Application of aircraft navigation sensors to enhanced vision systems
NASA Technical Reports Server (NTRS)
Sweet, Barbara T.
1993-01-01
In this presentation, the applicability of various aircraft navigation sensors to enhanced vision system design is discussed. First, the accuracy requirements of the FAA for precision landing systems are presented, followed by the current navigation systems and their characteristics. These systems include Instrument Landing System (ILS), Microwave Landing System (MLS), Inertial Navigation, Altimetry, and Global Positioning System (GPS). Finally, the use of navigation system data to improve enhanced vision systems is discussed. These applications include radar image rectification, motion compensation, and image registration.
NASA Technical Reports Server (NTRS)
Wray, J. R.
1974-01-01
A graphic description is given of the Census Cities ERTS experiment in urban change detection using remote sensors. The relationship or model between land use data from sensors and socio-demographic data from the census is partly demonstrated. The example suggests how knowledge of land use changes acquired by sensors can be used to make estimates of population, and other attributes. The feasibility of nationwide mapping of land use, and land use changes, by direct computer classification of ERTS-1 multispectral digital data is also demonstrated. Potential applications in state and regional planning are many, and some are named. But the longer-range gains are likely to be improved understanding by legislators, managers and voters as to what it is that makes the country tick. One of the specific tasks could be the allocation of revenues to be shared.
Fiber optical sensors for aircraft applications
NASA Astrophysics Data System (ADS)
Pechstedt, Ralf D.
2014-09-01
In this paper selected fiber optical point sensors that are of potential interest for deployment in aircraft are discussed. The operating principles together with recent measurement results are described. Examples include a high-temperature combined pressure and temperature sensor for engine health, hydraulics and landing gear monitoring, an ultra-high sensitive pressure sensor for oil, pneumatic and fluid aero systems applications and a combined acceleration and temperature sensor for condition monitoring of rotating components.
A novel ozone sensor for various environmental applications
NASA Technical Reports Server (NTRS)
Guesten, H.; Heinrich, G.; Schmidt, R. W. H.; Schurath, U.
1994-01-01
A small, lightweight, and fast-response ozone sensor for various environmental applications is described. At a flow rate of 100 l/min(-1) the ozone sensor has a response time of significantly better than 0.1 s with a detection limit lower than 100 pptv. The ozone sensor was successfully tested in various environmental applications, i.e. in measuring directly the vertical ozone flux onto agricultural land utilizing the eddy correlation or covariance technique and in monitoring horizontal and vertical ozone profiles in the troposphere and stratosphere.
NASA Astrophysics Data System (ADS)
Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George; Hines, Glenn
2011-06-01
An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high-resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over various terrains. The sensor was one of several sensors tested in this field test by NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F.; Lockhard, George; Amzajerdian, Farzin; Petway, Larry B.; Barnes, Bruce; Hines, Glenn D.
2011-01-01
An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over vegetation free terrain. The sensor was one of several sensors tested in this field test by NASA?s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.
Hain, Christopher R; Anderson, Martha C
2017-10-16
Observations of land surface temperature (LST) are crucial for the monitoring of surface energy fluxes from satellite. Methods that require high temporal resolution LST observations (e.g., from geostationary orbit) can be difficult to apply globally because several geostationary sensors are required to attain near-global coverage (60°N to 60°S). While these LST observations are available from polar-orbiting sensors, providing global coverage at higher spatial resolutions, the temporal sampling (twice daily observations) can pose significant limitations. For example, the Atmosphere Land Exchange Inverse (ALEXI) surface energy balance model, used for monitoring evapotranspiration and drought, requires an observation of the morning change in LST - a quantity not directly observable from polar-orbiting sensors. Therefore, we have developed and evaluated a data-mining approach to estimate the mid-morning rise in LST from a single sensor (2 observations per day) of LST from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the Aqua platform. In general, the data-mining approach produced estimates with low relative error (5 to 10%) and statistically significant correlations when compared against geostationary observations. This approach will facilitate global, near real-time applications of ALEXI at higher spatial and temporal coverage from a single sensor than currently achievable with current geostationary datasets.
Using hyperspectral remote sensing for land cover classification
NASA Astrophysics Data System (ADS)
Zhang, Wendy W.; Sriharan, Shobha
2005-01-01
This project used hyperspectral data set to classify land cover using remote sensing techniques. Many different earth-sensing satellites, with diverse sensors mounted on sophisticated platforms, are currently in earth orbit. These sensors are designed to cover a wide range of the electromagnetic spectrum and are generating enormous amounts of data that must be processed, stored, and made available to the user community. The Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) collects data in 224 bands that are approximately 9.6 nm wide in contiguous bands between 0.40 and 2.45 mm. Hyperspectral sensors acquire images in many, very narrow, contiguous spectral bands throughout the visible, near-IR, and thermal IR portions of the spectrum. The unsupervised image classification procedure automatically categorizes the pixels in an image into land cover classes or themes. Experiments on using hyperspectral remote sensing for land cover classification were conducted during the 2003 and 2004 NASA Summer Faculty Fellowship Program at Stennis Space Center. Research Systems Inc.'s (RSI) ENVI software package was used in this application framework. In this application, emphasis was placed on: (1) Spectrally oriented classification procedures for land cover mapping, particularly, the supervised surface classification using AVIRIS data; and (2) Identifying data endmembers.
NASA Technical Reports Server (NTRS)
Wilson, R. C.
1970-01-01
Sixteen remote sensing applications or groups of related applications judged to be most important of any in the forestry and range disciplines were evaluated. In one application, major land classification, large amounts of useful data are anticipated to be contributed by space sensors in 1980. In four applications moderate amounts are anticipated to be so contributed. These are timber inventory, range inventory, fire weather forecasting, and monitoring snowfields. In the following seven applications small but significant amounts of data are anticipated to be contributed by space sensors: (1) detailed land classification; (2) inventory of wildlife habitat; (3) recreation resource inventory; (4) detecting stresses on the vegetation (5) monitoring air pollution caused by wildfires and prescribed burning; (6) monitoring water cycle, (7) pollution and erosion; and (8) evaluating damage to forests and ranges.
Analytical evaluation of ILM sensors. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Kirk, R. J.
1975-01-01
The applicability of various sensing concepts to independent landing monitor systems was analyzed. Microwave landing system MLS accuracy requirements are presented along with a description of MLS airborne equipment. Computer programs developed during the analysis are described and include: a mathematical computer model for use in the performance assessment of reconnaissance sensor systems; a theoretical formulation of electromagnetic scattering to generate data at high incidence angles; atmospheric attenuation of microwaves; and microwave radiometry, programs
Advanced Sensors and Applications Study (ASAS)
NASA Technical Reports Server (NTRS)
Chism, S. B.; Hughes, C. L.
1976-01-01
The present EOD requirements for sensors in the space shuttle era are reported with emphasis on those applications which were deemed important enough to warrant separate sections. The application areas developed are: (1) agriculture; (2) atmospheric corrections; (3) cartography; (4) coastal studies; (5) forestry; (6) geology; (7) hydrology; (8) land use; (9) oceanography; and (10) soil moisture. For each application area. The following aspects were covered: (1) specific goals and techniques, (2) individual sensor requirements including types, bands, resolution, etc.; (3) definition of mission requirements, type orbits, coverages, etc.; and (4) discussion of anticipated problem areas and solutions. The remote sensors required for these application areas include; (1) camera systems; (2) multispectral scanners; (3) microwave scatterometers; (4) synthetic aperture radars; (5) microwave radiometers; and (6) vidicons. The emphasis in the remote sensor area was on the evaluation of present technology implications about future systems.
From land to water: bringing dielectric elastomer sensing to the underwater realm
NASA Astrophysics Data System (ADS)
Walker, Christopher; Anderson, Iain
2016-04-01
Since the late 1990's dielectric elastomers (DEs) have been investigated for their use as sensors. To date, there have been some impressive developments: finger displacement controls for video games and integration with medical rehabilitation devices to aid patient recovery. It is clear DE sensing is well established for dry applications, the next frontier, however, is to adapt this technology for the other 71% of the Earth's surface. With proven and perhaps improved water resistance, many new applications could be developed in areas such as diver communication and control of underwater robotics; even wearable devices on land must withstand sweat, washing, and the rain. This study investigated the influence of fresh and salt water on DE sensing. In particular, sensors have been manufactured with waterproof connections and submersed in fresh and salt water baths. Temperature and resting capacitance were recorded. Issues with the basic DE sensor have been identified and compensated for with modifications to the sensor. The electrostatic field, prior and post modification, has been modeled with ANSYS Maxwell. The aim of this investigation was to identify issues, perform modifications and propose a new sensor design suited to wet and underwater applications.
USDA-ARS?s Scientific Manuscript database
Observations of land surface temperature (LST) are crucial for the monitoring of surface energy fluxes from satellite. Methods that require high temporal resolution LST observations (e.g., from geostationary orbit) can be difficult to apply globally because several geostationary sensors are required...
FogEye UV Sensor System : Low Visibility Landing Test (Phase IV Report)
DOT National Transportation Integrated Search
2004-03-01
The potential of FogEye solar blind UV technology to contribute to safe and swift throughput operations at airports has been demonstrated. One application, use of FogEye (Safety Sentry), as an aircraft surface detection sensor has been successfully o...
Precision Landing and Hazard Avoidance Doman
NASA Technical Reports Server (NTRS)
Robertson, Edward A.; Carson, John M., III
2016-01-01
The Precision Landing and Hazard Avoidance (PL&HA) domain addresses the development, integration, testing, and spaceflight infusion of sensing, processing, and GN&C functions critical to the success and safety of future human and robotic exploration missions. PL&HA sensors also have applications to other mission events, such as rendezvous and docking. Autonomous PL&HA builds upon the core GN&C capabilities developed to enable soft, controlled landings on the Moon, Mars, and other solar system bodies. Through the addition of a Terrain Relative Navigation (TRN) function, precision landing within tens of meters of a map-based target is possible. The addition of a 3-D terrain mapping lidar sensor improves the probability of a safe landing via autonomous, real-time Hazard Detection and Avoidance (HDA). PL&HA significantly improves the probability of mission success and enhances access to sites of scientific interest located in challenging terrain. PL&HA can also utilize external navigation aids, such as navigation satellites and surface beacons. Advanced Lidar Sensors High precision ranging, velocimetry, and 3-D terrain mapping Terrain Relative Navigation (TRN) TRN compares onboard reconnaissance data with real-time terrain imaging data to update the S/C position estimate Hazard Detection and Avoidance (HDA) Generates a high-resolution, 3-D terrain map in real-time during the approach trajectory to identify safe landing targets Inertial Navigation During Terminal Descent High precision surface relative sensors enable accurate inertial navigation during terminal descent and a tightly controlled touchdown within meters of the selected safe landing target.
Method of interpretation of remotely sensed data and applications to land use
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Dossantos, A. P.; Foresti, C.; Demoraesnovo, E. M. L.; Niero, M.; Lombardo, M. A.
1981-01-01
Instructional material describing a methodology of remote sensing data interpretation and examples of applicatons to land use survey are presented. The image interpretation elements are discussed for different types of sensor systems: aerial photographs, radar, and MSS/LANDSAT. Visual and automatic LANDSAT image interpretation is emphasized.
A Mechanical Switch Using Spectral Microshifts
NASA Astrophysics Data System (ADS)
Mitchell, Gordon L.; Saaski, Elric W.; Hartl, James C.
1989-02-01
Among the simplest fiber optic sensors, are those which operate in a binary fashion; they were the first sensor types to be developed. Early experiments with fiber bundles and shutters produced demonstrations of, for example, displacement sensors. Typical applications range from position sensing for aircraft landing gear to counting objects on a production line. Because they frequently replace electrical snap action switches, binary sensors are generally called optical switches. Optical switch applications account for a much larger market than the more complex analog measurements discussed in the balance of this volume. This paper presents an optical switch concept that uses a single fiber and is tolerant of back reflections. The sensor element is a low finesse Fabry-Perot pressure sensor which replaces the electrical contact in a conventional snap action switch.
An Evaluation of ALOS Data in Disaster Applications
NASA Astrophysics Data System (ADS)
Igarashi, Tamotsu; Igarashi, Tamotsu; Furuta, Ryoich; Ono, Makoto
ALOS is the advanced land observing satellite, providing image data from onboard sensors; PRISM, AVNIR-2 and PALSAR. PRISM is the sensor of panchromatic stereo, high resolution three-line-scanner to characterize the earth surface. The accuracy of position in image and height of Digital Surface Model (DSM) are high, therefore the geographic information extraction is improved in the field of disaster applications with providing images of disaster area. Especially pan-sharpened 3D image composed with PRISM and the four-band visible near-infrared radiometer AVNIR-2 data is expected to provide information to understand the geographic and topographic feature. PALSAR is the advanced multi-functional synthetic aperture radar (SAR) operated in L-band, appropriate for the use of land surface feature characterization. PALSAR has many improvements from JERS-1/SAR, such as high sensitivity, having high resolution, polarimetric and scan SAR observation modes. PALSAR is also applicable for SAR interferometry processing. This paper describes the evaluation of ALOS data characteristic from the view point of disaster applications, through some exercise applications.
Monitoring crop and vegetation condition using the fused dense time-series landsat-like imagery
USDA-ARS?s Scientific Manuscript database
Since the launch of the first Landsat satellite in the early 1970s, Landsat has been widely used in many applications such as land cover and land use change monitoring, crop yield estimation, forest fire detection, and global ecosystem carbon cycle studies. Medium resolution sensors like Landsat hav...
A low-cost inertial smoothing system for landing approach guidance
NASA Technical Reports Server (NTRS)
Niessen, F. R.
1973-01-01
Accurate position and velocity information with low noise content for instrument approaches and landings is required for both control and display applications. In a current VTOL automatic instrument approach and landing research program, radar-derived landing guidance position reference signals, which are noisy, have been mixed with acceleration information derived from low-cost onboard sensors to provide high-quality position and velocity information. An in-flight comparison of signal quality and accuracy has shown good agreement between the low-cost inertial smoothing system and an aided inertial navigation system. Furthermore, the low-cost inertial smoothing system has been proven to be satisfactory in control and display system applications for both automatic and pilot-in-the-loop instrument approaches and landings.
NASA Technical Reports Server (NTRS)
Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry
2012-01-01
Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.
Thermal remote sensing: theory, sensors, and applications
USDA-ARS?s Scientific Manuscript database
Applications of thermal infrared remote sensing for Earth science research are both varied and wide in scope. They range from understanding thermal energy responses that drive land-atmosphere energy exchanges in the hydrologic cycle, to measurement of dielectric surface properties for snow, ice, an...
Autonomous Precision Landing and Hazard Avoidance Technology (ALHAT) Project Status as of May 2010
NASA Technical Reports Server (NTRS)
Striepe, Scott A.; Epp, Chirold D.; Robertson, Edward A.
2010-01-01
This paper includes the current status of NASA s Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) Project. The ALHAT team has completed several flight tests and two major design analysis cycles. These tests and analyses examine terrain relative navigation sensors, hazard detection and avoidance sensors and algorithms, and hazard relative navigation algorithms, and the guidance and navigation system using these ALHAT functions. The next flight test is scheduled for July 2010. The paper contains results from completed flight tests and analysis cycles. ALHAT system status, upcoming tests and analyses is also addressed. The current ALHAT plans as of May 2010 are discussed. Application of the ALHAT system to landing on bodies other than the Moon is included
Present and future of vision systems technologies in commercial flight operations
NASA Astrophysics Data System (ADS)
Ward, Jim
2016-05-01
The development of systems to enable pilots of all types of aircraft to see through fog, clouds, and sandstorms and land in low visibility has been widely discussed and researched across aviation. For military applications, the goal has been to operate in a Degraded Visual Environment (DVE), using sensors to enable flight crews to see and operate without concern to weather that limits human visibility. These military DVE goals are mainly oriented to the off-field landing environment. For commercial aviation, the Federal Aviation Agency (FAA) implemented operational regulations in 2004 that allow the flight crew to see the runway environment using an Enhanced Flight Vision Systems (EFVS) and continue the approach below the normal landing decision height. The FAA is expanding the current use and economic benefit of EFVS technology and will soon permit landing without any natural vision using real-time weather-penetrating sensors. The operational goals of both of these efforts, DVE and EFVS, have been the stimulus for development of new sensors and vision displays to create the modern flight deck.
NASA Technical Reports Server (NTRS)
Bishop, Robert H.; DeMars, Kyle; Trawny, Nikolas; Crain, Tim; Hanak, Chad; Carson, John M.; Christian, John
2016-01-01
The navigation filter architecture successfully deployed on the Morpheus flight vehicle is presented. The filter was developed as a key element of the NASA Autonomous Landing and Hazard Avoidance Technology (ALHAT) project and over the course of 15 free fights was integrated into the Morpheus vehicle, operations, and flight control loop. Flight testing completed by demonstrating autonomous hazard detection and avoidance, integration of an altimeter, surface relative velocity (velocimeter) and hazard relative navigation (HRN) measurements into the onboard dual-state inertial estimator Kalman flter software, and landing within 2 meters of the vertical testbed GPS-based navigation solution at the safe landing site target. Morpheus followed a trajectory that included an ascent phase followed by a partial descent-to-landing, although the proposed filter architecture is applicable to more general planetary precision entry, descent, and landings. The main new contribution is the incorporation of a sophisticated hazard relative navigation sensor-originally intended to locate safe landing sites-into the navigation system and employed as a navigation sensor. The formulation of a dual-state inertial extended Kalman filter was designed to address the precision planetary landing problem when viewed as a rendezvous problem with an intended landing site. For the required precision navigation system that is capable of navigating along a descent-to-landing trajectory to a precise landing, the impact of attitude errors on the translational state estimation are included in a fully integrated navigation structure in which translation state estimation is combined with attitude state estimation. The map tie errors are estimated as part of the process, thereby creating a dual-state filter implementation. Also, the filter is implemented using inertial states rather than states relative to the target. External measurements include altimeter, velocimeter, star camera, terrain relative navigation sensor, and a hazard relative navigation sensor providing information regarding hazards on a map generated on-the-fly.
Applications of remote sensor data by state and Federal user agencies in Arizona
NASA Technical Reports Server (NTRS)
Schumann, H. H.
1972-01-01
The use of NASA high altitude aerial photography of south eastern Arizona to develop a natural resources information system for Federal lands is discussed. The data are to be used by local, State, and Federal agencies in connection with geologic mapping projects, water resources investigations, and land use studies to determine the alignment of a proposed major aqueduct. In addition, the data are used to confirm land ownership boundaries, detect changes in land use, and legislative reappointment mapping. Other applications include mapping vegetive cover, evaluation of changes in wildlife habitat, location of deer kills, and as a base for recording telemetry data from radio-collared big game animals.
Precision Landing and Hazard Avoidance (PL&HA) Domain
NASA Technical Reports Server (NTRS)
Robertson, Edward A.; Carson, John M., III
2016-01-01
The Precision Landing and Hazard Avoidance (PL&HA) domain addresses the development, integration, testing, and spaceflight infusion of sensing, processing, and GN&C (Guidance, Navigation and Control) functions critical to the success and safety of future human and robotic exploration missions. PL&HA sensors also have applications to other mission events, such as rendezvous and docking.
Interfacing and Verifying ALHAT Safe Precision Landing Systems with the Morpheus Vehicle
NASA Technical Reports Server (NTRS)
Carson, John M., III; Hirsh, Robert L.; Roback, Vincent E.; Villalpando, Carlos; Busa, Joseph L.; Pierrottet, Diego F.; Trawny, Nikolas; Martin, Keith E.; Hines, Glenn D.
2015-01-01
The NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project developed a suite of prototype sensors to enable autonomous and safe precision landing of robotic or crewed vehicles under any terrain lighting conditions. Development of the ALHAT sensor suite was a cross-NASA effort, culminating in integration and testing on-board a variety of terrestrial vehicles toward infusion into future spaceflight applications. Terrestrial tests were conducted on specialized test gantries, moving trucks, helicopter flights, and a flight test onboard the NASA Morpheus free-flying, rocket-propulsive flight-test vehicle. To accomplish these tests, a tedious integration process was developed and followed, which included both command and telemetry interfacing, as well as sensor alignment and calibration verification to ensure valid test data to analyze ALHAT and Guidance, Navigation and Control (GNC) performance. This was especially true for the flight test campaign of ALHAT onboard Morpheus. For interfacing of ALHAT sensors to the Morpheus flight system, an adaptable command and telemetry architecture was developed to allow for the evolution of per-sensor Interface Control Design/Documents (ICDs). Additionally, individual-sensor and on-vehicle verification testing was developed to ensure functional operation of the ALHAT sensors onboard the vehicle, as well as precision-measurement validity for each ALHAT sensor when integrated within the Morpheus GNC system. This paper provides some insight into the interface development and the integrated-systems verification that were a part of the build-up toward success of the ALHAT and Morpheus flight test campaigns in 2014. These campaigns provided valuable performance data that is refining the path toward spaceflight infusion of the ALHAT sensor suite.
Calibration of the Thermal Infrared Sensor on the Landsat Data Continuity Mission
NASA Technical Reports Server (NTRS)
Thome, K; Reuter, D.; Lunsford, D.; Montanaro, M.; Smith, J.; Tesfaye, Z.; Wenny, B.
2011-01-01
The Landsat series of satellites provides the longest running continuous data set of moderate-spatial-resolution imagery beginning with the launch of Landsat 1 in 1972 and continuing with the 1999 launch of Landsat 7 and current operation of Landsats 5 and 7. The Landsat Data Continuity Mission (LDCM) will continue this program into a fourth decade providing data that are keys to understanding changes in land-use changes and resource management. LDCM consists of a two-sensor platform comprised of the Operational Land Imager (OLI) and Thermal Infrared Sensors (TIRS). A description of the applications and design of the TIRS instrument is given as well as the plans for calibration and characterization. Included are early results from preflight calibration and a description of the inflight validation.
NASA Technical Reports Server (NTRS)
1975-01-01
Mission plans and objectives of the ERTS 2 Satellite are presented. ERTS 2 follow-on investigations in various scientific disciplines including agriculture, meteorology, land-use, geology, water resources, oceanography, and environment are discussed. Spacecraft design and its sensors are described along with the Delta launch vehicle and launch operations. Applications identified from ERTS 1 investigations are summarized.
Remote sensing sensors and applications in environmental resources mapping and modeling
Melesse, Assefa M.; Weng, Qihao; Thenkabail, Prasad S.; Senay, Gabriel B.
2007-01-01
The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.
Collaborative Point Paper on Border Surveillance Technology
2007-12-01
including; Unmanned Aerial Vehicles, Airships, and/or Aerostats, (RF, Electro-Optical, Infrared, Video) • Land- based Sensor Systems (Attended...warning. These ground- based systems are primarily short-range, up to around 500 meters. • Observation towers extend surveillance capabilities many...Foreign Companies Applicable Environment(s Foreign Companies Air Land Maritime Technology 25. BAE Systems PLC (BAE Systems Inc. is a US subsidiary
COBALT Flight Demonstrations Fuse Technologies
2017-06-07
This 5-minute, 50-second video shows how the CoOperative Blending of Autonomous Landing Technologies (COBALT) system pairs new landing sensor technologies that promise to yield the highest precision navigation solution ever tested for NASA space landing applications. The technologies included a navigation doppler lidar (NDL), which provides ultra-precise velocity and line-of-sight range measurements, and the Lander Vision System (LVS), which provides terrain-relative navigation. Through flight campaigns conducted in March and April 2017 aboard Masten Space Systems' Xodiac, a rocket-powered vertical takeoff, vertical landing (VTVL) platform, the COBALT system was flight tested to collect sensor performance data for NDL and LVS and to check the integration and communication between COBALT and the rocket. The flight tests provided excellent performance data for both sensors, as well as valuable information on the integrated performance with the rocket that will be used for subsequent COBALT modifications prior to follow-on flight tests. Based at NASA’s Armstrong Flight Research Center in Edwards, CA, the Flight Opportunities program funds technology development flight tests on commercial suborbital space providers of which Masten is a vendor. The program has previously tested the LVS on the Masten rocket and validated the technology for the Mars 2020 rover.
Applications of TIMS data in agricultural areas and related atmospheric considerations
NASA Technical Reports Server (NTRS)
Pelletier, R. E.; Ochoa, M. C.
1986-01-01
While much of traditional remote sensing in agricultural research was limited to the visible and reflective infrared, advances in thermal infrared remote sensing technology are adding a dimension to digital image analysis of agricultural areas. The Thermal Infrared Multispectral Scanner (TIMS) an airborne sensor having six bands over the nominal 8.2 to 12.2 m range, offers the ability to calculate land surface emissivities unlike most previous singular broadband sensors. Preliminary findings on the utility of the TIMS for several agricultural applications and related atmospheric considerations are discussed.
Remote Sensing Sensors and Applications in Environmental Resources Mapping and Modelling
Melesse, Assefa M.; Weng, Qihao; S.Thenkabail, Prasad; Senay, Gabriel B.
2007-01-01
The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling. PMID:28903290
Complementarity of ResourceSat-1 AWiFS and Landsat TM/ETM+ sensors
Goward, S.N.; Chander, G.; Pagnutti, M.; Marx, A.; Ryan, R.; Thomas, N.; Tetrault, R.
2012-01-01
Considerable interest has been given to forming an international collaboration to develop a virtual moderate spatial resolution land observation constellation through aggregation of data sets from comparable national observatories such as the US Landsat, the Indian ResourceSat and related systems. This study explores the complementarity of India's ResourceSat-1 Advanced Wide Field Sensor (AWiFS) with the Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). The analysis focuses on the comparative radiometry, geometry, and spectral properties of the two sensors. Two applied assessments of these data are also explored to examine the strengths and limitations of these alternate sources of moderate resolution land imagery with specific application domains. There are significant technical differences in these imaging systems including spectral band response, pixel dimensions, swath width, and radiometric resolution which produce differences in observation data sets. None of these differences was found to strongly limit comparable analyses in agricultural and forestry applications. Overall, we found that the AWiFS and Landsat TM/ETM+ imagery are comparable and in some ways complementary, particularly with respect to temporal repeat frequency. We have found that there are limits to our understanding of the AWiFS performance, for example, multi-camera design and stability of radiometric calibration over time, that leave some uncertainty that has been better addressed for Landsat through the Image Assessment System and related cross-sensor calibration studies. Such work still needs to be undertaken for AWiFS and similar observatories that may play roles in the Global Earth Observation System of Systems Land Surface Imaging Constellation.
Sensor feature fusion for detecting buried objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.
1993-04-01
Given multiple registered images of the earth`s surface from dual-band sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. The sensor suite currently includes two sensors (5 micron and 10 micron wavelengths) and one ground penetrating radar (GPR) of the wide-band pulsed synthetic aperture type. We use a supervised teaming pattern recognition approach to detect metal and plastic land mines buried in soil. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in amore » two step process to classify a subimage. Thee first step, referred to as feature selection, determines the features of sub-images which result in the greatest separability among the classes. The second step, image labeling, uses the selected features and the decisions from a pattern classifier to label the regions in the image which are likely to correspond to buried mines. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the sensors add value to the detection system. The most important features from the various sensors are fused using supervised teaming pattern classifiers (including neural networks). We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing feature information from multiple sensor types, including dual-band infrared and ground penetrating radar. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved operational problem of detecting buried land mines from an airborne standoff platform.« less
Some findings on the applications of ERTS and Skylab imagery for metropolitan land use analysis
NASA Technical Reports Server (NTRS)
Alexander, R. H. (Principal Investigator); Milazzo, V. A.
1974-01-01
The author has identified the following significant results. Work undertaken on a three-sensor land use data evaluation for a portion of the Phoenix area is reported. Analyses between land use data generated from 1970 high altitude photography and that detectable from ERTS and Skylab, especially in terms of changes in land use indicate that ERTS and Skylab imagery can be used effectively to detect and identify areas of post-1970 land use change, especially those documenting urban expansion at the rural-urban fringe. Significant preliminary findings on the utility of ERTS and Skylab data for metropolitan land use analysis, substantiated by evaluation with 1970 and 1972 ground control land use data are reported.
Flight test evaluation of the E-systems Differential GPS category 3 automatic landing system
NASA Technical Reports Server (NTRS)
Kaufmann, David N.; Mcnally, B. David
1995-01-01
Test flights were conducted to evaluate the capability of Differential Global Positioning System (DGPS) to provide the accuracy and integrity required for International Civil Aviation Organization (ICAO) Category (CAT) III precision approach and landings. These test flights were part of a Federal Aviation Administration (FAA) program to evaluate the technical feasibility of using DGPS based technology for CAT III precision approach and landing applications. An IAI Westwind 1124 aircraft (N24RH) was equipped with DGPS receiving equipment and additional computing capability provided by E-Systems. The test flights were conducted at NASA Ames Research Center's Crows Landing Flight Facility, Crows Landing, California. The flight test evaluation was based on completing 100 approaches and landings. The navigation sensor error accuracy requirements were based on ICAO requirements for the Microwave Landing System (MLS). All of the approaches and landings were evaluated against ground truth reference data provided by a laser tracker. Analysis of these approaches and landings shows that the E-Systems DGPS system met the navigation sensor error requirements for a successful approach and landing 98 out of 100 approaches and landings, based on the requirements specified in the FAA CAT III Level 2 Flight Test Plan. In addition, the E-Systems DGPS system met the integrity requirements for a successful approach and landing or stationary trial for all 100 approaches and landings and all ten stationary trials, based on the requirements specified in the FAA CAT III Level 2 Flight Test Plan.
Atmospheric moisture transport and fresh water flux over oceans derived from spacebased sensors
NASA Technical Reports Server (NTRS)
Liu, W. T.; Tang, W.
2001-01-01
preliminary results will be shown to demonstrate the application of spacebased IMT and fresh water flux in ocean-atmosphere-land interaction studies, such as the hydrologica balance on Amazon rainfall and Indian monsoon.
Laboratory tests of three Z‐Land Fairfield Nodal 5‐Hz, three‐component sensors
Ringler, Adam; Anthony, Robert E.; Karplus, M.S; Holland, Austin; Wilson, David
2018-01-01
We conduct a number of laboratory tests at the Albuquerque Seismological Laboratory to verify the self‐noise and fidelity in which 3 three‐component Fairfield Nodal Z‐Land, Generation 2, 5‐Hz sensors are able to record seismic signals. In addition to the incoherent self‐noise of the sensors, we estimate the sensitivity of the units in digital volts/m/s, the damping, and the free period. These three parameters allow us to completely characterize the response of the instruments. We find that the responses of all components match a mean‐derived response to within 5% of amplitude and 0.03 radians in phase. This close agreement suggests that for most applications a nominal response is suitable. We also checked the timing of the units as compared to a Quanterra Q330HR and found good agreement up to 200samples/s . Finally, we compared the results of our noise tests on these sensors to a couple of nodal sensors recently deployed at the Community Wavefield Demonstration Experiment in north‐central Oklahoma and found that local site noise and not the sensor self‐noise is a fundamental limiter in the resolution of these deployed sensors at frequencies above ∼0.1Hz .
A Prototype Land Information Sensor Web: Design, Implementation and Implication for the SMAP Mission
NASA Astrophysics Data System (ADS)
Su, H.; Houser, P.; Tian, Y.; Geiger, J. K.; Kumar, S. V.; Gates, L.
2009-12-01
Land Surface Model (LSM) predictions are regular in time and space, but these predictions are influenced by errors in model structure, input variables, parameters and inadequate treatment of sub-grid scale spatial variability. Consequently, LSM predictions are significantly improved through observation constraints made in a data assimilation framework. Several multi-sensor satellites are currently operating which provide multiple global observations of the land surface, and its related near-atmospheric properties. However, these observations are not optimal for addressing current and future land surface environmental problems. To meet future earth system science challenges, NASA will develop constellations of smart satellites in sensor web configurations which provide timely on-demand data and analysis to users, and can be reconfigured based on the changing needs of science and available technology. A sensor web is more than a collection of satellite sensors. That means a sensor web is a system composed of multiple platforms interconnected by a communication network for the purpose of performing specific observations and processing data required to support specific science goals. Sensor webs can eclipse the value of disparate sensor components by reducing response time and increasing scientific value, especially when the two-way interaction between the model and the sensor web is enabled. The study of a prototype Land Information Sensor Web (LISW) is sponsored by NASA, trying to integrate the Land Information System (LIS) in a sensor web framework which allows for optimal 2-way information flow that enhances land surface modeling using sensor web observations, and in turn allows sensor web reconfiguration to minimize overall system uncertainty. This prototype is based on a simulated interactive sensor web, which is then used to exercise and optimize the sensor web modeling interfaces. The Land Information Sensor Web Service-Oriented Architecture (LISW-SOA) has been developed and it is the very first sensor web framework developed especially for the land surface studies. Synthetic experiments based on the LISW-SOA and the virtual sensor web provide a controlled environment in which to examine the end-to-end performance of the prototype, the impact of various sensor web design trade-offs and the eventual value of sensor webs for a particular prediction or decision support. In this paper, the design, implementation of the LISW-SOA and the implication for the Soil Moisture Active and Passive (SMAP) mission is presented. Particular attention is focused on examining the relationship between the economic investment on a sensor web (space and air borne, ground based) and the accuracy of the model predicted soil moisture, which can be achieved by using such sensor observations. The Study of Virtual Land Information Sensor Web (LISW) is expected to provide some necessary a priori knowledge for designing and deploying the next generation Global Earth Observing System of systems (GEOSS).
Autonomous flight and remote site landing guidance research for helicopters
NASA Technical Reports Server (NTRS)
Denton, R. V.; Pecklesma, N. J.; Smith, F. W.
1987-01-01
Automated low-altitude flight and landing in remote areas within a civilian environment are investigated, where initial cost, ongoing maintenance costs, and system productivity are important considerations. An approach has been taken which has: (1) utilized those technologies developed for military applications which are directly transferable to a civilian mission; (2) exploited and developed technology areas where new methods or concepts are required; and (3) undertaken research with the potential to lead to innovative methods or concepts required to achieve a manual and fully automatic remote area low-altitude and landing capability. The project has resulted in a definition of system operational concept that includes a sensor subsystem, a sensor fusion/feature extraction capability, and a guidance and control law concept. These subsystem concepts have been developed to sufficient depth to enable further exploration within the NASA simulation environment, and to support programs leading to the flight test.
Historical Landsat data comparisons: illustrations of land surface change
Cross, Matthew D.
1990-01-01
This booklet provides an overview of the Landsat program and shows the application of the data to monitor changes occurring on the surface of the Earth. To show changes that have taken place within the last 20 years or less, image pairs were constructed from the Landsat multispectral scanner (MSS) and thematic mapper (TM) sensors. Landsat MSS data provide a historical global record of the land surface from the early 1970's to present. Landsat TM data provide land surface information from the early 1980's to present.
NASA Technical Reports Server (NTRS)
Vermote, E.; Roger, J. C.; Justice, C. O.; Franch, B.; Claverie, M.
2016-01-01
This paper presents a generic approach developed to derive surface reflectance over land from a variety of sensors. This technique builds on the extensive dataset acquired by the Terra platform by combining MODIS and MISR to derive an explicit and dynamic map of band ratio's between blue and red channels and is a refinement of the operational approach used for MODIS and LANDSAT over the past 15 years. We will present the generic approach and the application to MODIS and LANDSAT data and its validation using the AERONET data.
Remote sensing of land degradation: experiences from Latin America and the Caribbean.
Metternicht, G; Zinck, J A; Blanco, P D; del Valle, H F
2010-01-01
Land degradation caused by deforestation, overgrazing, and inappropriate irrigation practices affects about 16% of Latin America and the Caribbean (LAC). This paper addresses issues related to the application of remote sensing technologies for the identification and mapping of land degradation features, with special attention to the LAC region. The contribution of remote sensing to mapping land degradation is analyzed from the compilation of a large set of research papers published between the 1980s and 2009, dealing with water and wind erosion, salinization, and changes of vegetation cover. The analysis undertaken found that Landsat series (MSS, TM, ETM+) are the most commonly used data source (49% of the papers report their use), followed by aerial photographs (39%), and microwave sensing (ERS, JERS-1, Radarsat) (27%). About 43% of the works analyzed use multi-scale, multi-sensor, multi-spectral approaches for mapping degraded areas, with a combination of visual interpretation and advanced image processing techniques. The use of more expensive hyperspectral and/or very high spatial resolution sensors like AVIRIS, Hyperion, SPOT-5, and IKONOS tends to be limited to small surface areas. The key issue of indicators that can directly or indirectly help recognize land degradation features in the visible, infrared, and microwave regions of the electromagnetic spectrum are discussed. Factors considered when selecting indicators for establishing land degradation baselines include, among others, the mapping scale, the spectral characteristics of the sensors, and the time of image acquisition. The validation methods used to assess the accuracy of maps produced with satellite data are discussed as well.
NASA Astrophysics Data System (ADS)
Wollheim, W. M.; Mulukutla, G.; Cook, C.; Carey, R. O.
2014-12-01
Biogeochemical conditions throughout aquatic landscapes are spatially varied and temporally dynamic due to interactions of upstream land use, climate, hydrologic responses, and internal aquatic processes. One of the key goals in aquatic ecosystem ecology is to parse the upstream influences of terrestrial and aquatic processes on local conditions, which becomes progressively more difficult as watershed size increases and as processes are altered by diverse human activities. Simultaneous deployments of high frequency, in situ aquatic sensors for multiple constituents (e.g. NO3-N, CDOM, turbidity, conductivity, D.O., water temperature, along with flow) offer a new approach for understanding patterns along the aquatic continuum. For this talk, we explore strategies for deployments within single watersheds to improve understanding of terrestrial and aquatic processes. We address applications regarding mobilization of non-point nutrient sources across temporal scales, interactions with land use and watershed size, and the importance of aquatic processes. We also explore ways in which simultaneous sensor deployments can be designed to improve parameterization and testing of river network biogeochemical models. We will provide several specific examples using conductivity, nitrate and carbon from ongoing sensor deployments in New England, USA. We expect that improved deployments of sensors and sensor networks will benefit the management of critical freshwater resources.
Remote-sensing applications as utilized in Florida's coastal zone management program
NASA Technical Reports Server (NTRS)
Worley, D. R.
1975-01-01
Land use maps were developed from photomaps obtained by remote sensing in order to develop a comprehensive state plan for the protection, development, and zoning of coastal regions. Only photographic remote sensors have been used in support of the coastal council's planning/management methodology. Standard photointerpretation and cartographic application procedures for map compilation were used in preparing base maps.
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline; Laporte, Nadine; Netanyahuy, Nathan S.; Zukor, Dorothy (Technical Monitor)
2001-01-01
The characterization and the mapping of land cover/land use of forest areas, such as the Central African rainforest, is a very complex task. This complexity is mainly due to the extent of such areas and, as a consequence, to the lack of full and continuous cloud-free coverage of those large regions by one single remote sensing instrument, In order to provide improved vegetation maps of Central Africa and to develop forest monitoring techniques for applications at the local and regional scales, we propose to utilize multi-sensor remote sensing observations coupled with in-situ data. Fusion and clustering of multi-sensor data are the first steps towards the development of such a forest monitoring system. In this paper, we will describe some preliminary experiments involving the fusion of SAR and Landsat image data of the Lope Reserve in Gabon. Similarly to previous fusion studies, our fusion method is wavelet-based. The fusion provides a new image data set which contains more detailed texture features and preserves the large homogeneous regions that are observed by the Thematic Mapper sensor. The fusion step is followed by unsupervised clustering and provides a vegetation map of the area.
Imaging Flash Lidar for Autonomous Safe Landing and Spacecraft Proximity Operation
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Roback, Vincent E.; Brewster, Paul F.; Hines, Glenn D.; Bulyshev, Alexander E.
2016-01-01
3-D Imaging flash lidar is recognized as a primary candidate sensor for safe precision landing on solar system bodies (Moon, Mars, Jupiter and Saturn moons, etc.), and autonomous rendezvous proximity operations and docking/capture necessary for asteroid sample return and redirect missions, spacecraft docking, satellite servicing, and space debris removal. During the final stages of landing, from about 1 km to 500 m above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard fli1ght computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station from several kilometers distance. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16k pixels range images with 7 cm precision, at a 20 Hz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument design and capabilities as demonstrated by the closed-loop flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus). Then a plan for continued advancement of the flash lidar technology will be explained. This proposed plan is aimed at the development of a common sensor that with a modest design adjustment can meet the needs of both landing and proximity operation and docking applications.
Hanes, Jonathan M.; Liang, Liang; Morisette, Jeffrey T.
2013-01-01
Certain vegetation types (e.g., deciduous shrubs, deciduous trees, grasslands) have distinct life cycles marked by the growth and senescence of leaves and periods of enhanced photosynthetic activity. Where these types exist, recurring changes in foliage alter the reflectance of electromagnetic radiation from the land surface, which can be measured using remote sensors. The timing of these recurring changes in reflectance is called land surface phenology (LSP). During recent decades, a variety of methods have been used to derive LSP metrics from time series of reflectance measurements acquired by satellite-borne sensors. In contrast to conventional phenology observations, LSP metrics represent the timing of reflectance changes that are driven by the aggregate activity of vegetation within the areal unit measured by the satellite sensor and do not directly provide information about the phenology of individual plants, species, or their phenophases. Despite the generalized nature of satellite sensor-derived measurements, they have proven useful for studying changes in LSP associated with various phenomena. This chapter provides a detailed overview of the use of satellite remote sensing to monitor LSP. First, the theoretical basis for the application of satellite remote sensing to the study of vegetation phenology is presented. After establishing a theoretical foundation for LSP, methods of deriving and validating LSP metrics are discussed. This chapter concludes with a discussion of major research findings and current and future research directions.
NASA Technical Reports Server (NTRS)
Case, Jonathan L; White, Kristopher D.
2014-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL is running a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework (hereafter referred to as the "SPoRT-LIS"). Output from the real-time SPoRT-LIS is used for (1) initializing land surface variables for local modeling applications, and (2) displaying in decision support systems for situational awareness and drought monitoring at select NOAA/National Weather Service (NWS) partner offices. The experimental CONUS run incorporates hourly quantitative precipitation estimation (QPE) from the National Severe Storms Laboratory Multi- Radar Multi-Sensor (MRMS) which will be transitioned into operations at the National Centers for Environmental Prediction (NCEP) in Fall 2014.This paper describes the current and experimental SPoRT-LIS configurations, and documents some of the limitations still remaining through the advent of MRMS precipitation analyses in the SPoRT-LIS land surface model (LSM) simulations.
The Thermal Infrared Sensor on the Landsat Data Continuity Mission
NASA Technical Reports Server (NTRS)
Reuter, Dennis; Richardson, Cathy; Irons, James; Allen, Rick; Anderson, Martha; Budinoff, Jason; Casto, Gordon; Coltharp, Craig; Finneran, Paul; Forsbacka, Betsy;
2010-01-01
The Landsat Data Continuity Mission (LDCM), a joint NASA and USGS mission, is scheduled for launch in December, 2012. The LDCM instrument payload will consist of the Operational Land Imager (OLI), provided by Ball Aerospace and Technology Corporation (BATC} under contract to NASA and the Thermal Infrared Sensor (TIRS), provided by NASA's Goddard Space Flight Center (GSFC). This paper outlines the design of the TIRS instrument and gives an example of its application to monitoring water consumption by measuring evapotranspiration.
Applications of SAR Interferometry in Earth and Environmental Science Research
Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun
2009-01-01
This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions. PMID:22573992
Applications of SAR Interferometry in Earth and Environmental Science Research.
Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun
2009-01-01
This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions.
Assessment of space sensors for ocean pollution monitoring
NASA Technical Reports Server (NTRS)
Alvarado, U. R.; Tomiyasu, K.; Gulatsi, R. L.
1980-01-01
Several passive and active microwave, as well as passive optical remote sensors, applicable to the monitoring of oil spills and waste discharges at sea, are considered. The discussed types of measurements relate to: (1) spatial distribution and properties of the pollutant, and (2) oceanic parameters needed to predict the movement of the pollutants and their impact upon land. The sensors, operating from satellite platforms at 700-900 km altitudes, are found to be useful in mapping the spread of oil in major oil spills and in addition, can be effective in producing wind and ocean parameters as inputs to oil trajectory and dispersion models. These capabilities can be used in countermeasures.
Reconfigurable Mobile System - Ground, sea and air applications
NASA Astrophysics Data System (ADS)
Lamonica, Gary L.; Sturges, James W.
1990-11-01
The Reconfigurable Mobile System (RMS) is a highly mobile data-processing unit for military users requiring real-time access to data gathered by airborne (and other) reconnaissance data. RMS combines high-performance computation and image processing workstations with resources for command/control/communications in a single, lightweight shelter. RMS is composed of off-the-shelf components, and is easily reconfigurable to land-vehicle or shipboard versions. Mission planning, which involves an airborne sensor platform's sensor coverage, considered aircraft/sensor capabilities in conjunction with weather, terrain, and threat scenarios. RMS's man-machine interface concept facilitates user familiarization and features iron-based function selection and windowing.
A Spectralon BRF Data Base for MISR Calibration Application
NASA Technical Reports Server (NTRS)
Bruegge, C.; Chrien, N.; Haner, D.
1999-01-01
The Multi-angle Imaging SpectroRadiometer (MISR) is an Earth observing sensor which will provide global retrievals of aerosols, clouds, and land surface parameters. Instrument specifications require high accuracy absolute calibration, as well as accurate camera-to-camera, band-to-band and pixel-to-pixel relative response determinations.
NASA Technical Reports Server (NTRS)
Mallon, H. J.; Howard, J. Y.
1972-01-01
A group of suggested experiments is described, which are to be conducted with ERTS-A and high altitude aircraft imagery during the 1972 period. Methods of analysis and observation of land use, urban change, transportation, and possible pollution, using small scale, low resolution data, are discussed.
A Simple Downscaling Algorithm for Remotely Sensed Land Surface Temperature
NASA Astrophysics Data System (ADS)
Sandholt, I.; Nielsen, C.; Stisen, S.
2009-05-01
The method is illustrated using a combination of MODIS NDVI data with a spatial resolution of 250m and 3 Km Meteosat Second Generation SEVIRI LST data. Geostationary Earth Observation data carry a large potential for assessment of surface state variables. Not the least the European Meteosat Second Generation platform with its SEVIRI sensor is well suited for studies of the dynamics of land surfaces due to its high temporal frequency (15 minutes) and its red, Near Infrared (NIR) channels that provides vegetation indices, and its two split window channels in the thermal infrared for assessment of Land Surface Temperature (LST). For some applications the spatial resolution in geostationary data is too coarse. Due to the low statial resolution of 4.8 km at nadir for the SEVIRI sensor, a means of providing sub pixel information is sought for. By combining and properly scaling two types of satellite images, namely data from the MODIS sensor onboard the polar orbiting platforms TERRA and AQUA and the coarse resolution MSG-SEVIRI, we exploit the best from two worlds. The vegetation index/surface temperature space has been used in a vast number of studies for assessment of air temperature, soil moisture, dryness indices, evapotranspiration and for studies of land use change. In this paper, we present an improved method to derive a finer resolution Land Surface Temperature (LST). A new, deterministic scaling method has been applied, and is compared to existing deterministic downscaling methods based on LST and NDVI. We also compare our results from in situ measurements of LST from the Dahra test site in West Africa.
Crew Office Evaluation of a Precision Lunar Landing System
NASA Technical Reports Server (NTRS)
Major, Laura M.; Duda, Kevin R.; Hirsh, Robert L.
2011-01-01
A representative Human System Interface for a precision lunar landing system, ALHAT, has been developed as a platform for prototype visualization and interaction concepts. This facilitates analysis of crew interaction with advanced sensors and AGNC systems. Human-in-the-loop evaluations with representatives from the Crew Office (i.e. astronauts) and Mission Operations Directorate (MOD) were performed to refine the crew role and information requirements during the final phases of landing. The results include a number of lessons learned from Shuttle that are applicable to the design of a human supervisory landing system and cockpit. Overall, the results provide a first order analysis of the tasks the crew will perform during lunar landing, an architecture for the Human System Interface based on these tasks, as well as details on the information needs to land safely.
NASA Astrophysics Data System (ADS)
Biehl, Saskia; Paetsch, Nancy; Meyer-Kornblum, Eike
2017-05-01
In these days industry 4.0 resounded throughout the land and means the fourth industrial revolution. The industry has to tackle the task of a flexible and customer-oriented production. Therefor the need of sensor systems for the measurement of temperature and load, the two most important categories in production, is rising. For getting the real specification during the production process the integration of sensor elements in high load regions of machinery is very important. Thus wear resistant thin film sensor systems directly applied onto the surface of plant components are in development. These multilayer systems combine excellent wear resistance with sensory behaviour. The sensor data will lead to a deeper process understanding, to optimization of simulation tools, to reduction of rejects and to an improvement of flexibility in production.
Use of EO-1 Hyperion Data for Inter-Sensor Calibration of Vegetation Indices
NASA Technical Reports Server (NTRS)
Huete, Alfredo; Miura, Tomoaki; Kim, HoJin; Yoshioka, Hiroki
2004-01-01
Numerous satellite sensor systems useful in terrestrial Earth observation and monitoring have recently been launched and their derived products are increasingly being used in regional and global vegetation studies. The increasing availability of multiple sensors offer much opportunity for vegetation studies aimed at understanding the terrestrial carbon cycle, climate change, and land cover conversions. Potential applications include improved multiresolution characterization of the surface (scaling); improved optical-geometric characterization of vegetation canopies; improved assessments of surface phenology and ecosystem seasonal dynamics; and improved maintenance of long-term, inter-annual, time series data records. The Landsat series of sensors represent one group of sensors that have produced a long-term, archived data set of the Earth s surface, at fine resolution and since 1972, capable of being processed into useful information for global change studies (Hall et al., 1991).
NASA Technical Reports Server (NTRS)
1984-01-01
Among the topics discussed are NASA's land remote sensing plans for the 1980s, the evolution of Landsat 4 and the performance of its sensors, the Landsat 4 thematic mapper image processing system radiometric and geometric characteristics, data quality, image data radiometric analysis and spectral/stratigraphic analysis, and thematic mapper agricultural, forest resource and geological applications. Also covered are geologic applications of side-looking airborne radar, digital image processing, the large format camera, the RADARSAT program, the SPOT 1 system's program status, distribution plans, and simulation program, Space Shuttle multispectral linear array studies of the optical and biological properties of terrestrial land cover, orbital surveys of solar-stimulated luminescence, the Space Shuttle imaging radar research facility, and Space Shuttle-based polar ice sounding altimetry.
Passive versus active hazard detection and avoidance systems
NASA Astrophysics Data System (ADS)
Neveu, D.; Mercier, G.; Hamel, J.-F.; Simard Bilodeau, V.; Woicke, S.; Alger, M.; Beaudette, D.
2015-06-01
Upcoming planetary exploration missions will require advanced guidance, navigation and control technologies to reach landing sites with high precision and safety. Various technologies are currently in development to meet that goal. Some technologies rely on passive sensors and benefit from the low mass and power of such solutions while others rely on active sensors and benefit from an improved robustness and accuracy. This paper presents two different hazard detection and avoidance (HDA) system design approaches. The first architecture relies only on a camera as the passive HDA sensor while the second relies, in addition, on a Lidar as the active HDA sensor. Both options use in common an innovative hazard map fusion algorithm aiming at identifying the safest landing locations. This paper presents the simulation tools and reports the closed-loop software simulation results obtained using each design option. The paper also reports the Monte Carlo simulation campaign that was used to assess the robustness of each design option. The performance of each design option is compared against each other in terms of performance criteria such as percentage of success, mean distance to nearest hazard, etc. The applicability of each design option to planetary exploration missions is also discussed.
Advancing Lidar Sensors Technologies for Next Generation Landing Missions
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander
2015-01-01
Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.
NASA Astrophysics Data System (ADS)
Micijevic, E.; Haque, M. O.
2016-12-01
With its forty-four year continuous data record, the Landsat image archive provides an invaluable source of information for essential climate variables, global land change studies and a variety of other applications. The latest in the series, Landsat 8, carries the Operational Land Imager (OLI), the sensor with an improved design compared to its predecessors, but with similar radiometric, spatial and spectral characteristics, to provide image data continuity. Sentinel 2A (S2A), launched in June 2015, carries the Multispectral Imager (MSI) that has a number of bands with spectral and radiometric characteristics similar to L8 OLI. As such, it offers an opportunity to augment the Landsat data record through increased frequency of acquisitions, when combined with OLI. In this study, we compared Top-of-Atmosphere (TOA) reflectance of matching spectral bands in MSI and OLI products. Comparison between S2A MSI and L8 OLI sensors was performed using image data acquired near simultaneously primarily over Pseudo Invariant Calibration Site (PICS) Libya 4, but also over other calibration test sites. Spectral differences between the two sensors were accounted for using their spectral filter profiles and a spectral signature of the site derived from EO1 Hyperion hyperspectral imagery. Temporal stability was also assessed through temporal trending of Top-of-Atmosphere (TOA) reflectance measured by the two sensors over PICS. The performed analysis suggests good agreement between the two sensors, within 5% for the costal aerosol band and better than 3% for other matching bands. It is important to note that whenever data from different sensors are used together in a study, the special attention need to be paid to the spectral band differences between the sensors because the necessary spectral difference adjustment is target dependent and may vary a lot from target to target.
NASA Technical Reports Server (NTRS)
Wier, C. E. (Principal Investigator); Powell, R. L.; Amato, R. V.; Russell, O. R.; Martin, K. R.
1975-01-01
The author has identified the following significant results. This investigation evaluated the applicability of a variety of sensor types, formats, and resolution capabilities to the study of both fuel and nonfuel mined lands. The image reinforcement provided by stereo viewing of the EREP images proved useful for identifying lineaments and for mined lands mapping. Skylab S190B color and color infrared transparencies were the most useful EREP imagery. New information on lineament and fracture patterns in the bedrock of Indiana and Illinois extracted from analysis of the Skylab imagery has contributed to furthering the geological understanding of this portion of the Illinois basin.
A manual for inexpensive methods of analyzing and utilizing remote sensor data
NASA Technical Reports Server (NTRS)
Elifrits, C. D.; Barr, D. J.
1978-01-01
Instructions are provided for inexpensive methods of using remote sensor data to assist in the completion of the need to observe the earth's surface. When possible, relative costs were included. Equipment need for analysis of remote sensor data is described, and methods of use of these equipment items are included, as well as advantages and disadvantages of the use of individual items. Interpretation and analysis of stereo photos and the interpretation of typical patterns such as tone and texture, landcover, drainage, and erosional form are described. Similar treatment is given to monoscopic image interpretation, including LANDSAT MSS data. Enhancement techniques are detailed with respect to their application and simple techniques of creating an enhanced data item. Techniques described include additive and subtractive (Diazo processes) color techniques and enlargement of photos or images. Applications of these processes, including mappings of land resources, engineering soils, geology, water resources, environmental conditions, and crops and/or vegetation, are outlined.
The geographic applications program of the U. S. Geological Survey
Gerlach, Arch C.
1969-01-01
The fundamental objective of modern Geography is to improve man's level of living through a better understanding of man-environment inter actions. Related goals of the USGS program for applications of remote sensor data to Geographical research are: (1) the analysis and improvement of land use, with special emphasis on urban problems; and (2) more effective use of the total available energy budget, including insolation, mineral fuels, atomic energy, human resources, and mental energy, all of which are integrated into man-environment interactions. The collection of data through remote sensors in air craft and spacecraft is financed largely by funds from NASA, and is part of the much broader EROS Program of the Department of the Interior. Results to date have achieved much toward the identification of remote sensor signatures for Earth features and human activities, and toward evaluation of instruments for collecting essential information.
NASA Technical Reports Server (NTRS)
Cavalieri, Donald J. (Editor); Swift, Calvin T. (Editor)
1987-01-01
This document addresses the task of developing and executing a plan for validating the algorithm used for initial processing of sea ice data from the Special Sensor Microwave/Imager (SSMI). The document outlines a plan for monitoring the performance of the SSMI, for validating the derived sea ice parameters, and for providing quality data products before distribution to the research community. Because of recent advances in the application of passive microwave remote sensing to snow cover on land, the validation of snow algorithms is also addressed.
NASA Technical Reports Server (NTRS)
Winikka, C. C.; Schumann, H. H.
1975-01-01
Utilization of new sources of statewide remote sensing data, taken from high-altitude aircraft and from spacecraft is discussed along with incorporation of information extracted from these sources into on-going land and resources management programs in Arizona. Statewide cartographic applications of remote sensor data taken by NASA high-altitude aircraft include the development of a statewide semi-analytic control network, the production of nearly 1900 orthophotoquads (image maps) that are coincident in scale and area with the U.S. Geological Survey (USGS) 7. 5 minute topographic quadrangle map series, and satellite image maps of Arizona produced from LANDSAt multispectral scanner imagery. These cartographic products are utilized for a wide variety of experimental and operational earth resources applications. Applications of the imagery, image maps, and derived information discussed include: soils and geologic mapping projects, water resources investigations, land use inventories, environmental impact studies, highway route locations and mapping, vegetation cover mapping, wildlife habitat studies, power plant siting studies, statewide delineation of irrigation cropland, position determination of drilling sites, pictorial geographic bases for thematic mapping, and court exhibits.
NASA Astrophysics Data System (ADS)
Bayuwati, Dwi; Waluyo, Tomi B.; Widiyatmoko, Bambang
2015-01-01
An optical fiber optic sensor for detecting land displacement is discussed in this paper. The sensor system consists of a laser at wavelength 1.3 um, optical fiber coupler, optical fiber as sensor and light transmitting media, PIN photodiodedetector system, data logger and personal computer. Sensor was made from a curved optical fiber with diameter 35 mm, which will be changed into a heart-shape fiber if it is pulled. The heart-shape fiber sensor is the modification of the earlier displacement fiber sensor model which was in an ellipse form. Light to and from the optical fiber sensor was transmitted into a length of a multi core, single mode optical fiber cable. The scheme of the optical displacement sensor system has been described here. Characterization in the laboratory has been done by applying a series of pulling mechanism, on the heart-shape fiber sensor; which represents the land displacement process. Characterization in the field was carried out by mounting the sensor system on a scaled-down model of a land slope and artificially reproducing the landslide process using a steady-flow of artificial rainfall as the trigger. The voltage sensor output was recorded during the artificial landslide process. The displacement occurence can be indicated from the declining of the sensor signal received by the detector while the reference signal is steady. Characterization in the laboratory resulted in the performance of the optical fiber land displacement, namely, sensitivity 0.027(mV/mV)/mm, resolution 0.37 mm and measurement range 30 mm; compared with earlier optical fiber sensor performance with similar sensitivity and resolution which works only in 8 mm displacement range. Based on the experiment of landslides simulation in the field, we can define a critical condition in the real situation before landslides occurence to take any measures to prevent more casualties and losses.
Multi-Sensor Characterization of the Boreal Forest: Initial Findings
NASA Technical Reports Server (NTRS)
Reith, Ernest; Roberts, Dar A.; Prentiss, Dylan
2001-01-01
Results are presented in an initial apriori knowledge approach toward using complementary multi-sensor multi-temporal imagery in characterizing vegetated landscapes over a site in the Boreal Ecosystem-Atmosphere Study (BOREAS). Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR) data were segmented using multiple endmember spectral mixture analysis and binary decision tree approaches. Individual date/sensor land cover maps had overall accuracies between 55.0% - 69.8%. The best eight land cover layers from all dates and sensors correctly characterized 79.3% of the cover types. An overlay approach was used to create a final land cover map. An overall accuracy of 71.3% was achieved in this multi-sensor approach, a 1.5% improvement over our most accurate single scene technique, but 8% less than the original input. Black spruce was evaluated to be particularly undermapped in the final map possibly because it was also contained within jack pine and muskeg land coverages.
Lidar Sensors for Autonomous Landing and Hazard Avoidance
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Petway, Larry B.; Hines, Glenn D.; Roback, Vincent E.; Reisse, Robert A.; Pierrottet, Diego F.
2013-01-01
Lidar technology will play an important role in enabling highly ambitious missions being envisioned for exploration of solar system bodies. Currently, NASA is developing a set of advanced lidar sensors, under the Autonomous Landing and Hazard Avoidance (ALHAT) project, aimed at safe landing of robotic and manned vehicles at designated sites with a high degree of precision. These lidar sensors are an Imaging Flash Lidar capable of generating high resolution three-dimensional elevation maps of the terrain, a Doppler Lidar for providing precision vehicle velocity and altitude, and a Laser Altimeter for measuring distance to the ground and ground contours from high altitudes. The capabilities of these lidar sensors have been demonstrated through four helicopter and one fixed-wing aircraft flight test campaigns conducted from 2008 through 2012 during different phases of their development. Recently, prototype versions of these landing lidars have been completed for integration into a rocket-powered terrestrial free-flyer vehicle (Morpheus) being built by NASA Johnson Space Center. Operating in closed-loop with other ALHAT avionics, the viability of the lidars for future landing missions will be demonstrated. This paper describes the ALHAT lidar sensors and assesses their capabilities and impacts on future landing missions.
Linear Covariance Analysis for a Lunar Lander
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Bhatt, Sagar; Fritz, Matthew; Woffinden, David; May, Darryl; Braden, Ellen; Hannan, Michael
2017-01-01
A next-generation lunar lander Guidance, Navigation, and Control (GNC) system, which includes a state-of-the-art optical sensor suite, is proposed in a concept design cycle. The design goal is to allow the lander to softly land within the prescribed landing precision. The achievement of this precision landing requirement depends on proper selection of the sensor suite. In this paper, a robust sensor selection procedure is demonstrated using a Linear Covariance (LinCov) analysis tool developed by Draper.
EO-1 Prototyping for Environmental Applications
NASA Astrophysics Data System (ADS)
Campbell, P. K.; Middleton, E.; Ungar, S.; Zhang, Q.; Ong, L.; Huemmrich, K. F.
2009-12-01
The Earth Observing One (EO-1) Mission, launched in November, 2000 as part of NASA’s New Millennium Program, is in it’s eight year of operation. From the start it was recognized that a key criteria for evaluating the EO-1 technology and outlining future Earth science mission needs is the ability of the technology to characterize terrestrial surface state and processes. EO-1 is participating in a broad range of investigations, demonstrating the utility of imaging spectroscopy in applications relating to forestry, agriculture, species discrimination, invasive species, desertification, land-use, vulcanization, fire management, homeland security, natural and anthropogenic hazards and disaster assessments and has provided characterization for a variety of instruments on EOS platforms. By generating a high spectral and spatial resolution data set for the corral reefs and islands, it is contributing for realizing the goals of the National Decadal survey and providing an excellent platform for testing strategies to be employed in the HyspIRI mission. The EO1 Mission Science Office (MSO) is developing tools and prototypes for new science products, addressing the HyspIRI goals to assess vegetation status and health and provide vegetation spectral bio-indicators and biophysical parameters such as LAI and fAPAR at <100 m spatial resolution. These are being used to resolve variability in heterogeneous areas (e.g. agriculture, narrow shapes, urban and developed lands) and for managed ecosystems less than 10 km2. A set of invariable reference targets (e.g. sun, moon, deserts, Antarctica) are being characterised to allow cross-calibration of current and future EO sensors, comparison of land products generated by multiple sensors and retroactive processing of time series data. Such products are needed to develop Science Requirements for the next generation of hyperspectral satellite sensors and to address global societal needs.
LandingNav: a precision autonomous landing sensor for robotic platforms on planetary bodies
NASA Astrophysics Data System (ADS)
Katake, Anup; Bruccoleri, Chrisitian; Singla, Puneet; Junkins, John L.
2010-01-01
Increased interest in the exploration of extra terrestrial planetary bodies calls for an increase in the number of spacecraft landing on remote planetary surfaces. Currently, imaging and radar based surveys are used to determine regions of interest and a safe landing zone. The purpose of this paper is to introduce LandingNav, a sensor system solution for autonomous landing on planetary bodies that enables landing on unknown terrain. LandingNav is based on a novel multiple field of view imaging system that leverages the integration of different state of the art technologies for feature detection, tracking, and 3D dense stereo map creation. In this paper we present the test flight results of the LandingNav system prototype. Sources of errors due to hardware limitations and processing algorithms were identified and will be discussed. This paper also shows that addressing the issues identified during the post-flight test data analysis will reduce the error down to 1-2%, thus providing for a high precision 3D range map sensor system.
Boyte, Stephen; Wylie, Bruce K.; Rigge, Matthew B.; Dahal, Devendra
2018-01-01
Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.
NASA Astrophysics Data System (ADS)
Wajs, Jaroslaw
2018-01-01
The paper presents satellite imagery from active SENTINEL-1A and passive SENTINEL-2A/2B sensors for their application in the monitoring of mining areas focused on detecting land changes. Multispectral scenes of SENTINEL-2A/2B have allowed for detecting changes in land-cover near the region of interest (ROI), i.e. the Szczercow dumping site in the Belchatow open cast lignite mine, central Poland, Europe. Scenes from SENTINEL-1A/1B satellite have also been used in the research. Processing of the SLC signal enabled creating a return intensity map in VV polarization. The obtained SAR scene was reclassified and shows a strong return signal from the dumping site and the open pit. This fact may be used in detection and monitoring of changes occurring within the analysed engineering objects.
USDA-ARS?s Scientific Manuscript database
Two passive microwave missions are currently operating at L-band to monitor surface soil moisture (SM) over continental surfaces. The SMOS sensor, based on an innovative interferometric technology enabling multi-angular signatures of surfaces to be measured, was launched in November 2009....
Development and Flight Test of a Robust Optical-Inertial Navigation System Using Low-Cost Sensors
2008-03-01
for this test. Though, marketed as a GPS/INS, it was in fact used simply as an IMU for this test. The raw inertial measurement data (from the...Performance Evaluation of Low Cost MEMS-Based IMU Integrated With GPS for Land Vehicle Navigation Application. MS Thesis, UCGE Reports Number
A sensor monitoring system for telemedicine, safety and security applications
NASA Astrophysics Data System (ADS)
Vlissidis, Nikolaos; Leonidas, Filippos; Giovanis, Christos; Marinos, Dimitrios; Aidinis, Konstantinos; Vassilopoulos, Christos; Pagiatakis, Gerasimos; Schmitt, Nikolaus; Pistner, Thomas; Klaue, Jirka
2017-02-01
A sensor system capable of medical, safety and security monitoring in avionic and other environments (e.g. homes) is examined. For application inside an aircraft cabin, the system relies on an optical cellular network that connects each seat to a server and uses a set of database applications to process data related to passengers' health, safety and security status. Health monitoring typically encompasses electrocardiogram, pulse oximetry and blood pressure, body temperature and respiration rate while safety and security monitoring is related to the standard flight attendance duties, such as cabin preparation for take-off, landing, flight in regions of turbulence, etc. In contrast to previous related works, this article focuses on the system's modules (medical and safety sensors and associated hardware), the database applications used for the overall control of the monitoring function and the potential use of the system for security applications. Further tests involving medical, safety and security sensing performed in an real A340 mock-up set-up are also described and reference is made to the possible use of the sensing system in alternative environments and applications, such as health monitoring within other means of transport (e.g. trains or small passenger sea vessels) as well as for remotely located home users, over a wired Ethernet network or the Internet.
Applications of Skylab data to land use and climatological analysis
NASA Technical Reports Server (NTRS)
Alexander, R. H. (Principal Investigator); Lewis, J. E., Jr.; Lins, H. F., Jr.; Jenner, C. B.; Outcalt, S. I.; Pease, R. W.
1976-01-01
The author has identified the following significant results. Skylab study in Central Atlantic Regional Ecological Test Site encompassed two separate but related tasks: (1) evaluation of photographic sensors S190A and B as sources of land use data for planning and managing land resources in major metropolitan regions, and (2) evaluation of the multispectral scanner S192 used in conjunction with associated data and analytical techniques as a data source on urban climates and the surface energy balance. Photographs from the Skylab S190B earth terrain camera were of greatest interest in the land use analysis task; they were of sufficiently high resolution to identify and map many level 2 and 3 land use categories. After being corrected to allow for atmosphere effects, output from thermal and visible bands of the S192 was employed in constructing computer map plots of albedo and surface temperature.
Doppler Lidar Sensor for Precision Landing on the Moon and Mars
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Petway, Larry; Hines, Glenn; Barnes, Bruce; Pierrottet, Diego; Lockhard, George
2012-01-01
Landing mission concepts that are being developed for exploration of planetary bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe soft landing at the pre-designated sites. To address this need, a Doppler lidar is being developed by NASA under the Autonomous Landing and Hazard Avoidance (ALHAT) project. This lidar sensor is a versatile instrument capable of providing precision velocity vectors, vehicle ground relative altitude, and attitude. The capabilities of this advanced technology have been demonstrated through two helicopter flight test campaigns conducted over a vegetation-free terrain in 2008 and 2010. Presently, a prototype version of this sensor is being assembled for integration into a rocket-powered terrestrial free-flyer vehicle. Operating in a closed loop with vehicle's guidance and navigation system, the viability of this advanced sensor for future landing missions will be demonstrated through a series of flight tests in 2012.
NASA Astrophysics Data System (ADS)
Hall-Brown, Mary
The heterogeneity of Arctic vegetation can make land cover classification vey difficult when using medium to small resolution imagery (Schneider et al., 2009; Muller et al., 1999). Using high radiometric and spatial resolution imagery, such as the SPOT 5 and IKONOS satellites, have helped arctic land cover classification accuracies rise into the 80 and 90 percentiles (Allard, 2003; Stine et al., 2010; Muller et al., 1999). However, those increases usually come at a high price. High resolution imagery is very expensive and can often add tens of thousands of dollars onto the cost of the research. The EO-1 satellite launched in 2002 carries two sensors that have high specral and/or high spatial resolutions and can be an acceptable compromise between the resolution versus cost issues. The Hyperion is a hyperspectral sensor with the capability of collecting 242 spectral bands of information. The Advanced Land Imager (ALI) is an advanced multispectral sensor whose spatial resolution can be sharpened to 10 meters. This dissertation compares the accuracies of arctic land cover classifications produced by the Hyperion and ALI sensors to the classification accuracies produced by the Systeme Pour l' Observation de le Terre (SPOT), the Landsat Thematic Mapper (TM) and the Landsat Enhanced Thematic Mapper Plus (ETM+) sensors. Hyperion and ALI images from August 2004 were collected over the Upper Kuparuk River Basin, Alaska. Image processing included the stepwise discriminant analysis of pixels that were positively classified from coinciding ground control points, geometric and radiometric correction, and principle component analysis. Finally, stratified random sampling was used to perform accuracy assessments on satellite derived land cover classifications. Accuracy was estimated from an error matrix (confusion matrix) that provided the overall, producer's and user's accuracies. This research found that while the Hyperion sensor produced classfication accuracies that were equivalent to the TM and ETM+ sensor (approximately 78%), the Hyperion could not obtain the accuracy of the SPOT 5 HRV sensor. However, the land cover classifications derived from the ALI sensor exceeded most classification accuracies derived from the TM and ETM+ senors and were even comparable to most SPOT 5 HRV classifications (87%). With the deactivation of the Landsat series satellites, the monitoring of remote locations such as in the Arctic on an uninterupted basis thoughout the world is in jeopardy. The utilization of the Hyperion and ALI sensors are a way to keep that endeavor operational. By keeping the ALI sensor active at all times, uninterupted observation of the entire Earth can be accomplished. Keeping the Hyperion sensor as a "tasked" sensor can provide scientists with additional imagery and options for their studies without overburdening storage issues.
NASA Astrophysics Data System (ADS)
Hogg, William; Boreham, Nicholas; Benedetti, Elisa; Roberts, William
2017-04-01
Surveyors, civil and geotechnical engineers are the typical users of professional grade GNSS receiver that is capable of achieving positioning accuracies of sub-centimetre and navigation accuracies of 1-2cm. When choosing the equipment for their needs, they are often faced with a dilemma with each additional frequency, constellation and feature coming at a cost, resulting in professional GNSS equipment being regarded as high-priced specialist equipment. Indeed there are many users that have discounted GNSS on the grounds that it is too expensive and too operationally complex to warrant purchase. Having identified this situation, Nottingham Scientific Ltd (NSL) set about the development of equipment that would break down this barrier making high accuracy GNSS affordable to new users and applications and more cost effective to existing users. NSL created "STICK" which is a single frequency, multi-constellation, IMU-integrated GNSS sensor for precise movement detection of the natural and built environments and infrastructures, at approximately 1/20th of the price of a professional grade GNSS system. STICK has been developed within the context of three European Space Agency (ESA) Integrated Applications Programme Demonstration projects that use space assets to monitor the land stability and the status of different types of infrastructure, each with its own operational challenges. However through the careful selection of components, the implementation of certain operational constraints and the use of advanced statistical data processing, sub-centimetre positioning can be achieved for monitoring purposes. This paper describes STICK, the applications for which it has been developed, and the environments within which it is operating. We then explore the performance by directly comparing STICK to geodetic GNSS receivers setup in an operational, test bed environment. This test bed allows the receivers/antennas to be subjected to a three-dimensional displacement in the order of 1cm a day. The processing techniques that are used by the STICK monitoring service are described, including the GNSS data processing, the integration of IMU and the statistical analyses used to detect, quantify and report movement. By considering operational cost in terms of power, installation difficulty, remote communication and processing complexity and along with device price, we summarize the final cost to the user. Comparisons with other GNSS solutions shows whether cost truly scales with accuracy and precision. Benedetti E., L. Brack, W. Roberts, Performance Validation of Low-Cost GNSS Sensors for Land Monitoring and Hazard Mitigation, Paper presented at ION GNSS+ 2016 Session F4: Land-Based Applications 2, ION GNSS+ 2016 Proceedings (In Press) Roberts W., E. Benedetti, M. Hutchinson, G. Phipps and A. Keal, An Expendable GNSS Sensor for the Continuous Monitoring and Risk Profiling of Land and Infrastructure, Presentation at ION GNSS+ 2015 Session A5: Applications Using Consumer GNSS
NASA Astrophysics Data System (ADS)
Wang, W.; Wang, Y.; Hashimoto, H.; Li, S.; Takenaka, H.; Higuchi, A.; Lyapustin, A.; Nemani, R. R.
2017-12-01
The latest generation of geostationary satellite sensors, including the GOES-16/ABI and the Himawari 8/AHI, provide exciting capability to monitor land surface at very high temporal resolutions (5-15 minute intervals) and with spatial and spectral characteristics that mimic the Earth Observing System flagship MODIS. However, geostationary data feature changing sun angles at constant view geometry, which is almost reciprocal to sun-synchronous observations. Such a challenge needs to be carefully addressed before one can exploit the full potential of the new sources of data. Here we take on this challenge with Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, recently developed for accurate and globally robust applications like the MODIS Collection 6 re-processing. MAIAC first grids the top-of-atmosphere measurements to a fixed grid so that the spectral and physical signatures of each grid cell are stacked ("remembered") over time and used to dramatically improve cloud/shadow/snow detection, which is by far the dominant error source in the remote sensing. It also exploits the changing sun-view geometry of the geostationary sensor to characterize surface BRDF with augmented angular resolution for accurate aerosol retrievals and atmospheric correction. The high temporal resolutions of the geostationary data indeed make the BRDF retrieval much simpler and more robust as compared with sun-synchronous sensors such as MODIS. As a prototype test for the geostationary-data processing pipeline on NASA Earth Exchange (GEONEX), we apply MAIAC to process 18 months of data from Himawari 8/AHI over Australia. We generate a suite of test results, including the input TOA reflectance and the output cloud mask, aerosol optical depth (AOD), and the atmospherically-corrected surface reflectance for a variety of geographic locations, terrain, and land cover types. Comparison with MODIS data indicates a general agreement between the retrieved surface reflectance products. Furthermore, the geostationary results satisfactorily capture the movement of clouds and variations in atmospheric dust/aerosol concentrations, suggesting that high quality land surface and vegetation datasets from the advanced geostationary sensors can help complement and improve the corresponding EOS products.
Applications of spectral band adjustment factors (SBAF) for cross-calibration
Chander, Gyanesh
2013-01-01
To monitor land surface processes over a wide range of temporal and spatial scales, it is critical to have coordinated observations of the Earth's surface acquired from multiple spaceborne imaging sensors. However, an integrated global observation framework requires an understanding of how land surface processes are seen differently by various sensors. This is particularly true for sensors acquiring data in spectral bands whose relative spectral responses (RSRs) are not similar and thus may produce different results while observing the same target. The intrinsic offsets between two sensors caused by RSR mismatches can be compensated by using a spectral band adjustment factor (SBAF), which takes into account the spectral profile of the target and the RSR of the two sensors. The motivation of this work comes from the need to compensate the spectral response differences of multispectral sensors in order to provide a more accurate cross-calibration between the sensors. In this paper, radiometric cross-calibration of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors was performed using near-simultaneous observations over the Libya 4 pseudoinvariant calibration site in the visible and near-infrared spectral range. The RSR differences of the analogous ETM+ and MODIS spectral bands provide the opportunity to explore, understand, quantify, and compensate for the measurement differences between these two sensors. The cross-calibration was initially performed by comparing the top-of-atmosphere (TOA) reflectances between the two sensors over their lifetimes. The average percent differences in the long-term trends ranged from $-$5% to $+$6%. The RSR compensated ETM+ TOA reflectance (ETM+$^{ast}$) measurements were then found to agree with MODIS TOA reflectance to within 5% for all bands when Earth Observing-1 Hy- erion hyperspectral data were used to produce the SBAFs. These differences were later reduced to within 1% for all bands (except band 2) by using Environmental Satellite Scanning Imaging Absorption Spectrometer for Atmospheric Cartography hyperspectral data to produce the SBAFs.
Zhao, Yanzhi; Zhang, Caifeng; Zhang, Dan; Shi, Zhongpan; Zhao, Tieshi
2016-01-01
Nowadays improving the accuracy and enlarging the measuring range of six-axis force sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing experiments has become an urgent objective. However, it is still difficult to achieve high accuracy and large measuring range with traditional parallel six-axis force sensors due to the influence of the gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed a 6-Universal-Prismatic-Universal-Revolute (UPUR) joints parallel mechanism with flexible joints to develop a large measurement range six-axis force sensor. The structural characteristics of the sensor are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The prototype and loading calibration system are designed and developed. The K value method and least squares method are used to process experimental data, and in errors of kind Ι and kind II linearity are obtained. The experimental results show that the calibration error of the K value method is more than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to be adopted in practical applications. PMID:27529244
NASA Technical Reports Server (NTRS)
Johnson, Howell K.; Green, Robert O.
1995-01-01
This paper serves as a brief overview of the AVIRIS instrument (Airborne Visible/Infrared Imaging Spectrometer). The AVIRIS sensor collects data that will be used for quantitative characterization of the Earth's surface and atmosphere from geometrically coherent spectroradiometric measurements. This data can be applied to studies in the fields of oceanography, environmental science, snow hydrology, geology, volcanology, soil and land management, atmospheric and aerosol studies, agriculture, and limnology. Applications under development include the assessment and monitoring of environmental hazards such as toxic waste, oil spills, and land/air/water pollution. Mission planning and flight operations are discussed, and recommendations are given regarding the deployment of ground truth experiments.
Earth Observation in Support of Sustainable Urban Planning: Results of the Dragon-3 Monitor Project
NASA Astrophysics Data System (ADS)
Cartalis, C.; Polydoros, A.; Mavrakou, T.; Asimakopoulos, D. N.
2016-08-01
Sustainable urban planning increasingly demands innovative concepts and techniques to obtain up-to-date and area-wide information on the characteristics and development of the urban system. In this paper, a thorough and conclusive presentation is made in terms of the results of the DRAGON-3 MONITOR project as based on the use of Earth Observation. Results refer in particular to a set of EO based dynamic urban indicators (i.e. urban form and expansion, land use/land cover changes, land surface temperature distribution, the presence and strength of urban heat island) with the capacity to describe the state, dynamic changes and interaction of the land and thermal environment in urban areas. Furthermore results are assessed in terms of their potential to operationally support sustainable urban planning and bridge the gap between EO scientists and urban planners. Constraints related to the spatial resolution and revisit time of satellite sensors are discussed as they influence the accuracy and applicability of the indicators. Methodologies to improve the applicability of the indicators are also discussed along with the presentation of the respective results.
Aquarius Whole Range Calibration: Celestial Sky, Ocean, and Land Targets
NASA Technical Reports Server (NTRS)
Dinnat, Emmanuel P.; Le Vine, David M.; Bindlish, Rajat; Piepmeier, Jeffrey R.; Brown, Shannon T.
2014-01-01
Aquarius is a spaceborne instrument that uses L-band radiometers to monitor sea surface salinity globally. Other applications of its data over land and the cryosphere are being developed. Combining its measurements with existing and upcoming L-band sensors will allow for long term studies. For that purpose, the radiometers calibration is critical. Aquarius measurements are currently calibrated over the oceans. They have been found too cold at the low end (celestial sky) of the brightness temperature scale, and too warm at the warm end (land and ice). We assess the impact of the antenna pattern model on the biases and propose a correction. We re-calibrate Aquarius measurements using the corrected antenna pattern and measurements over the Sky and oceans. The performances of the new calibration are evaluated using measurements over well instrument land sites.
NASA Astrophysics Data System (ADS)
Azieda Mohd Bakri, Nur; Junid, Syed Abdul Mutalib Al; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul
2015-11-01
Nowadays, the increasing level of carbon monoxide globally has become a serious environmental issue which has been highlighted in most of the country globally. The monitoring of carbon monoxide content is one of the approaches to identify the level of carbon monoxide pollution towards providing the solution for control the level of carbon monoxide produced. Thus, this paper proposed a mobile carbon monoxide monitoring system for measuring the carbon monoxide content based on Arduino-Matlab General User Interface (GUI). The objective of this project is to design, develop and implement the real-time mobile carbon monoxide sensor system and interfacing for measuring the level of carbon monoxide contamination in real environment. Four phases or stages of work have been carried out for the accomplishment of the project, which classified as sensor development, controlling and integrating sensor, data collection and data analysis. As a result, a complete design and developed system has been verified with the handheld industrial standard carbon monoxide sensor for calibrating the sensor sensitivity and measurement in the laboratory. Moreover, the system has been tested in real environments by measuring the level of carbon monoxide in three different lands used location; industrial area; residential area and main road (commercial area). In this real environment test, the industrial area recorded the highest reading with 71.23 ppm and 82.59 ppm for sensor 1 and sensor 2 respectively. As a conclusion, the mobile realtime carbon monoxide system based on the Arduino-Matlab is the best approach to measure the carbon monoxide concentration in different land-used since it does not require a manual data collection and reduce the complexity of the existing carbon monoxide level concentration measurement practise at the same time with a complete data analysis facilities.
Dirk Pflugmacher; Warren B. Cohen; Robert E. Kennedy; Michael. Lefsky
2008-01-01
Accurate estimates of forest aboveground biomass are needed to reduce uncertainties in global and regional terrestrial carbon fluxes. In this study we investigated the utility of the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation Satellite for large-scale biomass inventories. GLAS is the first spaceborne lidar sensor that will...
Status report on the land processes aircraft science management operations working group
NASA Technical Reports Server (NTRS)
Lawless, James G.; Mann, Lisa J.
1991-01-01
Since its inception three years ago, the Land Processes Aircraft Science Management Operations Working Group (MOWG) provided recommendations on the optimal use of the Agency's aircraft in support of the Land Processes Science Program. Recommendations covered topics such as aircraft and sensor usage, development of long-range plans, Multisensor Airborne Campaigns (MAC), program balance, aircraft sensor databases, new technology and sensor development, and increased University scientist participation in the program. Impacts of these recommendations improved the efficiency of various procedures including the flight request process, tracking of flight hours, and aircraft usage. The group also created a bibliography focused on publications produced by Land Processes scientists from the use of the aircraft program, surveyed NASA funded PI's on their participation in the aircraft program, and developed a planning template for multi-sensor airborne campaigns. Benefits from these activities are summarized.
Evaluation of total energy-rate feedback for glidescope tracking in wind shear
NASA Technical Reports Server (NTRS)
Belcastro, C. M.; Ostroff, A. J.
1986-01-01
Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during take-off and landing. A total energy-rate sensor, which is potentially applicable to this problem, has been developed for measuring specific total energy-rate of an airplane with respect to the air mass. This paper presents control system designs, with and without energy-rate feedback, for the approach to landing of a transport airplane through severe wind shear and gusts to evaluate application of this sensor. A system model is developed which incorporates wind shear dynamics equations with the airplance equations of motion, thus allowing the control systems to be analyzed under various wind shears. The control systems are designed using optimal output feedback and are analyzed using frequency domain control theory techniques. Control system performance is evaluated using a complete nonlinear simulation of the airplane and a severe wind shear and gust data package. The analysis and simulation results indicate very similar stability and performance characteristics for the two designs. An implementation technique for distributing the velocity gains between airspeed and ground speed in the simulation is also presented, and this technique is shown to improve the performance characteristics of both designs.
Multispectral image fusion for detecting land mines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.
1995-04-01
This report details a system which fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite ofmore » sensors detects a variety of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts.« less
Implementation of the Land, Atmosphere Near Real-Time Capability for EOS (LANCE)
NASA Technical Reports Server (NTRS)
Michael, Karen; Murphy, Kevin; Lowe, Dawn; Masuoka, Edward; Vollmer, Bruce; Tilmes, Curt; Teague, Michael; Ye, Gang; Maiden, Martha; Goodman, H. Michael;
2010-01-01
The past decade has seen a rapid increase in availability and usage of near real-time data from satellite sensors. Applications have demonstrated the utility of timely data in a number of areas ranging from numerical weather prediction and forecasting, to monitoring of natural hazards, disaster relief, agriculture and homeland security. As applications mature, the need to transition from prototypes to operational capabilities presents an opportunity to improve current near real-time systems and inform future capabilities. This paper presents NASA s effort to implement a near real-time capability for land and atmosphere data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), Atmospheric Infrared Sounder (AIRS), Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) instruments on the Terra, Aqua, and Aura satellites. Index Terms- Real time systems, Satellite applications
Remote Sensing of Environmental Pollution
NASA Technical Reports Server (NTRS)
North, G. W.
1971-01-01
Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.
Image interpretation for a multilevel land use classification system
NASA Technical Reports Server (NTRS)
1973-01-01
The potential use is discussed of three remote sensors for developing a four level land use classification system. Three types of imagery for photointerpretation are presented: ERTS-1 satellite imagery, high altitude photography, and medium altitude photography. Suggestions are given as to which remote sensors and imagery scales may be most effectively employed to provide data on specific types of land use.
NASA Astrophysics Data System (ADS)
Blair, J. B.; Rabine, D.; Hofton, M. A.; Citrin, E.; Luthcke, S. B.; Misakonis, A.; Wake, S.
2015-12-01
Full waveform laser altimetry has demonstrated its ability to capture highly-accurate surface topography and vertical structure (e.g. vegetation height and structure) even in the most challenging conditions. NASA's high-altitude airborne laser altimeter, LVIS (the Land Vegetation, and Ice Sensor) has produced high-accuracy surface maps over a wide variety of science targets for the last 2 decades. Recently NASA has funded the transition of LVIS into a full-time NASA airborne Facility instrument to increase the amount and quality of the data and to decrease the end-user costs, to expand the utilization and application of this unique sensor capability. Based heavily on the existing LVIS sensor design, the Facility LVIS instrument includes numerous improvements for reliability, resolution, real-time performance monitoring and science products, decreased operational costs, and improved data turnaround time and consistency. The development of this Facility instrument is proceeding well and it is scheduled to begin operations testing in mid-2016. A comprehensive description of the LVIS Facility capability will be presented along with several mission scenarios and science applications examples. The sensor improvements included increased spatial resolution (footprints as small as 5 m), increased range precision (sub-cm single shot range precision), expanded dynamic range, improved detector sensitivity, operational autonomy, real-time flight line tracking, and overall increased reliability and sensor calibration stability. The science customer mission planning and data product interface will be discussed. Science applications of the LVIS Facility include: cryosphere, territorial ecology carbon cycle, hydrology, solid earth and natural hazards, and biodiversity.
Hazard detection and avoidance sensor for NASA's planetary landers
NASA Technical Reports Server (NTRS)
Lau, Brian; Chao, Tien-Hsin
1992-01-01
An optical terrain analysis based sensor system specifically designed for landing hazard detection as required for NASA's autonomous planetary landers is introduced. This optical hazard detection and avoidance (HDA) sensor utilizes an optoelectronic wedge-and-ting (WRD) filter for Fourier transformed feature extraction and an electronic neural network processor for pattern classification. A fully implemented optical HDA sensor would assure safe landing of the planetary landers. Computer simulation results of a successful feasibility study is reported. Future research for hardware system implementation is also provided.
Distributed pheromone-based swarming control of unmanned air and ground vehicles for RSTA
NASA Astrophysics Data System (ADS)
Sauter, John A.; Mathews, Robert S.; Yinger, Andrew; Robinson, Joshua S.; Moody, John; Riddle, Stephanie
2008-04-01
The use of unmanned vehicles in Reconnaissance, Surveillance, and Target Acquisition (RSTA) applications has received considerable attention recently. Cooperating land and air vehicles can support multiple sensor modalities providing pervasive and ubiquitous broad area sensor coverage. However coordination of multiple air and land vehicles serving different mission objectives in a dynamic and complex environment is a challenging problem. Swarm intelligence algorithms, inspired by the mechanisms used in natural systems to coordinate the activities of many entities provide a promising alternative to traditional command and control approaches. This paper describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of swarming unmanned systems. The results of a recent demonstration at NASA's Wallops Island of multiple Aerosonde Unmanned Air Vehicles (UAVs) and Pioneer Unmanned Ground Vehicles (UGVs) cooperating in a coordinated RSTA application are discussed. The vehicles were autonomously controlled by the onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm self-organized to perform total area surveillance, automatic target detection, sensor cueing, and automatic target recognition with no central processing or control and minimal operator input. Complete autonomy adds several safety and fault tolerance requirements which were integrated into the basic pheromone framework. The adaptive algorithms demonstrated the ability to handle some unplanned hardware failures during the demonstration without any human intervention. The paper describes lessons learned and the next steps for this promising technology.
Harmonized Landsat/Sentinel-2 Reflectance Products for Land Monitoring (Invited)
NASA Technical Reports Server (NTRS)
Masek, Jeffrey G.; Dungan, Jennifer L.; Ju, Junchang; Roger, Jean-Claude; Claverie, Martin P.; Skakun, Sergii; Vermote, Eric; Justice, Christopher Owen
2017-01-01
Many land applications require more frequent observations than can be obtained from a single 'Landsat class'� sensor. Agricultural monitoring, inland water quality assessment, stand-scale phenology, and numerous other applications all require near-daily imagery at better than 1ha resolution. Thus the land science community has begun expressing a desire for a '30-meter MODIS' global monitoring capability. One cost-effective way to achieve this goal is via merging data from multiple, international observatories into a single virtual constellation. The Harmonized Landsat/Sentinel-2 (HLS) project has been working to generate a seamless surface reflectance product by combining observations from USGS/NASA Landsat-8 and ESA Sentinel-2. Harmonization in this context requires a series of radiometric and geometric transforms to create a single surface reflectance time series agnostic to sensor origin. Radiometric corrections include a common atmospheric correction using the Landsat-8 LaSRC/6S approach, a simple BRDF adjustment to constant solar and nadir view angle, and spectral bandpass adjustments to fit the Landsat-8 OLI reference. Data are then resampled to a consistent 30m UTM grid, using the Sentinel-2 global tile system. Cloud and shadow masking are also implemented. Quality assurance (QA) involves comparison of the output 30m HLS products with near-simultaneous MODIS nadir-adjusted observations. Prototoype HLS products have been processed for approximately 7% of the global land area using the NASA Earth Exchange (NEX) compute environment at NASA Ames, and can be downloaded from the HLS web site (https://hls.gsfc.nasa.gov). A wall-to-wall North America data set is being prepared for 2018. This talk will review the objectives and status of the HLS project, and illustrate applications of high-density optical time series data for agriculture and ecology. We also discuss lessons learned from HLS in the general context of implementing virtual constellations.
Harmonized Landsat/Sentinel-2 Reflectance Products for Land Monitoring
NASA Astrophysics Data System (ADS)
Masek, J. G.; Ju, J.; Claverie, M.; Vermote, E.; Dungan, J. L.; Roger, J. C.; Skakun, S.; Justice, C. O.
2017-12-01
Many land applications require more frequent observations than can be obtained from a single "Landsat class" sensor. Agricultural monitoring, inland water quality assessment, stand-scale phenology, and numerous other applications all require near-daily imagery at better than 1ha resolution. Thus the land science community has begun expressing a desire for a "30-meter MODIS" global monitoring capability. One cost-effective way to achieve this goal is via merging data from multiple, international observatories into a single virtual constellation. The Harmonized Landsat/Sentinel-2 (HLS) project has been working to generate a seamless surface reflectance product by combining observations from USGS/NASA Landsat-8 and ESA Sentinel-2. Harmonization in this context requires a series of radiometric and geometric transforms to create a single surface reflectance time series agnostic to sensor origin. Radiometric corrections include a common atmospheric correction using the Landsat-8 LaSRC/6S approach, a simple BRDF adjustment to constant solar and nadir view angle, and spectral bandpass adjustments to fit the Landsat-8 OLI reference. Data are then resampled to a consistent 30m UTM grid, using the Sentinel-2 global tile system. Cloud and shadow masking are also implemented. Quality assurance (QA) involves comparison of the output 30m HLS products with near-simultaneous MODIS nadir-adjusted observations. Prototoype HLS products have been processed for 7% of the global land area using the NASA Earth Exchange (NEX) compute environment at NASA Ames, and can be downloaded from the HLS web site (https://hls.gsfc.nasa.gov). A wall-to-wall North America data set is being prepared for 2018.This talk will review the objectives and status of the HLS project, and illustrate applications of high-density optical time series data for agriculture and ecology. We also discuss lessons learned from HLS in the general context of implementing virtual constellations.
SUSI 62 A Robust and Safe Parachute Uav with Long Flight Time and Good Payload
NASA Astrophysics Data System (ADS)
Thamm, H. P.
2011-09-01
In many research areas in the geo-sciences (erosion, land use, land cover change, etc.) or applications (e.g. forest management, mining, land management etc.) there is a demand for remote sensing images of a very high spatial and temporal resolution. Due to the high costs of classic aerial photo campaigns, the use of a UAV is a promising option for obtaining the desired remote sensed information at the time it is needed. However, the UAV must be easy to operate, safe, robust and should have a high payload and long flight time. For that purpose, the parachute UAV SUSI 62 was developed. It consists of a steel frame with a powerful 62 cm3 2- stroke engine and a parachute wing. The frame can be easily disassembled for transportation or to replace parts. On the frame there is a gimbal mounted sensor carrier where different sensors, standard SLR cameras and/or multi-spectral and thermal sensors can be mounted. Due to the design of the parachute, the SUSI 62 is very easy to control. Two different parachute sizes are available for different wind speed conditions. The SUSI 62 has a payload of up to 8 kg providing options to use different sensors at the same time or to extend flight duration. The SUSI 62 needs a runway of between 10 m and 50 m, depending on the wind conditions. The maximum flight speed is approximately 50 km/h. It can be operated in a wind speed of up to 6 m/s. The design of the system utilising a parachute UAV makes it comparatively safe as a failure of the electronics or the remote control only results in the UAV coming to the ground at a slow speed. The video signal from the camera, the GPS coordinates and other flight parameters are transmitted to the ground station in real time. An autopilot is available, which guarantees that the area of investigation is covered at the desired resolution and overlap. The robustly designed SUSI 62 has been used successfully in Europe, Africa and Australia for scientific projects and also for agricultural, forestry and industrial applications.
Chen, Pei-Yu; Fedosejevs, Gunar; Tiscareño-López, Mario; Arnold, Jeffrey G
2006-08-01
Although several types of satellite data provide temporal information of the land use at no cost, digital satellite data applications for agricultural studies are limited compared to applications for forest management. This study assessed the suitability of vegetation indices derived from the TERRA-Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and SPOT-VEGETATION (VGT) sensor for identifying corn growth in western Mexico. Overall, the Normalized Difference Vegetation Index (NDVI) composites from the VGT sensor based on bi-directional compositing method produced vegetation information most closely resembling actual crop conditions. The NDVI composites from the MODIS sensor exhibited saturated signals starting 30 days after planting, but corresponded to green leaf senescence in April. The temporal NDVI composites from the VGT sensor based on the maximum value method had a maximum plateau for 80 days, which masked the important crop transformation from vegetative stage to reproductive stage. The Enhanced Vegetation Index (EVI) composites from the MODIS sensor reached a maximum plateau 40 days earlier than the occurrence of maximum leaf area index (LAI) and maximum intercepted fraction of photosynthetic active radiation (fPAR) derived from in-situ measurements. The results of this study showed that the 250-m resolution MODIS data did not provide more accurate vegetation information for corn growth description than the 500-m and 1000-m resolution MODIS data.
Imaging Flash Lidar for Safe Landing on Solar System Bodies and Spacecraft Rendezvous and Docking
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Roback, Vincent E.; Bulyshev, Alexander E.; Brewster, Paul F.; Carrion, William A; Pierrottet, Diego F.; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Noe, Anna M.
2015-01-01
NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of the landing from about 1 kilometer to 500 meters above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16,000 pixels range images with 7 centimeters precision, at 20 Hertz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications.
Evaluation of MuSyQ land surface albedo based on LAnd surface Parameters VAlidation System (LAPVAS)
NASA Astrophysics Data System (ADS)
Dou, B.; Wen, J.; Xinwen, L.; Zhiming, F.; Wu, S.; Zhang, Y.
2016-12-01
satellite derived Land surface albedo is an essential climate variable which controls the earth energy budget and it can be used in applications such as climate change, hydrology, and numerical weather prediction. However, the accuracy and uncertainty of surface albedo products should be evaluated with a reliable reference truth data prior to applications. A new comprehensive and systemic project of china, called the Remote Sensing Application Network (CRSAN), has been launched recent years. Two subjects of this project is developing a Multi-source data Synergized Quantitative Remote Sensin g Production System ( MuSyQ ) and a Web-based validation system named LAnd surface remote sensing Product VAlidation System (LAPVAS) , which aims to generate a quantitative remote sensing product for ecosystem and environmental monitoring and validate them with a reference validation data and a standard validation system, respectively. Land surface BRDF/albedo is one of product datasets of MuSyQ which has a pentad period with 1km spatial resolution and is derived by Multi-sensor Combined BRDF Inversion ( MCBI ) Model. In this MuSyQ albedo evaluation, a multi-validation strategy is implemented by LAPVAS, including directly and multi-scale validation with field measured albedo and cross validation with MODIS albedo product with different land cover. The results reveal that MuSyQ albedo data with a 5-day temporal resolution is in higher sensibility and accuracy during land cover change period, e.g. snowing. But results without regard to snow or changed land cover, MuSyQ albedo generally is in similar accuracy with MODIS albedo and meet the climate modeling requirement of an absolute accuracy of 0.05.
Development of Stiff and Extendible Electromagnetic Sensors for Space Missions
NASA Astrophysics Data System (ADS)
Kasaba, Y.; Kumamoto, A.; Ishisaka, K.; Kojima, H.; Higuchi, K.; Watanabe, A.; Watanabe, K.
2010-05-01
We developed three types of stiff and extendible electromagnetic sensors in rigid monopole antenna, loop antenna, and Yagi-Uda antenna for future space missions. They are based on carbon fiber reinforced plastic (CFRP) technologies, in order to fulfill severe requirements, i.e. enough stiffness, light mass, compact storage, safe extension, and reasonable test efforts. One of them, rigid monopole antennas, coupled with an inflatable actuator system, was successfully used in the JAXA S-520-23 sounding rocket experiment in September 2007. Applications of those antennas are expected in space plasma missions including the SCOPE program, sounding rocket experiments, planetary radar remote sensing, and landing radio measurements.
Joint Land Attack Cruise Missile Defense Elevated Netted Sensor System (JLENS)
2013-12-01
Initial Production $M - Millions of Dollars MILCON - Military Construction N /A - Not Applicable O&S - Operating and Support Oth - Other PAUC - Program...RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report Sch - Schedule Spt - Support TBD - To Be Determined TY - Then...completion, assess test results, correct short comings/deficiencies, and develop documentation to track and assess program status. On January 31
Potential for boom-mounted remote sensing applications in seedling quality monitoring
Robert F. Keefe; Jan U. H. Eitel; Daniel S. Long; Anthony S. Davis; Paul Gessler; Alistair M. S. Smith
2009-01-01
Remotely sensed aerial and satellite sensor imagery is widely used for classification of vegetation structure and health on industrial and public lands. More intensively than at any other time in the life of a planted tree, its health and status will be maintained and monitored while under culture in a bareroot or container nursery. As a case in point, inventories to...
Classification and data acquisition with incomplete data
NASA Astrophysics Data System (ADS)
Williams, David P.
In remote-sensing applications, incomplete data can result when only a subset of sensors (e.g., radar, infrared, acoustic) are deployed at certain regions. The limitations of single sensor systems have spurred interest in employing multiple sensor modalities simultaneously. For example, in land mine detection tasks, different sensor modalities are better-suited to capture different aspects of the underlying physics of the mines. Synthetic aperture radar sensors may be better at detecting surface mines, while infrared sensors may be better at detecting buried mines. By employing multiple sensor modalities to address the detection task, the strengths of the disparate sensors can be exploited in a synergistic manner to improve performance beyond that which would be achievable with either single sensor alone. When multi-sensor approaches are employed, however, incomplete data can be manifested. If each sensor is located on a separate platform ( e.g., aircraft), each sensor may interrogate---and hence collect data over---only partially overlapping areas of land. As a result, some data points may be characterized by data (i.e., features) from only a subset of the possible sensors employed in the task. Equivalently, this scenario implies that some data points will be missing features. Increasing focus in the future on using---and fusing data from---multiple sensors will make such incomplete-data problems commonplace. In many applications involving incomplete data, it is possible to acquire the missing data at a cost. In multi-sensor remote-sensing applications, data is acquired by deploying sensors to data points. Acquiring data is usually an expensive, time-consuming task, a fact that necessitates an intelligent data acquisition process. Incomplete data is not limited to remote-sensing applications, but rather, can arise in virtually any data set. In this dissertation, we address the general problem of classification when faced with incomplete data. We also address the closely related problem of active data acquisition, which develops a strategy to acquire missing features and labels that will most benefit the classification task. We first address the general problem of classification with incomplete data, maintaining the view that all data (i.e., information) is valuable. We employ a logistic regression framework within which we formulate a supervised classification algorithm for incomplete data. This principled, yet flexible, framework permits several interesting extensions that allow all available data to be utilized. One extension incorporates labeling error, which permits the usage of potentially imperfectly labeled data in learning a classifier. A second major extension converts the proposed algorithm to a semi-supervised approach by utilizing unlabeled data via graph-based regularization. Finally, the classification algorithm is extended to the case in which (image) data---from which features are extracted---are available from multiple resolutions. Taken together, this family of incomplete-data classification algorithms exploits all available data in a principled manner by avoiding explicit imputation. Instead, missing data is integrated out analytically with the aid of an estimated conditional density function (conditioned on the observed features). This feat is accomplished by invoking only mild assumptions. We also address the problem of active data acquisition by determining which missing data should be acquired to most improve performance. Specifically, we examine this data acquisition task when the data to be acquired can be either labels or features. The proposed approach is based on a criterion that accounts for the expected benefit of the acquisition. This approach, which is applicable for any general missing data problem, exploits the incomplete-data classification framework introduced in the first part of this dissertation. This data acquisition approach allows for the acquisition of both labels and features. Moreover, several types of feature acquisition are permitted, including the acquisition of individual or multiple features for individual or multiple data points, which may be either labeled or unlabeled. Furthermore, if different types of data acquisition are feasible for a given application, the algorithm will automatically determine the most beneficial type of data to acquire. Experimental results on both benchmark machine learning data sets and real (i.e., measured) remote-sensing data demonstrate the advantages of the proposed incomplete-data classification and active data acquisition algorithms.
MER-DIMES : a planetary landing application of computer vision
NASA Technical Reports Server (NTRS)
Cheng, Yang; Johnson, Andrew; Matthies, Larry
2005-01-01
During the Mars Exploration Rovers (MER) landings, the Descent Image Motion Estimation System (DIMES) was used for horizontal velocity estimation. The DIMES algorithm combines measurements from a descent camera, a radar altimeter and an inertial measurement unit. To deal with large changes in scale and orientation between descent images, the algorithm uses altitude and attitude measurements to rectify image data to level ground plane. Feature selection and tracking is employed in the rectified data to compute the horizontal motion between images. Differences of motion estimates are then compared to inertial measurements to verify correct feature tracking. DIMES combines sensor data from multiple sources in a novel way to create a low-cost, robust and computationally efficient velocity estimation solution, and DIMES is the first use of computer vision to control a spacecraft during planetary landing. In this paper, the detailed implementation of the DIMES algorithm and the results from the two landings on Mars are presented.
Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems
Stow, Douglas A.; Hope, Allen; McGuire, David; Verbyla, David; Gamon, John A.; Huemmrich, Fred; Houston, Stan; Racine, Charles H.; Sturm, Matthew; Tape, Ken D.; Hinzman, Larry D.; Yoshikawa, Kenji; Tweedie, Craig E.; Noyle, Brian; Silapaswan, Cherie; Douglas, David C.; Griffith, Brad; Jia, Gensuo; Howard E. Epstein,; Walker, Donald A.; Daeschner, Scott; Petersen, Aaron; Zhou, Liming; Myneni, Ranga B.
2004-01-01
The objective of this paper is to review research conducted over the past decade on the application of multi-temporal remote sensing for monitoring changes of Arctic tundra lands. Emphasis is placed on results from the National Science Foundation Land–Air–Ice Interactions (LAII) program and on optical remote sensing techniques. Case studies demonstrate that ground-level sensors on stationary or moving track platforms and wide-swath imaging sensors on polar orbiting satellites are particularly useful for capturing optical remote sensing data at sufficient frequency to study tundra vegetation dynamics and changes for the cloud prone Arctic. Less frequent imaging with high spatial resolution instruments on aircraft and lower orbiting satellites enable more detailed analyses of land cover change and calibration/validation of coarser resolution observations.The strongest signals of ecosystem change detected thus far appear to correspond to expansion of tundra shrubs and changes in the amount and extent of thaw lakes and ponds. Changes in shrub cover and extent have been documented by modern repeat imaging that matches archived historical aerial photography. NOAA Advanced Very High Resolution Radiometer (AVHRR) time series provide a 20-year record for determining changes in greenness that relates to photosynthetic activity, net primary production, and growing season length. The strong contrast between land materials and surface waters enables changes in lake and pond extent to be readily measured and monitored.
Archiving, processing, and disseminating ASTER products at the USGS EROS Data Center
Jones, B.; Tolk, B.; ,
2002-01-01
The U.S. Geological Survey EROS Data Center archives, processes, and disseminates Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data products. The ASTER instrument is one of five sensors onboard the Earth Observing System's Terra satellite launched December 18, 1999. ASTER collects broad spectral coverage with high spatial resolution at near infrared, shortwave infrared, and thermal infrared wavelengths with ground resolutions of 15, 30, and 90 meters, respectively. The ASTER data are used in many ways to understand local and regional earth-surface processes. Applications include land-surface climatology, volcanology, hazards monitoring, geology, agronomy, land cover change, and hydrology. The ASTER data are available for purchase from the ASTER Ground Data System in Japan and from the Land Processes Distributed Active Archive Center in the United States, which receives level 1A and level 1B data from Japan on a routine basis. These products are archived and made available to the public within 48 hours of receipt. The level 1A and level 1B data are used to generate higher level products that include routine and on-demand decorrelation stretch, brightness temperature at the sensor, emissivity, surface reflectance, surface kinetic temperature, surface radiance, polar surface and cloud classification, and digital elevation models. This paper describes the processes and procedures used to archive, process, and disseminate standard and on-demand higher level ASTER products at the Land Processes Distributed Active Archive Center.
NASA Astrophysics Data System (ADS)
Xu, K.; Champagne, B. N.
2017-12-01
The transport of sediment in the coastal zone and continental shelf is highly impacted by fluvial and oceanographic dynamics. In Louisiana, the Mississippi River delivers a bulk of water, sediment, and nutrients to the coast. However, coastal land loss highlights the importance of the sediment deposited at the mouth of the river. Sediment is the foundation to build land and suspended sediment concentration (SSC) tracks the delivery, deposition, and erosion of sediment. On a more applicable scale, variables such as SSC can be used to calculate sediment transport flux, an important parameter for projects such as sediment diversions and barrier island restoration. In order to rely on suspended sediment concentration (SSC) as continuous data, lab experiments are needed to establish the relationship between turbidity and SSC. Factors such as sensor type (optical or acoustic) and grain size (coarse or fine) can greatly impact the estimated SSC. In this study, fine-grained sediment was collected from multiple sites in coastal Louisiana and used to calibrate both optical backscatter (OBS) and acoustic backscatter (ABS) sensors to establish the relationship between sensor type and accuracy of the SSC estimation. Multiple grain-size analyses using a Laser Diffraction Particle Size Analyzer helped determine the effects of sensor accuracy regarding grain size. The results of these experiments were combined in order to establish the calibration curves of SSC. Our results indicated that the OBS-3A sensor's turbidity data were more correlated with the SSC than the OBS-5+'s data. Possible explanations for this could be due to differences between the instruments' measuring ranges and their sensitivity to various grain sizes. This technology development has a broad impact to the studies of sediment delivery, transport, and deposition in multiple types of coastal protection and restoration projects.
A land use and land cover classification system for use with remote sensor data
Anderson, James R.; Hardy, Ernest E.; Roach, John T.; Witmer, Richard E.
1976-01-01
The framework of a national land use and land cover classification system is presented for use with remote sensor data. The classification system has been developed to meet the needs of Federal and State agencies for an up-to-date overview of land use and land cover throughout the country on a basis that is uniform in categorization at the more generalized first and second levels and that will be receptive to data from satellite and aircraft remote sensors. The proposed system uses the features of existing widely used classification systems that are amenable to data derived from remote sensing sources. It is intentionally left open-ended so that Federal, regional, State, and local agencies can have flexibility in developing more detailed land use classifications at the third and fourth levels in order to meet their particular needs and at the same time remain compatible with each other and the national system. Revision of the land use classification system as presented in U.S. Geological Survey Circular 671 was undertaken in order to incorporate the results of extensive testing and review of the categorization and definitions.
NASA Astrophysics Data System (ADS)
Ermida, Sofia; DaCamara, Carlos C.; Trigo, Isabel F.; Pires, Ana C.; Ghent, Darren
2017-04-01
Land Surface Temperature (LST) is a key climatological variable and a diagnostic parameter of land surface conditions. Remote sensing constitutes the most effective method to observe LST over large areas and on a regular basis. Although LST estimation from remote sensing instruments operating in the Infrared (IR) is widely used and has been performed for nearly 3 decades, there is still a list of open issues. One of these is the LST dependence on viewing and illumination geometry. This effect introduces significant discrepancies among LST estimations from different sensors, overlapping in space and time, that are not related to uncertainties in the methodologies or input data used. Furthermore, these directional effects deviate LST products from an ideally defined LST, which should represent to the ensemble of directional radiometric temperature of all surface elements within the FOV. Angular effects on LST are here conveniently estimated by means of a kernel model of the surface thermal emission, which describes the angular dependence of LST as a function of viewing and illumination geometry. The model is calibrated using LST data as provided by a wide range of sensors to optimize spatial coverage, namely: 1) a LEO sensor - the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board NASA's TERRA and AQUA; and 2) 3 GEO sensors - the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board EUMETSAT's Meteosat Second Generation (MSG), the Japanese Meteorological Imager (JAMI) on-board the Japanese Meteorological Association (JMA) Multifunction Transport SATellite (MTSAT-2), and NASA's Geostationary Operational Environmental Satellites (GOES). As shown in our previous feasibility studies the sampling of illumination and view angles has a high impact on the obtained model parameters. This impact may be mitigated when the sampling size is increased by aggregating pixels with similar surface conditions. Here we propose a methodology where land surface is stratified by means of a cluster analysis using information on land cover type, fraction of vegetation cover and topography. The kernel model is then adjusted to LST data corresponding to each cluster. It is shown that the quality of the cluster based kernel model is very close to the pixel based one. Furthermore, the reduced number of parameters (limited to the number of identified clusters, instead of a pixel-by-pixel model calibration) allows improving the kernel model trough the incorporation of a seasonal component. The application of the here discussed procedure towards the harmonization of LST products from multi-sensors is on the framework of the ESA DUE GlobTemperature project.
Evolving land cover classification algorithms for multispectral and multitemporal imagery
NASA Astrophysics Data System (ADS)
Brumby, Steven P.; Theiler, James P.; Bloch, Jeffrey J.; Harvey, Neal R.; Perkins, Simon J.; Szymanski, John J.; Young, Aaron C.
2002-01-01
The Cerro Grande/Los Alamos forest fire devastated over 43,000 acres (17,500 ha) of forested land, and destroyed over 200 structures in the town of Los Alamos and the adjoining Los Alamos National Laboratory. The need to measure the continuing impact of the fire on the local environment has led to the application of a number of remote sensing technologies. During and after the fire, remote-sensing data was acquired from a variety of aircraft- and satellite-based sensors, including Landsat 7 Enhanced Thematic Mapper (ETM+). We now report on the application of a machine learning technique to the automated classification of land cover using multi-spectral and multi-temporal imagery. We apply a hybrid genetic programming/supervised classification technique to evolve automatic feature extraction algorithms. We use a software package we have developed at Los Alamos National Laboratory, called GENIE, to carry out this evolution. We use multispectral imagery from the Landsat 7 ETM+ instrument from before, during, and after the wildfire. Using an existing land cover classification based on a 1992 Landsat 5 TM scene for our training data, we evolve algorithms that distinguish a range of land cover categories, and an algorithm to mask out clouds and cloud shadows. We report preliminary results of combining individual classification results using a K-means clustering approach. The details of our evolved classification are compared to the manually produced land-cover classification.
Recent Enhancements in NOAA's JPSS Land Product Suite and Key Operational Applications
NASA Astrophysics Data System (ADS)
Csiszar, I. A.; Yu, Y.; Zhan, X.; Vargas, M.; Ek, M. B.; Zheng, W.; Wu, Y.; Smirnova, T. G.; Benjamin, S.; Ahmadov, R.; James, E.; Grell, G. A.
2017-12-01
A suite of operational land products has been produced as part of NOAA's Joint Polar Satellite System (JPSS) program to support a wide range of operational applications in environmental monitoring, prediction, disaster management and mitigation, and decision support. The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (NPP) and the operational JPSS satellite series forms the basis of six fundamental and multiple additional added-value environmental data records (EDRs). A major recent improvement in the land-based VIIRS EDRs has been the development of global gridded products, providing a format and science content suitable for ingest into NOAA's operational land surface and coupled numerical weather prediction models. VIIRS near-real-time Green Vegetation Fraction is now in the process of testing for full operational use, while land surface temperature and albedo are under testing and evaluation. The operational 750m VIIRS active fire product, including fire radiative power, is used to support emission modeling and air quality applications. Testing the evaluation for operational NOAA implementation of the improved 375m VIIRS active fire product is also underway. Added-value and emerging VIIRS land products include vegetation health, phenology, near-real-time surface type and surface condition change, and other biogeophysical variables. As part of the JPSS program, a global soil moisture data product has also been generated from the Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor on the GCOM-W1 (Global Change Observation Mission - Water 1) satellite since July 2012. This product is included in the blended NESDIS Soil Moisture Operational Products System, providing soil moisture data as a critical input for land surface modeling.
NASA Astrophysics Data System (ADS)
Petropoulos, George P.; Kontoes, Charalambos C.; Keramitsoglou, Iphigenia
2012-08-01
In this study, the potential of EO-1 Advanced Land Imager (ALI) radiometer for land cover and especially burnt area mapping from a single image analysis is investigated. Co-orbital imagery from the Landsat Thematic Mapper (TM) was also utilised for comparison purposes. Both images were acquired shortly after the suppression of a fire occurred during the summer of 2009 North-East of Athens, the capital of Greece. The Maximum Likelihood (ML), Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) classifiers were parameterised and subsequently applied to the acquired satellite datasets. Evaluation of the land use/cover mapping accuracy was based on the error matrix statistics. Also, the McNemar test was used to evaluate the statistical significance of the differences between the approaches tested. Derived burnt area estimates were validated against the operationally deployed Services and Applications For Emergency Response (SAFER) Burnt Scar Mapping service. All classifiers applied to either ALI or TM imagery proved flexible enough to map land cover and also to extract the burnt area from other land surface types. The highest total classification accuracy and burnt area detection capability was returned from the application of SVMs to ALI data. This was due to the SVMs ability to identify an optimal separating hyperplane for best classes' separation that was able to better utilise ALI's advanced technological characteristics in comparison to those of TM sensor. This study is to our knowledge the first of its kind, effectively demonstrating the benefits of the combined application of SVMs to ALI data further implying that ALI technology may prove highly valuable in mapping burnt areas and land use/cover if it is incorporated into the development of Landsat 8 mission, planned to be launched in the coming years.
Theory on data processing and instrumentation. [remote sensing
NASA Technical Reports Server (NTRS)
Billingsley, F. C.
1978-01-01
A selection of NASA Earth observations programs are reviewed, emphasizing hardware capabilities. Sampling theory, noise and detection considerations, and image evaluation are discussed for remote sensor imagery. Vision and perception are considered, leading to numerical image processing. The use of multispectral scanners and of multispectral data processing systems, including digital image processing, is depicted. Multispectral sensing and analysis in application with land use and geographical data systems are also covered.
Troglia Gamba, Micaela; Marucco, Gianluca; Pini, Marco; Ugazio, Sabrina; Falletti, Emanuela; Lo Presti, Letizia
2015-01-01
Global Navigation Satellite Systems (GNSS) broadcast signals for positioning and navigation, which can be also employed for remote sensing applications. Indeed, the satellites of any GNSS can be seen as synchronized sources of electromagnetic radiation, and specific processing of the signals reflected back from the ground can be used to estimate the geophysical properties of the Earth’s surface. Several experiments have successfully demonstrated GNSS-reflectometry (GNSS-R), whereas new applications are continuously emerging and are presently under development, either from static or dynamic platforms. GNSS-R can be implemented at a low cost, primarily if small devices are mounted on-board unmanned aerial vehicles (UAVs), which today can be equipped with several types of sensors for environmental monitoring. So far, many instruments for GNSS-R have followed the GNSS bistatic radar architecture and consisted of custom GNSS receivers, often requiring a personal computer and bulky systems to store large amounts of data. This paper presents the development of a GNSS-based sensor for UAVs and small manned aircraft, used to classify lands according to their soil water content. The paper provides details on the design of the major hardware and software components, as well as the description of the results obtained through field tests. PMID:26569242
Gamba, Micaela Troglia; Marucco, Gianluca; Pini, Marco; Ugazio, Sabrina; Falletti, Emanuela; Lo Presti, Letizia
2015-11-10
Global Navigation Satellite Systems (GNSS) broadcast signals for positioning and navigation, which can be also employed for remote sensing applications. Indeed, the satellites of any GNSS can be seen as synchronized sources of electromagnetic radiation, and specific processing of the signals reflected back from the ground can be used to estimate the geophysical properties of the Earth's surface. Several experiments have successfully demonstrated GNSS-reflectometry (GNSS-R), whereas new applications are continuously emerging and are presently under development, either from static or dynamic platforms. GNSS-R can be implemented at a low cost, primarily if small devices are mounted on-board unmanned aerial vehicles (UAVs), which today can be equipped with several types of sensors for environmental monitoring. So far, many instruments for GNSS-R have followed the GNSS bistatic radar architecture and consisted of custom GNSS receivers, often requiring a personal computer and bulky systems to store large amounts of data. This paper presents the development of a GNSS-based sensor for UAVs and small manned aircraft, used to classify lands according to their soil water content. The paper provides details on the design of the major hardware and software components, as well as the description of the results obtained through field tests.
How will we ensure the long-term sea ice data record continues?
NASA Astrophysics Data System (ADS)
Stroeve, J. C.; Kaleschke, L.
2017-12-01
The multi-channel satellite passive microwave record has been of enormous benefit to the science community and society at large since the late 1970s. Starting with the launch of the Nimbus-7 Scanning Multi-Channel Microwave Radiometer (SMMR) in October 1978, and continuing with the launch of a series of Special Sensor Microwave Imagers (SSM/Is) in June 1987 by the Defense Meteorological Satellite Program (DMSP), places previously difficult to monitor year-round, such as the polar regions, came to light. Together these sensors have provided nearly 4 decades of climate data records on the state of sea ice cover over the ocean and snow on land. This data has also been used to map melt extent on the large ice sheets, timing of snow melt onset over land and sea ice. Application also extend well beyond the polar regions, mapping important climate variables, such as soil moisture content, oceanic wind speed, rainfall, water vapor, cloud liquid water and total precipitable water. Today the current SSMIS operational satellite (F18) is 7 years old and there is no follow-on mission planned by the DMSP. With the end of the SSMI family of Sensors, will the polar regions once again be in the dark? Other sensors that may contribute to the long-term data record include the JAXA AMSR2 (5 years old as of May 2017), the Chinese Fen-Yung-3 and the Russian Meteor-N2. Scatterometry and L-band radiometry from SMOS and NASA's SMOS may also provide some potential means of extending the sea ice extent data record, as well as future sensors by the DoD, JAXA and ESA. However, this will require considerable effort to intercalibrate the different sensors to ensure consistency in the long-term data record. Differences in measurement approach, frequency and spatial resolution make this a non-trivial matter. The passive microwave sea ice extent data record is one of the longest and most consistent climate data records available. It provides daily monitoring of one of the most striking changes in our climate system, the loss of the Arctic sea ice cover. A series of replacement sensors is urgently needed, preferably at higher spatial resolution to better delineate the ice edge for marine applications such as ship routing.
An improved land mask for the SSM/I grid
NASA Technical Reports Server (NTRS)
Martino, Michael G.; Cavalieri, Donald J.; Gloersen, Per; Zwally, H. Jay; Acker, James G. (Editor)
1995-01-01
This paper discusses the development of a new land/ocean/coastline mask for use with Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) data, and other types of data which are mapped to the polar stereographic SSM/I grid. Pre-existing land masks were found to disagree, to lack certain land features, and to disagree with land boundaries that are visible in high resolution sensor imagery, such as imagery from the Synthetic Aperture Radar (SAR) on the Earth Resources Satellite (ERS-1). The Digital Chart of the World (DCW) database was initially selected as a source of shoreline data for this effort. Techniques for developing a land mask from these shoreline data are discussed. The resulting land mask, although not perfect, is seen to exhibit significant improvement over previous land mask products.
Olson, Jay W; Rode, Karyn D.; Eggett, Dennis L.; Smith, T.S.; Wilson, R. R.; Durner, George M.; Fischbach, Anthony S.; Atwood, Todd C.; Douglas, David C.
2017-01-01
In response to a changing climate, many species alter habitat use. Polar bears Ursus maritimus in the southern Beaufort Sea have increasingly used land for maternal denning. To aid in detecting denning behavior, we developed an objective method to identify polar bear denning events using temperature sensor data collected by satellite-linked transmitters deployed on adult females between 1985 and 2013. We then applied this method to determine whether southern Beaufort Sea polar bears have continued to increase land denning with recent sea-ice loss and examined whether sea-ice conditions affect the distribution of dens between pack-ice and coastal substrates. Because land use in summer and autumn has also increased, we examined potential associations between summering substrate and denning substrate. Statistical process control methods applied to temperature-sensor data identified denning events with 94.5% accuracy in comparison to direct observations (n = 73) and 95.7% accuracy relative to subjective classifications based on temperature, location, and activity sensor data (n = 116). We found an increase in land-based denning during the study period. The frequency of land denning was directly related to the distance that sea ice retreated from the coast. Among females that denned, all 14 that summered on land subsequently denned there, whereas 29% of the 69 bears summering on ice denned on land. These results suggest that denning on land may continue to increase with further loss of sea ice. While the effects that den substrate have on nutrition, energetics, and reproduction are unclear, more polar bears denning onshore will likely increase human-bear interactions.
Unsupervised Framework to Monitor Lake Dynamics
NASA Technical Reports Server (NTRS)
Chen, Xi C. (Inventor); Boriah, Shyam (Inventor); Khandelwal, Ankush (Inventor); Kumar, Vipin (Inventor)
2016-01-01
A method of reducing processing time when assigning geographic areas to land cover labels using satellite sensor values includes a processor receiving a feature value for each pixel in a time series of frames of satellite sensor values, each frame containing multiple pixels and each frame covering a same geographic location. For each sub-area of the geographic location, the sub-area is assigned to one of at least three land cover labels. The processor determines a fraction function for a first sub-area assigned to a first land cover label. The sub-areas that were assigned to the first land cover label are reassigned to one of the second land cover label and the third land cover label based on the fraction functions of the sub-areas.
Dragon 2 Programme Achievements and Cooperation
NASA Astrophysics Data System (ADS)
Desnos, Yves-Louis; Li, Zengyuan; Zmuda, Andy; Gao, Zhihai
2013-01-01
The cooperation between ESA and National Remote Sensing Center of China (NRSCC) / Ministry of Science and Technology of China (MOST) in the development of Earth Observation (EO) applications started 17 years ago. In 2004, a new phase in cooperation began with the start of the Dragon Programme which focused on science and application using ESA ERS and Envisat satellite data. The programme was completed in 2008. Following on, the cooperation took on greater momentum with the start of a four-year EO science and exploitation programme called “Dragon 2”. The programme formally closed in June at the 2012 Beijing Symposium. The programme brought together joint Sino-European teams to investigate land, ocean and atmospheric applications in P.R. China using EO data from ESA, Third Party Mission (TPM) and Chinese satellites. The teams were led by principal EO scientists. Young European and Chinese scientists were also engaged on the projects. Advanced training courses in land, ocean and atmospheric applications were held in each year of the programme in China. Altogether, two courses on land, one course on atmospheric applications and one course on oceanographic applications were held. Here-in provided is an overview of the achievements, cooperation, reporting and training activities at the completion of the programme. The Sino-European teams have delivered world-class scientific results across a wide range of disciplines. The programme provided a platform for the joint exploitation of ESA, TPM and Chinese EO data from optical, thermal and microwave sensors for geo-science application and development in China.
Foreword to the theme issue on geospatial computer vision
NASA Astrophysics Data System (ADS)
Wegner, Jan Dirk; Tuia, Devis; Yang, Michael; Mallet, Clement
2018-06-01
Geospatial Computer Vision has become one of the most prevalent emerging fields of investigation in Earth Observation in the last few years. In this theme issue, we aim at showcasing a number of works at the interface between remote sensing, photogrammetry, image processing, computer vision and machine learning. In light of recent sensor developments - both from the ground as from above - an unprecedented (and ever growing) quantity of geospatial data is available for tackling challenging and urgent tasks such as environmental monitoring (deforestation, carbon sequestration, climate change mitigation), disaster management, autonomous driving or the monitoring of conflicts. The new bottleneck for serving these applications is the extraction of relevant information from such large amounts of multimodal data. This includes sources, stemming from multiple sensors, that exhibit distinct physical nature of heterogeneous quality, spatial, spectral and temporal resolutions. They are as diverse as multi-/hyperspectral satellite sensors, color cameras on drones, laser scanning devices, existing open land-cover geodatabases and social media. Such core data processing is mandatory so as to generate semantic land-cover maps, accurate detection and trajectories of objects of interest, as well as by-products of superior added-value: georeferenced data, images with enhanced geometric and radiometric qualities, or Digital Surface and Elevation Models.
Land surface dynamics monitoring using microwave passive satellite sensors
NASA Astrophysics Data System (ADS)
Guijarro, Lizbeth Noemi
Soil moisture, surface temperature and vegetation are variables that play an important role in our environment. There is growing demand for accurate estimation of these geophysical parameters for the research of global climate models (GCMs), weather, hydrological and flooding models, and for the application to agricultural assessment, land cover change, and a wide variety of other uses that meet the needs for the study of our environment. The different studies covered in this dissertation evaluate the capabilities and limitations of microwave passive sensors to monitor land surface dynamics. The first study evaluates the 19 GHz channel of the SSM/I instrument with a radiative transfer model and in situ datasets from the Illinois stations and the Oklahoma Mesonet to retrieve land surface temperature and surface soil moisture. The surface temperatures were retrieved with an average error of 5 K and the soil moisture with an average error of 6%. The results show that the 19 GHz channel can be used to qualitatively predict the spatial and temporal variability of surface soil moisture and surface temperature at regional scales. In the second study, in situ observations were compared with sensor observations to evaluate aspects of low and high spatial resolution at multiple frequencies with data collected from the Southern Great Plains Experiment (SGP99). The results showed that the sensitivity to soil moisture at each frequency is a function of wavelength and amount of vegetation. The results confirmed that L-band is more optimal for soil moisture, but each sensor can provide soil moisture information if the vegetation water content is low. The spatial variability of the emissivities reveals that resolution suffers considerably at higher frequencies. The third study evaluates C- and X-bands of the AMSR-E instrument. In situ datasets from the Soil Moisture Experiments (SMEX03) in South Central Georgia were utilized to validate the AMSR-E soil moisture product and to derive surface soil moisture with a radiative transfer model. The soil moisture was retrieved with an average error of 2.7% at X-band and 6.7% at C-band. The AMSR-E demonstrated its ability to successfully infer soil moisture during the SMEX03 experiment.
NASA Technical Reports Server (NTRS)
Ryan, Robert; Underwood, Lauren; Holekamp, Kara; May, George; Spiering, Bruce; Davis, Bruce
2011-01-01
This technology exploits the organic decomposition capability and hydrophilic properties of the photocatalytic material titanium dioxide (TiO2), a nontoxic and non-hazardous substance, to address contamination and biofouling issues in field-deployed optical sensor systems. Specifically, this technology incorporates TiO2 coatings and materials applied to, or integrated as a part of, the optical surfaces of sensors and calibration sources, including lenses, windows, and mirrors that are used in remote, unattended, ground-based (land or maritime) optical sensor systems. Current methods used to address contamination or biofouling of these optical surfaces in deployed systems are costly, toxic, labor intensive, and non-preventative. By implementing this novel technology, many of these negative aspects can be reduced. The functionality of this innovative self-cleaning solution to address the problem of contamination or biofouling depends on the availability of a sufficient light source with the appropriate spectral properties, which can be attained naturally via sunlight or supplemented using artificial illumination such as UV LEDs (light emitting diodes). In land-based or above-water systems, the TiO2 optical surface is exposed to sunlight, which catalyzes the photocatalytic reaction, facilitating both the decomposition of inorganic and organic compounds, and the activation of superhydrophilic properties. Since underwater optical surfaces are submerged and have limited sunlight exposure, supplementary UV light sources would be required to activate the TiO2 on these optical surfaces. Nighttime operation of land-based or above-water systems would require this addition as well. For most superhydrophilic self-cleaning purposes, a rainwater wash will suffice; however, for some applications an attached rainwater collector/ dispenser or other fresh water dispensing system may be required to wash the optical surface and initiate the removal of contaminates. Deployment of this non-toxic,non-hazardous-technology will take advantage of environmental elements (i.e. rain and sunlight), increase the longevity of unattended optical systems, increase the amount of time between required maintenance, and improve the long-term accuracy of sensor measurements.
Meteorology and hydrology in Yosemite National Park: A sensor network application
Lundquist, J.D.; Cayan, D.R.; Dettinger, M.D.
2003-01-01
Over half of California's water supply comes from high elevations in the snowmelt-dominated Sierra Nevada. Natural climate fluctuations, global warming, and the growing needs of water consumers demand intelligent management of this water resource. This requires a comprehensive monitoring system across and within the Sierra Nevada. Unfortunately, because of severe terrain and limited access, few measurements exist. Thus, meteorological and hydrologic processes are not well understood at high altitudes. However, new sensor and wireless communication technologies are beginning to provide sensor packages designed for low maintenance operation, low power consumption and unobtrusive footprints. A prototype network of meteorological and hydrological sensors has been deployed in Yosemite National Park, traversing elevation zones from 1,200 to 3,700 m. Communication techniques must be tailored to suit each location, resulting in a hybrid network of radio, cell-phone, land-line, and satellite transmissions. Results are showing how, in some years, snowmelt may occur quite uniformly over the Sierra, while in others it varies with elevation. ?? Springer-Verlag Berlin Heidelberg 2003.
Atmospheric Boundary Layer Sensors for Application in a Wake Vortex Advisory System
NASA Technical Reports Server (NTRS)
Zak, J. Allen; Rutishauser, David (Technical Monitor)
2003-01-01
Remote sensing of the atmospheric boundary layer has advanced in recent years with the development of commercial off-the-shelf (COTS) radar, sodar, and lidar wind profiling technology. Radio acoustic sounding systems for vertical temperature profiles of high temporal scales (when compared to routine balloon soundings- (radiosondes) have also become increasingly available as COTS capabilities. Aircraft observations during landing and departures are another source of available boundary layer data. This report provides an updated assessment of available sensors, their performance specifications and rough order of magnitude costs for a potential future aircraft Wake Vortex Avoidance System (WakeVAS). Future capabilities are also discussed. Vertical profiles of wind, temperature, and turbulence are anticipated to be needed at airports in any dynamic wake avoidance system. Temporal and spatial resolution are dependent on the selection of approach and departure corridors to be protected. Recommendations are made for potential configurations of near-term sensor technologies and for testing some of the sensor systems in order to validate performance in field environments with adequate groundtruth.
NASA Astrophysics Data System (ADS)
Lebedev, M. A.; Stepaniants, D. G.; Komarov, D. V.; Vygolov, O. V.; Vizilter, Yu. V.; Zheltov, S. Yu.
2014-08-01
The paper addresses a promising visualization concept related to combination of sensor and synthetic images in order to enhance situation awareness of a pilot during an aircraft landing. A real-time algorithm for a fusion of a sensor image, acquired by an onboard camera, and a synthetic 3D image of the external view, generated in an onboard computer, is proposed. The pixel correspondence between the sensor and the synthetic images is obtained by an exterior orientation of a "virtual" camera using runway points as a geospatial reference. The runway points are detected by the Projective Hough Transform, which idea is to project the edge map onto a horizontal plane in the object space (the runway plane) and then to calculate intensity projections of edge pixels on different directions of intensity gradient. The performed experiments on simulated images show that on a base glide path the algorithm provides image fusion with pixel accuracy, even in the case of significant navigation errors.
Spatial resolution enhancement of satellite image data using fusion approach
NASA Astrophysics Data System (ADS)
Lestiana, H.; Sukristiyanti
2018-02-01
Object identification using remote sensing data has a problem when the spatial resolution is not in accordance with the object. The fusion approach is one of methods to solve the problem, to improve the object recognition and to increase the objects information by combining data from multiple sensors. The application of fusion image can be used to estimate the environmental component that is needed to monitor in multiple views, such as evapotranspiration estimation, 3D ground-based characterisation, smart city application, urban environments, terrestrial mapping, and water vegetation. Based on fusion application method, the visible object in land area has been easily recognized using the method. The variety of object information in land area has increased the variation of environmental component estimation. The difficulties in recognizing the invisible object like Submarine Groundwater Discharge (SGD), especially in tropical area, might be decreased by the fusion method. The less variation of the object in the sea surface temperature is a challenge to be solved.
NASA Astrophysics Data System (ADS)
Bullón, Teresa
2015-02-01
The present research is based on the hypertemporal analysis of a set of 212 images from the NDVI index from January 2003 to March 2012 provided by the medium-resolution sensor MODIS TERRA. The study area is located in the center of the Iberian Peninsula (Spain). The specific objectives of the study are to investigate the rhythms of the annual development of the NDVI of each of the classes, determine the classes that are most sensitive to climatic variability and define the interannual sequences of variation in NDVI with an associated trend analysis. The classes situated in lower-altitude areas are strongly dependent on autumn rainfall and present negative temporal tendencies, and those situated at mountaintops and on upper slopes are correlated with spring-summer temperatures and exhibit stable or positive tendencies.
Real-time Imaging Technology for the Return to the Moon
NASA Technical Reports Server (NTRS)
Epp, Chirold
2008-01-01
This viewgraph presentation reviews realtime Autonomous Landing Hazard Avoidance Technology (ALHAT) technology for the return to the Moon. The topics inclde: 1) ALHAT Background; 2) Safe and Precise Landing; 3) ALHAT Mission Phases; 4) Terminal Descent Phase; 5) Lighting; 6) Lander Tolerance; 7) HDA Sensor Performance; and 8) HDA Terrain Sensors.
NASA Astrophysics Data System (ADS)
Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús
2011-09-01
This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.
NASA Astrophysics Data System (ADS)
Price, A.; Wollheim, W. M.; Mulukutla, G. K.; Carey, R. O.; McDowell, W. H.
2012-12-01
Understanding the aquatic biogeochemical impacts of land use change and climate variability will require improved understanding of nutrient variability over temporal scales ranging from storms to seasons. New in situ sensor technology offers the prospect of efficient nutrient measurements over multiple time scales. We quantified nutrient flux patterns in response to storm events across seasons using in situ nutrient sensors deployed in headwater streams draining three land use types (forest, suburban, and agriculture) within the Lamprey River watershed, New Hampshire, between April-December 2012. We utilized two sensor suites, each consisting of a Satlantic Submersible Ultraviolet Nitrate Analyzer (NO3-N), Turner Designs C6 Multi-Sensor Platform (CDOM, Turbidity, Chl), Hydrolab MS5 (Dissolved Oxygen, pH), WET Labs Cycle P (PO4-P), and Hobo Water Level & Conductivity meters. Preliminary spring/summer comparisons at the suburban site suggest increased baseflow nitrate concentrations and decreased diurnal nitrate variability (~0.05 vs. 0.035 mg/L daily fluctuation) following leaf emergence in spring. Nitrate concentrations were diluted during storms. Hysteresis was evident, suggesting groundwater nitrate sources attributable to septic systems were diluted by surface runoff during spring storms. The agricultural stream showed similar but more extreme patterns of increasing baseflow nitrate during the summer (~2.4 to 4.1 mg/L) and dilution during storms. The compilation of a high-frequency dataset for headwater streams across seasons and land-use types will provide valuable insight into complex land use/water quality relationships in urbanizing watersheds.
Land mine detection using multispectral image fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.
1995-03-29
Our system fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a varietymore » of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts. We use a supervised learning pattern recognition approach to detecting the metal and plastic land mines. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in a two step process to classify a subimage. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the spectral bands add value to the detection system. The most important features from the various sensors are fused using a supervised learning pattern classifier (the probabilistic neural network). We present results of experiments to detect land mines from real data collected from an airborne platform, and evaluate the usefulness of fusing feature information from multiple spectral bands.« less
A geometric performance assessment of the EO-1 advanced land imager
Storey, James C.; Choate, M.J.; Meyer, D.J.
2004-01-01
The Earth Observing 1 (EO-1) Advanced Land Imager (ALI) demonstrates technology applicable to a successor system to the Landsat Thematic Mapper series. A study of the geometric performance characteristics of the ALI was conducted under the auspices of the EO-1 Science Validation Team. This study evaluated ALI performance with respect to absolute pointing knowledge, focal plane sensor chip assembly alignment, and band-to-band registration for purposes of comparing this new technology to the heritage Landsat systems. On-orbit geometric calibration procedures were developed that allowed the generation of ALI geometrically corrected products that compare favorably with their Landsat 7 counterparts with respect to absolute geodetic accuracy, internal image geometry, and band registration.
The use of the Space Shuttle for land remote sensing
NASA Technical Reports Server (NTRS)
Thome, P. G.
1982-01-01
The use of the Space Shuttle for land remote sensing will grow significantly during the 1980's. The main use will be for general land cover and geological mapping purposes by worldwide users employing specialized sensors such as: high resolution film systems, synthetic aperture radars, and multispectral visible/IR electronic linear array scanners. Because these type sensors have low Space Shuttle load factors, the user's preference will be for shared flights. With this strong preference and given the present prognosis for Space Shuttle flight frequency as a function of orbit inclination, the strongest demand will be for 57 deg orbits. However, significant use will be made of lower inclination orbits. Compared with freeflying satellites, Space Shuttle mission investment requirements will be significantly lower. The use of the Space Shuttle for testing R and D land remote sensors will replace the free-flying satellites for most test programs.
2010-03-01
in this paper. Velocity sensing can be accomplished in the optical domain with laser Doppler radar (i.e. LIDAR ), through RF band or ultrasonic... Doppler radar. Reference [34] discusses an example of a LIDAR based velocimeter, used to furnish landing speed information for spacecraft terminal descent...in military (and commercial) capabilities: the Ring Laser Gyro (since ~1975), Fiber Optic Gyros (since ~1985), and MEMS (since ~1995). RLGs enabled
Quantifying Hurricane Wind Speed with Undersea Sound
2006-06-01
even detect hurricanes using practical linear arrays at long ranges in these environments. 2.6 Conclusions We have shown that the wind- generated noise...application in other seismic research where a sensor on land measures signals generated by sources at sea. For example undersea earthquakes [124] and...at 100 Hz for a 64-element A/2-spaced horizontal broadside array as a function of steering angle for hurricane generated noise in the North Atlantic
NASA Earth Resources Survey Symposium. Volume 1-A: Agriculture, environment
NASA Technical Reports Server (NTRS)
1975-01-01
A number of papers dealing with the practical application of imagery obtained from remote sensors on LANDSAT satellites, the Skylab Earth resources experiment package, and aircraft to problems in agriculture and the environment were presented. Some of the more important topics that were covered included: range management and resources, environmental monitoring and management, crop growth and inventory, land management, multispectral band scanners, forest management, mapping, marshlands, strip mining, water quality and pollution, ecology.
Progress and Achievements At the Mid Term Stage of the Dragon 2 Programme
NASA Astrophysics Data System (ADS)
Desnos, Yves-Louis; Li, Zhengyuan; Zmuda, Andy; Gao, Zhihai
2010-10-01
The cooperation between ESA and National Remote Sensing Center of China (NRSCC) / Ministry Of Science and Technology of China (MOST) in the development of Earth Observation (EO) applications started 15 years ago. In 2004, a new phase in cooperation began with the start of the Dragon Programme which focused on science and application using ESA satellite data. The programme was completed in 2008. Following on, the cooperation took on greater momentum with the start of a four-year EO science and exploitation programme called 'Dragon 2'. This programme brings together joint Sino-European teams to investigate land, ocean and atmospheric applications in P.R. China using data from ESA, Third Party Mission and Chinese Earth Observation satellites. The teams are led by leading EO scientists and young scientists are also engaged on the projects. Advanced training in land, ocean and atmospheric applications is a feature of the programme and after 2 years, two courses on land and one course on atmospheric applications have been successfully held in 2008, 2009 and 2010 in China. Here-in provided is an overview of the results, reporting and training activities at the mid term stage of the programme. The Sino-European teams continue to deliver world-class scientific results across a wide range of disciplines. The programme provides a platform for the joint exploitation of ESA, TPM and Chinese EO data from optical, infrared, thermal and microwave sensors for science and application development.
Development of Lidar Sensor Systems for Autonomous Safe Landing on Planetary Bodies
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Pierottet, Diego F.; Petway, Larry B.; Vanek, Michael D.
2010-01-01
Lidar has been identified by NASA as a key technology for enabling autonomous safe landing of future robotic and crewed lunar landing vehicles. NASA LaRC has been developing three laser/lidar sensor systems under the ALHAT project. The capabilities of these Lidar sensor systems were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard helicopters and a fixed wing aircraft. The airborne tests were performed over Moon-like terrain in the California and Nevada deserts. These tests provided the necessary data for the development of signal processing software, and algorithms for hazard detection and navigation. The tests helped identify technology areas needing improvement and will also help guide future technology advancement activities.
NASA Astrophysics Data System (ADS)
Chu, Chien-Hsun; Chiang, Kai-Wei
2016-06-01
The early development of mobile mapping system (MMS) was restricted to applications that permitted the determination of the elements of exterior orientation from existing ground control. Mobile mapping refers to a means of collecting geospatial data using mapping sensors that are mounted on a mobile platform. Research works concerning mobile mapping dates back to the late 1980s. This process is mainly driven by the need for highway infrastructure mapping and transportation corridor inventories. In the early nineties, advances in satellite and inertial technology made it possible to think about mobile mapping in a different way. Instead of using ground control points as references for orienting the images in space, the trajectory and attitude of the imager platform could now be determined directly. Cameras, along with navigation and positioning sensors are integrated and mounted on a land vehicle for mapping purposes. Objects of interest can be directly measured and mapped from images that have been georeferenced using navigation and positioning sensors. Direct georeferencing (DG) is the determination of time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using the Global Navigation Satellite System (GNSS) and inertial navigation using an Inertial Measuring Unit (IMU). Although either technology used along could in principle determine both position and orientation, they are usually integrated in such a way that the IMU is the main orientation sensor, while the GNSS receiver is the main position sensor. However, GNSS signals are obstructed due to limited number of visible satellites in GNSS denied environments such as urban canyon, foliage, tunnel and indoor that cause the GNSS gap or interfered by reflected signals that cause abnormal measurement residuals thus deteriorates the positioning accuracy in GNSS denied environments. This study aims at developing a novel method that uses ground control points to maintain the positioning accuracy of the MMS in GNSS denied environments. At last, this study analyses the performance of proposed method using about 20 check-points through DG process.
Sensor networks in the low lands.
Meratnia, Nirvana; van der Zwaag, Berend Jan; van Dijk, Hylke W; Bijwaard, Dennis J A; Havinga, Paul J M
2010-01-01
This paper provides an overview of scientific and industrial developments of the last decade in the area of sensor networks in The Netherlands (Low Lands). The goal is to highlight areas in which the Netherlands has made most contributions and is currently a dominant player in the field of sensor networks. On the one hand, motivations, addressed topics, and initiatives taken in this period are presented, while on the other hand, special emphasis is given to identifying current and future trends and formulating a vision for the coming five to ten years. The presented overview and trend analysis clearly show that Dutch research and industrial efforts, in line with recent worldwide developments in the field of sensor technology, present a clear shift from sensor node platforms, operating systems, communication, networking, and data management aspects of the sensor networks to reasoning/cognition, control, and actuation.
NASA Astrophysics Data System (ADS)
Thomas, Paul A.; Marshall, Gillian; Faulkner, David; Kent, Philip; Page, Scott; Islip, Simon; Oldfield, James; Breckon, Toby P.; Kundegorski, Mikolaj E.; Clark, David J.; Styles, Tim
2016-05-01
Currently, most land Intelligence, Surveillance and Reconnaissance (ISR) assets (e.g. EO/IR cameras) are simply data collectors. Understanding, decision making and sensor control are performed by the human operators, involving high cognitive load. Any automation in the system has traditionally involved bespoke design of centralised systems that are highly specific for the assets/targets/environment under consideration, resulting in complex, non-flexible systems that exhibit poor interoperability. We address a concept of Autonomous Sensor Modules (ASMs) for land ISR, where these modules have the ability to make low-level decisions on their own in order to fulfil a higher-level objective, and plug in, with the minimum of preconfiguration, to a High Level Decision Making Module (HLDMM) through a middleware integration layer. The dual requisites of autonomy and interoperability create challenges around information fusion and asset management in an autonomous hierarchical system, which are addressed in this work. This paper presents the results of a demonstration system, known as Sensing for Asset Protection with Integrated Electronic Networked Technology (SAPIENT), which was shown in realistic base protection scenarios with live sensors and targets. The SAPIENT system performed sensor cueing, intelligent fusion, sensor tasking, target hand-off and compensation for compromised sensors, without human control, and enabled rapid integration of ISR assets at the time of system deployment, rather than at design-time. Potential benefits include rapid interoperability for coalition operations, situation understanding with low operator cognitive burden and autonomous sensor management in heterogenous sensor systems.
Distributed Underwater Sensing: A Paradigm Change for the Future
NASA Astrophysics Data System (ADS)
Yang, T. C.
Distributed netted underwater sensors (DNUS) present a paradigm change that has generated high interest all over the world. It utilizes many small spatially distributed, inexpensive sensors, and a certain number of mobile nodes, such as autonomous underwater vehicles (AUVs), forming a wireless acoustic network to relate data and provide real time monitoring of the ocean. Distributed underwater sensors can be used for oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance applications over wide areas. These functions were traditionally accomplished by a cabled system, such as an array of sensors deployed from a platform, or a large number of sensors moored on the ocean bottom, connected by a cable. The cabled systems are not only expensive but often require heavy ocean engineering (e.g., equipment to deploy heavy armored cables). In the future, as fabrication technology advances making low cost sensors a reality, DNUS is expected to be affordable and will become the undersea "OceanNet" for the marine industry like the current "internet" on land. This paper gives a layman view of the system concept, the state of the art, and future challenges. One of challenges, of particular interest to this conference, is to develop technologies for miniature-size sensors that are energy efficient, allowing long time deployment in the ocean.
Sustainable Land Imaging User Requirements
NASA Astrophysics Data System (ADS)
Wu, Z.; Snyder, G.; Vadnais, C. M.
2017-12-01
The US Geological Survey (USGS) Land Remote Sensing Program (LRSP) has collected user requirements from a range of applications to help formulate the Landsat 9 follow-on mission (Landsat 10) through the Requirements, Capabilities and Analysis (RCA) activity. The USGS is working with NASA to develop Landsat 10, which is scheduled to launch in the 2027 timeframe as part of the Sustainable Land Imaging program. User requirements collected through RCA will help inform future Landsat 10 sensor designs and mission characteristics. Current Federal civil community users have provided hundreds of requirements through systematic, in-depth interviews. Academic, State, local, industry, and international Landsat user community input was also incorporated in the process. Emphasis was placed on spatial resolution, temporal revisit, and spectral characteristics, as well as other aspects such as accuracy, continuity, sampling condition, data access and format. We will provide an overview of the Landsat 10 user requirements collection process and summary results of user needs from the broad land imagining community.
Landsat-8: Status and on-orbit performance
Markham, Brian L; Barsi, Julia A.; Morfitt, Ron; Choate, Michael J.; Montanaro, Matthew; Arvidson, Terry; Irons, James R.
2015-01-01
Landsat 8 and its two Earth imaging sensors, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) have been operating on-orbit for 2 ½ years. Landsat 8 has been acquiring substantially more images than initially planned, typically around 700 scenes per day versus a 400 scenes per day requirement, acquiring nearly all land scenes. Both the TIRS and OLI instruments are exceeding their SNR requirements by at least a factor of 2 and are very stable, degrading by at most 1% in responsivity over the mission to date. Both instruments have 100% operable detectors covering their cross track field of view using the redundant detectors as necessary. The geometric performance is excellent, meeting or exceeding all performance requirements. One anomaly occurred with the TIRS Scene Select Mirror (SSM) encoder that affected its operation, though by switching to the side B electronics, this was fully recovered. The one challenge is with the TIRS stray light, which affects the flat fielding and absolute calibration of the TIRS data. The error introduced is smaller in TIRS band 10. Band 11 should not currently be used in science applications.
Mars 2020 Entry, Descent and Landing Instrumentation 2 (MEDLI2)
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Bose, Deepak; White, Todd R.; Wright, Henry S.; Schoenenberger, Mark; Kuhl, Christopher A.; Trombetta, Dominic; Santos, Jose A.; Oishi, Tomomi; Karlgaard, Christopher D.;
2016-01-01
The Mars Entry Descent and Landing Instrumentation 2 (MEDLI2) sensor suite will measure aerodynamic, aerothermodynamic, and TPS performance during the atmospheric entry, descent, and landing phases of the Mars 2020 mission. The key objectives are to reduce design margin and prediction uncertainties for the aerothermal environments and aerodynamic database. For MEDLI2, the sensors are installed on both the heatshield and backshell, and include 7 pressure transducers, 17 thermal plugs, and 3 heat flux sensors (including a radiometer). These sensors will expand the set of measurements collected by the highly successful MEDLI suite, collecting supersonic pressure measurements on the forebody, a pressure measurement on the aftbody, direct heat flux measurements on the aftbody, a radiative heating measurement on the aftbody, and multiple near-surface thermal measurements on the thermal protection system (TPS) materials on both the forebody and aftbody. To meet the science objectives, supersonic pressure transducers and heat flux sensors are currently being developed and their qualification and calibration plans are presented. Finally, the reconstruction targets for data accuracy are presented, along with the planned methodologies for achieving the targets.
Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle
NASA Technical Reports Server (NTRS)
Carson, John M. III; Robertson, Edward A.; Trawny, Nikolas; Amzajerdian, Farzin
2015-01-01
A suite of prototype sensors, software, and avionics developed within the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project were terrestrially demonstrated onboard the NASA Morpheus rocket-propelled Vertical Testbed (VTB) in 2014. The sensors included a LIDAR-based Hazard Detection System (HDS), a Navigation Doppler LIDAR (NDL) velocimeter, and a long-range Laser Altimeter (LAlt) that enable autonomous and safe precision landing of robotic or human vehicles on solid solar system bodies under varying terrain lighting conditions. The flight test campaign with the Morpheus vehicle involved a detailed integration and functional verification process, followed by tether testing and six successful free flights, including one night flight. The ALHAT sensor measurements were integrated into a common navigation solution through a specialized ALHAT Navigation filter that was employed in closed-loop flight testing within the Morpheus Guidance, Navigation and Control (GN&C) subsystem. Flight testing on Morpheus utilized ALHAT for safe landing site identification and ranking, followed by precise surface-relative navigation to the selected landing site. The successful autonomous, closed-loop flight demonstrations of the prototype ALHAT system have laid the foundation for the infusion of safe, precision landing capabilities into future planetary exploration missions.
Regional forest land cover characterisation using medium spatial resolution satellite data
Huang, Chengquan; Homer, Collin G.; Yang, Limin; Wulder, Michael A.; Franklin, Steven E.
2003-01-01
Increasing demands on forest resources require comprehensive, consistent and up-to-date information on those resources at spatial scales appropriate for management decision-making and for scientific analysis. While such information can be derived using coarse spatial resolution satellite data (e.g. Tucker et al. 1984; Zhu and Evans 1994; Cihlar et al. 1996; Cihlar et al., Chapter 12), many regional applications require more spatial and thematic details than can be derived by using coarse resolution imagery. High spatial resolution satellite data such as IKONOS and Quick Bird images (Aplin et al. 1997), though usable for deriving detailed forest information (Culvenor, Chapter 9), are currently not feasible for wall-to-wall regional applications because of extremely high data cost, huge data volume, and lack of contiguous coverage over large areas. Forest studies over large areas have often been accomplished using data acquired by intermediate spatial resolution sensor systems, including the Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and the Enhanced Thematic Mapper Plus (ETM+) of Landsat, the High Resolution Visible (HRV) of the Systeme Pour l'Observation de la Terre (SPOT), and the Linear Image Self-Scanner (LISS) of the Indian Remote Sensing satellite. These sensor systems are more appropriate for regional applications because they can routinely produce spatially contiguous data over large areas at relatively low cost, and can be used to derive a host of forest attributes (e.g. Cohen et al. 1995; Kimes et al. 1999; Cohen et al. 2001; Huang et al. 2001; Sugumaran 2001). Of the above intermediate spatial resolution satellites, Landsat is perhaps the most widely used in various types of land remote sensing applications, in part because it has provided more extensive spatial and temporal coverage of the globe than any other intermediate resolution satellite. Spatially contiguous Landsat data have been developed for many regions of the globe (e.g. Lunetta and Sturdevant 1993; Fuller et al. 1994b; Skole et al. 1997), and a circa 1990 Landsat image data set covering the entire land area of the globe has also been developed recently (Jones and Smith 2001). An acquisition strategy aimed at acquiring at least one cloud free image per year for the entire land area of the globe has been initiated for Landsat-7 (Arvidson et al. 2001). This will probably ensure the continued dominance of Landsat in the near future.
NASA Technical Reports Server (NTRS)
Carson, John M., III; Johnson, Andrew E.; Anderson, F. Scott; Condon, Gerald L.; Nguyen, Louis H.; Olansen, Jon B.; Devolites, Jennifer L.; Harris, William J.; Hines, Glenn D.; Lee, David E.;
2016-01-01
The Lunar MARE (Moon Age and Regolith Explorer) Discovery Mission concept targets delivery of a science payload to the lunar surface for sample collection and dating. The mission science is within a 100-meter radius region of smooth lunar maria terrain near Aristarchus crater. The location has several small, sharp craters and rocks that present landing hazards to the spacecraft. For successful delivery of the science payload to the surface, the vehicle Guidance, Navigation and Control (GN&C) subsystem requires safe and precise landing capability, so design infuses the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) and a gimbaled, throttleable LOX/LCH4 main engine. The ALHAT system implemented for Lunar MARE is a specialization of prototype technologies in work within NASA for the past two decades, including a passive optical Terrain Relative Navigation (TRN) sensor, a Navigation Doppler Lidar (NDL) velocity and range sensor, and a Lidar-based Hazard Detection (HD) sensor. The landing descent profile is from a retrograde orbit over lighted terrain with landing near lunar dawn. The GN&C subsystem with ALHAT capabilities will deliver the science payload to the lunar surface within a 20-meter landing ellipse of the target location and at a site having greater than 99% safety probability, which minimizes risk to safe landing and delivery of the MARE science payload to the intended terrain region.
NASA Astrophysics Data System (ADS)
Santanello, J. A., Jr.; Schaefer, A.
2016-12-01
There is an established need for improved PBL remote sounding over land for hydrology, land-atmosphere (L-A), PBL, cloud/convection, pollution/chemistry studies and associated model evaluation and development. Most notably, the connection of surface hydrology (through soil moisture) to clouds and precipitation relies on proper quantification of water's transport through the coupled system, which is modulated strongly by PBL structure, growth, and feedback processes such as entrainment. In-situ (ground-based or radiosonde) measurements will be spatially limited to small field campaigns for the foreseeable future, so satellite data is a must in order to understand these processes globally. The scales of these applications require diurnal resolution (e.g. 3-hourly or finer) at <100m vertical and 1-10km spatial resolutions in order to assess processes driving land-PBL coupling and water and energy cycles at their native scales. Today's satellite sensors (e.g. advanced IR, GEO, lidar, GPS-RO) do not reach close to these targets in terms of accuracy or resolution, and each of these sensors has some advantages but even more limitations that make them impractical for PBL and L-A studies. Unfortunately, there is very little attention or planning (short or long-term) in place for improving lower tropospheric sounding over land, and as a result PBL and L-A interactions have been identified as `gaps' in current programmatic focal areas. It is therefore timely to assess how these technologies can be leveraged, combined, or evolved in order to form a dedicated mission or sub-mission to routinely monitor the PBL on diurnal timescales. In addition, improved PBL monitoring from space needs to be addressed in the next Decadal Survey. In this talk, the importance of PBL information (structure, evolution) for L-A coupling diagnostics and model development will be summarized. The current array of PBL retrieval methods and products from space will then be assessed in terms of meeting the needs of these models, diagnostics, and scales, with a look forward as to how this can and must be improved through future mission and sensor design.
NASA Technical Reports Server (NTRS)
McAllister, William K.
2003-01-01
One is likely to read the terms 'land use' and 'land cover' in the same sentence, yet these concepts have different origins and different applications. Land cover is typically analyzed by earth scientists working with remotely sensed images. Land use is typically studied by urban planners who must prescribe solutions that could prevent future problems. This apparent dichotomy has led to different classification systems for land-based data. The works of earth scientists and urban planning practitioners are beginning to come together in the field of spatial analysis and in their common use of new spatial analysis technology. In this context, the technology can stimulate a common 'language' that allows a broader sharing of ideas. The increasing amount of land use and land cover change challenges the various efforts to classify in ways that are efficient, effective, and agreeable to all groups of users. If land cover and land uses can be identified by remote methods using aerial photography and satellites, then these ways are more efficient than field surveys of the same area. New technology, such as high-resolution satellite sensors, and new methods, such as more refined algorithms for image interpretation, are providing refined data to better identify the actual cover and apparent use of land, thus effectiveness is improved. However, the closer together and the more vertical the land uses are, the more difficult the task of identification is, and the greater is the need to supplement remotely sensed data with field study (in situ). Thus, a number of land classification methods were developed in order to organize the greatly expanding volume of data on land characteristics in ways useful to different groups. This paper distinguishes two land based classification systems, one developed primarily for remotely sensed data, and the other, a more comprehensive system requiring in situ collection methods. The intent is to look at how the two systems developed and how they can work together so that land based information can be shared among different users and compared over time.
Earth Observation Satellites and Chinese Applications
NASA Astrophysics Data System (ADS)
Li, D.
In this talk existing and future Earth observation satellites are briefly described These satellites include meteorological satellites ocean satellites land resources satellites cartographic satellites and gravimetric satellites The Chinese government has paid and will pay more attention to and put more effort into enhancing Chinese earth observation satellite programs in the next fifteen years The utilization of these satellites will effectively help human beings to solve problems it faces in areas such as population natural resources and environment and natural hazards The author will emphasize the originality of the scientific and application aspects of the Chinese program in the field of Earth observations The main applications include early warning and prevention of forest fires flooding and drought disaster water and ocean ice disasters monitoring of landslides and urban subsidence investigation of land cover change and urban expansion as well as urban and rural planning The author introduces the most up-to-date technology used by Chinese scientists including fusion and integration of multi-sensor multi-platform optical and SAR data of remote sensing Most applications in China have obtained much support from related international organizations and universities around the world These applications in China are helpful for economic construction and the efficient improvement of living quality
Nguyen, Phong Ha; Arsalan, Muhammad; Koo, Ja Hyung; Naqvi, Rizwan Ali; Truong, Noi Quang; Park, Kang Ryoung
2018-05-24
Autonomous landing of an unmanned aerial vehicle or a drone is a challenging problem for the robotics research community. Previous researchers have attempted to solve this problem by combining multiple sensors such as global positioning system (GPS) receivers, inertial measurement unit, and multiple camera systems. Although these approaches successfully estimate an unmanned aerial vehicle location during landing, many calibration processes are required to achieve good detection accuracy. In addition, cases where drones operate in heterogeneous areas with no GPS signal should be considered. To overcome these problems, we determined how to safely land a drone in a GPS-denied environment using our remote-marker-based tracking algorithm based on a single visible-light-camera sensor. Instead of using hand-crafted features, our algorithm includes a convolutional neural network named lightDenseYOLO to extract trained features from an input image to predict a marker's location by visible light camera sensor on drone. Experimental results show that our method significantly outperforms state-of-the-art object trackers both using and not using convolutional neural network in terms of both accuracy and processing time.
Cavalli, Rosa Maria; Fusilli, Lorenzo; Pascucci, Simone; Pignatti, Stefano; Santini, Federico
2008-01-01
This study aims at comparing the capability of different sensors to detect land cover materials within an historical urban center. The main objective is to evaluate the added value of hyperspectral sensors in mapping a complex urban context. In this study we used: (a) the ALI and Hyperion satellite data, (b) the LANDSAT ETM+ satellite data, (c) MIVIS airborne data and (d) the high spatial resolution IKONOS imagery as reference. The Venice city center shows a complex urban land cover and therefore was chosen for testing the spectral and spatial characteristics of different sensors in mapping the urban tissue. For this purpose, an object-oriented approach and different common classification methods were used. Moreover, spectra of the main anthropogenic surfaces (i.e. roofing and paving materials) were collected during the field campaigns conducted on the study area. They were exploited for applying band-depth and sub-pixel analyses to subsets of Hyperion and MIVIS hyperspectral imagery. The results show that satellite data with a 30m spatial resolution (ALI, LANDSAT ETM+ and HYPERION) are able to identify only the main urban land cover materials. PMID:27879879
Detection of buried objects by fusing dual-band infrared images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.
1993-11-01
We have conducted experiments to demonstrate the enhanced detectability of buried land mines using sensor fusion techniques. Multiple sensors, including visible imagery, infrared imagery, and ground penetrating radar (GPR), have been used to acquire data on a number of buried mines and mine surrogates. Because the visible wavelength and GPR data are currently incomplete. This paper focuses on the fusion of two-band infrared images. We use feature-level fusion and supervised learning with the probabilistic neural network (PNN) to evaluate detection performance. The novelty of the work lies in the application of advanced target recognition algorithms, the fusion of dual-band infraredmore » images and evaluation of the techniques using two real data sets.« less
Chander, Gyanesh; Angal, Amit; Choi, Taeyoung; Xiong, Xiaoxiong
2013-01-01
The Earth Observing-1 (EO-1) satellite was launched on November 21, 2000, as part of a one-year technology demonstration mission. The mission was extended because of the value it continued to add to the scientific community. EO-1 has now been operational for more than a decade, providing both multispectral and hyperspectral measurements. As part of the EO-1 mission, the Advanced Land Imager (ALI) sensor demonstrates a potential technological direction for the next generation of Landsat sensors. To evaluate the ALI sensor capabilities as a precursor to the Operational Land Imager (OLI) onboard the Landsat Data Continuity Mission (LDCM, or Landsat 8 after launch), its measured top-of-atmosphere (TOA) reflectances were compared to the well-calibrated Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors in the reflective solar bands (RSB). These three satellites operate in a near-polar, sun-synchronous orbit 705 km above the Earth's surface. EO-1 was designed to fly one minute behind L7 and approximately 30 minutes in front of Terra. In this configuration, all the three sensors can view near-identical ground targets with similar atmospheric, solar, and viewing conditions. However, because of the differences in the relative spectral response (RSR), the measured physical quantities can be significantly different while observing the same target. The cross-calibration of ALI with ETM+ and MODIS was performed using near-simultaneous surface observations based on image statistics from areas observed by these sensors over four desert sites (Libya 4, Mauritania 2, Arabia 1, and Sudan 1). The differences in the measured TOA reflectances due to RSR mismatches were compensated by using a spectral band adjustment factor (SBAF), which takes into account the spectral profile of the target and the RSR of each sensor. For this study, the spectral profile of the target comes from the near-simultaneous EO-1 Hyperion data over these sites. The results indicate that the TOA reflectance measurements for ALI agree with those of ETM+ and MODIS to within 5% after the application of SBAF.
2009-09-01
evaluate specific system equipment func- tions, performance, operations, and safety in the field environment. The planned test procedures require free space...emission of radiofrequency (RF) electromagnetic energy within a limited spectral region and controlled power spec- tral density. There would be...for personnel. The applicable DoD standard that provides required guidelines for permissible exposure limits of DoD personnel is DoD Instruction
Evaluation and comparison of the IRS-P6 and the landsat sensors
Chander, G.; Coan, M.J.; Scaramuzza, P.L.
2008-01-01
The Indian Remote Sensing Satellite (IRS-P6), also called ResourceSat-1, was launched in a polar sun-synchronous orbit on October 17, 2003. It carries three sensors: the highresolution Linear Imaging Self-Scanner (LISS-IV), the mediumresolution Linear Imaging Self-Scanner (LISS-III), and the Advanced Wide-Field Sensor (AWiFS). These three sensors provide images of different resolutions and coverage. To understand the absolute radiometric calibration accuracy of IRS-P6 AWiFS and LISS-III sensors, image pairs from these sensors were compared to images from the Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced TM Plus (ETM+) sensors. The approach involves calibration of surface observations based on image statistics from areas observed nearly simultaneously by the two sensors. This paper also evaluated the viability of data from these nextgeneration imagers for use in creating three National Land Cover Dataset (NLCD) products: land cover, percent tree canopy, and percent impervious surface. Individual products were consistent with previous studies but had slightly lower overall accuracies as compared to data from the Landsat sensors.
Sensor Networks in the Low Lands
Meratnia, Nirvana; van der Zwaag, Berend Jan; van Dijk, Hylke W.; Bijwaard, Dennis J. A.; Havinga, Paul J. M.
2010-01-01
This paper provides an overview of scientific and industrial developments of the last decade in the area of sensor networks in The Netherlands (Low Lands). The goal is to highlight areas in which the Netherlands has made most contributions and is currently a dominant player in the field of sensor networks. On the one hand, motivations, addressed topics, and initiatives taken in this period are presented, while on the other hand, special emphasis is given to identifying current and future trends and formulating a vision for the coming five to ten years. The presented overview and trend analysis clearly show that Dutch research and industrial efforts, in line with recent worldwide developments in the field of sensor technology, present a clear shift from sensor node platforms, operating systems, communication, networking, and data management aspects of the sensor networks to reasoning/cognition, control, and actuation. PMID:22163669
Land application driven performance requirements for airborne imaging spectroscopy
NASA Astrophysics Data System (ADS)
Schaepman, M. E.; Schläpfer, D.; Kaiser, J. W.; Brazile, J.; Itten, K. I.
2003-04-01
Over the past few years, a joint Swiss/Belgium ESA initiative resulted in a project to build a precursor mission of future spaceborne imaging spectrometers, namely APEX (Airborne Prism Experiment). APEX is designed to be an airborne dispersive pushbroom imaging spectrometer operating in the solar reflected wavelength range between 400 and 2500 nm. The system is optimized for land applications including limnology, snow, soil, amongst others. The baseline for the requirements of APEX are built on various land requirements and subsequently modelled to at-sensor specific radiances. The model is based on existing biophysical and -chemical retrieval algorithms and assumes no physical limitation of the sensor system. Final technology limitations are discussed using system tradeoffs. The absolute radiance calibration of APEX includes the use of pre- and post-data acquisition internal calibration facility as well as a laboratory calibration and a performance model serving as a stable reference. We will discuss the instrument's present status in its breadboarding phase, including some new results with respect to the detector development and design optimization for imaging spectrometers. In the same framework of APEX, a complete processing and archiving facility (PAF) is developed. The PAF not only includes imaging spectrometer data processing up to physical units, but also geometric and atmospheric correction for each scene, as well as calibration data input. The PAF software includes an Internet based web-server and provides interfaces to data users as well as instrument operators and programmers. The software design, the tools and its life cycle is discussed as well. Further we will discuss particular instrument requirements (resampling, bad pixel treatment, etc.) in view of the operation of the PAF as well as their consequences on the product quality. Finally we will discuss a combined approach for geometric and atmospheric correction including BRDF (or view angle) related effects.
Compact high-speed scanning lidar system
NASA Astrophysics Data System (ADS)
Dickinson, Cameron; Hussein, Marwan; Tripp, Jeff; Nimelman, Manny; Koujelev, Alexander
2012-06-01
The compact High Speed Scanning Lidar (HSSL) was designed to meet the requirements for a rover GN&C sensor. The eye-safe HSSL's fast scanning speed, low volume and low power, make it the ideal choice for a variety of real-time and non-real-time applications including: 3D Mapping; Vehicle guidance and Navigation; Obstacle Detection; Orbiter Rendezvous; Spacecraft Landing / Hazard Avoidance. The HSSL comprises two main hardware units: Sensor Head and Control Unit. In a rover application, the Sensor Head mounts on the top of the rover while the Control Unit can be mounted on the rover deck or within its avionics bay. An Operator Computer is used to command the lidar and immediately display the acquired scan data. The innovative lidar design concept was a result of an extensive trade study conducted during the initial phase of an exploration rover program. The lidar utilizes an innovative scanner coupled with a compact fiber laser and high-speed timing electronics. Compared to existing compact lidar systems, distinguishing features of the HSSL include its high accuracy, high resolution, high refresh rate and large field of view. Other benefits of this design include the capability to quickly configure scan settings to fit various operational modes.
Muiti-Sensor Historical Climatology of Satellite-Derived Global Land Surface Moisture
NASA Technical Reports Server (NTRS)
Owe, Manfred; deJeu, Richard; Holmes, Thomas
2007-01-01
A historical climatology of continuous satellite derived global land surface soil moisture is being developed. The data set consists of surface soil moisture retrievals from observations of both historical and currently active satellite microwave sensors, including Nimbus-7 SMMR, DMSP SSM/I, TRMM TMI, and AQUA AMSR-E. The data sets span the period from November 1978 through the end of 2006. The soil moisture retrievals are made with the Land Parameter Retrieval Model, a physically-based model which was developed jointly by researchers from the above institutions. These data are significant in that they are the longest continuous data record of observational surface soil moisture at a global scale. Furthermore, while previous reports have intimated that higher frequency sensors such as on SSM/I are unable to provide meaningful information on soil moisture, our results indicate that these sensors do provide highly useful soil moisture data over significant parts of the globe, and especially in critical areas located within the Earth's many arid and semi-arid regions.
Framework of passive millimeter-wave scene simulation based on material classification
NASA Astrophysics Data System (ADS)
Park, Hyuk; Kim, Sung-Hyun; Lee, Ho-Jin; Kim, Yong-Hoon; Ki, Jae-Sug; Yoon, In-Bok; Lee, Jung-Min; Park, Soon-Jun
2006-05-01
Over the past few decades, passive millimeter-wave (PMMW) sensors have emerged as useful implements in transportation and military applications such as autonomous flight-landing system, smart weapons, night- and all weather vision system. As an efficient way to predict the performance of a PMMW sensor and apply it to system, it is required to test in SoftWare-In-the-Loop (SWIL). The PMMW scene simulation is a key component for implementation of this simulator. However, there is no commercial on-the-shelf available to construct the PMMW scene simulation; only there have been a few studies on this technology. We have studied the PMMW scene simulation method to develop the PMMW sensor SWIL simulator. This paper describes the framework of the PMMW scene simulation and the tentative results. The purpose of the PMMW scene simulation is to generate sensor outputs (or image) from a visible image and environmental conditions. We organize it into four parts; material classification mapping, PMMW environmental setting, PMMW scene forming, and millimeter-wave (MMW) sensorworks. The background and the objects in the scene are classified based on properties related with MMW radiation and reflectivity. The environmental setting part calculates the following PMMW phenomenology; atmospheric propagation and emission including sky temperature, weather conditions, and physical temperature. Then, PMMW raw images are formed with surface geometry. Finally, PMMW sensor outputs are generated from PMMW raw images by applying the sensor characteristics such as an aperture size and noise level. Through the simulation process, PMMW phenomenology and sensor characteristics are simulated on the output scene. We have finished the design of framework of the simulator, and are working on implementation in detail. As a tentative result, the flight observation was simulated in specific conditions. After implementation details, we plan to increase the reliability of the simulation by data collecting using actual PMMW sensors. With the reliable PMMW scene simulator, it will be more efficient to apply the PMMW sensor to various applications.
Integrated Land- and Underwater-Based Sensors for a Subduction Zone Earthquake Early Warning System
NASA Astrophysics Data System (ADS)
Pirenne, B.; Rosenberger, A.; Rogers, G. C.; Henton, J.; Lu, Y.; Moore, T.
2016-12-01
Ocean Networks Canada (ONC — oceannetworks.ca/ ) operates cabled ocean observatories off the coast of British Columbia (BC) to support research and operational oceanography. Recently, ONC has been funded by the Province of BC to deliver an earthquake early warning (EEW) system that integrates offshore and land-based sensors to deliver alerts of incoming ground shaking from the Cascadia Subduction Zone. ONC's cabled seismic network has the unique advantage of being located offshore on either side of the surface expression of the subduction zone. The proximity of ONC's sensors to the fault can result in faster, more effective warnings, which translates into more lives saved, injuries avoided and more ability for mitigative actions to take place.ONC delivers near real-time data from various instrument types simultaneously, providing distinct advantages to seismic monitoring and earthquake early warning. The EEW system consists of a network of sensors, located on the ocean floor and on land, that detect and analyze the initial p-wave of an earthquake as well as the crustal deformation on land during the earthquake sequence. Once the p-wave is detected and characterized, software systems correlate the data streams of the various sensors and deliver alerts to clients through a Common Alerting Protocol-compliant data package. This presentation will focus on the development of the earthquake early warning capacity at ONC. It will describe the seismic sensors and their distribution, the p-wave detection algorithms selected and the overall architecture of the system. It will further overview the plan to achieve operational readiness at project completion.
Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data
Gallo, Kevin P.; Ji, Lei; Reed, Bradley C.; Eidenshink, Jeffery C.; Dwyer, John L.
2005-01-01
The relationship between AVHRR-derived normalized difference vegetation index (NDVI) values and those of future sensors is critical to continued long-term monitoring of land surface properties. The follow-on operational sensor to the AVHRR, the Visible/Infrared Imager/Radiometer Suite (VIIRS), will be very similar to the NASA Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. NDVI data derived from visible and near-infrared data acquired by the MODIS (Terra and Aqua platforms) and AVHRR (NOAA-16 and NOAA-17) sensors were compared over the same time periods and a variety of land cover classes within the conterminous United States. The results indicate that the 16-day composite NDVI values are quite similar over the composite intervals of 2002 and 2003, and linear relationships exist between the NDVI values from the various sensors. The composite AVHRR NDVI data included water and cloud masks and adjustments for water vapor as did the MODIS NDVI data. When analyzed over a variety of land cover types and composite intervals, the AVHRR derived NDVI data were associated with 89% or more of the variation in the MODIS NDVI values. The results suggest that it may be possible to successfully reprocess historical AVHRR data sets to provide continuity of NDVI products through future sensor systems.
Localisation of an Unknown Number of Land Mines Using a Network of Vapour Detectors
Chhadé, Hiba Haj; Abdallah, Fahed; Mougharbel, Imad; Gning, Amadou; Julier, Simon; Mihaylova, Lyudmila
2014-01-01
We consider the problem of localising an unknown number of land mines using concentration information provided by a wireless sensor network. A number of vapour sensors/detectors, deployed in the region of interest, are able to detect the concentration of the explosive vapours, emanating from buried land mines. The collected data is communicated to a fusion centre. Using a model for the transport of the explosive chemicals in the air, we determine the unknown number of sources using a Principal Component Analysis (PCA)-based technique. We also formulate the inverse problem of determining the positions and emission rates of the land mines using concentration measurements provided by the wireless sensor network. We present a solution for this problem based on a probabilistic Bayesian technique using a Markov chain Monte Carlo sampling scheme, and we compare it to the least squares optimisation approach. Experiments conducted on simulated data show the effectiveness of the proposed approach. PMID:25384008
NASA's Automated Rendezvous and Docking/Capture Sensor Development and Its Applicability to the GER
NASA Technical Reports Server (NTRS)
Hinkel, Heather; Cryan, Scott; DSouza, Christopher; Strube, Matthew
2014-01-01
This paper will address how a common Automated Rendezvous and Docking/Capture (AR&D/C) sensor suite can support Global Exploration Roadmap (GER) missions, and discuss how the model of common capability development to support multiple missions can enable system capability level partnerships and further GER objectives. NASA has initiated efforts to develop AR&D/C sensors, that are directly applicable to GER. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion crew vehicle. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a three-dimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build time instead of at design time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal nonrecurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. NASA's AR&D/C sensor development path could benefit the International Exploration Coordination Group (ISECG) and support the GER mission scenario by providing a common sensor suite upon which GER objectives could be achieved while minimizing development costs. The paper will describe the concepts of operations of these missions and how the common sensors are utilized by each mission. It will also detail the potential partnerships and contribution of the International community in the development of this common AR&D/C sensor suite.
NASA Astrophysics Data System (ADS)
Xu, Hanqiu; Huang, Shaolin; Zhang, Tiejun
2013-10-01
Worldwide urbanization has accelerated expansion of urban built-up lands and resulted in substantial negative impacts on the global environments. Precisely measuring the urban sprawl is becoming an increasing need. Among the satellite-based earth observation systems, the Landsat and ASTER data are most suitable for mesoscale measurements of urban changes. Nevertheless, to date the difference in the capability of mapping built-up land between the two sensors is not clear. Therefore, this study compared the performances of the Landsat-7 ETM+ and ASTER sensors for built-up land mapping in the coastal areas of southeastern China. The comparison was implemented on three date-coincident image pairs and achieved by using three approaches, including per-band-based, index-based, and classification-based comparisons. The index used is the Index-based Built-up Index (IBI), while the classification algorithm employed is the Support Vector Machine (SVM). Results show that in the study areas, ETM+ and ASTER have an overall similar performance in built-up land mapping but also differ in several aspects. The IBI values determined from ASTER were consistently higher than from ETM+ by up to 45.54% according to percentage difference. The ASTER also estimates more built-up land area than ETM+ by 5.9-6.3% estimated with the IBI-based approach or 3.9-6.1% with the SVM classification. The differences in the spectral response functions and spatial resolution between relative spectral bands of the two sensors are attributed to these different performances.
NASA Technical Reports Server (NTRS)
Myneni, Ranga
2003-01-01
The problem of how the scale, or spatial resolution, of reflectance data impacts retrievals of vegetation leaf area index (LAI) and fraction absorbed photosynthetically active radiation (PAR) has been investigated. We define the goal of scaling as the process by which it is established that LAI and FPAR values derived from coarse resolution sensor data equal the arithmetic average of values derived independently from fine resolution sensor data. The increasing probability of land cover mixtures with decreasing resolution is defined as heterogeneity, which is a key concept in scaling studies. The effect of pixel heterogeneity on spectral reflectances and LAI/FPAR retrievals is investigated with 1 km Advanced Very High Resolution Radiometer (AVHRR) data aggregated to different coarse spatial resolutions. It is shown that LAI retrieval errors at coarse resolution are inversely related to the proportion of the dominant land cover in such pixel. Further, large errors in LAI retrievals are incurred when forests are minority biomes in non-forest pixels compared to when forest biomes are mixed with one another, and vice-versa. A physically based technique for scaling with explicit spatial resolution dependent radiative transfer formulation is developed. The successful application of this theory to scaling LAI retrievals from AVHRR data of different resolutions is demonstrated
SMERGE: A multi-decadal root-zone soil moisture product for CONUS
NASA Astrophysics Data System (ADS)
Crow, W. T.; Dong, J.; Tobin, K. J.; Torres, R.
2017-12-01
Multi-decadal root-zone soil moisture products are of value for a range of water resource and climate applications. The NASA-funded root-zone soil moisture merging project (SMERGE) seeks to develop such products through the optimal merging of land surface model predictions with surface soil moisture retrievals acquired from multi-sensor remote sensing products. This presentation will describe the creation and validation of a daily, multi-decadal (1979-2015), vertically-integrated (both surface to 40 cm and surface to 100 cm), 0.125-degree root-zone product over the contiguous United States (CONUS). The modeling backbone of the system is based on hourly root-zone soil moisture simulations generated by the Noah model (v3.2) operating within the North American Land Data Assimilation System (NLDAS-2). Remotely-sensed surface soil moisture retrievals are taken from the multi-sensor European Space Agency Climate Change Initiative soil moisture data set (ESA CCI SM). In particular, the talk will detail: 1) the exponential smoothing approach used to convert surface ESA CCI SM retrievals into root-zone soil moisture estimates, 2) the averaging technique applied to merge (temporally-sporadic) remotely-sensed with (continuous) NLDAS-2 land surface model estimates of root-zone soil moisture into the unified SMERGE product, and 3) the validation of the SMERGE product using long-term, ground-based soil moisture datasets available within CONUS.
NASA Technical Reports Server (NTRS)
Gonzalez, Jorge E.; Luvall, Jeff; Rickman, Douglas; Comarazamy, Daniel; Picon, Ana J.
2005-01-01
The Atlas San Juan Mission was conducted in February 2004 with the main objectives of observing the Urban Heat Island of San Juan, providing high resolution data of the land use for El Yunque Rain Forest and for calibrating remote sensors. The mission was coordinated with NASA staff members at Marsha& Stennis, Goddard, and Glenn. The Airborne Thermal and Land Applications Sensor (ATLAS) from NASA/Stennis, that operates in the visual and IR bands, was used as the main sensor and was flown over Puerto Rico in a Lear 23 jet plane. To support the data gathering effort by the ATLAS sensor, remote sensing observations and upper air soundings were conducted along with the deployment of a number of ground based weather stations and temperature sensors. This presentation focuses in the analysis of this complementary data for the Atlas San Juan Mission. Upper air data show that during the days of the mission the Caribbean mid and high atmospheres were relatively dry and highly stable reflecting positive surface lifted index, a necessary condition to conduct this suborbital campaign. Surface wind patterns at levels below 850mb were dominated by the easterly trades, while the jet stream at the edge of the troposphere dominated the westerly wind at levels above 500mb. The jet stream remained at high latitudes reducing the possibility of fronts. In consequence, only 8.4 mm of precipitation were reported during the entire mission. Observation of soundings located about 150 km apart reflected minimum variations of the boundary layer across the Island for levels below 850 meters and a uniform atmosphere for higher levels. The weather stations and the temperature sensors were placed at strategic locations to observe variations across the urban and rural landscapes. Time series plot of the stations' data show that heavily urbanized commercial areas have higher air temperatures than urban and suburban residential areas, and much higher temperatures than rural areas. Temperature differences [dT(U-R)] were obtained by subtracting the values of several stations h m a reference urban station, located m the commercial area of San Juan. These time series show that the UHI peaks during the morning between 10:00am and noon to an average of 4.5 C, a temporal pattern not previously observed in similar studies for continental cities. It is also observed a high variability of the UHI with the precipitation patterns even for short events. These results may be a reflection of a large land use density by low level buildings with an apparent absence of significant heat storage effects in the urban areas, and the importance of the surrounding soil and vegetation moisture in controlling the urban tropical climate. The ATLAS data was used to determine albedo and surface temperature patterns on a 10m scale for the study area. These data were used to calibrate the spatial distribution of the surface temperature when using remote sensing images from MODIS (Moderate Resolution Imaging Spectradiometer). Surface temperatures were estimated using the land surface temperature product MODII-L2 distributed by the Land Process Distributed Active Archive Center(LP DAAC). These results show the maximum, minimum and average temperatures in San Juan and in the entire Island at a resolution of 1 km. The information retrieved from MODIS for land surface temperatures reflected similar temporal and spatial variations as the weather stations and ATLAS measurements with a highest absolute offset of about 5 C due to the differences between surface and air temperatures.
NASA Technical Reports Server (NTRS)
Gonzalez, J. E.; Luvall, J. C.; Rickman, D.; Comarazamy, D. E.; Picon, A.
2004-01-01
The Atlas San Juan Mission was conducted in February 2004 with the main objectives of observing the Urban Heat Island of San Juan, providing high resolution data of the land use for El Yunque Rain Forest and for calibrating remote sensors. The mission was coordinated with NASA staff members at Marshall, Stennis, Goddard, and Glenn. The Airborne Thermal and Land Applications Sensor (ATLAS) from NASA/Stennis, that operates in the visual and IR bands, was used as the main sensor and was flown over Puerto Rico in a Lear 23 jet plane. To support the data gathering effort by the ATLAS sensor, remote sensing observations and upper air soundings were conducted along with the deployment of a number of ground based weather stations and temperature sensors. This presentation focuses in the analysis of this complementary data for the Atlas San Juan Mission. Upper air data show that during the days of the mission the Caribbean mid and high atmospheres were relatively dry and highly stable reflecting positive surface lifted index, a necessary condition to conduct this suborbital campaign. Surface wind patterns at levels below 850mb were dominated by the easterly trades, while the jet stream at the edge of the troposphere dominated the westerly wind at levels above 500mb. The jet stream remained at high latitudes reducing the possibility of fronts. In consequence, only 8.4 mm of precipitation were reported during the entire mission. Observation of soundings located about 150 km apart reflected minimum variations of the boundary layer across the island for levels below 850 meters and a uniform atmosphere for higher levels. The weather stations and the temperature sensors were placed at strategic locations to observe variations across the urban and rural landscapes. Time series plot of the stations' data show that heavily urbanized commercial areas have higher air temperatures than urban and suburban residential areas, and much higher temperatures than rural areas. Temperature differences [dT(U-R)] were obtained by subtracting the values of several stations from a reference urban station, located in the commercial area of San Juan. These time series show that the UHI peaks during the morning between 10:00am and noon to an average of 4.5 C, a temporal pattern not previously observed in similar studies for continental cities. It is also observed a high variability of the UHI with the precipitation patterns even for short events. These results may be a reflection of a large land use density by low level buildings with an apparent absence of significant heat storage effects in the urban areas, and the importance of the surrounding soil and vegetation moisture in controlling the urban tropical climate. The ATLAS data was used to determine albedo and surface temperature patterns on a 10m scale for the study area. These data were used to calibrate the spatial distribution of the surface temperature when using remote sensing images from MODIS (Moderate Resolution Imaging Spectroradiometer). Surface temperatures were estimated using the land surface temperature product MOD11_L2 distributed by the Land Process Distributed Active Archive Center (LP DAAC). These results show the maximum, minimum and average temperatures in San Juan and in the entire Island at a resolution of 1 km. The information retrieved from MODIS for land surface temperatures reflected similar temporal and spatial variations as the weather stations and ATLAS measurements with a highest absolute offset of about 5 C due to the differences between surface and air temperatures.
NASA Astrophysics Data System (ADS)
Schmerwitz, S.; Doehler, H.-U.; Ellis, K.; Jennings, S.
2011-06-01
The DLR project ALLFlight (Assisted Low Level Flight and Landing on Unprepared Landing Sites) is devoted to demonstrating and evaluating the characteristics of sensors for helicopter operations in degraded visual environments. Millimeter wave radar is one of the many sensors considered for use in brown-out. It delivers a lower angular resolution compared to other sensors, however it may provide the best dust penetration capabilities. In cooperation with the NRC, flight tests on a Bell 205 were conducted to gather sensor data from a 35 GHz pencil beam radar for terrain mapping, obstacle detection and dust penetration. In this paper preliminary results from the flight trials at NRC are presented and a description of the radars general capability is shown. Furthermore, insight is provided into the concept of multi-sensor fusion as attempted in the ALLFlight project.
NASA Astrophysics Data System (ADS)
Sweeney, Mike; Redd, Lafe; Vettese, Tom; Myatt, Ray; Uchida, David; Sellers, Del
2015-09-01
High performance stabilized EO/IR surveillance and targeting systems are in demand for a wide variety of military, law enforcement, and commercial assets for land, sea, air, and space. Operating ranges, wavelengths, and angular resolution capabilities define the requirements for EO/IR optics and sensors, and line of sight stabilization. Many materials and design configurations are available for EO/IR pointing gimbals depending on trade-offs of size, weight, power (SWaP), performance, and cost. Space and high performance military aircraft applications are often driven toward expensive but exceptionally performing beryllium and aluminum beryllium components. Commercial applications often rely on aluminum and composite materials. Gimbal design considerations include achieving minimized mass and inertia simultaneous with demanding structural, thermal, optical, and scene stabilization requirements when operating in dynamic operational environments. Manufacturing considerations include precision lapping and honing of ball bearing interfaces, brazing, welding, and casting of complex aluminum and beryllium alloy structures, and molding of composite structures. Several notional and previously developed EO/IR gimbal platforms are profiled that exemplify applicable design and manufacturing technologies.
The first earth resources technology satellite nearly two years of operation
NASA Technical Reports Server (NTRS)
Nordberg, W.
1974-01-01
A brief status report on the performance of the ERTS-1, and an overview of the applications derived from the images are presented. The ERTS-1 spacecraft, sensor and picture processing systems have continued to perform almost flawlessly since August 1972. Registered, multispectral images of all major land masses of the earth, both polar and some oceanic regions are continuously made, covering daily an area of about 5 million square kilometers. The systematic repetition of these observations, which were made over most parts of the world at least once every season, and the high accuracy of thematic mapping that can be obtained from the images, have resulted in many applications that have immense potential benefits for developing countries. Among these applications are the detection and accurate mensuration of surface water; the identification and mensuration of forests, rangeland, crops and soils; the monitoring and mapping of water quality, wildlife habitats and of the effects of land use practices on food and water resources; the assessment of flooding and earthquake hazards; and the facilitation of mineral exploration.
NASA Astrophysics Data System (ADS)
Larter, Jarod Lee
Stephens Lake, Manitoba is an example of a peatland reservoir that has undergone physical changes related to mineral erosion and peatland disintegration processes since its initial impoundment. In this thesis I focused on the processes of peatland upheaval, transport, and disintegration as the primary drivers of dynamic change within the reservoir. The changes related to these processes are most frequent after initial reservoir impoundment and decline over time. They continue to occur over 35 years after initial flooding. I developed a remote sensing approach that employs both optical and microwave sensors for discriminating land (Le. floating peatlands, forested land, and barren land) from open water within the reservoir. High spatial resolution visible and near-infrared (VNIR) optical data obtained from the QuickBird satellite, and synthetic aperture radar (SAR) microwave data obtained from the RADARSAT-1 satellite were implemented. The approach was facilitated with a Geographic Information System (GIS) based validation map for the extraction of optical and SAR pixel data. Each sensor's extracted data set was first analyzed separately using univariate and multivariate statistical methods to determine the discriminant ability of each sensor. The initial analyses were followed by an integrated sensor approach; the development of an image classification model; and a change detection analysis. Results showed excellent (> 95%) classification accuracy using QuickBird satellite image data. Discrimination and classification of studied land cover classes using SAR image texture data resulted in lower overall classification accuracies (˜ 60%). SAR data classification accuracy improved to > 90% when classifying only land and water, demonstrating SAR's utility as a land and water mapping tool. An integrated sensor data approach showed no considerable improvement over the use of optical satellite image data alone. An image classification model was developed that could be used to map both detailed land cover classes and the land and water interface within the reservoir. Change detection analysis over a seven year period indicated that physical changes related to mineral erosion, peatland upheaval, transport, and disintegration, and operational water level variation continue to take place in the reservoir some 35 years after initial flooding. This thesis demonstrates the ability of optical and SAR satellite image remote sensing data sets to be used in an operational context for the routine discrimination of the land and water boundaries within a dynamic peatland reservoir. Future monitoring programs would benefit most from a complementary image acquisition program in which SAR images, known for their acquisition reliability under cloud cover, are acquired along with optical images given their ability to discriminate land cover classes in greater detail.
Landsat science team meeting: Summer 2015
Schroeder, Todd; Loveland, Thomas; Wulder, Michael A.; Irons, James R.
2015-01-01
With over 60 participants in attendance, this was the largest LST meeting ever held. Meeting topics on the first day included Sustainable Land Imaging and Landsat 9 development, Landsat 7 and 8 operations and data archiving, the Landsat 8 Thermal Infrared Sensor (TIRS) stray-light issue, and the successful Sentinel-2 launch. In addition, on days two and three the LST members presented updates on their Landsat science and applications research. All presentations are available at landsat.usgs.gov/science_LST_Team_ Meetings.php.
Accuracy Enhancement of Inertial Sensors Utilizing High Resolution Spectral Analysis
Noureldin, Aboelmagd; Armstrong, Justin; El-Shafie, Ahmed; Karamat, Tashfeen; McGaughey, Don; Korenberg, Michael; Hussain, Aini
2012-01-01
In both military and civilian applications, the inertial navigation system (INS) and the global positioning system (GPS) are two complementary technologies that can be integrated to provide reliable positioning and navigation information for land vehicles. The accuracy enhancement of INS sensors and the integration of INS with GPS are the subjects of widespread research. Wavelet de-noising of INS sensors has had limited success in removing the long-term (low-frequency) inertial sensor errors. The primary objective of this research is to develop a novel inertial sensor accuracy enhancement technique that can remove both short-term and long-term error components from inertial sensor measurements prior to INS mechanization and INS/GPS integration. A high resolution spectral analysis technique called the fast orthogonal search (FOS) algorithm is used to accurately model the low frequency range of the spectrum, which includes the vehicle motion dynamics and inertial sensor errors. FOS models the spectral components with the most energy first and uses an adaptive threshold to stop adding frequency terms when fitting a term does not reduce the mean squared error more than fitting white noise. The proposed method was developed, tested and validated through road test experiments involving both low-end tactical grade and low cost MEMS-based inertial systems. The results demonstrate that in most cases the position accuracy during GPS outages using FOS de-noised data is superior to the position accuracy using wavelet de-noising.
Mars 2020 Entry, Descent, and Landing Instrumentation 2 (MEDLI2) Sensor Suite
NASA Technical Reports Server (NTRS)
Hwang, Helen; Wright, Henry; Kuhl, Chris; Schoenenberger, Mark; White, Todd; Karlgaard, Chris; Mahzari, Milad; Oishi, Tomo; Pennington, Steve; Trombetta, Nick;
2017-01-01
The Mars 2020 Entry, Descent, and Landing Instrumentation 2 (MEDLI2) sensor suite seeks to address the aerodynamic, aerothermodynamic, and thermal protection system (TPS) performance issues during atmospheric entry, descent, and landing of the Mars 2020 mission. Based on the highly successful instrumentation suite that flew on Mars Science Laboratory (MEDLI), the new sensor suite expands on the types of measurements and also seeks to answer questions not fully addressed by the previous mission. Sensor Package: MEDLI2 consists of 7 pressure transducers, 17 thermal plugs, 2 heat flux sensors, and one radiometer. The sensors are distributed across both the heatshield and backshell, unlike MEDLI (the first sensor suite), which was located solely on the heat-shield. The sensors will measure supersonic pressure on the forebody, a pressure measurement on the aftbody, near-surface and in-depth temperatures in the heatshield and backshell TPS materials, direct total heat flux on the aftbody, and direct radiative heating on the aftbody. Instrument Development: The supersonic pressure transducers, the direct heat flux sensors, and the radiometer all were tested during the development phase. The status of these sensors, including the piezo-resistive pressure sensors, will be presented. The current plans for qualification and calibration for all of the sensors will also be discussed. Post-Flight Data Analysis: Similar to MEDLI, the estimated flight trajectory will be reconstructed from the data. The aerodynamic parameters that will be reconstructed will be the axial force coefficient, freestream Mach number, base pressure, atmospheric density, and winds. The aerothermal quantities that will be determined are the heatshield and backshell aero-heating, turbulence transition across the heatshield, and TPS in-depth performance of PICA. By directly measuring the radiative and total heat fluxes on the back-shell, the convective portion of the heat flux will be estimated. The status of the current tools to perform the post-flight data analysis will be presented, along with plans for model improvements.
Analysis of On-board Hazard Detection and Avoidance for Safe Lunar Landing
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Huertas, Andres; Werner, Robert A.; Montgomery, James F.
2008-01-01
Landing hazard detection and avoidance technology is being pursued within NASA to improve landing safety and increase access to sites of interest on the lunar surface. The performance of a hazard detection and avoidance system depends on properties of the terrain, sensor performance, algorithm design, vehicle characteristics and the overall all guidance navigation and control architecture. This paper analyzes the size of the region that must be imaged, sensor performance parameters and the impact of trajectory angle on hazard detection performance. The analysis shows that vehicle hazard tolerance is the driving parameter for hazard detection system design.
Digital spatial soil and land information for agriculture development
NASA Astrophysics Data System (ADS)
Sharma, R. K.; Laghathe, Pankaj; Meena, Ranglal; Barman, Alok Kumar; Das, Satyendra Nath
2006-12-01
Natural resource management calls for study of natural system prevailing in the country. In India floods and droughts visit regularly, causing extensive damages of natural wealth including agriculture that are crucial for sustenance of economic growth. The Indian Sub-continent drained by many major rivers and their tributaries where watershed, the hydrological unit forms a natural system that allows management and development of land resources following natural harmony. Acquisition of various kinds and levels of soil and land characteristics using both conventional and remote sensing techniques and subsequent development of digital spatial data base are essential to evolve strategy for planning watershed development programmes, their monitoring and impact evaluation. The multi-temporal capability of remote sensing sensors helps to update the existing data base which are of dynamic in nature. The paper outlines the concept of spatial data base development, generation using remote sensing techniques, designing of data structure, standardization and integration with watershed layers and various non spatial attribute data for various applications covering watershed development planning, alternate land use planning, soil and water conservation, diversified agriculture practices, generation of soil health card, soil and land reclamation, etc. The soil and land characteristics are vital to derive various interpretative groupings or master table that helps to generate the desired level of information of various clients using the GIS platform. The digital spatial data base on soils and watersheds generated by All India Soil and Land Use Survey will act as a sub-server of the main GIS based Web Server being hoisted by the planning commission for application of spatial data for planning purposes under G2G domain. It will facilitate e-governance for natural resource management using modern technology.
NASA Technical Reports Server (NTRS)
Lehmann, F.; Richter, R.; Rothfuss, H.; Werner, K.; Hausknecht, P.; Mueller, A.; Strobl, P.
1992-01-01
During the MAC Europe 91 Campaign, the area of Oberpfaffenhofen including the land application testsite Oberpfaffenhofen was flown by the AVIRIS imaging spectrometer, the GER 2 imaging spectrometer (63 band scanner), and two SAR systems (NASA/JPL AIRSAR and DLR E-SAR). In parallel to the overflights ground spectrometry (ASD, IRIS M IV) and atmospheric measurements were carried out in order to provide data for optical sensor calibration. Ground spectrometry measurements were carried out in the runway area of the DLR research center Oberpfaffenhofen. This area was used as well during the GER 2 European flight campaign EISAC 89 as a calibration target. The land application testsite Oberpfaffenhofen is located 3 km north of the DLR research center. During the MAC Europe 91 Campaign a ground survey was carried out for documentation in the ground information data base (vegetation type, vegetation geometry, soil type, and soil mixture). Crop stands analyzed were corn, barley and rape. The DLR runway area and the land application testsite Oberpfaffenhofen were flown with the AVIRIS on 29 July and with the GER 2 on 12 and 23 July and 3 Sep. AVIRIS and GER 2 scenes were processed and atmospherically corrected for optical data analysis of optical and radar data. For the AVIRIS and the GER 2 scenes, signal-to-noise ratios (SNR) estimates were calculated. An example of the reflectance of 6 calibration targets inside a GER 2 scene of Oberpfaffenhofen is given. SNR values for the GER 2 for a medium albedo target are given. The integrated analysis for the optical and radar data was carried out in cooperation with the DLR Institute for Microwave Technologies.
Science of Land Target Spectral Signatures
2013-04-03
F. Meriaudeau, T. Downey , A. Wig , A. Passian, M. Buncick, T.L. Ferrell, Fiber optic sensor based on gold island plasmon resonance , Sensors and...processing, detection algorithms, sensor fusion, spectral signature modeling Dr. J. Michael Cathcart Georgia Tech Research Corporation Office of...target detection and sensor fusion. The phenomenology research continued to focus on spectroscopic soil measurements, optical property analyses, field
Zhou, Tao; Li, Zhaofu; Pan, Jianjun
2018-01-27
This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively.
The pan-sharpening of satellite and UAV imagery for agricultural applications
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Woroszkiewicz, Malgorzata
2016-10-01
Remote sensing techniques are widely used in many different areas of interest, i.e. urban studies, environmental studies, agriculture, etc., due to fact that they provide rapid, accurate and information over large areas with optimal time, spatial and spectral resolutions. Agricultural management is one of the most common application of remote sensing methods nowadays. Monitoring of agricultural sites and creating information regarding spatial distribution and characteristics of crops are important tasks to provide data for precision agriculture, crop management and registries of agricultural lands. For monitoring of cultivated areas many different types of remote sensing data can be used- most popular are multispectral satellites imagery. Such data allow for generating land use and land cover maps, based on various methods of image processing and remote sensing methods. This paper presents fusion of satellite and unnamed aerial vehicle (UAV) imagery for agricultural applications, especially for distinguishing crop types. Authors in their article presented chosen data fusion methods for satellite images and data obtained from low altitudes. Moreover the authors described pan- sharpening approaches and applied chosen pan- sharpening methods for multiresolution image fusion of satellite and UAV imagery. For such purpose, satellite images from Landsat- 8 OLI sensor and data collected within various UAV flights (with mounted RGB camera) were used. In this article, the authors not only had shown the potential of fusion of satellite and UAV images, but also presented the application of pan- sharpening in crop identification and management.
Mobile Sensors Environmental Assessment
2005-09-26
4-1 4.1 Impacts of Land-Based Sensors.........................................................................4-1 4.1.1 Air Quality...4-27 4.3 Impacts of the Proposed Action...4-38 4.6 Cumulative Impacts
Remote sensing of landscape-level coastal environmental indicators.
Klemas, V V
2001-01-01
Advances in technology and decreases in cost are making remote sensing (RS) and geographic information systems (GIS) practical and attractive for use in coastal resource management. They are also allowing researchers and managers to take a broader view of ecological patterns and processes. Landscape-level environmental indicators that can be detected by Landsat Thematic Mapper (TM) and other remote sensors are available to provide quantitative estimates of coastal and estuarine habitat conditions and trends. Such indicators include watershed land cover, riparian buffers, shoreline and wetland changes, among others. With the launch of Landsat 7, the cost of TM imagery has dropped by nearly a factor of 10, decreasing the cost of monitoring large coastal areas and estuaries. New satellites, carrying sensors with much finer spatial (1-5 m) and spectral (200 narrow bands) resolutions are being launched, providing a capability to more accurately detect changes in coastal habitat and wetland health. Advances in the application of GIS help incorporate ancillary data layers to improve the accuracy of satellite land-cover classification. When these techniques for generating, organizing, storing, and analyzing spatial information are combined with mathematical models, coastal planners and managers have a means for assessing the impacts of alternative management practices.
Micijevic, Esad; Morfitt, Ron
2010-01-01
Systematic characterization and calibration of the Landsat sensors and the assessment of image data quality are performed using the Image Assessment System (IAS). The IAS was first introduced as an element of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) ground segment and recently extended to Landsat 4 (L4) and 5 (L5) Thematic Mappers (TM) and Multispectral Sensors (MSS) on-board the Landsat 1-5 satellites. In preparation for the Landsat Data Continuity Mission (LDCM), the IAS was developed for the Earth Observer 1 (EO-1) Advanced Land Imager (ALI) with a capability to assess pushbroom sensors. This paper describes the LDCM version of the IAS and how it relates to unique calibration and validation attributes of its on-board imaging sensors. The LDCM IAS system will have to handle a significantly larger number of detectors and the associated database than the previous IAS versions. An additional challenge is that the LDCM IAS must handle data from two sensors, as the LDCM products will combine the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) spectral bands.
NASA Technical Reports Server (NTRS)
Pines, S.; Hueschen, R. M.
1978-01-01
This paper describes the navigation and guidance system developed for the TCV B-737, a Langley Field NASA research aircraft, and presents the results of an evaluation during final approach, landing, rollout and turnoff obtained through a nonlinear digital simulation. A Kalman filter (implemented in square root form) and a third order complementary filter were developed and compared for navigation. The Microwave Landing Systems (MLS) is used for all phases of the flight for navigation and guidance. In addition, for rollout and turnoff, a three coil sensor which detects the magnetic field induced by a buried wire in the runway (magnetic leader cable) is used. The outputs of the sensor are processed into measurements of position and heading deviation from the wire. The results show the concept to be both feasible and practical for commercial type aircraft terminal area control.
NASA Technical Reports Server (NTRS)
Cheatwood, F. McNeil; Bose, Deepak; Karlgaard, Christopher D.; Kuhl, Christopher A.; Santos, Jose A.; Wright, Michael J.
2014-01-01
The Mars Science Laboratory (MSL) entry vehicle (EV) successfully entered the Mars atmosphere and landed the Curiosity rover safely on the surface of the planet in Gale crater on August 6, 2012. MSL carried the MSL Entry, Descent, and Landing (EDL) Instrumentation (MEDLI). MEDLI delivered the first in-depth understanding of the Mars entry environments and the response of the entry vehicle to those environments. MEDLI was comprised of three major subsystems: the Mars Entry Atmospheric Data System (MEADS), the MEDLI Integrated Sensor Plugs (MISP), and the Sensor Support Electronics (SSE). Ultimately, the entire MEDLI sensor suite consisting of both MEADS and MISP provided measurements that were used for trajectory reconstruction and engineering validation of aerodynamic, atmospheric, and thermal protection system (TPS) models in addition to Earth-based systems testing procedures. This report contains in-depth hardware descriptions, performance evaluation, and data information of the three MEDLI subsystems.
Assessment of the NASA-USGS Global Land Survey (GLS) Datasets
Gutman, Garik; Huang, Chengquan; Chander, Gyanesh; Noojipady, Praveen; Masek, Jeffery G.
2013-01-01
The Global Land Survey (GLS) datasets are a collection of orthorectified, cloud-minimized Landsat-type satellite images, providing near complete coverage of the global land area decadally since the early 1970s. The global mosaics are centered on 1975, 1990, 2000, 2005, and 2010, and consist of data acquired from four sensors: Enhanced Thematic Mapper Plus, Thematic Mapper, Multispectral Scanner, and Advanced Land Imager. The GLS datasets have been widely used in land-cover and land-use change studies at local, regional, and global scales. This study evaluates the GLS datasets with respect to their spatial coverage, temporal consistency, geodetic accuracy, radiometric calibration consistency, image completeness, extent of cloud contamination, and residual gaps. In general, the three latest GLS datasets are of a better quality than the GLS-1990 and GLS-1975 datasets, with most of the imagery (85%) having cloud cover of less than 10%, the acquisition years clustered much more tightly around their target years, better co-registration relative to GLS-2000, and better radiometric absolute calibration. Probably, the most significant impediment to scientific use of the datasets is the variability of image phenology (i.e., acquisition day of year). This paper provides end-users with an assessment of the quality of the GLS datasets for specific applications, and where possible, suggestions for mitigating their deficiencies.
Evaluation of space SAR as a land-cover classification
NASA Technical Reports Server (NTRS)
Brisco, B.; Ulaby, F. T.; Williams, T. H. L.
1985-01-01
The multidimensional approach to the mapping of land cover, crops, and forests is reported. Dimensionality is achieved by using data from sensors such as LANDSAT to augment Seasat and Shuttle Image Radar (SIR) data, using different image features such as tone and texture, and acquiring multidate data. Seasat, Shuttle Imaging Radar (SIR-A), and LANDSAT data are used both individually and in combination to map land cover in Oklahoma. The results indicates that radar is the best single sensor (72% accuracy) and produces the best sensor combination (97.5% accuracy) for discriminating among five land cover categories. Multidate Seasat data and a single data of LANDSAT coverage are then used in a crop classification study of western Kansas. The highest accuracy for a single channel is achieved using a Seasat scene, which produces a classification accuracy of 67%. Classification accuracy increases to approximately 75% when either a multidate Seasat combination or LANDSAT data in a multisensor combination is used. The tonal and textural elements of SIR-A data are then used both alone and in combination to classify forests into five categories.
Lavigne, Claire; Durand, Gérard; Roblin, Antoine
2006-12-20
Light scattering in the atmosphere by particles and molecules gives rise to an aureole surrounding the source image that tends to reduce the contrast of the source with respect to the background. However, UV scattering phase functions of the haze droplets present a very important forward peak. The spreading of a detected signal in the UV is not as important as in the case of a clear atmosphere where Rayleigh scattering predominates. This physical property has to be taken into account to evaluate the potential of UV radiation as an aircraft landing aid under low visibility conditions. Different results characterizing UV runway lights, simulations of UV radiation propagation in the atmosphere, and the use of a simple detection algorithm applied to one particular sensor are presented.
NASA Astrophysics Data System (ADS)
Wang, J.; Xue, Y.; Forman, B. A.; Girotto, M.; Reichle, R. H.
2017-12-01
The Gravity and Recovery Climate Experiment (GRACE) has revolutionized large-scale remote sensing of the Earth's terrestrial hydrologic cycle and has provided an unprecedented observational constraint for global land surface models. However, the coarse-scale (in space and time), vertically-integrated measure of terrestrial water storage (TWS) limits GRACE's applicability to smaller scale hydrologic applications. In order to enhance model-based estimates of TWS while effectively adding resolution (in space and time) to the coarse-scale TWS retrievals, a multi-variate, multi-sensor data assimilation framework is presented here that simultaneously assimilates gravimetric retrievals of TWS in conjunction with passive microwave (PMW) brightness temperature (Tb) observations over snow-covered terrain. The framework uses the NASA Catchment Land Surface Model (Catchment) and an ensemble Kalman filter (EnKF). A synthetic assimilation experiment is presented for the Volga river basin in Russia. The skill of the output from the assimilation of synthetic observations is compared with that of model estimates generated without the benefit of assimilating the synthetic observations. It is shown that the EnKF framework improves modeled estimates of TWS, snow depth, and snow mass (a.k.a. snow water equivalent). The data assimilation routine produces a conditioned (updated) estimate that is more accurate and contains less uncertainty during both the snow accumulation phase of the snow season as well as during the snow ablation season.
A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning.
Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui
2016-05-25
In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles.
NASA Technical Reports Server (NTRS)
Wu, Steve Shih-Tseng
1997-01-01
Based on recent advances in microwave remote sensing of soil moisture and in pursuit of research interests in areas of hydrology, soil climatology, and remote sensing, the Center for Hydrology, Soil Climatology, and Remote Sensing (HSCARS) conducted the Huntsville '96 field experiment in Huntsville, Alabama from July 1-14, 1996. We, researchers at the Global Hydrology and Climate Center's MSFC/ES41, are interested in using ground-based microwave sensors, to simulate land surface brightness signatures of those spaceborne sensors that were in operation or to be launched in the near future. The analyses of data collected by the Advanced Microwave Precipitation Radiometer (AMPR) and the C-band radiometer, which together contained five frequencies (6.925,10.7,19.35, 37.1, and 85.5 GHz), and with concurrent in-situ collection of surface cover conditions (surface temperature, surface roughness, vegetation, and surface topology) and soil moisture content, would result in a better understanding of the data acquired over land surfaces by the Special Sensor Microwave Imager (SSM/I), the Tropical Rainfall Measuring Mission Microwave Imager (TMI), and the Advanced Microwave Scanning Radiometer (AMSR), because these spaceborne sensors contained these five frequencies. This paper described the approach taken and the specific objective to be accomplished in the Huntsville '97 field experiment.
A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning
Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui
2016-01-01
In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles. PMID:27231917
Regional land cover characterization using Landsat thematic mapper data and ancillary data sources
Vogelmann, James E.; Sohl, Terry L.; Campbell, P.V.; Shaw, D.M.; ,
1998-01-01
As part of the activities of the Multi-Resolution Land Characteristics (MRLC) Interagency Consortium, an intermediate-scale land cover data set is being generated for the conterminous United States. This effort is being conducted on a region-by-region basis using U.S. Standard Federal Regions. To date, land cover data sets have been generated for Federal Regions 3 (Pennsylvania, West Virginia, Virginia, Maryland, and Delaware) and 2 (New York and New Jersey). Classification work is currently under way in Federal Region 4 (the southeastern United States), and land cover mapping activities have been started in Federal Regions 5 (the Great Lakes region) and 1 (New England). It is anticipated that a land cover data set for the conterminous United States will be completed by the end of 1999. A standard land cover classification legend is used, which is analogous to and compatible with other classification schemes. The primary MRLC regional classification scheme contains 23 land cover classes.The primary source of data for the project is the Landsat thematic mapper (TM) sensor. For each region, TM scenes representing both leaf-on and leaf-off conditions are acquired, preprocessed, and georeferenced to MRLC specifications. Mosaicked data are clustered using unsupervised classification, and individual clusters are labeled using aerial photographs. Individual clusters that represent more than one land cover unit are split using spatial modeling with multiple ancillary spatial data layers (most notably, digital elevation model, population, land use and land cover, and wetlands information). This approach yields regional land cover information suitable for a wide array of applications, including landscape metric analyses, land management, land cover change studies, and nutrient and pesticide runoff modeling.
NASA Technical Reports Server (NTRS)
Brown, Christopher W.; Brock, John C.
1998-01-01
The successful launch of the National Space Development Agency of Japan (NASDA) Ocean Color and Temperature Sensor (OCTS) in August 1996, and the launch of Orbital Science Corporation's (OSC) Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) in August 1997 signaled the beginning of a new era for ocean color research and application. These data may be used to remotely evaluate 1) water quality, 2) transport of sediments and adhered pollutants, 3) primary production, upon which commercial shellfish and finfish populations depend for food, and 4) harmful algal blooms which pose a threat to public health and economies of affected areas. Several US government agencies have recently expressed interest in monitoring U.S. coastal waters using optical remote sensing. This renewed interest is broadly driven by 1) resource management concerns over the impact of coastward shifts in population and land use on the ecosystems of estuaries, wetlands, nearshore benthic environments and fisheries, 2) recognition of the need to understand short time scale global change due to urbanization of sensitive land-margin ecosystems, and 3) national security issues. Satellite ocean color sensors have the potential to furnish data at the appropriate time and space scales to evaluate and resolve these concerns and problems. In this draft technical memorandum, we outline our progress during the first year of our SIMBIOS project to evaluate ocean color bio-optical algorithms and products generated using OCTS and SeaWiFS data in coastal US waters.
Preparation and Integration of ALHAT Precision Landing Technology for Morpheus Flight Testing
NASA Technical Reports Server (NTRS)
Carson, John M., III; Robertson, Edward A.; Pierrottet, Diego F.; Roback, Vincent E.; Trawny, Nikolas; Devolites, Jennifer L.; Hart, Jeremy J.; Estes, Jay N.; Gaddis, Gregory S.
2014-01-01
The Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project has developed a suite of prototype sensors for enabling autonomous and safe precision land- ing of robotic or crewed vehicles on solid solar bodies under varying terrain lighting condi- tions. The sensors include a Lidar-based Hazard Detection System (HDS), a multipurpose Navigation Doppler Lidar (NDL), and a long-range Laser Altimeter (LAlt). Preparation for terrestrial ight testing of ALHAT onboard the Morpheus free- ying, rocket-propelled ight test vehicle has been in progress since 2012, with ight tests over a lunar-like ter- rain eld occurring in Spring 2014. Signi cant work e orts within both the ALHAT and Morpheus projects has been required in the preparation of the sensors, vehicle, and test facilities for interfacing, integrating and verifying overall system performance to ensure readiness for ight testing. The ALHAT sensors have undergone numerous stand-alone sensor tests, simulations, and calibrations, along with integrated-system tests in special- ized gantries, trucks, helicopters and xed-wing aircraft. A lunar-like terrain environment was constructed for ALHAT system testing during Morpheus ights, and vibration and thermal testing of the ALHAT sensors was performed based on Morpheus ights prior to ALHAT integration. High- delity simulations were implemented to gain insight into integrated ALHAT sensors and Morpheus GN&C system performance, and command and telemetry interfacing and functional testing was conducted once the ALHAT sensors and electronics were integrated onto Morpheus. This paper captures some of the details and lessons learned in the planning, preparation and integration of the individual ALHAT sen- sors, the vehicle, and the test environment that led up to the joint ight tests.
Land use/cover classification in the Brazilian Amazon using satellite images.
Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant'anna, Sidnei João Siqueira
2012-09-01
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.
Land use/cover classification in the Brazilian Amazon using satellite images
Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant’Anna, Sidnei João Siqueira
2013-01-01
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data. PMID:24353353
Detection of Obstacles in Monocular Image Sequences
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia
1997-01-01
The ability to detect and locate runways/taxiways and obstacles in images captured using on-board sensors is an essential first step in the automation of low-altitude flight, landing, takeoff, and taxiing phase of aircraft navigation. Automation of these functions under different weather and lighting situations, can be facilitated by using sensors of different modalities. An aircraft-based Synthetic Vision System (SVS), with sensors of different modalities mounted on-board, complements the current ground-based systems in functions such as detection and prevention of potential runway collisions, airport surface navigation, and landing and takeoff in all weather conditions. In this report, we address the problem of detection of objects in monocular image sequences obtained from two types of sensors, a Passive Millimeter Wave (PMMW) sensor and a video camera mounted on-board a landing aircraft. Since the sensors differ in their spatial resolution, and the quality of the images obtained using these sensors is not the same, different approaches are used for detecting obstacles depending on the sensor type. These approaches are described separately in two parts of this report. The goal of the first part of the report is to develop a method for detecting runways/taxiways and objects on the runway in a sequence of images obtained from a moving PMMW sensor. Since the sensor resolution is low and the image quality is very poor, we propose a model-based approach for detecting runways/taxiways. We use the approximate runway model and the position information of the camera provided by the Global Positioning System (GPS) to define regions of interest in the image plane to search for the image features corresponding to the runway markers. Once the runway region is identified, we use histogram-based thresholding to detect obstacles on the runway and regions outside the runway. This algorithm is tested using image sequences simulated from a single real PMMW image.
Land cover mapping at sub-pixel scales
NASA Astrophysics Data System (ADS)
Makido, Yasuyo Kato
One of the biggest drawbacks of land cover mapping from remotely sensed images relates to spatial resolution, which determines the level of spatial details depicted in an image. Fine spatial resolution images from satellite sensors such as IKONOS and QuickBird are now available. However, these images are not suitable for large-area studies, since a single image is very small and therefore it is costly for large area studies. Much research has focused on attempting to extract land cover types at sub-pixel scale, and little research has been conducted concerning the spatial allocation of land cover types within a pixel. This study is devoted to the development of new algorithms for predicting land cover distribution using remote sensory imagery at sub-pixel level. The "pixel-swapping" optimization algorithm, which was proposed by Atkinson for predicting sub-pixel land cover distribution, is investigated in this study. Two limitations of this method, the arbitrary spatial range value and the arbitrary exponential model of spatial autocorrelation, are assessed. Various weighting functions, as alternatives to the exponential model, are evaluated in order to derive the optimum weighting function. Two different simulation models were employed to develop spatially autocorrelated binary class maps. In all tested models, Gaussian, Exponential, and IDW, the pixel swapping method improved classification accuracy compared with the initial random allocation of sub-pixels. However the results suggested that equal weight could be used to increase accuracy and sub-pixel spatial autocorrelation instead of using these more complex models of spatial structure. New algorithms for modeling the spatial distribution of multiple land cover classes at sub-pixel scales are developed and evaluated. Three methods are examined: sequential categorical swapping, simultaneous categorical swapping, and simulated annealing. These three methods are applied to classified Landsat ETM+ data that has been resampled to 210 meters. The result suggested that the simultaneous method can be considered as the optimum method in terms of accuracy performance and computation time. The case study employs remote sensing imagery at the following sites: tropical forests in Brazil and temperate multiple land mosaic in East China. Sub-areas for both sites are used to examine how the characteristics of the landscape affect the ability of the optimum technique. Three types of measurement: Moran's I, mean patch size (MPS), and patch size standard deviation (STDEV), are used to characterize the landscape. All results suggested that this technique could increase the classification accuracy more than traditional hard classification. The methods developed in this study can benefit researchers who employ coarse remote sensing imagery but are interested in detailed landscape information. In many cases, the satellite sensor that provides large spatial coverage has insufficient spatial detail to identify landscape patterns. Application of the super-resolution technique described in this dissertation could potentially solve this problem by providing detailed land cover predictions from the coarse resolution satellite sensor imagery.
Towards a Near Real-Time Satellite-Based Flux Monitoring System for the MENA Region
NASA Astrophysics Data System (ADS)
Ershadi, A.; Houborg, R.; McCabe, M. F.; Anderson, M. C.; Hain, C.
2013-12-01
Satellite remote sensing has the potential to offer spatially and temporally distributed information on land surface characteristics, which may be used as inputs and constraints for estimating land surface fluxes of carbon, water and energy. Enhanced satellite-based monitoring systems for aiding local water resource assessments and agricultural management activities are particularly needed for the Middle East and North Africa (MENA) region. The MENA region is an area characterized by limited fresh water resources, an often inefficient use of these, and relatively poor in-situ monitoring as a result of sparse meteorological observations. To address these issues, an integrated modeling approach for near real-time monitoring of land surface states and fluxes at fine spatio-temporal scales over the MENA region is presented. This approach is based on synergistic application of multiple sensors and wavebands in the visible to shortwave infrared and thermal infrared (TIR) domain. The multi-scale flux mapping and monitoring system uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI), and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in conjunction with model reanalysis data and multi-sensor remotely sensed data from polar orbiting (e.g. Landsat and MODerate resolution Imaging Spectroradiometer (MODIS)) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate time-continuous (i.e. daily) estimates of field-scale water, energy and carbon fluxes. Within this modeling system, TIR satellite data provide information about the sub-surface moisture status and plant stress, obviating the need for precipitation input and a detailed soil surface characterization (i.e. for prognostic modeling of soil transport processes). The STARFM fusion methodology blends aspects of high frequency (spatially coarse) and spatially fine resolution sensors and is applied directly to flux output fields to facilitate daily mapping of fluxes at sub-field scales. A complete processing infrastructure to automatically ingest and pre-process all required input data and to execute the integrated modeling system for near real-time agricultural monitoring purposes over targeted MENA sites is being developed, and initial results from this concerted effort will be discussed.
NASA Technical Reports Server (NTRS)
Zak, J. Allen; Rodgers, William G., Jr.; Nolf, Scott; McKissick, Burnell T. (Technical Monitor)
2001-01-01
There has been a renewed interest in the application of remote sensor technology to operational aviation and airport-related activities such as Aircraft Vortex Spacing System (AVOSS). Radio Acoustic Sounding Systems (RASS), Doppler-acoustic sodars, Ultrahigh Frequencies (UHF) profilers and lidars have many advantages in measuring wind and temperature profiles in the lower atmospheric boundary layer since they can operate more or less continuously and unattended; however, there are limitations in their operational use at airports. For example, profilers deteriorate (limited altitude coverage or missing) in moderate or greater rain and can be affected by airplane targets in their field of view. Sodars can handle precipitation better but are affected by the high noise environments of airports and strong winds. Morning temperature inversions typically limit performance of RASS, sodars and profilers. Fog affects sonic anemometers. Lidars can have difficulties in clouds, fog or heavy precipitation. Despite their limitations these sensors have proven useful to provide wind and temperature profiles for AVOSS. Capabilities and limitations of these and other sensors used in the AVOSS program are discussed, parameter settings for the sensor systems are documented, and recommendations are made for the most cost-effective group of sensors for the future. The potential use of specially tuned dynamic forecast models and measurements from landing and departing aircraft are addressed.
Land use and environmental assessment in the central Atlantic region
NASA Technical Reports Server (NTRS)
Alexander, R. H.; Fitzpatrick, K.; Lins, H. F., Jr.; Mcginty, H. K., III
1975-01-01
Data from high altitude aircraft, LANDSAT and Skylab were used in a comprehensive regional survey of land use and its associated environmental impact in the Central Atlantic Regional Ecological Test Site (CARETS). Each sensor system has advantages that were demonstrated by producing experimental land use maps and other data products, applying them to typical problems encountered in regional planning and environmental impact assessment, and presenting the results to prospective users for evaluation. An archival collection of imagery, maps, data summaries, and technical reports was assembled, constituting an environmental profile of the central Atlantic region. The investigation was organized into four closely-related modules, a land use information module, an environmental impact module, a user interaction and evaluation module, and a geographic information systems module. Results revealed a heterogeneous user community with diverse information needs, tending, however, definitely toward the higher-resolution sensor data and the larger-scale land use maps and related information products. Among project recommendations are greater efforts toward improving compatibility of federal, state, and local land use information programs, and greater efforts toward a broader exchange of imagery, computer tapes, and land use information derived therefrom.
NASA Technical Reports Server (NTRS)
Alexander, R. H. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Accomplishments have included: (1) completion of the research design for the USGS/CARETS demonstration project; (2) preparation of photomossics and land use maps at a scale of 1:100,000 for entire area; (3) demonstration of the feasibility of extracting several categories of land use information from ERTS-1 MSS data for a portion of the CARETS region; (4) demonstration of the feasibility of detecting some significant land use changes on ERTS-1 imagery; (5) demonstration of the feasibility of attaching environmental impact significance to the remote sensor-derived land use data; (6) delivery of land use information derived from high altitude aircraft data to the Maryland state planning agency for use in its statewide land use inventory; (7) demonstration of high interest by other use groups in the test region in products and services provided by investigation; and (8) determination of the viability of setting up a computerized geographic information system as part of the CARETS investigation, to facilitate handling of sensor-derived land use data in a variety of formats to suit user requirements.
Spectral Behavior of a Linearized Land-Atmosphere Model: Applications to Hydrometeorology
NASA Astrophysics Data System (ADS)
Gentine, P.; Entekhabi, D.; Polcher, J.
2008-12-01
The present study develops an improved version of the linearized land-atmosphere model first introduced by Lettau (1951). This model is used to investigate the spectral response of land-surface variables to a daily forcing of incoming radiation at the land-surface. An analytical solution of the problem is found in the form of temporal Fourier series and gives the atmospheric boundary-layer and soil profiles of state variables (potential temperature, specific humidity, sensible and latent heat fluxes). Moreover the spectral dependency of surface variables is expressed as function of land-surface parameters (friction velocity, vegetation height, aerodynamic resistance, stomatal conductance). This original approach has several advantages: First, the model only requires little data to work and perform well: only time series of incoming radiation at the land-surface, mean specific humidity and temperature at any given height are required. These inputs being widely available over the globe, the model can easily be run and tested under various conditions. The model will also help analysing the diurnal shape and frequency dependency of surface variables and soil-ABL profiles. In particular, a strong emphasis is being placed on the explanation and prediction of Evaporative Fraction (EF) and Bowen Ratio diurnal shapes. EF is shown to remain a diurnal constant under restricting conditions: fair and dry weather, with strong solar radiation and no clouds. Moreover, the EF pseudo-constancy value is found and given as function of surface parameters, such as aerodynamic resistance and stomatal conductance. Then, application of the model for the conception of remote-sensing tools, according to the temporal resolution of the sensor, will also be discussed. Finally, possible extensions and improvement of the model will be discussed.
Rugged sensor window materials for harsh environments
NASA Astrophysics Data System (ADS)
Bayya, Shyam; Villalobos, Guillermo; Kim, Woohong; Sanghera, Jasbinger; Hunt, Michael; Aggarwal, Ishwar D.
2014-09-01
There are several military or commercial systems operating in very harsh environments that require rugged windows. On some of these systems, windows become the single point of failure. These applications include sensor or imaging systems, high-energy laser weapons systems, submarine photonic masts, IR countermeasures and missiles. Based on the sea or land or air based platforms the window or dome on these systems must withstand wave slap, underwater or ground based explosions, or survive flight through heavy rain and sand storms while maintaining good optical transmission in the desired wavelength range. Some of these applications still use softer ZnS or fused silica windows because of lack of availability of rugged materials in shapes or sizes required. Sapphire, ALON and spinel are very rugged materials with significantly higher strengths compared to ZnS and fused silica. There have been recent developments in spinel, ALON and sapphire materials to fabricate in large sizes and conformal shapes. We have been developing spinel ceramics for several of these applications. We are also developing β-SiC as a transparent window material as it has higher hardness, strength, and toughness than sapphire, ALON and spinel. This paper gives a summary of our recent findings.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.
2014-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center has been running a real-time version of the Land Information System (LIS) since summer 2010 (hereafter, SPoRTLIS). The real-time SPoRT-LIS runs the Noah land surface model (LSM) in an offline capacity apart from a numerical weather prediction model, using input atmospheric and precipitation analyses (i.e., "forcings") to drive the Noah LSM integration at 3-km resolution. Its objectives are to (1) produce local-scale information about the soil state for NOAA/National Weather Service (NWS) situational awareness applications such as drought monitoring and assessing flood potential, and (2) provide land surface initialization fields for local modeling initiatives. The current domain extent has been limited by the input atmospheric analyses that drive the Noah LSM integration within SPoRT-LIS, specifically the National Centers for Environmental Prediction (NCEP) Stage IV precipitation analyses. Due to the nature of the geographical edges of the Stage IV precipitation grid and its limitations in the western U.S., the SPoRT-LIS was originally confined to a domain fully nested within the Stage IV grid, over the southeastern half of the Conterminous United States (CONUS). In order to expand the real-time SPoRT-LIS to a full CONUS domain, alternative precipitation forcing datasets were explored in year-long, offline comparison runs of the Noah LSM. Based on results of these comparison simulations, we chose to implement the radar/gauge-based precipitation analyses from the National Severe Storms Laboratory as a replacement to the Stage IV product. The Multi-Radar Multi-Sensor (MRMS; formerly known as the National Mosaic and multi-sensor Quantitative precipitation estimate) product has full CONUS coverage at higher-resolution, thereby providing better coverage and greater detail than that of the Stage IV product. This paper will describe the expanded/upgraded SPoRT-LIS, present comparisons between the original and upgraded SPoRT-LIS, and discuss the path forward for future collaboration opportunities with SPoRT partners in the NWS.
Feasibility Study of TRISCAN Landing System.
1977-10-01
as inclinometers, tiltmeters , vertical sensors , level sensors , pendulums, and gravity sensing electrolytic transducers. Of course, the common...5.0 NAVTOLAND SENSOR REQUIREMENTS 5.1 TRISCAN PERFORMANCE _ --* L 5.2 SHIPS MOTION SENSING 5.3 DATA LINK Dit.S.ia 6.0 CONCLUSIONS AND RECOMMENDATIONS...involved in enabling the pilot to fly V/STOL Aircraft onto Navy Ships and Marine Corps tactical sites. Guidance sensors have been identified as being
Overview of the NASA tropospheric environmental quality remote sensing program
NASA Technical Reports Server (NTRS)
Allario, F.; Ayers, W. G.; Hoell, J. M.
1979-01-01
This paper will summarize the current NASA Tropospheric Environmental Quality Remote Sensing Program for studying the global and regional troposphere from space, airborne and ground-based platforms. As part of the program to develop remote sensors for utilization from space, NASA has developed a series of passive and active remote sensors which have undergone field test measurements from airborne and ground platforms. Recent measurements with active lidar and passive gas filter correlation and infrared heterodyne techniques will be summarized for measurements of atmospheric aerosols, CO, SO2, O3, and NH3. These measurements provide the data base required to assess the sensitivity of remote sensors for applications to urban and regional field measurement programs. Studies of Earth Observation Satellite Systems are currently being performed by the scientific community to assess the capability of satellite imagery to detect regions of elevated pollution in the troposphere. The status of NASA sponsored research efforts in interpreting satellite imagery for determining aerosol loadings over land and inland bodies of water will be presented, and comments on the potential of these measurements to supplement in situ and airborne remote sensors in detecting regional haze will be made.
NASA Astrophysics Data System (ADS)
Tramutola, A.; Paltro, D.; Cabalo Perucha, M. P.; Paar, G.; Steiner, J.; Barrio, A. M.
2015-09-01
Vision Based Navigation (VBNAV) has been identified as a valid technology to support space exploration because it can improve autonomy and safety of space missions. Several mission scenarios can benefit from the VBNAV: Rendezvous & Docking, Fly-Bys, Interplanetary cruise, Entry Descent and Landing (EDL) and Planetary Surface exploration. For some of them VBNAV can improve the accuracy in state estimation as additional relative navigation sensor or as absolute navigation sensor. For some others, like surface mobility and terrain exploration for path identification and planning, VBNAV is mandatory. This paper presents the general avionic architecture of a Vision Based System as defined in the frame of the ESA R&T study “Multi-purpose Vision-based Navigation System Engineering Model - part 1 (VisNav-EM-1)” with special focus on the surface mobility application.
Automatic systems and the low-level wind hazard
NASA Technical Reports Server (NTRS)
Schaeffer, Dwight R.
1987-01-01
Automatic flight control systems provide means for significantly enhancing survivability in severe wind hazards. The technology required to produce the necessary control algorithms is available and has been made technically feasible by the advent of digital flight control systems and accurate, low-noise sensors, especially strap-down inertial sensors. The application of this technology and these means has not generally been enabled except for automatic landing systems, and even then the potential has not been fully exploited. To fully exploit the potential of automatic systems for enhancing safety in wind hazards requires providing incentives, creating demand, inspiring competition, education, and eliminating prejudicial disincentitives to overcome the economic penalties associated with the extensive and riskly development and certification of these systems. If these changes will come about at all, it will likely be through changes in the regulations provided by the certifying agencies.
Lidar Systems for Precision Navigation and Safe Landing on Planetary Bodies
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Pierrottet, Diego F.; Petway, Larry B.; Hines, Glenn D.; Roback, Vincent E.
2011-01-01
The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of robotic and manned vehicles with a high degree of precision. Currently, NASA is developing novel lidar sensors aimed at needs of future planetary landing missions. These lidar sensors are a 3-Dimensional Imaging Flash Lidar, a Doppler Lidar, and a Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain that indicate hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase of a landing vehicle, at about 1 km above the ground, can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground relative velocity and distance data allowing for precision navigation to the landing site. Our Doppler lidar utilizes three laser beams pointed to different directions to measure line of sight velocities and ranges to the ground from altitudes of over 2 km. Throughout the landing trajectory starting at altitudes of about 20 km, the Laser Altimeter can provide very accurate ground relative altitude measurements that are used to improve the vehicle position knowledge obtained from the vehicle navigation system. At altitudes from approximately 15 km to 10 km, either the Laser Altimeter or the Flash Lidar can be used to generate contour maps of the terrain, identifying known surface features such as craters, to perform Terrain relative Navigation thus further reducing the vehicle s relative position error. This paper describes the operational capabilities of each lidar sensor and provides a status of their development. Keywords: Laser Remote Sensing, Laser Radar, Doppler Lidar, Flash Lidar, 3-D Imaging, Laser Altimeter, Precession Landing, Hazard Detection
Land use determination by remote sensor analysis
NASA Technical Reports Server (NTRS)
Mallon, H. J.; Howard, J. Y.
1971-01-01
A land use analysis of 18 selected census tracts in the Metropolitan Washington area using aerial photography was undertaken. A comparison of the results was made with comparable land use data from the Metropolitan Washington Council of Governments' Parcel File, and the results reported. Summary conclusions and recommendations for the use of photo-derived data in land use studies by COG are made.
Challenges to quantitative applications of Landsat observations for the urban thermal environment.
Chen, Feng; Yang, Song; Yin, Kai; Chan, Paul
2017-09-01
Since the launch of its first satellite in 1972, the Landsat program has operated continuously for more than forty years. A large data archive collected by the Landsat program significantly benefits both the academic community and society. Thermal imagery from Landsat sensors, provided with relatively high spatial resolution, is suitable for monitoring urban thermal environment. Growing use of Landsat data in monitoring urban thermal environment is demonstrated by increasing publications on this subject, especially over the last decade. Urban thermal environment is usually delineated by land surface temperature (LST). However, the quantitative and accurate estimation of LST from Landsat data is still a challenge, especially for urban areas. This paper will discuss the main challenges for urban LST retrieval, including urban surface emissivity, atmospheric correction, radiometric calibration, and validation. In addition, we will discuss general challenges confronting the continuity of quantitative applications of Landsat observations. These challenges arise mainly from the scan line corrector failure of the Landsat 7 ETM+ and channel differences among sensors. Based on these investigations, the concerns are to: (1) show general users the limitation and possible uncertainty of the retrieved urban LST from the single thermal channel of Landsat sensors; (2) emphasize efforts which should be done for the quantitative applications of Landsat data; and (3) understand the potential challenges for the continuity of Landsat observation (i.e., thermal infrared) for global change monitoring, while several climate data record programs being in progress. Copyright © 2017. Published by Elsevier B.V.
Smart Sensor Systems for Aerospace Applications: From Sensor Development to Application Testing
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Xu, J. C.; Dungan, L. K.; Ward, B. J.; Rowe, S.; Williams, J.; Makel, D. B.; Liu, C. C.; Chang, C. W.
2008-01-01
The application of Smart Sensor Systems for aerospace applications is a multidisciplinary process consisting of sensor element development, element integration into Smart Sensor hardware, and testing of the resulting sensor systems in application environments. This paper provides a cross-section of these activities for multiple aerospace applications illustrating the technology challenges involved. The development and application testing topics discussed are: 1) The broadening of sensitivity and operational range of silicon carbide (SiC) Schottky gas sensor elements; 2) Integration of fire detection sensor technology into a "Lick and Stick" Smart Sensor hardware platform for Crew Exploration Vehicle applications; 3) Extended testing for zirconia based oxygen sensors in the basic "Lick and Stick" platform for environmental monitoring applications. It is concluded that that both core sensor platform technology and a basic hardware platform can enhance the viability of implementing smart sensor systems in aerospace applications.
The GLAS Polar Orbiting Lidar Experiment: First Year Results and Available Data
NASA Technical Reports Server (NTRS)
Spinhirne, James D.; Welton, E. Judd; Palm, Stephen P.; Hart, William D.; Hlavka, Dennis; Mahesh, Ashwin; Lancaster, Redgie S.
2004-01-01
The first polar orbiting satellite lidar instrument, the Geoscience Laser Altimeter System (GLAS), was launched in 2003 and is approaching six months of data operations. As part of the NASA Earth Observing System (EOS) project, the GLAS instrument is intended as a laser sensor fulfilling complementary requirements for several earth science disciplines including atmospheric and surface applications on the Ice, Cloud and Land Elevation Satellite. In this paper we present examples of atmospheric measurement results and explain access to data for the international science community.
MAMS: High resolution atmospheric moisture/surface properties
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Guillory, Anthony R.; Suggs, Ron; Atkinson, Robert J.; Carlson, Grant S.
1991-01-01
Multispectral Atmospheric Mapping Sensor (MAMS) data collected from a number of U2/ER2 aircraft flights were used to investigate atmospheric and surface (land) components of the hydrologic cycle. Algorithms were developed to retrieve surface and atmospheric geophysical parameters which describe the variability of atmospheric moisture, its role in cloud and storm development, and the influence of surface moisture and heat sources on convective activity. Techniques derived with MAMS data are being applied to existing satellite measurements to show their applicability to regional and large process studies and their impact on operational forecasting.
Urban area change detection procedures with remote sensing data
NASA Technical Reports Server (NTRS)
Maxwell, E. L. (Principal Investigator); Riordan, C. J.
1980-01-01
The underlying factors affecting the detection and identification of nonurban to urban land cover change using satellite data were studied. Computer programs were developed to create a digital scene and to simulate the effect of the sensor point spread function (PSF) on the transfer of modulation from the scene to an image of the scene. The theory behind the development of a digital filter representing the PSF is given as well as an example of its application. Atmospheric effects on modulation transfer are also discussed. A user's guide and program listings are given.
Microwave remote sensing from space for earth resource surveys
NASA Technical Reports Server (NTRS)
1977-01-01
The concepts of radar remote sensing and microwave radiometry are discussed and their utility in earth resource sensing is examined. The direct relationship between the character of the remotely sensed data and the level of decision making for which the data are appropriate is considered. Applications of active and a passive microwave sensing covered include hydrology, land use, mapping, vegetation classification, environmental monitoring, coastal features and processes, geology, and ice and snow. Approved and proposed microwave sensors are described and the use of space shuttle as a development platform is evaluated.
A Framework for Mapping Global Evapotranspiration using 375-m VIIRS LST
NASA Astrophysics Data System (ADS)
Hain, C.; Anderson, M. C.; Schull, M. A.; Neale, C. M. U.
2017-12-01
As the world's water resources come under increasing tension due to dual stressors of climate change and population growth, accurate knowledge of water consumption through evapotranspiration (ET) over a range in spatial scales will be critical in developing adaptation strategies. Remote sensing methods for monitoring consumptive water use are becoming increasingly important, especially in areas of food insecurity. One method to estimate ET from satellite-based methods, the Atmosphere Land Exchange Inverse (ALEXI) model uses the change in morning land surface temperature to estimate the partitioning of sensible/latent heat fluxes which are then used to estimate daily ET. This presentation will outline several recent enhancements to the ALEXI modeling system, with a focus on global ET and drought monitoring. Until recently, ALEXI has been limited to areas with high resolution temporal sampling of geostationary sensors. The use of geostationary sensors makes global mapping a complicated process, especially for real-time applications, as data from as many as five different sensors are required to be ingested and harmonized to create a global mosaic. However, our research team has developed a new and novel method of using twice-daily observations from polar-orbiting sensors such as MODIS and VIIRS to estimate the mid-morning rise in LST that is used to drive the energy balance estimations within ALEXI. This allows the method to be applied globally using a single sensor rather than a global compositing of all available geostationary data. Other advantages of this new method include the higher spatial resolution provided by MODIS and VIIRS and the increased sampling at high latitudes where oblique view angles limit the utility of geostationary sensors. Improvements to the spatial resolution of the thermal infrared wavelengths on the VIIRS instrument, as compared to MODIS (375-m VIIRS vs. 1-km MODIS), allows for a much higher resolution ALEXI product than has been previously available. Therefore, recent developments have been to generate 375-m ALEXI ET products over several pilot regions (e.g. western US and the MENA region). The monitoring of consumptive water use over regions where significant groundwater pumping for irrigation is employed is important to accurately quantify the efficiency of water use in the region.
Ka-Band Radar Terminal Descent Sensor
NASA Technical Reports Server (NTRS)
Pollard, Brian; Berkun, Andrew; Tope, Michael; Andricos, Constantine; Okonek, Joseph; Lou, Yunling
2007-01-01
The terminal descent sensor (TDS) is a radar altimeter/velocimeter that improves the accuracy of velocity sensing by more than an order of magnitude when compared to existing sensors. The TDS is designed for the safe planetary landing of payloads, and may be used in helicopters and fixed-wing aircraft requiring high-accuracy velocity sensing
Detecting GNSS spoofing attacks using INS coupling
NASA Astrophysics Data System (ADS)
Tanil, Cagatay
Vulnerability of Global Navigation Satellite Systems (GNSS) users to signal spoofing is a critical threat to positioning integrity, especially in aviation applications, where the consequences are potentially catastrophic. In response, this research describes and evaluates a new approach to directly detect spoofing using integrated Inertial Navigation Systems (INS) and fault detection concepts based on integrity monitoring. The monitors developed here can be implemented into positioning systems using INS/GNSS integration via 1) tightly-coupled, 2) loosely-coupled, and 3) uncoupled schemes. New evaluation methods enable the statistical computation of integrity risk resulting from a worst-case spoofing attack - without needing to simulate an unmanageably large number of individual aircraft approaches. Integrity risk is an absolute measure of safety and a well-established metric in aircraft navigation. A novel closed-form solution to the worst-case time sequence of GNSS signals is derived to maximize the integrity risk for each monitor and used in the covariance analyses. This methodology tests the performance of the monitors against the most sophisticated spoofers, capable of tracking the aircraft position - for example, by means of remote tracking or onboard sensing. Another contribution is a comprehensive closed-loop model that encapsulates the vehicle and compensator (estimator and controller) dynamics. A sensitivity analysis uses this model to quantify the leveraging impact of the vehicle's dynamic responses (e.g., to wind gusts, or to autopilot's acceleration commands) on the monitor's detection capability. The performance of the monitors is evaluated for two safety-critical terminal area navigation applications: 1) autonomous shipboard landing and 2) Boeing 747 (B747) landing assisted with Ground Based Augmentation Systems (GBAS). It is demonstrated that for both systems, the monitors are capable of meeting the most stringent precision approach and landing integrity requirements of the International Civil Aviation Organization (ICAO). The statistical evaluation methods developed here can be used as a baseline procedure in the Federal Aviation Administration's (FAA) certification of spoof-free navigation systems. The final contribution is an investigation of INS sensor quality on detection performance. This determines the minimum sensor requirements to perform standalone GNSS positioning in general en route applications with guaranteed spoofing detection integrity.
Opoku-Duah, S.; Donoghue, D.N.M.; Burt, T. P.
2008-01-01
This paper compares evapotranspiration estimates from two complementary satellite sensors – NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and ESA's ENVISAT Advanced Along-Track Scanning Radiometer (AATSR) over the savannah area of the Volta basin in West Africa. This was achieved through solving for evapotranspiration on the basis of the regional energy balance equation, which was computationally-driven by the Surface Energy Balance Algorithm for Land algorithm (SEBAL). The results showed that both sensors are potentially good sources of evapotranspiration estimates over large heterogeneous landscapes. The MODIS sensor measured daily evapotranspiration reasonably well with a strong spatial correlation (R2=0.71) with Landsat ETM+ but underperformed with deviations up to ∼2.0 mm day-1, when compared with local eddy correlation observations and the Penman-Monteith method mainly because of scale mismatch. The AATSR sensor produced much poorer correlations (R2=0.13) with Landsat ETM+ and conventional ET methods also because of differences in atmospheric correction and sensor calibration over land. PMID:27879847
Lei, Xusheng; Li, Jingjing
2012-01-01
This paper presents an adaptive information fusion method to improve the accuracy and reliability of the altitude measurement information for small unmanned aerial rotorcraft during the landing process. Focusing on the low measurement performance of sensors mounted on small unmanned aerial rotorcraft, a wavelet filter is applied as a pre-filter to attenuate the high frequency noises in the sensor output. Furthermore, to improve altitude information, an adaptive extended Kalman filter based on a maximum a posteriori criterion is proposed to estimate measurement noise covariance matrix in real time. Finally, the effectiveness of the proposed method is proved by static tests, hovering flight and autonomous landing flight tests. PMID:23201993
Compute Element and Interface Box for the Hazard Detection System
NASA Technical Reports Server (NTRS)
Villalpando, Carlos Y.; Khanoyan, Garen; Stern, Ryan A.; Some, Raphael R.; Bailey, Erik S.; Carson, John M.; Vaughan, Geoffrey M.; Werner, Robert A.; Salomon, Phil M.; Martin, Keith E.;
2013-01-01
The Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is building a sensor that enables a spacecraft to evaluate autonomously a potential landing area to generate a list of hazardous and safe landing sites. It will also provide navigation inputs relative to those safe sites. The Hazard Detection System Compute Element (HDS-CE) box combines a field-programmable gate array (FPGA) board for sensor integration and timing, with a multicore computer board for processing. The FPGA does system-level timing and data aggregation, and acts as a go-between, removing the real-time requirements from the processor and labeling events with a high resolution time. The processor manages the behavior of the system, controls the instruments connected to the HDS-CE, and services the "heavy lifting" computational requirements for analyzing the potential landing spots.
NASA Astrophysics Data System (ADS)
Kumar, S.; Jasinski, M. F.; Mocko, D. M.; Rodell, M.; Borak, J.; Li, B.; Beaudoing, H. K.; Peters-Lidard, C. D.
2017-12-01
This presentation will describe one of the first successful examples of multisensor, multivariate land data assimilation, encompassing a large suite of soil moisture, snow depth, snow cover and irrigation intensity environmental data records (EDRs) from Scanning Multi-channel Microwave Radiometer (SMMR), the Special Sensor Microwave Imager (SSM/I), the Advanced Scatterometer (ASCAT), the Moderate-Resolution Imaging Spectroradiometer (MODIS), the Advanced Microwave Scanning Radiometer (AMSR-E and AMSR2), the Soil Moisture Ocean Salinity (SMOS) mission and the Soil Moisture Active Passive (SMAP) mission. The analysis is performed using the NASA Land Information System (LIS) as an enabling tool for the U.S. National Climate Assessment (NCA). The performance of NCA Land Data Assimilation System (NCA-LDAS) is evaluated by comparing to a number of hydrological reference data products. Results indicate that multivariate assimilation provides systematic improvements in simulated soil moisture and snow depth, with marginal effects on the accuracy of simulated streamflow and ET. An important conclusion is that across all evaluated variables, assimilation of data from increasingly more modern sensors (e.g. SMOS, SMAP, AMSR2, ASCAT) produces more skillful results than assimilation of data from older sensors (e.g. SMMR, SSM/I, AMSR-E). The evaluation also indicates high skill of NCA-LDAS when compared with other land analysis products. Further, drought indicators based on NCA-LDAS output suggest a trend of longer and more severe droughts over parts of Western U.S. during 1979-2015, particularly in the Southwestern U.S.
U.S. Geological Survey Emerging Applications of Unmanned Aircraft Systems
NASA Astrophysics Data System (ADS)
Hutt, M. E.
2012-12-01
In anticipation of transforming the research methods and resource management techniques employed across the Department of the Interior, the U.S. Geological Survey (USGS) Unmanned Aircraft Systems (UAS) Project Office is conducting missions using small UAS- sUAS platforms (<20 lbs.). The USGS is dedicated to expanding the use of sUAS technology in support of scientific, resource and land management missions. UAS technology is currently being used by USGS and our partners to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Our ultimate goal is to support informed decision making by creating the opportunity, via UAS technology, to gain access to an increased level of persistent monitoring of earth surface processes (forest health conditions, wildfires, earthquake zones, invasive species, etc.) in areas that have been logistically difficult, cost prohibitive or technically impossible to obtain consistent, reliable, timely information. USGS is teaming with the Department of the Interior Aviation Management Directorate to ensure the safe and cost effective adoption of UAS technology. While the USGS is concentrating on operating sUAS, the immense value of increased flight time and more robust sensor capabilities available on larger platforms cannot be ignored. We are partnering with several groups including the Department of Homeland Security, National Aeronautics and Space Administration, Department of Defense, and National Oceanic and Atmospheric Administration for access to data collected from their fleet of high altitude, long endurance (HALE) UAS. The HALE systems include state of the art sensors including Electro-Optical, Thermal Infrared and Synthetic Aperture Radar (SAR). The data being collected by High Altitude, Long Endurance (HALE) systems is can be routinely shared in near real time at several DOI- USGS locations. Analysis tools are becoming available that can produce a robust set of products including a geo-referenced base for value added investigations. Much like the use of global positioning systems, unmanned aircraft systems have the potential of enabling us to be better stewards of the land. We are actively working to develop applications of the traditional full motion video capabilities and are engaged in developing additional sensor capabilities for sUAS including- magnetometers, temperature, radio telemetry, chemical and biological gas detection, and gimbal mounted "photogrammetric" cameras.
Design and Requirements Creep In A Build-To-Print Mission
NASA Technical Reports Server (NTRS)
Peabody, Sharon A.; Otero, Veronica
2017-01-01
Build-to-Print designs, or rebuilds of flight proven designs, are attractive to mission stakeholders, as they give the appearance of minimal engineering development cost, risk, and schedule. The reality is that seldom is a project an exact duplicate of a predecessor. Mission reclassification, improvements in hardware, and science objective changes can all serve as a source of requirements and design creep and have ramifications often not fully anticipated during initial proposals. The Thermal Infrared Sensor Instrument (TIRS) was a late addition to the LandSat-8 program to provide infrared imaging to measure evapotranspiration for water cycle management. To meet the launch requirements for LandSat-8, instrument design life requirements were relaxed, the sensor development expedited, and technology development was minimized. Consequently, TIRS was designed as a higher risk instrument, with less redundancy than an instrument critical to mission success. After the successful LandSat-8 launch in 2013 and instrument performance, a rebuild of the instrument for the next LandSat spacecraft was included in the baseline mission success criteria. This paper discusses the technical challenges encountered during the rebuild of the TIRS-2 (Thermal Infrared Sensor 2) instrument and the resultant impacts on the thermal system design.
NASA Astrophysics Data System (ADS)
Perez Saavedra, L.-M.; Mercier, G.; Yesou, H.; Liege, F.; Pasero, G.
2016-08-01
The Copernicus program of ESA and European commission (6 Sentinels Missions, among them Sentinel-1 with Synthetic Aperture Radar sensor and Sentinel-2 with 13-band 10 to 60 meter resolution optical sensors), offers a new opportunity to Earth Observation with high temporal acquisition capability ( 12 days repetitiveness and 5 days in some geographic areas of the world) with high spatial resolution.Due to these high temporal and spatial resolutions, it opens new challenges in several fields such as image processing, new algorithms for Time Series and big data analysis. In addition, these missions will be able to analyze several topics of earth temporal evolution such as crop vegetation, water bodies, Land use and Land Cover (LULC), sea and ice information, etc. This is particularly useful for end users and policy makers to detect early signs of damages, vegetation illness, flooding areas, etc.From the state of the art, one can find algorithms and methods that use a bi-date comparison for change detection [1-3] or time series analysis. Actually, these methods are essentially used for target detection or for abrupt change detection that requires 2 observations only.A Hölder means-based change detection technique has been proposed in [2,3] for high resolution radar images. This so-called MIMOSA technique has been mainly dedicated to man-made change detection in urban areas and CARABAS - II project by using a couple of SAR images. An extension to multitemporal change detection technique has been investigated but its application to land use and cover changes still has to be validated.The Hölder Hp is a Time Series pixel by pixel feature extraction and is defined by:H𝑝[X]=[1/n∑ⁿᵢ₌1 Xᴾᵢ]1/p p∈R Hp[X] : N images * S Bandes * t datesn is the number of images in the time series. N > 2Hp (X) is continuous and monotonic increasing in p for - ∞ < p < ∞
NASA Astrophysics Data System (ADS)
Duffy, C.
2008-12-01
The future of environmental observing systems will utilize embedded sensor networks with continuous real- time measurement of hydrologic, atmospheric, biogeochemical, and ecological variables across diverse terrestrial environments. Embedded environmental sensors, benefitting from advances in information sciences, networking technology, materials science, computing capacity, and data synthesis methods, are undergoing revolutionary change. It is now possible to field spatially-distributed, multi-node sensor networks that provide density and spatial coverage previously accessible only via numerical simulation. At the same time, computational tools are advancing rapidly to the point where it is now possible to simulate the physical processes controlling individual parcels of water and solutes through the complete terrestrial water cycle. Our goal for the Penn State Critical Zone Observatory is to apply environmental sensor arrays, integrated hydrologic models, and state-of-the-art visualization deployed and coordinated at a testbed within the Penn State Experimental Forest. The Shale Hills Hydro_Sensorium prototype proposed here is designed to observe land-atmosphere interactions in four-dimensional (space and time). The term Hydro_Sensorium implies the totality of physical sensors, models and visualization tools that allow us to perceive the detailed space and time complexities of the water and energy cycle for a watershed or river basin for all physical states and fluxes (groundwater, soil moisture, temperature, streamflow, latent heat, snowmelt, chemistry, isotopes etc.). This research will ultimately catalyze the study of complex interactions between the land surface, subsurface, biological and atmospheric systems over a broad range of scales. The sensor array would be real-time and fully controllable by remote users for "computational steering" and data fusion. Presently fully-coupled physical models are being developed that link the atmosphere-land-vegetation-subsurface system into a fully-coupled distributed system. During the last 5 years the Penn State Integrated Hydrologic Modeling System has been under development as an open-source community modeling project funded by NSF EAR/GEO and NSF CBET/ENG. PIHM represents a strategy for the formulation and solution of fully-coupled process equations at the watershed and river basin scales, and includes a tightly coupled GIS tool for data handling, domain decomposition, optimal unstructured grid generation, and model parameterization. The sensor and simulation system has the following elements: 1) extensive, spatially-distributed, non- invasive, smart sensor networks to gather massive geologic, hydrologic, and geochemical data; 2) stochastic information fusion methods; 3) spatially-explicit multiphysics models/solutions of the land-vegetation- atmosphere system; and 4) asynchronous, parallel/distributed, adaptive algorithms for rapidly simulating the states of a basin at high resolution, 5) signal processing tools for data mining and parameter estimation, and 6) visualization tools. The prototype proposed sensor array and simulation system proposed here will offer a coherent new approach to environmental predictions with a fully integrated observing system design. We expect that the Shale Hills Hydro_Sensorium may provide the needed synthesis of information and conceptualization necessary to advance predictive understanding in complex hydrologic systems.
Trial of a slant visual range measuring device
NASA Technical Reports Server (NTRS)
Streicher, J.; Muenkel, C.; Borchardt, H.
1992-01-01
Each year, fog at airports renders some landing operations either difficult or impossible. The visibility that a pilot of a landing aircraft can expect is in that case the most important information. It could happen that the visibility versus the altitude is constantly decreasing or increasing. However, it is not possible to distinguish this with the existing sensors at an airport. If the visibility is decreasing with the altitude, one has the worst case - ground fog. The standard visibility sensor, the transmissometer, determines only the horizontal visual range, which will be underestimated in comparison with the real visibility a pilot has on his landing approach. Described here is a new technique to measure the slant visual range, making use of a slant scanning device - an eye-safe laser radar. A comparison with commercial visibility sensors shows that it is possible to measure visibilities with the slant looking laser radar in the range from 50 meters up to 2000 meters and even distinguish inhomogenities like ground fog.
Apollo 9 Lunar Module in lunar landing configuration
NASA Technical Reports Server (NTRS)
1969-01-01
View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The Lunar Module 'Spider' is flying upside down in relation to the earth below. The landing gear on the 'Spider' had been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads.
Mapping urban land cover from space: Some observations for future progress
NASA Technical Reports Server (NTRS)
Gaydos, L.
1982-01-01
The multilevel classification system adopted by the USGS for operational mapping of land use and land cover at levels 1 and 2 is discussed and the successes and failures of mapping land cover from LANDSAT digital data are reviewed. Techniques used for image interpretation and their relationships to sensor parameters are examined. The requirements for mapping levels 2 and 3 classes are considered.
NASA Astrophysics Data System (ADS)
Moreno, H. A.; Basara, J. B.; Thompson, E.; Bertrand, D.; Johnston, C. S.
2017-12-01
Soil moisture measurements using satellite information can benefit from a land data assimilation model Goddard Earth Observing System (GEOS-5) and land data assimilation system (LDAS) to improve the representation of fine-scale dynamics and variability. This work presents some advances to understand the predictive skill of L4-SM product across different land-cover types, topography and precipitation totals, by using a dense network of multi-level soil moisture sensors (i.e. Mesonet and Micronet) in Oklahoma. 130 soil moisture stations are used across different precipitation gradients (i.e. arid vs wet), land cover (e.g. forest, shrubland, grasses, crops), elevation (low, mid and high) and slope to assess the improvements by the L4_SM product relative to the raw SMAP L-band brightness temperatures. The comparisons are conducted between July 2015 and July 2016 at the daily time scale. Results show the highest L4-SM overestimations occur in pastures and cultivated crops, during the rainy season and at higher elevation lands (over 800 meters asl). The smallest errors occur in low elevation lands, low rainfall and developed lands. Forested area's soil moisture biases lie in between pastures (max biases) and low intensity/developed lands (min biases). Fine scale assessment of L4-SM should help GEOS-5 and LDAS teams refine model parameters in light of observed differences and improve assimilation techniques in light of land-cover, topography and precipitation regime. Additionally, regional decision makers could have a framework to weight the utility of this product for water resources applications.
Synopsis of Precision Landing and Hazard Avoidance (PL&HA) Capabilities for Space Exploration
NASA Technical Reports Server (NTRS)
Robertson, Edward A.
2017-01-01
Until recently, robotic exploration missions to the Moon, Mars, and other solar system bodies relied upon controlled blind landings. Because terrestrial techniques for terrain relative navigation (TRN) had not yet been evolved to support space exploration, landing dispersions were driven by the capabilities of inertial navigation systems combined with surface relative altimetry and velocimetry. Lacking tight control over the actual landing location, mission success depended on the statistical vetting of candidate landing areas within the predicted landing dispersion ellipse based on orbital reconnaissance data, combined with the ability of the spacecraft to execute a controlled landing in terms of touchdown attitude, attitude rates, and velocity. In addition, the sensors, algorithms, and processing technologies required to perform autonomous hazard detection and avoidance in real time during the landing sequence were not yet available. Over the past decade, NASA has invested substantial resources on the development, integration, and testing of autonomous precision landing and hazard avoidance (PL&HA) capabilities. In addition to substantially improving landing accuracy and safety, these autonomous PL&HA functions also offer access to targets of interest located within more rugged and hazardous terrain. Optical TRN systems are baselined on upcoming robotic landing missions to the Moon and Mars, and NASA JPL is investigating the development of a comprehensive PL&HA system for a Europa lander. These robotic missions will demonstrate and mature PL&HA technologies that are considered essential for future human exploration missions. PL&HA technologies also have applications to rendezvous and docking/berthing with other spacecraft, as well as proximity navigation, contact, and retrieval missions to smaller bodies with microgravity environments, such as asteroids.
NASA Technical Reports Server (NTRS)
Kaufmann, David N.; Ncnally, B. David
1995-01-01
Test flights were conducted to evaluate the capability of Differential Global Positioning System (DGPS) to provide the accuracy and integrity required for International Civil Aviation Organization (ICAO) Category (CAT) 3 precision approach and landings. These test flights were part of a Federal Aviation Administration (FAA) program to evaluate the technical feasibility of using DGPS based technology for CAT 3 precision approach and landing applications. A United Airlines Boeing 737-300 (N304UA) was equipped with DGPS receiving equipment and additional computing capability provided by Stanford University. The test flights were conducted at NASA Ames Research Center's Crows Landing Flight Facility, Crows Landing, California. The flight test evaluation was based on completing 100 approaches and autolandings; 90 touch and go, and 10 terminating with a full stop. Two types of accuracy requirements were evaluated: 1) Total system error, based on the Required Navigation Performance (RNP), and 2) Navigation sensor error, based on ICAO requirements for the Microwave Landing System (MLS). All of the approaches and autolandings were evaluated against ground truth reference data provided by a laser tracker. Analysis of these approaches and autolandings shows that the Stanford University/United Airlines system met the requirements for a successful approach and autolanding 98 out of 100 approaches and autolandings, based on the total system error requirements as specified in the FAA CAT 3 Level 2 Flight Test Plan.
Pan, Jianjun
2018-01-01
This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively. PMID:29382073
Future of Land Remote Sensing: What is Needed
NASA Technical Reports Server (NTRS)
Goward, Samuel N.
2007-01-01
A viewgraph presentation describing the future of land remote sensing and the new technologies needed for clear views of the Earth is shown. The contents include: 1) Viewing the Earth; 2) Multi-Imagery; 3) May Missions and Sensors; 4) What is Needed; 5) Things to Think About; 6) Global Land Remote Sensing in Landsat 7 Era; 7) Seasonality; 8) Cloud Contamination; 9) NRC Decadal Study; 10) Atmospheric Attenuation; 11) Geo-Registration; 12) Orthorectification Required; 13) Band Registration with OLI; and 14) Things to Do. A viewgraph presentation describing the future of land remote sensing and the new technologies needed for clear views of the Earth is shown. The contents include: 1) Viewing the Earth; 2) Multi-Imagery; 3) May Missions and Sensors; 4) What is Needed; 5) Things to Think About; 6) Global Land Remote Sensing in Landsat 7 Era; 7) Seasonality; 8) Cloud Contamination; 9) NRC Decadal Study; 10) Atmospheric Attenuation; 11) Geo-Registration; 12) Orthorectification Required; 13) Band Registration with OLI; and 14) Things to Do.
NASA Astrophysics Data System (ADS)
Bassani, C.; Cavalli, R. M.; Fasulli, L.; Palombo, A.; Pascucci, S.; Santini, F.; Pignatti, S.
2009-04-01
The application of Remote Sensing data for detecting subsurface structures is becoming a remarkable tool for the archaeological observations to be combined with the near surface geophysics [1, 2]. As matter of fact, different satellite and airborne sensors have been used for archaeological applications, such as the identification of spectral anomalies (i.e. marks) related to the buried remnants within archaeological sites, and the management and protection of archaeological sites [3, 5]. The dominant factors that affect the spectral detectability of marks related to manmade archaeological structures are: (1) the spectral contrast between the target and background materials, (2) the proportion of the target on the surface (relative to the background), (3) the imaging system characteristics being used (i.e. bands, instrument noise and pixel size), and (4) the conditions under which the surface is being imaged (i.e. illumination and atmospheric conditions) [4]. In this context, just few airborne hyperspectral sensors were applied for cultural heritage studies, among them the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), the CASI (Compact Airborne Spectrographic Imager), the HyMAP (Hyperspectral MAPping) and the MIVIS (Multispectral Infrared and Visible Imaging Spectrometer). Therefore, the application of high spatial/spectral resolution imagery arise the question on which is the trade off between high spectral and spatial resolution imagery for archaeological applications and which spectral region is optimal for the detection of subsurface structures. This paper points out the most suitable spectral information useful to evaluate the image capability in terms of spectral anomaly detection of subsurface archaeological structures in different land cover contexts. In this study, we assess the capability of MIVIS and CASI reflectances and of ATM and MIVIS emissivities (Table 1) for subsurface archaeological prospection in different sites of the Arpi archaeological area (southern Italy). We identify, for the selected sites, three main land cover overlying the buried structures: (a) photosynthetic (i.e. green low vegetation), (b) non-photosynthetic vegetation (i.e. yellow, dry low vegetation), and (c) dry bare soil. Afterwards, we analyse the spectral regions showing an inherent potential for the archaeological detection as a function of the land cover characteristics. The classified land cover units have been used in a spectral mixture analysis to assess the land cover fractional abundance surfacing the buried structures (i.e. mark-background system). The classification and unmixing results for the CASI, MIVIS and ATM remote sensing data processing showed a good accordance both in the land cover units and in the subsurface structures identification. The integrated analysis of the unmixing results for the three sensors allowed us to establish that for the land cover characterized by green and dry vegetation (occurrence higher than 75%), the visible and near infrared (VNIR) spectral regions better enhance the buried man-made structures. In particular, if the structures are covered by more than 75% of vegetation the two most promising wavelengths for their detection are the chlorophyll peak at 0.56 m (Visible region) and the red edge region (0.67 to 0.72 m; NIR region). This result confirms that the variation induced by the subsurface structures (e.g., stone walls, tile concentrations, pavements near the surface, road networks) to the natural vegetation growth and/or colour (i.e., for different stress factors) is primarily detectable by the chlorophyll peak and the red edge region applied for the vegetation stress detection. Whereas, if dry soils cover the structures (occurrence higher than 75%), both the VNIR and thermal infrared (TIR) regions are suitable to detect the subsurface structures. This work demonstrates that airborne reflectances and emissivities data, even though at different spatial/spectral resolutions and acquisition time represent an effective and rapid tool to detect subsurface structures within different land cover contexts. As concluding results, this study reveals that the airborne multi/hyperspectral image processing can be an effective and cost-efficient tool to perform a preliminary analysis of those areas where large cultural heritage assets prioritising and localizing the sites where to apply near surface geophysics surveys. Spectral Region Spectral Resolution ( m )Spectral Range ( m) Spatial Resolution (m)IFOV (deg) ATM VIS-NIR SWIR-TIR (tot 12 ch) variable from 24 to 3100 0.42 - 1150 2 0.143 CASI VNIR (48 ch.) 0.01 0.40-0.94 2 0.115 MIVIS VNIR (28ch.) 0.02 (VIS) 0.05 (NIR) 0.43-0.83 (VIS) 1.15-1.55 (NIR) 6 - 7 0.115 SWIR (64ch.) 0.09 1.983-2.478 TIR (10ch.) 0.34-0.54 8.180-12.700 Table 1. Characteristics of airborne sensors used for the Arpi test area. 1 References 2 [1] Beck, A., Philip, G., Abdulkarim, M. and Donoghue, D., 2007. Evaluation of Corona and Ikonos high resolution satellite imagery for archaeological prospection in western Syria. Antiquity, 81: 161-175. 3 [2] Altaweel, M., 2005. The Use of ASTER Satellite Imagery in Archaeological Contexts. Archaeological Prospection, 12: 151- 166. 4 [3] Cavalli, R.M.; Colosi, F.; Palombo, A.; Pignatti, S.; Poscolieri, M. Remote hyperspectral imagery as a support to archaeological prospection. J. of Cultural Heritage 2007, 8, 272-283. 5 [4] Kucukkaya, A.G. Photogrammetry and remote sensing in archaeology. J. Quant. Spectrosc. Radiat. Transfer 2004, 97(1-3), 83-97. [5] Rowlands, A.; Sarris, A. Detection of exposed and subsurface archaeological remains using multi-sensor remote sensing. J. of Archaeological Science 2007, 34, 795-803.
Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation
NASA Technical Reports Server (NTRS)
Rouse, J. W., Jr. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Emphasis has been given to an inventory of land resource types and land use at the ten Great Plains Corridor test sites. A resource and land use classification system was developed which uses available soil survey information and interpretations from NASA obtained high flight aerial photography to locate discrete areas of similar rangeland vegetation. Existing classification systems, even those developed for use with remote sensor data, were found to be inadequate for this project. This system is expected to be of general use for remote sensing related to land use and management. It has specific applicability to any effort aimed at regional use of ERTS-1 MSS digital data products. A preliminary assessment of the relative importance of rangelands in the Great Plains Corridor states indicates that the value of the livestock industry supported by this resource exceeds 23 billion dollars. The development of a Rangeland Feed Conditions index for this region could be used by more than 400,000 farm and ranch operators involved in the production of more than 40% of the nation's beef and much of the country's grain.
Comparison of MODIS and AVHRR 16-day normalized difference vegetation index composite data
Gallo, Kevin P.; Ji, Lei; Reed, Bradley C.; Dwyer, John L.; Eidenshink, Jeffery C.
2004-01-01
Normalized difference vegetation index (NDVI) data derived from visible and near-infrared data acquired by the MODIS and AVHRR sensors were compared over the same time periods and a variety of land cover classes within the conterminous USA. The relationship between the AVHRR derived NDVI values and those of future sensors is critical to continued long term monitoring of land surface properties. The results indicate that the 16-day composite values are quite similar over the 23 intervals of 2001 that were analyzed, and a linear relationship exists between the NDVI values from the two sensors. The composite AVHRR NDVI data were associated with over 90% of the variation in the MODIS NDVI values. Copyright 2004 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Ban, Yifang; Gong, Peng; Gamba, Paolo; Taubenbock, Hannes; Du, Peijun
2016-08-01
The overall objective of this research is to investigate multi-temporal, multi-scale, multi-sensor satellite data for analysis of urbanization and environmental/climate impact in China to support sustainable planning. Multi- temporal multi-scale SAR and optical data have been evaluated for urban information extraction using innovative methods and algorithms, including KTH- Pavia Urban Extractor, Pavia UEXT, and an "exclusion- inclusion" framework for urban extent extraction, and KTH-SEG, a novel object-based classification method for detailed urban land cover mapping. Various pixel- based and object-based change detection algorithms were also developed to extract urban changes. Several Chinese cities including Beijing, Shanghai and Guangzhou are selected as study areas. Spatio-temporal urbanization patterns and environmental impact at regional, metropolitan and city core were evaluated through ecosystem service, landscape metrics, spatial indices, and/or their combinations. The relationship between land surface temperature and land-cover classes was also analyzed.The urban extraction results showed that urban areas and small towns could be well extracted using multitemporal SAR data with the KTH-Pavia Urban Extractor and UEXT. The fusion of SAR data at multiple scales from multiple sensors was proven to improve urban extraction. For urban land cover mapping, the results show that the fusion of multitemporal SAR and optical data could produce detailed land cover maps with improved accuracy than that of SAR or optical data alone. Pixel-based and object-based change detection algorithms developed with the project were effective to extract urban changes. Comparing the urban land cover results from mulitemporal multisensor data, the environmental impact analysis indicates major losses for food supply, noise reduction, runoff mitigation, waste treatment and global climate regulation services through landscape structural changes in terms of decreases in service area, edge contamination and fragmentation. In terms ofclimate impact, the results indicate that land surface temperature can be related to land use/land cover classes.
Quantifying Errors in TRMM-Based Multi-Sensor QPE Products Over Land in Preparation for GPM
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.; Tian, Yudong
2011-01-01
Determining uncertainties in satellite-based multi-sensor quantitative precipitation estimates over land of fundamental importance to both data producers and hydro climatological applications. ,Evaluating TRMM-era products also lays the groundwork and sets the direction for algorithm and applications development for future missions including GPM. QPE uncertainties result mostly from the interplay of systematic errors and random errors. In this work, we will synthesize our recent results quantifying the error characteristics of satellite-based precipitation estimates. Both systematic errors and total uncertainties have been analyzed for six different TRMM-era precipitation products (3B42, 3B42RT, CMORPH, PERSIANN, NRL and GSMap). For systematic errors, we devised an error decomposition scheme to separate errors in precipitation estimates into three independent components, hit biases, missed precipitation and false precipitation. This decomposition scheme reveals hydroclimatologically-relevant error features and provides a better link to the error sources than conventional analysis, because in the latter these error components tend to cancel one another when aggregated or averaged in space or time. For the random errors, we calculated the measurement spread from the ensemble of these six quasi-independent products, and thus produced a global map of measurement uncertainties. The map yields a global view of the error characteristics and their regional and seasonal variations, reveals many undocumented error features over areas with no validation data available, and provides better guidance to global assimilation of satellite-based precipitation data. Insights gained from these results and how they could help with GPM will be highlighted.
[A review of atmospheric aerosol research by using polarization remote sensing].
Guo, Hong; Gu, Xing-Fa; Xie, Dong-Hai; Yu, Tao; Meng, Qing-Yan
2014-07-01
In the present paper, aerosol research by using polarization remote sensing in last two decades (1993-2013) was reviewed, including aerosol researches based on POLDER/PARASOL, APS(Aerosol Polarimetry Sensor), Polarized Airborne camera and Ground-based measurements. We emphasize the following three aspects: (1) The retrieval algorithms developed for land and marine aerosol by using POLDER/PARASOL; The validation and application of POLDER/PARASOL AOD, and cross-comparison with AOD of other satellites, such as MODIS AOD. (2) The retrieval algorithms developed for land and marine aerosol by using MICROPOL and RSP/APS. We also introduce the new progress in aerosol research based on The Directional Polarimetric Camera (DPC), which was produced by Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS). (3) The aerosol retrieval algorithms by using measurements from ground-based instruments, such as CE318-2 and CE318-DP. The retrieval results from spaceborne sensors, airborne camera and ground-based measurements include total AOD, fine-mode AOD, coarse-mode AOD, size distribution, particle shape, complex refractive indices, single scattering albedo, scattering phase function, polarization phase function and AOD above cloud. Finally, based on the research, the authors present the problems and prospects of atmospheric aerosol research by using polarization remote sensing, and provide a valuable reference for the future studies of atmospheric aerosol.
NASA Technical Reports Server (NTRS)
1990-01-01
Various papers on remote sensing (RS) for the nineties are presented. The general topics addressed include: subsurface methods, radar scattering, oceanography, microwave models, atmospheric correction, passive microwave systems, RS in tropical forests, moderate resolution land analysis, SAR geometry and SNR improvement, image analysis, inversion and signal processing for geoscience, surface scattering, rain measurements, sensor calibration, wind measurements, terrestrial ecology, agriculture, geometric registration, subsurface sediment geology, radar modulation mechanisms, radar ocean scattering, SAR calibration, airborne radar systems, water vapor retrieval, forest ecosystem dynamics, land analysis, multisensor data fusion. Also considered are: geologic RS, RS sensor optical measurements, RS of snow, temperature retrieval, vegetation structure, global change, artificial intelligence, SAR processing techniques, geologic RS field experiment, stochastic modeling, topography and Digital Elevation model, SAR ocean waves, spaceborne lidar and optical, sea ice field measurements, millimeter waves, advanced spectroscopy, spatial analysis and data compression, SAR polarimetry techniques. Also discussed are: plant canopy modeling, optical RS techniques, optical and IR oceanography, soil moisture, sea ice back scattering, lightning cloud measurements, spatial textural analysis, SAR systems and techniques, active microwave sensing, lidar and optical, radar scatterometry, RS of estuaries, vegetation modeling, RS systems, EOS/SAR Alaska, applications for developing countries, SAR speckle and texture.
The SeaDAS Processing and Analysis System: SeaWiFS, MODIS, and Beyond
NASA Astrophysics Data System (ADS)
MacDonald, M. D.; Ruebens, M.; Wang, L.; Franz, B. A.
2005-12-01
The SeaWiFS Data Analysis System (SeaDAS) is a comprehensive software package for the processing, display, and analysis of ocean data from a variety of satellite sensors. Continuous development and user support by programmers and scientists for more than a decade has helped to make SeaDAS the most widely used software package in the world for ocean color applications, with a growing base of users from the land and sea surface temperature community. Full processing support for past (CZCS, OCTS, MOS) and present (SeaWiFS, MODIS) sensors, and anticipated support for future missions such as NPP/VIIRS, enables end users to reproduce the standard ocean archive product suite distributed by NASA's Ocean Biology Processing Group (OBPG), as well as a variety of evaluation and intermediate ocean, land, and atmospheric products. Availability of the processing algorithm source codes and a software build environment also provide users with the tools to implement custom algorithms. Recent SeaDAS enhancements include synchronization of MODIS processing with the latest code and calibration updates from the MODIS Calibration Support Team (MCST), support for all levels of MODIS processing including Direct Broadcast, a port to the Macintosh OS X operating system, release of the display/analysis-only SeaDAS-Lite, and an extremely active web-based user support forum.
NASA Technical Reports Server (NTRS)
Lo, C. P.; Quattrochi, D. A.; Luvall, J. C.
1997-01-01
Day and night airborne thermal infrared image data at 5 m spatial resolution acquired with the 15-channel (0.45 micron - 12.2 micron) Advanced Thermal and Land Applications Sensor (ATLAS) over Alabama, Huntsville on 7 September, 1994 were used to study changes in the thermal signatures of urban land cover types between day and night. Thermal channel number 13 (9.6 micron - 10.2 micron) data with the best noise-equivalent temperature change (NEAT) of 0.25 C after atmospheric corrections and temperature calibration were selected for use in this analysis. This research also examined the relation between land cover irradiance and vegetation amount, using the Normalized Difference Vegetation Index (NDVI), obtained by ratioing the difference and the sum of the red (channel number 3: 0.60-0.63 micron) and reflected infrared (channel number 6: 0.76-0.90 micron) ATLAS data. Based on the mean radiance values, standard deviations, and NDVI extracted from 351 pairs of polygons of day and night channel number 13 images for the city of Huntsville, a spatial model of warming and cooling characteristics of commercial, residential, agricultural, vegetation, and water features was developed using a GIS approach. There is a strong negative correlation between NDVI and irradiance of residential, agricultural, and vacant/transitional land cover types, indicating that the irradiance of a land cover type is greatly influenced by the amount of vegetation present. The predominance of forests, agricultural, and residential uses associated with varying degrees of tree cover showed great contrasts with commercial and services land cover types in the center of the city, and favors the development of urban heat islands. The high-resolution thermal infrared images match the complexity of the urban environment, and are capable of characterizing accurately the urban land cover types for the spatial modeling of the urban heat island effect using a GIS approach.
Microwave remote sensing from space
NASA Technical Reports Server (NTRS)
Carver, K. R.; Elachi, C.; Ulaby, F. T.
1985-01-01
Spaceborne microwave remote sensors provide perspectives of the earth surface and atmosphere which are of unique value in scientific studies of geomorphology, oceanic waves and topography, atmospheric water vapor and temperatures, vegetation classification and stress, ice types and dynamics, and hydrological characteristics. Microwave radars and radiometers offer enhanced sensitivities to the geometrical characteristics of the earth's surface and its cover, to water in all its forms - soil and vegetation moisture, ice, wetlands, oceans, and atmospheric water vapor, and can provide high-resolution imagery of the earth's surface independent of cloud cover or sun angle. A brief review of the historical development and principles of active and passive microwave remote sensing is presented, with emphasis on the unique characteristics of the information obtainable in the microwave spectrum and the value of this information to global geoscientific studies. Various spaceborne microwave remote sensors are described, with applications to geology, planetology, oceanography, glaciology, land biology, meteorology, and hydrology. A discussion of future microwave remote sensor technological developments and challenges is presented, along with a summary of future missions being planned by several countries.
NASA Astrophysics Data System (ADS)
Norouzi, H.; Temimi, M.; Turk, J.; Prigent, C.; Furuzawa, F.; Tian, Y.
2013-12-01
Microwave land surface emissivity acts as the background signal to estimate rain rate, cloud liquid water, and total precipitable water. Therefore, its accuracy can directly affect the uncertainty of such measurements. Over land, unlike over oceans, the microwave emissivity is relatively high and and varies significantly as surface conditions and land cover change. Lack of ground truth measurement of microwave emissivity especially on global scale has made the uncertainty analysis of this parameter very challenging. The present study investigates the consistency among the existing global land emissivity estimates from different microwave sensors. The products are determined from various sensors and frequencies ranging from 7 to 90 GHz. The selected emissivity products in this study are from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) by NOAA - Cooperative remote Sensing and Science and Technology Center (CREST), the Special Sensor Microwave Imager (SSM/I) by The Centre National de la Recherche Scientifique (CNRS) in France, TRMM Microwave Imager (TMI) by Nagoya University, Japan, and WindSat by NASA Jet Propulsion Laboratory (JPL). The emissivity estimates are based on different algorithms and ancillary data sets. This work investigates the difference among these emissivity products from 2003 to 2008 dynamically and spectrally. The similarities and discrepancies of the retrievals are studied at different land cover types. The mean relative difference (MRD) and other statistical parameters are calculated temporally for all five years of the study. Some inherent discrepancies between the selected products can be attributed to the difference in geometry in terms of incident angle, spectral response, and the foot print size which can affect the estimations. The results reveal that in lower frequencies (=<19 GHz) ancillary data especially skin temperature data set is the major source of difference in emissivity retrievals, while in higher frequencies (>19 GHz) the residuals of atmospheric effect on the signal cause inconsistency among the products. The time series and correlation between emissivity maps were analyzed over different land classes to assess the consistency of emissivity variations with geophysical variable such as soil moisture, precipitation, and vegetation.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; White, Kristopher D.
2014-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL (Jedlovec 2013; Ralph et al. 2013; Merceret et al. 2013) is running a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework (hereafter referred to as the "SPoRT-LIS"). Output from the real-time SPoRT-LIS is used for (1) initializing land surface variables for local modeling applications, and (2) displaying in decision support systems for situational awareness and drought monitoring at select NOAA/National Weather Service (NWS) partner offices. The SPoRT-LIS is currently run over a domain covering the southeastern half of the Continental United States (CONUS), with an additional experimental real-time run over the entire CONUS and surrounding portions of southern Canada and northern Mexico. The experimental CONUS run incorporates hourly quantitative precipitation estimation (QPE) from the National Severe Storms Laboratory Multi- Radar Multi-Sensor (MRMS) product (Zhang et al. 2011, 2014), which will be transitioned into operations at the National Centers for Environmental Prediction (NCEP) in Fall 2014. This paper describes the current and experimental SPoRT-LIS configurations, and documents some of the limitations still remaining through the advent of MRMS precipitation analyses in the SPoRT-LIS land surface model (LSM) simulations. Section 2 gives background information on the NASA LIS and describes the realtime SPoRT-LIS configurations being compared. Section 3 presents recent work done to develop a training module on situational awareness applications of real-time SPoRT-LIS output. Comparisons between output from the two SPoRT-LIS runs are shown in Section 4, including a documentation of issues encountered in using the MRMS precipitation dataset. A summary and future work in given in Section 5, followed by acknowledgements and references.
NASA Astrophysics Data System (ADS)
Kingfield, D.; de Beurs, K.
2014-12-01
It has been demonstrated through various case studies that multispectral satellite imagery can be utilized in the identification of damage caused by a tornado through the change detection process. This process involves the difference in returned surface reflectance between two images and is often summarized through a variety of ratio-based vegetation indices (VIs). Land cover type plays a large contributing role in the change detection process as the reflectance properties of vegetation can vary based on several factors (e.g. species, greenness, density). Consequently, this provides the possibility for a variable magnitude of loss, making certain land cover regimes less reliable in the damage identification process. Furthermore, the tradeoff between sensor resolution and orbital return period may also play a role in the ability to detect catastrophic loss. Moderate resolution imagery (e.g. Moderate Resolution Imaging Spectroradiometer (MODIS)) provides relatively coarse surface detail with a higher update rate which could hinder the identification of small regions that underwent a dynamic change. Alternatively, imagery with higher spatial resolution (e.g. Landsat) have a longer temporal return period between successive images which could result in natural recovery underestimating the absolute magnitude of damage incurred. This study evaluates the role of land cover type and sensor resolution on four high-end (EF3+) tornado events occurring in four different land cover groups (agriculture, forest, grassland, urban) in the spring season. The closest successive clear images from both Landsat 5 and MODIS are quality controlled for each case. Transacts of surface reflectance across a homogenous land cover type both inside and outside the damage swath are extracted. These metrics are synthesized through the calculation of six different VIs to rank the calculated change metrics by land cover type, sensor resolution and VI.
Development of LIDAR sensor systems for autonomous safe landing on planetary bodies
NASA Astrophysics Data System (ADS)
Amzajerdian, F.; Pierrottet, D.; Petway, L.; Vanek, M.
2017-11-01
Future NASA exploratory missions to the Moon and Mars will require safe soft-landings at the designated sites with a high degree of precision. These sites may include areas of high scientific value with relatively rough terrain with little or no solar illumination and possibly areas near pre-deployed assets. The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of large robotic and manned vehicles with a high degree of precision. Currently, NASA-LaRC is developing novel lidar sensors aimed at meeting NASA's objectives for future planetary landing missions under the Autonomous Landing and Hazard Avoidance (ALHAT) project. These lidar sensors are 3-Dimensional Imaging Flash Lidar, Doppler Lidar, and Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain identifying hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase between 1000 m to 500 m above the ground can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground velocity and distance data allowing for precision navigation to the selected landing site. Prior to the approach phase at altitudes of over 15 km, the Laser Altimeter can provide sufficient data for updating the vehicle position and attitude data from the Inertial Measurement Unit. At these higher altitudes, either the Laser Altimeter or the Flash Lidar can be used for generating a contour map of the terrain below for identifying known surface features such as craters for further reducing the vehicle relative position error.
Development of lidar sensor systems for autonomous safe landing on planetary bodies
NASA Astrophysics Data System (ADS)
Amzajerdian, F.; Pierrottet, D.; Petway, L.; Vanek, M.
2017-11-01
Future NASA exploratory missions to the Moon and Mars will require safe soft-landings at the designated sites with a high degree of precision. These sites may include areas of high scientific value with relatively rough terrain with little or no solar illumination and possibly areas near pre-deployed assets. The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of large robotic and manned vehicles with a high degree of precision. Currently, NASA-LaRC is developing novel lidar sensors aimed at meeting NASA's objectives for future planetary landing missions under the Autonomous Landing and Hazard Avoidance (ALHAT) project [1]. These lidar sensors are 3-Dimensional Imaging Flash Lidar, Doppler Lidar, and Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain identifying hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase between 1000 m to 500 m above the ground can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground velocity and distance data allowing for precision navigation to the selected landing site. Prior to the approach phase at altitudes of over 15 km, the Laser Altimeter can provide sufficient data for updating the vehicle position and attitude data from the Inertial Measurement Unit. At these higher altitudes, either the Laser Altimeter or the Flash Lidar can be used for generating a contour map of the terrain below for identifying known surface features such as craters for further reducing the vehicle relative position error.
14 CFR 91.175 - Takeoff and landing under IFR.
Code of Federal Regulations, 2011 CFR
2011-01-01
... to a landing. (j) Limitation on procedure turns. In the case of a radar vector to a final approach... image intensifying; (2) The EFVS sensor imagery and aircraft flight symbology (i.e., at least airspeed...
14 CFR 91.175 - Takeoff and landing under IFR.
Code of Federal Regulations, 2014 CFR
2014-01-01
... to a landing. (j) Limitation on procedure turns. In the case of a radar vector to a final approach... image intensifying; (2) The EFVS sensor imagery and aircraft flight symbology (i.e., at least airspeed...
14 CFR 91.175 - Takeoff and landing under IFR.
Code of Federal Regulations, 2010 CFR
2010-01-01
... to a landing. (j) Limitation on procedure turns. In the case of a radar vector to a final approach... image intensifying; (2) The EFVS sensor imagery and aircraft flight symbology (i.e., at least airspeed...
14 CFR 91.175 - Takeoff and landing under IFR.
Code of Federal Regulations, 2012 CFR
2012-01-01
... to a landing. (j) Limitation on procedure turns. In the case of a radar vector to a final approach... image intensifying; (2) The EFVS sensor imagery and aircraft flight symbology (i.e., at least airspeed...
14 CFR 91.175 - Takeoff and landing under IFR.
Code of Federal Regulations, 2013 CFR
2013-01-01
... to a landing. (j) Limitation on procedure turns. In the case of a radar vector to a final approach... image intensifying; (2) The EFVS sensor imagery and aircraft flight symbology (i.e., at least airspeed...
NASA Astrophysics Data System (ADS)
Lacaze, Roselyne; Smets, Bruno; Calvet, Jean-Christophe; Camacho, Fernando; Swinnen, Else; Verger, Aleixandre
2017-04-01
The Global component of the Copernicus Land Monitoring Service (CGLS) provides continuously a set of bio-geophysical variables describing the dynamics of vegetation, the energy budget at the continental surface, the water cycle and the cryosphere. Products are generated on a reliable and automatic basis from Earth Observation satellite data, at a frequency ranging from one hour to 10 days. They are accessible free of charge through the GCLS website (http://land.copernicus.eu/global/), associated with documentation describing the physical methodologies, the technical properties of products, and the quality of variables based on the results of validation exercises. The portfolio of the CGLS contains some Essential Climate Variables (ECV) like the Leaf Area Index (LAI), the Fraction of PAR absorbed by the vegetation (FAPAR), the surface albedo, and additional vegetation indices. These products were derived from SPOT/VEGETATION sensor data till December 2013, are currently derived from PROBA-V sensor data, and will be derived in the future from Sentinel-3 data. This talk will show how challenging is the transition between sensors to ensure the sustainability of the production while keeping the consistency of the time series. We will discuss the various sources of differences from input data, the impact of these differences on the biophysical variables and, in turn, on some final users' applications as such those based upon anomalies or assimilation of time series. We will present the mitigation measures taken to reduce as much as possible this impact. We will conclude with the lessons learnt and how this experience will be exploited to manage the transition towards Sentinel-3.
NASA Astrophysics Data System (ADS)
Blair, J. B.; Wake, S.; Rabine, D.; Hofton, M. A.; Mitchell, S.
2013-12-01
The Land Vegetation and Ice Sensor (LVIS) is a high-altitude, wide-swath laser altimeter that has, for over 15 years, demonstrated state-of-the-art performance in surface altimetry, including many aspects of remote sensing of the cryosphere such as precise topography of ice sheets and sea ice. NASA Goddard, in cooperation with NASA's Earth Science Technology Office (ESTO), has developed a new, more capable sensor that can operate autonomously from a high-altitude UAV aircraft to further enhance the LVIS capability and extend its reach and coverage. In June 2012, this latest sensor, known as LVIS-GH, was integrated onto NASA's Global Hawk aircraft and completed a successful high-altitude demonstration flight over Death Valley, Owens Valley, and the Sierra Nevada region of California. Data were collected over a wide variety of terrain types from 58,000' (> 17 km) altitude during the 6 hour long test flight. The full-waveform laser altimetry technique employed by LVIS and LVIS-GH provides precise surface topography measurements for solid earth and cryospheric applications and captures the vertical structure of forests in support of territorial ecology studies. LVIS-GH fully illuminates and maps a 4 km swath and provides cm-level range precision, as demonstrated in laboratory and horizontal range testing, as well as during this test flight. The cm range precision is notable as it applies to accurate measurements of sea ice freeboard and change detection of subtle surface deformation such as heaving in permafrost areas. In recent years, LVIS has primarily supported Operation IceBridge activities, including deployments to the Arctic and Antarctic on manned aircraft such as the NASA DC-8 and P-3. The LVIS-GH sensor provides an major upgrade of coverage capability and remote access; LVIS-GH operating on the long-duration Global Hawk aircraft can map up to 50,000 km^2 in a single flight and can provide access to remote regions such as the entirety of Antarctica. Future applications of LVIS-GH could include comprehensive mapping of cryosphere targets over large regions such as Alaska, Greenland, and Antarctica as well as an opportunity for seasonal mapping of sea and land ice. Data from the test flight will be presented along with accuracy assessment and specific examples of the cm-level range precision and wide swath mapping ability relevant to cryospheric remote sensing.
Land use change detection based on multi-date imagery from different satellite sensor systems
NASA Technical Reports Server (NTRS)
Stow, Douglas A.; Collins, Doretta; Mckinsey, David
1990-01-01
An empirical study is conducted to assess the accuracy of land use change detection using satellite image data acquired ten years apart by sensors with differing spatial resolutions. The primary goals of the investigation were to (1) compare standard change detection methods applied to image data of varying spatial resolution, (2) assess whether to transform the raster grid of the higher resolution image data to that of the lower resolution raster grid or vice versa in the registration process, (3) determine if Landsat/Thermatic Mapper or SPOT/High Resolution Visible multispectral data provide more accurate detection of land use changes when registered to historical Landsat/MSS data. It is concluded that image ratioing of multisensor, multidate satellite data produced higher change detection accuracies than did principal components analysis, and that it is useful as a land use change enhancement method.
Results from a GPS Shuttle Training Aircraft flight test
NASA Technical Reports Server (NTRS)
Saunders, Penny E.; Montez, Moises N.; Robel, Michael C.; Feuerstein, David N.; Aerni, Mike E.; Sangchat, S.; Rater, Lon M.; Cryan, Scott P.; Salazar, Lydia R.; Leach, Mark P.
1991-01-01
A series of Global Positioning System (GPS) flight tests were performed on a National Aeronautics and Space Administration's (NASA's) Shuttle Training Aircraft (STA). The objective of the tests was to evaluate the performance of GPS-based navigation during simulated Shuttle approach and landings for possible replacement of the current Shuttle landing navigation aid, the Microwave Scanning Beam Landing System (MSBLS). In particular, varying levels of sensor data integration would be evaluated to determine the minimum amount of integration required to meet the navigation accuracy requirements for a Shuttle landing. Four flight tests consisting of 8 to 9 simulation runs per flight test were performed at White Sands Space Harbor in April 1991. Three different GPS receivers were tested. The STA inertial navigation, tactical air navigation, and MSBLS sensor data were also recorded during each run. C-band radar aided laser trackers were utilized to provide the STA 'truth' trajectory.
Magnetorheological fluids and applications to adaptive landing gear for a lightweight helicopter
NASA Astrophysics Data System (ADS)
Ahure-Powell, Louise A.
During hard landing or crash events of a helicopter there are impact loads that can be injurious to crew and other occupants as well as damaging to the helicopter structure. Landing gear systems are the first in line to protect crew and passengers from detrimental crash loads. The main focus of this research is to improve landing gear systems of a lightweight helicopter. Magnetorheological fluids (MRFs) provide potential solutions to several engineering challenges in a broad range of applications. One application that has been considered recently is the use of magnetorheological (MR) dampers in helicopter landing gear systems. In such application, the adaptive landing gear systems have to continuously adjust their stroking load in response to various operating conditions. In order to support this rotorcraft application, there is a necessity to validate that MRFs are qualified for landing gear applications. First, MRF composites, synthesized utilizing three hydraulic oils certified for use in landing gear systems, two average diameters of spherical magnetic particles, and a lecithin surfactant, are formulated to investigate their performance for potential use in a helicopter landing gear. The magnetorheology of these MR fluids is characterized through a range of tests, including (a) magnetorheology (yield stress and viscosity) as a function of magnetic field, (b) sedimentation analysis using an inductance-based sensor, (c) cycling of a small-scale MR damper undergoing sinusoidal excitations (at 2.5 and 5 Hz), and (d) impact testing of an MR damper for a range of magnetic field strengths and velocities using a free-flight drop tower facility. The performance of these MR fluids was analyzed, and their behavior was compared to standard commercial MR fluids. Based on this range of tests used to characterize the MR fluids synthesized, it was shown that it is feasible to utilize certified landing gear hydraulic oils as the carrier fluids to make suitable MR fluids. Another objective of this research is to satisfy the requirement of a helicopter landing gear damper to enable adaptive shock mitigation performance over a desired sink rate range. It was intended to maintain a constant stroking force of 17 793 N (4000 lbf) over a sink rate range of 1.8-7.9 m/s (6-26 ft/s), which is a substantial increase of the high-end of the sink rate range from 3.7 m/s (12 ft/s), in prior related work, to 7.9 m/s (26 ft/s). To achieve this increase in the high-end of the sink rate range, a spiral wave spring-assisted passive valve MR landing gear damper was developed. Drop tests were first conducted using a single MR landing gear damper. In order to maintain the peak stroking load constant over the desired sink rate range, a bang-bang current control algorithm was formulated using a force feedback signal. The controlled stroking loads were experimentally evaluated using a single drop damper test setup. To emulate the landing gear system of a lightweight helicopter, an iron bird drop test apparatus with four spiral wave spring-assisted relief valves MR landing gear dampers, was fabricated and successfully tested. The effectiveness of the proposed adaptive MR landing gear damper was theoretically and experimentally verified. The bang-bang current control algorithm successfully regulated the stroking load at 4000 lbf over a sink rate range of 6-22 ft/s in the iron bird tests, which significantly exceeds the sink rate range of the previous study (6-12 ft/s). The effectiveness of the proposed adaptive MR landing gear damper with a spiral wave spring-assisted passive valve is theoretically and experimentally verified.
Integrated monitoring of ecological conditions in wetland-upland landscapes
Gallant, Alisa; Sadinski, Walt
2012-01-01
Landscapes of interwoven wetlands and uplands offer a rich set of ecosystem goods and services. Managing lands to maximize ecosystem services requires information that distinguishes change caused by local actions from broader-scale shifts in climate, land use, and other forms of global change. Satellite and airborne sensors collect valuable data for this purpose, especially when the data are analyzed along with data collected from ground-based sensors. The U.S. Geological Survey (USGS) is using remote sensing technology in this way as part of the Terrestrial Wetland Global Change Research Network to assess effects of climate change interacting with land-use change and other potential stressors along environmental gradients of wetland-upland landscapes in the United States and Canada.
Apollo 9 Lunar Module in lunar landing configuration
NASA Technical Reports Server (NTRS)
1969-01-01
View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on the 'Spider' has been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were Astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot.
Meyer, D.; Chander, G.
2006-01-01
Increasingly, data from multiple sensors are used to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products (e.g., vegetation cover, albedo, surface temperature) derived from different sensors can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectroradiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Crosscalibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study explores the impacts of cross-calibrating sensors when such conditions are met to some degree but not perfectly. In order to constrain the range of conditions at some level, the analysis is limited to sensors where cross-calibration studies have been conducted (Enhanced Thematic Mapper Plus (ETM+) on Landsat-7 (L7), Advance Land Imager (ALI) and Hyperion on Earth Observer-1 (EO-1)) and including systems having somewhat dissimilar geometry, spatial resolution & spectral response characteristics but are still part of the so-called "A.M. constellation" (Moderate Resolution Imaging Spectrometer (MODIS) aboard the Terra platform). Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These instruments are cross calibrated using the Railroad Valley playa in Nevada. Best fit linear coefficients (slope and offset) are provided for ALI-to-MODIS and ETM+-to-MODIS cross calibrations, and root-mean-squared errors (RMSEs) and correlation coefficients are provided to quantify the uncertainty in these relationships. In theory, the linear fits and uncertainties can be used to compare radiance and reflectance products derived from each instrument.
Consensus-based distributed estimation in multi-agent systems with time delay
NASA Astrophysics Data System (ADS)
Abdelmawgoud, Ahmed
During the last years, research in the field of cooperative control of swarm of robots, especially Unmanned Aerial Vehicles (UAV); have been improved due to the increase of UAV applications. The ability to track targets using UAVs has a wide range of applications not only civilian but also military as well. For civilian applications, UAVs can perform tasks including, but not limited to: map an unknown area, weather forecasting, land survey, and search and rescue missions. On the other hand, for military personnel, UAV can track and locate a variety of objects, including the movement of enemy vehicles. Consensus problems arise in a number of applications including coordination of UAVs, information processing in wireless sensor networks, and distributed multi-agent optimization. We consider a widely studied consensus algorithms for processing sensed data by different sensors in wireless sensor networks of dynamic agents. Every agent involved in the network forms a weighted average of its own estimated value of some state with the values received from its neighboring agents. We introduced a novelty of consensus-based distributed estimation algorithms. We propose a new algorithm to reach a consensus given time delay constraints. The proposed algorithm performance was observed in a scenario where a swarm of UAVs measuring the location of a ground maneuvering target. We assume that each UAV computes its state prediction and shares it with its neighbors only. However, the shared information applied to different agents with variant time delays. The entire group of UAVs must reach a consensus on target state. Different scenarios were also simulated to examine the effectiveness and performance in terms of overall estimation error, disagreement between delayed and non-delayed agents, and time to reach a consensus for each parameter contributing on the proposed algorithm.
NASA Astrophysics Data System (ADS)
Laiolo, Paola; Gabellani, Simone; Rudari, Roberto; Boni, Giorgio; Puca, Silvia
2013-04-01
Soil moisture plays a fundamental role in the partitioning of mass and energy fluxes between land surface and atmosphere, thereby influencing climate and weather, and it is important in determining the rainfall-runoff response of catchments; moreover, in hydrological modelling and flood forecasting, a correct definition of moisture conditions is a key factor for accurate predictions. Different sources of information for the estimation of the soil moisture state are currently available: satellite data, point measurements and model predictions. All are affected by intrinsic uncertainty. Among different satellite sensors that can be used for soil moisture estimation three major groups can be distinguished: passive microwave sensors (e.g., SSMI), active sensors (e.g. SAR, Scatterometers), and optical sensors (e.g. Spectroradiometers). The last two families, mainly because of their temporal and spatial resolution seem the most suitable for hydrological applications In this work soil moisture point measurements from 10 sensors in the Italian territory are compared of with the satellite products both from the HSAF project SM-OBS-2, derived from the ASCAT scatterometer, and from ACHAB, an operative energy balance model that assimilate LST data derived from MSG and furnishes daily an evaporative fraction index related to soil moisture content for all the Italian region. Distributed comparison of the ACHAB and SM-OBS-2 on the whole Italian territory are performed too.
NASA Technical Reports Server (NTRS)
Morrison, D. B. (Editor); Scherer, D. J.
1977-01-01
Papers are presented on a variety of techniques for the machine processing of remotely sensed data. Consideration is given to preprocessing methods such as the correction of Landsat data for the effects of haze, sun angle, and reflectance and to the maximum likelihood estimation of signature transformation algorithm. Several applications of machine processing to agriculture are identified. Various types of processing systems are discussed such as ground-data processing/support systems for sensor systems and the transfer of remotely sensed data to operational systems. The application of machine processing to hydrology, geology, and land-use mapping is outlined. Data analysis is considered with reference to several types of classification methods and systems.
Terrestrial Applications of the Thermal Infrared Sensor, TIRS
NASA Technical Reports Server (NTRS)
Smith, Ramsey L.; Thome, Kurtis; Richardson, Cathleen; Irons, James; Reuter, Dennis
2009-01-01
Landsat satellites have acquired single-band thermal images since 1978. The next satellile in the heritage, Landsat Data Continuity Mission (LDCM), is scheduled to launch in December 2012. LDCM will contain the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), where TIRS operates in concert with, but independently of OLI. This paper will provide an overview of the remote sensing instrument TIRS. The T1RS instrument was designed at National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) where it will be fabricated and calibrated as well. Protecting the integrity of the Scientific Data that will be collected from TIRS played a strong role in definition of the calibration test equipment and procedures used for the optical, radiometric, and spatial calibration. The data that will be produced from LCDM will continue to be used world wide for environment monitoring and resource management.
NASA Technical Reports Server (NTRS)
Huck, F. O.; Davis, R. E.; Fales, C. L.; Aherron, R. M.
1982-01-01
A computational model of the deterministic and stochastic processes involved in remote sensing is used to study spectral feature identification techniques for real-time onboard processing of data acquired with advanced earth-resources sensors. Preliminary results indicate that: Narrow spectral responses are advantageous; signal normalization improves mean-square distance (MSD) classification accuracy but tends to degrade maximum-likelihood (MLH) classification accuracy; and MSD classification of normalized signals performs better than the computationally more complex MLH classification when imaging conditions change appreciably from those conditions during which reference data were acquired. The results also indicate that autonomous categorization of TM signals into vegetation, bare land, water, snow and clouds can be accomplished with adequate reliability for many applications over a reasonably wide range of imaging conditions. However, further analysis is required to develop computationally efficient boundary approximation algorithms for such categorization.
ESTO Investments in Innovative Sensor Technologies for Remote Sensing
NASA Technical Reports Server (NTRS)
Babu, Sachidananda R.
2017-01-01
For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.
NASA Technical Reports Server (NTRS)
Peters-Lidar, Christa D.; Tian, Yudong; Kenneth, Tian; Harrison, Kenneth; Kumar, Sujay
2011-01-01
Land surface modeling and data assimilation can provide dynamic land surface state variables necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in the Global Precipitation Measurement Mission (GPM), is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. In order to investigate the robustness of both the land surface model states and the microwave emissivity and forward radiative transfer models, we have undertaken a multi-site investigation as part of the NASA Precipitation Measurement Missions (PMM) Land Surface Characterization Working Group. Specifically, we will demonstrate the performance of the Land Information System (LIS; http://lis.gsfc.nasa.gov; Peters-Lidard et aI., 2007; Kumar et al., 2006) coupled to the Joint Center for Satellite Data Assimilation (JCSDA's) Community Radiative Transfer Model (CRTM; Weng, 2007; van Deist, 2009). The land surface is characterized by complex physical/chemical constituents and creates temporally and spatially heterogeneous surface properties in response to microwave radiation scattering. The uncertainties in surface microwave emission (both surface radiative temperature and emissivity) and very low polarization ratio are linked to difficulties in rainfall detection using low-frequency passive microwave sensors (e.g.,Kummerow et al. 2001). Therefore, addressing these issues is of utmost importance for the GPM mission. There are many approaches to parameterizing land surface emission and radiative transfer, some of which have been customized for snow (e.g., the Helsinki University of Technology or HUT radiative transfer model;) and soil moisture (e.g., the Land Surface Microwave Emission Model or LSMEM).
Solution to the Problem of Calibration of Low-Cost Air Quality Measurement Sensors in Networks.
Miskell, Georgia; Salmond, Jennifer A; Williams, David E
2018-04-27
We provide a simple, remote, continuous calibration technique suitable for application in a hierarchical network featuring a few well-maintained, high-quality instruments ("proxies") and a larger number of low-cost devices. The ideas are grounded in a clear definition of the purpose of a low-cost network, defined here as providing reliable information on air quality at small spatiotemporal scales. The technique assumes linearity of the sensor signal. It derives running slope and offset estimates by matching mean and standard deviations of the sensor data to values derived from proxies over the same time. The idea is extremely simple: choose an appropriate proxy and an averaging-time that is sufficiently long to remove the influence of short-term fluctuations but sufficiently short that it preserves the regular diurnal variations. The use of running statistical measures rather than cross-correlation of sites means that the method is robust against periods of missing data. Ideas are first developed using simulated data and then demonstrated using field data, at hourly and 1 min time-scales, from a real network of low-cost semiconductor-based sensors. Despite the almost naïve simplicity of the method, it was robust for both drift detection and calibration correction applications. We discuss the use of generally available geographic and environmental data as well as microscale land-use regression as means to enhance the proxy estimates and to generalize the ideas to other pollutants with high spatial variability, such as nitrogen dioxide and particulates. These improvements can also be used to minimize the required number of proxy sites.
Classification of Liss IV Imagery Using Decision Tree Methods
NASA Astrophysics Data System (ADS)
Verma, Amit Kumar; Garg, P. K.; Prasad, K. S. Hari; Dadhwal, V. K.
2016-06-01
Image classification is a compulsory step in any remote sensing research. Classification uses the spectral information represented by the digital numbers in one or more spectral bands and attempts to classify each individual pixel based on this spectral information. Crop classification is the main concern of remote sensing applications for developing sustainable agriculture system. Vegetation indices computed from satellite images gives a good indication of the presence of vegetation. It is an indicator that describes the greenness, density and health of vegetation. Texture is also an important characteristics which is used to identifying objects or region of interest is an image. This paper illustrate the use of decision tree method to classify the land in to crop land and non-crop land and to classify different crops. In this paper we evaluate the possibility of crop classification using an integrated approach methods based on texture property with different vegetation indices for single date LISS IV sensor 5.8 meter high spatial resolution data. Eleven vegetation indices (NDVI, DVI, GEMI, GNDVI, MSAVI2, NDWI, NG, NR, NNIR, OSAVI and VI green) has been generated using green, red and NIR band and then image is classified using decision tree method. The other approach is used integration of texture feature (mean, variance, kurtosis and skewness) with these vegetation indices. A comparison has been done between these two methods. The results indicate that inclusion of textural feature with vegetation indices can be effectively implemented to produce classifiedmaps with 8.33% higher accuracy for Indian satellite IRS-P6, LISS IV sensor images.
NASA Astrophysics Data System (ADS)
An, G. Q.
2018-04-01
Takes the Yellow River Delta as an example, this paper studies the characteristics of remote sensing imagery with dominant ecological functional land use types, compares the advantages and disadvantages of different image in interpreting ecological land use, and uses research results to analyse the changing trend of ecological land in the study area in the past 30 years. The main methods include multi-period, different sensor images and different seasonal spectral curves, vegetation index, GIS and data analysis methods. The results show that the main ecological land in the Yellow River Delta included coastal beaches, saline-alkaline lands, and water bodies. These lands have relatively distinct spectral and texture features. The spectral features along the beach show characteristics of absorption in the green band and reflection in the red band. This feature is less affected by the acquisition year, season, and sensor type. Saline-alkali land due to the influence of some saline-alkaline-tolerant plants such as alkali tent, Tamarix and other vegetation, the spectral characteristics have a certain seasonal changes, winter and spring NDVI index is less than the summer and autumn vegetation index. The spectral characteristics of a water body generally decrease rapidly with increasing wavelength, and the reflectance in the red band increases with increasing sediment concentration. In conclusion, according to the spectral characteristics and image texture features of the ecological land in the Yellow River Delta, the accuracy of image interpretation of such ecological land can be improved.
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.; Nold, Dean E.
2003-01-01
A simulation study was conducted in 1994 at Langley Research Center that used 12 commercial airline pilots repeatedly flying complex Microwave Landing System (MLS)-type approaches to parallel runways under Category IIIc weather conditions. Two sensor insert concepts of 'Synthetic Vision Systems' (SVS) were used in the simulated flights, with a more conventional electro-optical display (similar to a Head-Up Display with raster capability for sensor imagery), flown under less restrictive visibility conditions, used as a control condition. The SVS concepts combined the sensor imagery with a computer-generated image (CGI) of an out-the-window scene based on an onboard airport database. Various scenarios involving runway traffic incursions (taxiing aircraft and parked fuel trucks) and navigational system position errors (both static and dynamic) were used to assess the pilots' ability to manage the approach task with the display concepts. The two SVS sensor insert concepts contrasted the simple overlay of sensor imagery on the CGI scene without additional image processing (the SV display) to the complex integration (the AV display) of the CGI scene with pilot-decision aiding using both object and edge detection techniques for detection of obstacle conflicts and runway alignment errors.
Orbiter Landing Loads Math Model Description and Correlation with ALT Flight Data
NASA Technical Reports Server (NTRS)
Hamilton, D. A.; Schliesing, J. A.; Zupp, G. A., Jr.
1980-01-01
Results of the space shuttle approach and landing test are examined in order to assess landing gear characteristics and performance and verify landing dynamic analyses. The landing gears were instrumented with load-calibrated strain gages, a wheel-speed sensor, and strut stroke measurement devices. The mathematical procedure used in predicting the shuttle touchdown loads and dynamics is presented together with the comparisons between measured flight data and the analytical predictions. Conclusions from these data are also presented.
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander comes to rest after a successful landing, capping free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
Diazo techniques for remote sensor data analysis
NASA Technical Reports Server (NTRS)
Mount, S.; Whitebay, L. E.
1979-01-01
Cost and time to extract land use maps, natural-resource surveys, and other data from aerial and satellite photographs are reduced by diazo processing. Process can be controlled to enhance features such as vegetation, land boundaries, and bodies of water.
NASA Technical Reports Server (NTRS)
Guyenne, T. D. (Editor); Hunt, James J. (Editor)
1984-01-01
Synthetic aperature radar; systems components; data collection; data evaluation; optical sensor data; air pollution; water pollution; land and sea observation; active sensors (ir and w); and ers-1 are discussed.
NASA Technical Reports Server (NTRS)
Trawny, Nikolas; Huertas, Andres; Luna, Michael E.; Villalpando, Carlos Y.; Martin, Keith E.; Carson, John M.; Johnson, Andrew E.; Restrepo, Carolina; Roback, Vincent E.
2015-01-01
The Hazard Detection System (HDS) is a component of the ALHAT (Autonomous Landing and Hazard Avoidance Technology) sensor suite, which together provide a lander Guidance, Navigation and Control (GN&C) system with the relevant measurements necessary to enable safe precision landing under any lighting conditions. The HDS consists of a stand-alone compute element (CE), an Inertial Measurement Unit (IMU), and a gimbaled flash LIDAR sensor that are used, in real-time, to generate a Digital Elevation Map (DEM) of the landing terrain, detect candidate safe landing sites for the vehicle through Hazard Detection (HD), and generate hazard-relative navigation (HRN) measurements used for safe precision landing. Following an extensive ground and helicopter test campaign, ALHAT was integrated onto the Morpheus rocket-powered terrestrial test vehicle in March 2014. Morpheus and ALHAT then performed five successful free flights at the simulated lunar hazard field constructed at the Shuttle Landing Facility (SLF) at Kennedy Space Center, for the first time testing the full system on a lunar-like approach geometry in a relevant dynamic environment. During these flights, the HDS successfully generated DEMs, correctly identified safe landing sites and provided HRN measurements to the vehicle, marking the first autonomous landing of a NASA rocket-powered vehicle in hazardous terrain. This paper provides a brief overview of the HDS architecture and describes its in-flight performance.
Land ECVs from QA4ECV using an optimal estimation framework
NASA Astrophysics Data System (ADS)
Muller, Jan-Peter; Kharbouche, Said; Lewis, Philip; Danne, Olaf; Blessing, Simon; Giering, Ralf; Gobron, Nadine; Lanconelli, Christian; Govaerts, Yves; Schulz, Joerg; Doutriaux-Boucher, Marie; Lattanzio, Alessio; Aoun, Youva
2017-04-01
In the ESA-DUE GlobAlbedo project (http://www.GlobAlbedo.org), a 15 year record of land surface albedo was generated from the European VEGETATION & MERIS sensors using optimal estimation. This was based on 3 broadbands (0.4-0.7, 0.7-3, 0.4-3µm) and fused data at level-2 after converting from spectral narrowband to these 3 broadbands with surface BRFs. A 10 year long record of land surface albedo climatology was generated from Collection 5 of the MODIS BRDF product for these same broadbands. This was employed as an a priori estimate for an optimal estimation based retrieval of land surface albedo when there were insufficient samples from the European sensors. This so-called MODIS prior was derived at 1km from the 500m MOD43A1,2 BRDF inputs every 8 days using the QA bits and the method described in the GlobAlbedo ATBD which is available from the website (http://www.globalbedo.org/docs/GlobAlbedo_Albedo_ATBD_V4.12.pdf). In the ESA-STSE WACMOS-ET project, FastOpt generated fapar & LAI based on this GlobAlbedo BRDF with associated per pixel uncertainty using the TIP framework. In the successor EU-FP7-QA4ECV* project, we have developed a 33 year record (1981-2014) of Earth surface spectral and broadband albedo (i.e. including the ocean and sea-ice) using optimal estimation for the land and where available, relevant sensors for "instantaneous" retrievals over the poles (Kharbouche & Muller, this conference). This requires the longest possible land surface spectral and broadband BRDF record that can only be supplied by a 16 year of MODIS Collection 6 BRDFs at 500m but produced on a daily basis. The CEMS Big Data computer at RAL was used to generate 7 spectral bands and 3 broadband BRDF with and without snow and snow_only. We will discuss the progress made since the start of the QA4ECV project on the production of a new fused land surface BRDF/albedo spectral and broadband CDR product based on four European sensors: MERIS, (A)ATSR(2), VEGETATION, PROBA-V and two US sensors: MISR & MODIS. For the European sensors, an uniform atmospheric correction scheme has been employed to generate spectral BRF products and these have all been mapped into MODIS spectral bands whilst the US sensors have employed their own level-2 BRF retrieval schemes with associated uncertainty information. Progress is also demonstrated on the use of TIP for fapar/LAI retrieval from the broadband BRDFs as well as fapar from AVHRR based on retrievals from MERIS and OLCI. In parallel, work has taken place at two of our partners on the production of a new geostationary broadband BRF and associated albedo and their fusion with AVHRR-LTDR for a 33 year record. QA4ECV has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 607405
NASA Astrophysics Data System (ADS)
Dondurur, Mehmet
The primary objective of this study was to determine the degree to which modern SAR systems can be used to obtain information about the Earth's vegetative resources. Information obtainable from microwave synthetic aperture radar (SAR) data was compared with that obtainable from LANDSAT-TM and SPOT data. Three hypotheses were tested: (a) Classification of land cover/use from SAR data can be accomplished on a pixel-by-pixel basis with the same overall accuracy as from LANDSAT-TM and SPOT data. (b) Classification accuracy for individual land cover/use classes will differ between sensors. (c) Combining information derived from optical and SAR data into an integrated monitoring system will improve overall and individual land cover/use class accuracies. The study was conducted with three data sets for the Sleeping Bear Dunes test site in the northwestern part of Michigan's lower peninsula, including an October 1982 LANDSAT-TM scene, a June 1989 SPOT scene and C-, L- and P-Band radar data from the Jet Propulsion Laboratory AIRSAR. Reference data were derived from the Michigan Resource Information System (MIRIS) and available color infrared aerial photos. Classification and rectification of data sets were done using ERDAS Image Processing Programs. Classification algorithms included Maximum Likelihood, Mahalanobis Distance, Minimum Spectral Distance, ISODATA, Parallelepiped, and Sequential Cluster Analysis. Classified images were rectified as necessary so that all were at the same scale and oriented north-up. Results were analyzed with contingency tables and percent correctly classified (PCC) and Cohen's Kappa (CK) as accuracy indices using CSLANT and ImagePro programs developed for this study. Accuracy analyses were based upon a 1.4 by 6.5 km area with its long axis east-west. Reference data for this subscene total 55,770 15 by 15 m pixels with sixteen cover types, including seven level III forest classes, three level III urban classes, two level II range classes, two water classes, one wetland class and one agriculture class. An initial analysis was made without correcting the 1978 MIRIS reference data to the different dates of the TM, SPOT and SAR data sets. In this analysis, highest overall classification accuracy (PCC) was 87% with the TM data set, with both SPOT and C-Band SAR at 85%, a difference statistically significant at the 0.05 level. When the reference data were corrected for land cover change between 1978 and 1991, classification accuracy with the C-Band SAR data increased to 87%. Classification accuracy differed from sensor to sensor for individual land cover classes, Combining sensors into hypothetical multi-sensor systems resulted in higher accuracies than for any single sensor. Combining LANDSAT -TM and C-Band SAR yielded an overall classification accuracy (PCC) of 92%. The results of this study indicate that C-Band SAR data provide an acceptable substitute for LANDSAT-TM or SPOT data when land cover information is desired of areas where cloud cover obscures the terrain. Even better results can be obtained by integrating TM and C-Band SAR data into a multi-sensor system.
Implementation of an unmanned aerial vehicle for new generation Peterbilt trucks
NASA Astrophysics Data System (ADS)
Srinivasan K, Venkatesh
As science and technology continue to advance, innovative developments in transportation can enhance product safety and security for the benefit and welfare of society. The federal government requires every commercial truck to be inspected before each trip. This pre-trip inspection ensures the safe mechanical condition of each vehicle before it is used. An Unmanned Aerial Vehicle (UAV) could be used to provide an automated inspection, thus reducing driver workload, inspection costs and time while increasing inspection accuracy. This thesis develops a primary component of the algorithm that is required to implement UAV pre-trip inspections for commercial trucks using an android-based application. Specifically, this thesis provides foundational work of providing stable height control in an outdoor environment using a laser sensor and an android flight control application that includes take-off, landing, throttle control, and real-time video transmission. The height algorithm developed is the core of this thesis project. Phantom 2 Vision+ uses a pressure sensor to calculate the altitude of the drone for height stabilization. However, these altitude readings do not provide the precision required for this project. Rather, the goal of autonomously controlling height with great precision necessitated the use of a laser rangefinder sensor in the development of the height control algorithm. Another major contribution from this thesis research is to extend the limited capabilities of the DJI software development kit in order to provide more sophisticated control goals without modifying the drone dynamics. The results of this project are also directly applicable to a number of additional uses of drones in the transportation industry.
Duan, Si-Bo; Li, Zhao-Liang; Tang, Bo-Hui; Wu, Hua; Ma, Lingling; Zhao, Enyu; Li, Chuanrong
2013-01-01
To evaluate the in-flight performance of a new hyperspectral sensor onboard an unmanned aerial vehicle (UAV-HYPER), a comprehensive field campaign was conducted over the Baotou test site in China on 3 September 2011. Several portable reference reflectance targets were deployed across the test site. The radiometric performance of the UAV-HYPER sensor was assessed in terms of signal-to-noise ratio (SNR) and the calibration accuracy. The SNR of the different bands of the UAV-HYPER sensor was estimated to be between approximately 5 and 120 over the homogeneous targets, and the linear response of the apparent reflectance ranged from approximately 0.05 to 0.45. The uniform and non-uniform Lambertian land surface reflectance was retrieved and validated using in situ measurements, with root mean square error (RMSE) of approximately 0.01–0.07 and relative RMSE of approximately 5%–12%. There were small discrepancies between the retrieved uniform and non-uniform Lambertian land surface reflectance over the homogeneous targets and under low aerosol optical depth (AOD) conditions (AOD = 0.18). However, these discrepancies must be taken into account when adjacent pixels had large land surface reflectance contrast and under high AOD conditions (e.g. AOD = 1.0). PMID:23785513
Panchal, Mitesh B; Upadhyay, Sanjay H
2014-09-01
The unprecedented dynamic characteristics of nanoelectromechanical systems make them suitable for nanoscale mass sensing applications. Owing to superior biocompatibility, boron nitride nanotubes (BNNTs) are being increasingly used for such applications. In this study, the feasibility of single walled BNNT (SWBNNT)-based bio-sensor has been explored. Molecular structural mechanics-based finite element (FE) modelling approach has been used to analyse the dynamic behaviour of SWBNNT-based biosensors. The application of an SWBNNT-based mass sensing for zeptogram level of mass has been reported. Also, the effect of size of the nanotube in terms of length as well as different chiral atomic structures of SWBNNT has been analysed for their sensitivity analysis. The vibrational behaviour of SWBNNT has been analysed for higher-order modes of vibrations to identify the intermediate landing position of biological object of zeptogram scale. The present molecular structural mechanics-based FE modelling approach is found to be very effectual to incorporate different chiralities of the atomic structures. Also, different boundary conditions can be effectively simulated using the present approach to analyse the dynamic behaviour of the SWBNNT-based mass sensor. The presented study has explored the potential of SWBNNT, as a nanobiosensor having the capability of zeptogram level mass sensing.
NASA Technical Reports Server (NTRS)
Arno, R. D.
1977-01-01
The survey needs of the U.S. De pa rtment of Agriculture are immense, ranging from individual crop coverage at specific intervals to general land use classification. The aggregate of all desirable resolutions and sensor types applicable to airborne platforms yields an annual survey coverage rate eqivalent to about 6 times the U.S. land area. An intermediate annual survey level equal to the U. S. area can meet all currently perceived crop survey needs and provide sample imagery over many other resource areas. This decreased survey level can be accomplished with one or two high altitude aircraft (e.g., U-2 or WB-57) or medium altitude aircraft ( such as the Learjet or Jetstar). Survey costs range from about 25 cents to several dollars per square nautical mile depending primarily on resolution requirements and the aircraft used.
Experiences in teleoperation of land vehicles
NASA Technical Reports Server (NTRS)
Mcgovern, Douglas E.
1989-01-01
Teleoperation of land vehicles allows the removal of the operator from the vehicle to a remote location. This can greatly increase operator safety and comfort in applications such as security patrol or military combat. The cost includes system complexity and reduced system performance. All feedback on vehicle performance and on environmental conditions must pass through sensors, a communications channel, and displays. In particular, this requires vision to be transmitted by close-circuit television with a consequent degradation of information content. Vehicular teleoperation, as a result, places severe demands on the operator. Teleoperated land vehicles have been built and tested by many organizations, including Sandia National Laboratories (SNL). The SNL fleet presently includes eight vehicles of varying capability. These vehicles have been operated using different types of controls, displays, and visual systems. Experimentation studying the effects of vision system characteristics on off-road, remote driving was performed for conditions of fixed camera versus steering-coupled camera and of color versus black and white video display. Additionally, much experience was gained through system demonstrations and hardware development trials. The preliminary experimental findings and the results of the accumulated operational experience are discussed.
A Hybrid Positioning Strategy for Vehicles in a Tunnel Based on RFID and In-Vehicle Sensors
Song, Xiang; Li, Xu; Tang, Wencheng; Zhang, Weigong; Li, Bin
2014-01-01
Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID) technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS) is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS) federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM)-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF) algorithm is designed to replace the conventional extended Kalman filter (EKF) to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy. PMID:25490581
A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors.
Song, Xiang; Li, Xu; Tang, Wencheng; Zhang, Weigong; Li, Bin
2014-12-05
Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID) technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS) is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS) federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM)-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF) algorithm is designed to replace the conventional extended Kalman filter (EKF) to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy.
Software defined coherent lidar (SD-Cl) architecture
NASA Astrophysics Data System (ADS)
Laghezza, F.; Onori, D.; Scotti, F.; Bogoni, A.
2017-09-01
In recent years, thanks to the innovation in optical and electro-optical components, space based light detection and ranging (Lidar) systems are having great success, as a considerable alternative to passive radiometers or microwave sensors [1]. One of the most important applications, for space based Lidars, is the measure of target's distance and its relative properties as e.g., topography, surface's roughness and reflectivity, gravity and mass, that provide useful information for surface mapping, as well as semi-autonomous landing functionalities on lowgravity bodies (moons and asteroids). These kind of systems are often called Lidar altimeters or laser rangefinders.
Development and Application of Microfabricated Chemical Gas Sensors For Aerospace Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, A.; Hammond, J.; Makel, D.;
1990-01-01
Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring and control, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. This paper discusses the needs of space applications and the point-contact sensor technology being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (Nox, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. Demonstration and application these sensor technologies will be described. The demonstrations range from use of a microsystem based hydrogen sensor on the Shuttle to engine demonstration of a nanocrystalline based sensor for NO, detection. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.
IMPACTS OF IMAGERY TEMPORAL FREQUENCES ON LAND-COVER CHANGE DETECTION MONITORING
An important consideration for monitoring land~cover (LC) change is the nominal temporal frequency of remote sensor data acquisitions required to adequately characterize change events, Ecosystem specific regeneration rates are an important consideration for determining the requir...
NASA Astrophysics Data System (ADS)
Zheng, Y.; Kirstetter, P. E.; Hong, Y.; Wen, Y.; Turk, J.; Gourley, J. J.
2015-12-01
One of primary uncertainties in satellite overland quantitative precipitation estimates (QPE) from passive sensors such as radiometers is the impact on the brightness temperatures by the surface land emissivity. The complexity of surface land emissivity is linked to its temporal variations (diurnal and seasonal) and spatial variations (subsurface vertical profiles of soil moisture, vegetation structure and surface temperature) translating into sub-pixel heterogeneity within the satellite field of view (FOV). To better extract the useful signal from hydrometeors, surface land emissivity needs to be determined and filtered from the satellite-measured brightness temperatures. Based on the dielectric properties of surface land cover constitutes, Microwave Polarization Differential index (MPDI) is expected to carry the composite effect of surface land properties on land surface emissivity, with a higher MPDI indicating a lower emissivity. This study analyses the dependence of MPDI to soil moisture, vegetation and surface skin temperature over 9 different land surface types. Such analysis is performed using the normalized difference vegetation index (NDVI) from MODIS, the near surface air temperature from the RAP model and ante-precedent precipitation accumulation from the Multi-Radar Multi-Sensor as surrogates for the vegetation, surface skin temperature and shallow layer soil moisture, respectively. This paper provides 1) evaluations of brightness temperature-based MPDI from the TRMM and GPM Microwave Imagers in both raining and non-raining conditions to test the dependence of MPDI to precipitation; 2) comparisons of MPDI categorized into instantly before, during and immediately after selected precipitation events to examine the impact of modest-to-heavy precipitation on the spatial pattern of MPDI; 3) inspections of relationship between MPDI versus rain fraction and rain rate within the satellite sensors FOV to investigate the behaviors of MPDI in varying precipitation conditions; 4) analysis of discrepancies of MPDI over 10.65, 19.35, 37 and 85.8 GHz to identify the sensitivity of MPDS to microwave wavelengths.
NASA Astrophysics Data System (ADS)
Schreiner-McGraw, A.; Vivoni, E. R.; Franz, T. E.; Anderson, C.
2013-12-01
Human impacts on desert ecosystems have wide ranging effects on the hydrologic cycle which, in turn, influence interactions between the critical zone and the atmosphere. In this contribution, we utilize cosmic-ray soil moisture sensors at three human-modified semiarid ecosystems in the North American monsoon region: a buffelgrass pasture in Sonora, Mexico, a woody-plant encroached savanna ecosystem in Arizona, and a woody-plant encroached shrubland ecosystem in New Mexico. In each case, landscape heterogeneity in the form of bare soil and vegetation patches of different types leads to a complex mosaic of soil moisture and land-atmosphere interactions. Historically, the measurement of spatially-averaged soil moisture at the ecosystem scale (on the order of several hundred square meters) has been problematic. Thus, new advances in measuring cosmogenically-produced neutrons present an opportunity for observational and modeling studies in these ecosystems. We discuss the calibration of the cosmic-ray soil moisture sensors at each site, present comparisons to a distributed network of in-situ measurements, and verify the spatially-aggregated observations using the watershed water balance method at two sites. We focus our efforts on the summer season 2013 and its rainfall period during the North American monsoon. To compare neutron counts to the ground sensors, we utilized an aspect-elevation weighting algorithm to compute an appropriate spatial average for the in-situ measurements. Similarly, the water balance approach utilizes precipitation, runoff, and evapotranspiration measurements in the footprint of the cosmic-ray sensors to estimate a spatially-averaged soil moisture field. Based on these complementary approaches, we empirically determined a relationship between cosmogenically-produced neutrons and the spatially-aggregated soil moisture. This approach may improve upon existing methods used to calculate soil moisture from neutron counts that typically suffer from increasing errors for higher soil moisture content. We also examined the effects of sub-footprint variability in soil moisture on the neutron readings by comparing two of the sites with large variations in topographically-mediated surface flows. Our work also synthesizes seasonal soil moisture dynamics across the desert ecosystems and attempts to tease out differences due to land cover alterations, including the seasonal greening in each study site occurring during the North American monsoon.
D Land Cover Classification Based on Multispectral LIDAR Point Clouds
NASA Astrophysics Data System (ADS)
Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong
2016-06-01
Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.
NASA Astrophysics Data System (ADS)
Husnayaen; Rimba, A. Besse; Osawa, Takahiro; Parwata, I. Nyoman Sudi; As-syakur, Abd. Rahman; Kasim, Faizal; Astarini, Ida Ayu
2018-04-01
Research has been conducted in Semarang, Indonesia, to assess coastal vulnerability under enhanced land subsidence using multi-sensor satellite data, including the Advanced Land Observing Satellite (ALOS) Phased Array type L-band SAR (PALSAR), Landsat TM, IKONOS, and TOPEX/Poseidon. A coastal vulnerability index (CVI) was constructed to estimate the level of vulnerability of a coastline approximately 48.68 km in length using seven physical variables, namely, land subsidence, relative sea level change, coastal geomorphology, coastal slope, shoreline change, mean tidal range, and significant wave height. A comparison was also performed between a CVI calculated using seven parameters and a CVI using six parameters, the latter of which excludes the land subsidence parameter, to determine the effects of land subsidence during the coastal vulnerability assessment. This study showed that the accuracy of coastal vulnerability was increased 40% by adding the land subsidence factor (i.e., CVI 6 parameters = 53%, CVI 7 parameters = 93%). Moreover, Kappa coefficient indicated very good agreement (0.90) for CVI 7 parameters and fair agreement (0.3) for CVI 6 parameters. The results indicate that the area of very high vulnerability increased by 7% when land subsidence was added. Hence, using the CVI calculation including land subsidence parameters, the very high vulnerability area is determined to be 20% of the total coastline or 9.7 km of the total 48.7 km of coastline. This study proved that land subsidence has significant influence on coastal vulnerability in Semarang.
Giri, Chandra; Defourny, Pierre; Shrestha, Surendra
2003-01-01
Land use/land cover change, particularly that of tropical deforestation and forest degradation, has been occurring at an unprecedented rate and scale in Southeast Asia. The rapid rate of economic development, demographics and poverty are believed to be the underlying forces responsible for the change. Accurate and up-to-date information to support the above statement is, however, not available. The available data, if any, are outdated and are not comparable for various technical reasons. Time series analysis of land cover change and the identification of the driving forces responsible for these changes are needed for the sustainable management of natural resources and also for projecting future land cover trajectories. We analysed the multi-temporal and multi-seasonal NOAA Advanced Very High Resolution Radiometer (AVHRR) satellite data of 1985/86 and 1992 to (1) prepare historical land cover maps and (2) to identify areas undergoing major land cover transformations (called ‘hot spots’). The identified ‘hot spot’ areas were investigated in detail using high-resolution satellite sensor data such as Landsat and SPOT supplemented by intensive field surveys. Shifting cultivation, intensification of agricultural activities and change of cropping patterns, and conversion of forest to agricultural land were found to be the principal reasons for land use/land cover change in the Oudomxay province of Lao PDR, the Mekong Delta of Vietnam and the Loei province of Thailand, respectively. Moreover, typical land use/land cover change patterns of the ‘hot spot’ areas were also examined. In addition, we developed an operational methodology for land use/land cover change analysis at the national level with the help of national remote sensing institutions.
NASA Technical Reports Server (NTRS)
Erickson, J. D.; Tuyahov, A. J.; Hogg, H. C.
1983-01-01
Planned NASA contributions to the study of the interaction of living organisms with their physical and chemical environments are discussed. Five major land-related research objectives are stated and the role of remote sensing in achieving them is addressed. The importance of improved sensors and cooperation with domestic and international organizations is stressed.
NASA Technical Reports Server (NTRS)
Tatnall, Chistopher R.
1998-01-01
The counter-rotating pair of wake vortices shed by flying aircraft can pose a threat to ensuing aircraft, particularly on landing approach. To allow adequate time for the vortices to disperse/decay, landing aircraft are required to maintain certain fixed separation distances. The Aircraft Vortex Spacing System (AVOSS), under development at NASA, is designed to prescribe safe aircraft landing approach separation distances appropriate to the ambient weather conditions. A key component of the AVOSS is a ground sensor, to ensure, safety by making wake observations to verify predicted behavior. This task requires knowledge of a flowfield strength metric which gauges the severity of disturbance an encountering aircraft could potentially experience. Several proposed strength metric concepts are defined and evaluated for various combinations of metric parameters and sensor line-of-sight elevation angles. Representative populations of generating and following aircraft types are selected, and their associated wake flowfields are modeled using various wake geometry definitions. Strength metric candidates are then rated and compared based on the correspondence of their computed values to associated aircraft response values, using basic statistical analyses.
Sensing, Spectra and Scaling: What's in Store for Land Observations
NASA Technical Reports Server (NTRS)
Goetz, Alexander F. H.
2001-01-01
Bill Pecora's 1960's vision of the future, using spacecraft-based sensors for mapping the environment and exploring for resources, is being implemented today. New technology has produced better sensors in space such as the Landsat Thematic Mapper (TM) and SPOT, and creative researchers are continuing to find new applications. However, with existing sensors, and those intended for launch in this century, the potential for extracting information from the land surface is far from being exploited. The most recent technology development is imaging spectrometry, the acquisition of images in hundreds of contiguous spectral bands, such that for any pixel a complete reflectance spectrum can be acquired. Experience with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has shown that, with proper attention paid to absolute calibration, it is possible to acquire apparent surface reflectance to 5% accuracy without any ground-based measurement. The data reduction incorporates in educated guess of the aerosol scattering, development of a precipitable water vapor map from the data and mapping of cirrus clouds in the 1.38 micrometer band. This is not possible with TM. The pixel size in images of the earth plays and important role in the type and quality of information that can be derived. Less understood is the coupling between spatial and spectral resolution in a sensor. Recent work has shown that in processing the data to derive the relative abundance of materials in a pixel, also known is unmixing, the pixel size is an important parameter. A variance in the relative abundance of materials among the pixels is necessary to be able to derive the endmembers or pure material constituent spectra. In most cases, the 1 km pixel size for the Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) instrument is too large to meet the variance criterion. A pointable high spatial and spectral resolution imaging spectrometer in orbit will be necessary to make the major next step in our understanding of the solid earth surface and its changing face.
NASA Astrophysics Data System (ADS)
Buytaert, W.; Ochoa-Tocachi, B. F.
2016-12-01
Apart for the most basic measurements of manual rain and staff gauges, hydrology and water resources are not an evident disciplines for the application of citizen science. High-resolution measurements require elaborate equipment, installation, and maintenance that is typically beyond the scope of non-scientists. Additionally, hydrological analysis has traditionally relied upon long time series of consistent accuracy and precision. Nevertheless, new opportunities for public participation in hydrological research are emerging, driven by increasingly affordable, robust, and more user-friendly technology. Here we analyse the results generated by participatory monitoring of river flow and precipitation in around 30 catchments in the tropical Andes. This monitoring network was set up through a collaborative effort between scientists, NGOs and local communities, with the intention to generate evidence about the impact of land-use change on streamflow. Monitoring was implemented using automatic but low-cost sensors operated and maintained by local users. Tipping bucket rain gauges are used for precipitation, and river flow is monitored with pressure transducers in combination with a V-notch weir to obtain a stable stage-discharge relation. Jointly, the sensors have now collected an equivalent of more than 30 years of data, with a measurement interval of typically 5 or 15 minutes. Analysing the data, we find that the observations themselves tend to be of a quality comparable to scientific observations. However, main issues are related to the continuity of the time series, as sensors eventually fail or run out of capacity in dataloggers or batteries in the most remote locations. Despite these shortcomings, the data have proven to be useful in characterizing land-use impacts well beyond what can be achieved with conventional data collection, thus filling long-standing gaps in local hydrological knowledge. Furthermore, we expect that the advent of new, more robust, resilient, and automatized sensor technologies will alleviate some of the current issues.
Lavigne, Claire; Durand, Gérard; Roblin, Antoine
2009-04-20
In the atmosphere pointlike sources are surrounded by an aureole due to molecular and aerosol scattering. UV phase functions of haze droplets have a very important forward peak that limits signal angular spreading in relation to the clear atmosphere case where Rayleigh scattering predominates. This specific property can be exploited using solar blind UV source detection as an aircraft landing aid under foggy conditions. Two methods have been used to compute UV light propagation, based on the Monte Carlo technique and a semi-empirical approach. Results obtained after addition of three types of sensor and UV runway light models show that an important improvement in landing conditions during foggy weather could be achieved by use of a solar blind UV intensified CCD camera with two stages of microchannel plates.
Mars Science Laboratory Heatshield Flight Data Analysis
NASA Technical Reports Server (NTRS)
Mahzari, Milad; White, Todd
2017-01-01
NASA Mars Science Laboratory (MSL), which landed the Curiosity rover on the surface of Mars on August 5th, 2012, was the largest and heaviest Mars entry vehicle representing a significant advancement in planetary entry, descent and landing capability. Hypersonic flight performance data was collected using MSLs on-board sensors called Mars Entry, Descent and Landing Instrumentation (MEDLI). This talk will give an overview of MSL entry and a description of MEDLI sensors. Observations from flight data will be examined followed by a discussion of analysis efforts to reconstruct surface heating from heatshields in-depth temperature measurements. Finally, a brief overview of MEDLI2 instrumentation, which will fly on NASAs Mars2020 mission, will be presented with a discussion on how lessons learned from MEDLI data affected the design of MEDLI2 instrumentation.
NASA Technical Reports Server (NTRS)
Green, R. O.; Shimada, M.
1996-01-01
Earth-looking satellites must be calibrated in order to quantitatively measure and monitor components of land, water and atmosphere of the Earth system. The inevitable change in performance due to the stress of satellite launch requires that the calibration of a satellite sensor be established and validated on-orbit. A new approach to on-orbit satellite sensor calibration has been developed using the flight of a high altitude calibrated airborne imaging spectrometer below a multi-spectral satellite sensor.
ExoMars Entry, Descent, and Landing Science
NASA Astrophysics Data System (ADS)
Karatekin, Özgür; Forget, Francois; Withers, Paul; Colombatti, Giacomo; Aboudan, Alessio; Lewis, Stephen; Ferri, Francesca; Van Hove, Bart; Gerbal, Nicolas
2016-07-01
Schiaparelli, the Entry Demonstrator Module (EDM) of the ESA ExoMars Program will to land on Mars on 19th October 2016. The ExoMars Atmospheric Mars Entry and Landing Investigations and Analysis (AMELIA) team seeks to exploit the Entry Descent and Landing (EDL) engineering measurements of Schiaparelli for scientific investigations of Mars' atmosphere and surface. ExoMars offers a rare opportunity to perform an in situ investigation of the martian environment over a wide altitude range. There has been only 7 successfully landing on the surface of Mars, from the Viking probes in the 1970's to the Mars Science Laboratory (MSL) in 2012. ExoMars EDM is equipped with an instrumented heat shield like MSL. These novel flight sensors complement conventional accelerometer and gyroscope instrumentation, and provide additional information to reconstruct atmospheric conditions with. This abstract outlines general atmospheric reconstruction methodology using complementary set of sensors and in particular the use of surface pressure and radio data. In addition, we discuss the lessons learned from previous EDL and the plans for ExoMars AMELIA data analysis.
Open-Loop Flight Testing of COBALT Navigation and Sensor Technologies for Precise Soft Landing
NASA Technical Reports Server (NTRS)
Carson, John M., III; Restrepo, Caroline I.; Seubert, Carl R.; Amzajerdian, Farzin; Pierrottet, Diego F.; Collins, Steven M.; O'Neal, Travis V.; Stelling, Richard
2017-01-01
An open-loop flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) payload was conducted onboard the Masten Xodiac suborbital rocket testbed. The payload integrates two complementary sensor technologies that together provide a spacecraft with knowledge during planetary descent and landing to precisely navigate and softly touchdown in close proximity to targeted surface locations. The two technologies are the Navigation Doppler Lidar (NDL), for high-precision velocity and range measurements, and the Lander Vision System (LVS) for map-relative state esti- mates. A specialized navigation filter running onboard COBALT fuses the NDL and LVS data in real time to produce a very precise Terrain Relative Navigation (TRN) solution that is suitable for future, autonomous planetary landing systems that require precise and soft landing capabilities. During the open-loop flight campaign, the COBALT payload acquired measurements and generated a precise navigation solution, but the Xodiac vehicle planned and executed its maneuvers based on an independent, GPS-based navigation solution. This minimized the risk to the vehicle during the integration and testing of the new navigation sensing technologies within the COBALT payload.
A Brief Overview of NASA Glenn Research Center Sensor and Electronics Activities
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2012-01-01
Aerospace applications require a range of sensing technologies. There is a range of sensor and sensor system technologies being developed using microfabrication and micromachining technology to form smart sensor systems and intelligent microsystems. Drive system intelligence to the local (sensor) level -- distributed smart sensor systems. Sensor and sensor system development examples: (1) Thin-film physical sensors (2) High temperature electronics and wireless (3) "lick and stick" technology. NASA GRC is a world leader in aerospace sensor technology with a broad range of development and application experience. Core microsystems technology applicable to a range of application environmentS.
Aerospace Sensor Systems: From Sensor Development To Vehicle Application
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2008-01-01
This paper presents an overview of years of sensor system development and application for aerospace systems. The emphasis of this work is on developing advanced capabilities for measurement and control of aeropropulsion and crew vehicle systems as well as monitoring the safety of those systems. Specific areas of work include chemical species sensors, thin film thermocouples and strain gages, heat flux gages, fuel gages, SiC based electronic devices and sensors, space qualified electronics, and MicroElectroMechanical Systems (MEMS) as well as integrated and multifunctional sensor systems. Each sensor type has its own technical challenges related to integration and reliability in a given application. The general approach has been to develop base sensor technology using microfabrication techniques, integrate sensors with "smart" hardware and software, and demonstrate those systems in a range of aerospace applications. Descriptions of the sensor elements, their integration into sensors systems, and examples of sensor system applications will be discussed. Finally, suggestions related to the future of sensor technology will be given. It is concluded that smart micro/nano sensor technology can revolutionize aerospace applications, but significant challenges exist in maturing the technology and demonstrating its value in real-life applications.
Wake Vortex Detection: Phased Microphone vs. Linear Infrasonic Array
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Zuckerwar, Allan J.; Sullivan, Nicholas T.; Knight, Howard K.
2014-01-01
Sensor technologies can make a significant impact on the detection of aircraft-generated vortices in an air space of interest, typically in the approach or departure corridor. Current state-of-the art sensor technologies do not provide three-dimensional measurements needed for an operational system or even for wake vortex modeling to advance the understanding of vortex behavior. Most wake vortex sensor systems used today have been developed only for research applications and lack the reliability needed for continuous operation. The main challenges for the development of an operational sensor system are reliability, all-weather operation, and spatial coverage. Such a sensor has been sought for a period of last forty years. Acoustic sensors were first proposed and tested by National Oceanic and Atmospheric Administration (NOAA) early in 1970s for tracking wake vortices but these acoustic sensors suffered from high levels of ambient noise. Over a period of the last fifteen years, there has been renewed interest in studying noise generated by aircraft wake vortices, both numerically and experimentally. The German Aerospace Center (DLR) was the first to propose the application of a phased microphone array for the investigation of the noise sources of wake vortices. The concept was first demonstrated at Berlins Airport Schoenefeld in 2000. A second test was conducted in Tarbes, France, in 2002, where phased microphone arrays were applied to study the wake vortex noise of an Airbus 340. Similarly, microphone phased arrays and other opto-acoustic microphones were evaluated in a field test at the Denver International Airport in 2003. For the Tarbes and Denver tests, the wake trajectories of phased microphone arrays and lidar were compared as these were installed side by side. Due to a built-in pressure equalization vent these microphones were not suitable for capturing acoustic noise below 20 Hz. Our group at NASA Langley Research Center developed and installed an infrasonic array at the Newport News-Williamsburg International Airport early in the year 2013. A pattern of pressure burst, high-coherence intervals, and diminishing-coherence intervals was observed for all takeoff and landing events without exception. The results of a phased microphone vs. linear infrasonic array comparison will be presented.
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars 800 feet above the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida on free flight test No. 15 at. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars 800 feet above the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida on free flight test No. 15 at. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars overhead during free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars 800 feet above the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida on free flight test No. 15. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars overhead during free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Geogdzhayev, Igor V.; Cairns, Brian; Mishchenko, Michael I.; Tsigaridis, Kostas; van Noije, Twan
2014-01-01
To evaluate the effect of sampling frequency on the global monthly mean aerosol optical thickness (AOT), we use 6 years of geographical coordinates of Moderate Resolution Imaging Spectroradiometer (MODIS) L2 aerosol data, daily global aerosol fields generated by the Goddard Institute for Space Studies General Circulation Model and the chemical transport models Global Ozone Chemistry Aerosol Radiation and Transport, Spectral Radiationtransport Model for Aerosol Species and Transport Model 5, at a spatial resolution between 1.125 deg × 1.125 deg and 2 deg × 3?: the analysis is restricted to 60 deg S-60 deg N geographical latitude. We found that, in general, the MODIS coverage causes an underestimate of the global mean AOT over the ocean. The long-term mean absolute monthly difference between all and dark target (DT) pixels was 0.01-0.02 over the ocean and 0.03-0.09 over the land, depending on the model dataset. Negative DT biases peak during boreal summers, reaching 0.07-0.12 (30-45% of the global long-term mean AOT). Addition of the Deep Blue pixels tempers the seasonal dependence of the DT biases and reduces the mean AOT difference over land by 0.01-0.02. These results provide a quantitative measure of the effect the pixel exclusion due to cloud contamination, ocean sun-glint and land type has on the MODIS estimates of the global monthly mean AOT. We also simulate global monthly mean AOT estimates from measurements provided by pixel-wide along-track instruments such as the Aerosol Polarimetry Sensor and the Cloud-Aerosol LiDAR with Orthogonal Polarization. We estimate the probable range of the global AOT standard error for an along-track sensor to be 0.0005-0.0015 (ocean) and 0.0029-0.01 (land) or 0.5-1.2% and 1.1-4% of the corresponding global means. These estimates represent errors due to sampling only and do not include potential retrieval errors. They are smaller than or comparable to the published estimate of 0.01 as being a climatologically significant change in the global mean AOT, suggesting that sampling density is unlikely to limit the use of such instruments for climate applications at least on a global, monthly scale.
NASA Technical Reports Server (NTRS)
Matsui, Toshihisa; Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Satoh, Masaki; Hashino, Tempei; Kubota, Takuji
2016-01-01
A 14-year climatology of Tropical Rainfall Measuring Mission (TRMM) collocated multi-sensor signal statistics reveal a distinct land-ocean contrast as well as geographical variability of precipitation type, intensity, and microphysics. Microphysics information inferred from the TRMM precipitation radar and Microwave Imager (TMI) show a large land-ocean contrast for the deep category, suggesting continental convective vigor. Over land, TRMM shows higher echo-top heights and larger maximum echoes, suggesting taller storms and more intense precipitation, as well as larger microwave scattering, suggesting the presence of morelarger frozen convective hydrometeors. This strong land-ocean contrast in deep convection is invariant over seasonal and multi-year time-scales. Consequently, relatively short-term simulations from two global storm-resolving models can be evaluated in terms of their land-ocean statistics using the TRMM Triple-sensor Three-step Evaluation via a satellite simulator. The models evaluated are the NASA Multi-scale Modeling Framework (MMF) and the Non-hydrostatic Icosahedral Cloud Atmospheric Model (NICAM). While both simulations can represent convective land-ocean contrasts in warm precipitation to some extent, near-surface conditions over land are relatively moisture in NICAM than MMF, which appears to be the key driver in the divergent warm precipitation results between the two models. Both the MMF and NICAM produced similar frequencies of large CAPE between land and ocean. The dry MMF boundary layer enhanced microwave scattering signals over land, but only NICAM had an enhanced deep convection frequency over land. Neither model could reproduce a realistic land-ocean contrast in in deep convective precipitation microphysics. A realistic contrast between land and ocean remains an issue in global storm-resolving modeling.
LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application
NASA Astrophysics Data System (ADS)
Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin
2014-11-01
The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product validation.
NASA Astrophysics Data System (ADS)
Karthikeyan, L.; Pan, Ming; Wanders, Niko; Kumar, D. Nagesh; Wood, Eric F.
2017-11-01
Soil moisture is widely recognized as an important land surface variable that provides a deeper knowledge of land-atmosphere interactions and climate change. Space-borne passive and active microwave sensors have become valuable and essential sources of soil moisture observations at global scales. Over the past four decades, several active and passive microwave sensors have been deployed, along with the recent launch of two fully dedicated missions (SMOS and SMAP). Signifying the four decades of microwave remote sensing of soil moisture, this Part 2 of the two-part review series aims to present an overview of how our knowledge in this field has improved in terms of the design of sensors and their accuracy for retrieving soil moisture. The first part discusses the developments made in active and passive microwave soil moisture retrieval algorithms. We assess the evolution of the products of various sensors over the last four decades, in terms of daily coverage, temporal performance, and spatial performance, by comparing the products of eight passive sensors (SMMR, SSM/I, TMI, AMSR-E, WindSAT, AMSR2, SMOS and SMAP), two active sensors (ERS-Scatterometer, MetOp-ASCAT), and one active/passive merged soil moisture product (ESA-CCI combined product) with the International Soil Moisture Network (ISMN) in-situ stations and the Variable Infiltration Capacity (VIC) land surface model simulations over the Contiguous United States (CONUS). In the process, the regional impacts of vegetation conditions on the spatial and temporal performance of soil moisture products are investigated. We also carried out inter-satellite comparisons to study the roles of sensor design and algorithms on the retrieval accuracy. We find that substantial improvements have been made over recent years in this field in terms of daily coverage, retrieval accuracy, and temporal dynamics. We conclude that the microwave soil moisture products have significantly evolved in the last four decades and will continue to make key contributions to the progress of hydro-meteorological and climate sciences.
Hyperspectral remote sensing application for monitoring and preservation of plant ecosystems
NASA Astrophysics Data System (ADS)
Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas; Petrov, Nikolay; Stoev, Antoniy
Remote sensing technologies have advanced significantly at last decade and have improved the capability to gather information about Earth’s resources and environment. They have many applications in Earth observation, such as mapping and updating land-use and cover, weather forecasting, biodiversity determination, etc. Hyperspectral remote sensing offers unique opportunities in the environmental monitoring and sustainable use of natural resources. Remote sensing sensors on space-based platforms, aircrafts, or on ground, are capable of providing detailed spectral, spatial and temporal information on terrestrial ecosystems. Ground-based sensors are used to record detailed information about the land surface and to create a data base for better characterizing the objects which are being imaged by the other sensors. In this paper some applications of two hyperspectral remote sensing techniques, leaf reflectance and chlorophyll fluorescence, for monitoring and assessment of the effects of adverse environmental conditions on plant ecosystems are presented. The effect of stress factors such as enhanced UV-radiation, acid rain, salinity, viral infections applied to some young plants (potato, pea, tobacco) and trees (plums, apples, paulownia) as well as of some growth regulators were investigated. Hyperspectral reflectance and fluorescence data were collected by means of a portable fiber-optics spectrometer in the visible and near infrared spectral ranges (450-850 nm and 600-900 nm), respectively. The differences between the reflectance data of healthy (control) and injured (stressed) plants were assessed by means of statistical (Student’s t-criterion), first derivative, and cluster analysis and calculation of some vegetation indices in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (690-720 nm) and near infrared (720-780 nm). Fluorescence spectra were analyzed at five characteristic wavelengths located at the maximums of the emitted radiation and at the forefronts and rear slopes. The strong relationship, which was found between the results from the two remote sensing techniques and some biochemical and serological analyses (stress markers, DAS-ELISA test), indicates the importance of hyperspectral reflectance and fluorescence techniques for conducting, easily and without damage, rapid health condition assessments of vegetation. This study fills in the existed spectral data base and exemplifies the benefits of integrating remote sensing, Earth observation, plant physiology, ecology, and conducting of interdisciplinary investigations of terrestrial ecosystems.
Autonomous landing and ingress of micro-air-vehicles in urban environments based on monocular vision
NASA Astrophysics Data System (ADS)
Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire
2011-06-01
Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.
Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision
NASA Technical Reports Server (NTRS)
Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire
2011-01-01
Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.
GEONEX: Land Monitoring From a New Generation of Geostationary Satellite Sensors
NASA Technical Reports Server (NTRS)
Nemani, Ramakrishna; Lyapustin, Alexei; Wang, Weile; Wang, Yujie; Hashimoto, Hirofumi; Li, Shuang; Ganguly, Sangram; Michaelis, Andrew; Higuchi, Atsushi; Takaneka, Hideaki;
2017-01-01
The latest generation of geostationary satellites carry sensors such as ABI (Advanced Baseline Imager on GOES-16) and the AHI (Advanced Himawari Imager on Himawari) that closely mimic the spatial and spectral characteristics of Earth Observing System flagship MODIS for monitoring land surface conditions. More importantly they provide observations at 5-15 minute intervals. Such high frequency data offer exciting possibilities for producing robust estimates of land surface conditions by overcoming cloud cover, enabling studies of diurnally varying local-to-regional biosphere-atmosphere interactions, and operational decision-making in agriculture, forestry and disaster management. But the data come with challenges that need special attention. For instance, geostationary data feature changing sun angle at constant view for each pixel, which is reciprocal to sun-synchronous observations, and thus require careful adaptation of EOS algorithms. Our goal is to produce a set of land surface products from geostationary sensors by leveraging NASA's investments in EOS algorithms and in the data/compute facility NEX. The land surface variables of interest include atmospherically corrected surface reflectances, snow cover, vegetation indices and leaf area index (LAI)/fraction of photosynthetically absorbed radiation (FPAR), as well as land surface temperature and fires. In order to get ready to produce operational products over the US from GOES-16 starting 2018, we have utilized 18 months of data from Himawari AHI over Australia to test the production pipeline and the performance of various algorithms for our initial tests. The end-to-end processing pipeline consists of a suite of modules to (a) perform calibration and automatic georeference correction of the AHI L1b data, (b) adopt the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm to produce surface spectral reflectances along with compositing schemes and QA, and (c) modify relevant EOS retrieval algorithms (e.g., LAI and FPAR, GPP, etc.) for subsequent science product generation. Initial evaluation of Himawari AHI products against standard MODIS products indicate general agreement, suggesting that data from geostationary sensors can augment low earth orbit (LEO) satellite observations.
GEONEX: Land monitoring from a new generation of geostationary satellite sensors
NASA Astrophysics Data System (ADS)
Nemani, R. R.; Lyapustin, A.; Wang, W.; Ganguly, S.; Wang, Y.; Michaelis, A.; Hashimoto, H.; Li, S.; Higuchi, A.; Huete, A. R.; Yeom, J. M.; camacho De Coca, F.; Lee, T. J.; Takenaka, H.
2017-12-01
The latest generation of geostationary satellites carry sensors such as ABI (Advanced Baseline Imager on GOES-16) and the AHI (Advanced Himawari Imager on Himawari) that closely mimic the spatial and spectral characteristics of Earth Observing System flagship MODIS for monitoring land surface conditions. More importantly they provide observations at 5-15 minute intervals. Such high frequency data offer exciting possibilities for producing robust estimates of land surface conditions by overcoming cloud cover, enabling studies of diurnally varying local-to-regional biosphere-atmosphere interactions, and operational decision-making in agriculture, forestry and disaster management. But the data come with challenges that need special attention. For instance, geostationary data feature changing sun angle at constant view for each pixel, which is reciprocal to sun-synchronous observations, and thus require careful adaptation of EOS algorithms. Our goal is to produce a set of land surface products from geostationary sensors by leveraging NASA's investments in EOS algorithms and in the data/compute facility NEX. The land surface variables of interest include atmospherically corrected surface reflectances, snow cover, vegetation indices and leaf area index (LAI)/fraction of photosynthetically absorbed radiation (FPAR), as well as land surface temperature and fires. In order to get ready to produce operational products over the US from GOES-16 starting 2018, we have utilized 18 months of data from Himawari AHI over Australia to test the production pipeline and the performance of various algorithms for our initial tests. The end-to-end processing pipeline consists of a suite of modules to (a) perform calibration and automatic georeference correction of the AHI L1b data, (b) adopt the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm to produce surface spectral reflectances along with compositing schemes and QA, and (c) modify relevant EOS retrieval algorithms (e.g., LAI and FPAR, GPP, etc.) for subsequent science product generation. Initial evaluation of Himawari AHI products against standard MODIS products indicate general agreement, suggesting that data from geostationary sensors can augment low earth orbit (LEO) satellite observations.
The Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT)
NASA Technical Reports Server (NTRS)
Epp, Chirold D.; Smith, Thomas B.
2007-01-01
As NASA plans to send humans back to the Moon and develop a lunar outpost, technologies must be developed to place humans and cargo safely, precisely, repeatedly, on the lunar surface with the capability to avoid surface hazards. Exploration Space Architecture Study requirements include the need for global lunar surface access with safe, precise landing without lighting constraints on terrain that may have landing hazards for human scale landing vehicles. Landing accuracies of perhaps 1,000 meters for sortie crew missions to 10 s of meters for Outpost class missions are required. The Autonomous precision Landing Hazard Avoidance Technology (ALHAT) project will develop the new and unique descent and landing Guidance, Navigation and Control (GNC) hardware and software technologies necessary for these capabilities. The ALHAT project will qualify a lunar descent and landing GNC system to a Technology Readiness Level (TRL) of 6 capable of supporting lunar crewed, cargo, and robotic missions. The (ALHAT) development project was chartered by NASA Headquarters in October 2006. The initial effort to write a project plan and define an ALHAT Team was followed by a fairly aggressive research and analysis effort to determine what technologies existed that could be developed and applied to the lunar landing problems indicated above. This paper describes the project development, research, analysis and concept evolution that has occurred since the assignment of the project. This includes the areas of systems engineering, GNC, sensors, sensor algorithms, simulations, fielding testing, laboratory testing, Hardware-In-The-Loop testing, system avionics and system certification concepts.
Open-Loop Performance of COBALT Precision Landing Payload on a Commercial Sub-Orbital Rocket
NASA Technical Reports Server (NTRS)
Restrepo, Carolina I.; Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Lovelace, Ronney S.; McCarthy, Megan M.; Tse, Teming; Stelling, Richard; Collins, Steven M.
2018-01-01
An open-loop flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuses the NDL and LVS data in real time to produce a navigation solution that is independent of GPS and suitable for future, autonomous, planetary, landing systems. COBALT was a passive payload during the open loop tests. COBALT's sensors were actively taking data and processing it in real time, but the Xodiac rocket flew with its own GPS-navigation system as a risk reduction activity in the maturation of the technologies towards space flight. A future closed-loop test campaign is planned where the COBALT navigation solution will be used to fly its host vehicle.
Outline of the survey on the development of earth observation satellites
NASA Technical Reports Server (NTRS)
1977-01-01
An independent earth observation system with land and sea satellites to be developed by Japan is described. Visible and infrared radiometers, microwave radiometers, microwave scattermeters, synthetic aperture radar, and laser sensors are among the instrumentation discussed. Triaxial attitude control, basic technology common to sea and land observation satellites as well as land data analytical technology developed for U.S. LANDSAT data are reviewed.
SENTINEL-2 Services Library - efficient way for exploration and exploitation of EO data
NASA Astrophysics Data System (ADS)
Milcinski, Grega; Batic, Matej; Kadunc, Miha; Kolaric, Primoz; Mocnik, Rok; Repse, marko
2017-04-01
With more than 1.5 million scenes available covering over 11 billion sq. kilometers of area and containing half a quadrillion of pixels, Sentinel-2 is becoming one of the most important MSI datasets in the world. However, the vast amount of data makes it difficult to work with. This is certainly an important reason, why the number of Sentinel based applications is not as high as it could be at this point. We will present a Copernicus Award [1] winning service for archiving, processing and distribution of Sentinel data, Sentinel Hub [2]. It makes it easy for anyone to tap into global Sentinel archive and exploit its rich multi-sensor data to observe changes in the land. We will demonstrate, how one is able not just to observe imagery all over the world but also to create its own statistical analysis in a matter of seconds, performing comparison of different sensors through various time segments. The result can be immediately observed in any GIS tool or exported as a raster file for post-processing. All of these actions can be performed on a full, worldwide, S-2 archive (multi-temporal and multi-spectral). To demonstrate the technology, we created a publicly accessible web application, called "Sentinel Playground" [3], which makes it possible to query Sentinel-2 data anywhere in the world, and experts-oriented tool "EO Browser" [4], where it is also possible to observe land changes through longer period by using historical Landsat data as well. [1] http://www.copernicus-masters.com/index.php?anzeige=press-2016-03.html [2] http://www.sentinel-hub.com [3] http://apps.sentinel-hub.com/sentinel-playground/ [4] http://apps.eocloud.sentinel-hub.com/eo-browser/
NASA Astrophysics Data System (ADS)
Bayoudh, Meriam; Roux, Emmanuel; Richard, Gilles; Nock, Richard
2015-03-01
The number of satellites and sensors devoted to Earth observation has become increasingly elevated, delivering extensive data, especially images. At the same time, the access to such data and the tools needed to process them has considerably improved. In the presence of such data flow, we need automatic image interpretation methods, especially when it comes to the monitoring and prediction of environmental and societal changes in highly dynamic socio-environmental contexts. This could be accomplished via artificial intelligence. The concept described here relies on the induction of classification rules that explicitly take into account structural knowledge, using Aleph, an Inductive Logic Programming (ILP) system, combined with a multi-class classification procedure. This methodology was used to monitor changes in land cover/use of the French Guiana coastline. One hundred and fifty-eight classification rules were induced from 3 diachronic land cover/use maps including 38 classes. These rules were expressed in first order logic language, which makes them easily understandable by non-experts. A 10-fold cross-validation gave significant average values of 84.62%, 99.57% and 77.22% for classification accuracy, specificity and sensitivity, respectively. Our methodology could be beneficial to automatically classify new objects and to facilitate object-based classification procedures.
Design and Analysis of Map Relative Localization for Access to Hazardous Landing Sites on Mars
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Aaron, Seth; Cheng, Yang; Montgomery, James; Trawny, Nikolas; Tweddle, Brent; Vaughan, Geoffrey; Zheng, Jason
2016-01-01
Human and robotic planetary lander missions require accurate surface relative position knowledge to land near science targets or next to pre-deployed assets. In the absence of GPS, accurate position estimates can be obtained by automatically matching sensor data collected during descent to an on-board map. The Lander Vision System (LVS) that is being developed for Mars landing applications generates landmark matches in descent imagery and combines these with inertial data to estimate vehicle position, velocity and attitude. This paper describes recent LVS design work focused on making the map relative localization algorithms robust to challenging environmental conditions like bland terrain, appearance differences between the map and image and initial input state errors. Improved results are shown using data from a recent LVS field test campaign. This paper also fills a gap in analysis to date by assessing the performance of the LVS with data sets containing significant vertical motion including a complete data set from the Mars Science Laboratory mission, a Mars landing simulation, and field test data taken over multiple altitudes above the same scene. Accurate and robust performance is achieved for all data sets indicating that vertical motion does not play a significant role in position estimation performance.
NASA Technical Reports Server (NTRS)
Storey, James; Roy, David P.; Masek, Jeffrey; Gascon, Ferran; Dwyer, John; Choate, Michael
2016-01-01
The Landsat-8 and Sentinel-2 sensors provide multi-spectral image data with similar spectral and spatial characteristics that together provide improved temporal coverage globally. Both systems are designed to register Level 1 products to a reference image framework, however, the Landsat-8 framework, based upon the Global Land Survey images, contains residual geolocation errors leading to an expected sensor-to-sensor misregistration of 38 m (2sigma). These misalignments vary geographically but should be stable for a given area. The Landsat framework will be readjusted for consistency with the Sentinel-2 Global Reference Image, with completion expected in 2018. In the interim, users can measure Landsat-to-Sentinel tie points to quantify the misalignment in their area of interest and if appropriate to reproject the data to better alignment.
Characterizing user requirements for future land observing satellites
NASA Technical Reports Server (NTRS)
Barker, J. L.; Cressy, P. J.; Schnetzler, C. C.; Salomonson, V. V.
1981-01-01
The objective procedure was developed for identifying probable sensor and mission characteristics for an operational satellite land observing system. Requirements were systematically compiled, quantified and scored by type of use, from surveys of federal, state, local and private communities. Incremental percent increases in expected value of data were estimated for critical system improvements. Comparisons with costs permitted selection of a probable sensor system, from a set of 11 options, with the following characteristics: 30 meter spatial resolution in 5 bands and 15 meters in 1 band, spectral bands nominally at Thematic Mapper (TM) bands 1 through 6 positions, and 2 day data turn around for receipt of imagery. Improvements are suggested for both the form of questions and the procedures for analysis of future surveys in order to provide a more quantitatively precise definition of sensor and mission requirements.
Storey, James C.; Roy, David P.; Masek, Jeffrey; Gascon, Ferran; Dwyer, John L.; Choate, Michael J.
2016-01-01
The Landsat-8 and Sentinel-2 sensors provide multi-spectral image data with similar spectral and spatial characteristics that together provide improved temporal coverage globally. Both systems are designed to register Level 1 products to a reference image framework, however, the Landsat-8 framework, based upon the Global Land Survey images, contains residual geolocation errors leading to an expected sensor-to-sensor misregistration of 38 m (2σ). These misalignments vary geographically but should be stable for a given area. The Landsat framework will be readjusted for consistency with the Sentinel-2 Global Reference Image, with completion expected in 2018. In the interim, users can measure Landsat-to-Sentinel tie points to quantify the misalignment in their area of interest and if appropriate to reproject the data to better alignment.
New Mexico Tech landmine, UXO, IED detection sensor test facility: measurements in real field soils
NASA Astrophysics Data System (ADS)
Hendrickx, Jan M. H.; Alkov, Nicole; Hong, Sung-ho; Van Dam, Remke L.; Kleissl, Jan; Shannon, Heather; Meason, John; Borchers, Brian; Harmon, Russell S.
2006-05-01
Modeling studies and experimental work have demonstrated that the dynamic behavior of soil physical properties has a significant effect on most sensors for the detection of buried land mines. An outdoor test site has been constructed allowing full control over soil water content and continuous monitoring of important soil properties and environmental conditions. Time domain reflectometry sensors and thermistors measure soil water1 content and temperature, respectively, at different depths above and below the land mines as well as in homogeneous soil away from the land mines. During the two-year operation of the test-site, the soils have evolved to reflect real field soil conditions. This paper compares visual observations as well as ground-penetrating radar and thermal infrared measurements at this site taken immediately after construction in early 2004 with measurements from early 2006. The visual observations reveal that the 2006 soil surfaces exhibit a much higher spatial variability due to the development of mini-reliefs, "loose" and "connected" soil crusts, cracks in clay soils, and vegetation. Evidence is presented that the increased variability of soil surface characteristics leads to a higher natural spatial variability of soil surface temperatures and, thus, to a lower probability to detect landmines using thermal imagery. No evidence was found that the soil surface changes affect the GPR signatures of landmines under the soil conditions encountered in this study. The New Mexico Tech outdoor Landmine Detection Sensor Test Facility is easily accessible and anyone interested is welcome to use it for sensor testing.
A Multi-scale Approach to Urban Thermal Analysis
NASA Technical Reports Server (NTRS)
Gluch, Renne; Quattrochi, Dale A.
2005-01-01
An environmental consequence of urbanization is the urban heat island effect, a situation where urban areas are warmer than surrounding rural areas. The urban heat island phenomenon results from the replacement of natural landscapes with impervious surfaces such as concrete and asphalt and is linked to adverse economic and environmental impacts. In order to better understand the urban microclimate, a greater understanding of the urban thermal pattern (UTP), including an analysis of the thermal properties of individual land covers, is needed. This study examines the UTP by means of thermal land cover response for the Salt Lake City, Utah, study area at two scales: 1) the community level, and 2) the regional or valleywide level. Airborne ATLAS (Advanced Thermal Land Applications Sensor) data, a high spatial resolution (10-meter) dataset appropriate for an environment containing a concentration of diverse land covers, are used for both land cover and thermal analysis at the community level. The ATLAS data consist of 15 channels covering the visible, near-IR, mid-IR and thermal-IR wavelengths. At the regional level Landsat TM data are used for land cover analysis while the ATLAS channel 13 data are used for the thermal analysis. Results show that a heat island is evident at both the community and the valleywide level where there is an abundance of impervious surfaces. ATLAS data perform well in community level studies in terms of land cover and thermal exchanges, but other, more coarse-resolution data sets are more appropriate for large-area thermal studies. Thermal response per land cover is consistent at both levels, which suggests potential for urban climate modeling at multiple scales.
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is enveloped in a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is enveloped in a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is moved into position at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida in preparation for free flight test No. 15. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA/Jim Grossman
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander rises above a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is enveloped in a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA/Jim Grossman
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is enveloped in a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Zavodsky, B.; Santanello, J. A.; Friedl, M. A.; Susskind, J.; Palm, S. P.
2010-12-01
The planetary boundary layer (PBL) serves as a short-term memory of land-atmosphere (L-A) interactions through the diurnal integration of surface fluxes and subsequent evolution of PBL fluxes and states. Recent advances in satellite remote sensing offer the ability to monitor PBL and land surface properties at increasingly high spatial and temporal resolutions and, consequently, have the potential to provide valuable information on the terrestrial energy and water cycle across a range of scales. In this study, we evaluate the retrieval of PBL structure and temperature and moisture properties from measurements made by NASA's Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Moderate Resolution Imaging Spectroradiometer (MODIS) , and Atmospheric Infrared Sounder (AIRS) instruments aboard the 'A-Train' constellation. The global coverage of these sensors greatly improves upon the coarse network of synoptic radiosonde and intermittent satellite and ground remote sensing currently available, and combining the high vertical and spectral resolution of these sensors allows for PBL retrievals to be evaluated in the context of their relationship with the land surface. Results include an evaluation of CALIPSO, MODIS, and AIRS temperature and humidity retrievals using radiosonde data, focusing on how well PBL properties (e.g. PBL height, temperature, humidity, and stability) can be discerned from each sensor under a range of conditions. Overall, this research is timely in assessing the potential for merging complimentary information from independent sensors, and provides a unique opportunity to evaluate and apply NASA data to answer fundamental questions regarding observation, understanding, and prediction of L-A interactions and coupling.
Real-time simulation of combined short-wave and long-wave infrared vision on a head-up display
NASA Astrophysics Data System (ADS)
Peinecke, Niklas; Schmerwitz, Sven
2014-05-01
Landing under adverse weather conditions can be challenging, even if the airfields are well known to the pilots. This is true for civil as well as military aviation. Within the scope of this paper we concentrate especially on fog conditions. The work has been conducted within the project ALICIA. ALICIA is a research and development project co-funded by European Commission under the Seventh Framework Programme. ALICIA aims at developing new and scalable cockpit applications which can extend operations of aircraft in degraded conditions: All Conditions Operations. One of the systems developed is a head-up display that can display a generated symbology together with a raster-mode infrared image. We will detail how we implemented a real-time enabled simulation of a combined short-wave and long-wave infrared image for landing. A major challenge was to integrate several already existing simulation solutions, e.g., for visual simulation and sensors with the required data-bases. For the simulations DLRs in-house sensor simulation framework F3S was used, together with a commercially available airport model that had to be heavily modified in order to provide realistic infrared data. Special effort was invested for a realistic impression of runway lighting under foggy conditions. We will present results and sketch further improvements for future simulations.
False-color display of special sensor microwave/imager (SSM/I) data
NASA Technical Reports Server (NTRS)
Negri, Andrew J.; Adler, Robert F.; Kummerow, Christian D.
1989-01-01
Displays of multifrequency passive microwave data from the Special Sensor Microwave/Imager (SSM/I) flying on the Defense Meteorological Satellite Program (DMSP) spacecraft are presented. Observed brightness temperatures at 85.5 GHz (vertical and horizontal polarizations) and 37 GHz (vertical polarization) are respectively used to 'drive' the red, green, and blue 'guns' of a color monitor. The resultant false-color images can be used to distinguish land from water, highlight precipitation processes and structure over both land and water, and detail variations in other surfaces such as deserts, snow cover, and sea ice. The observations at 85.5 GHz also add a previously unavailable frequency to the problem of rainfall estimation from space. Examples of mesoscale squall lines, tropical and extra-tropical storms, and larger-scale land and atmospheric features as 'viewed' by the SSM/I are shown.
False-color display of special sensor microwave/imager (SSM/I) data
NASA Astrophysics Data System (ADS)
Negri, Andrew J.; Adler, Robert F.; Kummerow, Christian D.
1989-02-01
Displays of multifrequency passive microwave data from the Special Sensor Microwave/Imager (SSM/I) flying on the Defense Meteorological Satellite Program (DMSP) spacecraft are presented. Observed brightness temperatures at 85.5 GHz (vertical and horizontal polarizations) and 37 GHz (vertical polarization) are respectively used to 'drive' the red, green, and blue 'guns' of a color monitor. The resultant false-color images can be used to distinguish land from water, highlight precipitation processes and structure over both land and water, and detail variations in other surfaces such as deserts, snow cover, and sea ice. The observations at 85.5 GHz also add a previously unavailable frequency to the problem of rainfall estimation from space. Examples of mesoscale squall lines, tropical and extra-tropical storms, and larger-scale land and atmospheric features as 'viewed' by the SSM/I are shown.
Generalized interpretation scheme for arbitrary HR InSAR image pairs
NASA Astrophysics Data System (ADS)
Boldt, Markus; Thiele, Antje; Schulz, Karsten
2013-10-01
Land cover classification of remote sensing imagery is an important topic of research. For example, different applications require precise and fast information about the land cover of the imaged scenery (e.g., disaster management and change detection). Focusing on high resolution (HR) spaceborne remote sensing imagery, the user has the choice between passive and active sensor systems. Passive systems, such as multispectral sensors, have the disadvantage of being dependent from weather influences (fog, dust, clouds, etc.) and time of day, since they work in the visible part of the electromagnetic spectrum. Here, active systems like Synthetic Aperture Radar (SAR) provide improved capabilities. As an interactive method analyzing HR InSAR image pairs, the CovAmCohTM method was introduced in former studies. CovAmCoh represents the joint analysis of locality (coefficient of variation - Cov), backscatter (amplitude - Am) and temporal stability (coherence - Coh). It delivers information on physical backscatter characteristics of imaged scene objects or structures and provides the opportunity to detect different classes of land cover (e.g., urban, rural, infrastructure and activity areas). As example, railway tracks are easily distinguishable from other infrastructure due to their characteristic bluish coloring caused by the gravel between the sleepers. In consequence, imaged objects or structures have a characteristic appearance in CovAmCoh images which allows the development of classification rules. In this paper, a generalized interpretation scheme for arbitrary InSAR image pairs using the CovAmCoh method is proposed. This scheme bases on analyzing the information content of typical CovAmCoh imagery using the semisupervised k-means clustering. It is shown that eight classes model the main local information content of CovAmCoh images sufficiently and can be used as basis for a classification scheme.
Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2005-01-01
Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.
NASA Astrophysics Data System (ADS)
Câmara, F.; Oliveira, J.; Hormigo, T.; Araújo, J.; Ribeiro, R.; Falcão, A.; Gomes, M.; Dubois-Matra, O.; Vijendran, S.
2015-06-01
This paper discusses the design and evaluation of data fusion strategies to perform tiered fusion of several heterogeneous sensors and a priori data. The aim is to increase robustness and performance of hazard detection and avoidance systems, while enabling safe planetary and small body landings anytime, anywhere. The focus is on Mars and asteroid landing mission scenarios and three distinct data fusion algorithms are introduced and compared. The first algorithm consists of a hybrid camera-LIDAR hazard detection and avoidance system, the H2DAS, in which data fusion is performed at both sensor-level data (reconstruction of the point cloud obtained with a scanning LIDAR using the navigation motion states and correcting the image for motion compensation using IMU data), feature-level data (concatenation of multiple digital elevation maps, obtained from consecutive LIDAR images, to achieve higher accuracy and resolution maps while enabling relative positioning) as well as decision-level data (fusing hazard maps from multiple sensors onto a single image space, with a single grid orientation and spacing). The second method presented is a hybrid reasoning fusion, the HRF, in which innovative algorithms replace the decision-level functions of the previous method, by combining three different reasoning engines—a fuzzy reasoning engine, a probabilistic reasoning engine and an evidential reasoning engine—to produce safety maps. Finally, the third method presented is called Intelligent Planetary Site Selection, the IPSIS, an innovative multi-criteria, dynamic decision-level data fusion algorithm that takes into account historical information for the selection of landing sites and a piloting function with a non-exhaustive landing site search capability, i.e., capable of finding local optima by searching a reduced set of global maps. All the discussed data fusion strategies and algorithms have been integrated, verified and validated in a closed-loop simulation environment. Monte Carlo simulation campaigns were performed for the algorithms performance assessment and benchmarking. The simulations results comprise the landing phases of Mars and Phobos landing mission scenarios.
Development and Application of Nonlinear Land-Use Regression Models
NASA Astrophysics Data System (ADS)
Champendal, Alexandre; Kanevski, Mikhail; Huguenot, Pierre-Emmanuel
2014-05-01
The problem of air pollution modelling in urban zones is of great importance both from scientific and applied points of view. At present there are several fundamental approaches either based on science-based modelling (air pollution dispersion) or on the application of space-time geostatistical methods (e.g. family of kriging models or conditional stochastic simulations). Recently, there were important developments in so-called Land Use Regression (LUR) models. These models take into account geospatial information (e.g. traffic network, sources of pollution, average traffic, population census, land use, etc.) at different scales, for example, using buffering operations. Usually the dimension of the input space (number of independent variables) is within the range of (10-100). It was shown that LUR models have some potential to model complex and highly variable patterns of air pollution in urban zones. Most of LUR models currently used are linear models. In the present research the nonlinear LUR models are developed and applied for Geneva city. Mainly two nonlinear data-driven models were elaborated: multilayer perceptron and random forest. An important part of the research deals also with a comprehensive exploratory data analysis using statistical, geostatistical and time series tools. Unsupervised self-organizing maps were applied to better understand space-time patterns of the pollution. The real data case study deals with spatial-temporal air pollution data of Geneva (2002-2011). Nitrogen dioxide (NO2) has caught our attention. It has effects on human health and on plants; NO2 contributes to the phenomenon of acid rain. The negative effects of nitrogen dioxides on plants are the reduction of the growth, production and pesticide resistance. And finally, the effects on materials: nitrogen dioxide increases the corrosion. The data used for this study consist of a set of 106 NO2 passive sensors. 80 were used to build the models and the remaining 36 have constituted the testing set. Missing data have been completed using multiple linear regression and annual average values of pollutant concentrations were computed. All sensors are dispersed homogeneously over the central urban area of Geneva. The main result of the study is that the nonlinear LUR models developed have demonstrated their efficiency in modelling complex phrenomena of air pollution in urban zones and significantly reduced the testing error in comparison with linear models. Further research deals with the development and application of other non-linear data-driven models (Kanevski et al. 2009). References Kanevski M., Pozdnoukhov A. and Timonin V. (2009). Machine Learning for Spatial Environmental Data. Theory, Applications and Software. EPLF Press, Lausanne.
From Sensor to Observation Web with environmental enablers in the Future Internet.
Havlik, Denis; Schade, Sven; Sabeur, Zoheir A; Mazzetti, Paolo; Watson, Kym; Berre, Arne J; Mon, Jose Lorenzo
2011-01-01
This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities' environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term "envirofied" Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management).
From Sensor to Observation Web with Environmental Enablers in the Future Internet
Havlik, Denis; Schade, Sven; Sabeur, Zoheir A.; Mazzetti, Paolo; Watson, Kym; Berre, Arne J.; Mon, Jose Lorenzo
2011-01-01
This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term “envirofied” Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management). PMID:22163827
NASA Astrophysics Data System (ADS)
Pan, D.; Benedict, K. B.; Ham, J. M.; Prenni, A. J.; Schichtel, B. A.; Collett, J. L., Jr.; Zondlo, M. A.
2015-12-01
NH3 is an important component of the bio-atmospheric N cycle with implications for regional air quality, human and ecosystem health degradation, and global climate change. However, measuring NH3 flux is challenging, requiring a sensor with high sensitivity (sub-ppbv), fast response time and the capability to account for NH3 adsorption effects. In this study, we address these issues with an open-path quantum-cascade-based sensor for eddy covariance (EC) measurements. Previously, our EC NH3 sensor was deployed over a feedlot in Colorado in 2013 and 2014, and the results showed the potential of the sensor to measure NH3 emissions from agricultural sources. In the summer of 2015, the sensor was installed at a remote monitoring site in Rocky Mountain National Park to measure NH3 flux over a natural grass land. During the deployment, the precision of the sensor was about 0.15 ppbv at 10 Hz, and the detection limit of the flux was estimated to be 0.7±0.5 ng NH3/s/m2. The cospectra of the NH3 flux closely resembled those of CO2 flux and sensible heat flux measured by a LI-7500 CO2 analyzer and a CSAT3 sonic anemometer. The ogive analyses indicated that the loss of NH3 fluxes due to various damping effects was about 15%. Examining initial results from a few days of measurement, the measured NH3 fluxes appear to have a strong diurnal pattern with local emissions during afternoon, a pattern not previously reported for remote grass land. The pattern is consistent with background NH3 concentration measured by PICARRO NH3 analyzer, although summertime afternoon concentration increases at the site have previously been associated with upslope transport from urban and agricultural regions to the east. The results demonstrate the sensor's capability to measure NH3 flux in low NH3 conditions and also show that more measurements are needed to investigate spatial and temporal variability of NH3 flux.
NASA Astrophysics Data System (ADS)
Azarderakhsh, M.; McDonald, K. C.; Norouzi, H.; Rebolledo, M. A.; Prakash, S.
2017-12-01
The freeze and thaw (FT) cycles in high-latitude regions have great impact on many biogeochemical transitions, hydrology and ecosystem especially in wetland areas. Passive and active microwave remote sensing data from satellite observations have been deployed in the past to define the status of the surface in terms of freeze and thaw. While many progresses have been made in this field, the limitations attached to such observations have hindered our ability to fully predict the change of surface state in the scale that is appropriate for the aforementioned applications. The transition between freeze and thaw states may occur frequently (even within a day) especially during shifts from cold to warm seasons and vice versa. Passive microwave sensors have different acquisition times, and data fusion of these sensors may provide a complete diurnal variation estimate of FT states. However, the coarse spatial resolution of these measurements may undermine their applicability. However, active microwave backscatter measurements from sensors such as Sentinel 1A and the Advanced Land Observing Satellite Phased Array L-Band SAR (ALOS PALSAR) can deliver high resolution information about wetlands and FT status. In this project, Synthetic Aperture Radar (SAR) c-band backscatter data from Sentinel 1 from April 2014 to June 2017 are deployed to detect high resolution freeze/thaw states and wetland areas. The contrasts between frozen and thawed seasons are used to define FT states after performing required radiometric corrections and calibrations. A method based on phase changes in polarized images is developed for different land cover types to maximize the accuracy of the detections. The aggregated (up-scaled) estimates from active measurements are compared to passive microwave-based FT product. The results of this method reveal that the estimates are relatively in good agreement with SNOw TELemetry (SNOTEL) ground measurements. Finally, a downscaling method is tried to link passive emissivity-based FT product to high resolution active FT estimates to increase the temporal frequency of the high-resolution Sentinel data. The results of this study contribute to better understanding sources of positive carbon and methane (CH4) feedback to the atmosphere.
NASA Astrophysics Data System (ADS)
Ermida, S. L.; Trigo, I. F.; DaCamara, C.; Ghent, D.
2017-12-01
Land surface temperature (LST) values retrieved from satellite measurements in the thermal infrared (TIR) may be strongly affected by spatial anisotropy. This effect introduces significant discrepancies among LST estimations from different sensors, overlapping in space and time, that are not related to uncertainties in the methodologies or input data used. Furthermore, these directional effects deviate LST products from an ideally defined LST, which should represent to the ensemble of directional radiometric temperature of all surface elements within the FOV. Angular effects on LST are here conveniently estimated by means of a parametric model of the surface thermal emission, which describes the angular dependence of LST as a function of viewing and illumination geometry. Two models are consistently analyzed to evaluate their performance of and to assess their respective potential to correct directional effects on LST for a wide range of surface conditions, in terms of tree coverage, vegetation density, surface emissivity. We also propose an optimization of the correction of directional effects through a synergistic use of both models. The models are calibrated using LST data as provided by two sensors: MODIS on-board NASA's TERRA and AQUA; and SEVIRI on-board EUMETSAT's MSG. As shown in our previous feasibility studies the sampling of illumination and view angles has a high impact on the model parameters. This impact may be mitigated when the sampling size is increased by aggregating pixels with similar surface conditions. Here we propose a methodology where land surface is stratified by means of a cluster analysis using information on land cover type, fraction of vegetation cover and topography. The models are then adjusted to LST data corresponding to each cluster. It is shown that the quality of the cluster based models is very close to the pixel based ones. Furthermore, the reduced number of parameters allows improving the model trough the incorporation of a seasonal component. The application of the procedure discussed here towards the harmonization of LST products from multi-sensors has been tested within the framework of the ESA DUE GlobTemperature project. It is also expected to help the characterization of directional effects of LST products generated within the EUMETSAT LSA SAF.
Chemical Gas Sensors for Aeronautic and Space Applications 2
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Chen, Liong-Yu; Neudeck, Phil G.; Knight, Dale; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, Darby; Liu, M.; Rauch, W. A.
1998-01-01
Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.
Chemical Gas Sensors for Aeronautics and Space Applications III
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.;
1999-01-01
Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.
Chemical Gas Sensors for Aeronautic and Space Applications 2
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.
1998-01-01
Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.
2006-10-26
tte r M r. D ea n C ar ic o TR AC K 1 Sy st em s En gi ne er in g Ef fe ct iv en es s M r. Al B ro...FS S) T oo ls - PG M M Ca se S tu dy M r. D ou gl as S to rs ve d Pa tte rn L ib ra ry fo r Us e in W ea po ns S ys te m E ng in ee...Sensors Sensors Sensors Sensors Air, Land or Sea Undersea or from the Sea (C3) (C2)( ) Sensors Sensors
Optical fiber sensors: Systems and applications. Volume 2
NASA Astrophysics Data System (ADS)
Culshaw, Brian; Dakin, John
State-of-the-art fiber-optic (FO) sensors and their applications are described in chapters contributed by leading experts. Consideration is given to interferometers, FO gyros, intensity- and wavelength-based sensors and optical actuators, Si in FO sensors, point-sensor multiplexing principles, and distributed FO sensor systems. Also examined are chemical, biochemical, and medical sensors; physical and chemical sensors for process control; FO-sensor applications in the marine and aerospace industries; FO-sensor monitoring systems for security and safety, structural integrity, NDE, and the electric-power industry; and the market situation for FO-sensor technology. Diagrams, drawings, graphs, and photographs are provided.
2000-08-01
forefoot with the foot in the neutral position, and (b) similar to (a) but with heel landing. Although the authors reported no absolute strain values...diameter of sensors (or, in the case of a rectangular sensor, width as measured along pin axis). Worst case : Strike line from inside edges of sensors...potoroo it is just prior to "toe strike ". The locomotion of the potoroo is described as digitigrade, unlike humans, who walk in a plantigrade manner
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... Application for Special Nuclear Materials License From Sensor Concepts and Applications, Inc., Opportunity To...-4737, or by e-mail to [email protected] . The public version of the Sensor Concepts and Applications... (DNDO) of the U.S. Department of Homeland Security (DHS). Sensor Concepts and Applications (SCA...
2009-09-01
22 b. Hazard Detection and Avoidance ( HDA )...............................22 c. Hazard Relative Navigation (HRN...Navigation (HRN) and Hazard Detection and Avoidance ( HDA ). In addition to the TRN and HDA sensors used during these phases, which will be discussed...and Avoidance ( HDA ) During the HAD phase, the expected landing site is examined and evaluated, and a new site may be selected. Using the HDA
The Evolution of Landsat Data Systems and Science Products
NASA Astrophysics Data System (ADS)
Dwyer, J. L.
2011-12-01
The series of Landsat satellite missions have collected observations of the Earth's surface since 1972, resulting in the richest archive of remotely sensed data covering the global land masses at scales from which natural and human-induced changes can be distinguished. This observational record will continue to be extended with the launch of the Landsat Data Continuity Mission, or Landsat 8, in December of 2012 carrying the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) instruments. The data streams from these instruments will be significantly enhanced yet compatible with data acquired by heritage Landsat instruments. The radiometry and geometry of the OLI and TIRS data will be calibrated and combined into single, multi-band Level-1 terrain-corrected image products. Coefficients will be included in the product metadata to convert OLI to at-sensor radiance or reflectance and to convert TIRS data to at-aperture radiances. A quality assurance band will contain pixel-based information regarding the presences or clouds, shadows, and terrain occlusion. The raw data as well as the Level-1 products will be stored online and made freely accessible through web coverage services. Rescaled Level-1 OLI and TIRS images will be made available via web mapping services to enable inventory searches and for ready use in geospatial applications. The architecture of the Landsat science data processing systems is scalable to accommodate additional processing and storage nodes in response to archive growth and increased demands on processing and distribution. The data collected by the various Landsat instruments have been inter-calibrated to enable the generation of higher level science data products that are of consistent quality through time and from which geophysical and biophysical parameters of the land surface can be derived for use in process models and decision support systems. Data access and delivery services have evolved in response to increasing demand for Landsat data in a broad range of applications, and the demand for additional processing capabilities and services is expected to grow in the future to meet the needs for climate data records and essential climate variables.
Monitoring algal blooms in drinking water reservoirs using the Landsat-8 Operational Land Imager
In this study, we demonstrated that the Landsat-8 Operational Land Imager (OLI) sensor is a powerful tool that can provide periodic and system-wide information on the condition of drinking water reservoirs. The OLI is a multispectral radiometer (30 m spatial resolution) that allo...
A data mining approach for sharpening satellite thermal imagery over land
USDA-ARS?s Scientific Manuscript database
Thermal infrared (TIR) imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes which are at significant...
Algorithm for Autonomous Landing
NASA Technical Reports Server (NTRS)
Kuwata, Yoshiaki
2011-01-01
Because of their small size, high maneuverability, and easy deployment, micro aerial vehicles (MAVs) are used for a wide variety of both civilian and military missions. One of their current drawbacks is the vast array of sensors (such as GPS, altimeter, radar, and the like) required to make a landing. Due to the MAV s small payload size, this is a major concern. Replacing the imaging sensors with a single monocular camera is sufficient to land a MAV. By applying optical flow algorithms to images obtained from the camera, time-to-collision can be measured. This is a measurement of position and velocity (but not of absolute distance), and can avoid obstacles as well as facilitate a landing on a flat surface given a set of initial conditions. The key to this approach is to calculate time-to-collision based on some image on the ground. By holding the angular velocity constant, horizontal speed decreases linearly with the height, resulting in a smooth landing. Mathematical proofs show that even with actuator saturation or modeling/ measurement uncertainties, MAVs can land safely. Landings of this nature may have a higher velocity than is desirable, but this can be compensated for by a cushioning or dampening system, or by using a system of legs to grab onto a surface. Such a monocular camera system can increase vehicle payload size (or correspondingly reduce vehicle size), increase speed of descent, and guarantee a safe landing by directly correlating speed to height from the ground.
NASA Astrophysics Data System (ADS)
Berkoff, T.; Sullivan, J.; Pippin, M. R.; Gronoff, G.; Knepp, T. N.; Twigg, L.; Schroeder, J.; Carrion, W.; Farris, B.; Kowalewski, M. G.; Nino, L.; Gargulinski, E.; Rodio, L.; Sanchez, P.; Desorae Davis, A. A.; Janz, S. J.; Judd, L.; Pusede, S.; Wolfe, G. M.; Stauffer, R. M.; Munyan, J.; Flynn, J.; Moore, B.; Dreessen, J.; Salkovitz, D.; Stumpf, K.; King, B.; Hanisco, T. F.; Brandt, J.; Blake, D. R.; Abuhassan, N.; Cede, A.; Tzortziou, M.; Demoz, B.; Tsay, S. C.; Swap, R.; Holben, B. N.; Szykman, J.; McGee, T. J.; Neilan, J.; Allen, D.
2017-12-01
The monitoring of ozone (O3) in the troposphere is of pronounced interest due to its known toxicity and health hazard as a photo-chemically generated pollutant. One of the major difficulties for the air quality modeling, forecasting and satellite communities is the validation of O3 levels in sharp transition regions, as well as near-surface vertical gradients. Land-water gradients of O3 near coastal regions can be large due to differences in surface deposition, boundary layer height, and cloud coverage. Observations in horizontal and vertical directions over the Chesapeake Bay are needed to better understand O3 formation and redistribution within regional recirculation patterns. The O3 Water-Land Environmental Transition Study (OWLETS) was a field campaign conducted in the summer 2017 in the VA Tidewater region to better characterize O3 across the coastal boundary. To obtain over-water measurements, the NASA Langley Ozone Lidar as well as supplemental measurements from other sensors (e.g. Pandora, AERONET) were deployed on the Chesapeake Bay Bridge Tunnel (CBBT) 7-8 miles offshore. These observations were complimented by NASA Goddard's Tropospheric Ozone Lidar along with ground-based measurements over-land at the NASA Langley Research Center (LaRC) in Hampton, VA. On measurement days, time-synchronized data were collected, including launches of ozonesondes from CBBT and LaRC sites that provided additional O3, wind, and temperature vertical distribution differences between land and water. These measurements were complimented with: in-situ O3 sensors on two mobile cars, a micro-pulse lidar at Hampton University, an in-situ O3 sensor on a small UAV-drone, and Virginia DEQ air-quality sites. Two aircraft and a research vessel also contributed to OWLETS at various points during the campaign: the NASA UC-12B with the GeoTASO passive remote sensor, the NASA C-23 with an in-situ chemistry analysis suite, and a SERC research vessel with both remote and in-situ sensors. This combination of observations provided a unique 4-D (horizontal, vertical, and time) view of O3 to help provide feedback to air quality forecast models as well as future satellite remote sensing systems such as NASA's TEMPO mission. In this presentation, a summary of observations and initial results will be presented from the OWLETS campaign.
Results of scatterometer systems analysis for NASA/MSC Earth Observation Sensor Evaluation Program.
NASA Technical Reports Server (NTRS)
Krishen, K.; Vlahos, N.; Brandt, O.; Graybeal, G.
1971-01-01
Radar scatterometers have applications in the NASA/MSC Earth Observation Aircraft Program. Over a period of several years, several missions have been flown over both land and ocean. In this paper a system evaluation of the NASA/MSC 13.3-GHz Scatterometer System is presented. The effects of phase error between the Scatterometer channels, antenna pattern deviations, aircraft attitude deviations, environmental changes, and other related factors such as processing errors, system repeatability, and propeller modulation, were established. Furthermore, the reduction in system errors and calibration improvement was investigated by taking into account these parameter deviations. Typical scatterometer data samples are presented.
NASA Astrophysics Data System (ADS)
Gebregiorgis, A. S.; Peters-Lidard, C. D.; Tian, Y.; Hossain, F.
2011-12-01
Hydrologic modeling has benefited from operational production of high resolution satellite rainfall products. The global coverage, near-real time availability, spatial and temporal sampling resolutions have advanced the application of physically based semi-distributed and distributed hydrologic models for wide range of environmental decision making processes. Despite these successes, the existence of uncertainties due to indirect way of satellite rainfall estimates and hydrologic models themselves remain a challenge in making meaningful and more evocative predictions. This study comprises breaking down of total satellite rainfall error into three independent components (hit bias, missed precipitation and false alarm), characterizing them as function of land use and land cover (LULC), and tracing back the source of simulated soil moisture and runoff error in physically based distributed hydrologic model. Here, we asked "on what way the three independent total bias components, hit bias, missed, and false precipitation, affect the estimation of soil moisture and runoff in physically based hydrologic models?" To understand the clear picture of the outlined question above, we implemented a systematic approach by characterizing and decomposing the total satellite rainfall error as a function of land use and land cover in Mississippi basin. This will help us to understand the major source of soil moisture and runoff errors in hydrologic model simulation and trace back the information to algorithm development and sensor type which ultimately helps to improve algorithms better and will improve application and data assimilation in future for GPM. For forest and woodland and human land use system, the soil moisture was mainly dictated by the total bias for 3B42-RT, CMORPH, and PERSIANN products. On the other side, runoff error was largely dominated by hit bias than the total bias. This difference occurred due to the presence of missed precipitation which is a major contributor to the total bias both during the summer and winter seasons. Missed precipitation, most likely light rain and rain over snow cover, has significant effect on soil moisture and are less capable of producing runoff that results runoff dependency on the hit bias only.
Mars Science Laboratory Entry, Descent, and Landing Trajectory and Atmosphere Reconstruction
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberer, Mark; Shidner, Jeremy D.
2013-01-01
On August 5th 2012, The Mars Science Laboratory entry vehicle successfully entered Mars atmosphere and landed the Curiosity rover on its surface. A Kalman filter approach has been implemented to reconstruct the entry, descent, and landing trajectory based on all available data. The data sources considered in the Kalman filtering approach include the inertial measurement unit accelerations and angular rates, the terrain descent sensor, the measured landing site, orbit determination solutions for the initial conditions, and a new set of instrumentation for planetary entry reconstruction consisting of forebody pressure sensors, known as the Mars Entry Atmospheric Data System. These pressure measurements are unique for planetary entry, descent, and landing reconstruction as they enable a reconstruction of the freestream atmospheric conditions without any prior assumptions being made on the vehicle aerodynamics. Moreover, the processing of these pressure measurements in the Kalman filter approach enables the identification of atmospheric winds, which has not been accomplished in past planetary entry reconstructions. This separation of atmosphere and aerodynamics allows for aerodynamic model reconciliation and uncertainty quantification, which directly impacts future missions. This paper describes the mathematical formulation of the Kalman filtering approach, a summary of data sources and preprocessing activities, and results of the reconstruction.
EMPACT 3D: an advanced EMI discrimination sensor for CONUS and OCONUS applications
NASA Astrophysics Data System (ADS)
Keranen, Joe; Miller, Jonathan S.; Schultz, Gregory; Sander-Olhoeft, Morgan; Laudato, Stephen
2018-04-01
We recently developed a new, man-portable, electromagnetic induction (EMI) sensor designed to detect and classify small, unexploded sub-munitions and discriminate them from non-hazardous debris. The ability to distinguish innocuous metal clutter from potentially hazardous unexploded ordnance (UXO) and other explosive remnants of war (ERW) before excavation can significantly accelerate land reclamation efforts by eliminating time spent removing harmless scrap metal. The EMI sensor employs a multi-axis transmitter and receiver configuration to produce data sufficient for anomaly discrimination. A real-time data inversion routine produces intrinsic and extrinsic anomaly features describing the polarizability, location, and orientation of the anomaly under test. We discuss data acquisition and post-processing software development, and results from laboratory and field tests demonstrating the discrimination capability of the system. Data acquisition and real-time processing emphasize ease-of-use, quality control (QC), and display of discrimination results. Integration of the QC and discrimination methods into the data acquisition software reduces the time required between sensor data collection and the final anomaly discrimination result. The system supports multiple concepts of operations (CONOPs) including: 1) a non-GPS cued configuration in which detected anomalies are discriminated and excavated immediately following the anomaly survey; 2) GPS integration to survey multiple anomalies to produce a prioritized dig list with global anomaly locations; and 3) a dynamic mapping configuration supporting detection followed by discrimination and excavation of targets of interest.
NASA Tech Briefs, October 2011
NASA Technical Reports Server (NTRS)
2011-01-01
Topics covered include: Laser Truss Sensor for Segmented Telescope Phasing; Qualifications of Bonding Process of Temperature Sensors to Deep-Space Missions; Optical Sensors for Monitoring Gamma and Neutron Radiation; Compliant Tactile Sensors; Cytometer on a Chip; Measuring Input Thresholds on an Existing Board; Scanning and Defocusing Properties of Microstrip Reflectarray Antennas; Cable Tester Box; Programmable Oscillator; Fault-Tolerant, Radiation-Hard DSP; Sub-Shot Noise Power Source for Microelectronics; Asynchronous Message Service Reference Implementation; Zero-Copy Objects System; Delay and Disruption Tolerant Networking MACHETE Model; Contact Graph Routing; Parallel Eclipse Project Checkout; Technique for Configuring an Actively Cooled Thermal Shield in a Flight System; Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes; Li-Ion Cells Employing Electrolytes with Methyl Propionate and Ethyl Butyrate Co-Solvents; Improved Devices for Collecting Sweat for Chemical Analysis; Tissue Photolithography; Method for Impeding Degradation of Porous Silicon Structures; External Cooling Coupled to Reduced Extremity Pressure Device; A Zero-Gravity Cup for Drinking Beverages in Microgravity; Co-Flow Hollow Cathode Technology; Programmable Aperture with MEMS Microshutter Arrays; Polished Panel Optical Receiver for Simultaneous RF/Optical Telemetry with Large DSN Antennas; Adaptive System Modeling for Spacecraft Simulation; Lidar-Based Navigation Algorithm for Safe Lunar Landing; Tracking Object Existence From an Autonomous Patrol Vehicle; Rad-Hard, Miniaturized, Scalable, High-Voltage Switching Module for Power Applications; and Architecture for a 1-GHz Digital RADAR.
Cordless hand-held optical 3D sensor
NASA Astrophysics Data System (ADS)
Munkelt, Christoph; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Schmidt, Ingo; Notni, Gunther
2007-07-01
A new mobile optical 3D measurement system using phase correlation based fringe projection technique will be presented. The sensor consist of a digital projection unit and two cameras in a stereo arrangement, whereby both are battery powered. The data transfer to a base station will be done via WLAN. This gives the possibility to use the system in complicate, remote measurement situations, which are typical in archaeology and architecture. In the measurement procedure the sensor will be hand-held by the user, illuminating the object with a sequence of less than 10 fringe patterns, within a time below 200 ms. This short sequence duration was achieved by a new approach, which combines the epipolar constraint with robust phase correlation utilizing a pre-calibrated sensor head, containing two cameras and a digital fringe projector. Furthermore, the system can be utilized to acquire the all around shape of objects by using the phasogrammetric approach with virtual land marks introduced by the authors 1, 2. This way no matching procedures or markers are necessary for the registration of multiple views, which makes the system very flexible in accomplishing different measurement tasks. The realized measurement field is approx. 100 mm up to 400 mm in diameter. The mobile character makes the measurement system useful for a wide range of applications in arts, architecture, archaeology and criminology, which will be shown in the paper.
NASA Astrophysics Data System (ADS)
Liu, Yaokai; Li, Chuanrong; Ma, Lingling; Wang, Ning; Qian, Yonggang; Tang, Lingli
2016-10-01
GF-2, launched on August 19 2014, is one of the high-resolution land resource observing satellite of the China GF series satellites plan. The radiometric performance evaluation of the onboard optical pan and multispectral (PMS2) sensor of GF-2 satellite is very important for the further application of the data. And, the vicarious absolute radiometric calibration approach is one of the most useful way to monitor the radiometric performance of the onboard optical sensors. In this study, the traditional reflectance-based method is used to vicarious radiometrically calibrate the onboard PMS2 sensor of GF-2 satellite using three black, gray and white reflected permanent artificial targets located in the AOE Baotou site in China. Vicarious field calibration campaign were carried out in the AOE-Baotou calibration site on 22 April 2016. And, the absolute radiometric calibration coefficients were determined with in situ measured atmospheric parameters and surface reflectance of the permanent artificial calibration targets. The predicted TOA radiance of a selected desert area with our determined calibrated coefficients were compared with the official distributed calibration coefficients. Comparison results show a good consistent and the mean relative difference of the multispectral channels is less than 5%. Uncertainty analysis was also carried out and a total uncertainty with 3.87% is determined of the TOA radiance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markham, B.L.; Halthore, R.N.; Goetz, S.J.
1992-11-30
This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper reports on comparison of measurement systems which were deployed to measure surface reflectance factors, from aircraft or satellites. These instruments look over the general range of 0.4 to 2.5[mu]m. Instruments studied include Landsat 5 thematic mapper (TM), the SPOT 1 high-resolution visible sensor (HRV) 1, the NS001 thematic mapper simulator,more » and the modular multispectral radiometers (MMRs). The study looked at the radiometric consistency of the different instruments, and the adequacy of the atmospheric correction routines applied to data analysis.« less
Persistent regional carbon dioxide anomalies driven by land use
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-04-01
Researchers have traditionally used measurements from remote locations, such as Hawaii's Mauna Loa Observatory and other isolated stations, to determine atmospheric carbon dioxide (CO2) concentrations and estimate the strengths of various carbon sources and sinks. The prevailing wisdom was that attempts to measure regional differences in CO2 over land would end up with signals that were either so small that they were undetectable or that were dominated by high-frequency variability due to atmospheric turbulence or weather. Measurements drawn from a moderately dense network of atmospheric gas composition sensors distributed across the upper midwestern United States, however, showed that large regional variations in tropospheric CO2 are readily observable. Drawing on measurements made at nine sensors spread over 400,000 square kilometers between 2007 and 2009, Miles et al. found that seasonal variations in atmospheric CO2 depend strongly on the type of ecosystem lying at the foot of each sensor tower.
Corrections to the MODIS Aqua Calibration Derived From MODIS Aqua Ocean Color Products
NASA Technical Reports Server (NTRS)
Meister, Gerhard; Franz, Bryan Alden
2013-01-01
Ocean color products such as, e.g., chlorophyll-a concentration, can be derived from the top-of-atmosphere radiances measured by imaging sensors on earth-orbiting satellites. There are currently three National Aeronautics and Space Administration sensors in orbit capable of providing ocean color products. One of these sensors is the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, whose ocean color products are currently the most widely used of the three. A recent improvement to the MODIS calibration methodology has used land targets to improve the calibration accuracy. This study evaluates the new calibration methodology and describes further calibration improvements that are built upon the new methodology by including ocean measurements in the form of global temporally averaged water-leaving reflectance measurements. The calibration improvements presented here mainly modify the calibration at the scan edges, taking advantage of the good performance of the land target trending in the center of the scan.
Soil moisture downscaling using a simple thermal based proxy
NASA Astrophysics Data System (ADS)
Peng, Jian; Loew, Alexander; Niesel, Jonathan
2016-04-01
Microwave remote sensing has been largely applied to retrieve soil moisture (SM) from active and passive sensors. The obvious advantage of microwave sensor is that SM can be obtained regardless of atmospheric conditions. However, existing global SM products only provide observations at coarse spatial resolutions, which often hamper their applications in regional hydrological studies. Therefore, various downscaling methods have been proposed to enhance the spatial resolution of satellite soil moisture products. The aim of this study is to investigate the validity and robustness of a simple Vegetation Temperature Condition Index (VTCI) downscaling scheme over different climates and regions. Both polar orbiting (MODIS) and geostationary (MSG SEVIRI) satellite data are used to improve the spatial resolution of the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA CCI) soil moisture, which is a merged product based on both active and passive microwave observations. The results from direct validation against soil moisture in-situ measurements, spatial pattern comparison, as well as seasonal and land use analyses show that the downscaling method can significantly improve the spatial details of CCI soil moisture while maintain the accuracy of CCI soil moisture. The application of the scheme with different satellite platforms and over different regions further demonstrate the robustness and effectiveness of the proposed method. Therefore, the VTCI downscaling method has the potential to facilitate relevant hydrological applications that require high spatial and temporal resolution soil moisture.
USDA-ARS?s Scientific Manuscript database
Remotely-sensed soil moisture studies have mainly focused on retrievals using active and passive microwave (MW) sensors whose measurements provided a direct relationship to soil moisture (SM). MW sensors present obvious advantages such as the ability to retrieve through non-precipitating cloud cover...
Micro-Ares, An electric field sensor for ExoMars 2016
NASA Astrophysics Data System (ADS)
Déprez, G.; Montmessin, F.; Witasse, O.; Lapauw, L.; Vivat, F.; Abbaki, S.; Granier, P.; Moirin, D.; Trautner, R.; Hassen-Khodja, R.; d'Almeida, E.; Chardenal, L.; Berthelier, J.-J.; Espositi, F.; Debei, S.; Rafkin, S.; Barth, E.
2015-10-01
For the past few years, LATMOS has been involved in the development of Micro-ARES, an electric field sensor part of the science payload (DREAMS) of the ExoMars 2016 Schiaparelli entry, descent and landing demonstratormodule (EDM). It is dedicated to the very first measurement and characterization of the Martian atmospheric electricity.
Catchment Integration of Sensor Array Observations to Understand Hydrologic Connectivity
NASA Astrophysics Data System (ADS)
Redfern, S.; Livneh, B.; Molotch, N. P.; Suding, K.; Neff, J. C.; Hinckley, E. L. S.
2017-12-01
Hydrologic connectivity and the land surface water balance are likely to be impacted by climate change in the coming years. Although recent work has started to demonstrate that climate modulates connectivity, we still lack knowledge of how local ecology will respond to environmental and atmospheric changes and subsequently interact with connectivity. The overarching goal of this research is to address and forecast how climate change will affect hydrologic connectivity in an alpine environment, through the use of near-surface observations (temperature, humidity, soil moisture, snow depth) from a new 16-sensor array (plus 5 precipitation gauges), together with a distributed hydrologic model, over a small catchment on Colorado's Niwot Ridge (above 3000m). Model simulations will be constrained to distributed sensor measurements taken in the study area and calibrated with streamflow. Periods of wetting and dry-down will be analyzed to identify signatures of connectivity across the landscape, its seasonal signals and its sensitivity to land cover. Further work will aim to develop future hydrologic projections, compare model output with related observations, conduct multi-physics experiments, and continue to expand the existing sensor network.
A Structured Light Sensor System for Tree Inventory
NASA Technical Reports Server (NTRS)
Chien, Chiun-Hong; Zemek, Michael C.
2000-01-01
Tree Inventory is referred to measurement and estimation of marketable wood volume in a piece of land or forest for purposes such as investment or for loan applications. Exist techniques rely on trained surveyor conducting measurements manually using simple optical or mechanical devices, and hence are time consuming subjective and error prone. The advance of computer vision techniques makes it possible to conduct automatic measurements that are more efficient, objective and reliable. This paper describes 3D measurements of tree diameters using a uniquely designed ensemble of two line laser emitters rigidly mounted on a video camera. The proposed laser camera system relies on a fixed distance between two parallel laser planes and projections of laser lines to calculate tree diameters. Performance of the laser camera system is further enhanced by fusion of information induced from structured lighting and that contained in video images. Comparison will be made between the laser camera sensor system and a stereo vision system previously developed for measurements of tree diameters.
Inflatable re-entry shield ready for test in space
NASA Astrophysics Data System (ADS)
2000-02-01
The Russian spacecraft Mars'96 for instance, which was launched in November 1996 but failed to reach its nominal orbit, carried two modules designed to land on that planet's surface. For the last part of the mission, an Inflatable Re-Entry and Descent Technology (IRDT) had been deployed. The main components of this system were an aerobraking and thermally protective shell, a densely packed inflating material and a pressurisation system. This technology is now considered applicable to other re-entry scenarios such as payload recovery from the International Space Station, planetary landers for science missions and atmospheric research. A demonstration mission on 9/10 February 2000 will evaluate the performance of this new technology before it is offered to potential users. A Russian Soyuz/Fregat launcher, lifting off from the Kazakh steppe near Baikonur, will provide a low-cost flight opportunity for the test vehicle, which is equipped with the inflatable heat shield and a sensor package developed by DaimlerChrysler Aerospace (DASA). After four orbits around the Earth, the test vehicle will be powered by the launcher's upper stage to re-enter the atmosphere for a landing the next day about 1800 km north-west of the launch site. During the mission, a number of technical parameters such as pressure, temperature and deceleration will be monitored and the inflation of the re-entry/descent structure observed. "From this novel technology, we are expecting a major breakthrough, to make re-entry of small payloads more and more reliable, simpler and less costly than traditional systems", explains Dieter Kassing, ESA's IRDT project manager. One of the main instruments on board the test vehicle is a sensor device developed by the University of Stuttgart for the determination of oxygen partial pressure in low Earth orbit and during re-entry. The scientific/technical investigations will be led by Dr. Ulrich Schoettle (Stuttgart University). Lionel Marraffa (ESA) will lead the evaluation of the IRDT's aerothermodynamic behaviour. DASA was responsible for integration of the sensor package and is ESA's co-investigator for evaluation of the application aspects of this new technology. In addition to the sensor package, the mission will accommodate a collection of special stones to study the physical and chemical modifications in sedimentary rocks, i.e. simulated meteorites, during atmospheric infall. Co-investors of this experiment are Dr. André Brack (CNRS, Orleans) and Dr. Gero Kurat (Vienna University). This experiment is being co-sponsored by ESA. The Russian/European Starsem launch company and NPO Lavochkin, the Russian company that developed the original IRDT technology, will be responsible for launch, orbit control, re-entry and recovery of the sensor package under contract with the International Science & Technology Centre (Moscow). ESA, the European Commission and DASA are co-funding this contract, contributing $600K each.
43 CFR 2625.2 - Applications in conflict with swamp-land claims.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Applications in conflict with swamp-land...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) STATE GRANTS Swamp-land Grants § 2625.2 Applications in conflict with swamp-land claims. Applications adverse to the State...
43 CFR 2625.2 - Applications in conflict with swamp-land claims.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Applications in conflict with swamp-land...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) STATE GRANTS Swamp-land Grants § 2625.2 Applications in conflict with swamp-land claims. Applications adverse to the State...
43 CFR 2625.2 - Applications in conflict with swamp-land claims.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Applications in conflict with swamp-land...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) STATE GRANTS Swamp-land Grants § 2625.2 Applications in conflict with swamp-land claims. Applications adverse to the State...
43 CFR 2625.2 - Applications in conflict with swamp-land claims.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Applications in conflict with swamp-land...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) STATE GRANTS Swamp-land Grants § 2625.2 Applications in conflict with swamp-land claims. Applications adverse to the State...
San Juan National Forest Land Management Planning Support System (LMPSS) requirements definition
NASA Technical Reports Server (NTRS)
Werth, L. F. (Principal Investigator)
1981-01-01
The role of remote sensing data as it relates to a three-component land management planning system (geographic information, data base management, and planning model) can be understood only when user requirements are known. Personnel at the San Juan National Forest in southwestern Colorado were interviewed to determine data needs for managing and monitoring timber, rangelands, wildlife, fisheries, soils, water, geology and recreation facilities. While all the information required for land management planning cannot be obtained using remote sensing techniques, valuable information can be provided for the geographic information system. A wide range of sensors such as small and large format cameras, synthetic aperture radar, and LANDSAT data should be utilized. Because of the detail and accuracy required, high altitude color infrared photography should serve as the baseline data base and be supplemented and updated with data from the other sensors.
Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product
NASA Technical Reports Server (NTRS)
Vermote, Eric; Justice, Chris; Claverie, Martin; Franch, Belen
2016-01-01
The surface reflectance, i.e., satellite derived top of atmosphere (TOA) reflectance corrected for the temporally, spatially and spectrally varying scattering and absorbing effects of atmospheric gases and aerosols, is needed to monitor the land surface reliably. For this reason, the surface reflectance, and not TOA reflectance, is used to generate the greater majority of global land products, for example, from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors. Even if atmospheric effects are minimized by sensor design, atmospheric effects are still challenging to correct. In particular, the strong impact of aerosols in the visible and near infrared spectral range can be difficult to correct, because they can be highly discrete in space and time (e.g., smoke plumes) and because of the complex scattering and absorbing properties of aerosols that vary spectrally and with aerosol size, shape, chemistry and density.
NASA Astrophysics Data System (ADS)
McKinley, John B.; Pierson, Roger; Ertem, M. C.; Krone, Norris J., Jr.; Cramer, James A.
2008-04-01
Flight tests were conducted at Greenbrier Valley Airport (KLWB) and Easton Municipal Airport / Newnam Field (KESN) in a Cessna 402B aircraft using a head-up display (HUD) and a Norris Electro Optical Systems Corporation (NEOC) developmental ultraviolet (UV) sensor. These flights were sponsored by NEOC under a Federal Aviation Administration program, and the ultraviolet concepts, technology, system mechanization, and hardware for landing during low visibility landing conditions have been patented by NEOC. Imagery from the UV sensor, HUD guidance cues, and out-the-window videos were separately recorded at the engineering workstation for each approach. Inertial flight path data were also recorded. Various configurations of portable UV emitters were positioned along the runway edge and threshold. The UV imagery of the runway outline was displayed on the HUD along with guidance generated from the mission computer. Enhanced Flight Vision System (EFVS) approaches with the UV sensor were conducted from the initial approach fix to the ILS decision height in both VMC and IMC. Although the availability of low visibility conditions during the flight test period was limited, results from previous fog range testing concluded that UV EFVS has the performance capability to penetrate CAT II runway visual range obscuration. Furthermore, independent analysis has shown that existing runway light emit sufficient UV radiation without the need for augmentation other than lens replacement with UV transmissive quartz lenses. Consequently, UV sensors should qualify as conforming to FAA requirements for EFVS approaches. Combined with Synthetic Vision System (SVS), UV EFVS would function as both a precision landing aid, as well as an integrity monitor for the GPS and SVS database.
NASA Astrophysics Data System (ADS)
Satyanto, K. S.; Abang, Z. E.; Arif, C.; Yanuar, J. P. M.
2018-05-01
An automatic water management system for agriculture land was developed based on mini PC as controller to manage irrigation and drainage. The system was integrated with perforated pipe network installed below the soil surface to enable water flow in and out through the network, and so water table of the land can be set at a certain level. The system was operated by using solar power electricity supply to power up water level and soil moisture sensors, Raspberry Pi controller and motorized valve actuator. This study aims to implement the system in controlling water level at a soybean production land, and further to observe water footprint and carbon footprint contribution of the soybean production process with application of the automated system. The water level of the field can be controlled around 19 cm from the base. Crop water requirement was calculated using Penman-Monteith approach, with the productivity of soybean 3.57t/ha, total water footprint in soybean production is 872.01 m3/t. Carbon footprint was calculated due to the use of solar power electric supply system and during the soybean production emission was estimated equal to 1.85 kg of CO2.
Clustering of Multi-Temporal Fully Polarimetric L-Band SAR Data for Agricultural Land Cover Mapping
NASA Astrophysics Data System (ADS)
Tamiminia, H.; Homayouni, S.; Safari, A.
2015-12-01
Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.
Historical Landsat data comparisons: illustrations of the Earth's changing surface
,
1995-01-01
The U.S. Geological Survey's (USGS) EROS Data Center (EDC) has managed the Landsat data archive for more than two decades. This archive provides a rich collection of information about the Earth's land surface. Major changes to the surface of the planet can be detected, measured, and analyzed using Landsat data. The effects of desertification, deforestation, pollution, cataclysmic volcanic activity, and other natural and anthropogenic events can be examined using data acquired from the Landsat series of Earth-observing satellites. The information obtainable from the historical and current Landsat data play a key role in studying surface changes through time. This document provides an overview of the Landsat program and illustrates the application of the data to monitor changes occurring on the surface of the Earth. To reveal changes that have taken place within the past 20 years, pairs and triplicates of images were constructed from the Landsat multispectral scanner (MSS) and thematic mapper (TM) sensors. Landsat MSS data provide a historical record of the Earth's land surface from the early 1970's to the early 1990's. Landsat TM data provide land surface information from the early 1980's to the present.
The development of a UGV-mounted automated refueling system for VTOL UAVs
NASA Astrophysics Data System (ADS)
Wills, Mike; Burmeister, Aaron; Nelson, Travis; Denewiler, Thomas; Mullens, Kathy
2006-05-01
This paper describes the latest efforts to develop an Automated UAV Mission System (AUMS) for small vertical takeoff and landing (VTOL) unmanned air vehicles (UAVs). In certain applications such as force protection, perimeter security, and urban surveillance a VTOL UAV can provide far greater utility than fixed-wing UAVs or ground-based sensors. The VTOL UAV can operate much closer to an object of interest and can provide a hover-and-stare capability to keep its sensors trained on an object, while the fixed wing UAV would be forced into a higher altitude loitering pattern where its sensors would be subject to intermittent blockage by obstacles and terrain. The most significant disadvantage of a VTOL UAV when compared to a fixed-wing UAV is its reduced flight endurance. AUMS addresses this disadvantage by providing forward staging, refueling, and recovery capabilities for the VTOL UAV through a host unmanned ground vehicle (UGV), which serves as a launch/recovery platform and service station. The UGV has sufficient payload capacity to carry UAV fuel for multiple launch, recovery, and refuel iterations. The UGV also provides a highly mobile means of forward deploying a small UAV into hazardous areas unsafe for personnel, such as chemically or biologically contaminated areas. Teaming small UAVs with large UGVs can decrease risk to personnel and expand mission capabilities and effectiveness. There are numerous technical challenges being addressed by these development efforts. Among the challenges is the development and integration of a precision landing system compact and light enough to allow it to be mounted on a small VTOL UAV while providing repeatable landing accuracy to safely land on the AUMS. Another challenge is the design of a UGV-transportable, expandable, self-centering landing pad that contains hardware and safety devices for automatically refueling the UAV. A third challenge is making the design flexible enough to accommodate different types of VTOL UAVs, such as the AAI iSTAR ducted-fan vehicle and small helicopter UAVs. Finally, a common command-and-control architecture which supports the UAV, UGV, and AUMS must be developed and interfaced with these systems to allow fully autonomous collaborative behaviors. Funded by the Joint Robotics Program, AUMS is part of a joint effort with the Air Force Research Laboratory and the Army Missile Research Development and Engineering Command. The objective is to develop and demonstrate UGVUAV teaming concepts and work with the warfighter to ensure that future upgrades are focused on operational requirements. This paper describes the latest achievements in AUMS development and some of the military program and first responder situations that could benefit from this system.
NASA Astrophysics Data System (ADS)
Ouma, Yashon O.
2016-01-01
Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of ;Big Data; in Earth observation. Because of the ;Big Data; issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.
Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.
2002-01-01
Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.
Doppler lidar sensor for precision navigation in GPS-deprived environment
NASA Astrophysics Data System (ADS)
Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Petway, L. B.; Barnes, B. W.
2013-05-01
Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.
Doppler Lidar Sensor for Precision Navigation in GPS-Deprived Environment
NASA Technical Reports Server (NTRS)
Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Hines, G. D.; Petway, L. B.; Barnes, B. W.
2013-01-01
Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.
Wireless Sensor Network Applications for the Combat Air Forces
2006-06-13
WIRELESS SENSOR NETWORK APPLICATIONS FOR THE COMBAT AIR FORCES GRADUATE RESEARCH PROJECT...Government. AFIT/IC4/ENG/06-05 WIRELESS SENSOR NETWORK APPLICATIONS FOR THE COMBAT AIR FORCES GRADUATE RESEARCH PROJECT Presented to the...Major, USAF June 2006 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/IC4/ENG/06-05 WIRELESS SENSOR NETWORK APPLICATIONS
The fusion of satellite and UAV data: simulation of high spatial resolution band
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata
2017-10-01
Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.
Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen
2011-01-01
This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865
Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen
2011-01-01
This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.
Downscaling of Remotely Sensed Land Surface Temperature with multi-sensor based products
NASA Astrophysics Data System (ADS)
Jeong, J.; Baik, J.; Choi, M.
2016-12-01
Remotely sensed satellite data provides a bird's eye view, which allows us to understand spatiotemporal behavior of hydrologic variables at global scale. Especially, geostationary satellite continuously observing specific regions is useful to monitor the fluctuations of hydrologic variables as well as meteorological factors. However, there are still problems regarding spatial resolution whether the fine scale land cover can be represented with the spatial resolution of the satellite sensor, especially in the area of complex topography. To solve these problems, many researchers have been trying to establish the relationship among various hydrological factors and combine images from multi-sensor to downscale land surface products. One of geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS), has Meteorological Imager (MI) and Geostationary Ocean Color Imager (GOCI). MI performing the meteorological mission produce Rainfall Intensity (RI), Land Surface Temperature (LST), and many others every 15 minutes. Even though it has high temporal resolution, low spatial resolution of MI data is treated as major research problem in many studies. This study suggests a methodology to downscale 4 km LST datasets derived from MI in finer resolution (500m) by using GOCI datasets in Northeast Asia. Normalized Difference Vegetation Index (NDVI) recognized as variable which has significant relationship with LST are chosen to estimate LST in finer resolution. Each pixels of NDVI and LST are separated according to land cover provided from MODerate resolution Imaging Spectroradiometer (MODIS) to achieve more accurate relationship. Downscaled LST are compared with LST observed from Automated Synoptic Observing System (ASOS) for assessing its accuracy. The downscaled LST results of this study, coupled with advantage of geostationary satellite, can be applied to observe hydrologic process efficiently.
Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor.
Nguyen, Phong Ha; Kim, Ki Wan; Lee, Young Won; Park, Kang Ryoung
2017-08-30
Unmanned aerial vehicles (UAVs), which are commonly known as drones, have proved to be useful not only on the battlefields where manned flight is considered too risky or difficult, but also in everyday life purposes such as surveillance, monitoring, rescue, unmanned cargo, aerial video, and photography. More advanced drones make use of global positioning system (GPS) receivers during the navigation and control loop which allows for smart GPS features of drone navigation. However, there are problems if the drones operate in heterogeneous areas with no GPS signal, so it is important to perform research into the development of UAVs with autonomous navigation and landing guidance using computer vision. In this research, we determined how to safely land a drone in the absence of GPS signals using our remote maker-based tracking algorithm based on the visible light camera sensor. The proposed method uses a unique marker designed as a tracking target during landing procedures. Experimental results show that our method significantly outperforms state-of-the-art object trackers in terms of both accuracy and processing time, and we perform test on an embedded system in various environments.
A survey and analysis of commercially available hydrogen sensors
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
1992-01-01
The performance requirements for hydrogen detection in aerospace applications often exceed those of more traditional applications. In order to ascertain the applicability of existing hydrogen sensors to aerospace applications, a survey was conducted of commercially available point-contact hydrogen sensors, and their operation was analyzed. The operation of the majority of commercial hydrogen sensors falls into four main categories: catalytic combustion, electrochemical, semiconducting oxide sensors, and thermal conductivity detectors. The physical mechanism involved in hydrogen detection for each main category is discussed in detail. From an understanding of the detection mechanism, each category of sensor is evaluated for use in a variety of space and propulsion environments. In order to meet the needs of aerospace applications, the development of point-contact hydrogen sensors that are based on concepts beyond those used in commercial sensors is necessary.
A Unified and Coherent Land Surface Emissivity Earth System Data Record
NASA Astrophysics Data System (ADS)
Knuteson, R. O.; Borbas, E. E.; Hulley, G. C.; Hook, S. J.; Anderson, M. C.; Pinker, R. T.; Hain, C.; Guillevic, P. C.
2014-12-01
Land Surface Temperature and Emissivity (LST&E) data are essential for a wide variety of studies from calculating the evapo-transpiration of plant canopies to retrieving atmospheric water vapor. LST&E products are generated from data acquired by sensors in low Earth orbit (LEO) and by sensors in geostationary Earth orbit (GEO). Although these products represent the same measure, they are produced at different spatial, spectral and temporal resolutions using different algorithms. The different approaches used to retrieve the temperatures and emissivities result in discrepancies and inconsistencies between the different products. NASA has identified a major need to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. This poster will introduce the land surface emissivity product of the NASA MEASUREs project called A Unified and Coherent Land Surface Temperature and Emissivity (LST&E) Earth System Data Record (ESDR). To develop a unified high spectral resolution emissivity database, the MODIS baseline-fit emissivity database (MODBF) produced at the University of Wisconsin-Madison and the ASTER Global Emissivity Database (ASTER GED) produced at JPL will be merged. The unified Emissivity ESDR will be produced globally at 5km in mean monthly time-steps and for 12 bands from 3.6-14.3 micron and extended to 417 bands using a PC regression approach. The poster will introduce this data product. LST&E is a critical ESDR for a wide variety of studies in particular ecosystem and climate modeling.
Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing
NASA Technical Reports Server (NTRS)
Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent
2011-01-01
The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near-daily coverage of the Earth's surface, MODIS provides comprehensive measurements that enable scientists and policy makers to better understand and effectively manage the natural resources on both regional and global scales. Terra, the first large multisensor EOS satellite, is operated in a 10:30 am (local equatorial crossing time, descending southwards) polar orbit. Aqua, the second multisensor EOS satellite is operated in a 1:30 pm (local equatorial crossing time, ascending northwards) polar orbit. With complementing morning and afternoon observations, the Terra and Aqua MODIS, together with other sensors housed on both satellites, have greatly improved our understanding of the dynamics of the global environmental system.
Evaluation of Landscape Structure Using AVIRIS Quicklooks and Ancillary Data
NASA Technical Reports Server (NTRS)
Sanderson, Eric W.; Ustin, Susan L.
1998-01-01
Currently the best tool for examining landscape structure is remote sensing, because remotely sensed data provide complete and repeatable coverage over landscapes in many climatic regimes. Many sensors, with a variety of spatial scales and temporal repeat cycles, are available. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has imaged over 4000 scenes from over 100 different sites throughout North America. For each of these scenes, one-band "quicklook" images have been produced for review by AVIRIS investigators. These quicklooks are free, publicly available over the Internet, and provide the most complete set of landscape structure data yet produced. This paper describes the methodologies used to evaluate the landscape structure of quicklooks and generate corresponding datasets for climate, topography and land use. A brief discussion of preliminary results is included at the end. Since quicklooks correspond exactly to their parent AVIRIS scenes, the methods used to derive climate, topography and land use data should be applicable to any AVIRIS analysis.
Experimental results in autonomous landing approaches by dynamic machine vision
NASA Astrophysics Data System (ADS)
Dickmanns, Ernst D.; Werner, Stefan; Kraus, S.; Schell, R.
1994-07-01
The 4-D approach to dynamic machine vision, exploiting full spatio-temporal models of the process to be controlled, has been applied to on board autonomous landing approaches of aircraft. Aside from image sequence processing, for which it was developed initially, it is also used for data fusion from a range of sensors. By prediction error feedback an internal representation of the aircraft state relative to the runway in 3-D space and time is servo- maintained in the interpretation process, from which the control applications required are being derived. The validity and efficiency of the approach have been proven both in hardware- in-the-loop simulations and in flight experiments with a twin turboprop aircraft Do128 under perturbations from cross winds and wind gusts. The software package has been ported to `C' and onto a new transputer image processing platform; the system has been expanded for bifocal vision with two cameras of different focal length mounted fixed relative to each other on a two-axes platform for viewing direction control.
NASA Astrophysics Data System (ADS)
Dube, Timothy; Mutanga, Onisimo; Sibanda, Mbulisi; Bangamwabo, Victor; Shoko, Cletah
2017-08-01
The remote sensing of freshwater resources is increasingly becoming important, due to increased patterns of water use and the current or projected impacts of climate change and the rapid invasion by lethal water weeds. This study therefore sought to explore the potential of the recently-launched Landsat 8 OLI/TIRS sensor in mapping invasive species in inland lakes. Specifically, the study compares the performance of the newly-launched Landsat 8 sensor, with more advanced sensor design and image acquisition approach to the traditional Landsat-7 ETM+ in detecting and mapping the water hyacinth (Eichhornia crassipes) invasive species across Lake Chivero, in Zimbabwe. The analysis of variance test was used to identify windows of spectral separability between water hyacinth and other land cover types. The results showed that portions of the visible (B3), NIR (B4), as well as the shortwave bands (Band 8, 9 and 10) of both Landsat 8 OLI and Landsat 7 ETM, exhibited windows of separability between water hyacinth and other land cover types. It was also observed that on the use of Landsat 8 OLI produced high overall classification accuracy of 72%, when compared Landsat 7 ETM, which yielded lower accuracy of 57%. Water hyacinth had optimal accuracies (i.e. 92%), when compared to other land cover types, based on Landsat 8 OLI data. However, when using Landsat 7 ETM data, classification accuracies of water hyacinth were relatively lower (i.e. 67%), when compared to other land cover types (i.e. water with accuracy of 100%). Spectral curves of the old, intermediate and the young water hyacinth in Lake Chivero based on: (a) Landsat 8 OLI, and (b) Landsat 7 ETM were derived. Overall, the findings of this study underscores the relevance of the new generation multispectral sensors in providing primary data-source required for mapping the spatial distribution, and even configuration of water weeds at lower or no cost over time and space.
Direct Sensor Orientation of a Land-Based Mobile Mapping System
Rau, Jiann-Yeou; Habib, Ayman F.; Kersting, Ana P.; Chiang, Kai-Wei; Bang, Ki-In; Tseng, Yi-Hsing; Li, Yu-Hua
2011-01-01
A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy. PMID:22164015
Urban heat island impacts on plant phenology: intra-urban variability and response to land cover
NASA Astrophysics Data System (ADS)
Zipper, Samuel C.; Schatz, Jason; Singh, Aditya; Kucharik, Christopher J.; Townsend, Philip A.; Loheide, Steven P., II
2016-05-01
Despite documented intra-urban heterogeneity in the urban heat island (UHI) effect, little is known about spatial or temporal variability in plant response to the UHI. Using an automated temperature sensor network in conjunction with Landsat-derived remotely sensed estimates of start/end of the growing season, we investigate the impacts of the UHI on plant phenology in the city of Madison WI (USA) for the 2012-2014 growing seasons. Median urban growing season length (GSL) estimated from temperature sensors is ˜5 d longer than surrounding rural areas, and UHI impacts on GSL are relatively consistent from year-to-year. Parks within urban areas experience a subdued expression of GSL lengthening resulting from interactions between the UHI and a park cool island effect. Across all growing seasons, impervious cover in the area surrounding each temperature sensor explains >50% of observed variability in phenology. Comparisons between long-term estimates of annual mean phenological timing, derived from remote sensing, and temperature-based estimates of individual growing seasons show no relationship at the individual sensor level. The magnitude of disagreement between temperature-based and remotely sensed phenology is a function of impervious and grass cover surrounding the sensor, suggesting that realized GSL is controlled by both local land cover and micrometeorological conditions.
Surface phenology and satellite sensor-derived onset of greenness: An initial comparison
Schwartz, Mark D.; Reed, Bradley C.
1999-01-01
The objective of this work was to document the utility of phenological data derived from satellite sensors by comparing them with modelled phenology. Surface phenological model outputs (first leaf and first bloom dates) were correlated positively with satellite sensor-derived start of season (SOS) dates for 1991-1995 across the eastern United States. The correlation was highest for forest (r 0.62 for deciduous trees and 0.64 for mixed woodland) and tall grass (r 0.46) and lowest for short grass (r 0.37). The average correlation over all land cover types was 0.61. Average SOS dates were consistently earlier than Spring Index dates across all land cover types. This finding and limited native tree phenology data suggest that the SOS technique detects understorey green-up in the forest rather than overstorey species. The biweekly temporal resolution of the satellite sensor data placed an upper limit on prediction accuracy; thus, year-to-year variations at individual sites were typically small. Nevertheless, the correct biweek SOS could be identified from the surface models 61% of the time, and 1 biweek 96% of the time. Further temporal refinement of the satellite sensor measurements is necessary in order to connect them with surface phenology adequately and to develop links among 'green wave' components in selected biomes.
NASA Astrophysics Data System (ADS)
Cardille, J. A.; Crowley, M.; Fortin, J. A.; Lee, J.; Perez, E.; Sleeter, B. M.; Thau, D.
2016-12-01
With the opening of the Landsat archive, researchers have a vast new data source teeming with imagery and potential. Beyond Landsat, data from other sensors is newly available as well: these include ALOS/PALSAR, Sentinel-1 and -2, MERIS, and many more. Google Earth Engine, developed to organize and provide analysis tools for these immense data sets, is an ideal platform for researchers trying to sift through huge image stacks. It offers nearly unlimited processing power and storage with a straightforward programming interface. Yet labeling land-cover change through time remains challenging given the current state of the art for interpreting remote sensing image sequences. Moreover, combining data from very different image platforms remains quite difficult. To address these challenges, we developed the BULC algorithm (Bayesian Updating of Land Cover), designed for the continuous updating of land-cover classifications through time in large data sets. The algorithm ingests data from any of the wide variety of earth-resources sensors; it maintains a running estimate of land-cover probabilities and the most probable class at all time points along a sequence of events. Here we compare BULC results from two study sites that witnessed considerable forest change in the last 40 years: the Pacific Northwest of the United States and the Mato Grosso region of Brazil. In Brazil, we incorporated rough classifications from more than 100 images of varying quality, mixing imagery from more than 10 different sensors. In the Pacific Northwest, we used BULC to identify forest changes due to logging and urbanization from 1973 to the present. Both regions had classification sequences that were better than many of the component days, effectively ignoring clouds and other unwanted noise while fusing the information contained on several platforms. As we leave remote sensing's data-poor era and enter a period with multiple looks at Earth's surface from multiple sensors over a short period of time, the BULC algorithm can help to sift through images of varying quality in Google Earth Engine to extract the most useful information for mapping the state and history of Earth's land cover.
Detection of helicopter landing sites in unprepared terrain
NASA Astrophysics Data System (ADS)
Peinecke, Niklas
2014-06-01
The primary usefulness of helicopters shows in missions where regular aircraft cannot be used, especially HEMS (Helicopter Emergency Medical Services). This might be due to requirements for landing in unprepared areas without dedicated runway structures, and an extended exibility to y to more than one previously unprepared target. One example of such missions are search and rescue operations. An important task of such a mission is to locate a proper landing spot near the mission target. Usually, the pilot would have to evaluate possible landing sites by himself, which can be time-intensive, fuel-costly, and generally impossible when operating in degraded visual environments. We present a method for pre-selecting a list of possible landing sites. After specifying the intended size, orientation and geometry of the site, a choice of possibilities is presented to the pilot that can be ordered by means of wind direction, terrain constraints like maximal slope and roughness, and proximity to a mission target. The possible choices are calculated automatically either from a pre-existing terrain data base, or from sensor data collected during earlier missions, e.g., by collecting data with radar or laser sensors. Additional data like water-body maps and topological information can be taken into account to avoid landing in dangerous areas under adverse view conditions. In case of an emergency turnaround the list can be re-ordered to present alternative sites to the pilot. We outline the principle algorithm for selecting possible landing sites, and we present examples of calculated lists.
Development of Magneto-Resistive Angular Position Sensors for Space Applications
NASA Astrophysics Data System (ADS)
Hahn, Robert; Langendorf, Sven; Seifart, Klaus; Slatter, Rolf; Olberts, Bastian; Romera, Fernando
2015-09-01
Magnetic microsystems in the form of magneto- resistive (MR) sensors are firmly established in automobiles and industrial applications. They measure path, angle, electrical current, or magnetic fields. MR technology opens up new sensor possibilities in space applications and can be an enabling technology for optimal performance, high robustness and long lifetime at reasonable costs. In a recent assessment study performed by HTS GmbH and Sensitec GmbH under ESA Contract a market survey has confirmed that space industry has a very high interest in novel, contactless position sensors based on MR technology. Now, a detailed development stage is pursued, to advance the sensor design up to Engineering Qualification Model (EQM) level and to perform qualification testing for a representative pilot space application.The paper briefly reviews the basics of magneto- resistive effects and possible sensor applications and describes the key benefits of MR angular sensors with reference to currently operational industrial and space applications. The results of the assessment study are presented and potential applications and uses of contactless magneto-resistive angular sensors for spacecraft are identified. The baseline mechanical and electrical sensor design will be discussed. An outlook on the EQM development and qualification tests is provided.
USDA-ARS?s Scientific Manuscript database
Passive microwave observations from various space borne sensors have been linked to soil moisture of the Earth’s surface layer. The new generation passive microwave sensors are dedicated to retrieving this variable and make observations in the single, theoretically optimal L-band frequency (1-2 GHz)...
Geometrical and optical calibration of a vehicle-mounted IR imager for land mine localization
NASA Astrophysics Data System (ADS)
Aitken, Victor C.; Russell, Kevin L.; McFee, John E.
2000-08-01
Many present day vehicle-mounted landmine detection systems use IR imagers. Information furnished by these imaging systems usually consists of video and the location of targets within the video. In multisensor systems employing data fusion, there is a need to convert sensor information to a common coordinate system that all sensors share.
Chander, G.; Markham, B.L.; Helder, D.L.
2009-01-01
This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of-Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.
NASA Technical Reports Server (NTRS)
Chander, Gyanesh; Markham, Brian L.; Helder, Dennis L.
2009-01-01
This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of- Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.
Multi-sensor analysis of urban ecosystems
Gallo, Kevin P.; Ji, Lei
2004-01-01
This study examines the synthesis of multiple space-based sensors to characterize the urban environment Single scene data (e.g., ASTER visible and near-IR surface reflectance, and land surface temperature data), multi-temporal data (e.g., one year of 16-day MODIS and AVHRR vegetation index data), and DMSP-OLS nighttime light data acquired in the early 1990s and 2000 were evaluated for urban ecosystem analysis. The advantages of a multi-sensor approach for the analysis of urban ecosystem processes are discussed.
Brown, L F
1989-01-01
The unique properties of piezoelectric/pyroelectric polymers offer many new opportunities for biomedical engineering sensor applications. Since their discovery nearly 20 years ago, the polymer films have been used for many novel switching and sensor applications. Despite the prodigious exposure from many recent publications describing piezo film applications, methods of sensor fabrication and circuit interfacing still elude most engineers. This paper is presented as a tutorial guide to applying piezo polymers to biomedical engineering applications. A review of the fundamentals of piezoelectricity/pyroelectricity in piezo polymers is first presented. Their material properties are contrasted with piezoelectric ceramic materials. Some advantages and disadvantages of the films for biomedical sensors are discussed. Specific details on the fabrication of piezo film sensors are presented. Methods are described for forming, cutting, and mounting film sensors, and making lead connections. A brief discussion of equivalent circuit models for the design and simulation of piezoelectric/pyroelectric sensors is included, as well as common circuit interface techniques. Finally, several sources are recommended for further information on a variety of biomedical sensor applications.
Scalable autonomous operations of unmanned assets
NASA Astrophysics Data System (ADS)
Jung, Sunghun
Although there have been great theoretical advances in the region of Unmanned Aerial Vehicle (UAV) autonomy, applications of those theories into real world are still hesitated due to unexpected disturbances. Most of UAVs which are currently used are mainly, strictly speaking, Remotely Piloted Vehicles (RPA) since most works related with the flight control, sensor data analysis, and decision makings are done by human operators. To increase the degree of autonomy, many researches are focused on developing Unmanned Autonomous Aerial Vehicle (UAAV) which can takeoff, fly to the interested area by avoiding unexpected obstacles, perform various missions with decision makings, come back to the base station, and land on by itself without any human operators. To improve the performance of UAVs, the accuracies of position and orientation sensors are enhanced by integrating a Unmanned Ground Vehicle (UGV) or a solar compass to a UAV; Position sensor accuracy of a GPS sensor on a UAV is improved by referencing the position of a UGV which is calculated by using three GPS sensors and Weighted Centroid Localization (WCL) method; Orientation sensor accuracy is improved as well by using Three Pixel Theorem (TPT) and integrating a solar compass which composed of nine light sensors to a magnetic compass. Also, improved health management of a UAV is fulfilled by developing a wireless autonomous charging station which uses four pairs of transmitter and receiver magnetic loops with four robotic arms. For the software aspect, I also analyze the error propagation of the proposed mission planning hierarchy to achieve the safest size of the buffer zone. In addition, among seven future research areas regarding UAV, this paper mainly focuses on developing algorithms of path planning, trajectory generation, and cooperative tactics for the operations of multiple UAVs using GA based multiple Traveling Salesman Problem (mTSP) which is solved by dividing into m number of Traveling Salesman Problems (TSP) using two region division methods such as Uniform Region Division (URD) and K-means Voronoi Region Division (KVRD). The topic of the maximum fuel efficiency is also dealt to ensure the minimum amount fuel consumption to perform surveillance on a given region using multiple UAVs. Last but not least, I present an application example of cattle roundup with two UAVs and two animals using the feedback linearization controller.
An Integrated System for Wildlife Sensing
2014-08-14
design requirement. “Sensor Controller” software. A custom Sensor Controller application was developed for the Android device in order to collect...and log readings from that device’s sensors. “Camera Controller” software. A custom Camera Controller application was developed for the Android device...into 2 separate Android applications (Figure 4). The Sensor Controller logs readings periodically from the Android device’s organic sensors, and
Powered Descent Trajectory Guidance and Some Considerations for Human Lunar Landing
NASA Technical Reports Server (NTRS)
Sostaric, Ronald R.
2007-01-01
The Autonomous Precision Landing and Hazard Detection and Avoidance Technology development (ALHAT) will enable an accurate (better than 100m) landing on the lunar surface. This technology will also permit autonomous (independent from ground) avoidance of hazards detected in real time. A preliminary trajectory guidance algorithm capable of supporting these tasks has been developed and demonstrated in simulations. Early results suggest that with expected improvements in sensor technology and lunar mapping, mission objectives are achievable.
An Operational Wake Vortex Sensor Using Pulsed Coherent Lidar
NASA Technical Reports Server (NTRS)
Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, D. Chi
1998-01-01
NASA and FAA initiated a program in 1994 to develop methods of setting spacings for landing aircraft by incorporating information on the real-time behavior of aircraft wake vortices. The current wake separation standards were developed in the 1970's when there was relatively light airport traffic and a logical break point by which to categorize aircraft. Today's continuum of aircraft sizes and increased airport packing densities have created a need for re-evaluation of wake separation standards. The goals of this effort are to ensure that separation standards are adequate for safety and to reduce aircraft spacing for higher airport capacity. Of particular interest are the different requirements for landing under visual flight conditions and instrument flight conditions. Over the years, greater spacings have been established for instrument flight than are allowed for visual flight conditions. Preliminary studies indicate that the airline industry would save considerable money and incur fewer passenger delays if a dynamic spacing system could reduce separations at major hubs during inclement weather to the levels routinely achieved under visual flight conditions. The sensor described herein may become part of this dynamic spacing system known as the "Aircraft VOrtex Spacing System" (AVOSS) that will interface with a future air traffic control system. AVOSS will use vortex behavioral models and short-term weather prediction models in order to predict vortex behavior sufficiently into the future to allow dynamic separation standards to be generated. The wake vortex sensor will periodically provide data to validate AVOSS predictions. Feasibility of measuring wake vortices using a lidar was first demonstrated using a continuous wave (CW) system from NASA Marshall Space Flight Sensor and tested at the Volpe National Transportation Systems Center's wake vortex test site at JFK International Airport. Other applications of CW lidar for wake vortex measurement have been made more recently, including a system developed by the MIT Lincoln Laboratory. This lidar has been used for detailed measurements of wake vortex velocities in support of wake vortex model validation. The first measurements of wake vortices using a pulsed, lidar were made by Coherent Technologies, Inc. (CTI) using a 2 micron solid-state, flashlamp-pumped system operating at 5 Hz. This system was first deployed at Denver's Stapleton Airport. Pulsed lidar has been selected as the baseline technology for an operational sensor due to its longer range capability.
Multisensor Fusion for Change Detection
NASA Astrophysics Data System (ADS)
Schenk, T.; Csatho, B.
2005-12-01
Combining sensors that record different properties of a 3-D scene leads to complementary and redundant information. If fused properly, a more robust and complete scene description becomes available. Moreover, fusion facilitates automatic procedures for object reconstruction and modeling. For example, aerial imaging sensors, hyperspectral scanning systems, and airborne laser scanning systems generate complementary data. We describe how data from these sensors can be fused for such diverse applications as mapping surface erosion and landslides, reconstructing urban scenes, monitoring urban land use and urban sprawl, and deriving velocities and surface changes of glaciers and ice sheets. An absolute prerequisite for successful fusion is a rigorous co-registration of the sensors involved. We establish a common 3-D reference frame by using sensor invariant features. Such features are caused by the same object space phenomena and are extracted in multiple steps from the individual sensors. After extracting, segmenting and grouping the features into more abstract entities, we discuss ways on how to automatically establish correspondences. This is followed by a brief description of rigorous mathematical models suitable to deal with linear and area features. In contrast to traditional, point-based registration methods, lineal and areal features lend themselves to a more robust and more accurate registration. More important, the chances to automate the registration process increases significantly. The result of the co-registration of the sensors is a unique transformation between the individual sensors and the object space. This makes spatial reasoning of extracted information more versatile; reasoning can be performed in sensor space or in 3-D space where domain knowledge about features and objects constrains reasoning processes, reduces the search space, and helps to make the problem well-posed. We demonstrate the feasibility of the proposed multisensor fusion approach with detecting surface elevation changes on the Byrd Glacier, Antarctica, with aerial imagery from 1980s and ICESat laser altimetry data from 2003-05. Change detection from such disparate data sets is an intricate fusion problem, beginning with sensor alignment, and on to reasoning with spatial information as to where changes occurred and to what extent.
Sensors, Volume 1, Fundamentals and General Aspects
NASA Astrophysics Data System (ADS)
Grandke, Thomas; Ko, Wen H.
1996-12-01
'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume deals with the fundamentals and common principles of sensors and covers the wide areas of principles, technologies, signal processing, and applications. Contents include: Sensor Fundamentals, e.g. Sensor Parameters, Modeling, Design and Packaging; Basic Sensor Technologies, e.g. Thin and Thick Films, Integrated Magnetic Sensors, Optical Fibres and Intergrated Optics, Ceramics and Oxides; Sensor Interfaces, e.g. Signal Processing, Multisensor Signal Processing, Smart Sensors, Interface Systems; Sensor Applications, e.g. Automotive: On-board Sensors, Traffic Surveillance and Control, Home Appliances, Environmental Monitoring, etc. This volume is an indispensable reference work and text book for both specialits and newcomers, researchers and developers.
NASA Astrophysics Data System (ADS)
Flores, A. N.; Lakshmi, V.; Al-Barakat, R.; Maksimowicz, M.
2017-12-01
Land grabbing, the acquisition of large areas of land by external entities, results from interactions of complex global economic, social, and political processes. These transactions are controversial because they can result in large-scale disruptions to historical land uses, including increased intensity of agricultural practices and significant conversions in land cover. These large-scale disruptions have the potential to impact surface water and energy balance because vegetation controls the partitioning of incoming energy into latent and sensible heat fluxes and precipitation into runoff and infiltration. Because large-scale land acquisitions can impact local ecosystem services, it is important to document changes in terrestrial vegetation associated with these acquisitions to support the assessment of associated impacts on regional surface water and energy balance, spatiotemporal scales of those changes, and interactions and feedbacks with other processes, particularly in the atmosphere. We use remote sensing data from multiple satellite platforms to diagnose and characterize changes in terrestrial vegetation and ecohydrology in Mozambique during periods that bracket periods associated with significant. The Advanced very High Resolution Radiometer (AVHRR) sensor provides long-term continuous data that can document historical seasonal cycles of vegetation greenness. These data are augmented with analyses from Landsat multispectral data, which provides significantly higher spatial resolution. Here we quantify spatiotemporal changes in vegetation are associated with periods of significant land acquisitions in Mozambique. This analysis complements a suite of land-atmosphere modeling experiments designed to deduce potential changes in land surface water and energy budgets associated with these acquisitions. This work advance understanding of how telecouplings between global economic and political forcings and regional hydrology and climate.
JSC Wireless Sensor Network Update
NASA Technical Reports Server (NTRS)
Wagner, Robert
2010-01-01
Sensor nodes composed of three basic components... radio module: COTS radio module implementing standardized WSN protocol; treated as WSN modem by main board main board: contains application processor (TI MSP430 microcontroller), memory, power supply; responsible for sensor data acquisition, pre-processing, and task scheduling; re-used in every application with growing library of embedded C code sensor card: contains application-specific sensors, data conditioning hardware, and any advanced hardware not built into main board (DSPs, faster A/D, etc.); requires (re-) development for each application.
NASA Astrophysics Data System (ADS)
Hook, Simon; Hulley, Glynn; Nicholson, Kerry
2017-04-01
Land Surface Temperature and Emissivity (LST&E) data are critical variables for studying a variety of Earth surface processes and surface-atmosphere interactions such as evapotranspiration, surface energy balance and water vapor retrievals. LST&E have been identified as an important Earth System Data Record (ESDR) by NASA and many other international organizations Accurate knowledge of the LST&E is a key requirement for many energy balance models to estimate important surface biophysical variables such as evapotranspiration and plant-available soil moisture. LST&E products are currently generated from sensors in low earth orbit (LEO) such as the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua satellites as well as from sensors in geostationary Earth orbit (GEO) such as the Geostationary Operational Environmental Satellites (GOES) and airborne sensors such as the Hyperspectral Thermal Emission Spectrometer (HyTES). LST&E products are generated with varying accuracies depending on the input data, including ancillary data such as atmospheric water vapor, as well as algorithmic approaches. NASA has identified the need to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. We will discuss the different approaches that can be used to retrieve surface temperature and emissivity from multispectral and hyperspectral thermal infrared sensors using examples from a variety of different sensors such as those mentioned, and planned new sensors like the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and the Hyperspectral Infrared Imager (HyspIRI). We will also discuss a project underway at NASA to develop a single unified product from some the individual sensor products and assess the errors associated with the product.
Rapid Response Flood Water Mapping
NASA Technical Reports Server (NTRS)
Policelli, Fritz; Brakenridge, G. R.; Coplin, A.; Bunnell, M.; Wu, L.; Habib, Shahid; Farah, H.
2010-01-01
Since the beginning of operation of the MODIS instrument on the NASA Terra satellite at the end of 1999, an exceptionally useful sensor and public data stream have been available for many applications including the rapid and precise characterization of terrestrial surface water changes. One practical application of such capability is the near-real time mapping of river flood inundation. We have developed a surface water mapping methodology based on using only bands 1 (620-672 nm) and 2 (841-890 nm). These are the two bands at 250 m, and the use of only these bands maximizes the resulting map detail. In this regard, most water bodies are strong absorbers of incoming solar radiation at the band 2 wavelength: it could be used alone, via a thresholding procedure, to separate water (dark, low radiance or reflectance pixels) from land (much brighter pixels) (1, 2). Some previous water mapping procedures have in fact used such single band data from this and other sensors that include similar wavelength channels. Adding the second channel of data (band 1), however, allows a band ratio approach which permits sediment-laden water, often relatively light at band 2 wavelengths, to still be discriminated, and, as well, provides some removal of error by reducing the number of cloud shadow pixels that would otherwise be misclassified as water.
Sea ice motion measurements from Seasat SAR images
NASA Technical Reports Server (NTRS)
Leberl, F.; Raggam, J.; Elachi, C.; Campbell, W. J.
1983-01-01
Data from the Seasat synthetic aperture radar (SAR) experiment are analyzed in order to determine the accuracy of this information for mapping the distribution of sea ice and its motion. Data from observations of sea ice in the Beaufort Sea from seven sequential orbits of the satellite were selected to study the capabilities and limitations of spaceborne radar application to sea-ice mapping. Results show that there is no difficulty in identifying homologue ice features on sequential radar images and the accuracy is entirely controlled by the accuracy of the orbit data and the geometric calibration of the sensor. Conventional radargrammetric methods are found to serve well for satellite radar ice mapping, while ground control points can be used to calibrate the ice location and motion measurements in the cases where orbit data and sensor calibration are lacking. The ice motion was determined to be approximately 6.4 + or - 0.5 km/day. In addition, the accuracy of pixel location was found over land areas. The use of one control point in 10,000 sq km produced an accuracy of about + or 150 m, while with a higher density of control points (7 in 1000 sq km) the location accuracy improves to the image resolution of + or - 25 m. This is found to be applicable for both optical and digital data.
The Clear Creek Envirohydrologic Observatory: From Vision Toward Reality
NASA Astrophysics Data System (ADS)
Just, C.; Muste, M.; Kruger, A.
2007-12-01
As the vision of a fully-functional Clear Creek Envirohydrologic Observatory comes closer to reality, the opportunities for significant watershed science advances in the near future become more apparent. As a starting point to approaching this vision, we focused on creating a working example of cyberinfrastructure in the hydrologic and environmental sciences. The system will integrate a broad range of technologies and ideas: wired and wireless sensors, low power wireless communication, embedded microcontrollers, commodity cellular networks, the internet, unattended quality assurance, metadata, relational databases, machine-to-machine communication, interfaces to hydrologic and environmental models, feedback, and external inputs. Hardware: An accomplishment to date is "in-house" developed sensor networking electronics to compliment commercially available communications. The first of these networkable sensors are dielectric soil moisture probes that are arrayed and equipped with wireless connectivity for communications. Commercially available data logging and telemetry-enabled systems deployed at the Clear Creek testbed include a Campbell Scientific CR1000 datalogger, a Redwing 100 cellular modem, a YA Series yagi antenna, a NP12 rechargeable battery, and a BP SX20U solar panel. This networking equipment has been coupled with Hach DS5X water quality sondes, DTS-12 turbidity probes and MicroLAB nutrient analyzers. Software: Our existing data model is an Arc Hydro-based geodatabase customized with applications for extraction and population of the database with third party data. The following third party data are acquired automatically and in real time into the Arc Hydro customized database: 1) geophysical data: 10m DEM and soil grids, soils; 2) land use/land cover data; and 3) eco-hydrological: radar-based rainfall estimates, stream gage, streamlines, and water quality data. A new processing software for data analysis of Acoustic Doppler Current Profilers (ADCP) measurements has been finalized. The software package provides mean flow field and turbulence characteristics obtained by operating the ADCP at fixed points or using the moving-boat approach. Current Work: The current development work is focused on extracting and populating the Clear Creek database with in-situ measurements acquired and transmitted in real time with sensors deployed in the Clear Creek watershed.
Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita
Gesch, Dean B.
2009-01-01
The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.
Recent developments of optical fiber chemical sensors at IROE
NASA Astrophysics Data System (ADS)
Baldini, Francesco
2002-02-01
An overview is given on the activity in progress at IROE, relative to the field of optical fibre sensors for chemical parameters. Optode-based sensors are under development for both biomedical and environmental applications. As for the biomedical field, particular attention will be devoted to clinical applications of the developed sensor in gastroenterology. The first clinical applications of an absorption-based sensor for the detection of gastric carbon dioxide will be described. Clinical results have shown the superiority of the developed sensor over the sensor currently available on the market and based on air tonometry. New clinical findings involving a sensor for the detection of bile will be also discussed. As far as environmental applications are concerned, an optode for the detection of nitrogen dioxide will be described.
Application of metamaterial concepts to sensors and chipless RFID
NASA Astrophysics Data System (ADS)
Martín, F.; Herrojo, C.; Vélez, P.; Su, L.; Mata-Contreras, J.; Paredes, F.
2018-02-01
Several strategies for the implementation of microwave sensors based on the use of metamaterial-inspired resonators are pointed out, and examples of applications, including sensors for dielectric characterization and sensors for the measurement of spatial variables, are provided. It will be also shown that novel microwave encoders for chipless RFID systems with very high data capacity can be implemented. The fields of applications of the devices discussed in this talk include dielectric characterization of solids and liquids, angular velocity sensors for space applications, and near-field chipless RFID systems for secure paper applications, among others.
2007-09-01
1,000 feet of any of the project sites. The absence of any perennial or intermit - tent waterways or ephemeral washes would likely indicate the...frequency and intensity on rangelands, and degrades sagebrush and grassland habitats. It is invading DPG at a fast pace and is estimated to cover
Effects of satellite image spatial aggregation and resolution on estimates of forest land area
M.D. Nelson; R.E. McRoberts; G.R. Holden; M.E. Bauer
2009-01-01
Satellite imagery is being used increasingly in association with national forest inventories (NFIs) to produce maps and enhance estimates of forest attributes. We simulated several image spatial resolutions within sparsely and heavily forested study areas to assess resolution effects on estimates of forest land area, independent of other sensor characteristics. We...
Spectroradiometric considerations for advanced land observing systems
NASA Technical Reports Server (NTRS)
Slater, P. N.
1986-01-01
Research aimed at improving the inflight absolute radiometric calibration of advanced land observing systems was initiated. Emphasis was on the satellite sensor calibration program at White Sands. Topics addressed include: absolute radiometric calibration of advanced remote sensing; atmospheric effects on reflected radiation; inflight radiometric calibration; field radiometric methods for reflectance and atmospheric measurement; and calibration of field relectance radiometers.
Automated landing, rollout, and turnoff using MLS and magnetic cable sensors
NASA Technical Reports Server (NTRS)
Pines, S.; Schmidt, S. F.; Mann, F. I.
1977-01-01
A description of the simulation program used to study the landing approach, rollout and turnoff of the B737-100 aircraft utilizing MLS and a buried magnetic leader cable as navigation aids is presented. Simulation results are given and show the concept to be both feasible and practical for commercial type aircraft terminal area control.
photonic sensors review progress of optical fiber sensors and its application in harsh environment
NASA Astrophysics Data System (ADS)
Zhang, Min; Ma, Xiaohong; Wang, Liwei; Lai, Shurong; Zhou, Hongpu; Zhao, Huafeng; Liao, Yanbiao
2011-03-01
Fiber sensors have been developed for industry application with significant advantages. In this paper, Fiber sensors for oil field service and harsh environment monitoring which have been investigated in Tsinghua University are demonstrated. By discussing the requirements of practical applications, the key technologies of long-period fiber grating (LPFG) based fiber sensor, optical spectrum analyzer for oil detection, laser induced breakdown spectroscopy (LIBS) system for soil contamination monitoring, and seismic sensor arrays are described.
Uncooled microbolometer sensors for unattended applications
NASA Astrophysics Data System (ADS)
Kohin, Margaret; Miller, James E.; Leary, Arthur R.; Backer, Brian S.; Swift, William; Aston, Peter
2003-09-01
BAE SYSTEMS has been developing and producing uncooled microbolometer sensors since 1995. Recently, uncooled sensors have been used on Pointer Unattended Aerial Vehicles and considered for several unattended sensor applications including DARPA Micro-Internetted Unattended Ground Sensors (MIUGS), Army Modular Acoustic Imaging Sensors (MAIS), and Redeployable Unattended Ground Sensors (R-UGS). This paper describes recent breakthrough uncooled sensor performance at BAE SYSTEMS and how this improved performance has been applied to a new Standard Camera Core (SCC) that is ideal for these unattended applications. Video imagery from a BAE SYSTEMS 640x480 imaging camera flown in a Pointer UAV is provided. Recent performance results are also provided.
NASA Technical Reports Server (NTRS)
Vallot, Lawrence; Snyder, Scott; Schipper, Brian; Parker, Nigel; Spitzer, Cary
1991-01-01
NASA-Langley has conducted a flight test program evaluating a differential GPS/inertial navigation system's (DGPS/INS) utility as an approach/landing aid. The DGPS/INS airborne and ground components are based on off-the-shelf transport aircraft avionics, namely a global positioning/inertial reference unit (GPIRU) and two GPS sensor units (GPSSUs). Systematic GPS errors are measured by the ground GPSSU and transmitted to the aircraft GPIRU, allowing the errors to be eliminated or greatly reduced in the airborne equipment. Over 120 landings were flown; 36 of these were fully automatic DGPS/INS landings.
Land-Ocean-Atmospheric Coupling Associated with Earthquakes
NASA Astrophysics Data System (ADS)
Prasad, A. K.; Singh, R. P.; Kumar, S.; Cervone, G.; Kafatos, M.; Zlotnicki, J.
2007-12-01
Earthquakes are well known to occur along the plate boundaries and also on the stable shield. The recent studies have shown existence of strong coupling between land-ocean-atmospheric parameters associated with the earthquakes. We have carried out detailed analysis of multi sensor data (optical and microwave remote) to show existence of strong coupling between land-ocean-atmospheric parameters associated with the earthquakes with focal depth up to 30 km and magnitude greater than 5.5. Complimentary nature of various land, ocean and atmospheric parameters will be demonstrated in getting an early warning information about an impending earthquake.
Geography program, design, structure and operational strategy
NASA Technical Reports Server (NTRS)
Alexander, R. H.
1970-01-01
The geography program is designed to move systematically toward a capability to increase remote sensing data into operational systems for monitoring land use and related environmental change. The problems of environmental imbalance arising from rapid urbanization and other dramatic changes in land use are considered. These overall problems translate into working level problems of establishing the validity of various sensor-data combinations that will best obtain the regional land use and environmental information. The goal, to better understand, predict, and assist policy makers to regulate urban and regional land use changes resulting from population growth and technological advancement, is put forth.
An Overview of the Landsat Data Continuity Mission
NASA Technical Reports Server (NTRS)
Irons, James R.; Dwyer, John L.
2010-01-01
The advent of the Landsat Data Continuity Mission (LDCM), currently with a launch readiness date of December, 2012, will see evolutionary changes in the Landsat data products available from the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. The USGS initiated a revolution in 2009 when EROS began distributing Landsat data products at no cost to requestors in contrast to the past practice of charging the cost of fulfilling a request; that is, charging $600 per Landsat scene. To implement this drastic change, EROS terminated data processing options for requestors and began to produce all data products using a consistent processing recipe. EROS plans to continue this practice for the LDCM and will required new algorithms to process data from the LDCM sensors. All previous Landsat satellites flew multispectral scanners to collect image data of the global land surface. Additionally, Landsats 4, 5, and 7 flew sensors that acquired imagery for both reflective spectral bands and a single thermal band. In contrast, the LDCM will carry two pushbroom sensors; the Operational Land Imager (OLI) for reflective spectral bands and the Thermal InfraRed Sensor (TIRS) for two thermal bands. EROS is developing the ground data processing system that will both calibrate and correct the data from the thousands of detectors employed by the pushbroom sensors and that will also combine the data from the two sensors to create a single data product with registered data for all of the OLI and TIRS bands.
Magnetogama: an open schematic magnetometer
NASA Astrophysics Data System (ADS)
Wahyudi; Khakhim, Nurul; Kuntoro, Tri; Mardiatno, Djati; Rakhman, Afif; Setyo Handaru, Anas; Akhmad Mufaqih, Adien; Marwan Irnaka, Theodosius
2017-09-01
Magnetogama is an open schematic hand-assembled fluxgate magnetometer. Compared to another magnetometer, Magnetogama has more benefit concerning its price and its ease of use. Practically Magnetogama can be utilized either in land or attached to an unmanned aerial vehicle (UAV). Magnetogama was designed to give open access to a cheap and accurate alternative to magnetometer sensor. Therefore it can be used as a standard design which is directly applicable to the low-budget company or education purposes. Schematic, code and several verification tests were presented in this article ensuring its reproducibility. Magnetogama has been tested with two kind of tests: a comparison with two nearest observatories at Learmonth (LRM) and Kakadu (KDU) and the response of magnetic substance.
Using the time shift in single pushbroom datatakes to detect ships and their heading
NASA Astrophysics Data System (ADS)
Willburger, Katharina A. M.; Schwenk, Kurt
2017-10-01
The detection of ships from remote sensing data has become an essential task for maritime security. The variety of application scenarios includes piracy, illegal fishery, ocean dumping and ships carrying refugees. While techniques using data from SAR sensors for ship detection are widely common, there is only few literature discussing algorithms based on imagery of optical camera systems. A ship detection algorithm for optical pushbroom data has been developed. It takes advantage of the special detector assembly of most of those scanners, which allows apart from the detection of a ship also the calculation of its heading out of a single acquisition. The proposed algorithm for the detection of moving ships was developed with RapidEye imagery. It algorithm consists mainly of three steps: the creation of a land-watermask, the object extraction and the deeper examination of each single object. The latter step is built up by several spectral and geometric filters, making heavy use of the inter-channel displacement typical for pushbroom sensors with multiple CCD lines, finally yielding a set of ships and their direction of movement. The working principle of time-shifted pushbroom sensors and the developed algorithm is explained in detail. Furthermore, we present our first results and give an outlook to future improvements.
Higher resolution satellite remote sensing and the impact on image mapping
Watkins, Allen H.; Thormodsgard, June M.
1987-01-01
Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges.The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented.
NASA Astrophysics Data System (ADS)
Li, J.; Wu, Z.; Wei, X.; Zhang, Y.; Feng, F.; Guo, F.
2018-04-01
Cross-calibration has the advantages of high precision, low resource requirements and simple implementation. It has been widely used in recent years. The four wide-field-of-view (WFV) cameras on-board Gaofen-1 satellite provide high spatial resolution and wide combined coverage (4 × 200 km) without onboard calibration. In this paper, the four-band radiometric cross-calibration coefficients of WFV1 camera were obtained based on radiation and geometry matching taking Landsat 8 OLI (Operational Land Imager) sensor as reference. Scale Invariant Feature Transform (SIFT) feature detection method and distance and included angle weighting method were introduced to correct misregistration of WFV-OLI image pair. The radiative transfer model was used to eliminate difference between OLI sensor and WFV1 camera through the spectral match factor (SMF). The near-infrared band of WFV1 camera encompasses water vapor absorption bands, thus a Look Up Table (LUT) for SMF varies from water vapor amount is established to estimate the water vapor effects. The surface synchronization experiment was designed to verify the reliability of the cross-calibration coefficients, which seem to perform better than the official coefficients claimed by the China Centre for Resources Satellite Data and Application (CCRSDA).
NASA Technical Reports Server (NTRS)
1987-01-01
With its Landsat satellites, development of sensors, and advancement of processing techniques, NASA provided the initial technology base for another Earth-benefit application of image processing, Earth resources survey by means of remote sensing. Since each object has its own unique "signature," it is possible to distinguish among surface features and to generate computer-processed imagery identifying specific features of importance to resource managers. This capability, commercialized by Perceptive Scientific Instruments, Inc., offers practical application in such areas as agricultural crop forecasting, rangeland and forest management, land use planning, mineral and petroleum exploration, map making, water quality evaluation and disaster assessment. Major users of the technology have been federal, state, and local governments, but it is making its way into commercial operations, for example, resource exploration companies looking for oil, gas and mineral sources, and timber production firms seeking more efficient treeland management. Supporting both government and private users is a small industry composed of companies producing the processing hardware software. As is the case in the medical application, many of these companies are direct offspring of NASA's work.
Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications.
Kos, Anton; Tomažič, Sašo; Umek, Anton
2016-02-27
This article studies the suitability of smartphones with built-in inertial sensors for biofeedback applications. Biofeedback systems use various sensors to measure body functions and parameters. These sensor data are analyzed, and the results are communicated back to the user, who then tries to act on the feedback signals. Smartphone inertial sensors can be used to capture body movements in biomechanical biofeedback systems. These sensors exhibit various inaccuracies that induce significant angular and positional errors. We studied deterministic and random errors of smartphone accelerometers and gyroscopes, primarily focusing on their biases. Based on extensive measurements, we determined accelerometer and gyroscope noise models and bias variation ranges. Then, we compiled a table of predicted positional and angular errors under various biofeedback system operation conditions. We suggest several bias compensation options that are suitable for various examples of use in real-time biofeedback applications. Measurements within the developed experimental biofeedback application show that under certain conditions, even uncompensated sensors can be used for real-time biofeedback. For general use, especially for more demanding biofeedback applications, sensor biases should be compensated. We are convinced that real-time biofeedback systems based on smartphone inertial sensors are applicable to many similar examples in sports, healthcare, and other areas.
Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications
Kos, Anton; Tomažič, Sašo; Umek, Anton
2016-01-01
Smartphone sensors are being increasingly used in mobile applications. The performance of sensors varies considerably among different smartphone models and the development of a cross-platform mobile application might be a very complex and demanding task. A publicly accessible resource containing real-life-situation smartphone sensor parameters could be of great help for cross-platform developers. To address this issue we have designed and implemented a pilot participatory sensing application for measuring, gathering, and analyzing smartphone sensor parameters. We start with smartphone accelerometer and gyroscope bias and noise parameters. The application database presently includes sensor parameters of more than 60 different smartphone models of different platforms. It is a modest, but important start, offering information on several statistical parameters of the measured smartphone sensors and insights into their performance. The next step, a large-scale cloud-based version of the application, is already planned. The large database of smartphone sensor parameters may prove particularly useful for cross-platform developers. It may also be interesting for individual participants who would be able to check-up and compare their smartphone sensors against a large number of similar or identical models. PMID:27049391
Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications
Kos, Anton; Tomažič, Sašo; Umek, Anton
2016-01-01
This article studies the suitability of smartphones with built-in inertial sensors for biofeedback applications. Biofeedback systems use various sensors to measure body functions and parameters. These sensor data are analyzed, and the results are communicated back to the user, who then tries to act on the feedback signals. Smartphone inertial sensors can be used to capture body movements in biomechanical biofeedback systems. These sensors exhibit various inaccuracies that induce significant angular and positional errors. We studied deterministic and random errors of smartphone accelerometers and gyroscopes, primarily focusing on their biases. Based on extensive measurements, we determined accelerometer and gyroscope noise models and bias variation ranges. Then, we compiled a table of predicted positional and angular errors under various biofeedback system operation conditions. We suggest several bias compensation options that are suitable for various examples of use in real-time biofeedback applications. Measurements within the developed experimental biofeedback application show that under certain conditions, even uncompensated sensors can be used for real-time biofeedback. For general use, especially for more demanding biofeedback applications, sensor biases should be compensated. We are convinced that real-time biofeedback systems based on smartphone inertial sensors are applicable to many similar examples in sports, healthcare, and other areas. PMID:26927125
NASA Astrophysics Data System (ADS)
Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.
2012-12-01
Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of experiments. Water saturation, capillary pressure, air and soil temperature, and relative humidity were continuously monitored. Aqueous TCE was injected into the tank below the water table and allowed to volatilize. TCE concentration exiting the tank head space was measured through interval sampling by direct injection into a gas chromatograph. To quantify the transient concentration of TCE vapor in the soil pore space a novel use of Solid Phase Micro-Extraction (SPME) was developed. Results from our numerical simulations were compared with the experimental data, which demonstrated the importance of considering the interaction of the atmosphere with the subsurface in conceptualization and numerical model development. Results also emphasize that soil saturation and transient sorption have a significant effect on vapor transport through the vadose zone. Follow-up tests and detailed analyses are still underway. Additional applications of this work include carbon sequestration leakage, methane contamination in the shallow subsurface and environmental impact of hydraulic fracturing.
NASA Technical Reports Server (NTRS)
Limaye, Ashutosh; Mugo, Robinson; Wanjohi, James; Farah, Hussein; Wahome, Anastasia; Flores, Africa; Irwin, Dan
2016-01-01
Various land use changes driven by urbanization, conversion of grasslands and woodlands into farmlands, intensification of agricultural practices, deforestation, land fragmentation and degradation are taking place in Africa. In Kenya, agriculture is the main driver of land use conversions. The impacts of these land use changes are observable in land cover maps, and eventually in the hydrological systems. Reduction or change of natural vegetation cover types increases the speed of surface runoff and reduces water and nutrient retention capacities. This can lead to high nutrient inputs into lakes, resulting in eutrophication, siltation and infestation of floating aquatic vegetation. To assess if changes in land use could be contributing to increased phytoplankton blooms and sediment loads into Lake Victoria, we analyzed land use land cover data from Landsat, as well as surface chlorophyll-a and total suspended matter from MODIS-Aqua sensor.
Evaluating the ASTER sensor for mapping and characterizing forest fire fuels in northern Idaho
Michael J. Falkowski; Paul Gessler; Penelope Morgan; Alistair M. S. Smith; Andrew T. Hudak
2004-01-01
Land managers need cost-effective methods for mapping and characterizing fire fuels quickly and accurately. The advent of sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. The objective of this research is to evaluate the accuracy and utility of imagery from the Advanced Spaceborne Thermal Emission and Reflection...
Inference evaluation in a finite evidence domain
NASA Astrophysics Data System (ADS)
Ratway, Michael J.; Bellomo, Carryn
2000-08-01
Modeling of a target starts with a subject matter expert (SME) analysis of the available sensor(s) data. The SME then forms relationships between the data and known target attributes, called evidence, to support modeling of different types of targets or target activity. Speeds in the interval 10 to 30 knots and ranges less than 30 nautical miles are two samples of target evidence derived from sensor data. Evidence is then organized into sets to define the activities of a target and/or to distinguish different types of targets. For example, near an airport, target activities of takeoff, landing, and holding need to be evaluated in addition to target classification of civilian or commercial aircraft. This paper discusses a method for evaluation of the inferred activities over the finite evidence domain formed from the collection of models under consideration. The methodology accounts for repeated use of evidence in different models. For example, 'near an airport' is a required piece of evidence used repeatedly in the takeoff, landing, and holding models of a wide area sensor. Properties of the activity model evaluator methodology are discussed in terms of model construction and informal results are presented in a Boolean evidence type of problem domain.
A survey and analysis of experimental hydrogen sensors
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
1992-01-01
In order to ascertain the applicability of hydrogen sensors to aerospace applications, a survey was conducted of promising experimental point-contact hydrogen sensors and their operation was analyzed. The techniques discussed are metal-oxide-semiconductor or MOS based sensors, catalytic resistor sensors, acoustic wave detectors, and pyroelectric detectors. All of these sensors depend on the interaction of hydrogen with Pd or a Pd-alloy. It is concluded that no single technique will meet the needs of aerospace applications but a combination of approaches is necessary. The most promising combination is an MOS based sensor with a catalytic resistor.
NASA Astrophysics Data System (ADS)
Coopersmith, Evan J.; Cosh, Michael H.; Bell, Jesse E.; Boyles, Ryan
2016-12-01
Surface soil moisture is a critical parameter for understanding the energy flux at the land atmosphere boundary. Weather modeling, climate prediction, and remote sensing validation are some of the applications for surface soil moisture information. The most common in situ measurement for these purposes are sensors that are installed at depths of approximately 5 cm. There are however, sensor technologies and network designs that do not provide an estimate at this depth. If soil moisture estimates at deeper depths could be extrapolated to the near surface, in situ networks providing estimates at other depths would see their values enhanced. Soil moisture sensors from the U.S. Climate Reference Network (USCRN) were used to generate models of 5 cm soil moisture, with 10 cm soil moisture measurements and antecedent precipitation as inputs, via machine learning techniques. Validation was conducted with the available, in situ, 5 cm resources. It was shown that a 5 cm estimate, which was extrapolated from a 10 cm sensor and antecedent local precipitation, produced a root-mean-squared-error (RMSE) of 0.0215 m3/m3. Next, these machine-learning-generated 5 cm estimates were also compared to AMSR-E estimates at these locations. These results were then compared with the performance of the actual in situ readings against the AMSR-E data. The machine learning estimates at 5 cm produced an RMSE of approximately 0.03 m3/m3 when an optimized gain and offset were applied. This is necessary considering the performance of AMSR-E in locations characterized by high vegetation water contents, which are present across North Carolina. Lastly, the application of this extrapolation technique is applied to the ECONet in North Carolina, which provides a 10 cm depth measurement as its shallowest soil moisture estimate. A raw RMSE of 0.028 m3/m3 was achieved, and with a linear gain and offset applied at each ECONet site, an RMSE of 0.013 m3/m3 was possible.
Land, sea, and air unmanned systems research and development at SPAWAR Systems Center Pacific
NASA Astrophysics Data System (ADS)
Nguyen, Hoa G.; Laird, Robin; Kogut, Greg; Andrews, John; Fletcher, Barbara; Webber, Todd; Arrieta, Rich; Everett, H. R.
2009-05-01
The Space and Naval Warfare (SPAWAR) Systems Center Pacific (SSC Pacific) has a long and extensive history in unmanned systems research and development, starting with undersea applications in the 1960s and expanding into ground and air systems in the 1980s. In the ground domain, we are addressing force-protection scenarios using large unmanned ground vehicles (UGVs) and fixed sensors, and simultaneously pursuing tactical and explosive ordnance disposal (EOD) operations with small man-portable robots. Technology thrusts include improving robotic intelligence and functionality, autonomous navigation and world modeling in urban environments, extended operational range of small teleoperated UGVs, enhanced human-robot interaction, and incorporation of remotely operated weapon systems. On the sea surface, we are pushing the envelope on dynamic obstacle avoidance while conforming to established nautical rules-of-the-road. In the air, we are addressing cooperative behaviors between UGVs and small vertical-takeoff- and-landing unmanned air vehicles (UAVs). Underwater applications involve very shallow water mine countermeasures, ship hull inspection, oceanographic data collection, and deep ocean access. Specific technology thrusts include fiber-optic communications, adaptive mission controllers, advanced navigation techniques, and concepts of operations (CONOPs) development. This paper provides a review of recent accomplishments and current status of a number of projects in these areas.
43 CFR 3816.2 - Application to open lands to location.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Application to open lands to location... LOCATION Mineral Locations in Reclamation Withdrawals § 3816.2 Application to open lands to location. Application to open lands to location under the Act may be filed by a person, association or corporation...
43 CFR 3816.2 - Application to open lands to location.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Application to open lands to location... LOCATION Mineral Locations in Reclamation Withdrawals § 3816.2 Application to open lands to location. Application to open lands to location under the Act may be filed by a person, association or corporation...
Likitlersuang, Jirapat; Leineweber, Matthew J; Andrysek, Jan
2017-10-01
Thin film force sensors are commonly used within biomechanical systems, and at the interface of the human body and medical and non-medical devices. However, limited information is available about their performance in such applications. The aims of this study were to evaluate and determine ways to improve the performance of thin film (FlexiForce) sensors at the body/device interface. Using a custom apparatus designed to load the sensors under simulated body/device conditions, two aspects were explored relating to sensor calibration and application. The findings revealed accuracy errors of 23.3±17.6% for force measurements at the body/device interface with conventional techniques of sensor calibration and application. Applying a thin rigid disc between the sensor and human body and calibrating the sensor using compliant surfaces was found to substantially reduce measurement errors to 2.9±2.0%. The use of alternative calibration and application procedures is recommended to gain acceptable measurement performance from thin film force sensors in body/device applications. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Microwave Remote Sensing and the Cold Land Processes Field Experiment
NASA Technical Reports Server (NTRS)
Kim, Edward J.; Cline, Don; Davis, Bert; Hildebrand, Peter H. (Technical Monitor)
2001-01-01
The Cold Land Processes Field Experiment (CLPX) has been designed to advance our understanding of the terrestrial cryosphere. Developing a more complete understanding of fluxes, storage, and transformations of water and energy in cold land areas is a critical focus of the NASA Earth Science Enterprise Research Strategy, the NASA Global Water and Energy Cycle (GWEC) Initiative, the Global Energy and Water Cycle Experiment (GEWEX), and the GEWEX Americas Prediction Project (GAPP). The movement of water and energy through cold regions in turn plays a large role in ecological activity and biogeochemical cycles. Quantitative understanding of cold land processes over large areas will require synergistic advancements in 1) understanding how cold land processes, most comprehensively understood at local or hillslope scales, extend to larger scales, 2) improved representation of cold land processes in coupled and uncoupled land-surface models, and 3) a breakthrough in large-scale observation of hydrologic properties, including snow characteristics, soil moisture, the extent of frozen soils, and the transition between frozen and thawed soil conditions. The CLPX Plan has been developed through the efforts of over 60 interested scientists that have participated in the NASA Cold Land Processes Working Group (CLPWG). This group is charged with the task of assessing, planning and implementing the required background science, technology, and application infrastructure to support successful land surface hydrology remote sensing space missions. A major product of the experiment will be a comprehensive, legacy data set that will energize many aspects of cold land processes research. The CLPX will focus on developing the quantitative understanding, models, and measurements necessary to extend our local-scale understanding of water fluxes, storage, and transformations to regional and global scales. The experiment will particularly emphasize developing a strong synergism between process-oriented understanding, land surface models and microwave remote sensing. The experimental design is a multi-sensor, multi-scale (1-ha to 160,000 km ^ {2}) approach to providing the comprehensive data set necessary to address several experiment objectives. A description focusing on the microwave remote sensing components (ground, airborne, and spaceborne) of the experiment will be presented.
The GNSS-based component for the new Indonesian tsunami early warning centre provided by GITEWS
NASA Astrophysics Data System (ADS)
Falck, C.; Ramatschi, M.; Bartsch, M.; Merx, A.; Hoeberechts, J.; Rothacher, M.
2009-04-01
Introduction Nowadays GNSS technologies are used for a large variety of precise positioning applications. The accuracy can reach the mm level depending on the data analysis methods. GNSS technologies thus offer a high potential to support tsunami early warning systems, e.g., by detection of ground motions due to earthquakes and of tsunami waves on the ocean by GNSS instruments on a buoy. Although GNSS-based precise positioning is a standard method, it is not yet common to apply this technique under tight time constraints and, hence, in the absence of precise satellite orbits and clocks. The new developed GNSS-based component utilises on- and offshore measured GNSS data and is the first system of its kind that was integrated into an operational early warning system. (Indonesian Tsunami Early Warning Centre INATEWS, inaugurated at BMKG, Jakarta on November, 11th 2008) Motivation After the Tsunami event of 26th December 2004 the German government initiated the GITEWS project (German Indonesian Tsunami Early Warning System) to develop a tsunami early warning system for Indonesia. The GFZ Potsdam (German Research Centre for Geosciences) as the consortial leader of GITEWS also covers several work packages, most of them related to sensor systems. The geodetic branch (Department 1) of the GFZ was assigned to develop a GNSS-based component. Brief system description The system covers all aspects from sensor stations with new developed hard- and software designs, manufacturing and installation of stations, real-time data transfer issues, a new developed automatic near real-time data processing and a graphical user interface for early warning centre operators including training on the system. GNSS sensors are installed on buoys, at tide gauges and as real-time reference stations (RTR stations), either stand-alone or co-located with seismic sensors. The GNSS data are transmitted to the warning centre where they are processed in a near real-time data processing chain. For sensors on land the processing system delivers deviations from their normal, mean coordinates. The deviations or so called displacements are indicators for land mass movements which can occur, e.g., due to strong earthquakes. The ground motion information is a valuable source for a fast understanding of an earthquake's mechanism with possible relevance for a potentially following tsunami. By this means the GNSS system supports the decision finding process whether most probably a tsunami has been generated or not. For buoy based GNSS data the processing (differential, with GNSS reference station on land) delivers coordinates as well. Only the vertical component is of interest as it corresponds to the instant sea level height. Deviations to the mean sea level height are an indicator for a possibly passing tsunami wave. The graphical user interface (GUI) of the GNSS system supports both, a quick view for all staff members at the warning centre (24h/7d shifts) and deeper analysis by GNSS experts. The GNSS GUI system is implemented as a web-based application and allows all views to be displayed on different screens at the same time, even at remote locations. This is part of the concept, as it can support the dialogue between warning centre staff on duty or on standby and sensor station maintenance staff. Acknowledgements The GITEWS project (German Indonesian Tsunami Early Warning System) is carried out by a large group of scientists and engineers from (GFZ) German Research Centre for Geosciences and its partners from the German Aerospace Centre (DLR), the Alfred Wegener Institute for Polar and Marine Research (AWI), the GKSS Research Centre, the Konsortium Deutsche Meeresforschung (KDM), the Leibniz Institute for Marine Sciences (IFM-GEOMAR), the United Nations University (UNU), the Federal Institute for Geosciences and Natural Resources (BGR), the German Agency for Technical Cooperation (GTZ) and other international partners. Most relevant partners in Indonesia with respect to the GNSS component of GITEWS are the National Coordinating Agency for Surveys and Mapping (BAKOSURTANAL), the National Metereology and Geophysics Agency (BMKG) and the National Agency for the Assessment and Application of Technology (BPPT). Funding is provided by the German Federal Ministry for Education and Research (BMBF), Grant 03TSU01.
Sensors, Volume 4, Thermal Sensors
NASA Astrophysics Data System (ADS)
Scholz, Jorg; Ricolfi, Teresio
1996-12-01
'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume describes the construction and applicational aspects of thermal sensors while presenting a rigorous treatment of the underlying physical principles. It provides a unique overview of the various categories of sensors as well as of specific groups, e.g. temperature sensors (resistance thermometers, thermocouples, and radiation thermometers), noise and acoustic thermometers, heat-flow and mass-flow sensors. Specific facettes of applications are presented by specialists from different fields including process control, automotive technology and cryogenics. This volume is an indispensable reference work and text book for both specialists and newcomers, researchers and developers.
Robust optical sensors for safety critical automotive applications
NASA Astrophysics Data System (ADS)
De Locht, Cliff; De Knibber, Sven; Maddalena, Sam
2008-02-01
Optical sensors for the automotive industry need to be robust, high performing and low cost. This paper focuses on the impact of automotive requirements on optical sensor design and packaging. Main strategies to lower optical sensor entry barriers in the automotive market include: Perform sensor calibration and tuning by the sensor manufacturer, sensor test modes on chip to guarantee functional integrity at operation, and package technology is key. As a conclusion, optical sensor applications are growing in automotive. Optical sensor robustness matured to the level of safety critical applications like Electrical Power Assisted Steering (EPAS) and Drive-by-Wire by optical linear arrays based systems and Automated Cruise Control (ACC), Lane Change Assist and Driver Classification/Smart Airbag Deployment by camera imagers based systems.
NASA Astrophysics Data System (ADS)
Stavros, E. N.; Seidel, F.; Cable, M. L.; Green, R. O.; Freeman, A.
2017-12-01
While, imaging spectrometers offer additional information that provide value added products for applications that are otherwise underserved, there is need to demonstrate their ability to augment the multi-spectral (e.g., Landsat) optical record by both providing more frequent temporal revisit and lengthening the existing record. Here we test the hypothesis that imaging spectroscopic optical data is compatible with multi-spectral data to within ±5% radiometric accuracy, as desirable to continue the long-term Landsat data record. We use a coincident Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) flight with over-passing Operational Land Imager (OLI) data on Landsat 8 to document a procedure for simulating OLI multi-spectral bands from AVIRIS, evaluate influencing factors on the observed radiance, and assess AVIRIS radiometric accuracy compared to OLI. The procedure for simulating OLI data includes spectral convolution, accounting for atmospheric effects introduced by different sensor altitude and viewing geometries, and spatial resampling. After accounting for these influences, we expect the remaining differences between the simulated and the real OLI data result from differences in sensor calibration, surface bi-directional reflectance, from the different viewing geometries, and spatial sampling. The median radiometric percent difference for each band in the data used range from 0.6% to 8.3%. After bias-correction to minimize potential calibration discrepancies, we find no more than 1.2% radiometric percent difference for any OLI band. This analysis therefore successfully demonstrates that imaging spectrometer data can not only address novel applications, but also contribute to the Landsat-type or other multi-spectral data records to sustain legacy applications.
NASA Astrophysics Data System (ADS)
Seybold, E. C.; Gold, A.; Inamdar, S. P.; Pradhanang, S. M.; Bowden, W. B.; Vaughan, M.; Addy, K.; Shanley, J. B.; Andrew, V.; Sleeper, R.; Levia, D. F., Jr.; Adair, C.; Wemple, B. C.; Schroth, A. W.
2017-12-01
Land use/land cover change has been shown to have significant impacts on nutrient loading to aquatic systems, and has been linked to coastal zone hypoxia and eutrophication of lake ecosystems. While it is clear that changes in land use/land cover are associated with changes in aquatic ecosystem function, a mechanistic understanding of how nutrient fluxes from distinct land cover classes respond to hydrologic events on event and seasonal scales remains unknown. Recent advances in the availability of high-frequency water quality sensors provide an opportunity to assess these relationships at a high temporal resolution. We deployed a network of in-situ spectrophotometers in watersheds with predominantly forested, agricultural, and urban land uses that spanned a latitudinal gradient in the northeastern US from Vermont to Delaware. Our study sought to assess how land cover affected the timing and magnitude of fluxes of carbon (C) and nitrogen (N) from watersheds with distinct land uses, and to determine whether these relationships varied regionally. We found systematic differences in the timing and magnitude of C and N fluxes and strong variation in the annual mass fluxes from these distinct land cover classes. In particular, we found that while the phenology of C and N fluxes varied across land uses, there were distinct regional similarities in the C and N flux regimes within a given land use class. We also found strong inter-annual variability in carbon and nitrogen fluxes in response to inter-annual variability in precipitation and discharge, suggesting a high degree of hydrologic control over nutrient loading. These findings also emphasize the potential for climate change, and in particular precipitation variability, to drive strong variation in the magnitude of downstream nutrient flux to receiving lakes and estuaries. Our study emphasizes the pervasive influence of land cover and its effects on water quality, and also highlights the strong signature of anthropogenic land use choices on regional C and N cycling.
Applications of thermal remote sensing to detailed ground water studies
NASA Technical Reports Server (NTRS)
Souto-Maior, J.
1973-01-01
Three possible applications of thermal (8-14 microns) remote sensing to detailed hydrogeologic studies are discussed in this paper: (1) the direct detection of seeps and springs, (2) the indirect evaluation of shallow ground water flow through its thermal effects on the land surface, and (3) the indirect location of small volumes of ground water inflow into surface water bodies. An investigation carried out with this purpose in an area containing a complex shallow ground water flow system indicates that the interpretation of the thermal imageries is complicated by many factors, among which the most important are: (1) altitude, angle of view, and thermal-spatial resolution of the sensor; (2) vegetation type, density, and vigor; (3) topography; (4) climatological and micrometeorological effects; (5) variation in soil type and soil moisture; (6) variation in volume and temperature of ground water inflow; (7) the hydraulic characteristics of the receiving water body, and (8) the presence of decaying organic material.
NASA Technical Reports Server (NTRS)
Madrinan, Max Jacobo Moreno; Cordova, Africa Flores; Olivares, Francisco Delgado; Irwin, Dan
2012-01-01
Basin development and consequent change in basin land cover have been often associated with an increased turbidity in coastal waters because of sediment yield and nutrients loading. The later leads to phytoplankton abundance further exacerbating water turbidity. This subsequently affects biological and physical processes in coastal estuaries by interfering with sun light penetration to coral reefs and sea grass, and even affecting public health. Therefore, consistent estimation of land cover changes and turbidity trend lines is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Ground solely methods to estimate land cover change would be unpractical and traditional methods of monitoring in situ water turbidity can be very expensive and time consuming. Accurate monitoring on the status and trends of basin land cover as well as the water quality of the receiving water bodies are required for analysis of relationships between the two variables. Use of remote sensing (RS) technology provides a great benefit for both fields of study, facilitating monitoring of changes in a timely and cost effective manner and covering wide areas with long term measurements. In this study, the Magdalena River basin and fixed geographical locations in the estuarine waters of its delta are used as a case to study the temporal trend lines of both, land cover change and the reflectance of the water turbidity using satellite technology. Land cover data from a combined product between sensors Terra and Aqua (MCD12Q1) from MODIS will be adapted to the conditions in the Magdalena basin to estimate changes in land cover since year 2000 to 2009. Surface reflectance data from a MODIS, Terra (MOD09GQ), band 1, will be used in lieu of in situ water turbidity for the time period between 2000 and present. Results will be compared with available existing data.
Guzsvinecz, Tibor; Szucs, Veronika; Sik Lányi, Cecília
2015-01-01
Nowadays the development of virtual reality-based application is one of the most dynamically growing areas. These applications have a wide user base, more and more devices which are providing several kinds of user interactions and are available on the market. In the applications where the not-handheld devices are not necessary, the potential is that these can be used in educational, entertainment and rehabilitation applications. The purpose of this paper is to examine the precision and the efficiency of the not-handheld devices with user interaction in the virtual reality-based applications. The first task of the developed application is to support the rehabilitation process of stroke patients in their homes. A newly developed application will be introduced in this paper, which uses the two popular devices, the Shimmer sensor and the Microsoft Kinect sensor. To identify and to validate the actions of the user these sensors are working together in parallel mode. For the problem solving, the application is available to record an educational pattern, and then the software compares this pattern to the action of the user. The goal of the current research is to examine the extent of the difference in the recognition of the gestures, how precisely the two sensors are identifying the predefined actions. This could affect the rehabilitation process of the stroke patients and influence the efficiency of the rehabilitation. This application was developed in C# programming language and uses the original Shimmer connecting application as a base. During the working of this application it is possible to teach five-five different movements with the use of the Shimmer and the Microsoft Kinect sensors. The application can recognize these actions at any later time. This application uses a file-based database and the runtime memory of the application to store the saved data in order to reach the actions easier. The conclusion is that much more precise data were collected from the Microsoft Kinect sensor than the Shimmer sensors.
Terrestrial remote sensing science and algorithms planned for EOS/MODIS
Running, S. W.; Justice, C.O.; Salomonson, V.V.; Hall, D.; Barker, J.; Kaufmann, Y. J.; Strahler, Alan H.; Huete, A.R.; Muller, Jan-Peter; Vanderbilt, V.; Wan, Z.; Teillet, P.; Carneggie, David M. Geological Survey (U.S.) Ohlen
1994-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) will be the primary daily global monitoring sensor on the NASA Earth Observing System (EOS) satellites, scheduled for launch on the EOS-AM platform in June 1998 and the EOS-PM platform in December 2000. MODIS is a 36 channel radiometer covering 0·415-14·235 μm wavelengths, with spatial resolution from 250 m to 1 km at nadir. MODIS will be the primary EOS sensor for providing data on terrestrial biospheric dynamics and process activity. This paper presents the suite of global land products currently planned for EOSDIS implementation, to be developed by the authors of this paper, the MODIS land team (MODLAND). These include spectral albedo, land cover, spectral vegetation indices, snow and ice cover, surface temperature and fire, and a number of biophysical variables that will allow computation of global carbon cycles, hydrologic balances and biogeochemistry of critical greenhouse gases. Additionally, the regular global coverage of these variables will allow accurate surface change detection, a fundamental determinant of global change.
COBALT: Development of a Platform to Flight Test Lander GN&C Technologies on Suborbital Rockets
NASA Technical Reports Server (NTRS)
Carson, John M., III; Seubert, Carl R.; Amzajerdian, Farzin; Bergh, Chuck; Kourchians, Ara; Restrepo, Carolina I.; Villapando, Carlos Y.; O'Neal, Travis V.; Robertson, Edward A.; Pierrottet, Diego;
2017-01-01
The NASA COBALT Project (CoOperative Blending of Autonomous Landing Technologies) is developing and integrating new precision-landing Guidance, Navigation and Control (GN&C) technologies, along with developing a terrestrial fight-test platform for Technology Readiness Level (TRL) maturation. The current technologies include a third- generation Navigation Doppler Lidar (NDL) sensor for ultra-precise velocity and line- of-site (LOS) range measurements, and the Lander Vision System (LVS) that provides passive-optical Terrain Relative Navigation (TRN) estimates of map-relative position. The COBALT platform is self contained and includes the NDL and LVS sensors, blending filter, a custom compute element, power unit, and communication system. The platform incorporates a structural frame that has been designed to integrate with the payload frame onboard the new Masten Xodiac vertical take-o, vertical landing (VTVL) terrestrial rocket vehicle. Ground integration and testing is underway, and terrestrial fight testing onboard Xodiac is planned for 2017 with two flight campaigns: one open-loop and one closed-loop.
Unmanned air vehicle: autonomous takeoff and landing
NASA Astrophysics Data System (ADS)
Lim, K. L.; Gitano-Briggs, Horizon Walker
2010-03-01
UAVs are increasing in popularity and sophistication due to the demonstrated performance which cannot be attained by manned aircraft1. These developments have been made possible by development of sensors, instrumentation, telemetry and controls during the last few decades. UAVs are now common in areas such as aerial observation and as communication relays3. Most UAVs, however, are still flown by a human pilot via remote control from a ground station. Even the existing autonomous UAVs often require a human pilot to handle the most difficult tasks of take off and landing2 (TOL). This is mainly because the navigation of the airplane requires observation, constant situational assessment and hours of experience from the pilot himself4. Therefore, an autonomous takeoff and landing system (TLS) for UAVs using a few practical design rules with various sensors, instrumentation, etc has been developed. This paper details the design and modeling of the UAV TLS. The model indicates that the UAV's TLS shows promising stability.
Unmanned air vehicle: autonomous takeoff and landing
NASA Astrophysics Data System (ADS)
Lim, K. L.; Gitano-Briggs, Horizon Walker
2009-12-01
UAVs are increasing in popularity and sophistication due to the demonstrated performance which cannot be attained by manned aircraft1. These developments have been made possible by development of sensors, instrumentation, telemetry and controls during the last few decades. UAVs are now common in areas such as aerial observation and as communication relays3. Most UAVs, however, are still flown by a human pilot via remote control from a ground station. Even the existing autonomous UAVs often require a human pilot to handle the most difficult tasks of take off and landing2 (TOL). This is mainly because the navigation of the airplane requires observation, constant situational assessment and hours of experience from the pilot himself4. Therefore, an autonomous takeoff and landing system (TLS) for UAVs using a few practical design rules with various sensors, instrumentation, etc has been developed. This paper details the design and modeling of the UAV TLS. The model indicates that the UAV's TLS shows promising stability.
NASA Astrophysics Data System (ADS)
McCabe, M.; Rosas Aguilar, J.; Parkes, S. D.; Aragon, B.
2017-12-01
Observation of land surface temperature (LST) has many practical uses, from studying boundary layer dynamics and land-atmosphere coupling, to investigating surface properties such as soil moisture status, heat stress and surface heat fluxes. Typically, LST is observed via satellite based sensors such as LandSat or via point measurements using IR radiometers. These measurements provide either good spatial coverage and resolution or good temporal coverage. However, neither are able to provide the needed spatial and temporal resolution for many of the research applications described above. Technological developments in the use of Unmanned Aerial Vehicles (UAVs), together with small thermal frame cameras, has enabled a capacity to overcome this spatiotemporal constraint. Utilising UAV platforms to collect LST measurements across diurnal cycles provides an opportunity to study how meteorological and surface properties vary in both space and time. Here we describe the collection of LST data from a multi-rotor UAV across a study domain that is observed multiple times throughout the day. Flights over crops of Rhodes grass and alfalfa, along with a bare desert surface, were repeated with between 8 and 11 surveys covering the period from early morning to sunset. Analysis of the collected thermal imagery shows that the constructed LST maps illustrate a strong diurnal cycle consistent with expected trends, but with considerable spatial and temporal variability observed within and between the different domains. These results offer new insights into the dynamics of land surface behavior in both dry and wet soil conditions and at spatiotemporal scales that are unable to be replicated using traditional satellite platforms.
NASA Astrophysics Data System (ADS)
Nitze, Ingmar; Barrett, Brian; Cawkwell, Fiona
2015-02-01
The analysis and classification of land cover is one of the principal applications in terrestrial remote sensing. Due to the seasonal variability of different vegetation types and land surface characteristics, the ability to discriminate land cover types changes over time. Multi-temporal classification can help to improve the classification accuracies, but different constraints, such as financial restrictions or atmospheric conditions, may impede their application. The optimisation of image acquisition timing and frequencies can help to increase the effectiveness of the classification process. For this purpose, the Feature Importance (FI) measure of the state-of-the art machine learning method Random Forest was used to determine the optimal image acquisition periods for a general (Grassland, Forest, Water, Settlement, Peatland) and Grassland specific (Improved Grassland, Semi-Improved Grassland) land cover classification in central Ireland based on a 9-year time-series of MODIS Terra 16 day composite data (MOD13Q1). Feature Importances for each acquisition period of the Enhanced Vegetation Index (EVI) and Normalised Difference Vegetation Index (NDVI) were calculated for both classification scenarios. In the general land cover classification, the months December and January showed the highest, and July and August the lowest separability for both VIs over the entire nine-year period. This temporal separability was reflected in the classification accuracies, where the optimal choice of image dates outperformed the worst image date by 13% using NDVI and 5% using EVI on a mono-temporal analysis. With the addition of the next best image periods to the data input the classification accuracies converged quickly to their limit at around 8-10 images. The binary classification schemes, using two classes only, showed a stronger seasonal dependency with a higher intra-annual, but lower inter-annual variation. Nonetheless anomalous weather conditions, such as the cold winter of 2009/2010 can alter the temporal separability pattern significantly. Due to the extensive use of the NDVI for land cover discrimination, the findings of this study should be transferrable to data from other optical sensors with a higher spatial resolution. However, the high impact of outliers from the general climatic pattern highlights the limitation of spatial transferability to locations with different climatic and land cover conditions. The use of high-temporal, moderate resolution data such as MODIS in conjunction with machine-learning techniques proved to be a good base for the prediction of image acquisition timing for optimal land cover classification results.
NASA Astrophysics Data System (ADS)
Kim, Hye-Won; Yeom, Jong-Min; Woo, Sun-Hee; Chae, Tae-Byeong
2016-04-01
COMS (Communication, Ocean, and Meteorological Satellite) was launched at French Guiana Kourou space center on 27 June 2010. Geostationary Ocean Color Imager (GOCI), which is the first ocean color geostationary satellite in the world for observing the ocean phenomena, is able to obtain the scientific data per an hour from 00UTC to 07UTC. Moreover, the spectral channels of GOCI would enable not only monitoring for the ocean, but for extracting the information of the land surface over the Korean Peninsula, Japan, and Eastern China. Since it is extremely important to utilize GOCI data accurately for the land application, cloud pixels over the surface have to be removed. Unfortunately, infra-red (IR) channels that can easily detect the water vapor with the cloud top temperature, are not included in the GOCI sensor. In this paper, the advanced cloud masking algorithm will be proposed with visible and near-IR (NIR) bands that are within GOCI bands. The main obstacle of cloud masking with GOCI is how to handle the high variable surface reflectance, which is mainly depending on the solar zenith angle. In this study, we use semi-empirical BRDF model to simulate the surface reflectance by using 16 day composite cloudy free image. When estimating the simulated surface reflectance, same geometry for GOCI observation was applied. The simulated surface reflectance is used to discriminate cloud areas especially for the thin cloud and shows more reasonable result than original threshold methods.
Pulse oximeter sensor application during neonatal resuscitation: a randomized controlled trial.
Louis, Deepak; Sundaram, Venkataseshan; Kumar, Praveen
2014-03-01
This study was done to compare 2 techniques of pulse oximeter sensor application during neonatal resuscitation for faster signal detection. Sensor to infant first (STIF) and then to oximeter was compared with sensor to oximeter first (STOF) and then to infant in ≥28 weeks gestations. The primary outcome was time from completion of sensor application to reliable signal, defined as stable display of heart rate and saturation. Time from birth to sensor application, time taken for sensor application, time from birth to reliable signal, and need to reapply sensor were secondary outcomes. An intention-to-treat analysis was done, and subgroup analysis was done for gestation and need for resuscitation. One hundred fifty neonates were randomized with 75 to each technique. The median (IQR) time from sensor application to detection of reliable signal was longer in STIF group compared with STOF group (16 [15-17] vs. 10 [6-18] seconds; P <0.001). Time taken for application of sensor was longer with STIF technique than with STOF technique (12 [10-16] vs. 11 [9-15] seconds; P = 0.04). Time from birth to reliable signal did not differ between the 2 methods (STIF: 61 [52-76] seconds; STOF: 58 [47-73] seconds [P = .09]). Time taken for signal acquisition was longer with STIF than with STOF in both subgroups. In the delivery room setting, the STOF method recognized saturation and heart rate faster than the STIF method. The time from birth to reliable signal was similar with the 2 methods.