Sample records for lamprophyres

  1. An overview of the association between lamprophyric intrusions and rare-metal mineralization

    NASA Astrophysics Data System (ADS)

    Štemprok, Miroslav; Seifert, Thomas

    2011-01-01

    Granite-related rare metal districts in orogenic settings are occasionally associated with lamprophyre dikes. We recorded 63 occurrences of lamprophyres in bimodal dike suites of about 200 granite bodies related to rare metal deposits. Most lamprophyres occur in Paleozoic and Mesozoic metallogenic provinces in the northern hemisphere. Lamprophyres which are associated with rare metal deposits are calc-alkaline (kersantites, minettes, spessartites) or more rarely alkaline lamprophyres (camptonites, monchiquites) which occur in the roof zone of complex granitic bodies as pre-granitic, intra-granitic, intra-ore or post-ore dikes. Most lamprophyres are spatially associated with dominant felsic dikes and/or with mafic dikes represented by diorites or diabases. Diorites and lamprophyres occasionally exhibit transitional compositions from one to another. Lamprophyres share common geochemical characteristics of highly evolved granitoids such as enrichment in K and F, increased abundances of Li, Rb, and Cs and enrichment in some HFSE (e.g. Zr, U, Th, Mo, Sn, W). Lamprophyres in rare metal districts testify to accessibility of the upper crust to mantle products at the time of rare metal mineralization and possible influence of mantle melts or mantle-derived fluids in the differentiation of granitic melts in the lower crust.

  2. Geochemical fingerprints of Late Triassic calc-alkaline lamprophyres from the Eastern Pontides, NE Turkey: A key to understanding lamprophyre formation in a subduction-related environment

    NASA Astrophysics Data System (ADS)

    Karsli, Orhan; Dokuz, Abdurrahman; Kaliwoda, Melanie; Uysal, Ibrahim; Aydin, Faruk; Kandemir, Raif; Fehr, Karl-Thomas

    2014-05-01

    The Eastern Pontides in NE Turkey is one of the major orogenic belts in Anatolia. In this paper, we report our new 40Ar/39Ar dating, mineral chemistry, major and trace elements and Sr-Nd-Pb isotopic analyses of the lamprophyre intrusions in this region. The lamprophyres are widely scattered and intrude Late Carboniferous granitoid rocks. The lamprophyres exhibit fine-grained textures and are mineralogically uniform. Hornblende 40Ar/39Ar dating yielded a plateau age of 216.01 ± 10.64 Ma. Based on their geochemistry, mineral compositions and paragenesis, the lamprophyres are classified as calc-alkaline lamprophyres in general and spessartites in particular, which are rich in large ion lithophile elements (e.g., Rb, Ba, K) but depleted in Nb and Ti. Our samples exhibit moderate fractionation in LREE patterns approximately 100 times that of chondrite but HREE abundances less than 10 times that of chondrite. These calc-alkaline lamprophyres display a range of ISr (216 Ma) values from 0.70619 to 0.71291 and ɛNd (216 Ma) values from - 1.4 to 4.1, with TDM = 1.11 to 2.20 Ga. Their Pb isotopic ratios indicate an enriched mantle source. The enrichment process is related to metasomatism of a subcontinental lithospheric mantle source, which is caused by a large quantity of H2O-rich fluids, rather than sediments released from oceanic crust at depth during the closure of the Paleotethys Ocean in Triassic times. All of the geochemical data and the trace element modeling suggest that the primary magma of the calc-alkaline to high-K calc-alkaline spessartites was generated at depth by a low degree of partial melting (~ 1-10%) of a previously enriched lithospheric mantle wedge consisting of phlogopite-bearing spinel peridotite. The ascendance of a hot asthenosphere triggered by extensional events caused partial melting of mantle material. The rising melts were accompanied by fractional crystallization and crustal contamination en route to the surface. All of the geochemical

  3. Mid Carboniferous lamprophyres, Cobequid Fault Zone, eastern Canada, linked to sodic granites, voluminous gabbro, and albitization

    NASA Astrophysics Data System (ADS)

    Pe-Piper, Georgia; Piper, David J. W.; Papoutsa, Angeliki

    2018-01-01

    Major intra-continental shear zones developed during the later stages of continental collision in a back-arc setting are sites of prolonged magmatism. Mantle metasomatism results from both melting of subducted sediments and oceanic crust. In the Cobequid Fault Zone of the northern Appalachians, back-arc A-type granites and gabbros dated ca. 360 Ma are locally intruded by lamprophyric dykes dated ca. 335 Ma. All the lamprophyres are kersantites with biotite and albite, lesser ilmenite, titanite and fluorapatite, and minor magmatic calcite, allanite, pyrite, magnetite, quartz and K-feldspar in some samples. The lamprophyres show enrichment in Rb, Ba, K, Th and REE and classify as calc-alkaline lamprophyre on the basis of biotite and whole rock chemistry. Pb isotopes lie on a mixing line between normal mantle-derived gabbro and OIB magma. Nd isotopes range from 1.3-3.5 εNdt, a little lower than in local gabbro. Most lamprophyres have δ18O = 3.8-4.4‰. Country rock is cut by pyrite-(Mg)-chlorite veins with euhedral allanite crystals that resemble the lamprophyres mineralogically, with the Mg-chlorite representing chloritized glass. Early Carboniferous unenriched mafic dykes and minor volcanic rocks are widespread along the major active strike-slip fault zones. The lamprophyres are geographically restricted to within 10 km of a small granitoid pluton with some sodic amphibole and widespread albitization. This was displaced by early Carboniferous strike-slip faulting from its original position close to the large Wentworth Pluton, the site of mantle-derived sodic amphibole granite, a major late gabbro pluton, and a volcanic carapace several kilometres thick, previously demonstrated to be the site of mantle upwelling and metasomatism. The age of the lamprophyres implies that enriched source material in upper lithospheric mantle or lower crust was displaced 50 km by crustal scale strike-slip faulting after enrichment by the mantle upwelling before lamprophyre emplacement

  4. Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian; Jenner, George A.; Foley, Stephen F.; Heaman, Larry; Besserer, Dean; Kjarsgaard, Bruce A.; Ryan, Bruce

    2004-09-01

    Geological mapping and diamond exploration in northern Quebec and Labrador has revealed an undeformed ultramafic dyke swarm in the northern Torngat Mountains. The dyke rocks are dominated by an olivine-phlogopite mineralogy and contain varying amounts of primary carbonate. Their mineralogy, mineral compositional trends and the presence of typomorphic minerals (e.g. kimzeyitic garnet), indicate that these dykes comprise an ultramafic lamprophyre suite grading into carbonatite. Recognized rock varieties are aillikite, mela-aillikite and subordinate carbonatite. Carbonatite and aillikite have in common high carbonate content and a lack of clinopyroxene. In contrast, mela-aillikites are richer in mafic silicate minerals, in particular clinopyroxene and amphibole, and contain only small amounts of primary carbonate. The modal mineralogy and textures of the dyke varieties are gradational, indicating that they represent end-members in a compositional continuum. The Torngat ultramafic lamprophyres are characterized by high but variable MgO (10-25 wt.%), CaO (5-20 wt.%), TiO2 (3-10 wt.%) and K2O (1-4 wt.%), but low SiO2 (22-37 wt.%) and Al2O3 (2-6 wt.%). Higher SiO2, Al2O3, Na2O and lower CO2 content distinguish the mela-aillikites from the aillikites. Whereas the bulk rock major and trace element concentrations of the aillikites and mela-aillikites overlap, there is no fractional crystallization relation between them. The major and trace element characteristics imply related parental magmas, with minor olivine and Cr-spinel fractionation accounting for intra-group variation. The Torngat ultramafic lamprophyres have a Neoproterozoic age and are spatially and compositionally closely related with the Neoproterozoic ultramafic lamprophyres from central West Greenland. Ultramafic potassic-to-carbonatitic magmatism occurred in both eastern Laurentia and western Baltica during the Late Neoproterozoic. It can be inferred from the emplacement ages of the alkaline complexes and

  5. Crustal xenoliths in post-collisional Variscan lamprophyres: records of late Variscan collision and orogenic extension

    NASA Astrophysics Data System (ADS)

    Soder, Christian; Ludwig, Thomas; Schwarz, Winfried; Trieloff, Mario

    2017-04-01

    Crustal xenoliths entrained in post-collisional shoshonitic lamprophyres from the Variscan Odenwald (Mid-German Crystalline Zone, MGCZ) include felsic granulites (garnet, quartz, plagioclase, K-feldspar, biotite, omphacite, rutile) and basaltic eclogites (omphacite, garnet, quartz, kyanite, phengite, epidote, rutile). Classical thermobarometry, Zr-in-rutile thermometry and equilibrium phase diagrams reveal temperatures of 700-800°C and pressures of 1.7-1.8 GPa. Both lithologies record isothermal decompression resulting in partial melting at still elevated pressures (1.3-1.5 kbar) before entrainment into the magma. The development of diverse fine-grained microstructures is linked to the interaction with the rising melt. The eclogitic garnet preserves compositional sector zonation patterns, which indicate rapid crystal growth, shortly followed by overgrowth/recrystallization during decompression. The preservation of these zonation patterns indicates crystallization immediately before the lamprophyre magmatism. These findings are supported by SIMS U-Pb dating of zircon rims, which gave ages of 330±3 Ma for both lithologies, indistinguishable from the published age of lamprophyre emplacement. Therefore, the xenoliths are a unique document of the late Variscan collisional process with marked crustal thickening to 60 km and a subsequent decompression event. Magmatic protolith ages are 430 Ma for the basaltic eclogite and 2.1 Ga for the felsic granulite. Silurian magmatism is well established within the MGCZ while the Paleoproterozoic age represents a hitherto unknown magmatic event.

  6. Mid-Tertiary (25-21 Ma) lamprophyres in NW Mexico derived from subduction-modified subcontinental lithospheric mantle in an extensional backarc environment following steepening of the Benioff zone

    NASA Astrophysics Data System (ADS)

    Orozco-Garza, Alberto; Dostal, Jaroslav; Keppie, J. Duncan; Paz-Moreno, Francisco A.

    2013-04-01

    The mid-Tertiary lamprophyre dike swarm (~ 8 km × 2.5 km in size) from Hermosillo (Sonora, NW Mexico) has calc-alkaline characteristics and includes NNW-striking, amphibole-phyric spessartite (~ 85% of the swarm) and NNE-striking, phlogopite-phyric kersantite. The 40Ar/39Ar geochronology of amphibole and phlogopite gives overlapping plateau ages ranging from 25 to 21 Ma. Although all the lamprophyres are enriched in incompatible elements and display negative Nb-Ta and Ti anomalies on the primitive mantle-normalized plots, kersantite has higher K/Na, La/Yb, P, Ti and incompatible trace elements (e.g., Zr) compared to spessartite. The lamprophyres have radiogenic Sr and Nd isotopic signatures (87Sr/86Sr ~ 0.7057-0.7065 and ɛNd ~- 1 to - 2.3) suggesting derivation from the subcontinental lithospheric mantle that was previously modified by subduction-related fluids. This mantle is similar to that beneath the southern Grenvillian orogen, which has younger TDM ages than the 1.6-1.7 Ga TDM ages of the Caborca block. The lamprophyric magmas were generated at various mantle depths at the southwestern edge of North America. Intrusion of the lamprophyres was synchronous with extension that produced normal faults and core complexes with WSW-vergence. Extension occurred immediately following steepening of the Benioff zone, during which the magmatic arc migrated from east to west of Hermosillo, and the lamprophyres were intruded just behind the contemporaneous arc.

  7. Phenocrysts and megacrysts of olivines from ultramafic lamprophyres of the Chadobets and Il'bokich uplifts, Southwestern Siberia

    NASA Astrophysics Data System (ADS)

    Smirnova, Maria; Sazonova, Lyudmila; Nosova, Anna; Kargin, Alexey; Shcherbakov, Vasiliy

    2017-04-01

    The study of composition and zoning of olivines from ultramafic lamprophyres of the SW Siberian craton allowed us to distinguish their main types (phenocrysts and megacrysts) and to estimate the possible P-T conditions of phenocryst crystallization. The studied rocks occur as sills and dikes in the Chadobets and Il'bokich uplifts of the Irkeneeva-Chadobets trough. The ultramafic lamprophyres of these uplifts are spaced around 80 km apart and differ in age by more than 150 Ma. The rocks of the Il'bokich Uplift are dated at Devonian, while the age of the Chadobets Complex is restricted to the Triassic. The episodes of these complexes formation were separated by the large flood basalt event. According to classification (Tappe et al., 2005), the studied rocks are aillikite and damtjernite. Olivine phenocrysts from the rocks of the Il'bokich and Chadobets complexes are represented by sub- and euhedral grains. They are composed of core, transitional zone, and rim. Olivine cores in the aillikites of the Il'bokich Complex are characterized by Mg# 89; CaO - 0.13-0.14 wt %; TiO2 around 0.03 wt %, Al - 200-380 ppm, and Cr - 130-340 ppm. The cores of phenocrysts from the Chadobets lamprophyres have Mg# 85-87, CaO varying within 0.1-0.2 wt %, and TiO2 - 0.02-0.05 wt %. The megacrysts differ from the phenocrysts of these rocks in the lower Mg# 83-84 and CaO - 0.08-0.14 wt % at higher TiO2 - 0.04-0.05 wt %. Al - 100-700 ppm, Cr - 20-65 ppm. The most striking difference between olivines of the two complexes is observed between their Mg#-Ni relations. The cores of olivine phenocrysts from the Il'bokich lamprophyres are characterized by the high Mg number (Mg# = 89) and Ni content (2800-3000 ppm), whereas olivine cores of the Chadobets aillikites have higher contents of Ni (3000-3500 ppm) at lowered (Mg# = 86-88). These characteristics reflect the compositions of their protolith. The temperature was estimated using monomineral olivine thermometer based on the contents of Cr and Al

  8. Paleoproterozoic mantle enrichment beneath the Fennoscandian Shield: Isotopic insight from carbonatites and lamprophyres

    NASA Astrophysics Data System (ADS)

    Woodard, Jeremy; Huhma, Hannu

    2015-11-01

    The isotope geochemistry of carbonatite from Naantali, southwest Finland as well as lamprophyres from North Savo, eastern Finland and the NW Ladoga region, northwest Russia has been investigated. These Paleoproterozoic dykes represent melting of an enriched mantle source spread over a 96,000 km2 area within the Fennoscandian Shield and intruded during post-collisional extension. The carbonatites have εNd(T) ranging from -0.8 to + 0.4, while lamprophyres have εNd(T) between -0.8 and + 0.3. 87Sr/86Sr ratios from the primary carbonatite samples from Naantali form a tight cluster between 0.70283 and 0.70303. For the lamprophyres, 87Sr/86Sr ratios range from 0.70327-0.70339 from NW Ladoga and 0.70316-0.70327 from North Savo. These characteristics are consistent with derivation from an enriched mantle showing an EMII trend, formed when sediments of mixed Archean and Proterozoic provenance were recycled back into the mantle via subduction during the preceding Svecofennian orogeny. Linear mixing of these subducted sediments and depleted mantle shows that a multistage process of enrichment is required to produce the observed isotope compositions. Batch melting of the subducted sediment first generated hydrous alkaline silicate melt, which crystallised as mica- and amphibole-rich veins in the mantle wedge. Continued melting of the subducted material under higher P-T conditions produced carbonatite melt, which infiltrated preferentially into this vein network. Assuming the silicate melt exerts greater influence on 87Sr/86Sr ratios while the carbonatite more greatly affects 143Nd/144Nd ratios, the model predicts significant regional variation in the silicate metasomatism with more consistent carbonatite metasomatism throughout the Fennoscandian subcontinental lithospheric mantle. The subducted sediments were likely also rich in organic matter, resulting in highly negative δ13C in mantle carbonates. The model predicts a higher content of organic carbon in the sediments in

  9. Trace elements in olivine of ultramafic lamprophyres controlled by phlogopite-rich mineral assemblages in the mantle source

    NASA Astrophysics Data System (ADS)

    Veter, Marina; Foley, Stephen F.; Mertz-Kraus, Regina; Groschopf, Nora

    2017-11-01

    Carbonate-rich ultramafic lamprophyres (aillikites) and associated rocks characteristically occur during the early stages of thinning and rifting of cratonic mantle lithosphere, prior to the eruption of melilitites, nephelinites and alkali basalts. It is accepted that they require volatile-rich melting conditions, and the presence of phlogopite and carbonate in the source, but the exact source rock assemblages are debated. Melts similar to carbonate-rich ultramafic lamprophyres (aillikites) have been produced by melting of peridotites in the presence of CO2 and H2O, whereas isotopes and trace elements appear to favor distinct phlogopite-bearing rocks. Olivine macrocrysts in aillikites are usually rounded and abraded, so that it is debated whether they are phenocrysts or mantle xenocrysts. We have analyzed minor and trace element composition in olivines from the type aillikites from Aillik Bay in Labrador, Canada. We characterize five groups of olivines: [1] mantle xenocrysts, [2] the main phenocryst population, and [3] reversely zoned crystals interpreted as phenocrysts from earlier, more fractionated, magma batches, [4] rims on the phenocrysts, which delineate aillikite melt fractionation trends, and [5] rims around the reversely zoned olivines. The main phenocryst population is characterized by mantle-like Ni (averaging 3400 μg g- 1) and Ni/Mg at Mg# of 88-90, overlapping with phenocrysts in ocean island basalts and Mediterranean lamproites. However, they also have low 100 Mn/Fe of 0.9-1.3 and no correlation between Ni and other trace elements (Sc, Co, Li) that would indicate recycled oceanic or continental crust in their sources. The low Mn/Fe without high Ni/Mg, and the high V/Sc (2-5) are inherited from phlogopite in the source that originated by solidification of lamproitic melts at the base of the cratonic lithosphere in a previous stage of igneous activity. The olivine phenocryst compositions are interpreted to result from phlogopite and not high modal

  10. Mississippian lamprophyre dikes in western Sierras Pampeanas, Argentina: Evidence of transtensional tectonics along the SW margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Martina, Federico; Canelo, Horacio N.; Dávila, Federico M.; de Hollanda, María Helena M.; Teixeira, Wilson

    2018-04-01

    In the Famatina range, Sierras Pampeanas of Argentina (SW Gondwana), subvertical calc-alkaline lamprophyric dike swarms crop out through >300 km. The dikes cut Ordovician units with a prominent NW-SE trending and are covered by continental sedimentary successions of Pennsylvanian to Permian age. The dikes show a strong structural control associated with Riedel fault systems. Detailed field analysis suggested a ∼N-S opening direction oblique to the attitude of dike walls and a left-lateral transtensional tectonics during the emplacement. 40Ar/39Ar geochronology of a lamprophyric sample defined a crystallization age (plateau; whole rock) of 357.1 ± 7.1 Ma (MSWD = 2.3). Coetaneous ductile zones with dominant strike-slip motion, documented along western Argentina for >600 km, suggest a regional event in SW Gondwana during the Mississippian. We propose that this deformation was the result of the counterclockwise fast rotation of Gondwana between 365 and 345 Ma, when the Famatina range and western Argentina occupied a sub-polar position. A transform margin along SW Gondwana better explains our (and others) data rather than a subduction margin. This scenario is also consistent with the occurrence of A-type granites and normal-fault basins within the foreland as well as bimodal volcanics.

  11. Lamprophyres from the Harohalli dyke swarm in the Halaguru and Mysore areas, Southern India: Implications for backarc basin magmatism

    NASA Astrophysics Data System (ADS)

    Lanjewar, Shubhangi; Randive, Kirtikumar

    2018-05-01

    The Bangalore and Harohalli dyke swarms occur in the eastern part of the Dharwar craton. The older Bangalore dyke swarm is made up of dolerites, trending east-west, and the younger contains alkaline dykes that trend approximately north-south. The lamprophyres of the Harohalli dyke swarm occur in the Halaguru and Mysore industrial areas where they are exposed as fresh porphyritic - panidiomorphic dykes, containing crustal xenoliths, and showing chilled contacts with the country rock charnokites. They are chiefly composed of amphiboles which form well-developed phenocrysts. Clinopyroxenes are present in some of the dykes. Compositional zoning is observed in clinopyroxenes and amphiboles; their zoning patterns indicate that the magma experienced cryptic variations and that fractional crystallization was a dominant process in the evolution of the Harohalli Lamprophyres (HRL). The HRL are calc-alkaline with shoshonitic affinity and exhibit a K2O/Na2O ratio of ∼1. They show primitive (MORB-like) trace-element characters. LILE and LREE both show marginally enriched patterns; whereas HFSE and HREE show strongly depleted patterns. In the regional geologic sense, HRL dykes are characterised by two major influences; namely, (i) primary source region characteristics, which are geochemically more primitive, roughly falling within fields of primitive - MORB and enriched- MORB and (ii) the continental lithosphere. The data points for the HRL distinctly show their proximity to N-MORB and scatter towards the continental crust. Moreover, features like xenolith assimilation might influence the trace-element characteristics of the HRL dykes. Such magmas with mixed characters can be formed in a backarc basin environment. Geochemical proxies such as Ba/Nb vs Nb/Yb, Ba/Th vs Th/Nb, and the water content of magmas; which have been effectively used for discriminating backarc basin magmas worldwide, also indicate that the HRL magmas were generated in a backarc environment with inputs from

  12. Enigmatic diamonds in Archean calc-alkaline lamprophyres of Wawa, southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    de Stefano, Andrea; Lefebvre, Nathalie; Kopylova, Maya

    2006-02-01

    A suite of 80 macrodiamonds recovered from volcaniclastic breccia of Wawa (southern Ontario) was characterized on the basis of morphology, nitrogen content and aggregation, cathodoluminescence (CL), and mineral inclusions. The host calc-alkaline lamprophyric breccias were emplaced at 2.68-2.74 Ga, contemporaneously with voluminous bimodal volcanism of the Michipicoten greenstone belt. The studied suite of diamonds differs from the vast majority of diamond suites found worldwide. First, the suite is hosted by calc-alkaline lamprophyric volcanics rather than by kimberlite or lamproite. Second, the host volcanic rock is amongst the oldest known diamondiferous rocks on Earth, and has experienced regional metamorphism and deformation. Finally, most diamonds show yellow-orange-red CL and contain mineral inclusions not in equilibrium with each other or their host diamond. The majority of the diamonds in the Wawa suite are colorless, weakly resorbed, octahedral single crystals and aggregates. The diamonds contain 0-740 ppm N and show two modes of N aggregation at 0-30 and 60-95% B-centers suggesting mantle storage at 1,100-1,170°C. Cathodoluminescence and FTIR spectroscopy shows that emission peaks present in orange CL stones do not likely result from irradiation or single substitutional N, in contrast to other diamonds with red CL. The diamonds contain primary inclusions of olivine (Fo92 and Fo89), omphacite, orthopyroxene (En93), pentlandite, albite, and An-rich plagioclase. These peridotitic and eclogitic minerals are commonly found within single diamonds in a mixed paragenesis which also combines shallow and deep phases. This apparent disequilibrium can be explained by effective small-scale mixing of subducted oceanic crust and mantle rocks in fast “cold” plumes ascending from the top of the slabs in convergent margins. Alternatively, the diamonds could have formed in the pre-2.7-2.9 Ga cratonic mantle and experienced subsequent alteration of syngenetic inclusions

  13. Petrogenesis of a Mesoproterozoic shoshonitic lamprophyre dyke from the Wajrakarur kimberlite field, eastern Dharwar craton, southern India: Geochemical and Sr-Nd isotopic evidence for a modified sub-continental lithospheric mantle source

    NASA Astrophysics Data System (ADS)

    Pandey, Ashutosh; Chalapathi Rao, N. V.; Chakrabarti, Ramananda; Pandit, Dinesh; Pankaj, Praveer; Kumar, Alok; Sahoo, Samarendra

    2017-11-01

    Mineralogy and geochemistry of the Udirpikonda lamprophyre, located within the Mesoproterozoic diamondiferous Wajrakarur kimberlite field (WKF), towards the western margin of the Paleo-Mesoproterozoic Cuddapah basin are presented. The lamprophyre is characterised by a panidiomorphic-porphyritic texture imparted by clinopyroxene, olivine and biotite set in a groundmass of feldspar and spinel. Olivine occurs as the microphenocrysts with a composition range of Fo87-78. Clinopyroxenes display reverse as well as oscillatory optical zoning and are diopsidic in nature with a variation in the composition from core (Wo47 En28 Fs20Ac5) to rim (Wo46En41Fs11Ac3). Biotite (Mg# < 0.6) is the only mica present and spinels are titano-magnetites showing ulvospinel- magnetite solid solution. Plagioclase is the dominant feldspar with a variable compositional range of An41-8Ab82-56Or33-3. Based on the mineralogy, the lamprophyre can be classified to be of calc-alkaline variety but its geochemistry display mixed signals of both alkaline and calc-alkaline lamprophyres. K2O/Na2O ranges from 1.49 to 2.79, making it distinctly potassic and highlights its shoshonitic character. Moderate Mg# (60-65), Ni (110-200 ppm) and Cr (110-260 ppm) contents in the bulk-rock indicate substantial fractional crystallization of olivine and clinopyroxene. Fractionated chondrite normalized REE patterns (average (La/Yb)N = 37.56) indicates involvement of an enriched mantle source from within the garnet stability field whereas slightly negative Ta-Nb-Ti and Hf anomalies displayed on the primitive mantle normalized multi-element spider gram highlight involvement of a subducted component in the mantle source. Given the spatial disposition of the studied lamprophyre, the age of the emplacement is considered to be coeval with WKF kimberlites ( 1.1 Ga) and the initial 143Nd/144Nd (0.510065-0.510192) and 87Sr/86Sr (0.705333-0.706223) are strikingly similar to those observed for the Smoky Butte lamproites, Montana

  14. Petrogenesis of an Early Cretaceous lamprophyre dike from Kyoto Prefecture, Japan: Implications for the generation of high-Nb basalt magmas in subduction zones

    NASA Astrophysics Data System (ADS)

    Imaoka, Teruyoshi; Kawabata, Hiroshi; Nagashima, Mariko; Nakashima, Kazuo; Kamei, Atsushi; Yagi, Koshi; Itaya, Tetsumaru; Kiji, Michio

    2017-10-01

    We studied a 107 Ma vogesite (a kind of lamprophyre with alkali-feldspar > plagioclase, and hornblende ± clinopyroxene ± biotite) dike in the Kinki district of the Tamba Belt, Kyoto Prefecture, SW Japan, using petrography, mineralogy, K-Ar ages, and geochemistry to evaluate its petrogenesis and tectonic implications. The dike has the very specific geochemical characteristics of a primitive high-Mg basalt, with 48-50 wt.% SiO2 (anhydrous basis), high values of Mg# (67.3-72.4), and high Cr ( 431 ppm), Ni ( 371 ppm), and Co ( 52 ppm) contents. The vogesite is alkaline and ne-normative with high concentrations of large ion lithophile elements (LILEs: Sr = 1270-2200 ppm, Ba = 3910-26,900 ppm), light rare earth elements (LREEs) [(La/Yb)n = 58-62), and high field strength elements (HFSEs: TiO2 = 1.5-1.8 wt.%, Nb = 24-33 ppm, Zr = 171-251 ppm), and the vogesite can be classified as a high-Nb basalt (HNB). The vogesite was formed by the lowest degree of melting of metasomatized mantle in the garnet stability field, and it may also have been formed at higher melting pressures than other Kyoto lamprophyres. The low degree of melting is the primary reason for the high-Nb content of the vogesite, not mantle metasomatism, and a higher degree of melting would have changed the primary magma composition from a HNB to a Nb-enriched basalt (NEB). The vogesite magma was contaminated at an early stage of its development by melts derived from sediments drawn down a subduction zone, as indicated by some geochemical indices and the initial Nd isotope ratios. The vogesite exhibits positive correlations between εSr(107 Ma) values (5.4-50.9) and its high Ba and Sr concentrations, and it has a limited range of εNd(107 Ma) values (+ 0.97 to + 2.4). The fact that the vogesite contains centimeter-sized xenoliths of chert, which are composed of polycrystalline quartz, calcite, barite, pyrite, and magnetite, indicates that the barium contamination took place during the ascent of the

  15. Early post-collisional Brasiliano magmatism in Botuverá region, Santa Catarina, southern Brazil: Evidence from petrology, geochemistry, isotope geology and geochronology of the diabase and lamprophyre dikes

    NASA Astrophysics Data System (ADS)

    Sacks de Campos, Roberto; Philipp, Ruy Paulo; Massonne, Hans-Joachim; Chemale, Farid

    2012-08-01

    The post-collisional magmatism related to Brasiliano orogeny represented the final stage of the Dom Feliciano Belt in Rio Grande do Sul and Santa Catarina states, southern Brazil, presenting high-K calc-alkaline to shoshonitic and alkaline chemical signatures. Magmatic episodes related to this early period were found in Botuverá region, Santa Catarina state, represented by diabase and lamprophyre (spessartite-type) dikes intrusive in metavolcano-sedimentary rocks of the Brusque Metamorphic Complex (CMB). These dikes have massive structure and igneous textures ranging from very fine equigranular to porphyritic, and the latter is characterized by the presence of phenocrysts of plagioclase and hornblende. The dikes have northeast direction and sharp contacts with the metamorphic rocks, indicating that its position was after the main orogenic regional metamorphism that affected the CMB, interpreted as of collisional nature. The diabase has a basic composition, whereas spessartite lamprophyres are intermediate, with geochemical affinities to the tholeiitic series, with a significant enrichment in light rare-earth elements (LREE) and large ion lithophile elements (LILE) such as Cs, Rb, Ba, K and Sr, and negative anomalies for high-field-strength elements (HFS) such as Nb, Ta, U and T. The concentration of standard trace elements and the Th/Yb and Ta/Yb ratios indicate that these magmas were derived from an enriched mantle source and were strongly contaminated by crust. Except for higher values of K, these features are similar to those found in basaltic volcanic rocks associated with the post-collisional period in south Brazil. The widely dispersed values of ɛND (618), ranging between -13.74 and +5.52, highlights the heterogeneity of the source and reinforces the importance of a crustal component in the generation of these rocks. The extremely low value of ɛNd (618), of -21.67 obtained for spessartite lamprophyres supports the importance of the involvement of crust in

  16. Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian; Foley, Stephen F.; Kjarsgaard, Bruce A.; Romer, Rolf L.; Heaman, Larry M.; Stracke, Andreas; Jenner, George A.

    2008-07-01

    New U-Pb perovskite ages reveal that diamondiferous ultramafic lamprophyre magmas erupted through the Archean crust of northern Labrador and Quebec (eastern Canada) between ca. 610 and 565 Ma, a period of strong rifting activity throughout contiguous Laurentia and Baltica. The observed Torngat carbonate-rich aillikite/carbonatite and carbonate-poor mela-aillikite dyke varieties show a large spread in Sr-Nd-Hf-Pb isotope ratios with pronounced correlations between isotope systems. An isotopically depleted component is identified solely within aillikites ( 87Sr/ 86Sr i = 0.70323-0.70377; ɛNd i = +1.2-+1.8; ɛHf i = +1.4-+3.5; 206Pb/ 204Pb i = 18.2-18.5), whereas some aillikites and all mela-aillikites range to more enriched isotope signatures ( 87Sr/ 86Sr i = 0.70388-0.70523; ɛNd i = -0.5 to -3.9; ɛHf i = -0.6 to -6.0; 206Pb/ 204Pb i = 17.8-18.2). These contrasting isotopic characteristics of aillikites/carbonatites and mela-aillikites, along with subtle differences in their modal carbonate, SiO 2, Al 2O 3, Na 2O, Cs-Rb, and Zr-Hf contents, are consistent with two distinctive metasomatic assemblages of different age in the mantle magma source region. Integration of petrologic, geochemical, and isotopic information leads us to propose that the isotopically enriched component originated from a reduced phlogopite-richterite-Ti-oxide dominated source assemblage that is reminiscent of MARID suite xenoliths. In contrast, the isotopically depleted component was derived from a more oxidized phlogopite-carbonate dominated source assemblage. We argue that low-degree CO 2-rich potassic silicate melts from the convective upper mantle were preferentially channelled into an older, pre-existing MARID-type vein network at the base of the North Atlantic craton lithosphere, where they froze to form new phlogopite-carbonate dominated veins. Continued stretching and thinning of the cratonic lithosphere during the Late Neoproterozoic remobilized the carbonate-rich vein material and

  17. Interaction of extended mantle plume head with ancient lithosphere: evidence from deep-seated xenoliths in basalts and lamprophyre diatremes in Western Syria

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2016-04-01

    The Middle Cretaceous lamprophyric diatremes of the Jabel Ansaria Ridge contain xenoliths of ancient lower crustal rocks mainly represented by the suite of partly altered garnet granulite and eclogite-like rocks, which were formed at the expense of ferrogabbros and ferroclinopyroxenites most likely in the course of underplating of Fe-Ti basalt. Garnet (Alm26Grs11Py63) megacrysts and coarse-granular garnet-clinopyroxene intergrowths are most likely the varieties of rocks of this series. Garnet megacrysts are represented by large (up to 10 cm in diameter) round "nodules," often molten from the surface. Garnet is usually fractured, and the kelyphite material similar to that in rocks of the eclogite-granulite series occurs in fractures. In addition, we found several intergrowths of garnet with large (up to 3-5 cm in length) crystals of high-Al augite with the low of Ti and Na contents like in rocks of the eclogite-granulite suite. Coarse-grained garnet-clinopyroxene-hornblende rocks with spinel, as well as megacrysts of Al-Ti augite with kaersutite, form the second group in prevalence. This group is close to mantle xenoliths of the "black series" in alkali Fe-Ti basalt worldwide. Kaersutite in these rocks contains gaseous cavities, which provides evidence for the origin of rocks at the expense of a strongly fluidized melt/fluid. In contrast to rocks of the eclogite-granulite series, these rocks did not undergo alteration. Garnet Alm19-26Grs12-13.5Py59-67.5 usually associates with dark opaque spinel. In contrast, the Late Cenozoic plateaubasalts of the region practically do not contain lower crustal xenoliths, whereas xenoliths of mantle spinel lherzolite (fragments of the upper cooled rim of the plume head) are widely abundant. According to data of mineralogical thermobarometry, rocks of the eclogite-granulite suite were formed at 13.5-15.4 kbar (depths of 45-54 km) and 965-1115°C. Rocks of this suite are typical representatives of the continental lower crust

  18. A Late Mesozoic short-lived shift from fluid-dominated to sediment-dominated mantle metasomatism in the northeast South China Block and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Pan, Fa-Bin; Jin, Chong; Jia, Bao-Jian; Liu, Rong; He, Xiaobo; Gao, Zhong; Tao, Lu; Zhou, Xiao-Chun; Zhang, Li-Qi

    2018-06-01

    Early Cretaceous northwest (NW)-trending dolerite and amphibole lamprophyre dykes exposed in NW Zhejiang Province provide a number of new insights into the nature of the subcontinental mantle on the northeast (NE) South China Block (SCB). These dykes have a high Al2O3 (14.04-17.89 wt%) and K2O (0.66-2.69 wt%) contents but relatively low Na2O (2.48-4.61 wt%) and TiO2 (1.33-2.79 wt%) makeup alongside moderate K2O/Na2O ratios between 0.26 and 1.04. These amphibole lamprophyre dykes also have higher MgO, Cr, and Ni contents than those of comparable dolerites that have SiO2 content ranging from 46.32 to 49.87 wt%. The most striking feature of these intrusions is that they contain higher contents of Rb, Th, U, Nb, Ta, and LREE compared to their dolerite counterparts, although both amphibole lamprophyres and dolerites do exhibit similar geochemical patterns that are indicative of subduction-related origins. These features imply that an ambient peridotitic mantle that acted as the source for the amphibole lamprophyre magma source may have reacted with silicate-rich melts leading to olivine consumption while maintaining orthopyroxene. The geochemical composition of these dolerites are likely influenced to a variable extent by the fractionation of olivine, orthopyroxene, clinopyroxene, Fe-Ti oxides, and apatite, while their amphibole lamprophyre counterparts have been modified to a minor degree by amphibole fractionation. Measured Sr-Nd isotopic compositions suggest relatively constant Nd isotopic compositions (-0.36 to +1.52) with more variable Sr isotopic compositions (0.7071 to 0.7306). We hence propose that both the dolerite and amphibole lamprophyre dykes in this region are the products of mantle source metasomatism by the subducted Paleo-Pacific slab. The dolerite dykes are mainly associated with slab-derived fluids, while the lamprophyre dykes are related to both slab-derived fluids and sediment melts. Evidence in support of metasomatism comprising distinct two

  19. Enigma of lamprohyres

    NASA Astrophysics Data System (ADS)

    Vasyukova, Elena

    2013-04-01

    Till now lamprophyres are 'the camera obscure' in petrology. There is no the complete agreement about the origin, classification, genetic links and their role in the ore formation processes yet. Traditionally ca-alkaline lamprophyres associated with the diorites, syenites and granitoids. But modern studies show the geochronological, geochemical and isotopic evidences of the genetic links between lamprophyres and carbonatites (Woodard, 2010;.Coulson et al., 2003) and as a consequence the formation of REE-ore deposits. These authors explain the origin of lamprophyres and carbonatites by the different melting degrees of the metasomatised mantle. In this work we found another mechanism of their generation - the liquation of carbonate-silica melt. Within the area of Chuya complex (South-East Altai-North-West Mongolia) the lamphrophyric dykes are distributed irregularly and create the belts or series of bodies located next to the faults of different order. We studied about 30 dykes from three different areas (South Chuya, Yustyd, Aktash) and related rocks from the Tarakhata intrusion. Very similar rock and mineral composition, close time-space characteristics allow us to suggest their comagmatic nature. In the lamprophyres of South-Chuya area there are strong petrography evidences of liquation of carbonate-silicate melt during their evolution. The ocellar structures with the ocelli composed by the silicate mineral and inter globule material represented by carbonates with ore and other nonmetallic minerals. One of them is Ba-celestine which compiles the intergranular space, veinlets and pseudomorphoses after the silicates. It associates with the apatites, quartz, chlorite, carbonates (calcite and dolomite) and oxides (magnetite, goethite, chromite etc). The multi-element and rare-earth diagrams of all investigated rocks are equal in the form, at the position of HFSE minima, high La/Yb and Gd/Yb relations, except the Ba and Sr anomalies. In the graphs of the south

  20. Variscan potassic dyke magmatism of durbachitic affinity at the southern end of the Bohemian Massif (Lower Austria)

    NASA Astrophysics Data System (ADS)

    Zeitlhofer, Helga; Grasemann, Bernhard; Petrakakis, Konstantin

    2016-06-01

    Dykes in the Strudengau area (SW Moldanubian Zone, Austria) can be mineralogically divided into lamprophyres (spessartites and kersantites) and felsic dykes (granite porphyries, granitic dykes and pegmatoid dykes). Geochemical analyses of 11 lamprophyres and 7 felsic dykes show evidence of fractional crystallization. The lamprophyres are characterized by metaluminous compositions, intermediate SiO2 contents and high amounts of MgO and K2O; these rocks have high Ba (800-3000 ppm) and Sr (250-1000 ppm) contents as well as an enrichment of large-ion lithophile elements over high field strength elements, typical for enriched mantle sources with variable modifications due to fractionation and crustal contamination. This geochemical signature has been reported from durbachites (biotite- and K feldspar-rich mela-syenites particularly characteristic of the Variscan orogen in Central Europe). For most major elements, calculated fractionation trends from crystallization experiments of durbachites give an excellent match with the data from the Strudengau dykes. This suggests that the lamprophyres and felsic dykes were both products of fractional crystallization and subsequent magma mixing of durbachitic and leucogranitic melts. Rb-Sr geochronological data on biotite from five undeformed kersantites and a locally deformed granite porphyry gave cooling ages of c. 334-318 Ma, indicating synchronous intrusion of the dykes with the nearby outcropping Weinsberger granite (part of the South Bohemian Batholith, c. 330-310 Ma). Oriented matrix biotite separated from the locally deformed granite porphyry gave an Rb-Sr age of c. 318 Ma, interpreted as a deformation age during extensional tectonics. We propose a large-scale extensional regime at c. 320 Ma in the Strudengau area, accompanied by plutonism of fractionated magmas of syncollisional mantle-derived sources, mixed with crustal components. This geodynamic setting is comparable to other areas in the Variscan belt documenting an

  1. Mantle evolution in the Variscides of SW England: Geochemical and isotopic constraints from mafic rocks

    NASA Astrophysics Data System (ADS)

    Dupuis, Nicolle E.; Murphy, J. Brendan; Braid, James A.; Shail, Robin K.; Nance, R. Damian

    2016-06-01

    The geology of SW England has long been interpreted to reflect Variscan collisional processes associated with the closure of the Rhenohercynian Ocean and the formation of Pangea. The Cornish peninsula is composed largely of Early Devonian to Late Carboniferous volcanosedimentary successions that were deposited in pre- and syn-collisional basins and were subsequently metamorphosed and deformed during the Variscan orogeny. Voluminous Early Permian granitic magmatism (Cornubian Batholith) is broadly coeval with the emplacement of ca. 280-295 Ma lamprophyric dykes and flows. Although these lamprophyres are well mapped and documented, the processes responsible for their genesis and their relationship with regional Variscan tectonic events are less understood. Pre- to syn-collisional basalts have intra-continental alkalic affinities, and have REE profiles consistent with derivation from the spinel-garnet lherzolite boundary. εNd values for the basalts range from + 0.37 to + 5.2 and TDM ages from 595 Ma to 705 Ma. The lamprophyres are extremely enriched in light rare earth elements, large iron lithophile elements, and are depleted in heavy rare earth elements, suggesting a deep, garnet lherzolite source that was previously metasomatised. They display εNd values ranging from - 1.4 to + 1.4, initial Sr values of ca. 0.706, and TDM ages from 671 Ma to 1031 Ma, suggesting that metasomatism occurred in the Neoproterozoic. Lamprophyres and coeval granite batholiths of similar chemistry to those in Cornwall occur in other regions of the Variscan orogen, including Iberia and Bohemia. By using new geochemical and isotopic data to constrain the evolution of the mantle beneath SW England and the processes associated with the formation of these post-collisional rocks, we may be able to gain a more complete understanding of mantle processes during the waning stages of supercontinent formation.

  2. Chronology of Late Cretaceous igneous and hydrothermal events at the Golden Sunlight gold-silver breccia pipe, southwestern Montana

    USGS Publications Warehouse

    DeWitt, Ed; Foord, Eugene E.; Zartman, Robert E.; Pearson, Robert C.; Foster, Fess

    1996-01-01

    Gold mineralization at the Golden Sunlight breccia pipe, southwestern Montana, is related to emplacement of Late Cretaceous alkali-calcic rhyolite and subsequent collapse of the Belt Supergroup wallrock and rhyolite in the pipe. The pipe is inferred to grade downward into an alkalic porphyry molybdenum system. The pipe is cut by alkalic to sub-alkalic lamprophyre dikes and sills, which locally contain high-grade gold where emplaced along late shear zones and vein systems. Determination of the emplacement age of the rhyolite is hampered by inherited lead or inherited Late Archean zircon from the source region of the rhyolite. An emplacement age of about 80 Ma for the rhyolite can be inferred if a basement age of 2,600 Ma is assumed. This Late Archean age is in agreement with basement ages determined in many parts of southwestern Montana. A 206 Pb- 238 U whole-rock date of 84 ? 18 Ma from altered and mineralized Belt Supergroup strata and rhyolite in the breccia pipe indicates hydrothermal alteration related to gold mineralization in Late Cretaceous time. Although sericite is a relatively widespread hydrothermal mineral, attempts to date the very fine grained material by the 40 Ar- 39 Ar method did not provide a spectra that could be interpreted unambiguously. A 40 Ar- 39 Ar plateau date of 76.9 ? 0.5 Ma from biotite phenocrysts in the lamprophyre indciates intrusion of mafic magma and attendant CO 2 metasomatism in the Late Cretaceous. Fission-track data from zircon in the rhyolite are permissive of slow uplift of the Belt Supergroup strata, 1U.S. Geological Survey, Box 25046, Denver Federal Center, Denver, CO 80225. 2Golden Sunlight Mines, Inc., 453 MT Highway 2 East, Whitehall, MT 59759. rhyolite, and lamprophyre between 55 and 50 Ma, but the data are not definitive. Rhyolitic welded tuff in the informally named units 7, 9, and 11 of the Elkhorn Mountains Volcanics is most similar in chemistry and age to the rhyolite at the Golden Sunlight mine. Trachybasalt in

  3. Unravelling the influence of antecryst settling on the composition of a lamprophyre sill: results from geochemical modelling and principal component analysis

    NASA Astrophysics Data System (ADS)

    Ubide, T.; Arranz, E.; Lago, M.; Galé, C.; Larrea, P.; Tierz, P.

    2012-04-01

    Small igneous intrusions can be regarded as scale models of the behaviour of large magma chambers. We have carried out a detailed petrological and geochemical study across a thin (< 0.5 m) mafic sill located in the Catalonian Coastal Ranges, in the vicinity of Calella de Palafrugell (NE Spain). It is a late-Cretaceous sub-horizontal alkaline lamprophyre, classified as a camptonite. The sill is visibly zoned, showing well developed chilled margins, several levels of vesicles and accumulation of large mafic crystals towards the bottom. According to their composition, these crystals are inherited antecrysts. The whole-rock composition varies across the sill, indicating that the sill is compositionally zoned. However, the mineral compositions are constant, suggesting that the magma emplaced in a single pulse. The whole-rock compositional variations reveal that the chilled margins are more evolved than the centre of the sill; this is especially clear for the lower chilled margin, which defines a marginal reversal. Therefore, the compositional zoning of the sill does not correlate with a normal fractionation trend inwards. Instead, it agrees with the variable proportions of antecrysts across the sill: the higher the proportion of antecrysts, the more primitive the whole-rock composition. In order to verify that the presence of antecrysts controls the whole-rock variations, a trace element model has been developed. Given that the sill displays a porphyritic texture defined by large antecrysts set in a fine-grained groundmass, the geochemical model quantifies the relative contributions of the antecrysts and the groundmass to the whole-rock compositions. Because the antecryst and whole-rock compositions were analysed for the different samples collected across the sill, the groundmass composition could be calculated for each sample. The obtained groundmass compositions are constant and more evolved than whole-rock compositions, supporting that the whole-rock variations are

  4. Ar-Ar ages, Sr-Nd isotope geochemistry, and implications for the origin of the silicate rocks of the Jacupiranga ultramafic-alkaline complex (Brazil)

    NASA Astrophysics Data System (ADS)

    Chmyz, Luanna; Arnaud, Nicolas; Biondi, João Carlos; Azzone, Rogério Guitarrari; Bosch, Delphine; Ruberti, Excelso

    2017-08-01

    The Jacupiranga Complex is one of several Meso-Cenozoic alkaline intrusive complexes along the margins of the intracratonic Paraná Basin in southern Brazil. The complex encompasses a wide range of rock-types, including dunites, wehrlites, clinopyroxenites, melteigites-ijolites, feldspar-bearing rocks (diorites, syenites, and monzonites), lamprophyres and apatite-rich carbonatites. While carbonatites have been extensively investigated over the last decades, little attention has been paid to the silicate rocks. This study presents new geochonological and geochemical data on the Jacupiranga Complex, with particular emphasis on the silicate lithotypes. 40Ar/39Ar ages for different lithotypes range from 133.7 ± 0.5 Ma to 131.4 ± 0.5 Ma, while monzonite zircon analyzed by SHRIMP yields a U-Pb concordia age of 134.9 ± 1.3 Ma. These ages indicate a narrow time frame for the Jacupiranga Complex emplacement, contemporaneous with the Paraná Magmatic Province. Most of the Jacupiranga rocks are SiO2-undersaturated, except for a quartz-normative monzonite. Based on geochemical compositions, the Jacupiranga silicate lithotypes may be separated into two magma-evolution trends: (1) a strongly silica-undersaturated series, comprising part of the clinopyroxenites and the ijolitic rocks, probably related to nephelinite melts and (2) a mildly silica-undersaturated series, related to basanite parental magmas and comprising the feldspar-bearing rocks, phonolites, lamprophyres, and part of the clinopyroxenites. Dunites and wehrlites are characterized by olivine compositionally restricted to the Fo83-84 interval and concentrations of CaO (0.13-0.54 wt%) and NiO (0.19-0.33 wt%) consistent with derivation by fractional crystallization, although it is not clear whether these rocks belong to the nephelinite or basanite series. Lamprophyre dikes within the complex are considered as good representatives of the basanite parental magma. Compositions of calculated melts in equilibrium with

  5. Early Jurassic mafic dykes from the Xiazhuang ore district (South China): Implications for tectonic evolution and uranium metallogenesis

    NASA Astrophysics Data System (ADS)

    Wang, Lian-Xun; Ma, Chang-Qian; Lai, Zhong-Xin; Marks, Michael A. W.; Zhang, Chao; Zhong, Yu-Fang

    2015-12-01

    A comprehensive study on zircon U-Pb age dating, whole-rock geochemistry and Sr-Nd isotope data has been conducted on the mafic rocks of the Xiazhuang uranium ore district and adjacent regions in South China. Based on field work and petrographic features, three rock types (the Kuzhukeng gabbro, the WNW-trending dolerite dykes and the NNE-trending lamprophyre dykes) are distinguished. Early Jurassic SHRIMP and LA-ICPMS ages of zircon for the Kuzhukeng gabbro (198 ± 1 Ma) and WNW-trending dolerite dykes (193 ± 4 Ma) have been obtained, which are 50 Ma older than previously thought (being Cretaceous). These geochronologic data provide new evidence for the rarely identified Early Jurassic magmatisms in South China. Whole-rock geochemical data for the Kuzhukeng gabbro and WNW-trending dolerite dykes are similar, both of which being higher in FeO and TiO2 but lower in SiO2 and K2O than the NNE-trending lamprophyre dykes. Trace element characteristics and Sr-Nd isotope data indicate arc-like signatures similar to the Cretaceous southeast coast basalts of China for the lamprophyre dykes, but an OIB-like geochemical affinity for the high-TiO2 mafic rocks similar to the Permo/Triassic Emeishan flood basalts and the Middle Jurassic Ningyuan alkaline basalts. We propose that the lamprophyre dykes formed in an arc volcanic system driven by the subduction of the paleo-Pacific plate. In contrast, the Kuzhukeng gabbro and associated dolerite dykes record the post-orogenic (Indosinian) extension event in the Tethyan tectonic regime. This further implies that the Indosinian extension may have lasted until the Early Jurassic, and therefore, the subduction of the paleo-Pacific plate in south China was probably later than this period. Most U deposits of the Xiazhuang area are located at the intersection between the WNW-trending dolerite dykes and the NNE-trending faults within the Triassic granites of eastern Guidong complex, South China. Previous metallogenesis studies assumed that

  6. The Kimberlites and related rocks of the Kuruman Kimberlite Province, Kaapvaal Craton, South Africa

    NASA Astrophysics Data System (ADS)

    Donnelly, Cara L.; Griffin, William L.; O'Reilly, Suzanne Y.; Pearson, Norman J.; Shee, Simon R.

    2011-03-01

    The Kuruman Kimberlite Province is comprised of 16 small pipes and dikes and contains some of the oldest known kimberlites (>1.6 Ga). In this study, 12 intrusions are subdivided into three groups with distinct petrology, age, and geochemical and isotopic compositions: (1) kimberlites with groundmass perovskites defining a Pb-Pb isochron age of 1787 ± 69 Ma, (2) orangeite with a U-Pb perovskite age of 124 ± 16 Ma, and (3) ultramafic lamprophyres (aillikite and mela-aillikite) with a zircon U-Pb age of 1642 ± 46 Ma. The magma type varies across the Province, with kimberlites in the east, lamprophyres in the west and orangeite and ultramafic lamprophyres to the south. Differences in the age and petrogenesis of the X007 orangeite and Clarksdale and Aalwynkop aillikites suggest that these intrusions are probably unrelated to the Kuruman Province. Kimberlite and orangeite whole-rock major and trace element compositions are similar to other South African localities. Compositionally, the aillikites typically lie off kimberlite and orangeite trends. Groundmass mineral chemistry of the kimberlites has some features more typical of orangeites. Kimberlite whole-rock Sr and Nd isotopes show zoning across the Province. When the kimberlites erupted at ~1.8 Ga, they sampled a core volume (ca 50 km across) of relatively depleted SCLM that was partially surrounded by a rim of more metasomatized mantle. This zonation may have been related to the development of the adjacent Kheis Belt (oldest rocks ~2.0 Ga), as weaker zones surrounding the more resistant core section of SCLM were more extensively metasomatized.

  7. The Late Cretaceous Alkaline Igneous Province in the Iberian Peninsula, and its tectonic significance

    NASA Astrophysics Data System (ADS)

    Rock, N. M. S.

    1982-04-01

    The Iberian Province consists of the following: the three subvolcanic, syenitic, major intrusive complexes of Monchique, Sines and Sintra in W. and SW Portugal, together with their basanitic/lamprophyric minor intrusive suites; basanitic volcanic complexes around Lisbon; at least some of a widespread suite of basanitic to theralitic minor intrusives in west central Portugal; about 80 small basanitic/lamprophyric to nepheline syenitic intrusions scattered through the Pyrenees, NE Spain, the French Corbières, and off the coast of NW Spain; and the Ormonde Seamount of the Gorringe Bank off the SW coast of Portugal. Most of these occurrences have been dated isotopically or from field evidence as Late Cretaceous. Geological and petrological details of the various occurrences are compiled and reviewed. Primary basanitic magmas were probably parental to the entire Province, and generated syenitic magmas by differentiation processes; oversaturated rocks were produced by alkali loss and perhaps also by crustal involvement. The Iberian Province is related to the opening of the N. Atlantic, specifically that of the Bay of Biscay.

  8. Magmatism and fenitization in the Cretaceous potassium-alkaline-carbonatitic complex of Ipanema São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Guarino, Vincenza; Azzone, Rogério Guitarrari; Brotzu, Pietro; de Barros Gomes, Celso; Melluso, Leone; Morbidelli, Lucio; Ruberti, Excelso; Tassinari, Colombo Celso Gaeta; Brilli, Mauro

    2012-01-01

    The Ipanema alkaline-carbonatitic complex is part of the Meso-Cenozoic alkaline magmatism located within the southeastern part of the Brazilian Platform. Drill-core and field sampling have indicated the occurrence of glimmerites, with subordinate shonkinites (mela-syenites), clinopyroxene-bearing glimmerites, diorites and syenites. The glimmerites are cross-cut by lamprophyric dykes and calciocarbonatites. Fenitization has deeply affected the country rocks, originating dioritic and syenitic rocks. The Ipanema rocks show a distinct potassic affinity. The initial Sr-Nd- isotopic composition of the Ipanema rocks (87Sr/86Sr = 0.70661-0.70754 and 143Nd/144Nd = 0.51169-0.51181) is similar to that of tholeiitic and potassium-rich-alkaline rocks of the Eastern Paraguay. Stable isotope data for the Ipanema calciocarbonatite suggest interaction with fluids at temperatures typical of hydrothermal stages, as hypothesized for other carbonatite complexes from southeastern Brazil. The chemical differences between the lamprophyre, glimmerites, carbonatites, apatitites and magnetitites, and the absence of marked REE enrichment in the evolved lithologies, all indicate that fractional crystallization and accumulus of liquidus phases in a magma reservoir, likely coupled with liquid immiscibility processes, may have played an important role in the genesis of the Ipanema rocks.

  9. Southern African Phanerozoic Carbonatites: Perspectives on Their Sources and Petrogeneses

    NASA Astrophysics Data System (ADS)

    Janney, P. E.; Ogungbuyi, P. I.; Marageni, M.; Harris, C.; Reid, D. L.

    2017-12-01

    Found worldwide, carbonatites are particularly numerous in southern Africa and reflect one expression of abundant intraplate alkaline magmatism of Proterozoic to Paleogene age in the region. Phanerozoic southern African carbonatites tend to be concentrated near the margins of the continent (especially the western margin), and near the East African Rift, and often occur in discrete magmatic lineations also containing kimberlites, melilitites, nephelinites and differentiated silica-undersaturated rocks such as phonolites and syenites. We present a synthesis of geochemical and radiogenic and stable isotope results for southern African carbonatites, including new trace element and isotope data from four Phanerozoic carbonatite complexes in South Africa and Namibia: Marinkas Quellen (MQ; southernmost Namibia, ≈525 Ma), Saltpeterkop (SPK; near Sutherland, South Africa, 74 Ma), Zandkopsdrift (ZKD; near Garies, South Africa, 55 Ma, a major REE deposit in development), and Dicker Willem (DW; near Aus, southern Namibia, 49 Ma). All are located in the Early-mid Proterozoic Namaqua-Natal mobile belt. These carbonatite complexes are each associated with linear, NE-SW oriented magmatic provinces, i.e., the Kuboos-Bremen Line of felsic alkaline intrusions and ultramafic lamprophyres (MQ); the Western Cape olivine melilitite province (SPK); the Namaqualand-Bushmanland-Warmbad province of olivine melilitites and kimberlites (ZKD) and the Schwarzeberg-Klinghardt-Gibeon swarm of nephelinites, phonolites and kimberlites (DW), the latter three provinces are of Paleogene to Late Cretaceous age and are clearly age progressive. Each of the four carbonatite complexes contain silica-undersaturated igneous rocks such as potassic trachyte (MQ, SPK & DW), alkaline lamprophyre (ZKD), ijolite (MQ & DW) and olivine melilitite (ZKD and SPK). Most also contain hybrid silicate-carbonate igneous rocks with <35 wt.% SiO2 and ≥20 wt.% CO2 such as nepheline sövite (DW), aillikite (ZKD) and other

  10. Magnetic fabrics of the Cretaceous dike swarms from São Paulo coastline (SE Brazil): Its relationship with South Atlantic Ocean opening

    NASA Astrophysics Data System (ADS)

    Raposo, M. Irene B.

    2017-11-01

    Magnetic fabric and rock magnetism studies were performed on 91 dikes from Cretaceous diabase and lamprophyre dike swarms that outcrop side by side on the beaches of NE São Paulo State coastline. The dikes crosscut Archean and Proterozoic poly-metamorphic rocks of the Costeiro Complex. Their thicknesses range from a few centimeters to 2 m for lamprophyre and up to about 10 m for the diabase. They trend predominantly N30°-60°E with vertical dip. Magnetic fabrics were determined using anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). Rock-magnetism measurements reveal that magnetite grains in the range of 2-5 μm are the magnetic mineral of both swarms. For most dikes, these grains are the carriers of bulk magnetic susceptibility but, surprisingly, are not responsible for the AMS which is carried by Fe-bearing minerals as shown by AARM. The main AMS fabric recognized in the swarms is due to magma flow, in which the Kmax-Kint plane is parallel to the dike's plane, and the magnetic foliation pole (Kmin) is perpendicular to it. The analysis of the Kmax inclination showed that the dikes were fed by horizontal to vertical flows. However, for the majority of the dikes the AMS and AARM tensors are not coaxial. The AARM lineation (AARMmax) is oriented N30-60W, approximately perpendicular to AMS lineation (Kmax) suggesting that magnetite grains were rotated approximately 90° anticlockwise from the dike plane. The AARMmax orientation is similar to the direction of a fault system mainly in the Santos marginal basin which was formed in the Cretaceous rifting during the South Atlantic opening. Therefore the AARM fabric is tectonic in origin, and the comparison of AMS and AARM fabrics suggests that lamprophyre and diabase dikes were emplaced in three distinct events in the earliest stages of the South Atlantic opening.

  11. Contemporaneous alkaline and tholeiitic magmatism in the Ponta Grossa Arch, Paraná-Etendeka Magmatic Province: Constraints from U-Pb zircon/baddeleyite and 40Ar/39Ar phlogopite dating of the José Fernandes Gabbro and mafic dykes

    NASA Astrophysics Data System (ADS)

    Almeida, Vidyã V.; Janasi, Valdecir A.; Heaman, Larry M.; Shaulis, Barry J.; Hollanda, Maria Helena B. M.; Renne, Paul R.

    2018-04-01

    We report the first high-precision ID-TIMS U-Pb baddeleyite/zircon and 40Ar/39Ar step-heating phlogopite age data for diabase and lamprophyre dykes and a mafic intrusion (José Fernandes Gabbro) located within the Ponta Grossa Arch, Brazil, in order to constrain the temporal evolution between Early Cretaceous tholeiitic and alkaline magmatism of the Paraná-Etendeka Magmatic Province. U-Pb dates from chemically abraded zircon data yielded the best estimate for the emplacement ages of a high Ti-P-Sr basaltic dyke (133.9 ± 0.2 Ma), a dyke with basaltic andesite composition (133.4 ± 0.2 Ma) and the José Fernandes Gabbro (134.5 ± 0.1 Ma). A 40Ar/39Ar phlogopite step-heating age of 133.7 ± 0.1 Ma from a lamprophyre dyke is identical within error to the U-Pb age of the diabase dykes, indicating that tholeiitic and alkaline magmatism were coeval in the Ponta Grossa Arch. Although nearly all analysed fractions are concordant and show low analytical uncertainties (± 0.3-0.9 Ma for baddeleyite; 0.1-0.4 Ma for zircon; 2σ), Pb loss is observed in all baddeleyite fractions and in some initial zircon fractions not submitted to the most extreme chemical abrasion treatment. The resulting age spread may reflect intense and continued magmatic activity in the Ponta Grossa Arch.

  12. Processes accompanying of mantle plume emplacement into continental lithosphere: Evidence from NW Arabian plate, Western Syria

    NASA Astrophysics Data System (ADS)

    Sharkov, E. V.

    2015-12-01

    Lower crustal xenoliths occurred in the Middle Cretaceous lamprophyre diatremes in Jabel Ansaria (Western Syria) (Sharkov et al., 1992). They are represented mainly garnet granulites and eclogite-like rocks, which underwent by deformations and retrograde metamorphism, and younger fresh pegmatoid garnet-kaersutite-clinopyroxene (Al-Ti augite) rocks; mantle peridotites are absent in these populations. According to mineralogical geothermobarometers, forming of garnet-granulite suite rocks occurred under pressure 13.5-15.4 kbar (depths 45-54 kn) and temperature 965-1115oC. At the same time, among populations of mantle xenoliths in the Late Cenozoic platobasalts of the region, quite the contrary, lower crustal xenoliths are absent, however, predominated spinel lherzolites (fragments of upper cooled rim of a plume head), derived from the close depths (30-40 km: Sharkov, Bogatikov, 2015). From this follows that ancient continental crust was existed here even in the Middle Cretaceous, but in the Late Cenozoic was removed by extended mantle plume head; at that upper sialic crust was not involved in geomechanic processes, because Precambrian metamorphic rocks survived as a basement for Cambrian to Cenozoic sedimentary cover of Arabian platform. In other words, though cardinal rebuilding of deep-seated structure of the region occurred in the Late Cenozoic but it did not affect on the upper shell of the ancient lithosphere. Because composition of mantle xenolithis in basalts is practically similar worldwide, we suggest that deep-seated processes are analogous also. As emplacement of the mantle plume heads accompanied by powerful basaltic magmatism, very likely that range of lower (mafic) continental crust existence is very convenient for extension of plume heads and their adiabatic melting. If such level, because of whatever reasons, was not reached, melting was limited but appeared excess of volatile matters which led to forming of lamprophyre or even kimberlite.

  13. Rare Mineralogy in Alkaline Ultramafic Rocks, Western Kentucky Fluorspar District

    NASA Astrophysics Data System (ADS)

    Anderson, W.

    2017-12-01

    The alkaline ultramafic intrusive dike complex in the Western Kentucky Fluorspar District contains unusual mineralogy that was derived from mantle magma sources. Lamprophyre and peridotite petrologic types occur in the district where altered fractionated peridotites are enriched in Rare Earth Elements (REE) and some lamprophyre facies are depleted in incompatible elements. Unusual minerals in dikes, determined by petrography and X-ray diffraction, include schorlomite and andradite titanium garnets, astrophyllite, spodumene, niobium rutile, wüstite, fluoro-tetraferriphlogopite, villiaumite, molybdenite, and fluocerite, a REE-bearing fluoride fluorescent mineral. Mixing of MVT sphalerite ore fluids accompanies a mid-stage igneous alteration and intrusion event consistent with paragenetic studies. The presence of lithium in the spodumene and fluoro-tetraferriphlogopite suggests a lithium phase in the mineral fluids, and the presence of enriched REE in dikes and fluorite mineralization suggest a metasomatic event. Several of these rare minerals have never been described in the fluorspar district, and their occurrence suggests deep mantle metasomatism. Several REE-bearing fluoride minerals occur in the dikes and in other worldwide occurrences, they are usually associated with nepheline syenite and carbonatite differentiates. There is an early and late stage fluoride mineralization, which accompanied dike intrusion and was also analyzed for REE content. One fluorite group is enriched in LREE and another in MREE, which suggests a bimodal or periodic fluorite emplacement. Whole-rock elemental analysis was chondrite normalized and indicates that some of the dikes are slightly enriched in light REE and show a classic fractionation enrichment. Variations in major-element content; high titanium, niobium, and zirconium values; and high La/Yb, Zr/Y, Zr/Hf, and Nb/Ta ratios suggest metasomatized lithospheric-asthenospheric mantle-sourced intrusions. The high La/Yb ratios in some

  14. Crystallisation of mela-aillikites of the Narsaq region, Gardar alkaline province, south Greenland and relationships to other aillikitic carbonatitic associations in the province

    NASA Astrophysics Data System (ADS)

    Upton, B. G. J.; Craven, J. A.; Kirstein, L. A.

    2006-11-01

    Aillikites (carbonated, melilite-free ultramafic lamprophyres grading to carbonatites) are minor components of the Gardar alkaline igneous province. They occur principally as minor intrusions and as clasts in diatremes, but more voluminous aillikitic intrusions crop out near the Ilímaussaq Complex, which they predate by a few million years. These larger intrusions were emplaced at 1160 ± 5 Ma. They are essentially carbonate-free and, consisting almost wholly of ferromagnesian silicate and oxide minerals, are mela-aillikites. Typically the mela-aillikites are fine-grained rocks composed largely of olivine, clinopyroxene, phlogopite and magnetite that crystallised in open systems, permitting loss of volatile-rich residues. The petrography is highly complex, involving at least 28 mineral species. Pyroxenitic veins were emplaced while the host-rocks were still at high temperatures and represent channels through which fluorinated silico-carbonatitic residual melts escaped, with exsolving CO 2 as propellant. Precipitation of Ca-rich minerals including monticellite, perovskite, vesuvianite, wollastonite and cuspidine was a result of dissociation of the calcium carbonate in the residual melts. Late-stage crystallisation was in a highly oxidising environment in which the 'common minerals' attain extreme compositions (almost pure forsterite, ferrian-diopside, highly magnesian ilmenite, Ba-Ti-rich phlogopite and Sr-rich kaersutite). Spatially associated diatremes may be vents through which CO 2-rich gases erupted. The whole-rock compositions are considered to be well removed from those of co-existing melts: compaction and expulsion of highly mobile residual melts is inferred to have left the mela-aillikites as aberrant cumulates. The mela-aillikites are a late-Gardar manifestation of the aillikitic magmatism that occurred intermittently in the province for over 120 Ma. Repetitive formation of metasomite vein systems in the deep lithospheric mantle is postulated. These

  15. The petrogenesis of oceanic kimberlites and included mantle megacrysts: The Malaitan alnoite

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.

    1988-01-01

    The study of unambiguous suboceanic mantle was facilitated by the occurrence of anomalous kimberlite-type intrusives on Malaita in the Solomon Islands. The pseudo-kimberlites were termed alnoites, and are basically mica lamprophyres with melilite in the ground mass. Alnoitic magmas were explosively intruded into the Ontong Java Plateau (OJP) 34 Ma ago. The OJP is a vastly overthickened portion of the Pacific plate which now abuts the Indo-Australian plate. Malaita is considered to be the obducted leading edge of the OJP. Initial diapiric upwelling beneath the OJP produced the proto-alnoite magma. After impingement on the rigid lithosphere, megacrysts fractionation occurred, with augites precipitating first, representing the parental magma. Sea water-altered oceanic crust, which underplated the OJP, was assimilated by the proto-alnoite magma during megacrysts fractionation (AFC).

  16. Diamonds in an Archean greenstone belt: Diamond suites in unconventional rocks of Wawa, Northern Ontario (Canada)

    NASA Astrophysics Data System (ADS)

    Kopylova, Maya; Bruce, Loryn; Ryder, John

    2010-05-01

    Diamonds typically are found on Archean cratons entrained by younger Phanerozoic kimberlites. In contrast, Wawa diamonds are hosted in "unconventional", non-kimberlitic rocks that formed contemporaneously with the mafic and sedimentary rocks of the Archean Michipicoten Greenstone Belt (MGB). We studied two diamond suites that occur within the 2.9-2.7 Ga greenschist facies rocks of MGB located in the southwest portion of the Superior Craton (E. Canada). The first diamond suite henceforth referred to as the Wawa breccia diamonds (384 stones), are hosted in the 2618-2744 Ma calc-alkaline lamprophyres and volcaniclastic breccias, contemporaneous with pillow basalts and felsic volcanics of MGB. The second suite, the Wawa conglomerate diamonds (80 crystals), are hosted in the 2697-2700 Ma poorly sorted sedimentary polymictic conglomerate which is interpreted as a proximal alluvial fan debris flow in a fan-delta environment. The majority of the diamonds was found within the matrix of the conglomerate. The diamondiferous breccia occurs 20 km north of the town of Wawa, whereas the conglomerate is found 12 km northeast of Wawa. Diamonds from the 2 occurrences were characterized and described for provenance studies. Both the breccia and conglomerate diamonds show similar crystal habits, with the predominance of octahedral single crystals and ~ 10% of cubes. The conglomerate diamonds are significantly less resorbed (no resorbtion in 43% of the stones) than the breccia diamonds (8% non-resorbed stones). In both suites, only 21-24% show high degrees of resorption. The majority of crystals in both suites are colourless, with some yellow, brown and grey stones. Conglomerate diamonds had a wider variety of colours that were not seen in the breccia diamonds, including green and pink. The breccia diamonds contain 0-740 ppm N and show two modes of N aggregation at 0-30 and 60-95%. Among the breccia diamonds, Type IaA stones comprise 17%, whereas IaAB stones make up 49% of the

  17. Carbonatite magmatism in northeast India

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Mamallan, R.; Dwivedy, K. K.

    The Shillong Plateau of northeast India is identified as an alkaline province in view of the development of several carbonatite complexes e.g. the Sung Valley (Jaintia Hills), Jasra (Karbi-Anglong), Samchampi and Barpung (Mikir Hills) and lamprophyre dyke swarms (Swangkre, Garo-Khasi Hills). On the basis of limited KAr data, magmatic activity appears to have taken place over a protracted period, ranging from the Late Jurassic to the Early Cretaceous. The carbonatite complexes of the Shillong Plateau share several common traits: they are emplaced along rift zones, either within Archaean gneisses or Proterozoic metasediments and granites, and exhibit enrichment in the light rare-earth elements, U, Th, Nb, Zr, Ti, K and Na. The enrichment in incompatible trace elements can best be accounted for if the parental magmas were of alkali basaltic type (e.g. mela-nephelinite or carbonate-rich alkali picrite).

  18. Chemistry and petrography of calcite in the KTB pilot borehole, Bavarian Oberpfalz, Germany

    USGS Publications Warehouse

    Komor, S.C.

    1995-01-01

    The KTB pilot borehole in northeast Bavaria, Germany, penetrates 4000 m of gneiss, amphibolite, and subordinate calc-silicate, lamprophyre and metagabbro. There are three types of calcite in the drilled section: 1) metamorphic calcite in calc-silicate and marble; 2) crack-filling calcite in all lithologies; and 3) replacement calcite in altered minerals. Crack-filling and replacement calcite postdate metamorphic calcite. Multiple calcite generations in individual cracks suggest that different generations of water repeatedly flowed through the same cracks. Crack-filling mineral assemblages that include calcite originally formed at temperatures of 150-350??C. Presently, crack-filling calcite is in chemical and isotopic equilibrium with saline to brackish water in the borehole at temperatures of ???120??C. The saline to brackish water contains a significant proportion of meteoric water. Re-equilibration of crack-filling calcite to lower temperatures means that calcite chemistry tells us little about water-rock interactions in the crystal section of temperatures higher than ~120??C. -from Author

  19. The Magnet Cove Rutile Company mine, Hot Spring County, Arkansas

    USGS Publications Warehouse

    Kinney, Douglas M.

    1949-01-01

    The Magnet Cove Rutile Company mine was mapped by the U.S. Geological Survey in November 1944. The pits are on the northern edge of Magnet Cove and have been excavated in the oxidized zone of highly weathered and altered volcanic agglomerate. The agglomerate is composed of altered mafic igneous rocks in a matrix of white to gray clay, a highly altered tuff. The agglomerate appears layered and is composed of tuffaceous clay material below and igneous blocks above. The agglomerate is cut by aplite and lamprophyre dikes. Alkalic syenite dikes crop out on the ridge north of the pits. At the present stage of mine development the rutile seems to be concentrated in a narrow zone beneath the igneous blocks of the agglomerate. Rutile, associated with calcite and pyrite, occurs as disseminated acicular crystals and discontinuous vein-like masses in the altered tuff. Thin veins of rutile locally penetrate the mafic igneous blocks of the agglomerate.

  20. Mafic enclaves in Caucasian granitoids: generation of mantle-looking lamprophyre nodules by reaction with (meta)-sedimentary carbonates

    NASA Astrophysics Data System (ADS)

    Aranovich, Leonid; Dubinina, Elena; Nosova, Anna; Avdeenko, Anna

    2010-05-01

    The occurrence of mafic enclaves in granitic plutons is a very common feature, particularly in the late- to post-collision granites. Origin of the enclaves is conventionally ascribed to the magma mingling processes, with the mafic component being derived from an "enriched" mantle source. Here we report geochemical and petrological data on the late-Miocene granitoid stocks and laccolites of the Caucasian Spring Waters region (CSW), which indicate principal involvement of contamination by (meta)-sedimentary carbonates in the origin of mafic nodules. The stocks and laccolites are composed of amphibole-bearing (Amph) granite, granosyenite, syenite and leucogranite varieties. Mafic nodules are rather abundant in granosyenite and syenite, and almost entirely absent in Amph- and leucogranite. All granitoids except for the leucogranites, which are believed to represent late differentiates of the Amph-granites not contaminated by the carbonates, are enriched in Ba and Sr (1227-1766 and 899-1143 ppm, correspondingly). 87Sr/86Sr ratio in the granitoids, recalculated to the intrusion age (8.3 Myr), falls in a narrow range from 0.7083-0.7086, while epsilon Nd(T) varies from -4.2 to -2.1. The epsilon Nd(T) values point to the crustal precursor for the granitoid melts, while the nearly constant 87Sr/86Sr ratio indicates derivation of all granitoid bodies from the same magma reservoir. Mafic nodules in granosyenite and syenite consist of fluorine-rich phlogopite (Phl, up to 5 wt.% F) + clinopyroxene (Cpx) + subordinate plagioclase (Pl, An14-16) + minor carbonate (Carb, 0.2-0.4 wt.% SrO) and apatite. Rare, up to 100 micron sized Sr-rich (up to 2 wt.% SrO) barite (Brt) grains have been identified in the nodules. Stable isotope composition of both Carb (delta 18O = +18.8 per mille, delta 13C = -13.4 per mille) and Brt (delta 34S = +13.5 per mille) indicate (meta)-sedimentary origin of the carbonate precursor rock. Jurassic dolomite-rich evaporates with the required Sr- and S-isotope signature are indeed present in the crustal section of the CSW. A schematic mafic nodule-producing reaction can be written as: Dolomite + Felsic Melt = Phl + Cpx + Carb + CO2 (1). The pressure (P) - temperature (T) parameters of the nodules' formation have been estimated based on the composition of coexisting Phl, Cpx and Pl using Berman and Aranovich (1996) systematic with the correction for the F-content in the biotite solid solution: P = 1.5 kbar; T = 800oC. Model melt calculations to reproduce early Pl phenocrysts (An14-16) showed that the reacting melt must have been water under-saturated at these P-T conditions (3.5 wt.% H2O). The amount of Dolomite required to produce granosyenite and syenite with the measured geochemical features, has been estimated with a mixing model of Dubinina and Lakshtanov (1997) at about 17 wt.% of the felsic melt. Mixing had occured within the mid-crustal magma chamber prior to intrusion to the present-day upper-crustal levels. References: Berman R.G., Aranovich L.Y. Contrib.Mineral.Petrol. 1996. V.126. Р.1-22. Dubinina E.O., Lakshtanov L.Z. Geochim. Cosmochim. Acta. 1997. V. 61. P. 2265-2273.

  1. Jurassic-Paleogene intra-oceanic magmatic evolution of the Ankara Mélange, North-Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.

    2013-11-01

    Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in North-Central Anatolia include locally coherent ophiolite complexes (~179 Ma and ~80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (~67-63 Ma). All but the arc rocks occur in a shaly-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the Middle to Late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant LILE enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syeno-dioritic plutons exhibit high-K shoshonitic to medium-to high-K calc-alkaline compositions with strong enrichment in LILE, REE and Pb, and initial ϵNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syeno-dioritic plutons) in the southern part. The Early to Late Jurassic and Late Cretaceous epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the Northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the Northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the Early Triassic. The Latest Cretaceous-Early Paleocene island arc volcanic, dike and plutonic rocks with

  2. Genesis of giant Early Proterozoic magnesite and related talc deposits in the Mafeng area, Liaoning Province, NE China

    NASA Astrophysics Data System (ADS)

    Misch, David; Pluch, Hannes; Mali, Heinrich; Ebner, Fritz; Huang, Hui

    2018-07-01

    This study aims to understand the origin of giant magnesite and talc deposits in the Liaohe Group (Liaoning Province, NE China). Magnesite stromatolites and the composition of fluid inclusions suggest that magnesite or high-Mg calcite precipitated directly from strongly restricted seawater pools with meteoric influx. A primary evaporitic origin is also indicated for parts of the investigated dolomites by comparably heavy δ18O values. Later, intense metasomatic activity led to the formation of a magnesite/dolomite succession with irregular contacts and a lighter isotopic signature of oxygen. A slight shift in δ18O to more positive values was observed for talc-hosting magnesite, which can be explained by the incorporation of isotopically light oxygen into talc. This highlights that the hydrothermal processes that led to talc formation influenced the hosting carbonates as well, which is also documented by a tendency to smaller crystal sizes, a higher whiteness and lower trace element concentrations in samples from locations nearby large talc bodies. Although δ13C is suggested to be less sensitive to hydrothermal activity, comparably light δ13C values were determined for magnesite sinters, as well as for remobilized magnesites. In general, the δ13C signature of the investigated magnesites is lighter than expected for Proterozoic carbonates. A single-stage generation of the giant talc deposit in the study area is suggested based on elemental and isotopic data. Later deformation led to a (iso-chemical) re-location of talc at least once. During this process, irregularly distributed, cloudy/massive talc bodies acted as weak zones and were incorporated into shear bands up to several meters in thickness, which form the actually present, structurally controlled deposit. The original ore type is preserved only in areas with minor deformation. Lamprophyre dykes prove Jurassic volcanism and are clearly younger than the main phase of talc generation. A younger (post

  3. Jurassic-Paleogene intraoceanic magmatic evolution of the Ankara Mélange, north-central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.

    2014-02-01

    Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in north-central Anatolia include locally coherent ophiolite complexes (∼ 179 Ma and ∼ 80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 256.9 ± 8.0 Ma, 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma indicating northern Tethys during the late Paleozoic through Cretaceous, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (∼ 67-63 Ma). All but the arc rocks occur in a shale-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the middle to late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant large ion lithophile elements (LILE) enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syenodioritic plutons exhibit high-K shoshonitic to medium- to high-K calc-alkaline compositions with strong enrichment in LILE, rare earth elements (REE) and Pb, and initial ɛNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syenodioritic plutons) in the southern part. The late Permian, Early to Late Jurassic, and Late Cretaceous amphibole-epidote schist, epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the northern

  4. Petrogenesis of ore-bearing porphyry in non-subduction setting: a case study of the Eocene potassic intrusions in the western Yangtze Block

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Liao, Shi-Yong; Zhou, Qing; Zhang, Xin

    2018-05-01

    In the western Yangtze Block, abundant Eocene ( 38-34 Ma) potassic adakite-like intrusions and associated porphyry copper deposits are exposed in non-subduction setting, including Machangjing, Beiya, Binchuan, Habo and Tongchang intrusions. All these ore-bearing porphyries share many geochemical characteristics of adakite such as depletion in heavy rare earth elements (HREEs), enrichment in Sr and Ba, absence of negative Eu anomalies, high SiO2, Al2O3, Sr/Y, La/Yb and low Y, Yb contents. They also exhibit affinities of potassic rocks, e.g., alkali-rich, high K2O/Na2O ratios and enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs). Their Sr-Nd isotopic ratios are similar to coeval shoshonitic lamprophyres. Geochemical data indicate that they were probably produced by partial melting of newly underplated potassic rocks sourced from a modified and enriched lithospheric mantle. These underplated rocks have elevated oxygen fugacity, water and copper contents, with high metallogenic potential. We propose that all the studied potassic rocks were emplaced in a post-collisional setting, associated with the local removal of lithospheric mantle.

  5. Mineralogical, geochemical and isotopic characteristics of alkaline mafic igneous rocks from Punta delle Pietre Nere (Gargano, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Mazzeo, F. C.; Arienzo, I.; Aulinas, M.; Casalini, M.; Di Renzo, V.; D'Antonio, M.

    2018-05-01

    The Punta delle Pietre Nere (Gargano, Southern Italy) igneous body is constituted by gabbroic and syenitic rocks with lamprophyric affinity of different age (58 and 62 Ma, respectively). The chemical composition of the minerals clearly indicates that there is no genetic relationship between the two lithotypes, in agreement with their significant age difference. The chemical (trace elements) and Sr-Nd-Pb-isotopic composition of these rocks highlights an "anorogenic" geochemical affinity derived from mixed DMM-HIMU-EM mantle reservoirs, similarly to other Paleogene-Oligocene magmatic provinces in the Circum-Mediterranean Area. In past literature, these features were interpreted as evidences for enriched asthenospheric mantle plume upwelling from deep regions beneath the Western Europe. Here we suggest that the HIMU-like composition of Punta delle Pietre Nere rocks is related to a lithospheric mantle source bearing amphibole-rich veins, resulting from crystallization of melts within the amphibole stability field in presence of H2O, as shown by several experimental works. Our results suggests partial melting at 70-90 km depth, which corresponds to the spinel-garnet transition (2.5-3.5 GPa) close to the amphibole stability limit ( 90-110 km and 2.5-3.5 GPa).

  6. Intraplate mantle oxidation by volatile-rich silicic magmas

    NASA Astrophysics Data System (ADS)

    Martin, Audrey M.; Médard, Etienne; Righter, Kevin; Lanzirotti, Antonio

    2017-11-01

    The upper subcontinental lithospheric mantle below the French Massif Central is more oxidized than the average continental lithosphere, although the origin of this anomaly remains unknown. Using iron oxidation analysis in clinopyroxene, oxybarometry, and melt inclusions in mantle xenoliths, we show that widespread infiltration of volatile (HCSO)-rich silicic melts played a major role in this oxidation. We propose the first comprehensive model of magmatism and mantle oxidation at an intraplate setting. Two oxidizing events occurred: (1) a 365-286 Ma old magmatic episode that produced alkaline vaugnerites, potassic lamprophyres, and K-rich calc-alkaline granitoids, related to the N-S Rhenohercynian subduction, and (2) < 30 Ma old magmatism related to W-E extension, producing carbonatites and hydrous potassic trachytes. These melts were capable of locally increasing the subcontinental lithospheric mantle fO2 to FMQ + 2.4. Both events originate from the melting of a metasomatized lithosphere containing carbonate + phlogopite ± amphibole. The persistence of this volatile-rich lithospheric source implies the potential for new episodes of volatile-rich magmatism. Similarities with worldwide magmatism also show that the importance of volatiles and the oxidation of the mantle in intraplate regions is underestimated.

  7. Variable sources for Cretaceous to recent HIMU and HIMU-like intraplate magmatism in New Zealand

    NASA Astrophysics Data System (ADS)

    van der Meer, Q. H. A.; Waight, T. E.; Scott, J. M.; Münker, C.

    2017-07-01

    Continental intraplate magmas with isotopic affinities similar to HIMU are identified worldwide. Involvement of an asthenospheric HIMU or HIMU-like source is contested because the characteristic radiogenic Pb compositions coupled with unradiogenic Sr and intermediate Nd and Hf compositions can also result from in-situ ingrowth in metasomatised lithospheric mantle. Sr-Nd-Pb-Hf isotopic compositions of late Cretaceous lamprophyre dikes from Westland, New Zealand, provide new insights into the formation of a HIMU-like alkaline intraplate magmatic province under the Zealandia continent. The oldest (102-100 Ma) calc-alkaline lamprophyres are compositionally similar to the preceding arc-magmatism (206Pb/204Pb(i) = 18.6, 207Pb/204Pb(i) = 15.62, 208Pb/204Pb(i) = 38.6, 87Sr/86Sr(i) = 0.7063-0.7074, εNd(i) = -2.1 - +0.1 and εHf(i) = -0.2 - +2.3) and are interpreted as melts originating from subduction-modified lithosphere. Alkaline dikes erupted on the inboard Gondwana margin shortly after cessation of subduction (92-84 Ma) have heterogeneous isotopic properties: 206Pb/204Pb(i) = 18.7 to 19.4, 207Pb/204Pb(i) = 15.60 to 15.65, 208Pb/204Pb(i) = 38.6 to 39.4, 87Sr/86Sr(i) = 0.7031 to 0.7068, εNd(i) = +4.5 to +8.0 and εHf(i) = +5.1 to +8.0. Melt compositions point to an amphibole-bearing spinel facies lithospheric mantle source enriched by metasomatism that introduced, amongst many elements, U + Th which lead to rapid ingrowth to HIMU-like compositions. Importantly, this HIMU-like source enrichment appears to have completely originated from the complex local subduction history. A coeval episode of alkaline magmatism (mainly 98-82 Ma) occurred outboard of Gondwana's former active margin and on the Hikurangi oceanic plateau (accreted to Zealandia in the Early Cretaceous) with compositions closer to true HIMU (206Pb/204Pb(i) ≈ 20.5, 207Pb/204Pb(i) ≈ 15.7, 208Pb/204Pb(i) ≈ 40.0, εNd(i) ≈ 4.5 and εHf(i) ≈ 4.0). In contrast to the inboard HIMU-like magmas, the

  8. Petrology, geochemistry and geochonology of the Jacupiranga ultramafic, alkaline and carbonatitic complex (southern Brazil)

    NASA Astrophysics Data System (ADS)

    Chmyz, Luanna; Arnaud, Nicolas; Biondi, João Carlos

    2015-04-01

    Brazilian carbonatitic complexes are located at the edges of the Paleozoic basins and are usually associated to tectonic crustal flexuring or deep fault zones. The Jacupiranga Complex is a 65 km² ultrabasic-alkaline carbonatitic intrusive body outcroping at the northeastern border of the Paraná Basin, South of São Paulo State (Brazil). The northern portion of the unit is mostly composed of peridotitic rocks, while the southern part contains ijolites, melteigites, clinopyroxenites and carbonatites which host a phosphate deposit, mined since 1966. Even though the carbonatites only represent 1% of the Complex's area, they have concentrated most of the historical petrogenetic studies, leaving almost unknown the petrogenetic and the geochronological characteristics of other rocks. This explains why the few petrogenetic models from the literature are very partial and mostly unsatisfactory. While the peridotitic rocks are largely hindered by the absence of fresh outcrops, the regolith thickness and the high serpentinization degree, field observations and petrographic data notably show a heterogeneous zone around the peridotitic body. That zone is composed of a large variety of lithotypes over a relatively small area (~9 km²), comprising diorites, monzodiorites, alkali feldspar syenites, trachytes, lamprophyres and syenites. Moreover, these rocks present a restricted lateral continuity (decametric) and a lack of the magmatic bedding characteristic of the ijolitic and clinopyroxenitc rocks. The southern clinopyroxenitic zone (~20 km²) is composed of clinopyroxenite and melteigite with prominent magmatic layering, probably of cumulative origin, and a body of carbonatites which outcrops over less than 1 km2 essentially composed of sovite and beforsite, with abundant apatite. The Jacupiranga Complex characteristics indicate that its formation possibly comprises at least five magmatic events which cannot at present be surely ordinated in time: a) the emplacement of the

  9. Intraplate mantle oxidation by volatile-rich silicic magmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Audrey M.; Médard, Etienne; Righter, Kevin

    The upper subcontinental lithospheric mantle below the French Massif Central is more oxidized than the average continental lithosphere, although the origin of this anomaly remains unknown. Using iron oxidation analysis in clinopyroxene, oxybarometry, and melt inclusions in mantle xenoliths, we show that widespread infiltration of volatile (HCSO)-rich silicic melts played a major role in this oxidation. We propose the first comprehensive model of magmatism and mantle oxidation at an intraplate setting. Two oxidizing events occurred: (1) a 365–286 Ma old magmatic episode that produced alkaline vaugnerites, potassic lamprophyres, and K-rich calc-alkaline granitoids, related to the N–S Rhenohercynian subduction, and (2)more » < 30 Ma old magmatism related to W–E extension, producing carbonatites and hydrous potassic trachytes. These melts were capable of locally increasing the subcontinental lithospheric mantle fO2 to FMQ + 2.4. Both events originate from the melting of a metasomatized lithosphere containing carbonate + phlogopite ± amphibole. The persistence of this volatile-rich lithospheric source implies the potential for new episodes of volatile-rich magmatism. Similarities with worldwide magmatism also show that the importance of volatiles and the oxidation of the mantle in intraplate regions is underestimated.« less

  10. First structural approach to the SE Sardinia mafic dyke swarm

    NASA Astrophysics Data System (ADS)

    Martínez-Poza, Ana Isabel; Druguet, Elena

    2015-04-01

    We present a tectonic study of a NNW-SSE trending mafic dyke swarm intruded into granitoids of the late Variscan Sàrrabus pluton in SE Sardinia (Italy). Porphyritic to lamprophyric dykes show a predominant calc-alkaline affinity and they were emplaced during the Lower Permian at about 290-270 Ma (Vaccaro et al., 1991). The circular scanlines method of Mauldon (2001) was applied to aerial photographs along the coastal exposures to measure fracture frequency tendencies. This, together with field measurements, allowed us to determine the dyke pattern and the joint network present in the granitoid rocks and in the dykes. The subvertical dykes have a ~N135o ~N165o mean trend, with a secondary set at ~N10o which mainly corresponds to a previous intrusive pulse. The joint network has a wider range of orientations, with multiple joint sets present both in the host rocks and in the dykes. A clear distinction cannot be established in terms of orientation between fractures pre-dating and post-dating dykes. Using dyke orientations from field data, we applied the Bussell (1989) method to deduce the mean dilation direction of the dykes (246/02), and then, we performed a paleostress analysis (Jolly and Sanderson 1997) to get the principal stress axes compatibles with dyke emplacement (σ1: 135/77; σ2: 335/13; σ3: 244/05). σ3 is sub-parallel to the obtained sub-horizontal mean dyke opening direction, both being normal to the mean trend of the dyke swarm. During the dyke intrusion, the magmatic pressure (Pm) was lower than σ2. These results allowed us to construct the Mohr circle and to get the driving pressure ratio (R'=0.132) and the stress ratio (φ=0.327). It is inferred that dykes intruded into extensional fractures at relatively low fluid pressure conditions in comparison with the relatively higher regional differential stresses. Dyke emplacement was likely taking place under an ENE-WSW extensional regime (without considering the effect of post-intrusion crustal block

  11. Geodynamic setting of mesothermal gold deposits: An association with accretionary tectonic regimes

    NASA Astrophysics Data System (ADS)

    Kerrich, Robert; Wyman, Derek

    1990-09-01

    Mesothermal gold provinces of Phanerozoic age are characteristically associated with regional structures along which allochthonous terranes have been accreted onto continental margins or arcs. A recurring sequence of transpressive deformation, uplift, late kinematic mineralization, and shoshonitic magmatism is consistent with thermal reequilibration of tectonically thickened crust. Mesothermal gold camps in the Superior province are spatially associated with large-scale structures that have been interpreted as zones of transpressive accretion of individual subprovinces or allochthonous terranes: these boundary structures are characterized by the sequence of significant horizontal shortening, uplift, late-kinematic mineralization, and shoshonitic lamprophyres and therefore may have the same geodynamic significance as Phanerozoic counterparts. In this model, thermal re-equilibration of underplated and subducted oceanic lithosphere and sediments in a transpressive regime, over time scales of 10 to 40 m.y., is a necessary precursor to gold mineralization. Hydrothermal fluids are released along boundary faults and their splays during uplift: the uniform temperature, low salinity and mole% CO2 signify uniform source conditions, whereas the variable O, C, Sr, and Pb isotopic compositions of fluids reflect lithological complexity of the source regions and conduits. Ou the basis of this model it is suggested that mesothermal lode gold deposits are the product of subduction-related crustal underplating and deep, late metamorphism, rather than magmatic or metamorphic events in the supracrustal rocks. Secular variations in the generation of Archean, Proterozoic, and Phanerozoic mesothermal Au provinces reflect the timing of collisional orogenies within terranes of these eras.

  12. Mantle xenocrysts of Chompolo field of the alkaline volcanics, Aldan shield, South Yakutia.

    NASA Astrophysics Data System (ADS)

    Nikolenko, Evgeny; Tychkov, Nikolay; Afanasiev, Valentin

    2015-04-01

    New mineralogical and chemical constraints for 10 dikes, veins (360-800m) and pipes (60-110 m) of Chompolo field discovered in 1957-1958 are discussed. Feld is located within Central Aldan Archean and Paleoproterozoic granulite-orthogneiss superterrane of Aldan-Stanovoy Shield, with peak of metamorphism - 2.1-1.9 Ga (Smelov, Timofeev, 2007). Originally (Shilina and Zeitlin 1959) and later (Kostrovitsky and Garanin 1992, Ashchepkov, Vladykin et al. 2001) these rocks were classified as kimberlites by mineralogy including pyrope, Cr spinel, and Cr diopside. Panina and Vladykin (1994), Davies et al, (2006) identified them as lamprophyres and lamproites. The age of Chompolo rocks is pre-Jurassic (Vladimirov et. al., 1989) dated by 40Ar/39Ar as 164.7±1 Ma (233.7±2.2 next plato)(unpublished Ashchepkov). The Rb-Sr isochron for lamprophyre "intrusions 104" indicate later age of 131±4 Ma (Zaitsev, Smelov, 2010). Magmatic bodies (Aldanskaya, Sputnik, Gornaya, Ogonek, Perevalnaya, Kilier-E) were studied during 2012-2013 fieldworks. Most of igneous rocks occur as inequigranular volcanic breccias with micro- or crypto-crystalline groundmass of K feldspar (up to 16.3 wt.% K2O, up to 3.2 wt.% FeO), chlorite, opaque minerals, melanocratic xenocrysts and phenocrysts (garnet, pyroxene, amphibole, Cr spinel, apatite, zircon, mica), and abundant xenogenic fragments of wallrock and crystalline basement. Garnet chemistry records the presence of mantle and crustal material. Mantle garnets lack the common megacryst, wehrlite, and high-temperature lherzolite varieties. Mantle mineralization prevails in the Aldan dike and the Sputnik, Gornaya, and Ogonek pipes, while crustal and elcogitic material is in the Perevalnaya and Kilier-E pipes. The Cr spinel consists of (in wt%) 3.5 to 50.9 Al2O3, 18.6-63.5 wt% Cr2O3, 6.1 to 19.1 MgO, and 0 to 1.61 TiO2. Al and Cr in spinels are in inverse proportion. The Chompolo alkaline volcanic rocks are most similar to the Central Aldan lamproites in trace

  13. The Krásná Hora, Milešov, and Příčovy Sb-Au ore deposits, Bohemian Massif: mineralogy, fluid inclusions, and stable isotope constraints on the deposit formation

    NASA Astrophysics Data System (ADS)

    Němec, Matěj; Zachariáš, Jiří

    2018-02-01

    The Krásná Hora-Milešov and Příčovy districts (Czech Republic) are the unique examples of Sb-Au subtype orogenic gold deposits in the Bohemian Massif. They are represented by quartz-stibnite veins and massive stibnite lenses grading into low-grade, disseminated ores in altered host rocks. Gold postdates the stibnite and is often replaced by aurostibite. The ore zones are hosted by hydrothermally altered dikes of lamprophyres (Krásná Hora-Milešov) or are associated with local strike-slip faults (Příčovy). Formation of Sb-Au deposits probably occurred shortly after the main gold-bearing event (348-338 Ma; Au-only deposits) in the central part of the Bohemian Massif. Fluid inclusion analyses suggest that stibnite precipitated at 250 to 130 °C and gold at 200 to 130 °C from low-salinity aqueous fluids. The main quartz gangue hosting the ore precipitated from the same type of fluid at about 300 °C. Early quartz-arsenopyrite veins are not associated with the Sb-Au deposition and formed from low-salinity, aqueous-carbonic fluid at higher pressure and temperature ( 250 MPa, 400 °C). The estimated oxygen isotope composition of the ore-bearing fluid (4 ± 1‰ SMOW; based on post-ore calcite) suggests its metamorphic or mixed magmatic-metamorphic origin and excludes the involvement of meteoric water. Rapid cooling of warm hydrothermal fluids reacting with "cold" host rock was probably the most important factor in the formation of both stibnite and gold.

  14. Cretaceous potassic intrusives with affinities to aillikites from Jharia area: Magmatic expression of metasomatically veined and thinned lithospheric mantle beneath Singhbhum Craton, Eastern India

    NASA Astrophysics Data System (ADS)

    Srivastava, Rajesh K.; Chalapathi Rao, N. V.; Sinha, Anup K.

    2009-11-01

    Cretaceous potassic dykes and sills at the Jharia area intrude the Permo-carboniferous coal-bearing Gondwana sediments of the Eastern Damodar Valley, Singhbhum craton. These intrusives are widely regarded as a part of the Mesozoic alkaline and Rajmahal flood basalt magmatism in the Eastern Indian shield. Jharia intrusives display a wide petrographic diversity; olivine, phlogopite and carbonate are the predominant phases whereas apatite and rutile constitute important accessories. Impoverishment in sodium, silica and alumina and enrichment in potassium, titanium and phosphorous are the hallmark of these rocks and in this aspect they are strikingly similar to the rift-related aillikites (ultramafic lamprophyres) of Aillik Bay, Labrador. Crustal contamination of the Jharia magmas is minimal and the incompatible trace element ratios demonstrate (i) their generation by greater degrees of partial melting of a sub-continental lithospheric mantle (SCLM) source similar to that of the kimberlites of Dharwar craton, southern India, and (ii) retention of long-term memories of ancient (Archaean) subduction experienced by their source regions. We infer that a metasomatically veined and thinned lithosphere located at the margin of the Singhbhum craton and the inheritance of an ancient (Archaean) subducted component has played a significant role in deciding the diverging petrological and geochemical characters displayed by the Jharia potassic intrusives: those of kimberlites (orangeites) and lamproites (cratonic signature) and those of aillikites (rift-related signature). A substantial melt component of Jharia potassic intrusives was derived from the SCLM and the melt contribution of the Kerguelen plume is inferred to be minimal.

  15. High Resolution Geophysical Characterization of Fractures within a Granitic Pluton

    NASA Astrophysics Data System (ADS)

    Pérez-Estaún, A.; Carbonell, R.

    2007-12-01

    The FEBEX underground gallery was excavated in the Aar Granite (Switzerland), a heterogeneous granite containing from very leucocratic facies to granodiorites. The geology of the gallery shows the existence of various sets of fractures with different attributes: geometry, kinematics, fracture infilling, etc. The study of the structural data, new observations on the FEBEX gallery itself and borehole televiewer data acquired in the newly drilled boreholes, have allowed to identify four sets of fractures. The first group of fractures has a typical distribution and characteristics of en echelon tension fractures and were formed in late magmatic stages, according with the paragenesis of the minerals that filled the craks. The main strike is around 300 (280-300). These fractures are deformed and displaced by the other group of faults. The second group corresponds to the lamprophyre dikes, of mantelic origin, with an orientation oblique to the tunnel, and slightly oblique to the first group of fractures (strike, 310-330). They were formed during an extension event well evidenced by their irregular margins and flame structures into the granite. The margins of these dikes show several reactivations as strike slip faults. Geophysical data has been acquired to characterized the fracture network of the surrounding volume within the FEBEX gallery. The geophysic data include new borehole logging such as Natural Gamma and Borehole Ground Penetrating radar. The processing and integration of these different data sets indicates that the GPR record can provide images of a third set of fractures, which are probably fluid filled. This set of fractures a subparallel to the tunnel axis and appear to intersect older boreholes which are nearly perpendicular to the axis of the FEBEX gallery.

  16. Archaean lode gold deposits: the solute source problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerrich, R.

    1985-01-01

    On a regional scale lode gold deposits typically occur throughout the entire spectrum of greenstone belt stratigraphy. In the Abitibi Belt lode deposits are sited at the base of the volcanic cycle (Noranda), at the boundary of two volcanic cycles (Timmins) and in the stratigraphically highest groups at Kirkland Lake and Bousquet. The gold deposits are preferentially disposed along major structures apparently demarking rift zones, where extension was accommodated by listric normal faults that subsequently acted as thrusts during compression. These major structures were also sites of emplacement of trondhjemite magmas, lamprophyres and potassic basalts. From previous work Abitibi Beltmore » volcanism spans 2725 to 2703 Ma, batholith emplacement 2675 to 2685 Ma (U-Pb on zircons), and the terminal Matachewan dyke swarm which transects all major structures is 2690 +/- 93 Ma. The lode deposits have age corrected /sup 87/Sr//sup 86/Sr initials of 0.7015 to 0.7025, as well as more radiogenic Pb and higher ..mu.. relative to contemporaneous mantle Sr and Pb isotope ratios. Tourmaline, scheelite, piemontite and apatites separated from 14 deposits all possess /sup 87/Sr//sup 86/Sr 0.7015 to 0.7025. These more radiogenic values contra-indicate a direct mantle source for Sr and Pb, but rather indicate that all mineralizing fluids carry contributions from a felsic crustal source having a significant production of Rb, U and Th radiogenic daughter nuclides as well as from komatiites and tholeiites. Gold, along with an array of lithophile elements including K, Rb, Pb, Li, Sr and CO/sub 2/ were distilled from this mixed source.« less

  17. Bokan Mountain peralkaline granitic complex, Alexander terrane (southeastern Alaska): evidence for Early Jurassic rifting prior to accretion with North America

    USGS Publications Warehouse

    Dostal, Jaroslav; Karl, Susan M.; Keppie, J. Duncan; Kontak, Daniel J.; Shellnutt, J. Gregory

    2013-01-01

    The circular Bokan Mountain complex (BMC) on southern Prince of Wales Island, southernmost Alaska, is a Jurassic peralkaline granitic intrusion about 3 km in diameter that crosscuts igneous and metasedimentary rocks of the Alexander terrane. The BMC hosts significant rare metal (rare earth elements, Y, U, Th, Zr, and Nb) mineralization related to the last stage of BMC emplacement. U–Pb (zircon) and 40Ar/39Ar (amphibole and whole-rock) geochronology indicates the following sequence of intrusive activity: (i) a Paleozoic basement composed mainly of 469 ± 4 Ma granitic rocks; (ii) intrusion of the BMC at 177 ± 1 Ma followed by rapid cooling through ca. 550 °C at 176 ± 1 Ma that was synchronous with mineralization associated with vertical, WNW-trending pegmatites, felsic dikes, and aegirine–fluorite veins and late-stage, sinistral shear deformation; and (iii) intrusion of crosscutting lamprophyre dikes at >150 Ma and again at ca. 105 Ma. The peralkaline nature of the BMC and the WNW trend of associated dikes suggest intrusion during NE–SW rifting that was followed by NE–SW shortening during the waning stages of BMC emplacement. The 177 Ma BMC was synchronous with other magmatic centres in the Alexander terrane, such as (1) the Dora Bay peralkaline stock and (2) the bimodal Moffatt volcanic suite located ∼30 km north and ∼100 km SE of the BMC, respectively. This regional magmatism is interpreted to represent a regional extensional event that precedes deposition of the Late Jurassic – Cretaceous Gravina sequence that oversteps the Wrangellia and Alexander exotic accreted terranes and the Taku and Yukon–Tanana pericratonic terranes of the Canadian–Alaskan Cordillera.

  18. Bokan Mountain peralkaline granitic complex, Alexander terrane (southeastern Alaska): evidence for Early Jurassic rifting prior to accretion with North America

    USGS Publications Warehouse

    Dostal, Jaroslav; Karl, Susan M.; Keppie, J. Duncan; Kontak, Daniel J.; Shellnutt, J. Gregory

    2013-01-01

    The circular Bokan Mountain complex (BMC) on southern Prince of Wales Island, southernmost Alaska, is a Jurassic peralkaline granitic intrusion about 3 km in diameter that crosscuts igneous and metasedimentary rocks of the Alexander terrane. The BMC hosts significant rare metal (rare earth elements, Y, U, Th, Zr, and Nb) mineralization related to the last stage of BMC emplacement. U–Pb (zircon) and 40Ar/39Ar (amphibole and whole-rock) geochronology indicates the following sequence of intrusive activity: (i) a Paleozoic basement composed mainly of 469 ± 4 Ma granitic rocks; (ii) intrusion of the BMC at 177 ± 1 Ma followed by rapid cooling through ca. 550 °C at 176 ± 1 Ma that was synchronous with mineralization associated with vertical, WNW-trending pegmatites, felsic dikes, and aegirine–fluorite veins and late-stage, sinistral shear deformation; and (iii) intrusion of crosscutting lamprophyre dikes at >150 Ma and again at ca. 105 Ma. The peralkaline nature of the BMC and the WNW trend of associated dikes suggest intrusion during NE–SW rifting that was followed by NE–SW shortening during the waning stages of BMC emplacement. The 177 Ma BMC was synchronous with other magmatic centres in the Alexander terrane, such as (1) the Dora Bay peralkaline stock and (2) the bimodal Moffatt volcanic suite located ~30 km north and ~100 km SE of the BMC, respectively. This regional magmatism is interpreted to represent a regional extensional event that precedes deposition of the Late Jurassic – Cretaceous Gravina sequence that oversteps the Wrangellia and Alexander exotic accreted terranes and the Taku and Yukon–Tanana pericratonic terranes of the Canadian–Alaskan Cordillera.

  19. Petrogenesis of strongly alkaline primitive volcanic rocks at the propagating tip of the western branch of the East African Rift

    NASA Astrophysics Data System (ADS)

    Rosenthal, A.; Foley, S. F.; Pearson, D. G.; Nowell, G. M.; Tappe, S.

    2009-06-01

    Strongly silica-undersaturated potassic lavas (kamafugites) and carbonatitic tuffs are characteristic of the Toro-Ankole volcanic field in southwestern Uganda, forming the youngest and most northward volcanics of the western branch of the East African Rift. Lavas contain exceptionally low SiO 2 (31.8-42.8 wt.%), high CaO (up to 16.6 wt.%) and K 2O (up to 7 wt.%). They exhibit moderately enriched correlated Nd ( ɛNd - 0.1 to - 4.7) and Hf ( ɛHf - 0.1 to - 8.8) isotope signatures, indicating time-integrated enrichment in incompatible elements in the source, attributed to mixing between two metasomatic assemblages, a phlogopite-rich MARID-type and a later carbonate-rich assemblage. The restricted range of 87Sr/ 86Sr (0.704599-0.705402) is due to Sr being dominated by the carbonate-rich assemblage, which also imparts a Nd and Hf signature similar to convecting upper mantle. Os isotopes ( γOs up to 290 and variable Os concentrations of 0.056-1.454 ppb) are curved due to mixing between the carbonate-rich metasome and a second end-member that may be derived from melting peridotite, the MARID assemblage, or a mixture of both. Enrichment of the peridotitic mantle in carbonate and silicate melts at 4-6 GPa occurs also in other areas where geochemically similar ultramafic lamprophyres result. The Ugandan kamafugites thus represent the earliest and deepest-derived magmas in a rift through thick continental lithosphere beneath the continuous Congo-Tanzania craton. The Ugandan rift-related mantle enrichment is older than the earliest known tectonic surface expression of the rift.

  20. North Qorveh volcanic field, western Iran: eruption styles, petrology and geological setting

    NASA Astrophysics Data System (ADS)

    Asiabanha, Abbas; Bardintzeff, Jacques-Marie; Veysi, Sara

    2017-11-01

    In the metamorphic Sanandaj-Sirjan Zone of western Iran, the "North Qorveh Volcanic Field" is constituted by Pleistocene scoria cones and associated deposits. Most scoria cones in the area display a simple structure resulted by Strombolian eruptions. Some of them are more complex, such as the Kuh-e Qarineh cone in where basaltic scoriaceous falls are underlain by felsic pyroclastic density-current deposits due to gas streaming at the base of eruption columns and are overlain by basaltic lava flows linked to basaltic fire fountains. Thus, it seems that the latter cones have been likely constructed by more or less violent Strombolian and then Hawaiian activities. Two types of enclaves have been found: gneissic xenoliths scavenged from the metamorphic basement and ultramafic-mafic (37-47 wt% SiO2) cumulates with the same paragenesis as the basaltic scoriaceous falls and lava flows. Three classes of cumulates were identified: (1) apatite mica hornblendite; (2) apatite hornblendite; and (3) olivine biotitite. Moreover, the mineral assemblage of basaltic rocks in the area (olivine (Fo79 - 83) + diopside + pargasite + phlogopite + Fe-Ti oxides ± plagioclase ± apatite) is very similar to lamprophyric facies. So, it seems that the parental magma was originated by mantle metasomatism. Although the felsic pyroclastic density-current deposits show a calcalkaline trend, the whole-rock and mineral chemistry of the basaltic rocks in the area imply an alkaline affinity. Also, the samples show subduction and continental collision signatures. Thus, the alkaline composition of this young volcanic centre in a metamorphic terrain could be explained by descending slab-break off and reactivation of small-scale convection at the lithosphere-asthenosphere boundary.

  1. Pre-eruptive conditions of the Hideaway Park topaz rhyolite: Insights into metal source and evolution of magma parental to the Henderson porphyry molybdenum deposit, Colorado

    USGS Publications Warehouse

    Mercer, Celestine N.; Hofstra, Albert H.; Todorov, Todor I.; Roberge, Julie; Burgisser, Alain; Adams, David T.; Cosca, Michael A.

    2015-01-01

    partitioned. Given that the Henderson deposit contains anomalous abundances of not only Mo, but also W, Pb, Zn, Cu, Bi, Ag, and Mn, we suggest that these metals were sourced from similar fluids exsolved from unerupted portions of the same magmatic system. Trace element ratios imply that Mo was sourced deep, from either the lower crust or metasomatized mantle. The origin of sulfur remains unresolved; however, given the extremely low S solubility of rhyolite melts in the shallow crust we favor the possibility that another source of S might supplement or account for that present in the ore deposit, probably the comagmatic, mantle-derived lamprophyres that occur in minor quantities with the voluminous topaz rhyolites in the area. To account for the 437 Mt of MoS2 (∼1·0 × 106 t Mo) present in the Henderson ore deposit, a volume of ∼45 km3 of Hideaway Park rhyolite magma would have been necessary to supply the Mo (a cylindrical pluton measuring 3·1 km × 6·0 km) along with sparging of ∼6·8 × 105 t of S from ∼0·05 km3 of lamprophyre magma. Based on a weighted mean 40Ar/39Ar age of 27·58 ± 0·24 Ma, similar melt geochemistry, and characteristically F-rich biotite phenocrysts, we conclude that the Hideaway Park tuff was cogenetic with the intrusions at Red Mountain that formed the Henderson deposit.

  2. Petrogenesis of coeval sodic and potassic alkaline magmas at Spanish Peaks, Colorado: Magmatism related to the opening of the Rio Grande rift

    NASA Astrophysics Data System (ADS)

    Lord, A. Brooke Hamil; McGregor, Heath; Roden, Michael F.; Salters, Vincent J. M.; Sarafian, Adam; Leahy, Rory

    2016-07-01

    Approximately coeval, relatively primitive (∼5-10% MgO with exception of a trachyandesite) alkaline mafic dikes and sills at or near Spanish Peaks, CO are divided into relatively sodic and potassic varieties on the basis of K2O/Na2O. Many of these dikes are true lamprophyres. In spite of variable alkali element ratios, the alkaline rocks share a number of geochemical similarities: high LIL element contents, high Ba and similar Sr, Nd and Hf isotope ratios near that of Bulk Earth. One important difference is that the potassic rocks are characterized by lower Al2O3 contents, typically less than 12 wt.%, than the sodic dikes/sills which typically have more than 13 wt.% Al2O3, and this difference is independent of MgO content. We attribute the distinct Al2O3 contents to varying pressure during melting: a mica-bearing, Al-poor vein assemblage for the potassic magmas melted at higher pressure than an aluminous amphibole-bearing vein assemblage for the sodic magmas. Remarkable isotopic and trace element similarities with approximately contemporaneous, nearby Rio Grande rift-related basalts in the San Luis Valley, indicate that the magmatism at Spanish Peaks was rift-related, and that lithosphere sources were shared between some rift magmas and those at Spanish Peaks. High Zn/Fe ratios in the Spanish Peaks mafic rocks point to a clinopyroxene- and garnet-rich source such as lithosphere veined by pyroxenite or eclogite. Lithospheric melting was possibly triggered by foundering of cool, dense lithosphere beneath the Rio Grande rift during the initiation of rifting with the potassic parent magmas generated by higher pressure melting of the foundered lithosphere than the sodic parent magmas. This process, caused by gravitational instability of the lithosphere (Elkins-Tanton, 2007) may be common beneath active continental rifts.

  3. Constraints on lithosphere-asthenosphere melt mixing in basaltic intraplate volcanism from olivine melt inclusions from southern Payenia, Argentina

    NASA Astrophysics Data System (ADS)

    Søager, Nina; Portnyagin, Maxim; Hoernle, Kaj; Holm, Paul Martin; Garbe-Schönberg, Dieter

    2018-06-01

    We present major and trace element compositions of melt inclusions from three alkali basalts from the Río Colorado volcanic field in the Payenia backarc province, Argentina. Modeling of diffusion profiles around the inclusions showed that most inclusions equilibrated <14 days after formation, indicating a short crustal residence time for the magmas and nearly direct ascent through the crust. Despite overlapping host rock isotopic compositions, the inclusions show a large variation in their degree of enrichment, and display trends that we interpret as mixing between asthenospheric OIB-type low K2O-high Nb/U melts and enriched high K2O-low Nb/U lithospheric mantle melts similar in composition to alkaline lamprophyres. The low Nb/U magmas are excessively enriched in the elements Cs, Rb, Ba, Th, U, K, Pb and Cl relative to Nb, Ta and REEs. The enriched low Nb/U components are interpreted to have formed by percolative fractional crystallization of asthenospheric high Nb/U melts in the lithospheric mantle involving crystallization of clinopyroxene, apatite and rutile. The residual fluid-rich melts either mixed directly with new batches of high Nb/U melts or metasomatized and veined the lithospheric mantle which later re-melted during continued volcanism. The major element compositions of the high K2O-low Nb/U components are distinct for the whole rocks and melt inclusions, and most enriched inclusions have lower SiO2 and higher TiO2 contents indicating derivation by melting of amphibole-bearing veins. In contrast, most whole rock low Nb/U basalts have higher SiO2 and lower TiO2 and were most likely formed by melting of pyroxenitic veins or peridotitic metasomatized lithospheric mantle.

  4. U-Pb Geochronology of Devonian Granites in the Meguma Terrane of Nova Scotia, Canada: Evidence for Hotspot Melting of a Neoproterozoic Source.

    PubMed

    Keppie; Krogh

    1999-09-01

    U-Pb isotopic analyses of monazite and zircon from six granitic plutons in the Meguma Terrane yield nearly concordant ages of 373+/-3 Ma, interpreted as the time of intrusion. U-Pb analyses of euhedral zircons with thick rims overgrowing cores, which were abraded to remove all or most of the rim, plot on chords between 370+/-3 and 628+/-33 Ma (Larrys River and Halfway Cove plutons), 372+/-3 and approximately 660 Ma (Shelburne pluton), and 373+/-2 and approximately 732 Ma (Barrington Passage pluton). The upper intercepts are interpreted as the age of magma source, correlatives of which are present in the Avalon Composite Terrane to the north. This basement may be either in depositional or tectonic contact with the overlying Cambro-Ordovician Meguma Group. Other zircons in the granites are generally irregular-euhedral with thin rims, and most U-Pb isotopic analyses fall between two chords from 373-2040 and 373-2300 Ma, with a few lying outside this field. These zircons are probably derived from the country rock (Goldenville Formation), which a previous study has shown contains detrital zircons with concordant U-Pb ages of 3000, 2000, and 600 Ma, and numerous intermediate discordant ages. These new ages, along with published data, document a relatively short (5-10 m.yr.) but voluminous period of magmatism. This age is approximately synchronous with intrusion of mafic rocks and lamprophyre dikes and regional low-pressure metamorphism and was followed by rapid denudation of 5-12 km. These observations may be interpreted in terms of shallowly dipping subduction and overriding of a mantle plume that eventually penetrates through the subducting plate to melt the overriding continental plate. Subsequent northward migration of the plume could explain both the approximately 360 Ma magmatism in the Cobequid Highlands (Avalon Composite Terrane) and the mid-Carboniferous plume-related intrusions around the Magdalen Basin.

  5. Geology and Fluorspar Deposits of the Levias-Keystone and Dike-Eaton Areas, Crittenden County, Kentucky

    USGS Publications Warehouse

    Trace, Robert Denny

    1962-01-01

    The fault systems of the Levias-Keystone and Dike-Eaton areas, in the Kentucky-Illinois fiuorspar district, are a complex northeastward-trending sys- tem and a simple northwestward-trending system of steeply dipping normal faults, associated in part with a lamprophyre dike. Fluorspar mining started in the area about 1900 and, as of 1945, more than 200,000 tons of crude ore probably has been mined; most of the ore was from the Levias-Keystone area. A small quantity of zinc and lead ore also is present in the Dike-Eaton area. The deposits are localized along faults that displace fiat-lying or low-dipping limestones, sandstones, and shales of the Meramec and Chester series of Missis- sippian age. Movement along most of the faults was principally vertical, with displacement as much as 600 feet. Some horizontal movement occurred along at least one fault. Geologic mapping of the surface and data from underground workings have revealed 13 faults in an area of four-fifths of a square mile. Only a few of these faults are known to contain economically important deposits of fiuorspar. The most abundant vein minerals are calcite and fiuorite with subordinate quantities of sphalerite, galena, barite, and quartz. Some weathering products of sphalerite and galena are present also. The veins are dominantly calcite that contains fiuorite lenses but in places are mainly fiuorite having lesser quantities of calcite. Sphalerite- and galena-bearing deposits are present in the Dike-Eaton area. The ore bodies mainly are the result of fissure filling and replacement of calcite by fiuorite; in addition a small amount of limestone wallrock probably has been replaced. Residual concentrations of high-grade fluorspar in the overburden above faults have yielded some so-called gravel fiuorspar. The position of the veins within the faults may be related to one or more factors such as type of wallrock, change in dip of the fault, and amount of displacement.

  6. Concepts for diamond exploration in "on/off craton" areas—British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Simandl, George J.

    2004-09-01

    where geological evidences suggest an ultrahigh pressure (UHP) metamorphic event followed by rapid tectonic exhumation (which could have prevented complete resorption of diamonds on their journey to the surface) are worth investigating. If UHP rocks were intercepted at depth by syn- or post-subduction diamond elevators, such as kimberlites, lamproites, lamprophyres, nephelinites or other alkali volcanic rocks of deep-seated origin, the diamond potential of the area would be even higher.

  7. Petrogenesis of postcollisional magmatism at Scheelite Dome, Yukon, Canada: Evidence for a lithospheric mantle source for magmas associated with intrusion-related gold systems

    USGS Publications Warehouse

    Mair, John L.; Farmer, G. Lang; Groves, David I.; Hart, Craig J.R.; Goldfarb, Richard J.

    2011-01-01

    The type examples for the class of deposits termed intrusion-related gold systems occur in the Tombstone-Tungsten belt of Alaska and Yukon, on the eastern side of the Tintina gold province. In this part of the northern Cordillera, extensive mid-Cretaceous postcollisional plutonism took place following the accretion of exotic terranes to the continental margin. The most cratonward of the resulting plutonic belts comprises small isolated intrusive centers, with compositionally diverse, dominantly potassic rocks, as exemplified at Scheelite Dome, located in central Yukon. Similar to other spatially and temporally related intrusive centers, the Scheelite Dome intrusions are genetically associated with intrusion-related gold deposits. Intrusions have exceptional variability, ranging from volumetrically dominant clinopyroxene-bearing monzogranites, to calc-alkaline minettes and spessartites, with an intervening range of intermediate to felsic stocks and dikes, including leucominettes, quartz monzonites, quartz monzodiorites, and granodiorites. All rock types are potassic, are strongly enriched in LILEs and LREEs, and feature high LILE/HFSE ratios. Clinopyroxene is common to all rock types and ranges from salite in felsic rocks to high Mg augite and Cr-rich diopside in lamprophyres. Less common, calcic amphibole ranges from actinolitic hornblende to pargasite. The rocks have strongly radiogenic Sr (initial 87Sr/86Sr from 0.711-0.714) and Pb isotope ratios (206Pb/204Pb from 19.2-19.7), and negative initial εNd values (-8.06 to -11.26). Whole-rock major and trace element, radiogenic isotope, and mineralogical data suggest that the felsic to intermediate rocks were derived from mafic potassic magmas sourced from the lithospheric mantle via fractional crystallization and minor assimilation of metasedimentary crust. Mainly unmodified minettes and spessartites represent the most primitive and final phases emplaced. Metasomatic enrichments in the underlying lithospheric mantle

  8. Geochemistry of the July 2015 pyroclastic flow at Volcán de Colima

    NASA Astrophysics Data System (ADS)

    Atlas, Z. D.; Long, E.; Macorps, E.; Garcia Hernandez, M.; Charbonnier, S. J.; Varley, N. R.

    2016-12-01

    We investigated the geochemical variation of the July 2015 pyroclastic density current (PDC) from Volcán de Colima, Mexico. This important eruption produced a highly mobile PDC, with the largest run-out since 1913 (10.7 km). The eruptive mechanism is still unclear and geochemical characterization is critical to determine its origin. Normalized major element concentrations define differentiation trends and concentrations similar to 1998-2000 lava, consistent with earlier volcanic products. SiO2 ranges from 59.9 to 61.0 wt.% with low Mg# (0.48-0.51), moderate K2O (1.35-1.42 wt.%) and higher total alkalis (6.95-7.66 wt.%). The PDC is characterized by high Sr, Ba, Nb and U, low Ba/Nb and Sc/Y ratios. Higher Sr can be attributed to abundant plagioclase, however high Ba, Nb and U must be attributed to other minerals. U is compatible in apatite or ilmenite but due to the incompatible behavior P2O5 with SiO2 apatite contribution is unlikely. Nb is partitioned into ilmenite but also biotite, while Ba strongly partitions to biotite/phlogopite, known from scoria cone lamprophyre magma erupted next to Volcán de Colima. Our data suggest that U along with some Nb is partitioned to Ti-Fe oxide or to ilmentie. Covariation of U and Nb with Ba suggests that biotite +/- ilmenite may be involved in the generation of the 2015 PDC magma. The lack of an Eu anomaly and overall REE patterns suggest that excess plagioclase likely comes from fragments of previously emplaced lava and that the source and overall generation of the PDC is similar to recent eruptive products. LILE along with high Nb is unlike 1913 but are more similar to 1869 and 1880 rocks, lower K melt inclusions of Reubi & Blundy (2008) and unit N from Crummy et al. (2014) erupted 7000 Ybp and represent a sharp departure from the pre-1999 eruptive products. Our results indicate that the PDC chemistry must have some influence from the addition of a biotite bearing gabbrotic endmember in accord with previous studies.

  9. Post-collisional and intraplate Cenozoic volcanism in the rifted Apennines/Adriatic domain

    NASA Astrophysics Data System (ADS)

    Bianchini, G.; Beccaluva, L.; Siena, F.

    2008-02-01

    -dependent, with generation of tholeiites to nephelinites/alkaline lamprophyres by decreasing degrees of partial melting ( F = 25 to ≤ 5%) of lherzolite lithospheric sources at progressively increasing depths (ca. 40 to 100 km). Moreover, geochemical features of these anorogenic magmas testify that their mantle sources are remarkable homogeneous, as also confirmed by lack of veining in the VVP mantle xenoliths. This homogeneity suggests that Na-metasomatic agents pervasively affected the overlying Adriatic lithospheric mantle by porous flow mechanisms without causing significant inhomogeneities at a regional scale.

  10. Paleomagnetic Results From the Mid-Tertiary Cripple Creek Diatreme Complex

    NASA Astrophysics Data System (ADS)

    Rampe, J. S.; Geissman, J. W.; Melker, M.

    2001-12-01

    The Cripple Creek diatreme complex, located about 30 km southwest of Pikes Peak, Colorado, is host to gold and high grade telluride deposits associated with mid-Tertiary alkaline magmatism. Formation of the diatreme took place between about 32.5 and 28.7 Ma, based on previously reported ArAr age determinations. The complex consists of breccia (the primary rock type), that was subsequently intruded by aphanitic phonolite, porphyritic phonolite, phonotephrite, and finally lamprophyre. Rocks presently at the surface were emplaced within a few kilometers of the paleosurface, followed by hydrothermal activity resulting in pervasive K metasomatism and gold mineralization. Mineralized deposits within the diatreme are currently being mined in an open pit fashion allowing for fresh three dimensional exposures of all representative rock types in the district. The Front Fange of Colorado, since cessation of northeast-directed Laramide compression, is characterized by east-west Rio Grande rift extension. Determining Laramide and younger deformation in the Front Range of Colorado is diffucult due to the dominance of Laramide structures and exposed Precambrian rocks with complex structural histories. Structures that affect the Cripple Creek diatreme complex and host Precambrian crystalline rocks clearly were active after intrusive activity and therefore reflect tectonism in the Front Range since early diatreme formation. Over 100 sites have been collected from all representative rock types in the district, with eight to ten oriented samples per site. Results indicate that the materials are capable of carrying geologically stable magnetizations and generally reveal excellent magnetization behavior using both AF and thermal methods. Many sites are associated with contact and breccia tests. Site mean directions are of both normal (D = 5.0° , I = 67.5° , α 95 = 6.4, κ = 89.2), N = 7 and reverse polarity (D = 162.2° , I = -67.3° , α 95 = 4.2, κ = 61.1) N =13; with site mean

  11. Alkaline magmatism in the Amambay area, NE Paraguay: The Cerro Sarambí complex

    NASA Astrophysics Data System (ADS)

    Gomes, C. B.; Velázquez, V. F.; Azzone, R. G.; Paula, G. S.

    2011-07-01

    considerably more pronounced in the carbonatites. Chondrite-normalized REE patterns point to the high concentration of these elements and to the strong LRE/HRE fractionation. The Amambay rocks are highly enriched in radiogenic Sr and have TDM model ages that vary from 1.6 to 1.1 Ga, suggesting a mantle source enriched in incompatible elements by metasomatic events in Paleo-Mesoproterozoic times. Data are consistent with the derivation of the Cerro Sarambí rocks from a parental magma of lamprophyric (minette) composition and suggest an origin by liquid immiscibility processes for the carbonatites.

  12. Mesoproterozoic orangeites of Karelia (Kostomuksha-Lentiira): evidence for composition of mantle lithosphere

    NASA Astrophysics Data System (ADS)

    Kargin, Alexey; Nosova, Anna; Larionova, Yulia; Kononova, Voctoria; Borisovskiy, Sergey; Kovalchuk, Elena; Griboedova, Irina

    2014-05-01

    The 1.23-1.20 Ga old diamondiferous lamproites and orangeites (kimberlites of II group) of the Kostomuksha-Taloveys and the Lentiira-Kuhmo dyke fields intrude the Archaean crust of the Karelian craton, NE of the East European Platform. Mineral (a trend of compositional evolution of mica, presence of carbonate minerals in basis, composition of olivine) and geochemical (major elements, ratio of trace elements, primitive mantle normalized trace elements patterns) characteristics of these rocks suggest an orangeitic rather than lamproitic or lamprophyric nature. The composition of Phl-Ol orangeites suggests intensive processes of fractional crystallization for their melts. Cpx-Phl-Ol orangeites indicate higher intensity of lithospheric mantle assimilation then other orangeitic types. Phl-Carb orangeites of the Taloveys area and Cpx-Phl-Ol one of the Lentiira area are closest to primary melts. The Ol-Phl-Cpx orangeites of the Lentiira area contain three generations of unaltered olivine that vary in composition and origin: a) xenocryst derived from depleted mantle peridotite; b) orangeitic olivine phenocryst and c) and olivine like early stage crystallization of megacryst assemblage or a product of metasomatic interaction between mantle peridotite and protokimberlitic melt. Orangeites of Kostomuksha-Lentiira have low- and medium-radiogenic value of (87Sr/86Sr)1200 that range from 0.7038 to 0.7067. Phl-Carb orangeites of Taloveys have less radiogenic isotopic composition of Nd (eNd -11 ... -12) then Cpx-Phl-Ol and Phl-Ol orangeites of Kostomuksha (eNd -6.9 ... -9.4). The study of Sm-Nd and Rb-Sr isotopic systems suggests that an ancient metasomatic mantle source took part in origin of orangeites. We propose a two-steps model of origin of their source (Kargin et al., 2014): 1) The metasomatic component of mantle source (like as MARID-type veins) formed during Lapland-Kola and/or Svecofennian orogeny events (2.1-1.8 Ga ago). 2) The intrusion of orangeites is comparable by

  13. Rare earth element deposits in China

    USGS Publications Warehouse

    Xie, Yu-Ling; Hou, Zeng-qian; Goldfarb, Richard J.; Guo, Xiang; Wang, Lei

    2016-01-01

    China is the world’s leading rare earth element (REE) producer and hosts a variety of deposit types. Carbonatite- related REE deposits, the most significant deposit type, include two giant deposits presently being mined in China, Bayan Obo and Maoniuping, the first and third largest deposits of this type in the world, respectively. The carbonatite-related deposits host the majority of China’s REE resource and are the primary supplier of the world’s light REE. The REE-bearing clay deposits, or ion adsorption-type deposits, are second in importance and are the main source in China for heavy REE resources. Other REE resources include those within monazite or xenotime placers, beach placers, alkaline granites, pegmatites, and hydrothermal veins, as well as some additional deposit types in which REE are recovered as by-products. Carbonatite-related REE deposits in China occur along craton margins, both in rifts (e.g., Bayan Obo) and in reactivated transpressional margins (e.g., Maoniuping). They comprise those along the northern, eastern, and southern margins of the North China block, and along the western margin of the Yangtze block. Major structural features along the craton margins provide first-order controls for REE-related Proterozoic to Cenozoic carbonatite alkaline complexes; these are emplaced in continental margin rifts or strike-slip faults. The ion adsorption-type REE deposits, mainly situated in the South China block, are genetically linked to the weathering of granite and, less commonly, volcanic rocks and lamprophyres. Indosinian (early Mesozoic) and Yanshanian (late Mesozoic) granites are the most important parent rocks for these REE deposits, although Caledonian (early Paleozoic) granites are also of local importance. The primary REE enrichment is hosted in various mineral phases in the igneous rocks and, during the weathering process, the REE are released and adsorbed by clay minerals in the weathering profile. Currently, these REE-rich clays are

  14. Origin of Ti-rich garnets in the groundmass of Wajrakarur field kimberlites, southern India: insights from EPMA and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dongre, Ashish N.; Viljoen, K. S.; Rao, N. V. Chalapathi; Gucsik, A.

    2016-04-01

    Although Ti-rich garnets are commonly encountered in the groundmass of many alkaline igneous rocks, they are comparatively rare in kimberlites. Here we report on the occurrence of Ti-rich garnets in the groundmass of the P-15 and KL-3 kimberlites from the diamondiferous Wajrakarur field in the Eastern Dharwar craton of southern India. These garnets contain considerable Ti (11.7-23.9 wt.% TiO2), Ca (31.3-35.8 wt.% CaO), Fe (6.8-15.5 wt.% FeOT) and Cr (0.04-9.7 wt.% Cr2O3), but have low Al (0.2-5.7 wt.% Al2O3). In the case of the P-15 kimberlite they display a range in compositions from andradite to schorlomite, with a low proportion of grossular (andradite(17.7-49.9)schorlomite(34.6-49.5)-grossular(3.7-22.8)-pyrope(1.9-10.4)). A few grains also contain significant chromium and represent a solid solution between schorlomite and uvarovite. The Ti-rich garnets in the KL-3 kimberlite, in contrast, are mostly schorlomitic (54.9-90.9 mol %) in composition. The Ti-rich garnets in the groundmass of these two kimberlites are intimately associated with chromian spinels, perhaps suggesting that the garnet formed through the replacement of spinel. From the textural evidence, it appears unlikely that the garnets could have originated through secondary alteration, but rather seem to have formed through a process in which early magmatic spinels have reacted with late circulating, residual fluids in the final stages of crystallization of the kimberlite magma. Raman spectroscopy provides evidence for low crystallinity in the spinels which is likely to be a result of their partial transformation into andradite during their reaction with a late-stage magmatic (kimberlitic) fluid. The close chemical association of these Ti-rich garnets in TiO2-FeO-CaO space with those reported from ultramafic lamprophyres (UML) is also consistent with results predicted by experimental studies, and possibly implies a genetic link between kimberlite and UML magmas. The occurrence of Ti-rich garnets of

  15. Two Distinct Sets of Magma Sources in Cretaceous Rocks From Magnet Cove, Prairie Creek, and Other Igneous Centers of the Arkansas Alkaline Province, USA

    NASA Astrophysics Data System (ADS)

    Duke, G. I.; Carlson, R. W.; Eby, G. N.

    2008-12-01

    Two distinct sets of magma sources from the Arkansas alkaline province (~106-89 Ma) are revealed by Sr-Nd-Pb isotopic compositions of olivine lamproites vs. other alkalic rock types, including carbonatite, ijolite, lamprophyres, tephrite, malignite, jacupirangite, phonolite, trachyte, and latite. Isotopic compositions of diamond-bearing olivine lamproites from Prairie Creek and Dare Mine Knob point to Proterozoic lithosphere as an important source, and previous Re-Os isotopic data indicate derivation from subcontinental mantle lithosphere. Both sources were probably involved in lamproite generation. Magnet Cove carbonatites and other alkalic magmas were likely derived from an asthenospheric source. Lamproite samples are isotopically quite different from other rock types in Sr-Nd-Pb isotopic space. Although three lamproite samples from Prairie Creek have a large range of SiO2 contents (40-60 wt %), initial values of ɛNd (-10 to -13), 206Pb/204Pb (16.61-16.81), 207Pb/204Pb (15.34-15.36), and 208Pb/204Pb (36.57-36.76) are low and similar. Only 87Sr/86Sr(i) displays a wide range in the Prairie Creek lamproites (0.70627-0.70829). A fourth lamproite from Dare Mine Knob has the most negative ɛNd(i) of -19. Lamproite isotope values show a significant crustal component and isotopically overlap subalkalic rhyolites from the Black Hills (SD), which assimilated Proterozoic crust. Six samples of carbonatite, ijolite, and jacupirangite from Magnet Cove and Potash Sulphur Springs exhibit the most depleted Sr-Nd isotopic signatures of all samples. For these rock types, 87Sr/86Sr(i) is 0.70352 - 0.70396, and ɛNd(i) is +3.8 - +4.3. Eight other rock types have a narrow range of ɛNd(i) (+1.9 - +3.7), but a wide range of 87Sr/86Sr(i) (0.70424 - 0.70629). These 14 samples comprise a fairly tight cluster of Pb isotopic values: 206Pb/204Pb (18.22-19.23), 207Pb/204Pb (15.54-15.62), and 208Pb/204Pb (38.38-38.94), suggesting very little crustal assimilation. They are most similar to EM-2

  16. Petrology of the Northern Anabar alkaline-ultramafic rocks (the Siberian Craton, Russia) and the role of metasomatized lithospheric mantle in their genesis

    NASA Astrophysics Data System (ADS)

    Kargin, Alexey; Golubeva, Yulia; Demonterova, Elena

    2017-04-01

    produced several carbonatite pipes and dykes. Their geochemical composition indicates the predominance of the carbonate component in the source region and a decrease of the thickness of the lithospheric mantle. This study was supported by Russian Science Foundation №16-17-10068. Tappe S., Foley S.F., Jenner G.A. et al. 2006. Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: a Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton // J. Petrology. V. 47 (7). P. 1261-1315. Sun J., Liu C.Z., Tappe S. et al. 2014. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U-Pb and Sr-Nd perovskite isotope analysis // Earth Planet. Sci. Lett. V. 404. P. 283-295. Zaytsev A.I., Smelov A.P., 2010. Isotope Geochronology of Kimberlite Formation Rocks from Yakutian Province // Publication of the Institute of Diamonds Geology, Siberian branch of the Russian Academy of Sciences, Yakutsk (107 pp. (in Russian)).

  17. Natural radioactivity in stream sediments of Oltet River, Romania

    NASA Astrophysics Data System (ADS)

    Ion, Adriana

    2017-04-01

    The concentration of naturally occurring radionuclides (U-238, Th-232 and K-40) in stream sediments of the Oltet River was measured in order to establish the primary sources of radionuclides, the transport pathways and the geochemical factors favouring their mobilisation and concentration in the existing geological context. The Oltet River has a length of 185 Km and crosses the southern central part of the country, being the right tributary of the Olt River. The range in elevation of the watercourse varies between 1963 m in the springs area (Parîng Mountains) and 200 m at the confluence with the Olt River, whereas the relief of the Oltet Basin has a varied character, manifested by the presence of diverse forms of relief, starting with major mountainous heights and ending with low-lying plains regions. In cross section from North to South, the Olteț River cuts metamorphic rocks (schist, gneisses, quartzite, marble, mica-schist's), magmatic rocks (granite and granitoid massifs - intruded by veins of microgranite, aplite, pegmatite and lamprophyre) and limestone, followed by deposits composed of clays, marls, sands and gravels, that are characterized by the presence of lignite seams. 44 stream sediment samples were collected in summer of 2016 from sampling points distributed along the river with an equidistance of about 4 - 5 km. The activity concentrations of the U-238, Th-232 and K-40 were measured by gamma ray spectrometry using HPGe detector (ORTEC) with 26% relative efficiency in multilayer shielding. The reference materials used were IAEA - RGK-1 and IAEA - 314. Analysis was performed on the <2 mm fraction of sediment sample, each sample was counted for 24,000 s. U-238 specific activity in the stream sediments varies between 6.18 and 68.76 Bq/Kg and Th-232 specific activity from 8.12 to 89.28 Bq/Kg, whereas the K-40 specific activity in sediments ranges from 99.01 to 312.16 Bq/Kg. In the upper sector of the Oltet River, concentrations of U-238, Th-232 and K-40

  18. A tale of two magmas: Petrological insights into mafic and intermediate Plinian volcanism at Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Crummy, J. M.; Savov, I. P.; Morgan, D. J.; Wilson, M.; Loughlin, S.; Navarro-Ochoa, C.

    2012-12-01

    recrystallisation and re-equilibration within a compositionally different melt. This composition of the clinopyroxene is similar to that of the Group I magmas. Whole-rock geochemical and Sr and Nd isotopic analyses reveal strong trends in the Group II magmas towards the composition of monogenetic cinder cones composed of phlogopite-bearing alkaline lamprophyre situated to the north of Volcán de Colima. The alkaline magmas are thought to have formed from partial melting of metasomatically enriched veins within the lithospheric mantle. We suggest the high Mg clinopyroxene cores of the Group II magmas crystallised from such alkaline melts, which then mixed with the parental mantle-derived melts of the Group I magmas. Geothermometry and hygrometry based on mineral-mineral and mineral-melt equilibria reveal no correlation between variations in eruption temperature (930-1000°C) and magmatic H2O content (3-6 wt.%) with magma composition. This implies magma composition and volatile content are not controlling the highly explosive mafic and intermediate eruptions at Volcán de Colima, but rather, are driven by very fast ascent rates from source to surface.

  19. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Wang, Tao; Zhang, Chengli

    2013-08-01

    of the Mianlue Ocean between the South Qinling Belt and the South China Block. Voluminous late-stage (225-185 Ma) magmatism evolved from early I-type to later I-A-type granitoids associated with contemporaneous lamprophyres, representative of a transition from syn- to post-collisional setting in response to the collision between the North China and the South China blocks. Late Mesozoic (158-100 Ma) granitoids, located in the southern margin of the North China Block and the eastern part of the North Qinling Belt, are characterized by I-type, I- to A-type, and A-type granitoids that were emplaced in a post-orogenic or intraplate setting. The first three of the four periods of magmatism were associated with three important orogenic processes and the last one with intracontinental process. These suggest that the tectonic evolution of the Qinling Orogen is very complicated.

  20. Petrology of the Rainy Lake area, Minnesota, USA-implications for petrotectonic setting of the archean southern Wabigoon subprovince of the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Day, Warren C.

    1990-08-01

    The Rainy Lake area in northern Minnesota and southwestern, Ontario is a Late Archean (2.7 Ga) granite-greenstone belt within the Wabigoon subprovince of the Canadian Shield. In Minnesota the rocks include mafic and felsic volcanic rocks, volcaniclastic, chemical sedimentary rocks, and graywacke that are intrucded by coeval gabbro, tonalite, and granodiorite. New data presented here focus on the geochemistry and petrology of the Minnesota part of the Rainy Lake area. Igneous rocks in the area are bimodal. The mafic rocks are made up of three distinct suites: (1) low-TiO2 tholeiite and gabbro that have slightly evolved Mg-numbers (63 49) and relatively flat rare-earth element (REE) patterns that range from 20 8 x chondrites (Ce/YbN=0.8 1.5); (2) high-TiO2 tholeiite with evolved Mg-numbers (46 29) and high total REE abundances that range from 70 40 x chondrites (Ce/YbN=1.8 3.3), and (3) calc-alkaline basaltic andesite and geochemically similar monzodiorite and lamprophyre with primitive Mg-numbers (79 63), enriched light rare-earth elements (LREE) and depleted heavy rare-earth elements (HREE). These three suites are not related by partial melting of a similar source or by fractional crystallization of a common parental magma; they resulted from melting of heterogeneous Archean mantle. The felsic rocks are made up of two distinct suites: (1)low-Al2O3 tholeiitic rhyolite, and (2) high-Al2O3 calc-alkaline dacite and rhyolite and consanguineous tonalite. The tholeiitic felsic rocks are high in Y, Zr, Nb, and total REE that are unfractionated and have pronounced negative Eu anomalies. The calcalkaline felsic rocks are depleted in Y, Zr, and Nb, and the REE that are highly fractionated with high LREE and depleted HREE, and display moderate negative Eu anomalies. Both suites of felsic rocks were generated by partial melting of crustal material. The most reasonable modern analog for the paleotectonic setting is an immature island arc. The bimodal volcanic rocks are

  1. Petrology of the Rainy Lake area, Minnesota, USA-implications for petrotectonic setting of the archean southern Wabigoon subprovince of the Canadian Shield

    USGS Publications Warehouse

    Day, W.C.

    1990-01-01

    The Rainy Lake area in northern Minnesota and southwestern, Ontario is a Late Archean (2.7 Ga) granite-greenstone belt within the Wabigoon subprovince of the Canadian Shield. In Minnesota the rocks include mafic and felsic volcanic rocks, volcaniclastic, chemical sedimentary rocks, and graywacke that are intrucded by coeval gabbro, tonalite, and granodiorite. New data presented here focus on the geochemistry and petrology of the Minnesota part of the Rainy Lake area. Igneous rocks in the area are bimodal. The mafic rocks are made up of three distinct suites: (1) low-TiO2 tholeiite and gabbro that have slightly evolved Mg-numbers (63-49) and relatively flat rare-earth element (REE) patterns that range from 20-8 x chondrites (Ce/YbN=0.8-1.5); (2) high-TiO2 tholeiite with evolved Mg-numbers (46-29) and high total REE abundances that range from 70-40 x chondrites (Ce/YbN=1.8-3.3), and (3) calc-alkaline basaltic andesite and geochemically similar monzodiorite and lamprophyre with primitive Mg-numbers (79-63), enriched light rare-earth elements (LREE) and depleted heavy rare-earth elements (HREE). These three suites are not related by partial melting of a similar source or by fractional crystallization of a common parental magma; they resulted from melting of heterogeneous Archean mantle. The felsic rocks are made up of two distinct suites: (1)low-Al2O3 tholeiitic rhyolite, and (2) high-Al2O3 calc-alkaline dacite and rhyolite and consanguineous tonalite. The tholeiitic felsic rocks are high in Y, Zr, Nb, and total REE that are unfractionated and have pronounced negative Eu anomalies. The calcalkaline felsic rocks are depleted in Y, Zr, and Nb, and the REE that are highly fractionated with high LREE and depleted HREE, and display moderate negative Eu anomalies. Both suites of felsic rocks were generated by partial melting of crustal material. The most reasonable modern analog for the paleotectonic setting is an immature island arc. The bimodal volcanic rocks are

  2. Unusual Cathodoluminescence in Diamonds: Evidence for Metamorphism or a Source Characteristic

    NASA Astrophysics Data System (ADS)

    Bruce, L. F.; Longo, M.; Kopylova, M.; Ryder, J.

    2009-05-01

    Cathodoluminescence (CL) is a useful means of diamond "fingerprinting". CL-active cratonic macrodiamonds usually cathodoluminesce blue or yellow, and always exhibit prominent wide CL emittance peaks at 430-450 nm and 480-490 nm. Exceptions to this norm are diamond suites recently discovered in the Archean rocks metamorphosed in the greenschist facies. These macrodiamonds cathodoluminesce red, orange and yellow, and invariably exhibit the most prominent CL peak at 520 nm. The diamond suites with the unusual CL are derived from two different locations within the Michipicoten Greenstone Belt (Southern Superior craton), near the town of Wawa (Ontario). One suite is extracted from the 2.68-2.74 Ga polymict volcanic breccias and lamprophyres and the other suite - from the 2.68 Ga sedimentary conglomerates grading into overlying sandstones of the Dore assemblage. The diamondiferous conglomerates are found in an area 8 km south of the breccias and 12 km northeast of Wawa. CL emittance of macrodiamonds (> 0.5 mm) extracted from the breccias consists of a broad band at 520 nm, a sharp peak at 575.5 nm, and several lines at 550-670 nm. The conglomerate macrodiamonds mostly show a dominant peak at 520 nm, whereas corresponding microdiamonds exhibit two peaks at about 576 and 600 nm. None of the diamonds show a maximum peak at 420 nm. Polycrystalline stones from conglomerates show distinct CL spectra and colours for all intergrown crystals in the same diamond. The relative abundances of the CL colors of the conglomerate diamonds are orange-red (46%), yellow (28%), orange-green (10%), green (6%), and non-uniform colors (10%). These colours are more diverse than mostly orange CL colours in the breccia diamonds; this results from a larger variety of positions and intensity of CL peaks in the conglomerate diamonds. We propose two models for explaining the presence of the 520 nm CL peak in the breccia and conglomerate diamonds in Wawa. The first model suggests metamorphism as the

  3. Cathodoluminescence of diamond as an indicator of its metamorphic history

    NASA Astrophysics Data System (ADS)

    Kopylova, Maya; Bruce, Loryn; Longo, Micaela; Ryder, John; Dobrzhinetskaya, Larissa

    2010-05-01

    Diamond displays a supreme resistance to chemical and mechanical weathering, ensuring its survival through complex and prolonged crustal processes, including metamorphism and exhumation. For these reasons, volcanic sources and secondary and tertiary collectors for detrital placer diamonds, like Ural or Bingara diamonds, may be difficult to determine. If metamorphic processes leave their marks on diamond, they can be used to reconstruct crustal geologic processes and ages of primary diamondiferous volcanics. Four diamond suites extracted from metamorphic rocks have been characterized using optical CL, infrared and CL spectroscopy, and photoluminescence at the liquid nitrogen temperature. The studied diamonds are from the ~2.7 Ga sedimentary conglomerate and lamprophyric breccia metamorphosed in the greenschist facies (Wawa, Northern Ontario, Canada) during the 2.67 Ga Kenoran orogeny, and from the ultra-high pressure (UHP) terranes of Kokchetav (Kazakhstan) and Erzgebirge (Germany) exhumated in the Paleozoic. Wawa diamonds (Type IaAB and Type II) displayed green, yellow, orange, and red CL colours controlled by the CL emittance at 520, 576 nm, and between 586 and 664 nm. The UHP terranes diamonds show much weaker CL; few luminescent stones display CL peaks at 395, 498, 528 nm and a broad band at 580-668 nm. In contrast, most common diamonds found in unmetamorphosed rocks, i.e. octahedrally grown Type IaAB stones, luminescence blue emitting light at ~415-440 nm and 480-490 nm. There is a noticeable difference between cathodoluminescence of these diamonds and diamonds in metamorphic rocks. The studied diamonds that experienced metamorphism show a shift of CL emission to longer wavelengths (above 520 nm) and to green, yellow and red CL colours. Photoluminescence has the high resolution necessary to assign luminescence to specific optical centers of diamond. Diamonds in metamorphic rocks contain H3 (pairs of substitutional nitrogen atoms separated by a vacancy) and NVo

  4. Age and isotopic marks of K-rich Manning Massif trachybasalts: an evidence for Lambert-Amery rift-system initiation (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Leitchenkov, German; Belyatsky, Boris; Lepekhina, Elena; Antonov, Anton; Krymsky, Robert; Andronikov, Alex; Sergeev, Sergey

    2017-04-01

    source of contamination was an ancient material (> 2.4 Ga) and/or with high μ (26.5). The initial isotope characteristics of the studied basalts are the same for different individual flows: ɛNd=-3.4±0.4; 87Sr/86Sri=0.7061±0.0003, 206Pb/204Pbi=18.421±0.001; 207Pb/204Pbi=15.667±0.001; 208Pb/204Pbi=39.845±0.001; 187Os/186Osi = 0.2012±0.0004 and reflect minimal influence of host-rock contamination during or after melts crystallization and correspond to enriched mantle source signatures akin to plume-like. Thus the Manning Massif K-rich basalts correlate with the time of formation of the Late-Paleozoic coal-bearing sediments of the Lambert Glacier Rift and basic dykes of Jetty Peninsula [Mikhalsky, Sheraton, 1993] and can be interpreted to mark the earliest, Lower Carboniferous stage of the rifting. This event corresponds to the initial intracontinental stretching in the Eastern Gondwana wich was previously detected only in Perth Basin of western Australia. The research was done under financial support by RSF grant N 16-17-10139. References: Andronikov A.V., Foley S.F., Beliatsky B.V. 1998. Sm-Nd and Rb-Sr isotopic systematics of the East Antarctic Manning Massif alkaline trachybasalts and the development of the mantle beneath the Lambert-Amery rift. Mineral. Petrol. 63. 243-261. Mikhalsky E.V., Sheraton J.W. 1993. Association of dolerite and lamprophyre dykes, Jetty Peninsula (Prince Charles Mountains, East Antarctica). Antarctic Sciences. 5(3). 297-307.

  5. Experimental study of the P-T stability of phlogopite in metasomatised peridotite with varying H2O contents in the deep cratonic lithosphere

    NASA Astrophysics Data System (ADS)

    Yaxley, Greg; Rosenthal, Anja

    2014-05-01

    Phlogopite is an important metasomatic, hydrous, potassic phase in peridotite from on- and off-cratonic lithospheric mantle. It is significant in petrogenesis of exotic mantle-derived magmas such as micaceous kimberlites, ultramafic lamprophyres, kamafugites, lamproites and olivine basanites[1-6]. Along with other potassic hydrous agents (fluids/melts), phlogopite is a major repository for potassium, H2O and F in K-enriched peridotitic mantle down to ~200 km or more (≡6 GPa[7-10]). Although some recent studies delineated phlogopite stability in peridotite at a given bulk H2O content1[1,8-10,12], we lack experimental investigations close to the limits of phlogopite stability in a model mantle composition enriched in K (i.e. by metasomatic agents) with varying amounts of H2O over a pressure range of 4-6 GPa, i.e. from ≡120 to 200 km deep. Variations in the %H2O available however determine the shape and location of the solidus, and hence the onset of partial melting of a K-enriched mantle enriched[8,13]. Our experimental base composition (HPK2) is fertile peridotite + 0.5wt% K2O. Mixes HPK2-0 and HPK2-13 were prepared by blending powdered high purity oxides or carbonates of Si, Ti, Al, Mg, Cr, Ni, Mn, Ca, Na and K. Mg(OH)2 was included in HPK2-13 to produce a mix with 13wt% H2O. HPK2-0 is anhydrous. HPK2-0 and HPK2-13 were blended to create 3 additional mixes with identical compositions but varying H2O contents, nominally 0.2, 2 and 5wt% H2O. Experiments were run in Au, AuPd or graphite (in Pt) capsules at 4-6 GPa and 1050-1350°C. Run products were analysed by EDS on a SEM. Experiments crystallized assemblages of olivine + orthopyroxene ± clinopyroxene ± garnet ± rutile ± phlogopite. We define the temperature stability limit of phlogopite in potassic-peridotite between 1200 and 1250°C at 4 GPa and <1300°C at 5 GPa, consistent with interpolation of data from previous lower[1] and higher pressure[14] investigations. We also demonstrate the leaching effect of

  6. Stratigraphy and structure of the western Kentucky fluorspar district

    USGS Publications Warehouse

    Trace, R.D.; Amos, D.H.

    1984-01-01

    Rivers and their major tributaries. Many mafic dikes and a few mafic sills are present. The mafic rocks are mostly altered mica peridotites or lamprophyres that are composed of carbonate minerals, serpentine, chlorite, and biotite and contain some hornblende, pyroxene, and olivine. Most of the dikes are in a north-north west-trending belt 6 to 8 mi wide and strike N. 20 0 -30 0 W. The dikes dip from 80 0 to 90 0 and are commonly 5 to 10 ft wide. Radioisotopic study indicates that the dikes are Early Permian in age. The district is just southeast of the intersection of the east-trending Rough Creek-Shawneetown and northeast-trending New Madrid fault systems. The district's principal structural features are a northwest-trending domal anticline, the Tolu Arch, and a series of steeply dipping to nearly vertical normal faults and fault zones that trend dominantly northeastward and divide the area into elongated northeast-trending grabens and horsts. Formation of these grabens and horsts was one of the major tectonic events in the district. Vertical displacement may be as much as 3,000 ft but commonly ranges from a few feet to a few hundred feet; no substantial horizontal movement is believed to have taken place. Many cross faults having only a few feet of displacement trend northwestward and are occupied at places by mafic dikes. Faulting was mostly post-Early Permian to pre-middle Cretaceous in age. Many theories have been advanced to explain the structural history of the district. A generally acceptable overall hypothesis that would account for all the structural complexities, however, is still lacking. Useful structural data, such as the structural differences between the grabens and the horsts, have been obtained, however, from the recently completed geologic mapping. Mapping also has more clearly shown the alinement of the Tolu Arch, the belt of dikes, and an unusually deep graben (the Griffith Bluff graben); this alinement suggests that possibl

  7. Numerical simulation of ground-water flow through glacial deposits and crystalline bedrock in the Mirror Lake area, Grafton County, New Hampshire

    USGS Publications Warehouse

    Tiedeman, Claire; Goode, Daniel J.; Hsieh, Paul A.

    1997-01-01

    This report documents the development of a computer model to simulate steady-state (long-term average) flow of ground water in the vicinity of Mirror Lake, which lies at the eastern end of the Hubbard Brook valley in central New Hampshire. The 10-km2 study area includes Mirror Lake, the three streams that flow into Mirror Lake, Leeman's Brook, Paradise Brook, and parts of Hubbard Brook and the Pemigewasset River. The topography of the area is characterized by steep hillsides and relatively flat valleys. Major hydrogeologic units include glacial deposits, composed of till containing pockets of sand and gravel, and fractured crystalline bedrock, composed of schist intruded by granite, pegmatite, and lamprophyre. Ground water occurs in both the glacial deposits and bedrock. Precipitation and snowmelt infiltrate to the water table on the hillsides, flow downslope through the saturated glacial deposits and fractured bedrock, and discharge to streams and to Mirror Lake. The model domain includes the glacial deposits, the uppermost 150m of bedrock, Mirror Lake, the layer of organic sediments on the lake bottom, and streams and rivers within the study area. A streamflow routing package was included in the model to simulate baseflow in streams and interaction between streams and ground water. Recharge from precipitation is assumed to be areally uniform, and riparian evapotranspiration along stream banks is assumed negligible. The spatial distribution of hydraulic conductivity is represented by dividing the model domain into several zones, each having uniform hydraulic properties. Local variations in recharge and hydraulic conductivities are ignored; therefore, the simulation results characterize the general ground-water system, not local details of ground-water movement. The model was calibrated using a nonlinear regression method to match hydraulic heads measured in piezometers and wells, and baseflow in three inlet streams to Mirror Lake. Model calibration indicates that

  8. The Chineysky layered massif (Siberia, Russia) and Upper Zone of the Bushveld Complex: resemblance and difference features

    NASA Astrophysics Data System (ADS)

    Gongalskiy, B.; Krivolutskaya, N.

    2009-04-01

    : 1) consecutive introduction of magmas of different composition; 2) stratification of different nature; 3) differently grade rhythmicity. The Chineysky massif is thought to have been produced by successive emplacement of magmas, which formed four rock groups. These are the pyroxenite of the first group, titanomagnetite gabbronorites and leucogabbro of the second group, gabbronorites of the third group, and lamprophyres of the fourth group The trace-element patterns of various rocks and the results of simulations by the COMAGMAT-3.5 computer program led us to believe that all four rock groups of the massif were generated by the successive emplacements of several portions of the initial magma, which was a complicatedly differentiated suspension of olivine, plagioclase, and magnetite crystals in ferroabsaltic melt at a temperature of approximately 1130°л. The gravitational separation of these phases in the melt before its emplacement into the chamber and during the subsequent emplacement of various portions of the initial magma into the modern chamber predetermined the heterogeneity of the massif (its block structure). As a result, the bulk of the Chineysky massif is composed of compositionally principally different rocks of the second and third groups, with the predominance of intratelluric plagioclase and magnetite crystals in the former case (gabbronorite and leucogabbro series in the western and southeastern blocks) and orthopyroxene in the latter one (norite series, central block). The rocks of the third group were generated later. The crystallization sequences of minerals modeled for the Chineysky massif can be classed into two major types [2]: (a) "high-Al", which is typical of the "leucogabbro" compositions and characterized by the occurrence of a magnetite-plagioclase cotectic, and (b) "high-Mg", which is typical of the noriteseries and is characterized by the early appearance of olivine on the liquidus or the concurrent crystallization of this mineral with

  9. Geology and ore deposits of the Pioche district, Nevada

    USGS Publications Warehouse

    Westgate, L.G.; Knopf, Adolph

    1932-01-01

    which was discovered accidentally during the prospecting of the fissure veins. The ore deposits of the district comprise three groups (1) silver-bearing fissure veins in quartzite; (2) silver-bearing mineralized granite porphyry; (3) replacement deposits in limestone and dolomite. All of them appear to have been formed at about the same time, in the epoch of mineralization that occurred shortly after the intrusion of the granitic rocks and their allied dikes of granite porphyry and lamprophyre. The entire present output of the district is coming from the replacement deposits in limestone and dolomite, but exploratory work is still in progress on the fissure veins and mineralized porphyry. The replacement deposits include both replacement fissure veins and stratiform ("bedded") replacement deposits. The replacement fissure veins dip steeply and cut across the bedding of the carbonate rocks in which they are inclosed. They are thoroughly oxidized, as deep at least as 1,100 feet, for on none of them have the mine workings penetrated to water level, and they are highly manganiferous and limonitic and low in silica. At-certain horizons stratiform replacement deposits extend out as lateral branches from the fissure veins. Deposits of this kind occur mainly in the Mendha limestone, Highland Peak limestone, and Lyndon limestone. The stratigraphic range is therefore at least 5,500 feet, and as some of the fissure veins extend down through the underlying Pioche shale the indicated range may exceed 6,500 feet. The most notable representatives of the replacement fissure veins are at the Bristol mine, where they yield silver-bearing copper-leadzinc ores. So far unique among the ore bodies of the district is the pipe of wad and pyrolusite ore at the Jackrabbit mine, the periphery of the pipe consisting of a girdle of extraordinarily coarse white calcite spar produced by the recrystallization of the surrounding limestones. The stratiform replacement deposits that are attracting most