A. Jepson, C. T. Boggs Department of Fish and Wildlife Sciences and Idaho Cooperative Fish ...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Idaho,Department of Fish and Wildlife Sciences,Idaho Cooperative Fish and
Lake trout rehabilitation in Lake Ontario
Elrod, Joseph H.; O'Gorman, Robert; Schneider, Clifford P.; Eckert, Thomas H.; Schaner, Ted; Bowlby, James N.; Schleen, Larry P.
1995-01-01
Attempts to maintain the native lake trout (Salvelinus namaycush) population in Lake Ontario by stocking fry failed and the species was extirpated by the 1950s. Hatchery fish stocked in the 1960s did not live to maturity because of sea lamprey (Petromyzon marinus) predation and incidental commercial harvest. Suppression of sea lampreys began with larvicide treatments of Lake Ontario tributaries in 1971 and was enhanced when the tributaries of Oneida Lake and Lake Erie were treated in the 1980s. Annual stocking of hatchery fish was resumed with the 1972 year class and peaked at about 1.8 million yearlings and 0.3 million fingerlings from the 1985–1990 year classes. Survival of stocked yearlings declined over 50% in the 1980 s and was negatively correlated with the abundance of lake trout > 550 mm long (r = −0.91, P < 0.01, n = 12). A slot length limit imposed by the State of New York for the 1988 fishing season reduced angler harvest. Angler harvest in Canadian waters was 3 times higher in eastern Lake Ontario than in western Lake Ontario. For the 1977–1984 year classes, mean annual survival rate of lake trout age 6 and older was 0.45 (range: 0.35–0.56). In U.S. waters during 1985–1992, the total number of lake trout harvested by anglers was about 2.4 times greater than that killed by sea lampreys. The number of unmarked lake trout < 250 mm long in trawl catches in 1978–1992 was not different from that expected due to loss of marks and failure to apply marks at the hatchery, and suggested that recruitment of naturally-produced fish was nil. However, many of the obstacles which may have impeded lake trout rehabilitation in Lake Ontario during the 1980s are slowly being removed, and there are signs of a general ecosystem recovery. Significant recruitment of naturally produced lake trout by the year 2000, one interim objective of the rehabilitation plan for the Lake, may be achieved.
Sex differences in contaminant concentrations of fish: a synthesis
Madenjian, Charles P.; Rediske, Richard R.; Krabbenhoft, David P.; Stapanian, Martin A.; Chernyak, Sergei M.; O'Keefe, James P.
2016-01-01
Comparison of whole-fish polychlorinated biphenyl (PCB) and total mercury (Hg) concentrations in mature males with those in mature females may provide insights into sex differences in behavior, metabolism, and other physiological processes. In eight species of fish, we observed that males exceeded females in whole-fish PCB concentration by 17 to 43%. Based on results from hypothesis testing, we concluded that these sex differences were most likely primarily driven by a higher rate of energy expenditure, stemming from higher resting metabolic rate (or standard metabolic rate (SMR)) and higher swimming activity, in males compared with females. A higher rate of energy expenditure led to a higher rate of food consumption, which, in turn, resulted in a higher rate of PCB accumulation. For two fish species, the growth dilution effect also made a substantial contribution to the sex difference in PCB concentrations, although the higher energy expenditure rate for males was still the primary driver. Hg concentration data were available for five of the eight species. For four of these five species, the ratio of PCB concentration in males to PCB concentration in females was substantially greater than the ratio of Hg concentration in males to Hg concentration in females. In sea lamprey (Petromyzon marinus), a very primitive fish, the two ratios were nearly identical. The most plausible explanation for this pattern was that certain androgens, such as testosterone and 11-ketotestosterone, enhanced Hg-elimination rate in males. In contrast, long-term elimination of PCBs is negligible for both sexes. According to this explanation, males ingest Hg at a higher rate than females, but also eliminate Hg at a higher rate than females, in fish species other than sea lamprey. Male sea lamprey do not possess either of the above-specified androgens. These apparent sex differences in SMRs, activities, and Hg-elimination rates in teleost fishes may also apply, to some degree, to higher vertebrates including humans. Our synthesis findings will be useful in: (1) developing sex-specific bioenergetics models for fish, (2) developing sex-specific risk assessment models for exposure of humans and wildlife to contaminants, and (3) refining Hg mass balance models for fish and higher vertebrates.
NASA Astrophysics Data System (ADS)
Magilligan, F. J.; Nislow, K. H.; Kynard, B. E.; Hackman, A. M.
2016-01-01
Dam removal is becoming an increasingly important component of river restoration, with > 1100 dams having been removed nationwide over the past three decades. Despite this recent progression of removals, the lack of pre- to post-removal monitoring and assessment limits our understanding of the magnitude, rate, and sequence of geomorphic and/or ecological recovery to dam removal. Taking advantage of the November 2012 removal of an old ( 190 year-old) 6-m high, run-of-river industrial dam on Amethyst Brook (26 km2) in central Massachusetts, we identify the immediate eco-geomorphic responses to removal. To capture the geomorphic responses to dam removal, we collected baseline data at multiple scales, both upstream ( 300 m) and downstream (> 750 m) of the dam, including monumented cross sections, detailed channel-bed longitudinal profiles, embeddedness surveys, and channel-bed grain size measurements, which were repeated during the summer of 2013. These geomorphic assessments were combined with detailed quantitative electrofishing surveys of stream fish richness and abundance above and below the dam site and throughout the watershed and visual surveys of native anadromous sea lamprey (Petromyzon marinus) nest sites. Post-removal assessments were complicated by two events: (1) upstream knickpoint migration exhumed an older (ca. late eighteenth century) intact wooden crib dam 120 m upstream of the former stone dam, and (2) the occurrence of a 10-20 year RI flood 6 months after removal that caused further upstream incision and downstream aggradation. Now that the downstream reach has been reconnected to upstream sediment supply, the predominant geomorphic response was bed aggradation and associated fining (30-60% reduction). At dam proximal locations, aggradation ranged from 0.3 to > 1 m where a large woody debris jam enhanced aggradation. Although less pronounced, distal locations still showed aggradation with a mean depth of deposition of 0.20 m over the 750-m downstream reach. Post-removal, but pre-flood, bed surveys indicate 2 m of incision had migrated 25 m upstream of the former reservoir before encountering the exhumed dam, which now acts as the new grade control, limiting progressive headcutting. Approximately 1000 m3 of sediment was evacuated in the first year, with 67% of the volume occurring by pre-flood, process-driven (e.g., changes in base level) controls. The combination of changes in channel-bed sedimentology, the occurrence of a large magnitude flood, and the emergence of the new crib dam that is a likely barrier to fish movement was associated with major reductions in abundance and richness in sites downstream and immediately upstream adjacent to the former dam in post-removal sampling. At the same time, we documented the presence of four species of fish, including sea lamprey, which were not present above the dam prior to removal, indicating that upstream passage has been achieved; and we also documented lamprey spawning activity at sites immediately below the dam, which had previously been unsuitable owing to an excessively coarse and armored riverbed. Our results point to the importance of interactions between dam removal and flood disturbance effects, with important implications for short- and long-term monitoring and assessment of dam impacts to river systems.
In Situ D-periodic Molecular Structure of Type II Collagen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antipova, Olga; Orgel, Joseph P.R.O.
Collagens are essential components of extracellular matrices in multicellular animals. Fibrillar type II collagen is the most prominent component of articular cartilage and other cartilage-like tissues such as notochord. Its in situ macromolecular and packing structures have not been fully characterized, but an understanding of these attributes may help reveal mechanisms of tissue assembly and degradation (as in osteo- and rheumatoid arthritis). In some tissues such as lamprey notochord, the collagen fibrillar organization is naturally crystalline and may be studied by x-ray diffraction. We used diffraction data from native and derivative notochord tissue samples to solve the axial, D-periodic structuremore » of type II collagen via multiple isomorphous replacement. The electron density maps and heavy atom data revealed the conformation of the nonhelical telopeptides and the overall D-periodic structure of collagen type II in native tissues, data that were further supported by structure prediction and transmission electron microscopy. These results help to explain the observed differences in collagen type I and type II fibrillar architecture and indicate the collagen type II cross-link organization, which is crucial for fibrillogenesis. Transmission electron microscopy data show the close relationship between lamprey and mammalian collagen fibrils, even though the respective larger scale tissue architecture differs.« less
Kirino, Masato; Parnes, Jason; Hansen, Anne; Kiyohara, Sadao; Finger, Thomas E.
2013-01-01
Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates. PMID:23466675
Pappa, Eleni V; Zompra, Aikaterini A; Diamantopoulou, Zoi; Spyranti, Zinovia; Pairas, George; Lamari, Fotini N; Katsoris, Panagiotis; Spyroulias, George A; Cordopatis, Paul
2012-01-01
Lamprey gonadotropin-releasing hormone type III (lGnRH-III) is an isoform of GnRH isolated from the sea lamprey (Petromyzon marinus) with negligible endocrine activity in mammalian systems. Data concerning the superior direct anticancer activity of lGnRH-III have been published, raising questions on the structure-activity relationship. We synthesized 21 lGnRH-III analogs with rational amino acid substitutions and studied their effect on PC3 and LNCaP prostate cancer cell proliferation. Our results question the importance of the acidic charge of Asp⁶ for the antiproliferative activity and indicate the significance of the stereochemistry of Trp in positions 3 and 7. Furthermore, conjugation of an acetyl-group to the side chain of Lys⁸ or side chain cyclization of amino acids 1-8 increased the antiproliferative activity of lGnRH-III demonstrating that the proposed salt bridge between Asp⁶ and Lys⁸ is not crucial. Conformational studies of lGnRH-III were performed through NMR spectroscopy, and the solution structure of GnRH-I was solved. In solution, lGnRH-III adopts an extended backbone conformation in contrast to the well-defined β-turn conformation of GnRH-I. Copyright © 2012 Wiley Periodicals, Inc.
Kirino, Masato; Parnes, Jason; Hansen, Anne; Kiyohara, Sadao; Finger, Thomas E
2013-03-06
Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates.
King, Justin J.; Amemiya, Chris T.; Hsu, Ellen
2017-01-01
ABSTRACT Activation-induced cytidine deaminase (AID) is a genome-mutating enzyme that initiates class switch recombination and somatic hypermutation of antibodies in jawed vertebrates. We previously described the biochemical properties of human AID and found that it is an unusual enzyme in that it exhibits binding affinities for its substrate DNA and catalytic rates several orders of magnitude higher and lower, respectively, than a typical enzyme. Recently, we solved the functional structure of AID and demonstrated that these properties are due to nonspecific DNA binding on its surface, along with a catalytic pocket that predominantly assumes a closed conformation. Here we investigated the biochemical properties of AID from a sea lamprey, nurse shark, tetraodon, and coelacanth: representative species chosen because their lineages diverged at the earliest critical junctures in evolution of adaptive immunity. We found that these earliest-diverged AID orthologs are active cytidine deaminases that exhibit unique substrate specificities and thermosensitivities. Significant amino acid sequence divergence among these AID orthologs is predicted to manifest as notable structural differences. However, despite major differences in sequence specificities, thermosensitivities, and structural features, all orthologs share the unusually high DNA binding affinities and low catalytic rates. This absolute conservation is evidence for biological significance of these unique biochemical properties. PMID:28716949
Pigmented anatomy in Carboniferous cyclostomes and the evolution of the vertebrate eye.
Gabbott, Sarah E; Donoghue, Philip C J; Sansom, Robert S; Vinther, Jakob; Dolocan, Andrei; Purnell, Mark A
2016-08-17
The success of vertebrates is linked to the evolution of a camera-style eye and sophisticated visual system. In the absence of useful data from fossils, scenarios for evolutionary assembly of the vertebrate eye have been based necessarily on evidence from development, molecular genetics and comparative anatomy in living vertebrates. Unfortunately, steps in the transition from a light-sensitive 'eye spot' in invertebrate chordates to an image-forming camera-style eye in jawed vertebrates are constrained only by hagfish and lampreys (cyclostomes), which are interpreted to reflect either an intermediate or degenerate condition. Here, we report-based on evidence of size, shape, preservation mode and localized occurrence-the presence of melanosomes (pigment-bearing organelles) in fossil cyclostome eyes. Time of flight secondary ion mass spectrometry analyses reveal secondary ions with a relative intensity characteristic of melanin as revealed through principal components analyses. Our data support the hypotheses that extant hagfish eyes are degenerate, not rudimentary, that cyclostomes are monophyletic, and that the ancestral vertebrate had a functional visual system. We also demonstrate integument pigmentation in fossil lampreys, opening up the exciting possibility of investigating colour patterning in Palaeozoic vertebrates. The examples we report add to the record of melanosome preservation in Carboniferous fossils and attest to surprising durability of melanosomes and biomolecular melanin. © 2016 The Authors.
Pigmented anatomy in Carboniferous cyclostomes and the evolution of the vertebrate eye
Gabbott, Sarah E.; Sansom, Robert S.; Vinther, Jakob; Dolocan, Andrei; Purnell, Mark A.
2016-01-01
The success of vertebrates is linked to the evolution of a camera-style eye and sophisticated visual system. In the absence of useful data from fossils, scenarios for evolutionary assembly of the vertebrate eye have been based necessarily on evidence from development, molecular genetics and comparative anatomy in living vertebrates. Unfortunately, steps in the transition from a light-sensitive ‘eye spot’ in invertebrate chordates to an image-forming camera-style eye in jawed vertebrates are constrained only by hagfish and lampreys (cyclostomes), which are interpreted to reflect either an intermediate or degenerate condition. Here, we report—based on evidence of size, shape, preservation mode and localized occurrence—the presence of melanosomes (pigment-bearing organelles) in fossil cyclostome eyes. Time of flight secondary ion mass spectrometry analyses reveal secondary ions with a relative intensity characteristic of melanin as revealed through principal components analyses. Our data support the hypotheses that extant hagfish eyes are degenerate, not rudimentary, that cyclostomes are monophyletic, and that the ancestral vertebrate had a functional visual system. We also demonstrate integument pigmentation in fossil lampreys, opening up the exciting possibility of investigating colour patterning in Palaeozoic vertebrates. The examples we report add to the record of melanosome preservation in Carboniferous fossils and attest to surprising durability of melanosomes and biomolecular melanin. PMID:27488650
Hox genes and chordate evolution.
Holland, P W; Garcia-Fernàndez, J
1996-02-01
Hox genes are implicated in the control of axial patterning during embryonic development of many, perhaps all, animals. Here we review recent data on Hox gene diversity, genomic organization, and embryonic expression in chordates (including tunicates, amphioxus, hagfish, lampreys, teleosts) plus their putative sister group, the hemichordates. We consider the potential of comparative Hox gene data to resolve some outstanding controversies in chordate phylogeny. The use of Hox gene expression patterns to identify homologies between body plans both within the vertebrates and between the chordate subphyla is also discussed. Homology between the vertebrate hindbrain and an extensive region of amphioxus neural tube is suggested by comparison of Hox-3 homologues and strengthened by new data on amphioxus Hox-1 gene expression reported here. Finally, we give two examples of how Hox genes are giving glimpses into chordate developmental evolution. The first relates changes in Hox gene expression to transposition of vertebral of vertebral identities; the second describes a correlation between vertebrate origins and Hox gene cluster duplication. We suggest that the simultaneous duplication of many classes of genes, often interacting in gene networks, allowed the elaboration of new developmental control mechanisms at vertebrate origins.
Arshavsky, I; Deliagina, T G; Orlovsky, G N
2015-01-01
Central pattern generators (CPGs) are a set of interconnected neurons capable of generating a basic pattern of motor output underlying "automatic" movements (breathing, locomotion, chewing, swallowing, and so on) in the absence of afferent signals from the executive motor apparatus. They can be divided into the constitutive CPGs active throughout the entire lifetime (respiratory CPGs) and conditional CPGs controlling episodic movements (locomotion, chewing, swallowing, and others). Since a motor output of CPGs is determined by their internal organization, the activities of the conditional CPGs are initiated by simple commands coming from higher centers. We describe the structural and functional organization of the locomotor CPGs in the marine mollusk Clione limacina, lamprey, frog embryo, and laboratory mammals (cat, mouse, and rat), CPGs controlling the respiratory and swallowing movements in mammals, and CPGs controlling discharges of the electric organ in the gymnotiform fish. It is shown that in all these cases, the generation of rhythmic motor output is based both on the endogenous (pacemaker) activity of specific groups of interneurons and on interneural interactions. These two interrelated mechanisms complement each other, ensuring the high reliability of CPG functionality. We discuss how the experience obtained in studying CPGs can be used to understand mechanisms of more complex functions of the brain, including its cognitive functions.
Biologically Based Undulatory Lamprey Auv Project.
1995-01-01
flexibility of a fish body depends on the axial skeleton which in some fish con- sists of the bony vertebra column whereas in others it consists of notochord ...undulations and peristaltics to the almost hydrostatic notochord of amphioxus. The latter can change its stiffness by the activation of muscle fibers...paramyosine) lying inside the notochord . The notochord lies along the central axis of the body, contains no bone, and takes up approximately 7% - 10
Zuo, Yu; Xie, Wenfang; Pang, Yue; Li, Tiesong; Li, Qingwei; Li, Yingying
2017-01-01
The composition of the bacterial communities in the hindgut contents of Lampetrs japonica was surveyed by Illumina MiSeq of the 16S rRNA gene. An average of 32385 optimized reads was obtained from three samples. The rarefaction curve based on the operational taxonomic units tended to approach the asymptote. The rank abundance curve representing the species richness and evenness was calculated. The composition of microbe in six classification levels was also analyzed. Top 20 members in genera level were displayed as the classification tree. The abundance of microorganisms in different individuals was displayed as the pie charts at the branch nodes in the classification tree. The differences of top 50 genera in abundance between individuals of lamprey are displayed as a heatmap. The pairwise comparison of bacterial taxa abundance revealed that there are no significant differences of gut microbiota between three individuals of lamprey at a given rarefied depth. Also, the gut microbiota derived from L. japonica displays little similarity with other aquatic organism of Vertebrata after UPGMA analysis. The metabolic function of the bacterial communities was predicted through KEGG analysis. This study represents the first analysis of the bacterial community composition in the gut content of L. japonica. The investigation of the gut microbiota associated with L. japonica will broaden our understanding of this unique organism.
Fanali, Gabriella; Ascenzi, Paolo; Bernardi, Giorgio; Fasano, Mauro
2012-01-01
Serum albumin (SA) is a circulating protein providing a depot and carrier for many endogenous and exogenous compounds. At least seven major binding sites have been identified by structural and functional investigations mainly in human SA. SA is conserved in vertebrates, with at least 49 entries in protein sequence databases. The multiple sequence analysis of this set of entries leads to the definition of a cladistic tree for the molecular evolution of SA orthologs in vertebrates, thus showing the clustering of the considered species, with lamprey SAs (Lethenteron japonicum and Petromyzon marinus) in a separate outgroup. Sequence analysis aimed at searching conserved domains revealed that most SA sequences are made up by three repeated domains (about 600 residues), as extensively characterized for human SA. On the contrary, lamprey SAs are giant proteins (about 1400 residues) comprising seven repeated domains. The phylogenetic analysis of the SA family reveals a stringent correlation with the taxonomic classification of the species available in sequence databases. A focused inspection of the sequences of ligand binding sites in SA revealed that in all sites most residues involved in ligand binding are conserved, although the versatility towards different ligands could be peculiar of higher organisms. Moreover, the analysis of molecular links between the different sites suggests that allosteric modulation mechanisms could be restricted to higher vertebrates.
Tytell, Eric D; Hsu, Chia-Yu; Williams, Thelma L; Cohen, Avis H; Fauci, Lisa J
2010-11-16
Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.
Shifman, Michael I.; Yumul, Rae Eden; Laramore, Cindy; Selzer, Michael E.
2009-01-01
The sea lamprey recovers normal-appearing locomotion after spinal cord transection and its spinal axons regenerate selectively in their correct paths. However, among identified reticulospinal neurons some are consistently bad regenerators and only about 50% of severed reticulospinal axons regenerate through the site of injury. We previously suggested (Shifman and Selzer, 2000) that selective chemorepulsion might explain why some neurons are bad regenerators and others not. To explore the role of additional chemorepulsive axonal guidance molecules during regeneration, we examined the expression of the repulsive guidance molecule (RGM) and its receptor neogenin by in situ hybridization and quantitative PCR. RGM mRNA was expressed in the spinal cord, primarily in neurons of the lateral gray matter and in dorsal cells. Following spinal cord transection, RGM message was downregulated in neurons close (within 10 mm) to the transection at 2 and 4 weeks, although it was upregulated in reactive microglia at 2 weeks post-transection. Neogenin mRNA expression was unchanged in the brainstem after spinal cord transection, and among the identified reticulospinal neurons, was detected only in “bad regenerators, Neurons that are known to regenerate well never expressed neogenin. The downregulation of RGM expression in neurons near the transection may increase the probability that regenerating axons will regenerate through the site of injury and entered caudal spinal cord. PMID:19268666
Waller, D.L.; Bills, T.D.; Boogaard, M.A.; Johnson, D.A.; Doolittle, T.C.J.
2003-01-01
The effects of a 12-h exposure to the lampricide 3-trifluoromethyl-4- nitrophenol (TFM) and a combination of TFM and 1% niclosamide (active ingredient in Bayluscide 70% wettable powder) on the short and long-term (10 mo post exposure) survival and behavior of two unionid freshwater mussel species Elliptio complanata and Pyganadon cataracta were measured. Growth of juvenile E. complanata mussels 10 months after exposure was also compared. Toxicity was determined after 12 h exposures at maximum concentrations from 2- to 2.5- fold higher than the LC99 for sea lamprey larvae. A logistic model was used to estimate the probability of survival among treatments, trials, species, and sizes. Mortality was minimal in all test concentrations of TFM alone and the TFM/1% niclosamide combination. Estimated survival decreased 6% for each unit increase in the relative toxicity of TFM. Survival was greater for E. complanata than for P. cataracta, and for adults relative to juveniles. Lampricide treatment caused narcotization of both mussels (defined as having gaped shells and an extended foot) in concentrations ??? LC99 for sea lamprey larvae and narcotization ranged from 0-50% among treatments. Recovery from narcosis was apparent by 12 h post-exposure and complete by 36 h post-exposure. The rate of growth of E. complanata over the 10-month post-exposure period did not vary among treatments.
Convergent evolution of hemoglobin switching in jawed and jawless vertebrates.
Rohlfing, Kim; Stuhlmann, Friederike; Docker, Margaret F; Burmester, Thorsten
2016-02-01
During development, humans and other jawed vertebrates (Gnathostomata) express distinct hemoglobin genes, resulting in different hemoglobin tetramers. Embryonic and fetal hemoglobin have higher oxygen affinities than the adult hemoglobin, sustaining the oxygen demand of the developing organism. Little is known about the expression of hemoglobins during development of jawless vertebrates (Agnatha). We identified three hemoglobin switches in the life cycle of the sea lamprey. Three hemoglobin genes are specifically expressed in the embryo, four genes in the filter feeding larva (ammocoete), and nine genes correspond to the adult hemoglobin chains. During the development from the parasitic to the reproductive adult, the composition of hemoglobin changes again, with a massive increase of chain aHb1. A single hemoglobin chain is expressed constitutively in all stages. We further showed the differential expression of other globin genes: Myoglobin 1 is most highly expressed in the reproductive adult, myoglobin 2 expression peaks in the larva. Globin X1 is restricted to the embryo; globin X2 was only found in the reproductive adult. Cytoglobin is expressed at low levels throughout the life cycle. Because the hemoglobins of jawed and jawless vertebrates evolved independently from a common globin ancestor, hemoglobin switching must also have evolved convergently in these taxa. Notably, the ontogeny of sea lamprey hemoglobins essentially recapitulates their phylogeny, with the embryonic hemoglobins emerging first, followed by the evolution of larval and adult hemoglobins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arntzen, Evan V.; Mueller, Robert P.
A deep water electroshocking platform (DEP), developed to characterize larval lampreys (ammocoetes) and associated habitat in depths up to 15 m, was recently tested in the field. The DEP samples 0.55 m2∙min-1 without requiring ammocoete transport to the surface. Searches were conducted at a known rearing location (mouth of the Wind River, WA) and at locations on the Cowlitz River, WA, where ammocoetes had not previously been found. At the mouth of the Wind River, video imaged ammocoetes ranged from 50 to 150 mm in water depths between 1.5 m and 4.5 m and were more common in sediments containingmore » organic silt. Ammocoetes (n=137) were detected at 61% of locations sampled (summer) and 50% of the locations sampled (winter). Following the field verification, the DEP was used on the lower 11.7 km of the Cowlitz River, WA. Ammocoetes (n=41) were found with a detection rate of 26% at specific search locations. Cowlitz River sediment containing ammocoetes was also dominated by silt with organic material, often downstream of alluvial bars in water depths from 0.8 to 1.7 m. Test results indicated a high sampling efficiency, favorable detection rates, and little or no impact to ammocoetes and their surrounding benthic environments.« less
Hamlin, N J; Ong, K G; Price, P A
2006-05-01
We investigated the evolutionary origin of a serum activity that induces calcification within a type I collagen matrix, an activity previously described in rat and bovine serum. Serum was obtained from vertebrates with calcified tissues (bony fish and shark), vertebrates without calcified tissues (lamprey and hagfish), and three invertebrates (marine worm, crab, and sea urchin). Serum from the bony fish and shark proved to contain a potent nucleator of collagen calcification; like the previously described calcifying activity in rat serum, the fish and shark activities are both able to recalcify a demineralized rat tibia when tested in Dulbecco's modified Eagle medium containing as little as 1.5% of the respective serum and have an apparent molecular weight of 50-150 kDa. No calcifying activity could be detected in any of several experimental tests of invertebrate or hagfish serum. Weak calcifying activity could be detected in lamprey serum, but calcification was restricted to the growth plate of the decalcified tibia, with no detectable calcification in the type I collagen of the midshaft. These studies reveal a correlation between the evolutionary timing of the appearance of calcified tissues in vertebrates and the appearance of the serum activity that initiates calcification within collagen and, therefore, support the hypothesis that this serum activity may play a role in normal calcification of bone.
Scholefield, R.J.; Bergstedt, R.A.; Bills, T.D.
2003-01-01
The efficacy of 2’, 5-dichloro-4’-nitrosalicylanilide (niclosamide) at various concentrations and exposure times was tested against free-swimming larval sea lampreys (Petromyzon marinus) at 12°C and 17°C in Lake Huron water. Concentrations of niclosamide in test solutions ranged from 0.46 to 4.7 mg/L with pH 7.8 to 8.3, total alkalinity 78 to 88 mg/L as CaCO3, and total hardness 95 to 105 mg/L as CaCO3. In each test, six groups of larvae were exposed to a single concentration of niclosamide for times ranging from 30 s to 30 min. Exposure time was treated as the dose and, for each concentration tested, the exposure time necessary to kill 50 and 99.9% of larvae (ET50 and ET99.9) was determined. Linear regressions of the log10-transformed ET50 and ET99.9 on the log10-transformed niclosamide concentrations were significant at both temperatures with r2ranging from 0.94 to 0.98. The predicted ET50 ranged from 58 sec to 21.7 min and the ET99.9 ranged from 2.5 to 43.5 min across the concentrations and temperatures tested. Niclosamide required a significantly longer time to kill larvae at 12°C than at 17°C.
Pechstein, Arndt; Bacetic, Jelena; Vahedi-Faridi, Ardeschir; Gromova, Kira; Sundborger, Anna; Tomlin, Nikolay; Krainer, Georg; Vorontsova, Olga; Schäfer, Johannes G.; Owe, Simen G.; Cousin, Michael A.; Saenger, Wolfram; Shupliakov, Oleg; Haucke, Volker
2010-01-01
Clathrin-mediated synaptic vesicle (SV) recycling involves the spatiotemporally controlled assembly of clathrin coat components at phosphatidylinositiol (4, 5)-bisphosphate [PI(4,5)P2]-enriched membrane sites within the periactive zone. Such spatiotemporal control is needed to coordinate SV cargo sorting with clathrin/AP2 recruitment and to restrain membrane fission and synaptojanin-mediated uncoating until membrane deformation and clathrin coat assembly are completed. The molecular events underlying these control mechanisms are unknown. Here we show that the endocytic SH3 domain-containing accessory protein intersectin 1 scaffolds the endocytic process by directly associating with the clathrin adaptor AP2. Acute perturbation of the intersectin 1-AP2 interaction in lamprey synapses in situ inhibits the onset of SV recycling. Structurally, complex formation can be attributed to the direct association of hydrophobic peptides within the intersectin 1 SH3A-B linker region with the “side sites” of the AP2 α- and β-appendage domains. AP2 appendage association of the SH3A-B linker region inhibits binding of the inositol phosphatase synaptojanin 1 to intersectin 1. These data identify the intersectin-AP2 complex as an important regulator of clathrin-mediated SV recycling in synapses. PMID:20160082
2013-01-01
often been low in Columbia River basin radiotelemetry studies. In the summer of 2012, we conducted a Dual-Frequency Identification Sonar (DIDSON...Entosphenus tridentatus) in the Columbia River Basin have declined considerably over the past several decades. Given the cultural and ecological value of...R. W. Zabel, T. C. Bjornn, and C. A. Peery. 2007. Slow dam passage in Columbia River salmonids associated with unsuccessful migration: delayed
Boogaard, Michael A.; Erickson, Richard A.; Hubert, Terrance D.
2016-09-02
The vertical avoidance behavior of the tadpole madtom (Noturus gyrinus) exposed to environmentally relevant concentrations of the granular formulation of the lampricide Bayluscide® was evaluated. The lampricide formulation (3.2 percent active ingredient coated on a sand granule) is used to control larval sea lamprey populations in the Great Lakes. The tadpole madtom was chosen as a surrogate to the federally endangered northern madtom (Noturus stigmosus) based on similar life history characteristics and habitat requirements. Vertical avoidance of tadpole madtoms in response to the granular formulation was documented in clear Plexiglas columns (107 centimeters in height, 30.5 centimeters in diameter) for 1 hour after chemical application. Each avoidance trial produced data consisting of the number of tadpole madtoms avoiding the chemical at a given time. Based on the overall data, tadpole madtoms in treated columns were 11.7 times more likely to display avoidance compared to those in untreated controls. Results indicate that it is likely that northern madtoms will be able to detect and avoid Bayluscide® from granular applications if their response is similar to that of the tadpole madtom.
Alternative forms of axial startle behaviors in fishes.
Liu, Yen-Chyi; Hale, Melina E
2014-02-01
For most aquatic vertebrates, axial movements play key roles in the performance of startle responses. In fishes, these axis-based startle behaviors fall into three distinct categories - the C-start, withdrawal, and S-start - defined by patterns of body bending and underlying motor control. Startle behaviors have been widely studied due to their importance for predator evasion. In addition, the neural circuits that control startles are relatively accessible, compared to other vertebrate circuits, and have provided opportunities to understand basic nervous system function. The C-start neural circuit has long been a model in systems neuroscience and considerable work on neural control of withdrawal response has been conducted in the larval lamprey. The S-start response has only recently been explored from a physiological perspective and we focus here on reviewing S-start motor control and movement in the context of the other two responses. Axial elongation has previously been associated with startle behavior in comparisons of C-starts and withdrawal, with extremely elongate animals performing withdrawals. We suggest that the S-start tends to occur with moderate body elongation, complementing the C-start in animals with this body form. As many larval fishes are moderately elongate, we suggest that the S-start may be common in larvae but may be secondarily lost with body shape change through development. Copyright © 2013 Elsevier GmbH. All rights reserved.
Historical changes in the major fish resources of the Great Lakes
Hartman, Wilbur L.; Evans, Marlene S.
1988-01-01
My purpose here is to review historic changes in the major fish resources of the five Great Lakes, and to identify the cause or causes for those changes. In some instances it will be clear that intensive fishing was the primary cause of change; in other instances it will be nearly as clear that predation by the sea lamprey played a significant if not dominant role in change; and in still others it will be clear (or at least circumstantial) that exotic species other than the sea lamprey have been implicated. The exotics that have invaded or been accidentally or purposefully released into the Great Lakes system have not only adversely affected indigenous fishes, but some have developed into new and valuable resources. However, when it comes to degradation of water quality and of critical habitat, the linkages to changes in fish populations are neither clear-cut nor quantifiable — their impacts were generally far more subtle and difficult to detect, but not necessarily of less importance. Inasmuch as a comprehensive review of all changes in fishery resources, water quality, and habitat conditions in the Great Lakes would be encyclopedic, I confine discussion here to prime examples related to the most historically important fish resources. One of the values of the approach used in this manuscript is the collation in a single-source document of the conclusions reached by many scientists on reasons for changes in the fish resources across the Great Lakes basin.
Waller, D.L.; Bills, T.D.; Boogaard, M.A.; Johnson, D.A.; Doolittle, T.C.J.
2003-01-01
The effects of a 12-h exposure to the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) and a combination of TFM and 1% niclosamide (active ingredient in Bayluscide 70% wettable powder) on the short and long-term (10 mo post exposure) survival and behavior of two unionid freshwater mussel species Elliptio complanata and Pyganadon cataracta were measured. Growth of juvenile E. complanata mussels 10 months after exposure was also compared. Toxicity was determined after 12 h exposures at maximum concentrations from 2- to 2.5- fold higher than the LC99 for sea lamprey larvae. A logistic model was used to estimate the probability of survival among treatments, trials, species, and sizes. Mortality was minimal in all test concentrations of TFM alone and the TFM/1% niclosamide combination. Estimated survival decreased 6% for each unit increase in the relative toxicity of TFM. Survival was greater for E. complanata than for P. cataracta, and for adults relative to juveniles. Lampricide treatment caused narcotization of both mussels (defined as having gaped shells and an extended foot) in concentrations greater than or equal to LC99 for sea lamprey larvae and narcotization ranged from 0-50% among treatments. Recovery from narcosis was apparent by 12 h post-exposure and complete by 36 h post-exposure. The rate of growth of E. complanata over the 10-month post-exposure period did not vary among treatments.
Regeneration in the era of functional genomics and gene network analysis.
Smith, Joel; Morgan, Jennifer R; Zottoli, Steven J; Smith, Peter J; Buxbaum, Joseph D; Bloom, Ona E
2011-08-01
What gives an organism the ability to regrow tissues and to recover function where another organism fails is the central problem of regenerative biology. The challenge is to describe the mechanisms of regeneration at the molecular level, delivering detailed insights into the many components that are cross-regulated. In other words, a broad, yet deep dissection of the system-wide network of molecular interactions is needed. Functional genomics has been used to elucidate gene regulatory networks (GRNs) in developing tissues, which, like regeneration, are complex systems. Therefore, we reason that the GRN approach, aided by next generation technologies, can also be applied to study the molecular mechanisms underlying the complex functions of regeneration. We ask what characteristics a model system must have to support a GRN analysis. Our discussion focuses on regeneration in the central nervous system, where loss of function has particularly devastating consequences for an organism. We examine a cohort of cells conserved across all vertebrates, the reticulospinal (RS) neurons, which lend themselves well to experimental manipulations. In the lamprey, a jawless vertebrate, there are giant RS neurons whose large size and ability to regenerate make them particularly suited for a GRN analysis. Adding to their value, a distinct subset of lamprey RS neurons reproducibly fail to regenerate, presenting an opportunity for side-by-side comparison of gene networks that promote or inhibit regeneration. Thus, determining the GRN for regeneration in RS neurons will provide a mechanistic understanding of the fundamental cues that lead to success or failure to regenerate.
Identification of a novel Gig2 gene family specific to non-amniote vertebrates.
Zhang, Yi-Bing; Liu, Ting-Kai; Jiang, Jun; Shi, Jun; Liu, Ying; Li, Shun; Gui, Jian-Fang
2013-01-01
Gig2 (grass carp reovirus (GCRV)-induced gene 2) is first identified as a novel fish interferon (IFN)-stimulated gene (ISG). Overexpression of a zebrafish Gig2 gene can protect cultured fish cells from virus infection. In the present study, we identify a novel gene family that is comprised of genes homologous to the previously characterized Gig2. EST/GSS search and in silico cloning identify 190 Gig2 homologous genes in 51 vertebrate species ranged from lampreys to amphibians. Further large-scale search of vertebrate and invertebrate genome databases indicate that Gig2 gene family is specific to non-amniotes including lampreys, sharks/rays, ray-finned fishes and amphibians. Phylogenetic analysis and synteny analysis reveal lineage-specific expansion of Gig2 gene family and also provide valuable evidence for the fish-specific genome duplication (FSGD) hypothesis. Although Gig2 family proteins exhibit no significant sequence similarity to any known proteins, a typical Gig2 protein appears to consist of two conserved parts: an N-terminus that bears very low homology to the catalytic domains of poly(ADP-ribose) polymerases (PARPs), and a novel C-terminal domain that is unique to this gene family. Expression profiling of zebrafish Gig2 family genes shows that some duplicate pairs have diverged in function via acquisition of novel spatial and/or temporal expression under stresses. The specificity of this gene family to non-amniotes might contribute to a large extent to distinct physiology in non-amniote vertebrates.
Effects of certain chemicals on mucus-producing cells of Petromyzon marinus
Sawyer, Philip J.
1959-01-01
Tissue samples that contained slime-secreting cells were taken from the gills and epidermis of larval lampreys that had been poisoned by several compounds. Histochemical treatment of these pathological tissues helped delineate the fate of these mucus-producing areas of the ammocetes. It was shown that the slime-secreting cells, located at the tips of the gill filaments, lining the gill chamber, and scattered throughout the epidermis reacted differently to the same toxicant. The secretory cells of the gills were, without exception, the most sensitive to chemical attack.
McColl, K A; Sunarto, A; Slater, J; Bell, K; Asmus, M; Fulton, W; Hall, K; Brown, P; Gilligan, D; Hoad, J; Williams, L M; Crane, M St J
2017-09-01
Carp (Cyprinus carpio L.) is a pest species in Australian waterways, and cyprinid herpesvirus 3 (CyHV-3) is being considered as a potential biological control (biocontrol) agent. An important consideration for any such agent is its target specificity. In this study, the susceptibility to CyHV-3 of a range of non-target species (NTS) was tested. The NTS were as follows: 13 native Australian, and one introduced, fish species; a lamprey species; a crustacean; two native amphibian species (tadpole and mature stages); two native reptilian species; chickens; and laboratory mice. Animals were exposed to 100-1000 times the approximate minimum amount of CyHV-3 required to cause disease in carp by intraperitoneal and/or bath challenge, and then examined clinically each day over the course of 28 days post-challenge. There were no clinical signs, mortalities or histological evidence consistent with a viral infection in a wide taxonomic range of NTS. Furthermore, there was no molecular evidence of infection with CyHV-3, and, in particular, all RT-PCRs for viral mRNA were negative. As a consequence, the results encourage further investigation of CyHV-3 as a potential biocontrol agent that is specific for carp. © 2016 John Wiley & Sons Ltd.
Ogiwara, Ikuo; Miya, Masaki; Ohshima, Kazuhiko; Okada, Norihiro
2002-01-01
We have identified a new superfamily of vertebrate short interspersed repetitive elements (SINEs), designated V-SINEs, that are widespread in fishes and frogs. Each V-SINE includes a central conserved domain preceded by a 5′-end tRNA-related region and followed by a potentially recombinogenic (TG)n tract, with a 3′ tail derived from the 3′ untranslated region (UTR) of the corresponding partner long interspersed repetitive element (LINE) that encodes a functional reverse transcriptase. The central domain is strongly conserved and is even found in SINEs in the lamprey genome, suggesting that V-SINEs might be ∼550 Myr old or older in view of the timing of divergence of the lamprey lineage from the bony fish lineage. The central conserved domain might have been subject to some form of positive selection. Although the contemporary 3′ tails of V-SINEs differ from one another, it is possible that the original 3′ tail might have been replaced, via recombination, by the 3′ tails of more active partner LINEs, thereby retaining retropositional activity and the ability to survive for long periods on the evolutionary time scale. It seems plausible that V-SINEs may have some function(s) that have been maintained by the coevolution of SINEs and LINEs during the evolution of vertebrates. [The sequences reported in this paper have been deposited in the DDBJ/GenBank database under accession nos. AB072981–AB073004. Supplemental figures are available online at http://www.genome.org.] PMID:11827951
The Oxygen Equilibrium of Mammalian Hemoglobin
Roughton, F. J. W.
1965-01-01
The three chief physicochemical theories of the oxygen-hemoglobin equilibrium in vogue 40 years ago still influence current thought on the problem. Although the Hill theory lost its fundamental basis some 40 years ago, the famous empiric equation to which it gave rise is still much used, as a useful phenomenological expression, only involving two disposable constants. The Haldane theory, of which a difference in aggregation of oxygenated and deoxygenated hemoglobin was a fundamental feature, lay for many years dormant but has recently had an astonishing reawakening through the work on lamprey hemoglobin, which clearly reveals such differences in aggregation. Lamprey hemoglobin might thus be called a "Haldane type" hemoglobin. Adair's four-stage intermediate compound theory still seems applicable in the case of hemoglobins such as those of sheep, whose tetramer molecules do not tend to dissociate into dimers, and which might therefore be called "Adair type" hemoglobins. Horse and human hemoglobins appear to reveal both "Haldane" and "Adair" behaviour. The effects of pH, temperature, and protein concentration on the oxygen-equilibrium of sheep hemoglobin are summarised, and it is shown that, although the equilibrium curves are often isomorphous over their middle range, intensive work at the top and bottom of the curves reveals considerable differences in the relative effects of these factors on the several equilibrium constants of Adair's four intermediate equations. In the last section an account is given of preliminary experimental attempts to interpret the oxygen- and carbon monoxide—equilibrium curves of whole human blood, under physiological conditions in terms of the Adair intermediate compound hypothesis. PMID:5859923
Low-head sea lamprey barrier effects on stream habitat and fish communities in the Great Lakes basin
Dodd, H.R.; Hayes, D.B.; Baylis, J.R.; Carl, L.M.; Goldstein, J.D.; McLaughlin, R.L.; Noakes, D.L.G.; Porto, L.M.; Jones, M.L.
2003-01-01
Low-head barriers are used to block adult sea lamprey (Petromyzon marinus) from upstream spawning habitat. However, these barriers may impact stream fish communities through restriction of fish movement and habitat alteration. During the summer of 1996, the fish community and habitat conditions in twenty-four stream pairs were sampled across the Great Lakes basin. Seven of these stream pairs were re-sampled in 1997. Each pair consisted of a barrier stream with a low-head barrier and a reference stream without a low-head barrier. On average, barrier streams were significantly deeper (df = 179, P = 0.0018) and wider (df = 179, P = 0.0236) than reference streams, but temperature and substrate were similar (df = 183, P = 0.9027; df = 179, P = 0.999). Barrier streams contained approximately four more fish species on average than reference streams. However, streams with low-head barriers showed a greater upstream decline in species richness compared to reference streams with a net loss of 2.4 species. Barrier streams also showed a peak in richness directly downstream of the barriers, indicating that these barriers block fish movement upstream. Using S??renson's similarity index (based on presence/absence), a comparison of fish community assemblages above and below low-head barriers was not significantly different than upstream and downstream sites on reference streams (n = 96, P > 0.05), implying they have relatively little effect on overall fish assemblage composition. Differences in the frequency of occurrence and abundance between barrier and reference streams was apparent for some species, suggesting their sensitivity to barriers.
A new model for force generation by skeletal muscle, incorporating work-dependent deactivation
Williams, Thelma L.
2010-01-01
A model is developed to predict the force generated by active skeletal muscle when subjected to imposed patterns of lengthening and shortening, such as those that occur during normal movements. The model is based on data from isolated lamprey muscle and can predict the forces developed during swimming. The model consists of a set of ordinary differential equations, which are solved numerically. The model's first part is a simplified description of the kinetics of Ca2+ release from sarcoplasmic reticulum and binding to muscle protein filaments, in response to neural activation. The second part is based on A. V. Hill's mechanical model of muscle, consisting of elastic and contractile elements in series, the latter obeying known physiological properties. The parameters of the model are determined by fitting the appropriate mathematical solutions to data recorded from isolated lamprey muscle activated under conditions of constant length or rate of change of length. The model is then used to predict the forces developed under conditions of applied sinusoidal length changes, and the results compared with corresponding data. The most significant advance of this model is the incorporation of work-dependent deactivation, whereby a muscle that has been shortening under load generates less force after the shortening ceases than otherwise expected. In addition, the stiffness in this model is not constant but increases with increasing activation. The model yields a closer prediction to data than has been obtained before, and can thus prove an important component of investigations of the neural—mechanical—environmental interactions that occur during natural movements. PMID:20118315
The 'Tully monster' is a vertebrate.
McCoy, Victoria E; Saupe, Erin E; Lamsdell, James C; Tarhan, Lidya G; McMahon, Sean; Lidgard, Scott; Mayer, Paul; Whalen, Christopher D; Soriano, Carmen; Finney, Lydia; Vogt, Stefan; Clark, Elizabeth G; Anderson, Ross P; Petermann, Holger; Locatelli, Emma R; Briggs, Derek E G
2016-04-28
Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the 'problem of the problematica', particularly the 'weird wonders' of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium, popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309-307 million years ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans, polychaetes, gastropods, conodonts, and the stem arthropod Opabinia. Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes. We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys, a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years.
Buchinger, Tyler J.; Bussy, Ugo; Buchinger, Ethan G.; Fissette, Skye D.; Li, Weiming; Johnson, Nicholas
2017-01-01
Male body size affects access to mates in many animals. Attributes of sexual signals often correlate with body size due to physiological constraints on signal production. Larger males generally produce larger signals, but costs of being large or compensation by small males can result in smaller males producing signals of equal or greater magnitude. Female choice following multiple male traits with different relationships to size might further complicate the effect of male body size on access to mates. We report the relationship between male body size and pheromone signaling, and the effects on female mate search and courtship in the sea lamprey (Petromyzon marinus). We predicted that pheromone production in the liver and the liver mass to body mass ratio would remain constant across sizes, resulting in similar mass-adjusted pheromone release rates across sizes but a positive relationship between absolute pheromone release and body mass. Our results confirmed positive relationships between body mass and liver mass, and liver mass and the magnitude of the pheromone signal. Surprisingly, decreasing body mass was correlated with higher pheromone concentrations in the liver, liver mass to body mass ratios, and mass-adjusted pheromone release rates. In a natural stream, females more often entered nests treated with small versus large male odors. However, close-proximity courtship behaviors were similar in nests treated with small or large male odors. We conclude that small males exhibit increased release of the main pheromone component, but female discrimination of male pheromones follows several axes of variation with different relationships to size.
Descending brain neurons in larval lamprey: Spinal projection patterns and initiation of locomotion
Shaw, Albert C.; Jackson, Adam W.; Holmes, Tamra; Thurman, Suzie; Davis, G.R.; McClellan, Andrew D.
2010-01-01
In larval lamprey, partial lesions were made in the rostral spinal cord to determine which spinal tracts are important for descending activation of locomotion and to identify descending brain neurons that project in these tracts. In whole animals and in vitro brain/spinal cord preparations, brain-initiated spinal locomotor activity was present when the lateral or intermediate spinal tracts were spared but usually was abolished when the medial tracts were spared. We previously showed that descending brain neurons are located in eleven cell groups, including reticulospinal (RS) neurons in the mesenecephalic reticular nucleus (MRN) as well as the anterior (ARRN), middle (MRRN), and posterior (PRRN) rhombencephalic reticular nuclei. Other descending brain neurons are located in the diencephalic (Di) as well as the anterolateral (ALV), dorsolateral (DLV), and posterolateral (PLV) vagal groups. In the present study, the Mauthner and auxillary Mauthner cells, most neurons in the Di, ALV, DLV, and PLV cell groups, and some neurons in the ARRN and PRRN had crossed descending axons. The majority of neurons projecting in medial spinal tracts included large identified Müller cells and neurons in the Di, MRN, ALV, and DLV. Axons of individual descending brain neurons usually did not switch spinal tracts, have branches in multiple tracts, or cross the midline within the rostral cord. Most neurons that projected in the lateral/intermediate spinal tracts were in the ARRN, MRRN, and PRRN. Thus, output neurons of the locomotor command system are distributed in several reticular nuclei, whose neurons project in relatively wide areas of the cord. PMID:20510243
Understanding behavioral responses of fish to pheromones in natural freshwater environments
Johnson, Nicholas S.; Li, Weiming
2010-01-01
There is an abundance of experimental studies and reviews that describe odorant-mediated behaviors of fish in laboratory microcosms, but research in natural field conditions has received considerably less attention. Fish pheromone studies in laboratory settings can be highly productive and allow for controlled experimental designs; however, laboratory tanks and flumes often cannot replicate all the physical, physiological and social contexts associated with natural environments. Field experiments can be a critical step in affirming and enhancing understanding of laboratory discoveries and often implicate the ecological significance of pheromones employed by fishes. When findings from laboratory experiments have been further tested in field environments, often different and sometimes contradictory conclusions are found. Examples include studies of sea lamprey (Petromyzon marinus) mating pheromones and fish alarm substances. Here, we review field research conducted on fish pheromones and alarm substances, highlighting the following topics: (1) contradictory results obtained in laboratory and field experiments, (2) how environmental context and physiological status influences behavior, (3) challenges and constraints of aquatic field research and (4) innovative techniques and experimental designs that advance understanding of fish chemical ecology through field research.
Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia.
Nikinmaa, M
2001-11-15
The evolution of erythrocytic hypoxia responses is reviewed by comparing the cellular control of haemoglobin-oxygen affinity in agnathans, teleost fish and terrestrial vertebrates. The most ancient response to hypoxic conditions appears to be an increase in cell volume, which increases the haemoglobin-oxygen affinity in lampreys. In teleost fish, an increase of cell volume in hypoxic conditions is also evident. The volume increase is coupled to an increase in erythrocyte pH. These changes are caused by an adrenergic activation of sodium/proton exchange across the erythrocyte membrane. The mechanism is important in acute hypoxia and is followed by a decrease in cellular adenosine triphosphate (ATP) and guanosine triphosphate (GTP) concentrations in continued hypoxia. In hypoxic bird embryos, the ATP levels are also reduced. The mechanisms by which hypoxia decreases cellular ATP and GTP concentrations remains unknown, although at least in bird embryos cAMP-dependent mechanisms have been implicated. In mammals, hypoxia responses appear to occur mainly via modulation of cellular organic phosphate concentrations. In moderate hypoxia, 2,3-diphosphoglycerate levels are increased as a result of alkalosis caused by increased ventilation.
A semi-automated method of monitoring dam passage of American Eels Anguilla rostrata
Welsh, Stuart A.; Aldinger, Joni L.
2014-01-01
Fish passage facilities at dams have become an important focus of fishery management in riverine systems. Given the personnel and travel costs associated with physical monitoring programs, automated or semi-automated systems are an attractive alternative for monitoring fish passage facilities. We designed and tested a semi-automated system for eel ladder monitoring at Millville Dam on the lower Shenandoah River, West Virginia. A motion-activated eel ladder camera (ELC) photographed each yellow-phase American Eel Anguilla rostrata that passed through the ladder. Digital images (with date and time stamps) of American Eels allowed for total daily counts and measurements of eel TL using photogrammetric methods with digital imaging software. We compared physical counts of American Eels with camera-based counts; TLs obtained with a measuring board were compared with TLs derived from photogrammetric methods. Data from the ELC were consistent with data obtained by physical methods, thus supporting the semi-automated camera system as a viable option for monitoring American Eel passage. Time stamps on digital images allowed for the documentation of eel passage time—data that were not obtainable from physical monitoring efforts. The ELC has application to eel ladder facilities but can also be used to monitor dam passage of other taxa, such as crayfishes, lampreys, and water snakes.
Hansen, Michael J.; Schorfhaar, Richard G.; Peck, James W.; Selgeby, James H.; Taylor, William W.
1995-01-01
Self-sustaining populations of lake trout Salvelinus namaycush have returned to most areas in Lake Superior, but progress toward achieving historic commercial yields has been difficult to measure because of unrecorded losses to predation by sea lamprey Petromyzon marinus and to fisheries. Consequently, we developed restoration targets (catch per effort, CPE; geometric mean number per kilometer of 114-mm stretch-meaure gill net during 1929-1943, when historic yields were sustained) from linear relationships between CPE in commercial and assessment fisheries in Michigan. Target CPEs for lake trout restoration were higher and less variable than the modern CPEs in all areas. Modern CPEs generally increased during the 1970s and early 1980s but declined during the late 1980s and early 1990s. Modern CPEs were highest in western Michigan from the Keweenaw Peninsula to Marquette (71 to 81% of target CPEs), but coefficients of variation (CV,SD/mean) of mean CPEs were 1.4 to 2.4 times greater than target CVs. Around Munising, the modern CPE was lower (41% of the target CPE), whereas the CV was 1.9 times greater than the target CV. Around Grand Marais, the modern CPE was lowest among all areas (17% of the target CPE), but the CV was nearly the same (1.1 times the target CV). In Whitefish Bay, the modern CPE was only 28% of the target CPE and the CV was 9.0 times greater, though the modern period was based on only the years 1979-1982 and 1984-1985. Further progress in restoration in most areas can be achieved only if fishery managers adequately protect existing stocks of wild fish from sea lamprey predation and fishery exploitation.
Planning and executing a lampricide treatment of the St. Marys River using georeferenced data
Fodale, Michael F.; Bergstedt, Roger A.; Cuddy, Douglas W.; Adams, Jean V.; Stolyarenko, Dimitri A.
2003-01-01
The St. Marys River is believed to be the primary source of sea lampreys (Petromyzon marinus) in Lake Huron. Planning or evaluating lampricide treatments required knowing where lampricides could effectively be placed and where larvae were located. Accurate maps of larval density were therefore critical to formulating or evaluating management strategies using lampricides. Larval abundance was systematically assessed with a deepwater electrofishing device at 12,000 georeferenced locations during 1993 to 1996. Maps were produced from catches at those locations, providing georeferenced detail previously unavailable. Catches were processed with a geographic information system (GIS), to create a map of larval density. Whole-river treatment scenarios using TFM (3-trifluoromethyl-4-nitrophenol) were evaluated by combining the map with one of lethal conditions predicted by a lampricide-transport model. The map was also used to evaluate spot treatment scenarios with a granular, bottom-release formulation of another lampricide, Bayluscide (2',5-dichloro-4'-nitro-salicylanilide). Potential high-density plots for Bayluscide treatment were selected from the map and estimates of area, cost, and larval population were developed using the GIS. Plots were ranked by the cost per larva killed. Spot treatments were found to be more cost effective than a conventional TFM treatment and Bayluscide was applied to 82 ha in 1998 and 759 ha in 1999. Effectiveness was estimated with stratified-random sampling before and after treatment in 1999 at 35%. Ten percent already had been removed in 1998, for a total reduction of 45% percent. This marked a change in how research and planning were combined in sea lamprey management to minimize treatment costs and evaluate success.
Wood, Bradley M; Jia, Guang; Carmichael, Owen; McKlveen, Kevin; Homberger, Dominique G
2018-05-12
3D imaging techniques enable the non-destructive analysis and modeling of complex structures. Among these, MRI exhibits good soft tissue contrast, but is currently less commonly used for non-clinical research than x-ray CT, even though the latter requires contrast-staining that shrinks and distorts soft tissues. When the objective is the creation of a realistic and complete 3D model of soft tissue structures, MRI data are more demanding to acquire and visualize and require extensive post-processing because they comprise non-cubic voxels with dimensions that represent a trade-off between tissue contrast and image resolution. Therefore, thin soft tissue structures with complex spatial configurations are not always visible in a single MRI dataset, so that standard segmentation techniques are not sufficient for their complete visualization. By using the example of the thin and spatially complex connective tissue myosepta in lampreys, we developed a workflow protocol for the selection of the appropriate parameters for the acquisition of MRI data and for the visualization and 3D modeling of soft tissue structures. This protocol includes a novel recursive segmentation technique for supplementing missing data in one dataset with data from another dataset to produce realistic and complete 3D models. Such 3D models are needed for the modeling of dynamic processes, such as the biomechanics of fish locomotion. However, our methodology is applicable to the visualization of any thin soft tissue structures with complex spatial configurations, such as fasciae, aponeuroses, and small blood vessels and nerves, for clinical research and the further exploration of tensegrity. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Lajus, Julia; Kraikovski, Alexei; Lajus, Dmitry
2013-01-01
The paper describes and analyzes original data, extracted from historical documents and scientific surveys, related to Russian fisheries in the southeastern part of the Gulf of Finland and its inflowing rivers during the 15- early 20th centuries. The data allow tracing key trends in fisheries development and in the abundance of major commercial species. In particular, results showed that, over time, the main fishing areas moved from the middle part of rivers downstream towards and onto the coastal sea. Changes in fishing patterns were closely interrelated with changes in the abundance of exploited fish. Anadromous species, such as Atlantic sturgeon, Atlantic salmon, brown trout, whitefish, vimba bream, smelt, lamprey, and catadromous eel were the most important commercial fish in the area because they were abundant, had high commercial value and were easily available for fishing in rivers. Due to intensive exploitation and other human-induced factors, populations of most of these species had declined notably by the early 20th century and have now lost commercial significance. The last sturgeon was caught in 1996, and today only smelt and lamprey support small commercial fisheries. According to historical sources, catches of freshwater species such as roach, ide, pike, perch, ruffe and burbot regularly occurred, in some areas exceeding half of the total catch, but they were not as important as migrating fish and no clear trends in abundance are apparent. Of documented marine catch, Baltic herring appeared in the 16th century, but did not become commercially significant until the 19th century. From then until now herring have been the dominant catch. PMID:24204735
Origin and Loss of Nested LRRTM/α-Catenin Genes during Vertebrate Evolution
Uvarov, Pavel; Kajander, Tommi; Airaksinen, Matti S.
2014-01-01
Leucine-rich repeat transmembrane neuronal proteins (LRRTMs) form in mammals a family of four postsynaptic adhesion proteins, which have been shown to bind neurexins and heparan sulphate proteoglycan (HSPG) glypican on the presynaptic side. Mutations in the genes encoding LRRTMs and neurexins are implicated in human cognitive disorders such as schizophrenia and autism. Our analysis shows that in most jawed vertebrates, lrrtm1, lrrtm2, and lrrtm3 genes are nested on opposite strands of large conserved intron of α-catenin genes ctnna2, ctnna1, and ctnna3, respectively. No lrrtm genes could be found in tunicates or lancelets, while two lrrtm genes are found in the lamprey genome, one of which is adjacent to a single ctnna homolog. Based on similar highly positive net charge of lamprey LRRTMs and the HSPG-binding LRRTM3 and LRRTM4 proteins, we speculate that the ancestral LRRTM might have bound HSPG before acquiring neurexins as binding partners. Our model suggests that lrrtm gene translocated into the large ctnna intron in early vertebrates, and that subsequent duplications resulted in three lrrtm/ctnna gene pairs present in most jawed vertebrates. However, we detected three prominent exceptions: (1) the lrrtm3/ctnna3 gene structure is absent in the ray-finned fish genomes, (2) the genomes of clawed frogs contain ctnna1 but lack the corresponding nested (lrrtm2) gene, and (3) contain lrrtm3 gene in the syntenic position but lack the corresponding host (ctnna3) gene. We identified several other protein-coding nested gene structures of which either the host or the nested gene has presumably been lost in the frog or chicken lineages. Interestingly, majority of these nested genes comprise LRR domains. PMID:24587117
The ‘Tully monster’ is a vertebrate
NASA Astrophysics Data System (ADS)
McCoy, Victoria E.; Saupe, Erin E.; Lamsdell, James C.; Tarhan, Lidya G.; McMahon, Sean; Lidgard, Scott; Mayer, Paul; Whalen, Christopher D.; Soriano, Carmen; Finney, Lydia; Vogt, Stefan; Clark, Elizabeth G.; Anderson, Ross P.; Petermann, Holger; Locatelli, Emma R.; Briggs, Derek E. G.
2016-04-01
Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the ‘problem of the problematica’, particularly the ‘weird wonders’ of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium, popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309-307 million years ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans, polychaetes, gastropods, conodonts, and the stem arthropod Opabinia. Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes. We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys, a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years.
The ‘Tully monster’ is a vertebrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Victoria E.; Saupe, Erin E.; Lamsdell, James C.
Abstract Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the 'problem of the problematica'(1), particularly the 'weird wonders'(2) of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium(3), popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309-307 million yearsmore » ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans(4,5), polychaetes(4), gastropods(4), conodonts(6), and the stem arthropod Opabinia(4). Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes(3-6). We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys(7-9), a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years« less
Phylogenetic distribution of a male pheromone that may exploit a nonsexual preference in lampreys
Buchinger, Tyler J.; Bussy, Ugo; Li, Ke; Wang, Huiyong; Huertas, Mar; Baker, Cindy F.; Jia, Liang; Hayes, Michael C.; Li, Weiming; Johnson, Nicholas
2017-01-01
Pheromones are among the most important sexual signals used by organisms throughout the animal kingdom. However, few are identified in vertebrates, leaving the evolutionary mechanisms underlying vertebrate pheromones poorly understood. Pre-existing biases in receivers’ perceptual systems shape visual and auditory signaling systems, but studies on how receiver biases influence the evolution of pheromone communication remain sparse. The lamprey Petromyzon marinus uses a relatively well-understood suite of pheromones and offers a unique opportunity to study the evolution of vertebrate pheromone communication. Previous studies indicate that male signaling with the mating pheromone 3-keto petromyzonol sulfate (3kPZS) may exploit a nonsexual attraction to juvenile-released 3kPZS that guides migration into productive rearing habitat. Here, we infer the distribution of male signaling with 3kPZS using a phylogenetic comparison comprising six of ten genera and two of three families. Our results indicate that only P. marinus and Ichthyomyzon castaneus release 3kPZS at high rates. Olfactory and behavioral assays with P. marinus, I. castaneus and a subset of three other species that do not use 3kPZS as a sexual signal indicate that male signaling might drive the evolution of female adaptations to detect 3kPZS with specific olfactory mechanisms and respond to 3kPZS with targeted attraction relevant during mate search. We postulate that 3kPZS communication evolved independently in I. castaneus and P. marinus, but cannot eliminate the alternative that other species lost 3kPZS communication. Regardless, our results represent a rare macroevolutionary investigation of a vertebrate pheromone and insight into the evolutionary mechanisms underlying pheromone communication.
NASA Astrophysics Data System (ADS)
Hixson, J.; Ward, A. S.; Schmadel, N.; McConville, M.; Remucal, C.
2016-12-01
The transport and fate of contaminants of emerging concern through the environment is complicated by the heterogeneity of natural systems and the unique reaction pathways of individual compounds. Our current evaluation of risk is often simplified to controls assumed to be homogeneous in space and time. However, we know spatial heterogeneity and time-variable reaction rates complicate predictions of environmental transport and fate, and therefore risk. These complications are the result of the interactions between the physical and chemical systems and the time-variable equilibrium that exists between the two. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.
NASA Astrophysics Data System (ADS)
Hixson, J.; Ward, A. S.; McConville, M.; Remucal, C.
2017-12-01
Current understanding of how compounds interact with hydrologic processes or reactive processes have been well established. However, the environmental fate for compounds that interact with hydrologic AND reactive processes is not well known, yet critical in evaluating environmental risk. Evaluations of risk are often simplified to homogenize processes in space and time and to assess processes independently of one another. However, we know spatial heterogeneity and time-variable reactivities complicate predictions of environmental transport and fate, and is further complicated by the interaction of these processes, limiting our ability to accurately predict risk. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.
An eye on the head: the development and evolution of craniofacial muscles.
Sambasivan, Ramkumar; Kuratani, Shigeru; Tajbakhsh, Shahragim
2011-06-01
Skeletal muscles exert diverse functions, enabling both crushing with great force and movement with exquisite precision. A remarkably distinct repertoire of genes and ontological features characterise this tissue, and recent evidence has shown that skeletal muscles of the head, the craniofacial muscles, are evolutionarily, morphologically and molecularly distinct from those of the trunk. Here, we review the molecular basis of craniofacial muscle development and discuss how this process is different to trunk and limb muscle development. Through evolutionary comparisons of primitive chordates (such as amphioxus) and jawless vertebrates (such as lampreys) with jawed vertebrates, we also provide some clues as to how this dichotomy arose.
Fish community change in Lake Superior, 1970-2000
Bronte, Charles R.; Ebener, Mark P.; Schreiner, Donald R.; DeVault, David S.; Petzold, Michael M.; Jensen, Douglas A.; Richards, Carl; Lozano, Steven J.
2003-01-01
Changes in Lake Superior's fish community are reviewed from 1970 to 2000. Lake trout (Salvelinus namaycush) and lake whitefish (Coregonus clupeaformis) stocks have increased substantially and may be approaching ancestral states. Lake herring (Coregonus artedi) have also recovered, but under sporadic recruitment. Contaminant levels have declined and are in equilibrium with inputs, but toxaphene levels are higher than in all other Great Lakes. Sea lamprey (Petromyzon marinus) control, harvest limits, and stocking fostered recoveries of lake trout and allowed establishment of small nonnative salmonine populations. Natural reproduction supports most salmonine populations, therefore further stocking is not required. Nonnative salmonines will likely remain minor components of the fish community. Forage biomass has shifted from exotic rainbow smelt (Osmerus mordax) to native species, and high predation may prevent their recovery. Introductions of exotics have increased and threaten the recovering fish community. Agencies have little influence on the abundance of forage fish or the major predator, siscowet lake trout, and must now focus on habitat protection and enhancement in nearshore areas and prevent additional species introductions to further restoration. Persistence of Lake Superior's native deepwater species is in contrast to other Great Lakes where restoration will be difficult in the absence of these ecologically important fishes.
Rapid loss of lampricide from catfish and rainbow trout following routine treatment
Dawson, V.K.; Schreier, Theresa M.; Boogaard, M.A.; Spanjers, N.J.; Gingerich, W.H.
2002-01-01
Rainbow trout (Oncorhynchus mykiss) and channel catfish (Ictalurus punctatus) were exposed to 3-trifluoromethyl-4-nitrophenol (TFM) and Bayluscide (niclosamide) during a sea lamprey control treatment of the Ford River, located in the upper peninsula of Michigan. Caged fish were exposed to a nominal concentration of 0.02 mg/L of niclosamide for a period of approximately 12 h. Samples of fillet tissue were collected from each fish species before treatment and at 6, 12, 18, 24, 48, 96, and 192 h following the arrival of the block of chemical at the exposure site. The fish were dissected, homogenized, extracted, and analyzed by high-performance liquid chromatography. The major residues found in the fillet tissues were TFM and niclosamide. Niclosamide concentrations were highest 12 h after arrival of the chemical block for rainbow trout (0.0395 ?? 0.0251 ??g/g) and 18 h after arrival of the chemical block for channel catfish (0.0465 ?? 0.0212 ??g/g). Residues decreased rapidly after the block of lampricide had passed and were below the detection limits in fillets of rainbow trout within 24 h and channel catfish within 96 h after the arrival of the lampricide.
Lake Ontario: Food web dynamics in a changing ecosystem (1970-2000)
Mills, E.L.; Casselman, J.M.; Dermott, R.; Fitzsimons, J.D.; Gal, G.; Holeck, K. T.; Hoyle, J.A.; Johannsson, O.E.; Lantry, B.F.; Makarewicz, J.C.; Millard, E.S.; Munawar, I.F.; Munawar, M.; O'Gorman, R.; Owens, R.W.; Rudstam, L. G.; Schaner, T.; Stewart, T.J.
2003-01-01
We examined stressors that have led to profound ecological changes in the Lake Ontario ecosystem and its fish community since 1970. The most notable changes have been reductions in phosphorus loading, invasion by Dreissena spp., fisheries management through stocking of exotic salmonids and control of sea lamprey (Petromyzon marinus), and fish harvest by anglers and double-crested cormorants (Phalacrocorax auritus). The response to these stressors has led to (i) declines in both algal photosynthesis and epilimnetic zooplankton production, (ii) decreases in alewife (Alosa pseudoharengus) abundance, (iii) declines in native Diporeia and lake whitefish (Coregonus clupeaformis), (iv) behavioral shifts in alewife spatial distribution benefitting native lake trout (Salvelinus namaycush), threespine stickleback (Gasterosteus aculeatus), and emerald shiner (Notropis atherinoides) populations, (v) dramatic increases in water clarity, (vi) predation impacts by cormorants on select fish species, and (vii) lake trout recruitment bottlenecks associated with alewife-induced thiamine deficiency. We expect stressor responses associated with anthropogenic forces like exotic species invasions and global climate warming to continue to impact the Lake Ontario ecosystem in the future and recommend continuous long-term ecological studies to enhance scientific understanding and management of this important resource.
Biederman, Michelle K; Nelson, Megan M; Asalone, Kathryn C; Pedersen, Alyssa L; Saldanha, Colin J; Bracht, John R
2018-05-21
Developmentally programmed genome rearrangements are rare in vertebrates, but have been reported in scattered lineages including the bandicoot, hagfish, lamprey, and zebra finch (Taeniopygia guttata) [1]. In the finch, a well-studied animal model for neuroendocrinology and vocal learning [2], one such programmed genome rearrangement involves a germline-restricted chromosome, or GRC, which is found in germlines of both sexes but eliminated from mature sperm [3, 4]. Transmitted only through the oocyte, it displays uniparental female-driven inheritance, and early in embryonic development is apparently eliminated from all somatic tissue in both sexes [3, 4]. The GRC comprises the longest finch chromosome at over 120 million base pairs [3], and previously the only known GRC-derived sequence was repetitive and non-coding [5]. Because the zebra finch genome project was sourced from male muscle (somatic) tissue [6], the remaining genomic sequence and protein-coding content of the GRC remain unknown. Here we report the first protein-coding gene from the GRC: a member of the α-soluble N-ethylmaleimide sensitive fusion protein (NSF) attachment protein (α-SNAP) family hitherto missing from zebra finch gene annotations. In addition to the GRC-encoded α-SNAP, we find an additional paralogous α-SNAP residing in the somatic genome (a somatolog)-making the zebra finch the first example in which α-SNAP is not a single-copy gene. We show divergent, sex-biased expression for the paralogs and also that positive selection is detectable across the bird α-SNAP lineage, including the GRC-encoded α-SNAP. This study presents the identification and evolutionary characterization of the first protein-coding GRC gene in any organism. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Więcaszek, Beata; Sobecka, Ewa; Keszka, Sławomir; Stepanowska, Katarzyna; Dudko, Stanisław; Biernaczyk, Marcin; Wrzecionkowski, Konrad
2015-12-01
This paper presents the results of studies on endangered and rare non-commercial fish species ( Spinachia spinachia, Nerophis ophidion, Syngnathus typhle, Agonus cataphractus, Pholis gunnellus, Enchelyopus cimbrius, Cyclopterus lumpus) and one lamprey species ( Lampetra fluviatilis), recorded as bycatch during monitoring surveys in 2010-2013 in the Pomeranian Bay. Two species were observed for the first time in the Pomeranian Bay: A. cataphractus and E. cimbrius. Descriptions of parasite fauna are provided for C. lumpus and E. cimbrius, which were infected with four pathogenic species from Neomonada, Digenea, Nematoda, and Acanthocephala. Almost all parasite species were new in the hosts examined.
NASA Astrophysics Data System (ADS)
Raschka, Sebastian; Scott, Anne M.; Liu, Nan; Gunturu, Santosh; Huertas, Mar; Li, Weiming; Kuhn, Leslie A.
2018-03-01
While the advantage of screening vast databases of molecules to cover greater molecular diversity is often mentioned, in reality, only a few studies have been published demonstrating inhibitor discovery by screening more than a million compounds for features that mimic a known three-dimensional (3D) ligand. Two factors contribute: the general difficulty of discovering potent inhibitors, and the lack of free, user-friendly software to incorporate project-specific knowledge and user hypotheses into 3D ligand-based screening. The Screenlamp modular toolkit presented here was developed with these needs in mind. We show Screenlamp's ability to screen more than 12 million commercially available molecules and identify potent in vivo inhibitors of a G protein-coupled bile acid receptor within the first year of a discovery project. This pheromone receptor governs sea lamprey reproductive behavior, and to our knowledge, this project is the first to establish the efficacy of computational screening in discovering lead compounds for aquatic invasive species control. Significant enhancement in activity came from selecting compounds based on one of the hypotheses: that matching two distal oxygen groups in the 3D structure of the pheromone is crucial for activity. Six of the 15 most active compounds met these criteria. A second hypothesis—that presence of an alkyl sulfate side chain results in high activity—identified another 6 compounds in the top 10, demonstrating the significant benefits of hypothesis-driven screening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Abhishek, E-mail: akumar@bot.uni-kiel.de; Bhandari, Anita; Sarde, Sandeep J.
Highlights: • C1 inhibitors of fishes have two Ig domains fused in the N-terminal end. • Spliceosomal introns gain in two Ig domains of selected ray-finned fishes. • C1 inhibitors gene is maintained from 450 MY on the same locus. • C1 inhibitors gene is missing in frog and lampreys. • C1 inhibitors of tetrapod and fishes differ in the RCL region. - Abstract: C1 inhibitor (C1IN) is a multi-facet serine protease inhibitor in the plasma cascades, inhibiting several proteases, notably, regulates both complement and contact system activation. Despite huge advancements in the understanding of C1IN based on biochemical propertiesmore » and its roles in the plasma cascades, the phylogenetic history of C1IN remains uncharacterized. To date, there is no comprehensive study illustrating the phylogenetic history of C1IN. Herein, we explored phylogenetic history of C1IN gene in vertebrates. Fishes have C1IN with two immunoglobulin like domains attached in the N-terminal region. The RCL regions of CIIN from fishes and tetrapod genomes have variations at the positions P2 and P1′. Gene structures of C1IN gene from selected ray-finned fishes varied in the Ig domain region with creation of novel intron splitting exon Im2 into Im2a and Im2b. This intron is limited to ray-finned fishes with genome size reduced below 1 Gb. Hence, we suggest that genome compaction and associated double-strand break repairs are behind this intron gain. This study reveals the evolutionary history of C1IN and confirmed that this gene remains the same locus for ∼450 MY in 52 vertebrates analysed, but it is not found in frogs and lampreys.« less
Takei, Yoshio; Joss, Jean M P; Kloas, Werner; Rankin, J Cliff
2004-02-01
In order to delineate further the molecular evolution of the renin-angiotensin system in vertebrates, angiotensin I (ANG I) has been isolated after incubation of plasma and kidney extracts of emu (Dromiceus novaehollandiae), axolotl (Ambystoma mexicanum), and sea lamprey (Petromyzon marinus). The identified sequences were [Asp1, Val5, Asn9] ANG I in emu, [Asp1, Val5, His9] ANG I in axolotl, and [Asn1, Val5, Thr9] ANG I in sea lamprey. These results confirmed the previous findings that tetrapods have Asp and fishes including cyclostomes have Asn at the N-terminus, and that the amino acid residue at position 9 of ANG I was highly variable but, those at other positions were well conserved among different species. Since Asp and Asn are convertible during incubation, angiotensinogen sequences were searched in the genome and/or EST database to determine the N-terminal amino acid residue from the gene. The screening detected 12 tetrapod (10 mammalian, one avian, and one amphibian) and seven teleostean angiotensinogen sequences. Among them, all tetrapods have [Asp1] ANG except for Xenopus, and all teleosts have [Asn1] ANG, thereby confirming the above rule. Comparison of the vasopressor activity in the eel revealed that [Asn1] ANG I and II were more potent than [Asp1] peptides, which was opposite to the previous results in mammals and birds, in which [Asp1] ANG I and II were more potent. Collectively, the present results support the general rule that tetrapods have [Asp1] ANG and fishes including cyclostomes have [Asn1] ANG. However, an aquatic anuran (Xenopus) has [Asn1] ANG in its gene despite another aquatic urodele (axolotl) has [Asp1] ANG. From the functional viewpoint, homologous [Asn1] ANG was more potent in fish as is homologous [Asp1] ANG in tetrapods, suggesting that ANG II molecule has undergone co-evolution with its receptor during vertebrate phylogeny.