Sample records for land cover objects

  1. Object-based land cover classification based on fusion of multifrequency SAR data and THAICHOTE optical imagery

    NASA Astrophysics Data System (ADS)

    Sukawattanavijit, Chanika; Srestasathiern, Panu

    2017-10-01

    Land Use and Land Cover (LULC) information are significant to observe and evaluate environmental change. LULC classification applying remotely sensed data is a technique popularly employed on a global and local dimension particularly, in urban areas which have diverse land cover types. These are essential components of the urban terrain and ecosystem. In the present, object-based image analysis (OBIA) is becoming widely popular for land cover classification using the high-resolution image. COSMO-SkyMed SAR data was fused with THAICHOTE (namely, THEOS: Thailand Earth Observation Satellite) optical data for land cover classification using object-based. This paper indicates a comparison between object-based and pixel-based approaches in image fusion. The per-pixel method, support vector machines (SVM) was implemented to the fused image based on Principal Component Analysis (PCA). For the objectbased classification was applied to the fused images to separate land cover classes by using nearest neighbor (NN) classifier. Finally, the accuracy assessment was employed by comparing with the classification of land cover mapping generated from fused image dataset and THAICHOTE image. The object-based data fused COSMO-SkyMed with THAICHOTE images demonstrated the best classification accuracies, well over 85%. As the results, an object-based data fusion provides higher land cover classification accuracy than per-pixel data fusion.

  2. Object-based land-cover classification for metropolitan Phoenix, Arizona, using aerial photography

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxiao; Myint, Soe W.; Zhang, Yujia; Galletti, Chritopher; Zhang, Xiaoxiang; Turner, Billie L.

    2014-12-01

    Detailed land-cover mapping is essential for a range of research issues addressed by the sustainability and land system sciences and planning. This study uses an object-based approach to create a 1 m land-cover classification map of the expansive Phoenix metropolitan area through the use of high spatial resolution aerial photography from National Agricultural Imagery Program. It employs an expert knowledge decision rule set and incorporates the cadastral GIS vector layer as auxiliary data. The classification rule was established on a hierarchical image object network, and the properties of parcels in the vector layer were used to establish land cover types. Image segmentations were initially utilized to separate the aerial photos into parcel sized objects, and were further used for detailed land type identification within the parcels. Characteristics of image objects from contextual and geometrical aspects were used in the decision rule set to reduce the spectral limitation of the four-band aerial photography. Classification results include 12 land-cover classes and subclasses that may be assessed from the sub-parcel to the landscape scales, facilitating examination of scale dynamics. The proposed object-based classification method provides robust results, uses minimal and readily available ancillary data, and reduces computational time.

  3. Modeling tropical land-use and land-cover change related to sugarcane crops using remote sensing and soft computing techniques

    NASA Astrophysics Data System (ADS)

    Vicente, L. E.; Koga-Vicente, A.; Friedel, M. J.; Zullo, J.; Victoria, D.; Gomes, D.; Bayma, G.

    2013-12-01

    Agriculture is closely related to land-use/cover changes (LUCC). The increase in demand for ethanol necessitates the expansion of areas occupied by corn and sugar cane. In São Paulo state, the conversion of this land raises concern for impacts on food security, such as the decrease in traditional food crop production areas. We used remote sensing data to train and evaluate future land-cover scenarios using a machine-learning algorithm. The land cover classification procedure was based on Landsat 5 TM images, obtained from the Global Land Survey, covering three time periods over twenty years (1990 - 2010). Landsat images were segmented into homogeneous objects, which represent areas on the ground with similar spatial and spectral characteristics. These objects are related to the distinct land cover types that occur in each municipality. Based on the object shape, texture and spectral characteristics, land use/cover was visually identified, considering the following classes: sugarcane plantations, pasture lands, natural cover, forest plantation, permanent crop, short cycle crop, water bodies and urban areas. Results for the western regions of São Paulo state indicate that sugarcane crop area advanced mostly upon pasture areas with few areas of food crops being replaced by sugarcane.

  4. Extraction of land cover change information from ENVISAT-ASAR data in Chengdu Plain

    NASA Astrophysics Data System (ADS)

    Xu, Wenbo; Fan, Jinlong; Huang, Jianxi; Tian, Yichen; Zhang, Yong

    2006-10-01

    Land cover data are essential to most global change research objectives, including the assessment of current environmental conditions and the simulation of future environmental scenarios that ultimately lead to public policy development. Chinese Academy of Sciences generated a nationwide land cover database in order to carry out the quantification and spatial characterization of land use/cover changes (LUCC) in 1990s. In order to improve the reliability of the database, we will update the database anytime. But it is difficult to obtain remote sensing data to extract land cover change information in large-scale. It is hard to acquire optical remote sensing data in Chengdu plain, so the objective of this research was to evaluate multitemporal ENVISAT advanced synthetic aperture radar (ASAR) data for extracting land cover change information. Based on the fieldwork and the nationwide 1:100000 land cover database, the paper assesses several land cover changes in Chengdu plain, for example: crop to buildings, forest to buildings, and forest to bare land. The results show that ENVISAT ASAR data have great potential for the applications of extracting land cover change information.

  5. Designing a Multi-Objective Multi-Support Accuracy Assessment of the 2001 National Land Cover Data (NLCD 2001) of the Conterminous United States

    EPA Science Inventory

    The database design and diverse application of NLCD 2001 pose significant challenges for accuracy assessment because numerous objectives are of interest, including accuracy of land cover, percent urban imperviousness, percent tree canopy, land-cover composition, and net change. ...

  6. Classifying land cover from an object-oriented approach - applied to LANDSAT 8 at the regional scale of the Lake Tana Basin (Ethiopia)

    NASA Astrophysics Data System (ADS)

    Lemma, Hanibal; Frankl, Amaury; Poesen, Jean; Adgo, Enyew; Nyssen, Jan

    2017-04-01

    Object-oriented image classification has been gaining prominence in the field of remote sensing and provides a valid alternative to the 'traditional' pixel based methods. Recent studies have proven the superiority of the object-based approach. So far, object-oriented land cover classifications have been applied either at limited spatial coverages (ranging 2 to 1091 km2) or by using very high resolution (0.5-16 m) imageries. The main aim of this study is to drive land cover information for large area from Landsat 8 OLI surface reflectance using the Estimation of Scale Parameter (ESP) tool and the object oriented software eCognition. The available land cover map of Lake Tana Basin (Ethiopia) is about 20 years old with a courser spatial scale (1:250,000) and has limited use for environmental modelling and monitoring studies. Up-to-date and basin wide land cover maps are essential to overcome haphazard natural resources management, land degradation and reduced agricultural production. Indeed, object-oriented approach involves image segmentation prior to classification, i.e. adjacent similar pixels are aggregated into segments as long as the heterogeneity in the spectral and spatial domains is minimized. For each segmented object, different attributes (spectral, textural and shape) were calculated and used for in subsequent classification analysis. Moreover, the commonly used error matrix is employed to determine the quality of the land cover map. As a result, the multiresolution segmentation (with parameters of scale=30, shape=0.3 and Compactness=0.7) produces highly homogeneous image objects as it is observed in different sample locations in google earth. Out of the 15,089 km2 area of the basin, cultivated land is dominant (69%) followed by water bodies (21%), grassland (4.8%), forest (3.7%) and shrubs (1.1%). Wetlands, artificial surfaces and bare land cover only about 1% of the basin. The overall classification accuracy is 80% with a Kappa coefficient of 0.75. With regard to individual classes, the classification show higher Producer's and User's accuracy (above 84%) for cultivated land, water bodies and forest, but lower (less than 70%) for shrubs, bare land and grassland. Key words: accuracy assessment, eCognition, Estimation of Scale Parameter, land cover, Landsat 8, remote sensing

  7. THEMATIC ACCURACY OF MRLC LAND COVER FOR THE EASTERN UNITED STATES

    EPA Science Inventory



    One objective of the MultiResolution Land Characteristics (MRLC) consortium is to map general land-cover categories for the conterminous United States using Landsat Thematic Mapper (TM) data. Land-cover mapping and classification accuracy assessment are complete for the e...

  8. Land Application of Wastes: An Educational Program. Role of Vegetative Cover - Module 7, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module discusses some of the objectives of incorporating vegetative cover in land treatment systems. Specific crops and forest cover are mentioned in relation to benefits associated with each, and specific treatment alternatives (irrigation, overland flow, and rapid infiltration) are included in relation to vegetative cover considerations.…

  9. Globally scalable generation of high-resolution land cover from multispectral imagery

    NASA Astrophysics Data System (ADS)

    Stutts, S. Craig; Raskob, Benjamin L.; Wenger, Eric J.

    2017-05-01

    We present an automated method of generating high resolution ( 2 meter) land cover using a pattern recognition neural network trained on spatial and spectral features obtained from over 9000 WorldView multispectral images (MSI) in six distinct world regions. At this resolution, the network can classify small-scale objects such as individual buildings, roads, and irrigation ponds. This paper focuses on three key areas. First, we describe our land cover generation process, which involves the co-registration and aggregation of multiple spatially overlapping MSI, post-aggregation processing, and the registration of land cover to OpenStreetMap (OSM) road vectors using feature correspondence. Second, we discuss the generation of land cover derivative products and their impact in the areas of region reduction and object detection. Finally, we discuss the process of globally scaling land cover generation using cloud computing via Amazon Web Services (AWS).

  10. Land Use and Land Cover Change Modeling Using Remote Sensing and Soft Computing Approach to Assess Sugarcane Expansion Impacts in Tropical Agriculture

    NASA Astrophysics Data System (ADS)

    Vicente, L. E.; Koga-Vicente, A.; Friedel, M. J.; Victoria, D.; Zullo, J., Jr.; Gomes, D.; Bayma-Silva, G.

    2014-12-01

    Agriculture is related with land-use/cover changes (LUCC) over large areas and, in recent years, increase in demand of ethanol fuel has been influence in expansion of areas occupied with corn and sugar cane, raw material for ethanol production. Nevertheless, there´s a concern regarding the impacts on food security, such as, decrease in areas planted with food crops. Considering that the LUCC is highly dynamic, the use of Remote Sensing is a tool for monitoring changes quickly and precisely in order to provide information for agricultural planning. In this work, Remote Sensing techniques were used to monitor the LUCC occurred in municipalities of São Paulo state- Brazil related with sugarcane crops expansion in order to (i) evaluate and quantify the previous land cover in areas of sugarcane crop expansion, and (ii) provide information to elaborate a future land cover scenario based on Self Organizing Map (SOM) approach. The land cover classification procedure was based on Landsat 5 TM images, obtained from the Global Land Survey. The Landsat images were then segmented into homogeneous objects, with represent areas on the ground with similar spatial and spectral characteristics. These objects are related to the distinct land cover types that occur in each municipality. The segmentation procedure resulted in polygons over the three time periods along twenty years (1990-2010). The land cover for each object was visually identified, based on its shape, texture and spectral characteristics. Land cover types considered were: sugarcane plantations, pasture lands, natural cover, forest plantation, permanent crop, short cycle crop, water bodies and urban areas. SOM technique was used to estimate the values for the future land cover scenarios for the selected municipalities, using the information of land change provided by the remote sensing and data from official sources.

  11. Classification of Land Cover and Land Use Based on Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Yang, Chun; Rottensteiner, Franz; Heipke, Christian

    2018-04-01

    Land cover describes the physical material of the earth's surface, whereas land use describes the socio-economic function of a piece of land. Land use information is typically collected in geospatial databases. As such databases become outdated quickly, an automatic update process is required. This paper presents a new approach to determine land cover and to classify land use objects based on convolutional neural networks (CNN). The input data are aerial images and derived data such as digital surface models. Firstly, we apply a CNN to determine the land cover for each pixel of the input image. We compare different CNN structures, all of them based on an encoder-decoder structure for obtaining dense class predictions. Secondly, we propose a new CNN-based methodology for the prediction of the land use label of objects from a geospatial database. In this context, we present a strategy for generating image patches of identical size from the input data, which are classified by a CNN. Again, we compare different CNN architectures. Our experiments show that an overall accuracy of up to 85.7 % and 77.4 % can be achieved for land cover and land use, respectively. The classification of land cover has a positive contribution to the classification of the land use classification.

  12. Soil chemical and physical properties that differentiate urban land-use and cover types

    Treesearch

    R.V. Pouyat; I.D. Yesilonis; J. Russell-Anelli; N.K. Neerchal

    2007-01-01

    We investigated the effects of land use and cover and surface geology on soil properties in Baltimore, MD, with the objectives to: (i) measure the physical and chemical properties of surface soils (0?10 cm) by land use and cover; and (ii) ascertain whether land use and cover explain differences in these properties relative to surface geology. Mean and median values of...

  13. Thematic Accuracy Assessment of the 2011 National Land Cover Database (NLCD)

    EPA Science Inventory

    Accuracy assessment is a standard protocol of National Land Cover Database (NLCD) mapping. Here we report agreement statistics between map and reference labels for NLCD 2011, which includes land cover for ca. 2001, ca. 2006, and ca. 2011. The two main objectives were assessment o...

  14. Mapping land cover in urban residential landscapes using fine resolution imagery and object-oriented classification

    USDA-ARS?s Scientific Manuscript database

    A knowledge of different types of land cover in urban residential landscapes is important for building social and economic city-wide policies including landscape ordinances and water conservation programs. Urban landscapes are typically heterogeneous, so classification of land cover in these areas ...

  15. Land Use and Land Cover (LULC) Change Detection in Islamabad and its Comparison with Capital Development Authority (CDA) 2006 Master Plan

    NASA Astrophysics Data System (ADS)

    Hasaan, Zahra

    2016-07-01

    Remote sensing is very useful for the production of land use and land cover statistics which can be beneficial to determine the distribution of land uses. Using remote sensing techniques to develop land use classification mapping is a convenient and detailed way to improve the selection of areas designed to agricultural, urban and/or industrial areas of a region. In Islamabad city and surrounding the land use has been changing, every day new developments (urban, industrial, commercial and agricultural) are emerging leading to decrease in vegetation cover. The purpose of this work was to develop the land use of Islamabad and its surrounding area that is an important natural resource. For this work the eCognition Developer 64 computer software was used to develop a land use classification using SPOT 5 image of year 2012. For image processing object-based classification technique was used and important land use features i.e. Vegetation cover, barren land, impervious surface, built up area and water bodies were extracted on the basis of object variation and compared the results with the CDA Master Plan. The great increase was found in built-up area and impervious surface area. On the other hand vegetation cover and barren area followed a declining trend. Accuracy assessment of classification yielded 92% accuracies of the final land cover land use maps. In addition these improved land cover/land use maps which are produced by remote sensing technique of class definition, meet the growing need of legend standardization.

  16. Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data

    Treesearch

    Weiqi Zhou; Austin Troy; Morgan Grove

    2008-01-01

    Accurate and timely information about land cover pattern and change in urban areas is crucial for urban land management decision-making, ecosystem monitoring and urban planning. This paper presents the methods and results of an object-based classification and post-classification change detection of multitemporal high-spatial resolution Emerge aerial imagery in the...

  17. Assessing the sensitivity of avian species abundance to land cover and climate

    Treesearch

    Jaymi J. LeBrun; Wayne E. Thogmartin; Frank R. Thompson; William D. Dijak; Joshua J. Millspaugh

    2016-01-01

    Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and...

  18. A higher order conditional random field model for simultaneous classification of land cover and land use

    NASA Astrophysics Data System (ADS)

    Albert, Lena; Rottensteiner, Franz; Heipke, Christian

    2017-08-01

    We propose a new approach for the simultaneous classification of land cover and land use considering spatial as well as semantic context. We apply a Conditional Random Fields (CRF) consisting of a land cover and a land use layer. In the land cover layer of the CRF, the nodes represent super-pixels; in the land use layer, the nodes correspond to objects from a geospatial database. Intra-layer edges of the CRF model spatial dependencies between neighbouring image sites. All spatially overlapping sites in both layers are connected by inter-layer edges, which leads to higher order cliques modelling the semantic relation between all land cover and land use sites in the clique. A generic formulation of the higher order potential is proposed. In order to enable efficient inference in the two-layer higher order CRF, we propose an iterative inference procedure in which the two classification tasks mutually influence each other. We integrate contextual relations between land cover and land use in the classification process by using contextual features describing the complex dependencies of all nodes in a higher order clique. These features are incorporated in a discriminative classifier, which approximates the higher order potentials during the inference procedure. The approach is designed for input data based on aerial images. Experiments are carried out on two test sites to evaluate the performance of the proposed method. The experiments show that the classification results are improved compared to the results of a non-contextual classifier. For land cover classification, the result is much more homogeneous and the delineation of land cover segments is improved. For the land use classification, an improvement is mainly achieved for land use objects showing non-typical characteristics or similarities to other land use classes. Furthermore, we have shown that the size of the super-pixels has an influence on the level of detail of the classification result, but also on the degree of smoothing induced by the segmentation method, which is especially beneficial for land cover classes covering large, homogeneous areas.

  19. Multi-Temporal Multi-Sensor Analysis of Urbanization and Environmental/Climate Impact in China for Sustainable Urban Development

    NASA Astrophysics Data System (ADS)

    Ban, Yifang; Gong, Peng; Gamba, Paolo; Taubenbock, Hannes; Du, Peijun

    2016-08-01

    The overall objective of this research is to investigate multi-temporal, multi-scale, multi-sensor satellite data for analysis of urbanization and environmental/climate impact in China to support sustainable planning. Multi- temporal multi-scale SAR and optical data have been evaluated for urban information extraction using innovative methods and algorithms, including KTH- Pavia Urban Extractor, Pavia UEXT, and an "exclusion- inclusion" framework for urban extent extraction, and KTH-SEG, a novel object-based classification method for detailed urban land cover mapping. Various pixel- based and object-based change detection algorithms were also developed to extract urban changes. Several Chinese cities including Beijing, Shanghai and Guangzhou are selected as study areas. Spatio-temporal urbanization patterns and environmental impact at regional, metropolitan and city core were evaluated through ecosystem service, landscape metrics, spatial indices, and/or their combinations. The relationship between land surface temperature and land-cover classes was also analyzed.The urban extraction results showed that urban areas and small towns could be well extracted using multitemporal SAR data with the KTH-Pavia Urban Extractor and UEXT. The fusion of SAR data at multiple scales from multiple sensors was proven to improve urban extraction. For urban land cover mapping, the results show that the fusion of multitemporal SAR and optical data could produce detailed land cover maps with improved accuracy than that of SAR or optical data alone. Pixel-based and object-based change detection algorithms developed with the project were effective to extract urban changes. Comparing the urban land cover results from mulitemporal multisensor data, the environmental impact analysis indicates major losses for food supply, noise reduction, runoff mitigation, waste treatment and global climate regulation services through landscape structural changes in terms of decreases in service area, edge contamination and fragmentation. In terms ofclimate impact, the results indicate that land surface temperature can be related to land use/land cover classes.

  20. Effects of spatial resolution and landscape structure on land cover characterization

    NASA Astrophysics Data System (ADS)

    Yang, Wenli

    This dissertation addressed problems in scaling, problems that are among the main challenges in remote sensing. The principal objective of the research was to investigate the effects of changing spatial scale on the representation of land cover. A second objective was to determine the relationship between such effects, characteristics of landscape structure and scaling procedures. Four research issues related to spatial scaling were examined. They included: (1) the upscaling of Normalized Difference Vegetation Index (NDVI); (2) the effects of spatial scale on indices of landscape structure; (3) the representation of land cover databases at different spatial scales; and (4) the relationships between landscape indices and land cover area estimations. The overall bias resulting from non-linearity of NDVI in relation to spatial resolution is generally insignificant as compared to other factors such as influences of aerosols and water vapor. The bias is, however, related to land surface characteristics. Significant errors may be introduced in heterogeneous areas where different land cover types exhibit strong spectral contrast. Spatially upscaled SPOT and TM NDVIs have information content comparable with the AVHRR-derived NDVI. Indices of landscape structure and spatial resolution are generally related, but the exact forms of the relationships are subject to changes in other factors including the basic patch unit constituting a landscape and the proportional area of foreground land cover under consideration. The extent of agreement between spatially aggregated coarse resolution land cover datasets and full resolution datasets changes with the properties of the original datasets, including the pixel size and class definition. There are close relationships between landscape structure and class areas estimated from spatially aggregated land cover databases. The relationships, however, do not permit extension from one area to another. Inversion calibration across different geographic/ecological areas is, therefore, not feasible. Different rules govern the land cover area changes across resolutions when different upscaling methods are used. Special attention should be given to comparison between land cover maps derived using different methods.

  1. Modeling Land Use/Cover Changes in an African Rural Landscape

    NASA Astrophysics Data System (ADS)

    Kamusoko, C.; Aniya, M.

    2006-12-01

    Land use/cover changes are analyzed in the Bindura district of Zimbabwe, Africa through the integration of data from a time series of Landsat imagery (1973, 1989 and 2000), a household survey and GIS coverages. We employed a hybrid supervised/unsupervised classification approach to generate land use/cover maps from which landscape metrics were calculated. Population and other household variables were derived from a sample of surveyed villages, while road accessibility and slope were obtained from topographic maps and digital elevation model, respectively. Markov-cellular automata modeling approach that incorporates Markov chain analysis, cellular automata and multi-criteria evaluation (MCE) / multi-objective allocation (MOLA) procedures was used to simulate land use/cover changes. A GIS-based MCE technique computed transition potential maps, whereas transition areas were derived from the 1973-2000 land use/cover maps using the Markov chain analysis. A 5 x 5 cellular automata filter was used to develop a spatially explicit contiguity- weighting factor to change the cells based on its previous state and those of its neighbors, while MOLA resolved land use/cover class allocation conflicts. The kappa index of agreement was used for model validation. Observed trends in land use/cover changes indicate that deforestation and the encroachment of cultivation in woodland areas is a continuous trend in the study area. This suggests that economic activities driven by agricultural expansion were the main causes of landscape fragmentation, leading to landscape degradation. Rigorous calibration of transition potential maps done by a MCE algorithm and Markovian transition probabilities produced accurate inputs for the simulation of land use/cover changes. Overall standard kappa index of agreement ranged from 0.73 to 0.83, which is sufficient for simulating land use/cover changes in the study area. Land use/cover simulations under the 1989 and 2000 scenario indicated further landscape degradation in the rural areas of the Bindura district. Keywords: Zimbabwe, land use/cover changes, landscape fragmentation, GIS, land use/cover change modeling, multi-criteria evaluation/multi-objective allocation procedures, Markov-cellular automata

  2. Assessment of land use and land cover change using spatiotemporal analysis of landscape: case study in south of Tehran.

    PubMed

    Sabr, Abutaleb; Moeinaddini, Mazaher; Azarnivand, Hossein; Guinot, Benjamin

    2016-12-01

    In the recent years, dust storms originating from local abandoned agricultural lands have increasingly impacted Tehran and Karaj air quality. Designing and implementing mitigation plans are necessary to study land use/land cover change (LUCC). Land use/cover classification is particularly relevant in arid areas. This study aimed to map land use/cover by pixel- and object-based image classification methods, analyse landscape fragmentation and determine the effects of two different classification methods on landscape metrics. The same sets of ground data were used for both classification methods. Because accuracy of classification plays a key role in better understanding LUCC, both methods were employed. Land use/cover maps of the southwest area of Tehran city for the years 1985, 2000 and 2014 were obtained from Landsat digital images and classified into three categories: built-up, agricultural and barren lands. The results of our LUCC analysis showed that the most important changes in built-up agricultural land categories were observed in zone B (Shahriar, Robat Karim and Eslamshahr) between 1985 and 2014. The landscape metrics obtained for all categories pictured high landscape fragmentation in the study area. Despite no significant difference was evidenced between the two classification methods, the object-based classification led to an overall higher accuracy than using the pixel-based classification. In particular, the accuracy of the built-up category showed a marked increase. In addition, both methods showed similar trends in fragmentation metrics. One of the reasons is that the object-based classification is able to identify buildings, impervious surface and roads in dense urban areas, which produced more accurate maps.

  3. SAMPLE SELECTION OF MRLC'S NLCD LAND COVER DATA FOR THEMATIC ACCURACY ASSESSMENT

    EPA Science Inventory

    The Multi-Resolution Land Characteristics (MRLC) consortium was formed in the early 1990s to cost- effectively acquire Landsat TM satellite data for the conterminous United States. One of the MRLC's objectives was to develop national land-cover data (NLCD) for the conterminous Un...

  4. Land Cover Mapping using GEOBIA to Estimate Loss of Salacca zalacca Trees in Landslide Area of Clapar, Madukara District of Banjarnegara

    NASA Astrophysics Data System (ADS)

    Permata, Anggi; Juniansah, Anwar; Nurcahyati, Eka; Dimas Afrizal, Mousafi; Adnan Shafry Untoro, Muhammad; Arifatha, Na'ima; Ramadhani Yudha Adiwijaya, Raden; Farda, Nur Mohammad

    2016-11-01

    Landslide is an unpredictable natural disaster which commonly happens in highslope area. Aerial photography in small format is one of acquisition method that can reach and obtain high resolution spatial data faster than other methods, and provide data such as orthomosaic and Digital Surface Model (DSM). The study area contained landslide area in Clapar, Madukara District of Banjarnegara. Aerial photographs of landslide area provided advantage in objects visibility. Object's characters such as shape, size, and texture were clearly seen, therefore GEOBIA (Geography Object Based Image Analysis) was compatible as method for classifying land cover in study area. Dissimilar with PPA (PerPixel Analyst) method that used spectral information as base object detection, GEOBIA could use spatial elements as classification basis to establish a land cover map with better accuracy. GEOBIA method used classification hierarchy to divide post disaster land cover into three main objects: vegetation, landslide/soil, and building. Those three were required to obtain more detailed information that can be used in estimating loss caused by landslide and establishing land cover map in landslide area. Estimating loss in landslide area related to damage in Salak (Salacca zalacca) plantations. This estimation towards quantity of Salak tree that were drifted away by landslide was calculated in assumption that every tree damaged by landslide had same age and production class with other tree that weren't damaged. Loss calculation was done by approximating quantity of damaged trees in landslide area with data of trees around area that were acquired from GEOBIA classification method.

  5. D Land Cover Classification Based on Multispectral LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.

  6. The Aggregate Representation of Terrestrial Land Covers Within Global Climate Models (GCM)

    NASA Technical Reports Server (NTRS)

    Shuttleworth, W. James; Sorooshian, Soroosh

    1996-01-01

    This project had four initial objectives: (1) to create a realistic coupled surface-atmosphere model to investigate the aggregate description of heterogeneous surfaces; (2) to develop a simple heuristic model of surface-atmosphere interactions; (3) using the above models, to test aggregation rules for a variety of realistic cover and meteorological conditions; and (4) to reconcile biosphere-atmosphere transfer scheme (BATS) land covers with those that can be recognized from space; Our progress in meeting these objectives can be summarized as follows. Objective 1: The first objective was achieved in the first year of the project by coupling the Biosphere-Atmosphere Transfer Scheme (BATS) with a proven two-dimensional model of the atmospheric boundary layer. The resulting model, BATS-ABL, is described in detail in a Masters thesis and reported in a paper in the Journal of Hydrology Objective 2: The potential value of the heuristic model was re-evaluated early in the project and a decision was made to focus subsequent research around modeling studies with the BATS-ABL model. The value of using such coupled surface-atmosphere models in this research area was further confirmed by the success of the Tucson Aggregation Workshop. Objective 3: There was excellent progress in using the BATS-ABL model to test aggregation rules for a variety of realistic covers. The foci of attention have been the site of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) in Kansas and one of the study sites of the Anglo-Brazilian Amazonian Climate Observational Study (ABRACOS) near the city of Manaus, Amazonas, Brazil. These two sites were selected because of the ready availability of relevant field data to validate and initiate the BATS-ABL model. The results of these tests are given in a Masters thesis, and reported in two papers. Objective 4: Progress far exceeded original expectations not only in reconciling BATS land covers with those that can be recognized from space, but also in then applying remotely-sensed land cover data to map aggregate values of BATS parameters for heterogeneous covers and interpreting these parameters in terms of surface-atmosphere exchanges.

  7. Urban Land Cover/use Change Detection Using High Resolution SPOT 5 and SPOT 6 Images and Urban Atlas Nomenclature

    NASA Astrophysics Data System (ADS)

    Akay, S. S.; Sertel, E.

    2016-06-01

    Urban land cover/use changes like urbanization and urban sprawl have been impacting the urban ecosystems significantly therefore determination of urban land cover/use changes is an important task to understand trends and status of urban ecosystems, to support urban planning and to aid decision-making for urban-based projects. High resolution satellite images could be used to accurately, periodically and quickly map urban land cover/use and their changes by time. This paper aims to determine urban land cover/use changes in Gaziantep city centre between 2010 and 2105 using object based images analysis and high resolution SPOT 5 and SPOT 6 images. 2.5 m SPOT 5 image obtained in 5th of June 2010 and 1.5 m SPOT 6 image obtained in 7th of July 2015 were used in this research to precisely determine land changes in five-year period. In addition to satellite images, various ancillary data namely Normalized Difference Vegetation Index (NDVI), Difference Water Index (NDWI) maps, cadastral maps, OpenStreetMaps, road maps and Land Cover maps, were integrated into the classification process to produce high accuracy urban land cover/use maps for these two years. Both images were geometrically corrected to fulfil the 1/10,000 scale geometric accuracy. Decision tree based object oriented classification was applied to identify twenty different urban land cover/use classes defined in European Urban Atlas project. Not only satellite images and satellite image-derived indices but also different thematic maps were integrated into decision tree analysis to create rule sets for accurate mapping of each class. Rule sets of each satellite image for the object based classification involves spectral, spatial and geometric parameter to automatically produce urban map of the city centre region. Total area of each class per related year and their changes in five-year period were determined and change trend in terms of class transformation were presented. Classification accuracy assessment was conducted by creating a confusion matrix to illustrate the thematic accuracy of each class.

  8. Object Based Image Analysis Combining High Spatial Resolution Imagery and Laser Point Clouds for Urban Land Cover

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    With the rapid developments of the sensor technology, high spatial resolution imagery and airborne Lidar point clouds can be captured nowadays, which make classification, extraction, evaluation and analysis of a broad range of object features available. High resolution imagery, Lidar dataset and parcel map can be widely used for classification as information carriers. Therefore, refinement of objects classification is made possible for the urban land cover. The paper presents an approach to object based image analysis (OBIA) combing high spatial resolution imagery and airborne Lidar point clouds. The advanced workflow for urban land cover is designed with four components. Firstly, colour-infrared TrueOrtho photo and laser point clouds were pre-processed to derive the parcel map of water bodies and nDSM respectively. Secondly, image objects are created via multi-resolution image segmentation integrating scale parameter, the colour and shape properties with compactness criterion. Image can be subdivided into separate object regions. Thirdly, image objects classification is performed on the basis of segmentation and a rule set of knowledge decision tree. These objects imagery are classified into six classes such as water bodies, low vegetation/grass, tree, low building, high building and road. Finally, in order to assess the validity of the classification results for six classes, accuracy assessment is performed through comparing randomly distributed reference points of TrueOrtho imagery with the classification results, forming the confusion matrix and calculating overall accuracy and Kappa coefficient. The study area focuses on test site Vaihingen/Enz and a patch of test datasets comes from the benchmark of ISPRS WG III/4 test project. The classification results show higher overall accuracy for most types of urban land cover. Overall accuracy is 89.5% and Kappa coefficient equals to 0.865. The OBIA approach provides an effective and convenient way to combine high resolution imagery and Lidar ancillary data for classification of urban land cover.

  9. Open Land-Use Map: A Regional Land-Use Mapping Strategy for Incorporating OpenStreetMap with Earth Observations

    NASA Astrophysics Data System (ADS)

    Yang, D.; Fu, C. S.; Binford, M. W.

    2017-12-01

    The southeastern United States has high landscape heterogeneity, withheavily managed forestlands, highly developed agriculture lands, and multiple metropolitan areas. Human activities are transforming and altering land patterns and structures in both negative and positive manners. A land-use map for at the greater scale is a heavy computation task but is critical to most landowners, researchers, and decision makers, enabling them to make informed decisions for varying objectives. There are two major difficulties in generating the classification maps at the regional scale: the necessity of large training point sets and the expensive computation cost-in terms of both money and time-in classifier modeling. Volunteered Geographic Information (VGI) opens a new era in mapping and visualizing our world, where the platform is open for collecting valuable georeferenced information by volunteer citizens, and the data is freely available to the public. As one of the most well-known VGI initiatives, OpenStreetMap (OSM) contributes not only road network distribution, but also the potential for using this data to justify land cover and land use classifications. Google Earth Engine (GEE) is a platform designed for cloud-based mapping with a robust and fast computing power. Most large scale and national mapping approaches confuse "land cover" and "land-use", or build up the land-use database based on modeled land cover datasets. Unlike most other large-scale approaches, we distinguish and differentiate land-use from land cover. By focusing our prime objective of mapping land-use and management practices, a robust regional land-use mapping approach is developed by incorporating the OpenstreepMap dataset into Earth observation remote sensing imageries instead of the often-used land cover base maps.

  10. Cover estimations using object-based image analysis rule sets developed across multiple scales in pinyon-juniper woodlands

    USDA-ARS?s Scientific Manuscript database

    Numerous studies have been conducted that evaluate the utility of remote sensing for monitoring and assessing vegetation and ground cover to support land management decisions and complement ground-measurements. However, few land cover comparisons have been made using high-resolution imagery and obj...

  11. Comparison of U.S. Forest Land AreaEstimates From Forest Inventory and Analysis, National Resources Inventory, and Four Satellite Image-Derived Land Cover Data Sets

    Treesearch

    Mark D. Nelson; Ronald E. McRoberts; Veronica C. Lessard

    2005-01-01

    Our objective was to test one application of remote sensing technology for complementing forest resource assessments by comparing a variety of existing satellite image-derived land cover maps with national inventory-derived estimates of United States forest land area. National Resources Inventory (NRI) 1997 estimates of non-Federal forest land area differed by 7.5...

  12. Analysis of the spatio-temporal and semantic aspects of land-cover/use change dynamics 1991-2001 in Albania at national and district levels.

    PubMed

    Jansen, Louisa J M; Carrai, Giancarlo; Morandini, Luca; Cerutti, Paolo O; Spisni, Andrea

    2006-08-01

    In the turmoil of a rapidly changing economy the Albanian government needs accurate and timely information for management of their natural resources and formulation of land-use policies. The transformation of the forestry sector has required major changes in the legal, regulatory and management framework. The World Bank financed Albanian National Forest Inventory project provides an analysis of spatially explicit land-cover/use change dynamics in the period 1991-2001 using the FAO/UNEP Land Cover Classification System for codification of classes, satellite remote sensing and field survey for data collection and elements of the object-oriented geo-database approach to handle changes as an evolution of land-cover/use objects, i.e. polygons, over time to facilitate change dynamics analysis. Analysis results at national level show the trend of natural resources depletion in the form of modifications and conversions that lead to a gradual shift from land-cover/use types with a tree cover to less dense tree covers or even a complete removal of trees. Policy failure (e.g., corruption, lack of law enforcement) is seen as the underlying cause. Another major trend is urbanisation of areas near large urban centres that change urban-rural linkages. Furthermore, after privatisation agricultural areas increased in the hills where environmental effects may be detrimental, while prime agricultural land in the plains is lost to urbanisation. At district level, the local variability of spatially explicit land-cover/use changes shows different types of natural resources depletion. The distribution of changes indicates a regional prevalence, thus a decentralised approach to the natural resources management could be advocated.

  13. Geospatial mapping of Antarctic coastal oasis using geographic object-based image analysis and high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Jawak, Shridhar D.; Luis, Alvarinho J.

    2016-04-01

    An accurate spatial mapping and characterization of land cover features in cryospheric regions is an essential procedure for many geoscientific studies. A novel semi-automated method was devised by coupling spectral index ratios (SIRs) and geographic object-based image analysis (OBIA) to extract cryospheric geospatial information from very high resolution WorldView 2 (WV-2) satellite imagery. The present study addresses development of multiple rule sets for OBIA-based classification of WV-2 imagery to accurately extract land cover features in the Larsemann Hills, east Antarctica. Multilevel segmentation process was applied to WV-2 image to generate different sizes of geographic image objects corresponding to various land cover features with respect to scale parameter. Several SIRs were applied to geographic objects at different segmentation levels to classify land mass, man-made features, snow/ice, and water bodies. We focus on water body class to identify water areas at the image level, considering their uneven appearance on landmass and ice. The results illustrated that synergetic usage of SIRs and OBIA can provide accurate means to identify land cover classes with an overall classification accuracy of ≍97%. In conclusion, our results suggest that OBIA is a powerful tool for carrying out automatic and semiautomatic analysis for most cryospheric remote-sensing applications, and the synergetic coupling with pixel-based SIRs is found to be a superior method for mining geospatial information.

  14. A Hierarchical Object-oriented Urban Land Cover Classification Using WorldView-2 Imagery and Airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Wu, M. F.; Sun, Z. C.; Yang, B.; Yu, S. S.

    2016-11-01

    In order to reduce the “salt and pepper” in pixel-based urban land cover classification and expand the application of fusion of multi-source data in the field of urban remote sensing, WorldView-2 imagery and airborne Light Detection and Ranging (LiDAR) data were used to improve the classification of urban land cover. An approach of object- oriented hierarchical classification was proposed in our study. The processing of proposed method consisted of two hierarchies. (1) In the first hierarchy, LiDAR Normalized Digital Surface Model (nDSM) image was segmented to objects. The NDVI, Costal Blue and nDSM thresholds were set for extracting building objects. (2) In the second hierarchy, after removing building objects, WorldView-2 fused imagery was obtained by Haze-ratio-based (HR) fusion, and was segmented. A SVM classifier was applied to generate road/parking lot, vegetation and bare soil objects. (3) Trees and grasslands were split based on an nDSM threshold (2.4 meter). The results showed that compared with pixel-based and non-hierarchical object-oriented approach, proposed method provided a better performance of urban land cover classification, the overall accuracy (OA) and overall kappa (OK) improved up to 92.75% and 0.90. Furthermore, proposed method reduced “salt and pepper” in pixel-based classification, improved the extraction accuracy of buildings based on LiDAR nDSM image segmentation, and reduced the confusion between trees and grasslands through setting nDSM threshold.

  15. Designing a multi-objective, multi-support accuracy assessment of the 2001 National Land Cover Data (NLCD 2001) of the conterminous United States

    USGS Publications Warehouse

    Stehman, S.V.; Wickham, J.D.; Wade, T.G.; Smith, J.H.

    2008-01-01

    The database design and diverse application of NLCD 2001 pose significant challenges for accuracy assessment because numerous objectives are of interest, including accuracy of land-cover, percent urban imperviousness, percent tree canopy, land-cover composition, and net change. A multi-support approach is needed because these objectives require spatial units of different sizes for reference data collection and analysis. Determining a sampling design that meets the full suite of desirable objectives for the NLCD 2001 accuracy assessment requires reconciling potentially conflicting design features that arise from targeting the different objectives. Multi-stage cluster sampling provides the general structure to achieve a multi-support assessment, and the flexibility to target different objectives at different stages of the design. We describe the implementation of two-stage cluster sampling for the initial phase of the NLCD 2001 assessment, and identify gaps in existing knowledge where research is needed to allow full implementation of a multi-objective, multi-support assessment. ?? 2008 American Society for Photogrammetry and Remote Sensing.

  16. Land cover mapping and change detection in urban watersheds using QuickBird high spatial resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Hester, David Barry

    The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the cost of high resolution imagery continues to decline, this research makes an important contribution to this exciting era in the science of remote sensing.

  17. Generating land cover boundaries from remotely sensed data using object-based image analysis: overview and epidemiological application

    PubMed Central

    Maxwell, Susan K.

    2010-01-01

    Satellite imagery and aerial photography represent a vast resource to significantly enhance environmental mapping and modeling applications for use in understanding spatio-temporal relationships between environment and health. Deriving boundaries of land cover objects, such as trees, buildings, and crop fields, from image data has traditionally been performed manually using a very time consuming process of hand digitizing. Boundary detection algorithms are increasingly being applied using object-based image analysis (OBIA) technology to automate the process. The purpose of this paper is to present an overview and demonstrate the application of OBIA for delineating land cover features at multiple scales using a high resolution aerial photograph (1 m) and a medium resolution Landsat image (30 m) time series in the context of a pesticide spray drift exposure application. PMID:21135917

  18. Land-Cover Change in the East Central Texas Plains, 1973-2000

    USGS Publications Warehouse

    Karstensen, Krista A.

    2009-01-01

    Project Background: The Geographic Analysis and Monitoring (GAM) Program of the U.S. Geological Survey (USGS) Land Cover Trends project is focused on understanding the rates, trends, causes, and consequences of contemporary U.S. land-use and land-cover change. The objectives of the study are to: (1) develop a comprehensive methodology for using sampling and change analysis techniques and Landsat Multispectral Scanner (MSS) and Thematic Mapper (TM) data for measuring regional land-cover change across the United States, (2) characterize the types, rates and temporal variability of change for a 30-year period, (3) document regional driving forces and consequences of change, and (4) prepare a national synthesis of land-cover change (Loveland and others, 1999). Using the 1999 Environmental Protection Agency (EPA) Level III ecoregions derived from Omernik (1987) as the geographic framework, geospatial data collected between 1973 and 2000 were processed and analyzed to characterize ecosystem responses to land-use changes. The 27-year study period was divided into five temporal periods: 1973-1980, 1980-1986, 1986-1992, 1992-2000, and 1973-2000. General land-cover classes such as water, developed, grassland/shrubland, and agriculture for these periods were interpreted from Landsat MSS, TM, and Enhanced Thematic Mapper Plus imagery to categorize land-cover change and evaluate using a modified Anderson Land-Use Land-Cover Classification System for image interpretation. The interpretation of these land-cover classes complement the program objective of looking at land-use change with cover serving as a surrogate for land use. The land-cover change rates are estimated using a stratified, random sampling of 10-kilometer (km) by 10-km blocks allocated within each ecoregion. For each sample block, satellite images are used to interpret land-cover change for the five time periods previously mentioned. Additionally, historical aerial photographs from similar timeframes and other ancillary data such as census statistics and published literature are used. The sample block data are then incorporated into statistical analyses to generate an overall change matrix for the ecoregion. For example, the scalar statistics can show the spatial extent of change per cover type with time, as well as the land-cover transformations from one land-cover type to another type occurring with time. Field data of the sample blocks include direct measurements of land cover, particularly ground-survey data collected for training and validation of image classifications (Loveland and others, 2002). The field experience allows for additional observations of the character and condition of the landscape, assistance in sample block interpretation, ground truthing of Landsat imagery, and helps determine the driving forces of change identified in an ecoregion. Management and maintenance of field data, beyond initial use for training and validation of image classifications, is important as improved methods for image classification are developed, and as present-day data become part of the historical legacy for which studies of land-cover change in the future will depend (Loveland and others, 2002). The results illustrate that there is no single profile of land-cover change; instead, there is significant geographic variability that results from land uses within ecoregions continuously adapting to the resource potential created by various environmental, technological, and socioeconomic factors.

  19. Mapping forested wetlands in the Great Zhan River Basin through integrating optical, radar, and topographical data classification techniques.

    PubMed

    Na, X D; Zang, S Y; Wu, C S; Li, W L

    2015-11-01

    Knowledge of the spatial extent of forested wetlands is essential to many studies including wetland functioning assessment, greenhouse gas flux estimation, and wildlife suitable habitat identification. For discriminating forested wetlands from their adjacent land cover types, researchers have resorted to image analysis techniques applied to numerous remotely sensed data. While with some success, there is still no consensus on the optimal approaches for mapping forested wetlands. To address this problem, we examined two machine learning approaches, random forest (RF) and K-nearest neighbor (KNN) algorithms, and applied these two approaches to the framework of pixel-based and object-based classifications. The RF and KNN algorithms were constructed using predictors derived from Landsat 8 imagery, Radarsat-2 advanced synthetic aperture radar (SAR), and topographical indices. The results show that the objected-based classifications performed better than per-pixel classifications using the same algorithm (RF) in terms of overall accuracy and the difference of their kappa coefficients are statistically significant (p<0.01). There were noticeably omissions for forested and herbaceous wetlands based on the per-pixel classifications using the RF algorithm. As for the object-based image analysis, there were also statistically significant differences (p<0.01) of Kappa coefficient between results performed based on RF and KNN algorithms. The object-based classification using RF provided a more visually adequate distribution of interested land cover types, while the object classifications based on the KNN algorithm showed noticeably commissions for forested wetlands and omissions for agriculture land. This research proves that the object-based classification with RF using optical, radar, and topographical data improved the mapping accuracy of land covers and provided a feasible approach to discriminate the forested wetlands from the other land cover types in forestry area.

  20. Generating land cover boundaries from remotely sensed data using object-based image analysis: overview and epidemiological application.

    PubMed

    Maxwell, Susan K

    2010-12-01

    Satellite imagery and aerial photography represent a vast resource to significantly enhance environmental mapping and modeling applications for use in understanding spatio-temporal relationships between environment and health. Deriving boundaries of land cover objects, such as trees, buildings, and crop fields, from image data has traditionally been performed manually using a very time consuming process of hand digitizing. Boundary detection algorithms are increasingly being applied using object-based image analysis (OBIA) technology to automate the process. The purpose of this paper is to present an overview and demonstrate the application of OBIA for delineating land cover features at multiple scales using a high resolution aerial photograph (1 m) and a medium resolution Landsat image (30 m) time series in the context of a pesticide spray drift exposure application. Copyright © 2010. Published by Elsevier Ltd.

  1. Low-Altitude AVIRIS Data for Mapping Land Cover in Yellowstone National Park: Use of Isodata Clustering Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.

    2001-01-01

    Northeast Yellowstone National Park (YNP) has a diversity of forest, range, and wetland cover types. Several remote sensing studies have recently been done in this area, including the NASA Earth Observations Commercial Applications Program (EOCAP) hyperspectral project conducted by Yellowstone Ecosystems Studies (YES) on the use of hyperspectral imaging for assessing riparian and in-stream habitats. In 1999, YES and NASA's Commercial Remote Sensing Program Office began collaborative study of this area, assessing the potential of synergistic use of hyperspectral, synthetic aperture radar (SAR), and multiband thermal data for mapping forest, range, and wetland land cover. Since the beginning, a quality 'reference' land cover map has been desired as a tool for developing and validating other land cover maps produced during the project. This paper recounts an effort to produce such a reference land cover map using low-altitude Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and unsupervised classification techniques. The main objective of this study is to assess ISODATA classification for mapping land cover in Northeast YNP using select bands of low-altitude AVIRIS data. A secondary, more long-term objective is to assess the potential for improving ISODATA-based classification of land cover through use of principal components analysis and minimum noise fraction (MNF) techniques. This paper will primarily report on work regarding the primary research objective. This study focuses on an AVIRIS cube acquired on July 23, 1999, by the confluence of Soda Butte Creek with the Lamar River. Range and wetland habitats dominate the image with forested habitats being a comparatively minor component of the scene. The scene generally tracks from southwest to northeast. Most of the scene is valley bottom with some lower side slopes occurring on the western portion. Elevations within the AVIRIS scene range from approximately 1998 to 2165 m above sea level, based on US Geological Survey (USGS) 30-m digital elevation model (DEM) data. Despain and the National Park Service (NPS) provide additional description of the study area.

  2. Integrating land cover modeling and adaptive management to conserve endangered species and reduce catastrophic fire risk

    USGS Publications Warehouse

    Breininger, David; Duncan, Brean; Eaton, Mitchell J.; Johnson, Fred; Nichols, James

    2014-01-01

    Land cover modeling is used to inform land management, but most often via a two-step process, where science informs how management alternatives can influence resources, and then, decision makers can use this information to make decisions. A more efficient process is to directly integrate science and decision-making, where science allows us to learn in order to better accomplish management objectives and is developed to address specific decisions. Co-development of management and science is especially productive when decisions are complicated by multiple objectives and impeded by uncertainty. Multiple objectives can be met by the specification of tradeoffs, and relevant uncertainty can be addressed through targeted science (i.e., models and monitoring). We describe how to integrate habitat and fuel monitoring with decision-making focused on the dual objectives of managing for endangered species and minimizing catastrophic fire risk. Under certain conditions, both objectives might be achieved by a similar management policy; other conditions require tradeoffs between objectives. Knowledge about system responses to actions can be informed by developing hypotheses based on ideas about fire behavior and then applying competing management actions to different land units in the same system state. Monitoring and management integration is important to optimize state-specific management decisions and to increase knowledge about system responses. We believe this approach has broad utility and identifies a clear role for land cover modeling programs intended to inform decision-making.

  3. Historic and forecasted population and land-cover change in eastern North Carolina, 1992-2030

    USGS Publications Warehouse

    Claggett, Peter; Hearn,, Paul P.; Donato, David I.

    2015-01-01

    The Southeast Regional Partnership for Planning and Sustainability (SERPPAS) was formed in 2005 as a partnership between the Department of Defense (DOD) and State and Federal agencies to promote better collaboration in making resource-use decisions. In support of this goal, the U.S. Geological Survey (USGS) conducted a study to evaluate historic population growth and land-cover change, and to model future change, for the 13-county SERPPAS study area in southeastern North Carolina (fig. 1). Improved understanding of trends in land-cover change and the ability to forecast land-cover change that is consistent with these trends will be a key component of efforts to accommodate local military-mission imperatives while also promoting sustainable economic growth throughout the 13-county study area. The study had three principal objectives:    1.  Evaluate historic changes in population and land cover for the period 1992–2006 using both previously existing as well as newly generated land-cover data.    2.  Develop models to forecast future change in land cover using the data gathered in objective 1 in conjunction with ancillary data on the suitability of the various sub-areas within the study area for low- and high-intensity urban development.    3.  Deliver these results—including an executive-level briefing and a USGS technical report—to DOD, other project cooperators, and local counties in hard-copy and digital formats and via the Web through a map-based data viewer. This report provides a general overview of the study and is intended for general distribution to non-technical audiences.

  4. AN INDICATOR OF FOREST DYNAMICS USING A SHIFTING LANDSCAPE MOSAIC

    EPA Science Inventory

    The composition of a landscape is a fundamental indicator in land-cover pattern assessments. The objective of this paper was to evaluate a landscape composition indicator called ‘landscape mosaic’ as a framework for interpreting land-cover dynamics over a 9-year period in a 360,...

  5. An Iterative Inference Procedure Applying Conditional Random Fields for Simultaneous Classification of Land Cover and Land Use

    NASA Astrophysics Data System (ADS)

    Albert, L.; Rottensteiner, F.; Heipke, C.

    2015-08-01

    Land cover and land use exhibit strong contextual dependencies. We propose a novel approach for the simultaneous classification of land cover and land use, where semantic and spatial context is considered. The image sites for land cover and land use classification form a hierarchy consisting of two layers: a land cover layer and a land use layer. We apply Conditional Random Fields (CRF) at both layers. The layers differ with respect to the image entities corresponding to the nodes, the employed features and the classes to be distinguished. In the land cover layer, the nodes represent super-pixels; in the land use layer, the nodes correspond to objects from a geospatial database. Both CRFs model spatial dependencies between neighbouring image sites. The complex semantic relations between land cover and land use are integrated in the classification process by using contextual features. We propose a new iterative inference procedure for the simultaneous classification of land cover and land use, in which the two classification tasks mutually influence each other. This helps to improve the classification accuracy for certain classes. The main idea of this approach is that semantic context helps to refine the class predictions, which, in turn, leads to more expressive context information. Thus, potentially wrong decisions can be reversed at later stages. The approach is designed for input data based on aerial images. Experiments are carried out on a test site to evaluate the performance of the proposed method. We show the effectiveness of the iterative inference procedure and demonstrate that a smaller size of the super-pixels has a positive influence on the classification result.

  6. High spatial resolution mapping of land cover types in a priority area for conservation in the Brazilian savanna

    NASA Astrophysics Data System (ADS)

    Ribeiro, F.; Roberts, D. A.; Hess, L. L.; Davis, F. W.; Caylor, K. K.; Nackoney, J.; Antunes Daldegan, G.

    2017-12-01

    Savannas are heterogeneous landscapes consisting of highly mixed land cover types that lack clear distinct boundaries. The Brazilian Cerrado is a Neotropical savanna considered a biodiversity hotspot for conservation due to its biodiversity richness and rapid transformation of its landscape by crop and pasture activities. The Cerrado is one of the most threatened Brazilian biomes and only 2.2% of its original extent is strictly protected. Accurate mapping and monitoring of its ecosystems and adjacent land use are important to select areas for conservation and to improve our understanding of the dynamics in this biome. Land cover mapping of savannas is difficult due to spectral similarity between land cover types resulting from similar vegetation structure, floristically similar components, generalization of land cover classes, and heterogeneity usually expressed as small patch sizes within the natural landscape. These factors are the major contributor to misclassification and low map accuracies among remote sensing studies in savannas. Specific challenges to map the Cerrado's land cover types are related to the spectral similarity between classes of land use and natural vegetation, such as natural grassland vs. cultivated pasture, and forest ecosystem vs. crops. This study seeks to classify and evaluate the land cover patterns across an area ranked as having extremely high priority for future conservation in the Cerrado. The main objective of this study is to identify the representativeness of each vegetation type across the landscape using high to moderate spatial resolution imagery using an automated scheme. A combination of pixel-based and object-based approaches were tested using RapidEye 3A imagery (5m spatial resolution) to classify the Cerrado's major land cover types. The random forest classifier was used to map the major ecosystems present across the area, and demonstrated to have an effective result with 68% of overall accuracy. Post-classification modification was performed to refine information to the major physiognomic groups of each ecosystem type. In this step, we used segmentation in eCognition, considering the random forest classification as input as well as other environmental layers (e.g. slope, soil types), which improved the overall classification to 75%.

  7. ESTIMATING IMPERVIOUS COVER FROM REGIONALLY AVAILABLE DATA

    EPA Science Inventory

    The objective of this study is to compare and evaluate the reliability of different approaches for estimating impervious cover including three empirical formulations for estimating impervious cover from population density data, estimation from categorized land cover data, and to ...

  8. Long Term Land Cover and Seagrass Mapping using Landsat and Object-based Image Analysis from 1972 - 2010 in the Coastal Environment of South East Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Lyons, M. B.; Phinn, S. R.; Roelfsema, C. M.

    2011-12-01

    Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based approach to map land cover and seagrass distribution in an Australian coastal environment for a 38 year Landsat image time-series archive. Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in-situ field data input to produce land and seagrass cover maps every year data was available, resulting in over 60 individual map products over the 38 year archive. Land cover was mapped annually and included several vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some years monthly, via horizontal projective foliage cover classes, sand and deepwater. Land cover products were validated using aerial photography and seagrass was validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 81% was reported for seagrass and land cover respectively, which is consistent with other studies in the area. This study is the first to show moderate spatial resolution, long term annual changes in land cover and seagrass in an Australian environment, without the use of in-situ data; and only one of a few similar studies globally. The land cover products identify several long term trends; such as significant increases in South East Queensland's urban density, vegetation clearing in rural and rural-residential areas, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass cover products show that there has been a minimal overall change in seagrass extent, but that seagrass cover level distribution is extremely dynamic; evidenced by large scale migrations of higher seagrass cover levels and several events of sudden, significant changes in cover level. These mapping products will allow management agencies to build a baseline assessment of their resources, understand past changes and help inform implementation and planning of management policy to address potential future changes.

  9. Long term land cover and seagrass mapping using Landsat and object-based image analysis from 1972 to 2010 in the coastal environment of South East Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Lyons, Mitchell B.; Phinn, Stuart R.; Roelfsema, Chris M.

    2012-07-01

    Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based remote sensing approach to map land cover and seagrass distribution in an Australian coastal environment for a 38 year Landsat image time-series archive (1972-2010). Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in situ field data input (but still using field knowledge) to produce land and seagrass cover maps every year data were available, resulting in over 60 map products over the 38 year archive. Land cover was mapped annually using vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some years monthly, via horizontal projected foliage cover classes, sand and deep water. Land cover products were validated using aerial photography and seagrass maps were validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 80% was reported for seagrass and land cover products respectively, which is consistent with other studies in the area. This study is the first to show moderate spatial resolution, long term annual changes in land cover and seagrass in an Australian environment, created without the use of in situ data; and only one of a few similar studies globally. The land cover products identify several long term trends; such as significant increases in South East Queensland's urban density and extent, vegetation clearing in rural and rural-residential areas, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass cover products show that there has been a minimal overall change in seagrass extent, but that seagrass cover level distribution is extremely dynamic; evidenced by large scale migrations of higher seagrass cover levels and several sudden and significant changes in cover level. These mapping products will allow management agencies to build a baseline assessment of their resources, understand past changes and help inform implementation and planning of management policy to address potential future changes.

  10. Recent land cover history and nutrient retention in riparian wetlands

    USGS Publications Warehouse

    Hogan, D.M.; Walbridge, M.R.

    2009-01-01

    Wetland ecosystems are profoundly affected by altered nutrient and sediment loads received from anthropogenic activity in their surrounding watersheds. Our objective was to compare a gradient of agricultural and urban land cover history during the period from 1949 to 1997, with plant and soil nutrient concentrations in, and sediment deposition to, riparian wetlands in a rapidly urbanizing landscape. We observed that recent agricultural land cover was associated with increases in Nitrogen (N) and Phosphorus (P) concentrations in a native wetland plant species. Conversely, recent urban land cover appeared to alter receiving wetland environmental conditions by increasing the relative availability of P versus N, as reflected in an invasive, but not a native, plant species. In addition, increases in surface soil Fe content suggests recent inputs of terrestrial sediments associated specifically with increasing urban land cover. The observed correlation between urban land cover and riparian wetland plant tissue and surface soil nutrient concentrations and sediment deposition, suggest that urbanization specifically enhances the suitability of riparian wetland habitats for the invasive species Japanese stiltgrass [Microstegium vimenium (Trinius) A. Camus]. ?? 2009 Springer Science+Business Media, LLC.

  11. Land cover changes assessment using object-based image analysis in the Binah River watershed (Togo and Benin)

    NASA Astrophysics Data System (ADS)

    Badjana, Hèou Maléki; Helmschrot, Jörg; Selsam, Peter; Wala, Kpérkouma; Flügel, Wolfgang-Albert; Afouda, Abel; Akpagana, Koffi

    2015-10-01

    In this study, land cover changes between 1972 and 2013 were investigated in the Binah River watershed (North of Togo and Benin) using remote sensing and geographic information system technologies. Multitemporal satellite images—Landsat MSS (1972), TM (1987), and OLI-TIRS (2013)—were processed using object-based image analysis and post-classification comparison methods including landscape metrics and changes trajectories analysis. Land cover maps referring to five main land cover classes, namely, agricultural land, forest land, savannah, settlements, and water bodies, were produced for each acquisition date. The overall accuracies were 76.64% (1972), 83.52% (1987), and 88.84% (2013) with respective Kappa statistics of 0.69, 0.78, and 0.86. The assessment of the spatiotemporal pattern of land cover changes indicates that savannah, the main vegetation type, has undergone the most dominant change, decreasing from 67% of the basin area in 1972 to 56% in 1987 and 33% in 2013. At the same time, agricultural land has significantly increased from 15% in 1972 to 24% in 1987 and 43% in 2013, while some proportions of agricultural land were converted to savannah relating to fallow agriculture. In total, more than 55% of the landscape experienced changes between 1972 and 2013. These changes are primarily due to human activities and population growth. In addition, agricultural activities significantly contributed to the increase in the number of patches, degree of division, and splitting index of forest and savannah vegetations and the decrease in their effective mesh sizes. These results indicate further fragmentation of forest and savannah vegetations between 1972 and 2013. Further research is needed to quantitatively evaluate the influences of individual factors of human activities and to separate these from the impacts of climate change-driven disturbances.

  12. Identifying mangrove species and their surrounding land use and land cover classes using object-oriented approach with a lacunarity spatial measure

    USGS Publications Warehouse

    Myint, S.W.; Giri, C.P.; Wang, L.; Zhu, Z.; Gillete, S.C.

    2008-01-01

    Accurate and reliable information on the spatial distribution of mangrove species is needed for a wide variety of applications, including sustainable management of mangrove forests, conservation and reserve planning, ecological and biogeographical studies, and invasive species management. Remotely sensed data have been used for such purposes with mixed results. Our study employed an object-oriented approach with the use of a lacunarity technique to identify different mangrove species and their surrounding land use and land cover classes in a tsunami-affected area of Thailand using Landsat satellite data. Our results showed that the object-oriented approach with lacunarity-transformed bands is more accurate (over-all accuracy 94.2%; kappa coefficient = 0.91) than traditional per-pixel classifiers (overall accuracy 62.8%; and kappa coefficient = 0.57). Copyright ?? 2008 by Bellwether Publishing, Ltd. All rights reserved.

  13. A design for a sustained assessment of climate forcings and feedbacks on land use land cover change

    USGS Publications Warehouse

    Loveland, Thomas; Mahmood, Rezaul

    2014-01-01

    Land use and land cover change (LULCC) significantly influences the climate system. Hence, to prepare the nation for future climate change and variability, a sustained assessment of LULCC and its climatic impacts needs to be undertaken. To address this objective, not only do we need to determine contemporary trends in land use and land cover that affect, or are affected by, weather and climate but also identify sectors and regions that are most affected by weather and climate variability. Moreover, it is critical that we recognize land cover and regions that are most vulnerable to climate change and how end-use practices are adapting to climate change. This paper identifies a series of steps that need to be undertaken to address these key items. In addition, national-scale institutional capabilities are identified and discussed. Included in the discussions are challenges and opportunities for collaboration among these institutions for a sustained assessment.

  14. Integrating Land Cover Modeling and Adaptive Management to Conserve Endangered Species and Reduce Catastrophic Fire Risk

    NASA Technical Reports Server (NTRS)

    Breininger, David; Duncan, Brean; Eaton, Mitchell; Johnson, Fred; Nichols, James

    2014-01-01

    Land cover modeling is used to inform land management, but most often via a two-step process where science informs how management alternatives can influence resources and then decision makers can use this to make decisions. A more efficient process is to directly integrate science and decision making, where science allows us to learn to better accomplish management objectives and is developed to address specific decisions. Co-development of management and science is especially productive when decisions are complicated by multiple objectives and impeded by uncertainty. Multiple objectives can be met by specification of tradeoffs, and relevant uncertainty can be addressed through targeted science (i.e., models and monitoring). We describe how to integrate habitat and fuels monitoring with decision making focused on dual objectives of managing for endangered species and minimizing catastrophic fire risk. Under certain conditions, both objectives might be achieved by a similar management policy, but habitat trajectories suggest tradeoffs. Knowledge about system responses to actions can be informed by applying competing management actions to different land units in the same system state and by ideas about fire behavior. Monitoring and management integration is important to optimize state-specific management decisions and increase knowledge about system responses. We believe this approach has broad utility for and cover modeling programs intended to inform decision making.

  15. Land cover change impact on urban flood modeling (case study: Upper Citarum watershed)

    NASA Astrophysics Data System (ADS)

    Siregar, R. I.

    2018-03-01

    The upper Citarum River watershed utilizes remote sensing technology in Geographic Information System to provide information on land coverage by interpretation of objects in the image. Rivers that pass through urban areas will cause flooding problems causing disadvantages, and it disrupts community activities in the urban area. Increased development in a city is related to an increase in the number of population growth that added by increasing quality and quantity of life necessities. Improved urban lifestyle changes have an impact on land cover. The impact in over time will be difficult to control. This study aims to analyze the condition of flooding in urban areas caused by upper Citarum watershed land-use change in 2001 with the land cover change in 2010. This modeling analyzes with the help of HEC-RAS to describe flooded inundation urban areas. Land cover change in upper Citarum watershed is not very significant; it based on the results of data processing of land cover has the difference of area that changed is not enormous. Land cover changes for the floods increased dramatically to a flow coefficient for 2001 is 0.65 and in 2010 at 0.69. In 2001, the inundation area about 105,468 hectares and it were about 92,289 hectares in 2010.

  16. Comparison of Pixel-Based and Object-Based Classification Using Parameters and Non-Parameters Approach for the Pattern Consistency of Multi Scale Landcover

    NASA Astrophysics Data System (ADS)

    Juniati, E.; Arrofiqoh, E. N.

    2017-09-01

    Information extraction from remote sensing data especially land cover can be obtained by digital classification. In practical some people are more comfortable using visual interpretation to retrieve land cover information. However, it is highly influenced by subjectivity and knowledge of interpreter, also takes time in the process. Digital classification can be done in several ways, depend on the defined mapping approach and assumptions on data distribution. The study compared several classifiers method for some data type at the same location. The data used Landsat 8 satellite imagery, SPOT 6 and Orthophotos. In practical, the data used to produce land cover map in 1:50,000 map scale for Landsat, 1:25,000 map scale for SPOT and 1:5,000 map scale for Orthophotos, but using visual interpretation to retrieve information. Maximum likelihood Classifiers (MLC) which use pixel-based and parameters approach applied to such data, and also Artificial Neural Network classifiers which use pixel-based and non-parameters approach applied too. Moreover, this study applied object-based classifiers to the data. The classification system implemented is land cover classification on Indonesia topographic map. The classification applied to data source, which is expected to recognize the pattern and to assess consistency of the land cover map produced by each data. Furthermore, the study analyse benefits and limitations the use of methods.

  17. Extending a prototype knowledge- and object-based image analysis model to coarser spatial resolution imagery: an example from the Missouri River

    USGS Publications Warehouse

    Strong, Laurence L.

    2012-01-01

    A prototype knowledge- and object-based image analysis model was developed to inventory and map least tern and piping plover habitat on the Missouri River, USA. The model has been used to inventory the state of sandbars annually for 4 segments of the Missouri River since 2006 using QuickBird imagery. Interpretation of the state of sandbars is difficult when images for the segment are acquired at different river stages and different states of vegetation phenology and canopy cover. Concurrent QuickBird and RapidEye images were classified using the model and the spatial correspondence of classes in the land cover and sandbar maps were analysed for the spatial extent of the images and at nest locations for both bird species. Omission and commission errors were low for unvegetated land cover classes used for nesting by both bird species and for land cover types with continuous vegetation cover and water. Errors were larger for land cover classes characterized by a mixture of sand and vegetation. Sandbar classification decisions are made using information on land cover class proportions and disagreement between sandbar classes was resolved using fuzzy membership possibilities. Regression analysis of area for a paired sample of 47 sandbars indicated an average positive bias, 1.15 ha, for RapidEye that did not vary with sandbar size. RapidEye has potential to reduce temporal uncertainty about least tern and piping plover habitat but would not be suitable for mapping sandbar erosion, and characterization of sandbar shapes or vegetation patches at fine spatial resolution.

  18. Extending a prototype knowledge and object based image analysis model to coarser spatial resolution imagery: an example from the Missouri River

    USGS Publications Warehouse

    Strong, Laurence L.

    2012-01-01

    A prototype knowledge- and object-based image analysis model was developed to inventory and map least tern and piping plover habitat on the Missouri River, USA. The model has been used to inventory the state of sandbars annually for 4 segments of the Missouri River since 2006 using QuickBird imagery. Interpretation of the state of sandbars is difficult when images for the segment are acquired at different river stages and different states of vegetation phenology and canopy cover. Concurrent QuickBird and RapidEye images were classified using the model and the spatial correspondence of classes in the land cover and sandbar maps were analysed for the spatial extent of the images and at nest locations for both bird species. Omission and commission errors were low for unvegetated land cover classes used for nesting by both bird species and for land cover types with continuous vegetation cover and water. Errors were larger for land cover classes characterized by a mixture of sand and vegetation. Sandbar classification decisions are made using information on land cover class proportions and disagreement between sandbar classes was resolved using fuzzy membership possibilities. Regression analysis of area for a paired sample of 47 sandbars indicated an average positive bias, 1.15 ha, for RapidEye that did not vary with sandbar size. RapidEye has potential to reduce temporal uncertainty about least tern and piping plover habitat but would not be suitable for mapping sandbar erosion, and characterization of sandbar shapes or vegetation patches at fine spatial resolution.

  19. Land cover change assessment using object-oriented classification based on image segmentation in the Binah river watershed (Togo and Benin)

    NASA Astrophysics Data System (ADS)

    Badjana, M. H.; Helmschrot, J.; Wala, K.; Flugel, W. A.; Afouda, A.; Akpagana, K.

    2014-12-01

    Assessing and monitoring land cover changes over time, especially in Sub-Saharan Africa characterized by both a high population growth and the highest rate of land degradation in the world is of high relevance for sustainable land management, water security and food production. In this study, land cover changes between 1972 and 2013 were investigated in the Binah river watershed (North of Togo and Benin) using advanced remote sensing and GIS technologies to support sustainable land and water resources management efforts. To this end, multi-temporal satellite images - Landsat MSS (1972), TM (1987) and ETM+ (2013) were processed using object-oriented classification based on image segmentation and post-classification comparison methods. Five main land cover classes namely agricultural land, forest land, savannah, settlements and water bodies have been identified with overall accuracies of 75.11% (1972), 81.82% (1987), and 86.1% (2013) and respective Kappa statistics of 0.67, 0.76 and 0.83. These classification results helped to explicitly assess the spatio-temporal pattern of land cover within the basin. The results indicate that savannah as the main vegetation type in the basin has decreased from 63.3% of the basin area in 1972 to 60.4% in 1987 and 35.6% in 2013. Also the forest land which covered 20.7% in 1972 has decreased to 12.7% in 1987 and 11.7% in 2013. This severe decrease in vegetation mainly resulted from the extension of agricultural areas and settlements, which is, thus, considered as the main driving force. In fact, agricultural land increased of 61.4% from 1972 to 1987, 81.4% from 1987 to 2013 and almost twice from 1972 to 2013 while human settlements increased from 0.8% of the basin area in 1972 to 2.5% in 1987 and 7.7% in 2013. The transition maps illustrate the conversion of savannah to agricultural land at each time step relating to slash and burn agriculture, but also demonstrate the threat of environmental degradation of the savannah biome. However, at the same time, some proportions of agricultural land were converted to savannah relating to fallow agriculture. As a first assessment for the Binah river watershed, this study provides useful guidelines for vegetation restoration and conservation, efforts in managing land degradation and implementing integrated land and water resources management plans.

  20. Object-based land-use/land-cover change detection using Landsat imagery: a case study of Ardabil, Namin, and Nir counties in northwest Iran.

    PubMed

    Aslami, Farnoosh; Ghorbani, Ardavan

    2018-06-03

    In this study, land-use/land-cover (LULC) change in the Ardabil, Namin, and Nir counties, in the Ardabil province in the northwest of Iran, was detected using an object-based method. Landsat images including Thematic Mapper (TM), Landsat Enhanced Thematic Mapper Plus (ETM + ), and Operational Land Imager (OLI) were used. Preprocessing methods, including geometric and radiometric correction, and topographic normalization were performed. Image processing was conducted according to object-based image analysis using the nearest neighbor algorithm. An accuracy assessment was conducted using overall accuracy and Kappa statistics. Results show that maps obtained from images for 1987, 2002, and 2013 had an overall accuracy of 91.76, 91.06, and 93.00%, and a Kappa coefficient of 0.90, 0.83, and 0.91, respectively. Change detection between 1987 and 2013 shows that most of the rangelands (97,156.6 ha) have been converted to dry farming; moreover, residential and other urban land uses have also increased. The largest change in land use has occurred for irrigated farming, rangelands, and dry farming, of which approximately 3539.8, 3086.9, and 2271.9 ha, respectively, have given way to urban land use for each of the studied years.

  1. Hyperspectral Sensor Data Capability for Retrieving Complex Urban Land Cover in Comparison with Multispectral Data: Venice City Case Study (Italy)

    PubMed Central

    Cavalli, Rosa Maria; Fusilli, Lorenzo; Pascucci, Simone; Pignatti, Stefano; Santini, Federico

    2008-01-01

    This study aims at comparing the capability of different sensors to detect land cover materials within an historical urban center. The main objective is to evaluate the added value of hyperspectral sensors in mapping a complex urban context. In this study we used: (a) the ALI and Hyperion satellite data, (b) the LANDSAT ETM+ satellite data, (c) MIVIS airborne data and (d) the high spatial resolution IKONOS imagery as reference. The Venice city center shows a complex urban land cover and therefore was chosen for testing the spectral and spatial characteristics of different sensors in mapping the urban tissue. For this purpose, an object-oriented approach and different common classification methods were used. Moreover, spectra of the main anthropogenic surfaces (i.e. roofing and paving materials) were collected during the field campaigns conducted on the study area. They were exploited for applying band-depth and sub-pixel analyses to subsets of Hyperion and MIVIS hyperspectral imagery. The results show that satellite data with a 30m spatial resolution (ALI, LANDSAT ETM+ and HYPERION) are able to identify only the main urban land cover materials. PMID:27879879

  2. Quantitative Assessment of Spatio-Temporal Desertification Rates in Azerbaijan during Using Timeseries Landsat-8 Satellite Images

    NASA Astrophysics Data System (ADS)

    Bayramov, Emil; Mammadov, Ramiz

    2016-07-01

    The main goals of this research are the object-based landcover classification of LANDSAT-8 multi-spectral satellite images in 2014 and 2015, quantification of Normalized Difference Vegetation Indices (NDVI) rates within the land-cover classes, change detection analysis between the NDVIs derived from multi-temporal LANDSAT-8 satellite images and the quantification of those changes within the land-cover classes and detection of changes between land-cover classes. The object-based classification accuracy of the land-cover classes was validated through the standard confusion matrix which revealed 80 % of land-cover classification accuracy for both years. The analysis revealed that the area of agricultural lands increased from 30911 sq. km. in 2014 to 31999 sq. km. in 2015. The area of barelands increased from 3933 sq. km. in 2014 to 4187 sq. km. in 2015. The area of forests increased from 8211 sq. km. in 2014 to 9175 sq. km. in 2015. The area of grasslands decreased from 27176 sq. km. in 2014 to 23294 sq. km. in 2015. The area of urban areas increased from 12479 sq. km. in 2014 to 12956 sq. km. in 2015. The decrease in the area of grasslands was mainly explained by the landuse shifts of grasslands to agricultural and urban lands. The quantification of low and medium NDVI rates revealed the increase within the agricultural, urban and forest land-cover classes in 2015. However, the high NDVI rates within agricultural, urban and forest land-cover classes in 2015 revealed to be lower relative to 2014. The change detection analysis between landscover types of 2014 and 2015 allowed to determine that 7740 sq. km. of grasslands shifted to agricultural landcover type whereas 5442sq. km. of agricultural lands shifted to rangelands. This means that the spatio-temporal patters of agricultural activities occurred in Azerbaijan because some of the areas reduced agricultural activities whereas some of them changed their landuse type to agricultural. Based on the achieved results, it is possible to conclude that the area of agricultural lands in Azerbaijan increased from 2014 to 2015. The crop productivity also increased in the croplands, however some of the areas showed lower productivity in 2015 relative to 2014.

  3. Impacts of land cover transitions on surface temperature in China based on satellite observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhen; Liang, Shunlin

    2018-02-01

    China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short-term analysis of land cover transitions in China means our estimates should represent local temperature effects. Changes in ET and albedo explained <60% of the variation in LST change caused by land cover transitions; thus, additional factors that affect surface climate need consideration in future studies.

  4. Land Surface Modeling and Data Assimilation to Support Physical Precipitation Retrievals for GPM

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Tian. Yudong; Kumar, Sujay; Geiger, James; Choudhury, Bhaskar

    2010-01-01

    Objective: The objective of this proposal is to provide a routine land surface modeling and data assimilation capability for GPM in order to provide global land surface states that are necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in GPM, is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. Therefore, providing a robust capability to routinely provide these critical land states is essential to support GPM-era physical retrieval algorithms over land.

  5. An indicator of forest dynamics using a shifting landscape mosaic

    Treesearch

    Kurt H. Riitters; James D. Wickham; Timothy G. Wade

    2009-01-01

    The composition of a landscape is a fundamental indicator in land-cover pattern assessments. The objective of this paper was to evaluate a landscape composition indicator called ‘landscape mosaic’ as a framework for interpreting land-cover dynamics over a 9-year period in a 360,000 km2 study area in the southern United States. The indicator...

  6. A long-term perspective on deforestation rates in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Velasco Gomez, M. D.; Beuchle, R.; Shimabukuro, Y.; Grecchi, R.; Simonetti, D.; Eva, H. D.; Achard, F.

    2015-04-01

    Monitoring tropical forest cover is central to biodiversity preservation, terrestrial carbon stocks, essential ecosystem and climate functions, and ultimately, sustainable economic development. The Amazon forest is the Earth's largest rainforest, and despite intensive studies on current deforestation rates, relatively little is known as to how these compare to historic (pre 1985) deforestation rates. We quantified land cover change between 1975 and 2014 in the so-called Arc of Deforestation of the Brazilian Amazon, covering the southern stretch of the Amazon forest and part of the Cerrado biome. We applied a consistent method that made use of data from Landsat sensors: Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI). We acquired suitable images from the US Geological Survey (USGS) for five epochs: 1975, 1990, 2000, 2010, and 2014. We then performed land cover analysis for each epoch using a systematic sample of 156 sites, each one covering 10 km x 10 km, located at the confluence point of integer degree latitudes and longitudes. An object-based classification of the images was performed with five land cover classes: tree cover, tree cover mosaic, other wooded land, other land cover, and water. The automatic classification results were corrected by visual interpretation, and, when available, by comparison with higher resolution imagery. Our results show a decrease of forest cover of 24.2% in the last 40 years in the Brazilian Arc of Deforestation, with an average yearly net forest cover change rate of -0.71% for the 39 years considered.

  7. Investigation of land use of northern megalopolis using ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Simpson, R. B.; Lindgren, D. T.; Ruml, D. J.; Goldstein, W.

    1974-01-01

    Primary objective was to produce a color-coded land use map and digital data base for the northern third of Megalopolis. Secondary objective was to investigate possible applications of ERTS products to land use planning. Many of the materials in this report already have received national, dissemination as a result of unexpected interest in land use surveys from ERTS. Of special historical interest is the first comprehensive urban-type land use map from space imagery, which covered the entire state of Rhode Island and was made from a single image taken on 28 July 1972.

  8. A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data

    NASA Astrophysics Data System (ADS)

    Gajda, Agnieszka; Wójtowicz-Nowakowska, Anna

    2013-04-01

    A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data Land cover maps are generally produced on the basis of high resolution imagery. Recently, LiDAR (Light Detection and Ranging) data have been brought into use in diverse applications including land cover mapping. In this study we attempted to assess the accuracy of land cover classification using both high resolution aerial imagery and LiDAR data (airborne laser scanning, ALS), testing two classification approaches: a pixel-based classification and object-oriented image analysis (OBIA). The study was conducted on three test areas (3 km2 each) in the administrative area of Kraków, Poland, along the course of the Vistula River. They represent three different dominating land cover types of the Vistula River valley. Test site 1 had a semi-natural vegetation, with riparian forests and shrubs, test site 2 represented a densely built-up area, and test site 3 was an industrial site. Point clouds from ALS and ortophotomaps were both captured in November 2007. Point cloud density was on average 16 pt/m2 and it contained additional information about intensity and encoded RGB values. Ortophotomaps had a spatial resolution of 10 cm. From point clouds two raster maps were generated: intensity (1) and (2) normalised Digital Surface Model (nDSM), both with the spatial resolution of 50 cm. To classify the aerial data, a supervised classification approach was selected. Pixel based classification was carried out in ERDAS Imagine software. Ortophotomaps and intensity and nDSM rasters were used in classification. 15 homogenous training areas representing each cover class were chosen. Classified pixels were clumped to avoid salt and pepper effect. Object oriented image object classification was carried out in eCognition software, which implements both the optical and ALS data. Elevation layers (intensity, firs/last reflection, etc.) were used at segmentation stage due to proper wages usage. Thus a more precise and unambiguous boundaries of segments (objects) were received. As a results of the classification 5 classes of land cover (buildings, water, high and low vegetation and others) were extracted. Both pixel-based image analysis and OBIA were conducted with a minimum mapping unit of 10m2. Results were validated on the basis on manual classification and random points (80 per test area), reference data set was manually interpreted using ortophotomaps and expert knowledge of the test site areas.

  9. Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data

    USGS Publications Warehouse

    Yang, Limin; Xian, George Z.; Klaver, Jacqueline M.; Deal, Brian

    2003-01-01

    We developed a Sub-pixel Imperviousness Change Detection (SICD) approach to detect urban land-cover changes using Landsat and high-resolution imagery. The sub-pixel percent imperviousness was mapped for two dates (09 March 1993 and 11 March 2001) over western Georgia using a regression tree algorithm. The accuracy of the predicted imperviousness was reasonable based on a comparison using independent reference data. The average absolute error between predicted and reference data was 16.4 percent for 1993 and 15.3 percent for 2001. The correlation coefficient (r) was 0.73 for 1993 and 0.78 for 2001, respectively. Areas with a significant increase (greater than 20 percent) in impervious surface from 1993 to 2001 were mostly related to known land-cover/land-use changes that occurred in this area, suggesting that the spatial change of an impervious surface is a useful indicator for identifying spatial extent, intensity, and, potentially, type of urban land-cover/land-use changes. Compared to other pixel-based change-detection methods (band differencing, rationing, change vector, post-classification), information on changes in sub-pixel percent imperviousness allow users to quantify and interpret urban land-cover/land-use changes based on their own definition. Such information is considered complementary to products generated using other change-detection methods. In addition, the procedure for mapping imperviousness is objective and repeatable, hence, can be used for monitoring urban land-cover/land-use change over a large geographic area. Potential applications and limitations of the products developed through this study in urban environmental studies are also discussed.

  10. Land Cover Change in the Boston Mountains, 1973-2000

    USGS Publications Warehouse

    Karstensen, Krista A.

    2009-01-01

    The U.S. Geological Survey (USGS) Land Cover Trends project is focused on understanding the rates, trends, causes, and consequences of contemporary U.S. land-cover change. The objectives of the study are to: (1) to develop a comprehensive methodology for using sampling and change analysis techniques and Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), and Enhanced Thematic Mapper Plus (ETM+) data to measure regional land-cover change across the United States; (2) to characterize the types, rates, and temporal variability of change for a 30-year period; (3) to document regional driving forces and consequences of change; and (4) to prepare a national synthesis of land-cover change (Loveland and others, 1999). The 1999 Environmental Protection Agency (EPA) Level III ecoregions derived from Omernik (1987) provide the geographic framework for the geospatial data collected between 1973 and 2000. The 27-year study period was divided into five temporal periods: 1973-1980, 1980-1986, 1986-1992, 1992-2000, and 1973-2000, and the data are evaluated using a modified Anderson Land Use Land Cover Classification System (Anderson and others, 1976) for image interpretation. The rates of land-cover change are estimated using a stratified, random sampling of 10-kilometer (km) by 10-km blocks allocated within each ecoregion. For each sample block, satellite images are used to interpret land-cover change for the five time periods previously mentioned. Additionally, historic aerial photographs from similar time frames and other ancillary data, such as census statistics and published literature, are used. The sample block data are then incorporated into statistical analyses to generate an overall change matrix for the ecoregion. Field data of the sample blocks include direct measurements of land cover, particularly ground-survey data collected for training and validation of image classifications (Loveland and others, 2002). The field experience allows for additional observations of the character and condition of the landscape, assistance in sample block interpretation, ground truthing of Landsat imagery, and determination of the driving forces of change identified in an ecoregion.

  11. Land Cover Change Community-based Processing and Analysis System (LC-ComPS): Lessons Learned from Technology Infusion

    NASA Astrophysics Data System (ADS)

    Masek, J.; Rao, A.; Gao, F.; Davis, P.; Jackson, G.; Huang, C.; Weinstein, B.

    2008-12-01

    The Land Cover Change Community-based Processing and Analysis System (LC-ComPS) combines grid technology, existing science modules, and dynamic workflows to enable users to complete advanced land data processing on data available from local and distributed archives. Changes in land cover represent a direct link between human activities and the global environment, and in turn affect Earth's climate. Thus characterizing land cover change has become a major goal for Earth observation science. Many science algorithms exist to generate new products (e.g., surface reflectance, change detection) used to study land cover change. The overall objective of the LC-ComPS is to release a set of tools and services to the land science community that can be implemented as a flexible LC-ComPS to produce surface reflectance and land-cover change information with ground resolution on the order of Landsat-class instruments. This package includes software modules for pre-processing Landsat-type satellite imagery (calibration, atmospheric correction, orthorectification, precision registration, BRDF correction) for performing land-cover change analysis and includes pre-built workflow chains to automatically generate surface reflectance and land-cover change products based on user input. In order to meet the project objectives, the team created the infrastructure (i.e., client-server system with graphical and machine interfaces) to expand the use of these existing science algorithm capabilities in a community with distributed, large data archives and processing centers. Because of the distributed nature of the user community, grid technology was chosen to unite the dispersed community resources. At that time, grid computing was not used consistently and operationally within the Earth science research community. Therefore, there was a learning curve to configure and implement the underlying public key infrastructure (PKI) interfaces, required for the user authentication, secure file transfer and remote job execution on the grid network of machines. In addition, science support was needed to vet that the grid technology did not have any adverse affects of the science module outputs. Other open source, unproven technologies, such as a workflow package to manage jobs submitted by the user, were infused into the overall system with successful results. This presentation will discuss the basic capabilities of LC-ComPS, explain how the technology was infused, and provide lessons learned for using and integrating the various technologies while developing and operating the system, and finally outline plans moving forward (maintenance and operations decisions) based on the experience to date.

  12. Survey methods for assessing land cover map accuracy

    USGS Publications Warehouse

    Nusser, S.M.; Klaas, E.E.

    2003-01-01

    The increasing availability of digital photographic materials has fueled efforts by agencies and organizations to generate land cover maps for states, regions, and the United States as a whole. Regardless of the information sources and classification methods used, land cover maps are subject to numerous sources of error. In order to understand the quality of the information contained in these maps, it is desirable to generate statistically valid estimates of accuracy rates describing misclassification errors. We explored a full sample survey framework for creating accuracy assessment study designs that balance statistical and operational considerations in relation to study objectives for a regional assessment of GAP land cover maps. We focused not only on appropriate sample designs and estimation approaches, but on aspects of the data collection process, such as gaining cooperation of land owners and using pixel clusters as an observation unit. The approach was tested in a pilot study to assess the accuracy of Iowa GAP land cover maps. A stratified two-stage cluster sampling design addressed sample size requirements for land covers and the need for geographic spread while minimizing operational effort. Recruitment methods used for private land owners yielded high response rates, minimizing a source of nonresponse error. Collecting data for a 9-pixel cluster centered on the sampled pixel was simple to implement, and provided better information on rarer vegetation classes as well as substantial gains in precision relative to observing data at a single-pixel.

  13. Structural knowledge learning from maps for supervised land cover/use classification: Application to the monitoring of land cover/use maps in French Guiana

    NASA Astrophysics Data System (ADS)

    Bayoudh, Meriam; Roux, Emmanuel; Richard, Gilles; Nock, Richard

    2015-03-01

    The number of satellites and sensors devoted to Earth observation has become increasingly elevated, delivering extensive data, especially images. At the same time, the access to such data and the tools needed to process them has considerably improved. In the presence of such data flow, we need automatic image interpretation methods, especially when it comes to the monitoring and prediction of environmental and societal changes in highly dynamic socio-environmental contexts. This could be accomplished via artificial intelligence. The concept described here relies on the induction of classification rules that explicitly take into account structural knowledge, using Aleph, an Inductive Logic Programming (ILP) system, combined with a multi-class classification procedure. This methodology was used to monitor changes in land cover/use of the French Guiana coastline. One hundred and fifty-eight classification rules were induced from 3 diachronic land cover/use maps including 38 classes. These rules were expressed in first order logic language, which makes them easily understandable by non-experts. A 10-fold cross-validation gave significant average values of 84.62%, 99.57% and 77.22% for classification accuracy, specificity and sensitivity, respectively. Our methodology could be beneficial to automatically classify new objects and to facilitate object-based classification procedures.

  14. Assessing the sensitivity of avian species abundance to land cover and climate

    USGS Publications Warehouse

    LeBrun, Jaymi J.; Thogmartin, Wayne E.; Thompson, Frank R.; Dijak, William D.; Millspaugh, Joshua J.

    2016-01-01

    Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and climate on the abundance of five bird species in the Central United States that have habitat requirements ranging from grassland and shrubland to forest. We substituted space for time to examine potential impacts of a changing climate by assessing climate and land cover relationships over a broad latitudinal gradient. We found positive and negative relationships of climate and land cover factors with avian abundances. Habitat variables drove patterns of abundance in migratory and resident species, although climate was also influential in predicting abundance for some species occupying more open habitat (i.e., prairie warbler, blue-winged warbler, and northern bobwhite). Abundance of northern bobwhite increased with winter temperature and was the species exhibiting the most significant effect of climate. Models for birds primarily occupying early successional habitats performed better with a combination of habitat and climate variables whereas models of species found in contiguous forest performed best with land cover alone. These varied species-specific responses present unique challenges to land managers trying to balance species conservation over a variety of land covers. Management activities focused on increasing forest cover may play a role in mitigating effects of future climate by providing habitat refugia to species vulnerable to projected changes. Conservation efforts would be best served focusing on areas with high species abundances and an array of habitats. Future work managing forests for resilience and resistance to climate change could benefit species already susceptible to climate impacts.

  15. Meter-scale Urban Land Cover Mapping for EPA EnviroAtlas Using Machine Learning and OBIA Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Baynes, J.; Dannenberg, M.; Riegel, J.; Rudder, C.; Endres, K.

    2013-12-01

    US EPA EnviroAtlas is an online collection of tools and resources that provides geospatial data, maps, research, and analysis on the relationships between nature, people, health, and the economy (http://www.epa.gov/research/enviroatlas/index.htm). Using EnviroAtlas, you can see and explore information related to the benefits (e.g., ecosystem services) that humans receive from nature, including clean air, clean and plentiful water, natural hazard mitigation, biodiversity conservation, food, fuel, and materials, recreational opportunities, and cultural and aesthetic value. EPA developed several urban land cover maps at very high spatial resolution (one-meter pixel size) for a portion of EnviroAtlas devoted to urban studies. This urban mapping effort supported analysis of relations among land cover, human health and demographics at the US Census Block Group level. Supervised classification of 2010 USDA NAIP (National Agricultural Imagery Program) digital aerial photos produced eight-class land cover maps for several cities, including Durham, NC, Portland, ME, Tampa, FL, New Bedford, MA, Pittsburgh, PA, Portland, OR, and Milwaukee, WI. Semi-automated feature extraction methods were used to classify the NAIP imagery: genetic algorithms/machine learning, random forest, and object-based image analysis (OBIA). In this presentation we describe the image processing and fuzzy accuracy assessment methods used, and report on some sustainability and ecosystem service metrics computed using this land cover as input (e.g., carbon sequestration from USFS iTREE model; health and demographics in relation to road buffer forest width). We also discuss the land cover classification schema (a modified Anderson Level 1 after the National Land Cover Data (NLCD)), and offer some observations on lessons learned. Meter-scale urban land cover in Portland, OR overlaid on NAIP aerial photo. Streets, buildings and individual trees are identifiable.

  16. Conservation of wildlife populations: factoring in incremental disturbance.

    PubMed

    Stewart, Abbie; Komers, Petr E

    2017-06-01

    Progressive anthropogenic disturbance can alter ecosystem organization potentially causing shifts from one stable state to another. This potential for ecosystem shifts must be considered when establishing targets and objectives for conservation. We ask whether a predator-prey system response to incremental anthropogenic disturbance might shift along a disturbance gradient and, if it does, whether any disturbance thresholds are evident for this system. Development of linear corridors in forested areas increases wolf predation effectiveness, while high density of development provides a safe-haven for their prey. If wolves limit moose population growth, then wolves and moose should respond inversely to land cover disturbance. Using general linear model analysis, we test how the rate of change in moose ( Alces alces ) density and wolf ( Canis lupus ) harvest density are influenced by the rate of change in land cover and proportion of land cover disturbed within a 300,000 km 2 area in the boreal forest of Alberta, Canada. Using logistic regression, we test how the direction of change in moose density is influenced by measures of land cover change. In response to incremental land cover disturbance, moose declines occurred where <43% of land cover was disturbed; in such landscapes, there were high rates of increase in linear disturbance and wolf density increased. By contrast, moose increases occurred where >43% of land cover was disturbed and wolf density declined. Wolves and moose appeared to respond inversely to incremental disturbance with the balance between moose decline and wolf increase shifting at about 43% of land cover disturbed. Conservation decisions require quantification of disturbance rates and their relationships to predator-prey systems because ecosystem responses to anthropogenic disturbance shift across disturbance gradients.

  17. Development of an Independent Global Land Cover Validation Dataset

    NASA Astrophysics Data System (ADS)

    Sulla-Menashe, D. J.; Olofsson, P.; Woodcock, C. E.; Holden, C.; Metcalfe, M.; Friedl, M. A.; Stehman, S. V.; Herold, M.; Giri, C.

    2012-12-01

    Accurate information related to the global distribution and dynamics in global land cover is critical for a large number of global change science questions. A growing number of land cover products have been produced at regional to global scales, but the uncertainty in these products and the relative strengths and weaknesses among available products are poorly characterized. To address this limitation we are compiling a database of high spatial resolution imagery to support international land cover validation studies. Validation sites were selected based on a probability sample, and may therefore be used to estimate statistically defensible accuracy statistics and associated standard errors. Validation site locations were identified using a stratified random design based on 21 strata derived from an intersection of Koppen climate classes and a population density layer. In this way, the two major sources of global variation in land cover (climate and human activity) are explicitly included in the stratification scheme. At each site we are acquiring high spatial resolution (< 1-m) satellite imagery for 5-km x 5-km blocks. The response design uses an object-oriented hierarchical legend that is compatible with the UN FAO Land Cover Classification System. Using this response design, we are classifying each site using a semi-automated algorithm that blends image segmentation with a supervised RandomForest classification algorithm. In the long run, the validation site database is designed to support international efforts to validate land cover products. To illustrate, we use the site database to validate the MODIS Collection 4 Land Cover product, providing a prototype for validating the VIIRS Surface Type Intermediate Product scheduled to start operational production early in 2013. As part of our analysis we evaluate sources of error in coarse resolution products including semantic issues related to the class definitions, mixed pixels, and poor spectral separation between classes.

  18. Quantifying the Components of Impervious Surfaces

    USGS Publications Warehouse

    Tilley, Janet S.; Slonecker, E. Terrence

    2006-01-01

    This study's objectives were to (1) determine the relative contribution of impervious surface individual components by collecting digital information from high-resolution imagery, 1-meter or better; and to (2) determine which of the more advanced techniques, such as spectral unmixing or the application of coefficients to land use or land cover data, was the most suitable method that could be used by State and local governments as well as Federal agencies to efficiently measure the imperviousness in any given watershed or area of interest. The components of impervious surfaces, combined from all the watersheds and time periods from objective one were the following: buildings 29.2-percent, roads 28.3-percent, parking lots 24.6-percent; with the remaining three totaling 14-percent - driveways, sidewalks, and other, where other were any other features that were not contained within the first five. Results from objective two were spectral unmixing techniques will ultimately be the most efficient method of determining imperviousness, but are not yet accurate enough as it is critical to achieve accuracy better than 10-percent of the truth, of which the method is not consistently accomplishing as observed in this study. Of the three techniques in coefficient application tested, land use coefficient application was not practical, while if the last two methods, coefficients applied to land cover data, were merged, their end results could be to within 5-percent or better, of the truth. Until the spectral unmixing technique has been further refined, land cover coefficients should be used, which offer quick results, but not current as they were developed for the 1992 National Land Characteristics Data.

  19. Forest cover loss and urban area expansion in the Conterminous Unites States in the first decade of the third millennium

    NASA Astrophysics Data System (ADS)

    Huo, L. Z.; Boschetti, L.

    2016-12-01

    Remote sensing has been successfully used for global mapping of changes in forest cover, but further analysis is needed to characterize those changes - and in particular to classify the total loss of forest loss (Gross Forest Cover Loss, GFCL) based on the cause (natural/human) and on the outcome of the change (regeneration to forest/transition to non-forest) (Kurtz et al., 2010). While natural forest disturbances (fires, insect outbreaks) and timber harvest generally involve a temporary change of land cover (vegetated to non-vegetated), they generally do not involve a change in land use, and it is expected that the forest cover loss is followed by recovery. Change of land use, such as the conversion of forest to agricultural or urban areas, is instead generally irreversible. The proper classification of forest cover loss is therefore necessary to properly model the long term effects of the disturbances on the carbon budget. The present study presents a spatial and temporal analysis of the forest cover loss due to urban expansion in the Conterminous United States. The Landsat-derived University of Maryland Global Forest Change product (Hansen et al, 2013) is used to identify all the areas of gross forest cover loss, which are subsequently classified into disturbance type (deforestation, stand-replacing natural disturbances, industrial forest clearcuts) using an object-oriented time series analysis (Huo and Boschetti, 2015). A further refinement of the classification is conducted to identify the areas of transition from forest land use to urban land use based on ancillary datasets such as the National Land Cover Database (Homer et al., 2015) and contextual image analysis techniques (analysis of object proximity, and detection of shapes). Results showed that over 4000 km2of forest were lost to urban area expansion in CONUS over the 2001 to 2010 period (1.8% of the gross forest cover loss). Most of the urban growth was concentrated in large urban areas: Atlanta, GA ranked first, followed by Houston, TX; Charlotte, NC; Jacksonville, FL; and Raleigh, NC. At the state level, the top 10 states with urban growth due to forest loss were GA, FL, TX, NC, SC, AL, LA, MS, VA and WA, which cumulatively accounted for 76 % of the total forest cover loss due to urban growth.

  20. The Analysis of Object-Based Change Detection in Mining Area: a Case Study with Pingshuo Coal Mine

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Zhou, W.; Li, Y.

    2017-09-01

    Accurate information on mining land use and land cover change are crucial for monitoring and environmental change studies. In this paper, RapidEye Remote Sensing Image (Map 2012) and SPOT7 Remote Sensing Image (Map 2015) in Pingshuo Mining Area are selected to monitor changes combined with object-based classification and change vector analysis method, we also used R in highresolution remote sensing image for mining land classification, and found the feasibility and the flexibility of open source software. The results show that (1) the classification of reclaimed mining land has higher precision, the overall accuracy and kappa coefficient of the classification of the change region map were 86.67 % and 89.44 %. It's obvious that object-based classification and change vector analysis which has a great significance to improve the monitoring accuracy can be used to monitor mining land, especially reclaiming mining land; (2) the vegetation area changed from 46 % to 40 % accounted for the proportion of the total area from 2012 to 2015, and most of them were transformed into the arable land. The sum of arable land and vegetation area increased from 51 % to 70 %; meanwhile, build-up land has a certain degree of increase, part of the water area was transformed into arable land, but the extent of the two changes is not obvious. The result illustrated the transformation of reclaimed mining area, at the same time, there is still some land convert to mining land, and it shows the mine is still operating, mining land use and land cover are the dynamic procedure.

  1. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Zurqani, Hamdi A.; Post, Christopher J.; Mikhailova, Elena A.; Schlautman, Mark A.; Sharp, Julia L.

    2018-07-01

    Climate and land use/cover change are among the most pervasive issues facing the Southeastern United States, including the Savannah River basin in South Carolina and Georgia. Land use directly affects the natural environment across the Savannah River basin and it is important to analyze these impacts. The objectives of this study are to: 1) determine the classes and the distribution of land cover in the Savannah River basin; 2) identify the spatial and the temporal change of the land cover that occurs as a consequence of land use change in the area; and 3) discuss the potential effects of land use change in the Savannah River basin. The land cover maps were produced using random forest supervised classification at four time periods for a total of thirteen common land cover classes with overall accuracy assessments of 79.18% (1999), 79.41% (2005), 76.04% (2009), and 76.11% (2015). The major land use change observed was due to the deforestation and reforestation of forest areas during the entire study period. The change detection results using the normalized difference vegetation index (NDVI) indicated that the proportion areas of the deforestation were 5.93% (1999-2005), 4.63% (2005-2009), and 3.76% (2009-2015), while the proportion areas of the reforestation were 1.57% (1999-2005), 0.44% (2005-2009), and 1.53% (2009-2015). These results not only indicate land use change, but also demonstrate the advantage of utilizing Google Earth Engine and the public archive database in its platform to track and monitor this change over time.

  2. Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data

    NASA Astrophysics Data System (ADS)

    Gibril, Mohamed Barakat A.; Idrees, Mohammed Oludare; Yao, Kouame; Shafri, Helmi Zulhaidi Mohd

    2018-01-01

    The growing use of optimization for geographic object-based image analysis and the possibility to derive a wide range of information about the image in textual form makes machine learning (data mining) a versatile tool for information extraction from multiple data sources. This paper presents application of data mining for land-cover classification by fusing SPOT-6, RADARSAT-2, and derived dataset. First, the images and other derived indices (normalized difference vegetation index, normalized difference water index, and soil adjusted vegetation index) were combined and subjected to segmentation process with optimal segmentation parameters obtained using combination of spatial and Taguchi statistical optimization. The image objects, which carry all the attributes of the input datasets, were extracted and related to the target land-cover classes through data mining algorithms (decision tree) for classification. To evaluate the performance, the result was compared with two nonparametric classifiers: support vector machine (SVM) and random forest (RF). Furthermore, the decision tree classification result was evaluated against six unoptimized trials segmented using arbitrary parameter combinations. The result shows that the optimized process produces better land-use land-cover classification with overall classification accuracy of 91.79%, 87.25%, and 88.69% for SVM and RF, respectively, while the results of the six unoptimized classifications yield overall accuracy between 84.44% and 88.08%. Higher accuracy of the optimized data mining classification approach compared to the unoptimized results indicates that the optimization process has significant impact on the classification quality.

  3. Land cover mapping in Latvia using hyperspectral airborne and simulated Sentinel-2 data

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Filipovs, Jevgenijs; Brauns, Agris; Taskovs, Juris; Erins, Gatis

    2016-08-01

    Land cover mapping in Latvia is performed as part of the Corine Land Cover (CLC) initiative every six years. The advantage of CLC is the creation of a standardized nomenclature and mapping protocol comparable across all European countries, thereby making it a valuable information source at the European level. However, low spatial resolution and accuracy, infrequent updates and expensive manual production has limited its use at the national level. As of now, there is no remote sensing based high resolution land cover and land use services designed specifically for Latvia which would account for the country's natural and land use specifics and end-user interests. The European Space Agency launched the Sentinel-2 satellite in 2015 aiming to provide continuity of free high resolution multispectral satellite data thereby presenting an opportunity to develop and adapted land cover and land use algorithm which accounts for national enduser needs. In this study, land cover mapping scheme according to national end-user needs was developed and tested in two pilot territories (Cesis and Burtnieki). Hyperspectral airborne data covering spectral range 400-2500 nm was acquired in summer 2015 using Airborne Surveillance and Environmental Monitoring System (ARSENAL). The gathered data was tested for land cover classification of seven general classes (urban/artificial, bare, forest, shrubland, agricultural/grassland, wetlands, water) and sub-classes specific for Latvia as well as simulation of Sentinel-2 satellite data. Hyperspectral data sets consist of 122 spectral bands in visible to near infrared spectral range (356-950 nm) and 100 bands in short wave infrared (950-2500 nm). Classification of land cover was tested separately for each sensor data and fused cross-sensor data. The best overall classification accuracy 84.2% and satisfactory classification accuracy (more than 80%) for 9 of 13 classes was obtained using Support Vector Machine (SVM) classifier with 109 band hyperspectral data. Grassland and agriculture land demonstrated lowest classification accuracy in pixel based approach, but result significantly improved by looking at agriculture polygons registered in Rural Support Service data as objects. The test of simulated Sentinel-2 bands for land cover mapping using SVM classifier showed 82.8% overall accuracy and satisfactory separation of 7 classes. SVM provided highest overall accuracy 84.2% in comparison to 75.9% for k-Nearest Neighbor and 79.2% Linear Discriminant Analysis classifiers.

  4. Can segmentation evaluation metric be used as an indicator of land cover classification accuracy?

    NASA Astrophysics Data System (ADS)

    Švab Lenarčič, Andreja; Đurić, Nataša; Čotar, Klemen; Ritlop, Klemen; Oštir, Krištof

    2016-10-01

    It is a broadly established belief that the segmentation result significantly affects subsequent image classification accuracy. However, the actual correlation between the two has never been evaluated. Such an evaluation would be of considerable importance for any attempts to automate the object-based classification process, as it would reduce the amount of user intervention required to fine-tune the segmentation parameters. We conducted an assessment of segmentation and classification by analyzing 100 different segmentation parameter combinations, 3 classifiers, 5 land cover classes, 20 segmentation evaluation metrics, and 7 classification accuracy measures. The reliability definition of segmentation evaluation metrics as indicators of land cover classification accuracy was based on the linear correlation between the two. All unsupervised metrics that are not based on number of segments have a very strong correlation with all classification measures and are therefore reliable as indicators of land cover classification accuracy. On the other hand, correlation at supervised metrics is dependent on so many factors that it cannot be trusted as a reliable classification quality indicator. Algorithms for land cover classification studied in this paper are widely used; therefore, presented results are applicable to a wider area.

  5. High-resolution land cover classification using low resolution global data

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark J.

    2013-05-01

    A fusion approach is described that combines texture features from high-resolution panchromatic imagery with land cover statistics derived from co-registered low-resolution global databases to obtain high-resolution land cover maps. The method does not require training data or any human intervention. We use an MxN Gabor filter bank consisting of M=16 oriented bandpass filters (0-180°) at N resolutions (3-24 meters/pixel). The size range of these spatial filters is consistent with the typical scale of manmade objects and patterns of cultural activity in imagery. Clustering reduces the complexity of the data by combining pixels that have similar texture into clusters (regions). Texture classification assigns a vector of class likelihoods to each cluster based on its textural properties. Classification is unsupervised and accomplished using a bank of texture anomaly detectors. Class likelihoods are modulated by land cover statistics derived from lower resolution global data over the scene. Preliminary results from a number of Quickbird scenes show our approach is able to classify general land cover features such as roads, built up area, forests, open areas, and bodies of water over a wide range of scenes.

  6. Land cover mapping after the tsunami event over Nanggroe Aceh Darussalam (NAD) province, Indonesia

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Alias, A. N.; Mohd. Saleh, N.; Wong, C. J.; Surbakti, M. S.

    2008-03-01

    Remote sensing offers an important means of detecting and analyzing temporal changes occurring in our landscape. This research used remote sensing to quantify land use/land cover changes at the Nanggroe Aceh Darussalam (Nad) province, Indonesia on a regional scale. The objective of this paper is to assess the changed produced from the analysis of Landsat TM data. A Landsat TM image was used to develop land cover classification map for the 27 March 2005. Four supervised classifications techniques (Maximum Likelihood, Minimum Distance-to- Mean, Parallelepiped and Parallelepiped with Maximum Likelihood Classifier Tiebreaker classifier) were performed to the satellite image. Training sites and accuracy assessment were needed for supervised classification techniques. The training sites were established using polygons based on the colour image. High detection accuracy (>80%) and overall Kappa (>0.80) were achieved by the Parallelepiped with Maximum Likelihood Classifier Tiebreaker classifier in this study. This preliminary study has produced a promising result. This indicates that land cover mapping can be carried out using remote sensing classification method of the satellite digital imagery.

  7. Effects of cover crops on soil quality: Selected chemical and biological parameters

    USDA-ARS?s Scientific Manuscript database

    Cover crops may improve soil physical, chemical, and biological properties and thus help improve land productivity. The objective of this study was to evaluate short-term changes (6, 9, and 12 weeks) in soil chemical and biological properties as influenced by cover crops for two different soils and...

  8. Land use and land cover change in the Greater Yellowstone Ecosystem: 1975-1995

    USGS Publications Warehouse

    Parmenter, A.W.; Hansen, A.; Kennedy, R.E.; Cohen, W.; Langner, U.; Lawrence, R.; Maxwell, B.; Gallant, Alisa; Aspinall, R.

    2003-01-01

    Shifts in the demographic and economic character of the Greater Yellowstone Ecosystem (GYE) are driving patterns of land cover and land use change in the region. Such changes may have important consequences for ecosystem functioning. The objective of this paper is to quantify the trajectories and rates of change in land cover and use across the GYE for the period 1975-1995 using satellite imagery. Spectral and geographic variables were used as inputs to classification tree regression analysis (CART) to find "rules" which defined land use and land cover classes on the landscape. The resulting CART functions were used to map land cover and land use across seven Landsat TM scenes for 1995. We then used a thresholding technique to identify locations that differed in spectral properties between the 1995 and 1985 time periods. These "changed" locations were classified using CART functions derived from spectral and geographic data from 1985. This was similarly done for the year 1975 based on Landsat MSS data. Differences between the 1975, 1985, and 1995 maps were considered change in land cover and use. We calibrated and tested the accuracy of our models using data acquired through manual interpretation of aerial photos. Elevation and vegetative indices derived from the remotely sensed satellite imagery explained the most variance in the land use and land cover classes (-i.e., defined the "rules" most often). Overall accuracies from our study were good, ranging from 94% at the coarsest level of detail to 74% at the finest. The largest changes over the study period were the increases in burned, urban, and mixed conifer-herbaceous classes and decreases in woody deciduous, mixed woody deciduous-herbaceous, and conifer habitats. These changes have important implications for ecological function and biodiversity. The expansion of mixed conifer classes may increase fuel loads and enhance risk to the growing number of rural homes. The reduction of woody deciduous cover types is likely reducing population sizes for the numerous plant and animal species that specialize on this habitat type. Some of these species are also negatively influenced by the increase of rural homes in and near woody deciduous habitats.

  9. A review of supervised object-based land-cover image classification

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue

    2017-08-01

    Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial vehicle) or agricultural sites where it also correlates with the number of targeted classes. More than 95.6% of studies involve an area less than 300 ha, and the spatial resolution of images is predominantly between 0 and 2 m. Furthermore, we identify some methods that may advance supervised object-based image classification. For example, deep learning and type-2 fuzzy techniques may further improve classification accuracy. Lastly, scientists are strongly encouraged to report results of uncertainty studies to further explore the effects of varied factors on supervised object-based image classification.

  10. Monitoring land use/land cover changes using CORINE land cover data: a case study of Silivri coastal zone in Metropolitan Istanbul.

    PubMed

    Yilmaz, Rüya

    2010-06-01

    The objective of the present study was to assess changes in land use/land cover patterns in the coastal town of Silivri, a part of greater Istanbul administratively. In the assessment, remotely sensed data, in the form of satellite images, and geographic information systems were used. Types of land use/land cover were designated as the percentage of the total area studied. Results calculated from the satellite data for land cover classification were compared successfully with the database Coordination of Information on the Environment (CORINE). This served as a reference to appraise the reliability of the study presented here. The CORINE Program was established by the European Commission to create a harmonized Geographical Information System on the state of the environment in the European Community. Unplanned urbanization is causing land use changes mainly in developing countries such as Turkey. This situation in Turkey is frequently observed in the city of Istanbul. There are only a few studies of land use-land cover changes which provide an integrated assessment of the biophysical and societal causes and consequences of environmental degradation in Istanbul. The research area comprised greater Silivri Town which is situated by the coast of Marmara Sea, and it is located approximately 60 km west of Istanbul. The city of Istanbul is one of the largest metropolises in Europe with ca. 15 million inhabitants. Additionally, greater Silivri is located near the terminal point of the state highway connecting Istanbul with Europe. Measuring of changes occurring in land use would help control future planning of settlements; hence, it is of importance for the Greater Silivri and Silivri Town. Following our evaluations, coastal zone of Silivri was classified into the land use groups of artificial surfaces agricultural areas and forests and seminatural areas with 47.1%, 12.66%, and 22.62%, respectively.

  11. Representative landscapes in the forested area of Canada.

    PubMed

    Cardille, Jeffrey A; White, Joanne C; Wulder, Mike A; Holland, Tara

    2012-01-01

    Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada's land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative-or "exemplar"-from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada's ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada's forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach.

  12. Representative Landscapes in the Forested Area of Canada

    NASA Astrophysics Data System (ADS)

    Cardille, Jeffrey A.; White, Joanne C.; Wulder, Mike A.; Holland, Tara

    2012-01-01

    Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada's land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative—or "exemplar"—from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada's ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada's forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach.

  13. Synergistic Use of WorldView-2 Imagery and Airborne LiDAR Data for Urban Land Cover Classification

    NASA Astrophysics Data System (ADS)

    Wu, M. F.; Sun, Z. C.; Yang, B.; Yu, S. S.

    2017-02-01

    There are lots of challenges for deriving urban land cover types for high resolution optical imagery because of spectral similarity of different objects, mixed pixels, shadows of buildings and large tree crowns. In order to reduce these uncertainties, recently, it’s a trend of the classification of urban land cover from multi-source sensors in the field of urban remote sensing. In this study, a hierarchical support vector machine (SVM) classification method was applied to the urban land cover mapping, using the WorldView-2 imagery and airborne Light Detection and Ranging (LiDAR) data. The results showed that: (1) The overall accuracy (OA) and overall kappa (OK) were 72.92% and 0.66 for WorldView-2 imagery alone; while the OA and OK were improved up to 89.44% and 0.87 for the synergistic use of the two types of data source. (2) Buildings and road/parking lots extracted from fused data were more precision and well-shaped. The two classes from fused data were optimally classified with higher producer’s accuracy and user’s accuracy than WorldView-2 imagery alone. The trees were also easily separated from the grasslands when the airborne LiDAR data was added. (3) The fused data could reduce the phenomenon of different spectral character of the complex and detailed objects. It was also helpful to address the problem of shadows from the high-rise buildings. The results from this study indicate that the synergistic use of high resolution optical imagery and airborne LiDAR data can be an efficient approach to improving the classification of urban land cover.

  14. A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data

    PubMed Central

    Qadri, Salman; Khan, Dost Muhammad; Ahmad, Farooq; Qadri, Syed Furqan; Babar, Masroor Ellahi; Shahid, Muhammad; Ul-Rehman, Muzammil; Razzaq, Abdul; Shah Muhammad, Syed; Fahad, Muhammad; Ahmad, Sarfraz; Pervez, Muhammad Tariq; Naveed, Nasir; Aslam, Naeem; Jamil, Mutiullah; Rehmani, Ejaz Ahmad; Ahmad, Nazir; Akhtar Khan, Naeem

    2016-01-01

    The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers were acquired by using a handheld device named multispectral radiometer in the form of five spectral bands (blue, green, red, near infrared, and shortwave infrared) while texture data were acquired with a digital camera by the transformation of acquired images into 229 texture features for each image. The most discriminant 30 features of each image were obtained by integrating the three statistical features selection techniques such as Fisher, Probability of Error plus Average Correlation, and Mutual Information (F + PA + MI). Selected texture data clustering was verified by nonlinear discriminant analysis while linear discriminant analysis approach was applied for multispectral data. For classification, the texture and multispectral data were deployed to artificial neural network (ANN: n-class). By implementing a cross validation method (80-20), we received an accuracy of 91.332% for texture data and 96.40% for multispectral data, respectively. PMID:27376088

  15. Optimizing classification performance in an object-based very-high-resolution land use-land cover urban application

    NASA Astrophysics Data System (ADS)

    Georganos, Stefanos; Grippa, Tais; Vanhuysse, Sabine; Lennert, Moritz; Shimoni, Michal; Wolff, Eléonore

    2017-10-01

    This study evaluates the impact of three Feature Selection (FS) algorithms in an Object Based Image Analysis (OBIA) framework for Very-High-Resolution (VHR) Land Use-Land Cover (LULC) classification. The three selected FS algorithms, Correlation Based Selection (CFS), Mean Decrease in Accuracy (MDA) and Random Forest (RF) based Recursive Feature Elimination (RFE), were tested on Support Vector Machine (SVM), K-Nearest Neighbor, and Random Forest (RF) classifiers. The results demonstrate that the accuracy of SVM and KNN classifiers are the most sensitive to FS. The RF appeared to be more robust to high dimensionality, although a significant increase in accuracy was found by using the RFE method. In terms of classification accuracy, SVM performed the best using FS, followed by RF and KNN. Finally, only a small number of features is needed to achieve the highest performance using each classifier. This study emphasizes the benefits of rigorous FS for maximizing performance, as well as for minimizing model complexity and interpretation.

  16. A data-based conservation planning tool for Florida panthers

    USGS Publications Warehouse

    Murrow, Jennifer L.; Thatcher, Cindy A.; Van Manen, Frank T.; Clark, Joseph D.

    2013-01-01

    Habitat loss and fragmentation are the greatest threats to the endangered Florida panther (Puma concolor coryi). We developed a data-based habitat model and user-friendly interface so that land managers can objectively evaluate Florida panther habitat. We used a geographic information system (GIS) and the Mahalanobis distance statistic (D2) to develop a model based on broad-scale landscape characteristics associated with panther home ranges. Variables in our model were Euclidean distance to natural land cover, road density, distance to major roads, human density, amount of natural land cover, amount of semi-natural land cover, amount of permanent or semi-permanent flooded area–open water, and a cost–distance variable. We then developed a Florida Panther Habitat Estimator tool, which automates and replicates the GIS processes used to apply the statistical habitat model. The estimator can be used by persons with moderate GIS skills to quantify effects of land-use changes on panther habitat at local and landscape scales. Example applications of the tool are presented.

  17. Development of a 2001 National Land Cover Database for the United States

    USGS Publications Warehouse

    Homer, Collin G.; Huang, Chengquan; Yang, Limin; Wylie, Bruce K.; Coan, Michael

    2004-01-01

    Multi-Resolution Land Characterization 2001 (MRLC 2001) is a second-generation Federal consortium designed to create an updated pool of nation-wide Landsat 5 and 7 imagery and derive a second-generation National Land Cover Database (NLCD 2001). The objectives of this multi-layer, multi-source database are two fold: first, to provide consistent land cover for all 50 States, and second, to provide a data framework which allows flexibility in developing and applying each independent data component to a wide variety of other applications. Components in the database include the following: (1) normalized imagery for three time periods per path/row, (2) ancillary data, including a 30 m Digital Elevation Model (DEM) derived into slope, aspect and slope position, (3) perpixel estimates of percent imperviousness and percent tree canopy, (4) 29 classes of land cover data derived from the imagery, ancillary data, and derivatives, (5) classification rules, confidence estimates, and metadata from the land cover classification. This database is now being developed using a Mapping Zone approach, with 66 Zones in the continental United States and 23 Zones in Alaska. Results from three initial mapping Zones show single-pixel land cover accuracies ranging from 73 to 77 percent, imperviousness accuracies ranging from 83 to 91 percent, tree canopy accuracies ranging from 78 to 93 percent, and an estimated 50 percent increase in mapping efficiency over previous methods. The database has now entered the production phase and is being created using extensive partnering in the Federal government with planned completion by 2006.

  18. Development of a Landforms Model for Puerto Rico and its Application for Land Cover Change Analysis

    Treesearch

    Sebastian Martinuzzi; William A. Gould; Olga M. Ramos Gonzalez; Brook E. Edwards

    2007-01-01

    Comprehensive analysis of land morphology is essential to supporting a wide range environmental studies. We developed a landforms model that identifies eleven landform units for Puerto Rico based on parameters of land position and slope. The model is capable of extracting operational information in a simple way and is adaptable to different environments and objectives...

  19. The consequences of land-cover changes on soil erosion distribution in Slovakia

    NASA Astrophysics Data System (ADS)

    Cebecauer, Tomáš; Hofierka, Jaroslav

    2008-06-01

    Soil erosion is a complex process determined by mutual interaction of numerous factors. The aim of erosion research at regional scales is a general evaluation of the landscape susceptibility to soil erosion by water, taking into account the main factors influencing this process. One of the key factors influencing the susceptibility of a region to soil erosion is land cover. Natural as well as human-induced changes of landscape may result in both the diminishment and acceleration of soil erosion. Recent studies of land-cover changes indicate that during the last decade more than 4.11% of Slovak territory has changed. The objective of this study is to assess the influence of land-cover and crop rotation changes over the 1990-2000 period on the intensity and spatial pattern of soil erosion in Slovakia. The assessment is based on principles defined in the Universal Soil Loss Equation (USLE) modified for application at regional scale and the use of the CORINE land cover (CLC) databases for 1990 and 2000. The C factor for arable land has been refined using statistical data on the mean crop rotation and the acreage of particular agricultural crops in the districts of Slovakia. The L factor has been calculated using sample areas with parcels identified by LANDSAT TM data. The results indicate that the land-cover and crop rotation changes had a significant influence on soil erosion pattern predominately in the hilly and mountainous parts of Slovakia. The pattern of soil erosion changes exhibits high spatial variation with overall slightly decreased soil erosion risks. These changes are associated with ongoing land ownership changes, changing structure of crops, deforestation and afforestation.

  20. LINKING LAND COVER AND WATER QUALITY IN NEW YORK CITY'S WATER SUPPLY WATERSHEDS

    EPA Science Inventory

    The Catskill/Delaware reservoirs supply 90% of New York City's drinking water. The City has implemented as series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was...

  1. Landcover Classification Using Deep Fully Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Wang, J.; Li, X.; Zhou, S.; Tang, J.

    2017-12-01

    Land cover classification has always been an essential application in remote sensing. Certain image features are needed for land cover classification whether it is based on pixel or object-based methods. Different from other machine learning methods, deep learning model not only extracts useful information from multiple bands/attributes, but also learns spatial characteristics. In recent years, deep learning methods have been developed rapidly and widely applied in image recognition, semantic understanding, and other application domains. However, there are limited studies applying deep learning methods in land cover classification. In this research, we used fully convolutional networks (FCN) as the deep learning model to classify land covers. The National Land Cover Database (NLCD) within the state of Kansas was used as training dataset and Landsat images were classified using the trained FCN model. We also applied an image segmentation method to improve the original results from the FCN model. In addition, the pros and cons between deep learning and several machine learning methods were compared and explored. Our research indicates: (1) FCN is an effective classification model with an overall accuracy of 75%; (2) image segmentation improves the classification results with better match of spatial patterns; (3) FCN has an excellent ability of learning which can attains higher accuracy and better spatial patterns compared with several machine learning methods.

  2. Assessing Hydrologic Impacts of Future Land Cover Change Scenarios in the South Platte River Basin (CO, WY, & NE) and the San Pedro River Basin (U.S./Mexico).

    NASA Astrophysics Data System (ADS)

    Barlow, J. E.; Burns, I. S.; Guertin, D. P.; Kepner, W. G.; Goodrich, D. C.

    2016-12-01

    Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology to characterize hydrologic impacts from future urban growth through time that was developed and applied on the San Pedro River Basin was expanded and utilized on the South Platte River Basin as well. Future urban growth is represented by housing density maps generated in decadal intervals from 2010 to 2100, produced by the U.S. Environmental Protection Agency (EPA) Integrated Climate and Land-Use Scenarios (ICLUS) project. ICLUS developed future housing density maps by adapting the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines to the conterminous United States. To characterize hydrologic impacts from future growth, the housing density maps were reclassified to National Land Cover Database (NLCD) 2006 land cover classes and used to parameterize the Soil and Water Assessment Tool (SWAT) using the Automated Geospatial Watershed Assessment (AGWA) tool. The objectives of this project were to 1) develop and implement a methodology for adapting the ICLUS data for use in AGWA as an approach to evaluate impacts of development on water-quantity and -quality, 2) present, evaluate, and compare results from scenarios for watersheds in two different geographic and climatic regions, 3) determine watershed specific implications of this type of future land cover change analysis.

  3. Carbon stock projection in North Sumatera using multi objective land allocation approach

    NASA Astrophysics Data System (ADS)

    Ichwani, S. N.; Wulandari, R.; Ramachandra, A.

    2018-05-01

    Nowadays, GHG emission is a critical issue for environmental management due to the large scale of land cover change, especially forest cover. This study provides a protection development strategy for North Sumatera as one way to manage the area. By using Multi Objective Land Allocation (MOLA), we evaluated two GHG emission scenarios, including a Business As Usual (BAU) scenario and Protection scenario. The result shows that the province will lose the carbon stock up to 24 million tons in the year of 2035 by using a BAU scenario. On the other hand, by implementing the Protection scenario, total carbon stock that is lost in the same period is about 5 millions tons solely. It proves that protection scenario is a good scenario and effective to reduce the carbon loss. Furthermore, this scenario can be an alternative for North Sumatera spatial plan.

  4. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating

    NASA Astrophysics Data System (ADS)

    Matikainen, Leena; Karila, Kirsi; Hyyppä, Juha; Litkey, Paula; Puttonen, Eetu; Ahokas, Eero

    2017-06-01

    During the last 20 years, airborne laser scanning (ALS), often combined with passive multispectral information from aerial images, has shown its high feasibility for automated mapping processes. The main benefits have been achieved in the mapping of elevated objects such as buildings and trees. Recently, the first multispectral airborne laser scanners have been launched, and active multispectral information is for the first time available for 3D ALS point clouds from a single sensor. This article discusses the potential of this new technology in map updating, especially in automated object-based land cover classification and change detection in a suburban area. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from an object-based random forests analysis suggest that the multispectral ALS data are very useful for land cover classification, considering both elevated classes and ground-level classes. The overall accuracy of the land cover classification results with six classes was 96% compared with validation points. The classes under study included building, tree, asphalt, gravel, rocky area and low vegetation. Compared to classification of single-channel data, the main improvements were achieved for ground-level classes. According to feature importance analyses, multispectral intensity features based on several channels were more useful than those based on one channel. Automatic change detection for buildings and roads was also demonstrated by utilising the new multispectral ALS data in combination with old map vectors. In change detection of buildings, an old digital surface model (DSM) based on single-channel ALS data was also used. Overall, our analyses suggest that the new data have high potential for further increasing the automation level in mapping. Unlike passive aerial imaging commonly used in mapping, the multispectral ALS technology is independent of external illumination conditions, and there are no shadows on intensity images produced from the data. These are significant advantages in developing automated classification and change detection procedures.

  5. Agricultural Yield Trends in Malawi: Utilizing Remote Sensing to Observe Crop Productivity and Sensitivity to Biophysical and Social Drivers

    NASA Astrophysics Data System (ADS)

    Peter, B.

    2015-12-01

    The primary objective of this research is to distinguish primary and secondary trends in the spatiotemporal variability of agricultural productivity in Malawi. The assessment was performed by analyzing the Net Primary Productivity (NPP) product derived from NASA MODIS satellite imagery and by drawing comparisons between individual land areas and the country-wide statistics. The data were categorized by placing each individual land area into one of six categories: low, average, or high productivity, and whether or not they were resilient or sensitive to biophysical and/or social production drivers. In order to mitigate productivity interference from forest and other land cover types, a custom agricultural land use was developed. Five land cover datasets, including FAO, GLC, IFPRI, GlobCover, and MODIS were combined to minimize errors of commission. Model assessment occurred via field work in Malawi. Approximately 200 sites were visited across nearly the entire extent of the country. Cropland and land cover were assessed via visual inspection, true color/near-infrared photography, and on-site interviews with farmers and extension officers to inquire about productivity and limiting factors for yield. Additionally, we present a continental scale application of the model to demonstrate its performance across scales.

  6. REDUCED FOREST COVER AND CHANGES IN BREEDING BIRD SPECIES COMPOSITION IN RHODE ISLAND

    EPA Science Inventory

    This study was conducted to assess the relationship of land use/cover, riparian vegetation, and avian populations. Our objective was to compare the vegetation structure in riparian corridors with the composition of breeding bird populations in eight Rhode Island subwatersheds alo...

  7. Synergy of airborne LiDAR and Worldview-2 satellite imagery for land cover and habitat mapping: A BIO_SOS-EODHaM case study for the Netherlands

    NASA Astrophysics Data System (ADS)

    Mücher, C. A.; Roupioz, L.; Kramer, H.; Bogers, M. M. B.; Jongman, R. H. G.; Lucas, R. M.; Kosmidou, V. E.; Petrou, Z.; Manakos, I.; Padoa-Schioppa, E.; Adamo, M.; Blonda, P.

    2015-05-01

    A major challenge is to develop a biodiversity observation system that is cost effective and applicable in any geographic region. Measuring and reliable reporting of trends and changes in biodiversity requires amongst others detailed and accurate land cover and habitat maps in a standard and comparable way. The objective of this paper is to assess the EODHaM (EO Data for Habitat Mapping) classification results for a Dutch case study. The EODHaM system was developed within the BIO_SOS (The BIOdiversity multi-SOurce monitoring System: from Space TO Species) project and contains the decision rules for each land cover and habitat class based on spectral and height information. One of the main findings is that canopy height models, as derived from LiDAR, in combination with very high resolution satellite imagery provides a powerful input for the EODHaM system for the purpose of generic land cover and habitat mapping for any location across the globe. The assessment of the EODHaM classification results based on field data showed an overall accuracy of 74% for the land cover classes as described according to the Food and Agricultural Organization (FAO) Land Cover Classification System (LCCS) taxonomy at level 3, while the overall accuracy was lower (69.0%) for the habitat map based on the General Habitat Category (GHC) system for habitat surveillance and monitoring. A GHC habitat class is determined for each mapping unit on the basis of the composition of the individual life forms and height measurements. The classification showed very good results for forest phanerophytes (FPH) when individual life forms were analyzed in terms of their percentage coverage estimates per mapping unit from the LCCS classification and validated with field surveys. Analysis for shrubby chamaephytes (SCH) showed less accurate results, but might also be due to less accurate field estimates of percentage coverage. Overall, the EODHaM classification results encouraged us to derive the heights of all vegetated objects in the Netherlands from LiDAR data, in preparation for new habitat classifications.

  8. Forecasting land cover change impacts on drinking water treatment costs in Minneapolis, Minnesota

    NASA Astrophysics Data System (ADS)

    Woznicki, S. A.; Wickham, J.

    2017-12-01

    Source protection is a critical aspect of drinking water treatment. The benefits of protecting source water quality in reducing drinking water treatment costs are clear. However, forecasting the impacts of environmental change on source water quality and its potential to influence future treatment processes is lacking. The drinking water treatment plant in Minneapolis, MN has recognized that land cover change threatens water quality in their source watershed, the Upper Mississippi River Basin (UMRB). Over 1,000 km2 of forests, wetlands, and grasslands in the UMRB were lost to agriculture from 2008-2013. This trend, coupled with a projected population increase of one million people in Minnesota by 2030, concerns drinking water treatment plant operators in Minneapolis with respect to meeting future demand for clean water in the UMRB. The objective of this study is to relate land cover change (forest and wetland loss, agricultural expansion, urbanization) to changes in treatment costs for the Minneapolis, MN drinking water utility. To do this, we first developed a framework to determine the relationship between land cover change and water quality in the context of recent historical changes and projected future changes in land cover. Next we coupled a watershed model, the Soil and Water Assessment Tool (SWAT) to projections of land cover change from the FOREcasting SCEnarios of Land-use Change (FORE-SCE) model for the mid-21st century. Using historical Minneapolis drinking water treatment data (chemical usage and costs), source water quality in the UMRB was linked to changes in treatment requirements as a function of projected future land cover change. These analyses will quantify the value of natural landscapes in protecting drinking water quality and future treatment processes requirements. In addition, our study provides the Minneapolis drinking water utility with information critical to their planning and capital improvement process.

  9. Use of multi-temporal SPOT-5 satellite images for land degradation assessment in Cameron Highlands, Malaysia using Geospatial techniques

    NASA Astrophysics Data System (ADS)

    Nampak, Haleh; Pradhan, Biswajeet

    2016-07-01

    Soil erosion is the common land degradation problem worldwide because of its economic and environmental impacts. Therefore, land-use change detection has become one of the major concern to geomorphologists, environmentalists, and land use planners due to its impact on natural ecosystems. The objective of this paper is to evaluate the relationship between land use/cover changes and land degradation in the Cameron highlands (Malaysia) through multi-temporal remotely sensed satellite images and ancillary data. Land clearing in the study area has resulted increased soil erosion due to rainfall events. Also unsustainable development and agriculture, mismanagement and lacking policies contribute to increasing soil erosion rates. The LULC distribution of the study area was mapped for 2005, 2010, and 2015 through SPOT-5 satellite imagery data which were classified based on object-based classification. A soil erosion model was also used within a GIS in order to study the susceptibility of the areas affected by changes to overland flow and rain splash erosion. The model consists of four parameters, namely soil erodibility, slope, vegetation cover and overland flow. The results of this research will be used in the selection of the areas that require mitigation processes which will reduce their degrading potential. Key words: Land degradation, Geospatial, LULC change, Soil erosion modelling, Cameron highlands.

  10. Response of corn to organic matter quantity and distribution in soil

    USDA-ARS?s Scientific Manuscript database

    The objectives of this experiment were to: 1. Quantify the agronomic response of corn to tillage and cover crop management, 2. Determine soil quality changes following cropping of previous land in pasture, and 3. Estimate economics of corn production in response to tillage and cover crop management....

  11. Generation of 2D Land Cover Maps for Urban Areas Using Decision Tree Classification

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2014-09-01

    A 2D land cover map can automatically and efficiently be generated from high-resolution multispectral aerial images. First, a digital surface model is produced and each cell of the elevation model is then supplemented with attributes. A decision tree classification is applied to extract map objects like buildings, roads, grassland, trees, hedges, and walls from such an "intelligent" point cloud. The decision tree is derived from training areas which borders are digitized on top of a false-colour orthoimage. The produced 2D land cover map with six classes is then subsequently refined by using image analysis techniques. The proposed methodology is described step by step. The classification, assessment, and refinement is carried out by the open source software "R"; the generation of the dense and accurate digital surface model by the "Match-T DSM" program of the Trimble Company. A practical example of a 2D land cover map generation is carried out. Images of a multispectral medium-format aerial camera covering an urban area in Switzerland are used. The assessment of the produced land cover map is based on class-wise stratified sampling where reference values of samples are determined by means of stereo-observations of false-colour stereopairs. The stratified statistical assessment of the produced land cover map with six classes and based on 91 points per class reveals a high thematic accuracy for classes "building" (99 %, 95 % CI: 95 %-100 %) and "road and parking lot" (90 %, 95 % CI: 83 %-95 %). Some other accuracy measures (overall accuracy, kappa value) and their 95 % confidence intervals are derived as well. The proposed methodology has a high potential for automation and fast processing and may be applied to other scenes and sensors.

  12. Thematic Accuracy Assessment of the 2011 National Land ...

    EPA Pesticide Factsheets

    Accuracy assessment is a standard protocol of National Land Cover Database (NLCD) mapping. Here we report agreement statistics between map and reference labels for NLCD 2011, which includes land cover for ca. 2001, ca. 2006, and ca. 2011. The two main objectives were assessment of agreement between map and reference labels for the three, single-date NLCD land cover products at Level II and Level I of the classification hierarchy, and agreement for 17 land cover change reporting themes based on Level I classes (e.g., forest loss; forest gain; forest, no change) for three change periods (2001–2006, 2006–2011, and 2001–2011). The single-date overall accuracies were 82%, 83%, and 83% at Level II and 88%, 89%, and 89% at Level I for 2011, 2006, and 2001, respectively. Many class-specific user's accuracies met or exceeded a previously established nominal accuracy benchmark of 85%. Overall accuracies for 2006 and 2001 land cover components of NLCD 2011 were approximately 4% higher (at Level II and Level I) than the overall accuracies for the same components of NLCD 2006. The high Level I overall, user's, and producer's accuracies for the single-date eras in NLCD 2011 did not translate into high class-specific user's and producer's accuracies for many of the 17 change reporting themes. User's accuracies were high for the no change reporting themes, commonly exceeding 85%, but were typically much lower for the reporting themes that represented change. Only forest l

  13. Status of vegetation cover after 25 years since the last wildfire (Río Verde, Spain)

    NASA Astrophysics Data System (ADS)

    Martinez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2016-04-01

    Climatic conditions play an important role in the post-fire vegetation recovery as well as other factors like topography, soil, and pre and post-fire land use (Shakesby, 2011; Robichaud et al., 2013). This study deals with the characterization of the vegetation cover status in an area affected by a wildfire 25 years ago. Namely, the objectives are to: i) compare the current and previous vegetation cover to wildfire; and ii) evaluate whether the current vegetation has recovered the previous cover to wildfire. The study area is mainly located in the Rio Verde watershed (Sierra de las Nieves, South of Spain). It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8,156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1700 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. The Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover maps were obtained by means of object-oriented classifications. Also, NDVI index were calculated and mapped for both years in order to compare the status of vegetation cover. According to the results, the combination of remote sensing and GIS analysis let map the most recovered areas affected by the wildfire in 1991. The vegetation indexes indicated that the vegetation cover in 2013 was still lower than that mapped just before the 1991 wildfire in most of the burned area after 25-years: 33% of the burned area showed a regression in the vegetation from pine to shrubland or to grassland; 54% showed a similar status than in 1991; and only 11% presented a better vegetation cover nowadays than in 1991. References Robichaud, P., Lewis, S.A., Wagenbrenner, J.W., Ashmun, L.E., Brown, R.E. 2013. Post-fire mulching for runoff and erosion mitigation. Part I: Effectiveness at reducing hillslope erosion rates. Catena 105, 75-92. Shakesby, R.A. 2011. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Science Reviews 105, 71-100.

  14. Land change in eastern Mediterranean wood-pasture landscapes: the case of deciduous oak woodlands in Lesvos (Greece).

    PubMed

    Schaich, Harald; Kizos, Thanasis; Schneider, Stefan; Plieninger, Tobias

    2015-07-01

    In Mediterranean Europe, wood-pasture landscapes with oak woodlands as emblematic ecosystems are undergoing rapid land-use change, which may threaten their legacy as hotspots of biodiversity, ecosystem services, and cultural heritage. The objective of this study was to quantify land cover changes and transitions as well as the dynamics of oak woodland patterns and densities over 50 years in two municipalities at the center and edges of Quercus macrolepis distribution in Northern Lesvos (Greece). We used aerial photographs from 1960 and WorldView-2 satellite images from 2010 to process land cover maps and metrics, and to calculate oak canopy cover with a point-grid sampling approach. Spatiotemporal dynamics of land cover change were generally high--especially between oak woodlands and grass- and shrub-lands, resulting in a more heterogeneous and fragmented landscape in 2010. Surprisingly, oak woodland area remained stable with marginal losses in one study site and gains in the other one. Oak canopy cover increased by 8 and 9%. Spatial hotspots of change were mountainous and peripheral phrygana areas with expanding oak stands, as well as river valleys and near urban areas with expanding olive groves and grass- and shrublands in former complex cultivation and oak stands. We conclude that the parallel processes of abandonment of crop cultivation and intensification of livestock grazing have been less detrimental to oak woodlands than supposed. To ensure long-term persistence of oak woodlands in the face of ongoing rural depopulation and land-use intensification, environmental and agricultural policies should better address their specificities as anthropogenic habitats.

  15. Land Change in Eastern Mediterranean Wood-Pasture Landscapes: The Case of Deciduous Oak Woodlands in Lesvos (Greece)

    NASA Astrophysics Data System (ADS)

    Schaich, Harald; Kizos, Thanasis; Schneider, Stefan; Plieninger, Tobias

    2015-07-01

    In Mediterranean Europe, wood-pasture landscapes with oak woodlands as emblematic ecosystems are undergoing rapid land-use change, which may threaten their legacy as hotspots of biodiversity, ecosystem services, and cultural heritage. The objective of this study was to quantify land cover changes and transitions as well as the dynamics of oak woodland patterns and densities over 50 years in two municipalities at the center and edges of Quercus macrolepis distribution in Northern Lesvos (Greece). We used aerial photographs from 1960 and WorldView-2 satellite images from 2010 to process land cover maps and metrics, and to calculate oak canopy cover with a point-grid sampling approach. Spatiotemporal dynamics of land cover change were generally high—especially between oak woodlands and grass- and shrub-lands, resulting in a more heterogeneous and fragmented landscape in 2010. Surprisingly, oak woodland area remained stable with marginal losses in one study site and gains in the other one. Oak canopy cover increased by 8 and 9 %. Spatial hotspots of change were mountainous and peripheral phrygana areas with expanding oak stands, as well as river valleys and near urban areas with expanding olive groves and grass- and shrublands in former complex cultivation and oak stands. We conclude that the parallel processes of abandonment of crop cultivation and intensification of livestock grazing have been less detrimental to oak woodlands than supposed. To ensure long-term persistence of oak woodlands in the face of ongoing rural depopulation and land-use intensification, environmental and agricultural policies should better address their specificities as anthropogenic habitats.

  16. Enhancing the performance of regional land cover mapping

    NASA Astrophysics Data System (ADS)

    Wu, Weicheng; Zucca, Claudio; Karam, Fadi; Liu, Guangping

    2016-10-01

    Different pixel-based, object-based and subpixel-based methods such as time-series analysis, decision-tree, and different supervised approaches have been proposed to conduct land use/cover classification. However, despite their proven advantages in small dataset tests, their performance is variable and less satisfactory while dealing with large datasets, particularly, for regional-scale mapping with high resolution data due to the complexity and diversity in landscapes and land cover patterns, and the unacceptably long processing time. The objective of this paper is to demonstrate the comparatively highest performance of an operational approach based on integration of multisource information ensuring high mapping accuracy in large areas with acceptable processing time. The information used includes phenologically contrasted multiseasonal and multispectral bands, vegetation index, land surface temperature, and topographic features. The performance of different conventional and machine learning classifiers namely Malahanobis Distance (MD), Maximum Likelihood (ML), Artificial Neural Networks (ANNs), Support Vector Machines (SVMs) and Random Forests (RFs) was compared using the same datasets in the same IDL (Interactive Data Language) environment. An Eastern Mediterranean area with complex landscape and steep climate gradients was selected to test and develop the operational approach. The results showed that SVMs and RFs classifiers produced most accurate mapping at local-scale (up to 96.85% in Overall Accuracy), but were very time-consuming in whole-scene classification (more than five days per scene) whereas ML fulfilled the task rapidly (about 10 min per scene) with satisfying accuracy (94.2-96.4%). Thus, the approach composed of integration of seasonally contrasted multisource data and sampling at subclass level followed by a ML classification is a suitable candidate to become an operational and effective regional land cover mapping method.

  17. Multisensor earth observations to characterize wetlands and malaria epidemiology in Ethiopia

    NASA Astrophysics Data System (ADS)

    Midekisa, Alemayehu; Senay, Gabriel B.; Wimberly, Michael C.

    2014-11-01

    Malaria is a major global public health problem, particularly in Sub-Saharan Africa. The spatial heterogeneity of malaria can be affected by factors such as hydrological processes, physiography, and land cover patterns. Tropical wetlands, for example, are important hydrological features that can serve as mosquito breeding habitats. Mapping and monitoring of wetlands using satellite remote sensing can thus help to target interventions aimed at reducing malaria transmission. The objective of this study was to map wetlands and other major land cover types in the Amhara region of Ethiopia and to analyze district-level associations of malaria and wetlands across the region. We evaluated three random forests classification models using remotely sensed topographic and spectral data based on Shuttle Radar Topographic Mission (SRTM) and Landsat TM/ETM+ imagery, respectively. The model that integrated data from both sensors yielded more accurate land cover classification than single-sensor models. The resulting map of wetlands and other major land cover classes had an overall accuracy of 93.5%. Topographic indices and subpixel level fractional cover indices contributed most strongly to the land cover classification. Further, we found strong spatial associations of percent area of wetlands with malaria cases at the district level across the dry, wet, and fall seasons. Overall, our study provided the most extensive map of wetlands for the Amhara region and documented spatiotemporal associations of wetlands and malaria risk at a broad regional level. These findings can assist public health personnel in developing strategies to effectively control and eliminate malaria in the region.

  18. Multisensor earth observations to characterize wetlands and malaria epidemiology in Ethiopia

    USGS Publications Warehouse

    Midekisa, Alemayehu; Senay, Gabriel; Wimberly, Michael C.

    2014-01-01

    Malaria is a major global public health problem, particularly in Sub-Saharan Africa. The spatial heterogeneity of malaria can be affected by factors such as hydrological processes, physiography, and land cover patterns. Tropical wetlands, for example, are important hydrological features that can serve as mosquito breeding habitats. Mapping and monitoring of wetlands using satellite remote sensing can thus help to target interventions aimed at reducing malaria transmission. The objective of this study was to map wetlands and other major land cover types in the Amhara region of Ethiopia and to analyze district-level associations of malaria and wetlands across the region. We evaluated three random forests classification models using remotely sensed topographic and spectral data based on Shuttle Radar Topographic Mission (SRTM) and Landsat TM/ETM+ imagery, respectively. The model that integrated data from both sensors yielded more accurate land cover classification than single-sensor models. The resulting map of wetlands and other major land cover classes had an overall accuracy of 93.5%. Topographic indices and subpixel level fractional cover indices contributed most strongly to the land cover classification. Further, we found strong spatial associations of percent area of wetlands with malaria cases at the district level across the dry, wet, and fall seasons. Overall, our study provided the most extensive map of wetlands for the Amhara region and documented spatiotemporal associations of wetlands and malaria risk at a broad regional level. These findings can assist public health personnel in developing strategies to effectively control and eliminate malaria in the region.

  19. Random forests and stochastic gradient boosting for predicting tree canopy cover: Comparing tuning processes and model performance

    Treesearch

    E. Freeman; G. Moisen; J. Coulston; B. Wilson

    2014-01-01

    Random forests (RF) and stochastic gradient boosting (SGB), both involving an ensemble of classification and regression trees, are compared for modeling tree canopy cover for the 2011 National Land Cover Database (NLCD). The objectives of this study were twofold. First, sensitivity of RF and SGB to choices in tuning parameters was explored. Second, performance of the...

  20. Land Cover/Land Use Classification and Change Detection Analysis with Astronaut Photography and Geographic Object-Based Image Analysis

    NASA Technical Reports Server (NTRS)

    Hollier, Andi B.; Jagge, Amy M.; Stefanov, William L.; Vanderbloemen, Lisa A.

    2017-01-01

    For over fifty years, NASA astronauts have taken exceptional photographs of the Earth from the unique vantage point of low Earth orbit (as well as from lunar orbit and surface of the Moon). The Crew Earth Observations (CEO) Facility is the NASA ISS payload supporting astronaut photography of the Earth surface and atmosphere. From aurora to mountain ranges, deltas, and cities, there are over two million images of the Earth's surface dating back to the Mercury missions in the early 1960s. The Gateway to Astronaut Photography of Earth website (eol.jsc.nasa.gov) provides a publically accessible platform to query and download these images at a variety of spatial resolutions and perform scientific research at no cost to the end user. As a demonstration to the science, application, and education user communities we examine astronaut photography of the Washington D.C. metropolitan area for three time steps between 1998 and 2016 using Geographic Object-Based Image Analysis (GEOBIA) to classify and quantify land cover/land use and provide a template for future change detection studies with astronaut photography.

  1. Combining High Spatial Resolution Optical and LIDAR Data for Object-Based Image Classification

    NASA Astrophysics Data System (ADS)

    Li, R.; Zhang, T.; Geng, R.; Wang, L.

    2018-04-01

    In order to classify high spatial resolution images more accurately, in this research, a hierarchical rule-based object-based classification framework was developed based on a high-resolution image with airborne Light Detection and Ranging (LiDAR) data. The eCognition software is employed to conduct the whole process. In detail, firstly, the FBSP optimizer (Fuzzy-based Segmentation Parameter) is used to obtain the optimal scale parameters for different land cover types. Then, using the segmented regions as basic units, the classification rules for various land cover types are established according to the spectral, morphological and texture features extracted from the optical images, and the height feature from LiDAR respectively. Thirdly, the object classification results are evaluated by using the confusion matrix, overall accuracy and Kappa coefficients. As a result, a method using the combination of an aerial image and the airborne Lidar data shows higher accuracy.

  2. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock?

    PubMed Central

    Erasmus, B. F. N.; Archibald, S.

    2016-01-01

    Woody encroachment in ‘open’ biomes like grasslands and savannahs is occurring globally. Both local and global drivers, including elevated CO2, have been implicated in these increases. The relative importance of different processes is unresolved as there are few multi-site, multi-land-use evaluations of woody plant encroachment. We measured 70 years of woody cover changes over a 1020 km2 area covering four land uses (commercial ranching, conservation with elephants, conservation without elephants and communal rangelands) across a rainfall gradient in South African savannahs. Different directions of woody cover change would be expected for each different land use, unless a global factor is causing the increases. Woody cover change was measured between 1940 and 2010 using the aerial photo record. Detection of woody cover from each aerial photograph was automated using eCognitions' Object-based image analysis (OBIA). Woody cover doubled in all land uses across the rainfall gradient, except in conservation areas with elephants in low-rainfall savannahs. Woody cover in 2010 in low-rainfall savannahs frequently exceeded the maximum woody cover threshold predicted for African savannahs. The results indicate that a global factor, of which elevated CO2 is the likely candidate, may be driving encroachment. Elephants in low-rainfall savannahs prevent encroachment and localized megafaunal extinction is a probable additional cause of encroachment. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502384

  3. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock?

    PubMed

    Stevens, Nicola; Erasmus, B F N; Archibald, S; Bond, W J

    2016-09-19

    Woody encroachment in 'open' biomes like grasslands and savannahs is occurring globally. Both local and global drivers, including elevated CO2, have been implicated in these increases. The relative importance of different processes is unresolved as there are few multi-site, multi-land-use evaluations of woody plant encroachment. We measured 70 years of woody cover changes over a 1020 km(2) area covering four land uses (commercial ranching, conservation with elephants, conservation without elephants and communal rangelands) across a rainfall gradient in South African savannahs. Different directions of woody cover change would be expected for each different land use, unless a global factor is causing the increases. Woody cover change was measured between 1940 and 2010 using the aerial photo record. Detection of woody cover from each aerial photograph was automated using eCognitions' Object-based image analysis (OBIA). Woody cover doubled in all land uses across the rainfall gradient, except in conservation areas with elephants in low-rainfall savannahs. Woody cover in 2010 in low-rainfall savannahs frequently exceeded the maximum woody cover threshold predicted for African savannahs. The results indicate that a global factor, of which elevated CO2 is the likely candidate, may be driving encroachment. Elephants in low-rainfall savannahs prevent encroachment and localized megafaunal extinction is a probable additional cause of encroachment.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  4. Multitemporal analysis of Landsat images to detect land use land cover changes for monitoring soil sealing in the Nola area (Naples, Italy)

    NASA Astrophysics Data System (ADS)

    De Giglio, Michaela; Allocca, Maria; Franci, Francesca

    2016-10-01

    Land Use Land Cover Changes (LULCC) data provide objective information to support environmental policy, urban planning purposes and sustainable land development. Understanding of past land use/cover practices and current landscape patterns is critical to assess the effects of LULCC on the Earth system. Within the framework of soil sealing in Italy, the present study aims to assess the LULCC of the Nola area (Naples metropolitan area, Italy), relating to a thirty year period from 1984 to 2015. The urban sprawl affects this area causing the impervious surface increase, the loss in rural areas and landscape fragmentation. Located near Vesuvio volcano and crossed by artificial filled rivers, the study area is subject to landslide, hydraulic and volcanic risks. Landsat time series has been processed by means of the supervised per-pixel classification in order to produce multitemporal Land Use Land Cover maps. Then, post-classification comparison approach has been applied to quantify the changes occurring between 1984 and 2015, also analyzing the intermediate variations in 1999, namely every fifteen years. The results confirm the urban sprawl. The increase of the built-up areas mainly causes the habitat fragmentation and the agricultural land conversion of the Nola area that is already damaged by unauthorized disposal of urban waste. Moreover, considering the local risk maps, it was verified that some of the new urban areas were built over known hazardous sites. In order to limit the soil sealing, urgent measures and sustainable urban planning are required.

  5. The Land-Use and Land-Cover Change Analysis in Beijing Huairou in Last Ten Years

    NASA Astrophysics Data System (ADS)

    Zhao, Q.; Liu, G.; Tu, J.; Wang, Z.

    2018-04-01

    With eCognition software, the sample-based object-oriented classification method is used. Remote sensing images in Huairou district of Beijing had been classified using remote sensing images of last ten years. According to the results of image processing, the land use types in Huairou district of Beijing were analyzed in the past ten years, and the changes of land use types in Huairou district were obtained, and the reasons for its occurrence were analyzed.

  6. Trajectory analysis of land use and land cover maps to improve spatial-temporal patterns, and impact assessment on groundwater recharge

    NASA Astrophysics Data System (ADS)

    Zomlot, Z.; Verbeiren, B.; Huysmans, M.; Batelaan, O.

    2017-11-01

    Land use/land cover (LULC) change is a consequence of human-induced global environmental change. It is also considered one of the major factors affecting groundwater recharge. Uncertainties and inconsistencies in LULC maps are one of the difficulties that LULC timeseries analysis face and which have a significant effect on hydrological impact analysis. Therefore, an accuracy assessment approach of LULC timeseries is needed for a more reliable hydrological analysis and prediction. The objective of this paper is to assess the impact of land use uncertainty and to improve the accuracy of a timeseries of CORINE (coordination of information on the environment) land cover maps by using a new approach of identifying spatial-temporal LULC change trajectories as a pre-processing tool. This ensures consistency of model input when dealing with land-use dynamics and as such improves the accuracy of land use maps and consequently groundwater recharge estimation. As a case study the impact of consistent land use changes from 1990 until 2013 on groundwater recharge for the Flanders-Brussels region is assessed. The change trajectory analysis successfully assigned a rational trajectory to 99% of all pixels. The methodology is shown to be powerful in correcting interpretation inconsistencies and overestimation errors in CORINE land cover maps. The overall kappa (cell-by-cell map comparison) improved from 0.6 to 0.8 and from 0.2 to 0.7 for forest and pasture land use classes respectively. The study shows that the inconsistencies in the land use maps introduce uncertainty in groundwater recharge estimation in a range of 10-30%. The analysis showed that during the period of 1990-2013 the LULC changes were mainly driven by urban expansion. The results show that the resolution at which the spatial analysis is performed is important; the recharge differences using original and corrected CORINE land cover maps increase considerably with increasing spatial resolution. This study indicates that improving consistency of land use map timeseries is of critical importance for assessing land use change and its environmental impact.

  7. Understanding the Effect of Land Cover Classification on Model Estimates of Regional Carbon Cycling in the Boreal Forest Biome

    NASA Technical Reports Server (NTRS)

    Kimball, John; Kang, Sinkyu

    2003-01-01

    The original objectives of this proposed 3-year project were to: 1) quantify the respective contributions of land cover and disturbance (i.e., wild fire) to uncertainty associated with regional carbon source/sink estimates produced by a variety of boreal ecosystem models; 2) identify the model processes responsible for differences in simulated carbon source/sink patterns for the boreal forest; 3) validate model outputs using tower and field- based estimates of NEP and NPP; and 4) recommend/prioritize improvements to boreal ecosystem carbon models, which will better constrain regional source/sink estimates for atmospheric C02. These original objectives were subsequently distilled to fit within the constraints of a 1 -year study. This revised study involved a regional model intercomparison over the BOREAS study region involving Biome-BGC, and TEM (A.D. McGuire, UAF) ecosystem models. The major focus of these revised activities involved quantifying the sensitivity of regional model predictions associated with land cover classification uncertainties. We also evaluated the individual and combined effects of historical fire activity, historical atmospheric CO2 concentrations, and climate change on carbon and water flux simulations within the BOREAS study region.

  8. Estimation of Land Surface Temperature for the Quantitative Analysis of Land Cover of Lower Areas of Sindh to Assess the Impacts of Climate Variability

    NASA Astrophysics Data System (ADS)

    Qaisar, Maha

    2016-07-01

    Due to the present land use practices and climate variability, drastic shifts in regional climate and land covers are easily seen and their future reduction and gain are too well predicted. Therefore, there is an increasing need for data on land-cover changes at narrow and broad spatial scales. In this study, a remote sensing-based technique for land-cover-change analysis is applied to the lower Sindh areas for the last decade. Landsat satellite products were analyzed on an alternate yearly basis, from 1990 to 2016. Then Land-cover-change magnitudes were measured and mapped for alternate years. Land Surface Temperature (LST) is one of the critical elements in the natural phenomena of surface energy and water balance at local and global extent. However, LST was computed by using Landsat thermal bands via brightness temperature and a vegetation index. Normalized difference vegetation index (NDVI) was interpreted and maps were achieved. LST reflected NDVI patterns with complexity of vegetation patterns. Along with this, Object Based Image Analysis (OBIA) was done for classifying 5 major classes of water, vegetation, urban, marshy lands and barren lands with significant map layouts. Pakistan Meteorological Department provided the climate data in which rainfall, temperature and air temperature are included. Once the LST and OBIA are performed, overlay analysis was done to correlate the results of LST with OBIA and LST with meteorological data to ascertain the changes in land covers due to increasing centigrade of LST. However, satellite derived LST was also correlated with climate data for environmental analysis and to estimate Land Surface Temperature for assessing the inverse impacts of climate variability. This study's results demonstrate the land-cover changes in Lower Areas of Sindh including the Indus Delta mostly involve variations in land-cover conditions due to inter-annual climatic variability and temporary shifts in seasonality. However it is too concluded that transitory alteration of the biophysical characteristics of the surface driven by variations in rainfall is the prevailing progression. Moreover, future work will focus on finer-scale analysis and validations of patterns of changes due to rapid urbanization and population explosion in poverty stricken areas of Sindh which are posing an adverse impact on the land utilization and in turn increasing the land surface temperature and ultimately more stress on the low lying areas of Sindh i.e. Indus Delta will be losing its productivity and capacity to bear biodiversity whether the fauna or flora. Hence, this regional scale problem will become a global concern. Therefore, it is needed to stop the menace in its starting phase to mitigate the problem and to bring minds on this horrendous situation.

  9. The role of reforestation in carbon sequestration

    NASA Astrophysics Data System (ADS)

    Nave, L. E.; Walters, B. F.; Hofmeister, K.; Perry, C. H.; Mishra, U.; Domke, G. M.; Swanston, C.

    2017-12-01

    In the United States (U.S.), the maintenance of forest cover is a legal mandate for federally managed forest lands. Reforestation is one option for maintaining forest cover on managed or disturbed lands, and as a land use change can increase forest cover on previously non-forested lands, enhancing carbon (C)-based ecosystem services and functions such as the production of woody biomass for forest products and the mitigation of atmospheric CO2 pollution and climate change. Nonetheless, multiple assessments indicate that reforestation in the U.S. lags behind its potential, with continued ecosystem services and functions at risk if reforestation is not increased. In this context, there is need for multiple independent analyses that quantify the role of reforestation in C sequestration. Here, we report the findings of a large-scale data synthesis aimed at four objectives: 1) estimate C storage in major pools in forest and other land cover types; 2) quantify sources of variation in C pools; 3) compare the impacts of reforestation and afforestation on C pools; 4) assess whether results hold or diverge across ecoregions. Our data-driven analysis provides four key inferences regarding reforestation and other land use impacts on C sequestration. First, soils are the dominant C pool under all land cover types in the U.S., and spatial variation in soil C pool sizes has less to do with land cover than with other factors. Second, where historically cultivated lands are being reforested, topsoils are sequestering significant amounts of C, with the majority of reforested lands yet to reach sequestration capacity (relative to forested baseline). Third, the establishment of woody vegetation delivers immediate to multi-decadal C sequestration benefits in biomass and coarse woody debris pools, with two- to three-fold C sequestration benefits during the first several decades following planting. Fourth, opportunities to enhance C sequestration through reforestation vary among ecoregions, according to current levels of planting, typical forest growth rates, and past land uses (especially cultivation). Altogether, our results suggest that an immediate, but phased and spatially targeted approach to reforestation can enhance C sequestration in forest biomass and soils in the U.S. for decades to centuries to come.

  10. [Application of optical flow dynamic texture in land use/cover change detection].

    PubMed

    Yan, Li; Gong, Yi-Long; Zhang, Yi; Duan, Wei

    2014-11-01

    In the present study, a novel change detection approach for high resolution remote sensing images is proposed based on the optical flow dynamic texture (OFDT), which could achieve the land use & land cover change information automatically with a dynamic description of ground-object changes. This paper describes the ground-object gradual change process from the principle using optical flow theory, which breaks the ground-object sudden change hypothesis in remote sensing change detection methods in the past. As the steps of this method are simple, it could be integrated in the systems and software such as Land Resource Management and Urban Planning software that needs to find ground-object changes. This method takes into account the temporal dimension feature between remote sensing images, which provides a richer set of information for remote sensing change detection, thereby improving the status that most of the change detection methods are mainly dependent on the spatial dimension information. In this article, optical flow dynamic texture is the basic reflection of changes, and it is used in high resolution remote sensing image support vector machine post-classification change detection, combined with spectral information. The texture in the temporal dimension which is considered in this article has a smaller amount of data than most of the textures in the spatial dimensions. The highly automated texture computing has only one parameter to set, which could relax the onerous manual evaluation present status. The effectiveness of the proposed approach is evaluated with the 2011 and 2012 QuickBird datasets covering Duerbert Mongolian Autonomous County of Daqing City, China. Then, the effects of different optical flow smooth coefficient and the impact on the description of the ground-object changes in the method are deeply analyzed: The experiment result is satisfactory, with an 87.29% overall accuracy and an 0.850 7 Kappa index, and the method achieves better performance than the post-classification change detection methods using spectral information only.

  11. Integrated Dynamic Gloabal Modeling of Land Use, Energy and Economic Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atul Jain, University of Illinois, Urbana-Champaign, IL

    2009-10-14

    The overall objective of this collaborative project is to integrate an existing general equilibrium energy-economic growth model with a biogeochemical cycles and biophysical models in order to more fully explore the potential contribution of land use-related activities to future emissions scenarios. Land cover and land use change activities, including deforestation, afforestation, and agriculture management, are important source of not only CO2, but also non-CO2 GHGs. Therefore, contribution of land-use emissions to total emissions of GHGs is important, and consequently their future trends are relevant to the estimation of climate change and its mitigation. This final report covers the full projectmore » period of the award, beginning May 2006, which includes a sub-contract to Brown University later transferred to the National Center for Atmospheric Research (NCAR) when Co-PI Brian O'Neill changed institutional affiliations.« less

  12. Postfire shrub-cover dynamics: a 70-year fire history in big sagebrush communities.

    USDA-ARS?s Scientific Manuscript database

    Land managers use prescribed fire to meet rangeland management objectives. This study was conducted to quantify, from present conditions, the effect of time since last burn (TSLB) on shrub cover over 70 yr of fire history. We sampled mountain big sagebrush communities at the USDA, ARS, U.S. Sheep ...

  13. Land-Cover Trends of the Central Basin and Range Ecoregion

    USGS Publications Warehouse

    Soulard, Christopher E.

    2006-01-01

    The U.S. Geological Survey (USGS) Land Cover Trends research project is focused on understanding the amounts, rates, trends, causes, and implications of contemporary land-use and land-cover (LU/LC) change in the United States. This project is supported by the USGS Geographic Analysis and Monitoring Program in collaboration with the U.S. Environmental Protection Agency (EPA) and the National Aeronautics and Space Administration (NASA). LU/LC change is a pervasive process that modifies landscape characteristics and affects a broad range of socioeconomic, biologic, and hydrologic systems. Understanding the impacts and feedbacks of LU/LC change on environmental systems requires an understanding of the rates, patterns, and driving forces of past, present, and future LU/LC change. The objectives of the Land Cover Trends project are to (1) determine and describe the amount, rates, and trends of contemporary LU/LC change by ecoregion for the period 1973-2000 for the conterminous United States, (2) document the causes, driving forces, and implications of change, and (3) synthesize individual ecoregion results into a national assessment of LU/LC change. The Land Cover Trends research team includes staff from the USGS National Center for Earth Resources Observation and Science (EROS), Rocky Mountain Geographic Science Center, Eastern Geographic Science Center, Mid-Continent Geographic Science Center, and the Western Geographic Science Center. Other partners include researchers at South Dakota State University, University of Southern Mississippi, and State University of New York College of Environmental Science and Forestry. This report presents an assessment of LU/LC change in the Central Basin and Range ecoregion for the period 1973-2000. The Central Basin and Range ecoregion is one of 84 Level-III ecoregions as defined by the Environmental Protection Agency. Ecoregions have served as a spatial framework for environmental resource management and to denote areas that contain a geographically distinct assemblage of biotic and abiotic phenomena including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The established Land Cover Trends methodology generates estimates of LU/LC change using a probability sampling approach and change-detection analysis of thematic land-cover images derived from Landsat satellite imagery.

  14. Characterization of intra-annual reflectance properties of land cover classes in southeastern South Dakota using Landsat TM and ETM+ data

    USGS Publications Warehouse

    Vogelmann, James E.; DeFelice, Thomas P.

    2003-01-01

    Landsat-7 and Landsat-5 have orbits that are offset from each other by 8 days. During the time that the sensors on both satellites are operational, there is an opportunity for conducting analyses that incorporate multiple intra-annual high spatial resolution data sets for characterizing the Earth's land surface. In the current study, nine Landsat thematic mapper (TM) and enhanced thematic mapper plus (ETM+) data sets, covering the same path and row on different dates, were acquired during a 1-year time interval for a region in southeastern South Dakota and analyzed. Scenes were normalized using pseudoinvariant objects, and digital data from a series of test sites were extracted from the imagery and converted to surface reflectance. Sunphotometer data acquired on site were used to atmospherically correct the data. Ground observations that were made throughout the growing season by a large group of volunteers were used to help interpret spectroradiometric patterns and trends. Normalized images were found to be very effective in portraying the seasonal patterns of reflectance change that occurred throughout the region. Many of the radiometric patterns related to plant growth and development, but some also related to different background properties. The different kinds of land cover in the region were spectrally and radiometrically characterized and were found to have different seasonal patterns of reflectance. The degree to which the land cover classes could be separated spectrally and radiometrically, however, depended on the time of year during which the data sets were acquired, and no single data set appeared to be adequate for separating all types of land cover. This has practical implications for classification studies because known patterns of seasonal reflectance properties for the different types of land cover within a region will facilitate selection of the most appropriate data sets for producing land cover classifications.

  15. Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD)

    USGS Publications Warehouse

    Wickham, James; Stehman, Stephen V.; Gass, Leila; Dewitz, Jon; Sorenson, Daniel G.; Granneman, Brian J.; Poss, Richard V.; Baer, Lori Anne

    2017-01-01

    Accuracy assessment is a standard protocol of National Land Cover Database (NLCD) mapping. Here we report agreement statistics between map and reference labels for NLCD 2011, which includes land cover for ca. 2001, ca. 2006, and ca. 2011. The two main objectives were assessment of agreement between map and reference labels for the three, single-date NLCD land cover products at Level II and Level I of the classification hierarchy, and agreement for 17 land cover change reporting themes based on Level I classes (e.g., forest loss; forest gain; forest, no change) for three change periods (2001–2006, 2006–2011, and 2001–2011). The single-date overall accuracies were 82%, 83%, and 83% at Level II and 88%, 89%, and 89% at Level I for 2011, 2006, and 2001, respectively. Many class-specific user's accuracies met or exceeded a previously established nominal accuracy benchmark of 85%. Overall accuracies for 2006 and 2001 land cover components of NLCD 2011 were approximately 4% higher (at Level II and Level I) than the overall accuracies for the same components of NLCD 2006. The high Level I overall, user's, and producer's accuracies for the single-date eras in NLCD 2011 did not translate into high class-specific user's and producer's accuracies for many of the 17 change reporting themes. User's accuracies were high for the no change reporting themes, commonly exceeding 85%, but were typically much lower for the reporting themes that represented change. Only forest loss, forest gain, and urban gain had user's accuracies that exceeded 70%. Lower user's accuracies for the other change reporting themes may be attributable to the difficulty in determining the context of grass (e.g., open urban, grassland, agriculture) and between the components of the forest-shrubland-grassland gradient at either the mapping phase, reference label assignment phase, or both. NLCD 2011 user's accuracies for forest loss, forest gain, and urban gain compare favorably with results from other land cover change accuracy assessments.

  16. Modelisation spatio-temporelle de la vulnerabilite du milieu a la degradation des sols en milieu semi-aride a partir de donnees radar

    NASA Astrophysics Data System (ADS)

    Sylla, Daouda

    Defined as a process that reduces the potential of soil production or the usefulness of natural resources, soil degradation is a major environmental problem which affects over 41 % of the land and, over 80 % of people affected by this phenomenon live in developing countries. The general objective of the present project is the characterisation of different types of land use and land cover and the detection of their spatio-temporal changes from radar data (ERS-1, RADARSAT-1 and ENVISAT) for a spatio-temporal modeling of environmental vulnerability to soil degradation in semi-arid area. Due to the high sensitivity of the radar signal to the observing conditions of the sensor and the target, a partition of the radar images with respect to their angular configurations (23° and [33°-35°-47°]) and to environmental conditions (wet and dry) was first performed. A good characterisation and a good temporal evolution of the four types of land use and land cover of interest are obtained with different levels of contrast depending on the incidence angles and environmental conditions. In addition to pixel-based approach used for change detection (images differences, Principal component analysis), a monitoring of land cover from an object-oriented approach which focused on two types of land cover is developed. The method allows a detailed mapping of bare soil occurrences as a function of environmental conditions. Finally, using different sources of information, a modeling of the environmental vulnerability to soil degradation is performed in the South-west of Niger from the probabilistic fusion rule of Dempster-Shafer. The resulting decision maps are statistically acceptable at 93 % and 91 % with Kappa values of 86 % and 84 %, for respectively dry and wet conditions. Besides, they are used to produce a global map of the environmental vulnerability to soil degradation in this semi-arid area. Key-words: Environmental vulnerability to soil degradation; data fusion; radar images; land use changes; semi-arid environment; South-west of Niger.

  17. Assessment of the vegetation cover in a burned area 22-years ago using remote sensing techniques and GIS analysis (Sierra de las Nieves, South of Spain).

    NASA Astrophysics Data System (ADS)

    Martínez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2015-04-01

    The study aim was to characterize the vegetation cover in a burned area 22-years ago considering the previous situation to wildfire in 1991 and the current one in 2013. The objectives were to: (i) compare the current and previous vegetation cover to widlfire; (ii) evaluate whether the current vegetation has recovered the previous cover to wildfire; and (iii) determine the spatial variability of vegetation recovery after 22-years since the wildfire. The study area is located in Sierra de las Nieves, South of Spain. It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1500 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. Likewise, the Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover map were obtained by means of object-oriented classifications. Also, NDVI and PVI1 vegetation indexes were calculated and mapped for both years. Finally, some images transformations and kernel density images were applied to determine the most recovered areas and to map the spatial concentration of bare soil and pine cover areas in 1991 and 2013, respectively. According to the results, the combination of remote sensing and GIS analysis let map the most recovered areas affected by the wildfire in 1991. The vegetation indexes indicated that the vegetation cover in 2013 was still lower than that mapped just before the 1991 widlfire in most of the burned area after 22-years. This result was also confirmed by other techniques applied. Finally, the kernel density surface let identify and locate the most recovered areas of pine cover as well as those areas that still remain totally or partially uncovered (bare soil.

  18. The dynamics of human-induced land cover change in miombo ecosystems of southern Africa

    NASA Astrophysics Data System (ADS)

    Jaiteh, Malanding Sambou

    Understanding human-induced land cover change in the miombo require the consistent, geographically-referenced, data on temporal land cover characteristics as well as biophysical and socioeconomic drivers of land use, the major cause of land cover change. The overall goal of this research to examine the applications of high-resolution satellite remote sensing data in studying the dynamics of human-induced land cover change in the miombo. Specific objectives are to: (1) evaluate the applications of computer-assisted classification of Landsat Thematic Mapper (TM) data for land cover mapping in the miombo and (2) analyze spatial and temporal patterns of landscape change locations in the miombo. Stepwise Thematic Classification, STC (a hybrid supervised-unsupervised classification) procedure for classifying Landsat TM data was developed and tested using Landsat TM data. Classification accuracy results were compared to those from supervised and unsupervised classification. The STC provided the highest classification accuracy i.e., 83.9% correspondence between classified and referenced data compared to 44.2% and 34.5% for unsupervised and supervised classification respectively. Improvements in the classification process can be attributed to thematic stratification of the image data into spectrally homogenous (thematic) groups and step-by-step classification of the groups using supervised or unsupervised classification techniques. Supervised classification failed to classify 18% of the scene evidence that training data used did not adequately represent all of the variability in the data. Application of the procedure in drier miombo produced overall classification accuracy of 63%. This is much lower than that of wetter miombo. The results clearly demonstrate that digital classification of Landsat TM can be successfully implemented in the miombo without intensive fieldwork. Spatial characteristics of land cover change in agricultural and forested landscapes in central Malawi were analyzed for the period 1984 to 1995 spatial pattern analysis methods. Shifting cultivation areas, Agriculture in forested landscape, experienced highest rate of woodland cover fragmentation with mean patch size of closed woodland cover decreasing from 20ha to 7.5ha. Permanent bare (cropland and settlement) in intensive agricultural matrix landscapes increased 52% largely through the conversion of fallow areas. Protected National Park area remained fairly unchanged although closed woodland area increased by 4%, mainly from regeneration of open woodland. This study provided evidence that changes in spatial characteristics in the miombo differ with landscape. Land use change (i.e. conversion to cropland) is the primary driving force behind changes in landscape spatial patterns. Also, results revealed that exclusion of intense human use (i.e. cultivation and woodcutting) through regulations and/or fencing increased both closed woodland area (through regeneration of open woodland) and overall connectivity in the landscape. Spatial characteristics of land cover change were analyzed at locations in Malawi (wetter miombo) and Zimbabwe (drier miombo). Results indicate land cover dynamics differ both between and within case study sites. In communal areas in the Kasungu scene, land cover change is dominated by woodland fragmentation to open vegetation. Change in private commercial lands was dominantly expansion of bare (settlement and cropland) areas primarily at the expense of open vegetation (fallow land).

  19. Linking land cover and water quality in New York City's water supply watersheds.

    PubMed

    Mehaffey, M H; Nash, M S; Wade, T G; Ebert, D W; Jones, K B; Rager, A

    2005-08-01

    The Catskill/Delaware reservoirs supply 90% of New York City's drinking water. The City has implemented a series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was to examine how relationships between landscape and surface water measurements change between years. Thirty-two drainage areas delineated from surface water sample points (total nitrogen, total phosphorus, and fecal coliform bacteria concentrations) were used in step-wise regression analyses to test landscape and surface-water quality relationships. Two measurements of land use, percent agriculture and percent urban development, were positively related to water quality and consistently present in all regression models. Together these two land uses explained 25 to 75% of the regression model variation. However, the contribution of agriculture to water quality condition showed a decreasing trend with time as overall agricultural land cover decreased. Results from this study demonstrate that relationships between land cover and surface water concentrations of total nitrogen, total phosphorus, and fecal coliform bacteria counts over a large area can be evaluated using a relatively simple geographic information system method. Land managers may find this method useful for targeting resources in relation to a particular water quality concern, focusing best management efforts, and maximizing benefits to water quality with minimal costs.

  20. Monitoring, analyzing and simulating of spatial-temporal changes of landscape pattern over mining area

    NASA Astrophysics Data System (ADS)

    Liu, Pei; Han, Ruimei; Wang, Shuangting

    2014-11-01

    According to the merits of remotely sensed data in depicting regional land cover and Land changes, multi- objective information processing is employed to remote sensing images to analyze and simulate land cover in mining areas. In this paper, multi-temporal remotely sensed data were selected to monitor the pattern, distri- bution and trend of LUCC and predict its impacts on ecological environment and human settlement in mining area. The monitor, analysis and simulation of LUCC in this coal mining areas are divided into five steps. The are information integration of optical and SAR data, LULC types extraction with SVM classifier, LULC trends simulation with CA Markov model, landscape temporal changes monitoring and analysis with confusion matrixes and landscape indices. The results demonstrate that the improved data fusion algorithm could make full use of information extracted from optical and SAR data; SVM classifier has an efficient and stable ability to obtain land cover maps, which could provide a good basis for both land cover change analysis and trend simulation; CA Markov model is able to predict LULC trends with good performance, and it is an effective way to integrate remotely sensed data with spatial-temporal model for analysis of land use / cover change and corresponding environmental impacts in mining area. Confusion matrixes are combined with landscape indices to evaluation and analysis show that, there was a sustained downward trend in agricultural land and bare land, but a continues growth trend tendency in water body, forest and other lands, and building area showing a wave like change, first increased and then decreased; mining landscape has undergone a from small to large and large to small process of fragmentation, agricultural land is the strongest influenced landscape type in this area, and human activities are the primary cause, so the problem should be pay more attentions by government and other organizations.

  1. BOREAS TE-18 Landsat TM Physical Classification Image of the NSA

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David

    2000-01-01

    The BOREAS TE-18 team focused its efforts on using remotely sensed data to characterize the successional and disturbance dynamics of the boreal forest for use in carbon modeling. The objective of this classification is to provide the BOREAS investigators with a data product that characterizes the land cover of the NSA. A Landsat-5 TM image from 21-Jun-1995 was used to derive the classification. A technique was implemented that uses reflectances of various land cover types along with a geometric optical canopy model to produce spectral trajectories. These trajectories are used in a way that is similar to training data to classify the image into the different land cover classes. The data are provided in a binary, image file format. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. BOREAS TE-18 Landsat TM Physical Classification Image of the SSA

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David

    2000-01-01

    The BOREAS TE-18 team focused its efforts on using remotely sensed data to characterize the successional and disturbance dynamics of the boreal forest for use in carbon modeling. The objective of this classification is to provide the BOREAS investigators with a data product that characterizes the land cover of the SSA. A Landsat-5 TM image from 02-Sep-1994 was used to derive the classification. A technique was implemented that uses reflectances of various land cover types along with a geometric optical canopy model to produce spectral trajectories. These trajectories are used as training data to classify the image into the different land cover classes. These data are provided in a binary image file format. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  3. BOREAS TE-18 Landsat TM Maximum Likelihood Classification Image of the SSA

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David

    2000-01-01

    The BOREAS TE-18 team focused its efforts on using remotely sensed data to characterize the successional and disturbance dynamics of the boreal forest for use in carbon modeling. The objective of this classification is to provide the BOREAS investigators with a data product that characterizes the land cover of the SSA. A Landsat-5 TM image from 02-Sep- 1994 was used to derive the classification. A technique was implemented that uses reflectances of various land cover types along with a geometric optical canopy model to produce spectral trajectories. These trajectories are used as training data to classify the image into the different land cover classes. These data are provided in a binary image file format. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Center (DAAC).

  4. Land surface temperature measurements from EOS MODIS data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1993-01-01

    The task objectives of this reporting phase included: (1) completing the draft of the LST Algorithms Theoretical Basic Document by July 30, 1993; (2) making a detailed characterization of the thermal infrared measurement system including spectrometer, blackbody, and radiation sources; (3) making TIR spectral measurements of water and snow-cover surfaces with the MIDAC M2401 spectrometer; and (4) making conceptual and engineering design of an accessory system for spectrometric measurements at variable angles. These objectives are based on the requirements by the MODIS Science Team and the unique challenge in the development of MODIS LST algorithms: to acquire accurate spectral emissivity data of land covers in the near-term and to make ground validations of the LST product in the long-term with a TIR measurement system.

  5. Land cover

    USGS Publications Warehouse

    Jorgenson, Janet C.; Joria, Peter C.; Douglas, David C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Documenting the distribution of land-cover types on the Arctic National Wildlife Refuge coastal plain is the foundation for impact assessment and mitigation of potential oil exploration and development. Vegetation maps facilitate wildlife studies by allowing biologists to quantify the availability of important wildlife habitats, investigate the relationships between animal locations and the distribution or juxtaposition of habitat types, and assess or extrapolate habitat characteristics across regional areas.To meet the needs of refuge managers and biologists, satellite imagery was chosen as the most cost-effective method for mapping the large, remote landscape of the 1002 Area.Objectives of our study were the following: 1) evaluate a vegetation classification scheme for use in mapping. 2) determine optimal methods for producing a satellite-based vegetation map that adequately met the needs of the wildlife research and management objectives; 3) produce a digital vegetation map for the Arctic Refuge coastal plain using Lands at-Thematic Mapper(TM) satellite imagery, existing geobotanical classifications, ground data, and aerial photographs, and 4) perform an accuracy assessment of the map.

  6. Evaluating anthropogenic risk of grassland and forest habitat degradation using land-cover data

    Treesearch

    Kurt Riitters; James Wickham; Timothy Wade

    2009-01-01

    The effects of landscape context on habitat quality are receiving increased attention in conservation biology. The objective of this research is to demonstrate a landscape-level approach to mapping and evaluating the anthropogenic risks of grassland and forest habitat degradation by examining habitat context as defined by intensive anthropogenic land uses at multiple...

  7. Survey of Land-Grant Colleges and Universities. Bulletin, 1930, No. 9. Volume II. [Part VII - Index

    ERIC Educational Resources Information Center

    Office of Education, United States Department of the Interior, 1930

    1930-01-01

    The attached document covers the concluding sections of the second volume of the Survey of Land-Grant Colleges and Universities: Part VII through the index. Part VII, Extension services, is divided into the following sections: (1) Introduction; (2) Position and objectives of Smith-Lever cooperative extension; (3) Administrative organization of…

  8. Impacts of multiple stresses on water demand and supply across the southeastern United States

    Treesearch

    Ge Sun; Steven G. McNulty; Jennifer A. Moore Myers; Erika C. Cohen

    2008-01-01

    Assessment of long-term impacts of projected changes in climate, population, and land use and land cover on regional water resource is critical to the sustainable development of the southeastern United States. The objective of this study was to fully budget annual water availability for water supply (precipitation ) evapotranspiration + groundwater supply + return flow...

  9. Project ATLANTA (Atlanta Land use Analysis: Temperature and Air Quality): Use of Remote Sensing and Modeling to Analyze How Urban Land Use Change Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    1999-01-01

    This paper presents an overview of Project ATLANTA (ATlanta Land use ANalysis: Temperature and Air-quality) which is an investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta, Georgia metropolitan area since the early 1970's has impacted the region's climate and air quality. The primary objectives for this research effort are: (1) To investigate and model the relationships between land cover change in the Atlanta metropolitan, and the development of the urban heat island phenomenon through time; (2) To investigate and model the temporal relationships between Atlanta urban growth and land cover change on air quality; and (3) To model the overall effects of urban development on surface energy budget characteristics across the Atlanta urban landscape through time. Our key goal is to derive a better scientific understanding of how land cover changes associated with urbanization in the Atlanta area, principally in transforming forest lands to urban land covers through time, has, and will, effect local and regional climate, surface energy flux, and air quality characteristics. Allied with this goal is the prospect that the results from this research can be applied by urban planners, environmental managers and other decision-makers, for determining how urbanization has impacted the climate and overall environment of the Atlanta area. Multiscaled remote sensing data, particularly high resolution thermal infrared data, are integral to this study for the analysis of thermal energy fluxes across the Atlanta urban landscape.

  10. Agricultural conversion of floodplain ecosystems: implications for groundwater quality.

    PubMed

    Schilling, Keith E; Jacobson, Peter J; Vogelgesang, Jason A

    2015-04-15

    With current trends of converting grasslands to row crop agriculture in vulnerable areas, there is a critical need to evaluate the effects of land use on groundwater quality in large river floodplain systems. In this study, groundwater hydrology and nutrient dynamics associated with three land cover types (grassland, floodplain forest and cropland) were assessed at the Cedar River floodplain in southeastern Iowa. The cropland site consisted of newly-converted grassland, done specifically for our study. Our objectives were to evaluate spatial and temporal variations in groundwater hydrology and quality, and quantify changes in groundwater quality following land conversion from grassland to row crop in a floodplain. We installed five shallow and one deep monitoring wells in each of the three land cover types and recorded water levels and quality over a three year period. Crop rotations included soybeans in year 1, corn in year 2 and fallow with cover crops during year 3 due to river flooding. Water table levels behaved nearly identically among the sites but during the second and third years of our study, NO₃-N concentrations in shallow floodplain groundwater beneath the cropped site increased from 0.5 mg/l to more than 25 mg/l (maximum of 70 mg/l). The increase in concentration was primarily associated with application of liquid N during June of the second year (corn rotation), although site flooding may have exacerbated NO₃-N leaching. Geophysical investigation revealed differences in ground conductivity among the land cover sites that related significantly to variations in groundwater quality. Study results provide much-needed information on the effects of different land covers on floodplain groundwater and point to challenges ahead for meeting nutrient reduction goals if row crop land use expands into floodplains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Polarization in the land distribution, land use and land cover change in the Amazon

    PubMed Central

    D'ANTONA, Alvaro; VANWEY, Leah; LUDEWIGS, Thomas

    2013-01-01

    The objective of this article is to present Polarization of Agrarian Structure as a single, more complete representation than models emphasizing rural exodus and consolidation of land into large agropastoral enterprises of the dynamics of changing land distribution, land use / cover, and thus the rural milieu of Amazonia. Data were collected in 2003 using social surveys on a sample of 587 lots randomly selected from among 5,086 lots on a cadastral map produced in the 1970s. Georeferencing of current property boundaries in the location of these previously demarcated lots allows us to relate sociodemographic and biophysical variables of the surveyed properties to the changes in boundaries that have occurred since the 1970s. As have other authors in other Amazonian regions, we found concentration of land ownership into larger properties. The approach we took, however, showed that changes in the distribution of land ownership is not limited to the appearance of larger properties, those with 200 ha or more; there also exists substantial division of earlier lots into properties with fewer than five hectares, many without any agropastoral use. These two trends are juxtaposed against the decline in establishments with between five and 200 ha. The variation across groups in land use / land cover and population distribution shows the necessity of developing conceptual models, whether from socioeconomic, demographic or environmental perspectives, look beyond a single group of people or properties. PMID:24639597

  12. A hybrid Land Cover Dataset for Russia: a new methodology for merging statistics, remote sensing and in-situ information

    NASA Astrophysics Data System (ADS)

    Schepaschenko, D.; McCallum, I.; Shvidenko, A.; Kraxner, F.; Fritz, S.

    2009-04-01

    There is a critical need for accurate land cover information for resource assessment, biophysical modeling, greenhouse gas studies, and for estimating possible terrestrial responses and feedbacks to climate change. However, practically all existing land cover datasets have quite a high level of uncertainty and suffer from a lack of important details that does not allow for relevant parameterization, e.g., data derived from different forest inventories. The objective of this study is to develop a methodology in order to create a hybrid land cover dataset at the level which would satisfy requirements of the verified terrestrial biota full greenhouse gas account (Shvidenko et al., 2008) for large regions i.e. Russia. Such requirements necessitate a detailed quantification of land classes (e.g., for forests - dominant species, age, growing stock, net primary production, etc.) with additional information on uncertainties of the major biometric and ecological parameters in the range of 10-20% and a confidence interval of around 0.9. The approach taken here allows the integration of different datasets to explore synergies and in particular the merging and harmonization of land and forest inventories, ecological monitoring, remote sensing data and in-situ information. The following datasets have been integrated: Remote sensing: Global Land Cover 2000 (Fritz et al., 2003), Vegetation Continuous Fields (Hansen et al., 2002), Vegetation Fire (Sukhinin, 2007), Regional land cover (Schmullius et al., 2005); GIS: Soil 1:2.5 Mio (Dokuchaev Soil Science Institute, 1996), Administrative Regions 1:2.5 Mio, Vegetation 1:4 Mio, Bioclimatic Zones 1:4 Mio (Stolbovoi & McCallum, 2002), Forest Enterprises 1:2.5 Mio, Rivers/Lakes and Roads/Railways 1:1 Mio (IIASA's data base); Inventories and statistics: State Land Account (FARSC RF, 2006), State Forest Account - SFA (FFS RF, 2003), Disturbances in forests (FFS RF, 2006). The resulting hybrid land cover dataset at 1-km resolution comprises the following classes: Forest (each grid links to the SFA database, which contains 86,613 records); Agriculture (5 classes, parameterized by 89 administrative units); Wetlands (8 classes, parameterized by 83 zone/region units); Open Woodland, Burnt area; Shrub/grassland (50 classes, parameterized by 300 zone/region units); Water; Unproductive area. This study has demonstrated the ability to produce a highly detailed (both spatially and thematically) land cover dataset over Russia. Future efforts include further validation of the hybrid land cover dataset for Russia, and its use for assessment of the terrestrial biota full greenhouse gas budget across Russia. The methodology proposed in this study could be applied at the global level. Results of such an undertaking would however be highly dependent upon the quality of the available ground data. The implementation of the hybrid land cover dataset was undertaken in a way that it can be regularly updated based on new ground data and remote sensing products (ie. MODIS).

  13. Forest disturbances, deforestation and timber harvest patterns in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Boschetti, L.; Huo, L. Z.

    2016-12-01

    Current estimates of carbon-equivalent emissions report the contribution of deforestation as 12% of total anthropogenic carbon emissions (van der Werf et al., 2009), but accurate monitoring of forest carbon balance should discriminate between land use change related to forest natural disturbances, forest management and deforestation. The total change in forest cover (Gross Forest Cover Loss, GFCL) needs to be characterized based on the cause (natural/human) and on the outcome of the change (regeneration to forest/transition to non-forest)(Kurtz et al, 2010). We developed a multitemporal, object-oriented methodology to classify GFCL as either (a) deforestation, (b) fire and insect disturbances (c) forest management practices. The Landsat-derived University of Maryland Global Forest Change product (Hansen, 2013) is used to identify all the areas forest cover loss: those areas are subsequently converted to objects, and used to extract temporal profiles of spectral reflectances and spectral indices from the Landsat WELD dataset. Finally, the temporal profiles and descriptive parameters of shapes, textures, and spatial relationships of the objects are used in a rule-based classifier to identify the type of disturbance. To pathfind a global disturbance type classification, the methods are demonstrated by wall-to-wall classification of the forest cover loss in the conterminous United States for the 2002-2011 period. The results show that deforestation accounts for a small percentage (approximately 2%) of the GFCL in the CONUS, and are in agreement with the known patterns of logging activity, fire and insect damage. The time series of timber harvest clearcut is also in agreement with the national timber extraction statistics, showing reduced harvesting following the 2008 economic crisis. The results also highlight the different management practices on private and public lands: 36% of the US forests are publicly owned (federal, state and local institutions) but account only for 12% of the clearcuts, whereas private lands (64% of the total) account for 88% of the clearcut area. Conversely, stand replacing fire and insect disturbances affect primarily public lands (85% versus 15% on private lands).

  14. How Scientists Differentiate Between Land Cover Types

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Before scientists can transform raw satellite image data into land cover maps, they must decide on what categories of land cover they would like to use. Categories are simply the types of landscape that the scientists are trying to map and can vary greatly from map to map. For flood maps, there may be only two categories-dry land and wet land-while a standard global land cover map may have seventeen categories including closed shrub lands, savannas, evergreen needle leaf forest, urban areas, and ice/snow. The only requirement for any land cover category is that it have a distinct spectral signature that a satellite can record. As can be seen through a prism, many different colors (wavelengths) make up the spectra of sunlight. When sunlight strikes objects, certain wavelengths are absorbed and others are reflected or emitted. The unique way in which a given type of land cover reflects and absorbs light is known as its spectral signature. Anyone who has flown over the midwestern United States has seen evidence of this phenomenon. From an airplane window, the ground appears as a patchwork of different colors formed by the fields of crops planted there. The varying pigments of the leaves, the amount of foliage per square foot, the age of the plants, and many other factors create this tapestry. Most imaging satellites are sensitive to specific wavelengths of light, including infrared wavelengths that cannot be seen with the naked eye. Passive satellite remote sensors-such as those flown on Landsat 5, Landsat 7, and Terra-have a number of light detectors (photoreceptors) on board that measure the energy reflected or emitted by the Earth. One light detector records only the blue part of the spectrum coming off the Earth. Another observes all the yellow-green light and still another picks up on all the near-infrared light. The detectors scan the Earth's surface as the satellite travels in a circular orbit very nearly from pole-to-pole. To differentiate between types of land cover and their attributes, researchers manipulate the colors recorded by the satellite to get the combination of wavelengths that best distinguishes the spectral signature of the land cover they wish to identify. After an area of forest or water or grass is identified, they can outline the category on an easy-to-analyze, color-coded map. To verify their results, the scientists will often travel to the regions of interest and compare the results of the map with test sites on the ground. next: The Basic Vegetation Map back: Mapping Earth's Diverse Landscapes

  15. Assessing the Impact of Land Use and Land Cover Change on Global Water Resources

    NASA Astrophysics Data System (ADS)

    Batra, N.; Yang, Y. E.; Choi, H. I.; Islam, A.; Charlotte, D. F.; Cai, X.; Kumar, P.

    2007-12-01

    Land use and land cover changes (LULCC) significantly modify the hydrological regime of the watersheds, affecting water resources and environment from regional to global scale. This study seeks to advance and integrate water and energy cycle observation, scientific understanding, and human impacts to assess future water availability. To achieve the research objective, we integrate and interpret past and current space based and in situ observations into a global hydrologic model (GHM). GHM is developed with enhanced spatial and temporal resolution, physical complexity, hydrologic theory and processes to quantify the impact of LULCC on physical variables: surface runoff, subsurface flow, groundwater, infiltration, ET, soil moisture, etc. Coupled with the common land model (CLM), a 3-dimensional volume averaged soil-moisture transport (VAST) model is expanded to incorporate the lateral flow and subgrid heterogeneity. The model consists of 11 soil-hydrology layers to predict lateral as well as vertical moisture flux transport based on Richard's equations. The primary surface boundary conditions (SBCs) include surface elevation and its derivatives, land cover category, sand and clay fraction profiles, bedrock depth and fractional vegetation cover. A consistent global GIS-based dataset is constructed for the SBCs of the model from existing observational datasets comprising of various resolutions, map projections and data formats. Global ECMWF data at 6-hour time steps for the period 1971 through 2000 is processed to get the forcing data which includes incoming longwave and shortwave radiation, precipitation, air temperature, pressure, wind components, boundary layer height and specific humidity. Land use land cover data, generated using IPCC scenarios for every 10 years from 2000 to 2100 is used for future assessment on water resources. Alterations due to LULCC on surface water balance components: ET, groundwater recharge and runoff are then addressed in the study. Land use change disrupts the hydrological cycle through increasing the water yield at some places leading to floods while diminishing, or even eliminating the low flow at other places.

  16. The summer urban heat island of Bucharest (Romania) as retrieved from satellite imagery

    NASA Astrophysics Data System (ADS)

    Cheval, Sorin; Dumitrescu, Alexandru

    2014-05-01

    The summer Urban Heat Island (UHI) of the city of Bucharest (Romania) has been investigated in terms of its shape, intensity, extension, and links to land cover. The study integrates land surface temperature (LST) data retrieved by the MODIS sensors aboard the Terra and Aqua NASA satellites, and SEVIRI sensors on board of the geostationary platform MSG, along 2000-2012. Based on the Rodionov Regime Shift Index, the significant changing points in the land surface temperature values along transverse profiles crossing the city's centre were considered as UHI's limits. The study shows that the intensity calculated as the difference between the LST within the UHI limits and several surrounding buffers is an objective and flexible tool for describing the average thermal state of the urban-rural transition. The method secures the weight of comparing the UHI's intensity of different urban areas. There are little variations from one month to another, but UHI's shapes and intensities under clear-sky conditions are very specific to nighttime (more regular and 2-3°C less in the 7-km width buffer), and daytime (more twisted and more steep temperature decrease). For both cases, strong relationships with the land cover can be assumed. The nighttime UHI's geometry is more regular, and the intensity lower than the day situation, while the land cover exerts a strong influence on the Bucharest LST. After all, the study promotes an objective manner to delimitate and quantify the UHI based on satellite imagery. The study was performed within the STAR project 92/2013 (Urban Heat Island Monitoring under Present and Future Climate - UCLIMESA).

  17. Agricultural cropland mapping using black-and-white aerial photography, Object-Based Image Analysis and Random Forests

    NASA Astrophysics Data System (ADS)

    Vogels, M. F. A.; de Jong, S. M.; Sterk, G.; Addink, E. A.

    2017-02-01

    Land-use and land-cover (LULC) conversions have an important impact on land degradation, erosion and water availability. Information on historical land cover (change) is crucial for studying and modelling land- and ecosystem degradation. During the past decades major LULC conversions occurred in Africa, Southeast Asia and South America as a consequence of a growing population and economy. Most distinct is the conversion of natural vegetation into cropland. Historical LULC information can be derived from satellite imagery, but these only date back until approximately 1972. Before the emergence of satellite imagery, landscapes were monitored by black-and-white (B&W) aerial photography. This photography is often visually interpreted, which is a very time-consuming approach. This study presents an innovative, semi-automated method to map cropland acreage from B&W photography. Cropland acreage was mapped on two study sites in Ethiopia and in The Netherlands. For this purpose we used Geographic Object-Based Image Analysis (GEOBIA) and a Random Forest classification on a set of variables comprising texture, shape, slope, neighbour and spectral information. Overall mapping accuracies attained are 90% and 96% for the two study areas respectively. This mapping method increases the timeline at which historical cropland expansion can be mapped purely from brightness information in B&W photography up to the 1930s, which is beneficial for regions where historical land-use statistics are mostly absent.

  18. Continental-scale Sensitivity of Water Yield to Changes in Impervious Cover

    NASA Astrophysics Data System (ADS)

    Caldwell, P.; Sun, G.; McNulty, S.; Cohen, E.; Moore Myers, J.

    2012-12-01

    Projected land conversion from native forest, grassland, and shrubland to urban impervious cover will alter watershed water balances by reducing groundwater recharge and evapotranspiration, increasing surface runoff, and potentially altering regional weather patterns. These hydrologic changes have important ecohydrological implications to local watersheds, including stream channel habitat degradation and the loss of aquatic biodiversity. Many observational studies have evaluated the impact of urbanization on water yield in small catchments downstream of specific urban areas. However it is often difficult to separate the impact of impervious cover from other impacts of urbanization such as leaking water infrastructure, irrigation runoff, water supply withdrawals, and effluent discharge. In addition, the impact of impervious cover has not been evaluated at scales large enough to assess spatial differences in water yield sensitivity to changes in impervious cover. The objective of this study was to assess the sensitivity of water yield to impervious cover across the conterminous U.S., and to identify locations where water yield will be most impacted by future urbanization. We used the Water Supply Stress Index (WaSSI) model to simulate monthly water yield as impacted by impervious cover for the approximately 82,000 12-digit HUC watersheds across the conterminous U.S. WaSSI computed infiltration, surface runoff, soil moisture, and baseflow processes explicitly for ten vegetative land cover classes and impervious cover in each watershed using the 2006 National Land Cover Dataset estimates of impervious cover. Our results indicate that impervious cover has increased total water yield in urban areas (relative to native vegetation), and that the increase was most significant during the growing season. The proportion of stream flow that occurred as baseflow decreased, even though total water yield increased as a result of impervious cover. Water yield was most sensitive to changes in impervious cover in areas where annual evapotranspiration is high relative to precipitation (e.g. the Southwestern States, Texas, and Florida). Water yield was less sensitive in areas with low evapotranspiration relative to precipitation (e.g. Pacific Northwest and Northeastern States). Additionally, water yield was most impacted when high evapotranspiration land cover types (e.g. forests) were converted to impervious cover than when lower evapotranspiration land cover types (e.g. grassland) were converted. Using projections of future impervious cover provided by the U.S. EPA Integrated Climate and Land Use Scenarios project, water yield in urban areas of the Southwest, Texas, and Florida will be the most impacted by 2050, in part because these areas are projected to have significant increases in impervious cover, but also because they are in areas where evapotranspiration is high relative to precipitation. Our study suggests that watershed management should consider the climate-driven sensitivity of water yield to increases in impervious cover and the type of land cover being converted in addition to the magnitude of projected increases in impervious cover when evaluating impacts of urbanization on water resources.

  19. Geovisualization of land use and land cover using bivariate maps and Sankey flow diagrams

    NASA Astrophysics Data System (ADS)

    Strode, Georgianna; Mesev, Victor; Thornton, Benjamin; Jerez, Marjorie; Tricarico, Thomas; McAlear, Tyler

    2018-05-01

    The terms `land use' and `land cover' typically describe categories that convey information about the landscape. Despite the major difference of land use implying some degree of anthropogenic disturbance, the two terms are commonly used interchangeably, especially when anthropogenic disturbance is ambiguous, say managed forestland or abandoned agricultural fields. Cartographically, land use and land cover are also sometimes represented interchangeably within common legends, giving with the impression that the landscape is a seamless continuum of land use parcels spatially adjacent to land cover tracts. We believe this is misleading, and feel we need to reiterate the well-established symbiosis of land uses as amalgams of land covers; in other words land covers are subsets of land use. Our paper addresses this spatially complex, and frequently ambiguous relationship, and posits that bivariate cartographic techniques are an ideal vehicle for representing both land use and land cover simultaneously. In more specific terms, we explore the use of nested symbology as ways to represent graphically land use and land cover, where land cover are circles nested with land use squares. We also investigate bivariate legends for representing statistical covariance as a means for visualizing the combinations of land use and cover. Lastly, we apply Sankey flow diagrams to further illustrate the complex, multifaceted relationships between land use and land cover. Our work is demonstrated on data representing land use and cover data for the US state of Florida.

  20. Analysis of streamflow response to land use and land cover changes using satellite data and hydrological modelling: case study of Dinder and Rahad tributaries of the Blue Nile (Ethiopia-Sudan)

    NASA Astrophysics Data System (ADS)

    Hassaballah, Khalid; Mohamed, Yasir; Uhlenbrook, Stefan; Biro, Khalid

    2017-10-01

    Understanding the land use and land cover changes (LULCCs) and their implication on surface hydrology of the Dinder and Rahad basins (D&R, approximately 77 504 km2) is vital for the management and utilization of water resources in the basins. Although there are many studies on LULCC in the Blue Nile Basin, specific studies on LULCC in the D&R are still missing. Hence, its impact on streamflow is unknown. The objective of this paper is to understand the LULCC in the Dinder and Rahad and its implications on streamflow response using satellite data and hydrological modelling. The hydrological model has been derived by different sets of land use and land cover maps from 1972, 1986, 1998 and 2011. Catchment topography, land cover and soil maps are derived from satellite images and serve to estimate model parameters. Results of LULCC detection between 1972 and 2011 indicate a significant decrease in woodland and an increase in cropland. Woodland decreased from 42 to 14 % and from 35 to 14 % for Dinder and Rahad, respectively. Cropland increased from 14 to 47 % and from 18 to 68 % in Dinder and Rahad, respectively. The model results indicate that streamflow is affected by LULCC in both the Dinder and the Rahad rivers. The effect of LULCC on streamflow is significant during 1986 and 2011. This could be attributed to the severe drought during the mid-1980s and the recent large expansion in cropland.

  1. Demonstrating Change with Astronaut Photography Using Object Based Image Analysis

    NASA Technical Reports Server (NTRS)

    Hollier, Andi; Jagge, Amy

    2017-01-01

    Every day, hundreds of images of Earth flood the Crew Earth Observations database as astronauts use hand held digital cameras to capture spectacular frames from the International Space Station. The variety of resolutions and perspectives provide a template for assessing land cover change over decades. We will focus on urban growth in the second fastest growing city in the nation, Houston, TX, using Object-Based Image Analysis. This research will contribute to the land change science community, integrated resource planning, and monitoring of the rapid rate of urban sprawl.

  2. Spectral reflectance characteristics of different snow and snow-covered land surface objects and mixed spectrum fitting

    USGS Publications Warehouse

    Zhang, J.-H.; Zhou, Z.-M.; Wang, P.-J.; Yao, F.-M.; Yang, L.

    2011-01-01

    The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area. The result showed that for a pure snow spectrum, the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1030 nm wavelength. Compared with fresh snow, the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300~1300, 1700~1800 and 2200~2300 nm, the lowest was from the compacted snow and frozen ice. For the vegetation and snow mixed spectral characteristics, it was indicated that the spectral reflectance increased for the snow-covered land types(including pine leaf with snow and pine leaf on snow background), due to the influence of snow background in the range of 350~1300 nm. However, the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic. In the end, based on the spectrum analysis of snow, vegetation, and mixed snow/vegetation pixels, the mixed spectral fitting equations were established, and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones(correlation coefficient R2=0.9509).

  3. Mapping and estimating land change between 2001 and 2013 in a heterogeneous landscape in West Africa: Loss of forestlands and capacity building opportunities

    NASA Astrophysics Data System (ADS)

    Badjana, Hèou Maléki; Olofsson, Pontus; Woodcock, Curtis E.; Helmschrot, Joerg; Wala, Kpérkouma; Akpagana, Koffi

    2017-12-01

    In West Africa, accurate classification of land cover and land change remains a big challenge due to the patchy and heterogeneous nature of the landscape. Limited data availability, human resources and technical capacities, further exacerbate the challenge. The result is a region that is among the more understudied areas in the world, which in turn has resulted in a lack of appropriate information required for sustainable natural resources management. The objective of this paper is to explore open source software and easy-to-implement approaches to mapping and estimation of land change that are transferrable to local institutions to increase capacity in the region, and to provide updated information on the regional land surface dynamics. To achieve these objectives, stable land cover and land change between 2001 and 2013 in the Kara River Basin in Togo and Benin were mapped by direct multitemporal classification of Landsat data by parameterization and evaluation of two machine-learning algorithms. Areas of land cover and change were estimated by application of an unbiased estimator to sample data following international guidelines. A prerequisite for all tools and methods was implementation in an open source environment, and adherence to international guidelines for reporting land surface activities. Findings include a recommendation of the Random Forests algorithm as implemented in Orfeo Toolbox, and a stratified estimation protocol - all executed in the QGIS graphical use interface. It was found that despite an estimated reforestation of 10,0727 ± 3480 ha (95% confidence interval), the combined rate of forest and savannah loss amounted to 56,271 ± 9405 ha (representing a 16% loss of the forestlands present in 2001), resulting in a rather sharp net loss of forestlands in the study area. These dynamics had not been estimated prior to this study, and the results will provide useful information for decision making pertaining to natural resources management, land management planning, and the implementation of the United Nations Collaborative Programme on Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (UN-REDD).

  4. The FORE-SCE model: a practical approach for projecting land cover change using scenario-based modeling

    USGS Publications Warehouse

    Sohl, Terry L.; Sayler, Kristi L.; Drummond, Mark A.; Loveland, Thomas R.

    2007-01-01

    A wide variety of ecological applications require spatially explicit, historic, current, and projected land use and land cover data. The U.S. Land Cover Trends project is analyzing contemporary (1973–2000) land-cover change in the conterminous United States. The newly developed FORE-SCE model used Land Cover Trends data and theoretical, statistical, and deterministic modeling techniques to project future land cover change through 2020 for multiple plausible scenarios. Projected proportions of future land use were initially developed, and then sited on the lands with the highest potential for supporting that land use and land cover using a statistically based stochastic allocation procedure. Three scenarios of 2020 land cover were mapped for the western Great Plains in the US. The model provided realistic, high-resolution, scenario-based land-cover products suitable for multiple applications, including studies of climate and weather variability, carbon dynamics, and regional hydrology.

  5. Assessing state-wide biodiversity in the Florida Gap analysis project

    USGS Publications Warehouse

    Pearlstine, L.G.; Smith, S.E.; Brandt, L.A.; Allen, Craig R.; Kitchens, W.M.; Stenberg, J.

    2002-01-01

    The Florida Gap (FI-Gap) project provides an assessment of the degree to which native animal species and natural communities are or are not represented in existing conservation lands. Those species and communities not adequately represented in areas being managed for native species constitute 'gaps' in the existing network of conservation lands. The United States Geological Survey Gap Analysis Program is a national effort and so, eventually, all 50 states will have completed it. The objective of FI-Gap was to provide broad geographic information on the status of terrestrial vertebrates, butterflies, skippers and ants and their respective habitats to address the loss of biological diversity. To model the distributions and potential habitat of all terrestrial species of mammals, breeding birds, reptiles, amphibians, butterflies, skippers and ants in Florida, natural land cover was mapped to the level of dominant or co-dominant plant species. Land cover was classified from Landsat Thematic Mapper (TM) satellite imagery and auxiliary data such as the national wetlands inventory (NWI), soils maps, aerial imagery, existing land use/land cover maps, and on-the-ground surveys, Wildlife distribution models were produced by identifying suitable habitat for each species within that species' range, Mammalian models also assessed a minimum critical area required for sustainability of the species' population. Wildlife species richness was summarized against land stewardship ranked by an area's mandates for conservation protection. ?? 2002 Elsevier Science Ltd. All rights reserved.

  6. Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information

    NASA Astrophysics Data System (ADS)

    Yang, He; Ma, Ben; Du, Qian; Yang, Chenghai

    2010-08-01

    In this paper, we propose approaches to improve the pixel-based support vector machine (SVM) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood relationship is used to correct the misclassified class pairs, such as roof and trail, road and roof. These classes may be difficult to be separated because they may have similar spectral signatures and their spatial features are not distinct enough to help their discrimination. In addition, misclassification incurred from within-class trivial spectral variation can be corrected by using pixel connectivity information in a local window so that spectrally homogeneous regions can be well preserved. Our experimental results demonstrate the efficiency of the proposed approaches in classification accuracy improvement. The overall performance is competitive to the object-based SVM classification.

  7. Impact of sensor's point spread function on land cover characterization: Assessment and deconvolution

    USGS Publications Warehouse

    Huang, C.; Townshend, J.R.G.; Liang, S.; Kalluri, S.N.V.; DeFries, R.S.

    2002-01-01

    Measured and modeled point spread functions (PSF) of sensor systems indicate that a significant portion of the recorded signal of each pixel of a satellite image originates from outside the area represented by that pixel. This hinders the ability to derive surface information from satellite images on a per-pixel basis. In this study, the impact of the PSF of the Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m bands was assessed using four images representing different landscapes. Experimental results showed that though differences between pixels derived with and without PSF effects were small on the average, the PSF generally brightened dark objects and darkened bright objects. This impact of the PSF lowered the performance of a support vector machine (SVM) classifier by 5.4% in overall accuracy and increased the overall root mean square error (RMSE) by 2.4% in estimating subpixel percent land cover. An inversion method based on the known PSF model reduced the signals originating from surrounding areas by as much as 53%. This method differs from traditional PSF inversion deconvolution methods in that the PSF was adjusted with lower weighting factors for signals originating from neighboring pixels than those specified by the PSF model. By using this deconvolution method, the lost classification accuracy due to residual impact of PSF effects was reduced to only 1.66% in overall accuracy. The increase in the RMSE of estimated subpixel land cover proportions due to the residual impact of PSF effects was reduced to 0.64%. Spatial aggregation also effectively reduced the errors in estimated land cover proportion images. About 50% of the estimation errors were removed after applying the deconvolution method and aggregating derived proportion images to twice their dimensional pixel size. ?? 2002 Elsevier Science Inc. All rights reserved.

  8. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Namugize, Jean Nepomuscene; Jewitt, Graham; Graham, Mark

    2018-06-01

    Land use and land cover change are major drivers of water quality deterioration in watercourses and impoundments. However, understanding of the spatial and temporal variability of land use change characteristics and their link to water quality parameters in catchments is limited. As a contribution to address this limitation, the objective of this study is to assess the linkages between biophysico-chemical water quality parameters and land use and land cover (LULC) classes in the upper reaches of the uMngeni Catchment, a rapidly developing catchment in South Africa. These were assessed using Geographic Information Systems tools and statistical analyses for the years 1994, 2000, 2008 and 2011 based on changes over time of eight LULC classes and available water quality information. Natural vegetation, forest plantations and cultivated areas occupy 85% of the catchment. Cultivated, urban/built-up and degraded areas increased by 6%, 4.5% and 3%, respectively coinciding with a decrease in natural vegetation by 17%. Variability in the concentration of water quality parameters from 1994 to 2011 and an overall decline in water quality were observed. Escherichia coli (E. coli) levels exceeding the recommended guidelines for recreation and public health protection was noted as a major issue at seven of the nine sampling points. Overall, water supply reservoirs in the catchment retained over 20% of nutrients and over 85% of E. coli entering them. A relationship between land use types and water quality variables was found. However, the degree and magnitude of the associations varies between sub-catchments and is difficult to quantify. This highlights the complexity and the site-specific nature of relationships between land use types and water quality parameters in the catchment. Thus, this study provides useful findings on the general relationship between land use and land cover and water quality degradation, but highlights the risks of applying simple relationships or adding complex relationships in the management of the catchment.

  9. Assessment of Landscape Fragmentation Associated With Urban Centers Using ASTER Data

    NASA Astrophysics Data System (ADS)

    Stefanov, W. L.

    2002-12-01

    The role of humans as an integral part of the environment and ecosystem processes has only recently been accepted into mainstream ecological thought. The realization that virtually all ecosystems on Earth have experienced some degree of human alteration or impact has highlighted the need to incorporate humans (and their environmental effects) into ecosystem models. A logical starting point for investigation of human ecosystem dynamics is examination of the land cover characteristics of large urban centers. Land cover and land use changes associated with urbanization are important drivers of local geological, hydrological, ecological, and climatic change. Quantification and monitoring of urban land cover/land use change is part of the primary mission of the ASTER instrument on board the NASA Terra satellite, and comprises the fundamental research objective of the Urban Environmental Monitoring (UEM) Program at Arizona State University. The UEM program seeks to acquire day/night, visible through thermal infrared data twice per year for 100 global urban centers (with an emphasis on semi-arid cities) over the nominal six-year life of the Terra mission. Data have been acquired for the majority of the target urban centers and are used to compare landscape fragmentation patterns on the basis of land cover classifications. Land cover classifications of urban centers are obtained using visible through mid-infrared reflectance and emittance spectra together with calculated vegetation index and spatial variance texture information (all derived from raw ASTER data). This information is combined within a classification matrix, using an expert system framework, to obtain final pixel classifications. Landscape fragmentation is calculated using a pixel per unit area metric for comparison between 55 urban centers with varying geographic and climatic settings including North America, South America, Europe, central and eastern Asia, and Australia. Temporal variations in land cover and landscape fragmentation are assessed for 9 urban centers (Albuquerque, New Mexico, USA; Baghdad, Iraq; Las Vegas, Nevada, USA; Lisbon, Portugal; Madrid, Spain; San Francisco, California, USA; Tokyo, Japan; and Vancouver, Canada). These data provide a useful baseline for comparison of human-dominated ecosystem land cover and associated regional landscape fragmentation. Continued collection of ASTER data throughout the duration of the Terra mission will enable further investigation of urban ecosystem trends.

  10. Staff Study Coronet Operations in the Kanto Plain of Honshu

    DTIC Science & Technology

    1945-08-15

    Base Troons 60,000 Air-Ground Personnel 60,000 Ease and Service Troops Large number of Citizens Volunteer" Units (3) That the initial assaults will...operation, the eraemy will have been forced to withdraw the bulk of his remaining land- based air force to the Asiatic Mainland, but that this... bases , proceeding to the objective area under cover of the Pacific Fleet and carrier and land- based aviation. It effects, on "Y"-Day, a landing of the

  11. Decadal land cover change dynamics in Bhutan.

    PubMed

    Gilani, Hammad; Shrestha, Him Lal; Murthy, M S R; Phuntso, Phuntso; Pradhan, Sudip; Bajracharya, Birendra; Shrestha, Basanta

    2015-01-15

    Land cover (LC) is one of the most important and easily detectable indicators of change in ecosystem services and livelihood support systems. This paper describes the decadal dynamics in LC changes at national and sub-national level in Bhutan derived by applying object-based image analysis (OBIA) techniques to 1990, 2000, and 2010 Landsat (30 m spatial resolution) data. Ten LC classes were defined in order to give a harmonized legend land cover classification system (LCCS). An accuracy of 83% was achieved for LC-2010 as determined from spot analysis using very high resolution satellite data from Google Earth Pro and limited field verification. At the national level, overall forest increased from 25,558 to 26,732 km(2) between 1990 and 2010, equivalent to an average annual growth rate of 59 km(2)/year (0.22%). There was an overall reduction in grassland, shrubland, and barren area, but the observations were highly dependent on time of acquisition of the satellite data and climatic conditions. The greatest change from non-forest to forest (277 km(2)) was in Bumthang district, followed by Wangdue Phodrang and Trashigang, with the least (1 km(2)) in Tsirang. Forest and scrub forest covers close to 75% of the land area of Bhutan, and just over half of the total area (51%) has some form of conservation status. This study indicates that numerous applications and analyses can be carried out to support improved land cover and land use (LCLU) management. It will be possible to replicate this study in the future as comparable new satellite data is scheduled to become available. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Wetland fire scar monitoring and analysis using archival Landsat data for the Everglades

    USGS Publications Warehouse

    Jones, John W.; Hall, Annette E.; Foster, Ann M.; Smith, Thomas J.

    2013-01-01

    The ability to document the frequency, extent, and severity of fires in wetlands, as well as the dynamics of post-fire wetland land cover, informs fire and wetland science, resource management, and ecosystem protection. Available information on Everglades burn history has been based on field data collection methods that evolved through time and differ by land management unit. Our objectives were to (1) design and test broadly applicable and repeatable metrics of not only fire scar delineation but also post-fire land cover dynamics through exhaustive use of the Landsat satellite data archives, and then (2) explore how those metrics relate to various hydrologic and anthropogenic factors that may influence post-fire land cover dynamics. Visual interpretation of every Landsat scene collected over the study region during the study time frame produced a new, detailed database of burn scars greater than 1.6 ha in size in the Water Conservation Areas and post-fire land cover dynamics for Everglades National Park fires greater than 1.6 ha in area. Median burn areas were compared across several landscape units of the Greater Everglades and found to differ as a function of administrative unit and fire history. Some burned areas transitioned to open water, exhibiting water depths and dynamics that support transition mechanisms proposed in the literature. Classification tree techniques showed that time to green-up and return to pre-burn character were largely explained by fire management practices and hydrology. Broadly applicable as they use data from the global, nearly 30-year-old Landsat archive, these methods for documenting wetland burn extent and post-fire land cover change enable cost-effective collection of new data on wetland fire ecology and independent assessment of fire management practice effectiveness.

  13. Distribution of green infrastructure along walkable roads ...

    EPA Pesticide Factsheets

    Low-income and minority neighborhoods frequently lack healthful resources to which wealthier communities have access. Though important, the addition of facilities such as recreation centers can be costly and take time to implement. Urban green infrastructure, such as street trees and other green space, can be a low-cost alternative to promote frequency and duration of outdoor physical activity. Street trees and other green space may increase outdoor physical activity levels by providing shade, improving aesthetics, and promoting social engagement. Though street trees and green space provide many benefits and are publicly accessible at all times, these resources are not evenly distributed between neighborhoods. An objective analysis of street tree cover and green space in 6,407 block groups across 10 urban areas was conducted using fine-scale land cover data. Distribution of green infrastructure was then analyzed by minority status, income, car ownership, housing density, and employment density. The objective measure of street tree cover and green space is based on 1-meter resolution land cover data from the U.S. EPA-led EnviroAtlas. Tree cover was analyzed along each side of walkable road centerlines in the areas where sidewalks are estimated to be. Green space was calculated within 25 meters of road centerlines. Percent tree cover and green space per city block were then summarized to census block group (CBG). CBG demographics from the U.S. Census and built env

  14. Mapping Secondary Forest Succession on Abandoned Agricultural Land in the Polish Carpathians

    NASA Astrophysics Data System (ADS)

    Kolecka, N.; Kozak, J.; Kaim, D.; Dobosz, M.; Ginzler, Ch.; Psomas, A.

    2016-06-01

    Land abandonment and secondary forest succession have played a significant role in land cover changes and forest cover increase in mountain areas in Europe over the past several decades. Land abandonment can be easily observed in the field over small areas, but it is difficult to map over the large areas, e.g., with remote sensing, due to its subtle and spatially dispersed character. Our previous paper presented how the LiDAR (Light Detection and Ranging) and topographic data were used to detect secondary forest succession on abandoned land in one commune located in the Polish Carpathians by means of object-based image analysis (OBIA) and GIS (Kolecka et al., 2015). This paper proposes how the method can be applied to efficiently map secondary forest succession over the entire Polish Carpathians, incorporating spatial sampling strategy supported by various ancillary data. Here we discuss the methods of spatial sampling, its limitations and results in the context of future secondary forest succession modelling.

  15. Investigation of Land Subsidence using ALOS PALSAR data: a case study in Mentougou (Beijing, China)

    NASA Astrophysics Data System (ADS)

    Chen, Jianping; Xiang, Jie; Xie, Shuai; Liu, Jing; Tarolli, Paolo

    2017-04-01

    Mining activities have been documented for centuries in Mentougou, and land subsidence resulting from mining operations has already been known over the past few decades. However, there has been ongoing concern that excessive groundwater extraction may lead to further subsidence. Therefore it is critical to map the land cover changes to understand the actual impact of these activities. So, the land cover changes from 2006 to 2011 were examined based on multi-source remote sensing imageries( including ALOS and landsat-7) by using object-oriented classifications combined with a decision tree and retrospective approaches. Also, land subsidence in Mentougou between 2006 and 2011 has been mapped using the interferometric synthetic aperture radar (InSAR) time-series analysis with the ALOS L-band SAR data. We processed 14 ascending SAR images during May 2006 to July 2011. Comparison of InSAR measurements with the land cover changes and pre-existing faults suggest that mining activities is the main cause of land subsidence. The land subsidence observed from InSAR data are approximately up to 15 mm/year in open-pit mining area and up to 24 mm/year in underground mining areas. The InSAR result are validated by the ground survey data in several areas, and the comparison between the InSAR result with the mining schedule showed there were some correlations between them. The result underline the potential use of InSAR measurements to provide better investigation for land subsidence, and also suggest that the most influential factors for land subsidence is underground coal mine.

  16. Multisensor earth observations to characterize wetlands and malaria epidemiology in Ethiopia

    PubMed Central

    Midekisa, Alemayehu; Senay, Gabriel B; Wimberly, Michael C

    2014-01-01

    Malaria is a major global public health problem, particularly in Sub-Saharan Africa. The spatial heterogeneity of malaria can be affected by factors such as hydrological processes, physiography, and land cover patterns. Tropical wetlands, for example, are important hydrological features that can serve as mosquito breeding habitats. Mapping and monitoring of wetlands using satellite remote sensing can thus help to target interventions aimed at reducing malaria transmission. The objective of this study was to map wetlands and other major land cover types in the Amhara region of Ethiopia and to analyze district-level associations of malaria and wetlands across the region. We evaluated three random forests classification models using remotely sensed topographic and spectral data based on Shuttle Radar Topographic Mission (SRTM) and Landsat TM/ETM+ imagery, respectively. The model that integrated data from both sensors yielded more accurate land cover classification than single-sensor models. The resulting map of wetlands and other major land cover classes had an overall accuracy of 93.5%. Topographic indices and subpixel level fractional cover indices contributed most strongly to the land cover classification. Further, we found strong spatial associations of percent area of wetlands with malaria cases at the district level across the dry, wet, and fall seasons. Overall, our study provided the most extensive map of wetlands for the Amhara region and documented spatiotemporal associations of wetlands and malaria risk at a broad regional level. These findings can assist public health personnel in developing strategies to effectively control and eliminate malaria in the region. Key Points Remote sensing produced an accurate wetland map for the Ethiopian highlands Wetlands were associated with spatial variability in malaria risk Mapping and monitoring wetlands can improve malaria spatial decision support PMID:25653462

  17. Evaluation of Carrying Capacity Land-Based Layout to Mitigate Flood Risk (Case Study in Tempuran Floodplain, Ponorogo Regency) Novia Lusiana1 Bambang Rahadi2 Tunggul Sutanhaji3 1Environmental and Natural Resources Management Graduate Program University of Brawijaya, Malang, Indonesia 23Laboratory of Environment and Natural Resources Engineering, Department of Agricultural Engineering, Faculty of Agricultural Technology, University of Brawijaya, Malang, Indonesia Email : novialusiana@rocketmail.com, jbrahadi@ub.ac.id, tunggulsutanhaji@yahoo.com

    NASA Astrophysics Data System (ADS)

    Lusiana, N.

    2013-12-01

    Abstract Floods haves frequently hit Indonesia and have had greater negative impacts. In Javaboth the area affected by flooding and the amount of damage caused by floods have increased. At least, five factors, affect the flooding in Indonesia, including rainfall, reduced retention capacity of the watershed, erroneous design of river channel development, silting-up of the river, and erroneous regional layout. The level of the disastrous risks can be evaluated based on the extent of the threat and susceptibility of a region. One methode for risk assessment is Geographical Information System (GIS)-based mapping. Objectives of this research are: 1) evaluating current flood risk in susceptible areas, 2) applying supported land-based layout as effort to mitigate floodrisk, and 3) evaluating floodrisk for the period 2031 in the Tempuran floodplain of Ponorogo Regency. Result show that the area categorized as high risk covers 104. 6 ha (1. 2%), moderate risk covers 2512. 9 ha (28. 4%), low risk covers 3140. 8 ha (35. 5%), and the lowest risk covers 3096. 1 (34. 9%). Using Regional Layout Design for the years 2011 - 2031, the high risk area covers 67. 9 ha (0.8%), moderate risk covers 3033 ha (34. 3%), low risk covers 2770. 8 ha (31, 3%), and the lowest risk covers 2982. 6 ha (34%). Based on supported land suitability, the high-risk areais only 2. 9 ha (0.1%), moderate risk covers of 426. 1 ha (4. 8%), low risk covers 4207. 4 ha (47. 5%), and the lowest risk covers 4218 ha (47. 6%). Flood risk can be mitigated by applying supported land-based layout as shown by the reduced high-risk area, and the fact that > 90% of the areas are categorized as low or lowest risk of disaster. Keywords : Carrying Capacity, Land Capacity, Flood Risk

  18. Assessing Hydrologic Impacts of Future Land Cover Change ...

    EPA Pesticide Factsheets

    Long‐term land‐use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed on the San Pedro River Basin to characterize hydrologic impacts from future urban growth through time. This methodology was then expanded and utilized to characterize the changing hydrology on the South Platte River Basin. Future urban growth is represented by housingdensity maps generated in decadal intervals from 2010 to 2100, produced by the U.S. Environmental Protection Agency (EPA) Integrated Climate and Land‐Use Scenarios (ICLUS) project. ICLUS developed future housing density maps by adapting the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines to the conterminous United States. To characterize hydrologic impacts from future growth, the housing density maps were reclassified to National Land Cover Database (NLCD) 2006 land cover classes and used to parameterize the Soil and Water Assessment Tool (SWAT) using the Automated Geospatial Watershed Assessment (AGWA) tool. The objectives of this project were to 1) develop and describe a methodology for adapting the ICLUS data for use in AGWA as anapproach to evaluate basin‐wide impacts of development on water‐quantity and ‐quality, 2) present initial results from the application of the methodology to

  19. Completion of the National Land Cover Database (NLCD) 1992-2001 Land Cover Change Retrofit Product

    EPA Science Inventory

    The Multi-Resolution Land Characteristics Consortium has supported the development of two national digital land cover products: the National Land Cover Dataset (NLCD) 1992 and National Land Cover Database (NLCD) 2001. Substantial differences in imagery, legends, and methods betwe...

  20. Land Cover Indicators for U.S. National Climate Assessments

    NASA Astrophysics Data System (ADS)

    Channan, S.; Thomson, A. M.; Collins, K. M.; Sexton, J. O.; Torrens, P.; Emanuel, W. R.

    2014-12-01

    Land is a critical resource for human habitat and for the vast majority of human activities. Many natural resources are derived from terrestrial ecosystems or otherwise extracted from the landscape. Terrestrial biodiversity depends on land attributes as do people's perceptions of the value of land, including its value for recreation or tourism. Furthermore, land surface properties and processes affect weather and climate, and land cover change and land management affect emissions of greenhouse gases. Thus, land cover with its close association with climate is so pervasive that a land cover indicator is of fundamental importance to U.S. national climate assessments and related research. Moderate resolution remote sensing products (MODIS) were used to provide systematic data on annual distributions of land cover over the period 2001-2012. Selected Landsat observations and data products further characterize land cover at higher resolution. Here we will present the prototype for a suite of land cover indicators including land cover maps as well as charts depicting attributes such as composition by land cover class, statistical indicators of landscape characteristics, and tabular data summaries indispensable for communicating the status and trends of U.S. land cover at national, regional and state levels.

  1. Investigating the Potential of Deep Neural Networks for Large-Scale Classification of Very High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Postadjian, T.; Le Bris, A.; Sahbi, H.; Mallet, C.

    2017-05-01

    Semantic classification is a core remote sensing task as it provides the fundamental input for land-cover map generation. The very recent literature has shown the superior performance of deep convolutional neural networks (DCNN) for many classification tasks including the automatic analysis of Very High Spatial Resolution (VHR) geospatial images. Most of the recent initiatives have focused on very high discrimination capacity combined with accurate object boundary retrieval. Therefore, current architectures are perfectly tailored for urban areas over restricted areas but not designed for large-scale purposes. This paper presents an end-to-end automatic processing chain, based on DCNNs, that aims at performing large-scale classification of VHR satellite images (here SPOT 6/7). Since this work assesses, through various experiments, the potential of DCNNs for country-scale VHR land-cover map generation, a simple yet effective architecture is proposed, efficiently discriminating the main classes of interest (namely buildings, roads, water, crops, vegetated areas) by exploiting existing VHR land-cover maps for training.

  2. The effect of land cover change to the biomass value in the forest region of West Java province

    NASA Astrophysics Data System (ADS)

    Rahayu, M. I.; Waryono, T.; Rokhmatullah; Shidiq, I. P. A.

    2018-05-01

    Due to the issue of climate change as a public concern, information of carbon stock availability play an important role to describe the condition of forest ecosystems in the context of sustainable forest management. This study has the objective to identify land cover change during 2 decades (1996 – 2016) in the forest region and estimate the value of forest carbon stocks in west Java Province using remote sensing imagery. The land cover change information was obtained by visually interpreting the Landsat image, while the estimation of the carbon stock value was performed using the transformation of the NDVI (Normalized Difference Vegetation Index) which extracted from Landsat image. Biomass value is calculated by existing allometric equations. The results of this study shows that the forest area in the forest region of West Java Province have decreased from year to year, and the estimation value of forest carbon stock in the forest region of West Java Province also decreased from year to year.

  3. Simulating urban land cover changes at sub-pixel level in a coastal city

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Deng, Lei; Feng, Huihui; Zhao, Yanchuang

    2014-10-01

    The simulation of urban expansion or land cover changes is a major theme in both geographic information science and landscape ecology. Yet till now, almost all of previous studies were based on grid computations at pixel level. With the prevalence of spectral mixture analysis in urban land cover research, the simulation of urban land cover at sub-pixel level is being put into agenda. This study provided a new approach of land cover simulation at sub-pixel level. Landsat TM/ETM+ images of Xiamen city, China on both the January of 2002 and 2007 were used to acquire land cover data through supervised classification. Then the two classified land cover data were utilized to extract the transformation rule between 2002 and 2007 using logistic regression. The transformation possibility of each land cover type in a certain pixel was taken as its percent in the same pixel after normalization. And cellular automata (CA) based grid computation was carried out to acquire simulated land cover on 2007. The simulated 2007 sub-pixel land cover was testified with a validated sub-pixel land cover achieved by spectral mixture analysis in our previous studies on the same date. And finally the sub-pixel land cover of 2017 was simulated for urban planning and management. The results showed that our method is useful in land cover simulation at sub-pixel level. Although the simulation accuracy is not quite satisfactory for all the land cover types, it provides an important idea and a good start in the CA-based urban land cover simulation.

  4. Completion of the 2011 National Land Cover Database for the Conterminous United States – Representing a Decade of Land Cover Change Information

    EPA Science Inventory

    The National Land Cover Database (NLCD) provides nationwide data on land cover and land cover change at the native 30-m spatial resolution of the Landsat Thematic Mapper (TM). The database is designed to provide five-year cyclical updating of United States land cover and associat...

  5. Landsat Thematic Mapper studies of land cover spatial variability related to hydrology

    NASA Technical Reports Server (NTRS)

    Wharton, S.; Ormsby, J.; Salomonson, V.; Mulligan, P.

    1984-01-01

    Past accomplishments involving remote sensing based land-cover analysis for hydrologic applications are reviewed. Ongoing research in exploiting the increased spatial, radiometric, and spectral capabilities afforded by the TM on Landsats 4 and 5 is considered. Specific studies to compare MSS and TM for urbanizing watersheds, wetlands, and floodplain mapping situations show that only a modest improvement in classification accuracy is achieved via statistical per pixel multispectral classifiers. The limitations of current approaches to multispectral classification are illustrated. The objectives, background, and progress in the development of an alternative analysis approach for defining inputs to urban hydrologic models using TM are discussed.

  6. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    NASA Astrophysics Data System (ADS)

    Tang, G.; Bartlein, P. J.

    2012-08-01

    Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM) simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i) modify a DGVM for simulating land surface water balances; (ii) evaluate the modified model in simulating actual evapotranspiration (ET), soil moisture, and surface runoff at regional or watershed scales; and (iii) gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH) model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ) DGVM. To evaluate the model we ran LH using historical (1981-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981-2006 (R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficient > 0.52). The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences < 15%) with observed values for these rivers. Compared to a degree-day method for snowmelt computation, the addition of the solar radiation effect on snowmelt enabled LH to better simulate monthly stream flow in winter and early spring for rivers located at mid-to-high latitudes. In addition, LH-modeled monthly soil moisture for the state of Illinois (US) agreed well (R2 = 0.79, p < 0.01) with observed data for the years 1984-2001. Overall, this study justifies both the feasibility of incorporating satellite-based land covers into a DGVM and the reliability of LH to simulate land-surface water balances. To better estimate surface/river runoff at mid-to-high latitudes, we recommended that LPJ-DGVM considers the effects of solar radiation on snowmelt.

  7. Mapping Land Cover and Land Use Changes in the Congo Basin Forests with Optical Satellite Remote Sensing: a Pilot Project Exploring Methodologies that Improve Spatial Resolution and Map Accuracy

    NASA Astrophysics Data System (ADS)

    Molinario, G.; Baraldi, A.; Altstatt, A. L.; Nackoney, J.

    2011-12-01

    The University of Maryland has been a USAID Central Africa Rregional Program for the Environment (CARPE) cross-cutting partner for many years, providing remote sensing derived information on forest cover and forest cover changes in support of CARPE's objectives of diminishing forest degradation, loss and biodiversity loss as a result of poor or inexistent land use planning strategies. Together with South Dakota State University, Congo Basin-wide maps have been provided that map forest cover loss at a maximum of 60m resolution, using Landsat imagery and higher resolution imagery for algorithm training and validation. However, to better meet the needs within the CARPE Landscapes, which call for higher resolution, more accurate land cover change maps, UMD has been exploring the use of the SIAM automatic spectral -rule classifier together with pan-sharpened Landsat data (15m resolution) and Very High Resolution imagery from various sources. The pilot project is being developed in collaboration with the African Wildlife Foundation in the Maringa Lopori Wamba CARPE Landscape. If successful in the future this methodology will make the creation of high resolution change maps faster and easier, making it accessible to other entities in the Congo Basin that need accurate land cover and land use change maps in order, for example, to create sustainable land use plans, conserve biodiversity and resources and prepare Reducing Emissions from forest Degradation and Deforestation (REDD) Measurement, Reporting and Verification (MRV) projects. The paper describes the need for higher resolution land cover change maps that focus on forest change dynamics such as the cycling between primary forests, secondary forest, agriculture and other expanding and intensifying land uses in the Maringa Lopori Wamba CARPE Landscape in the Equateur Province of the Democratic Republic of Congo. The Methodology uses the SIAM remote sensing imagery automatic spectral rule classifier, together with pan-sharpened Landsat imagery with 15m resolution and Very High Resolution imagery from different sensors, obtained from the Department of Defense database that was recently opened to NASA and its Earth Observation partners. Particular emphasis is placed on the detection of agricultural fields and their expansion in primary forests or intensification in secondary forests and fallow fields, as this is the primary driver of deforestation in this area. Fields in this area area also of very small size and irregular shapes, often partly obscured by neighboring forest canopy, hence the technical challenge of correctly detecting them and tracking them through time. Finally, the potential for use of this methodology in other regions where information on land cover changes is needed for land use sustainability planning, is also addressed.

  8. Improving surface-subsurface water budgeting using high resolution satellite imagery applied on a brownfield.

    PubMed

    Dujardin, J; Batelaan, O; Canters, F; Boel, S; Anibas, C; Bronders, J

    2011-01-15

    The estimation of surface-subsurface water interactions is complex and highly variable in space and time. It is even more complex when it has to be estimated in urban areas, because of the complex patterns of the land-cover in these areas. In this research a modeling approach with integrated remote sensing analysis has been developed for estimating water fluxes in urban environments. The methodology was developed with the aim to simulate fluxes of contaminants from polluted sites. Groundwater pollution in urban environments is linked to patterns of land use and hence it is essential to characterize the land cover in a detail. An object-oriented classification approach applied on high-resolution satellite data has been adopted. To assign the image objects to one of the land-cover classes a multiple layer perceptron approach was adopted (Kappa of 0.86). Groundwater recharge has been simulated using the spatially distributed WetSpass model and the subsurface water flow using MODFLOW in order to identify and budget water fluxes. The developed methodology is applied to a brownfield case site in Vilvoorde, Brussels (Belgium). The obtained land use map has a strong impact on the groundwater recharge, resulting in a high spatial variability. Simulated groundwater fluxes from brownfield to the receiving River Zenne were independently verified by measurements and simulation of groundwater-surface water interaction based on thermal gradients in the river bed. It is concluded that in order to better quantify total fluxes of contaminants from brownfields in the groundwater, remote sensing imagery can be operationally integrated in a modeling procedure. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Characterizing bidirectional reflectance and spectral albedo of various land cover types in Midwest using GeoTASO Summer-2014 campaign

    NASA Astrophysics Data System (ADS)

    Wulamu, A.; Fishman, J.; Maimaitiyiming, M.; Leitch, J. W.; Zoogman, P.; Liu, X.; Chance, K.; Marshall, B.

    2015-12-01

    Understanding the bi-directional reflectance function (BRDF) and spectral albedo of various land-cover types is critical for retrieval of trace gas measurements from planned geostationary satellites such as the Tropospheric Emissions: Monitoring of Pollution (TEMPO). Radiant energy, which will be measured by these instruments at the top of atmosphere (TOA) at unprecedented spectral resolution, is strongly influenced by how this energy is reflected by the underlying surface. Thus, it is critical that we understand this phenomenon at comparable wavelength resolution. As part of the NASA ESTO-funded Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) development project, we carried out synchronous field and airborne data collection campaigns in the St Louis Metro region in Summer 2014. We collected spectral reflectance data of various land cover types on the ground within hours of a GeoTASO overpass using a field-based hyperspectral spectroradiometer (model PSR3500 from Spectral Evolution). Field measurements collecting in-situ spectral albedo and bidirectional reflectance factors were also obtained in July and August of 2015. In this study, we present our preliminary findings from in-situ and airborne GeoTASO derived spectral albedo and BRDF characteristics of major land cover types at TEMPO spectral profiles, which are necessary for the accurate retrieval of tropospheric trace gases and aerosols. First, a spectral database of various targets (e.g., plants, soils, rocks, man-made objects and water) was developed using field measurements. Next, the GeoTASO airborne data were corrected using MODTRAN and field measurements to derive spectral albedo and BRDF. High spatial resolution land-cover types were extracted using satellite images (e.g., Landsat, WorldView, IKONOS, etc.) at resolutions from 2 m - 30 m. Lastly, spectral albedo/BRDFs corresponding to various land cover types were analyzed using both field and GeoTASO measurements.

  10. Does the spatial arrangement of vegetation and anthropogenic land cover features matter? Case studies of urban warming and cooling in Phoenix and Las Vegas

    NASA Astrophysics Data System (ADS)

    Myint, S. W.; Zheng, B.; Fan, C.; Kaplan, S.; Brazel, A.; Middel, A.; Smith, M.

    2014-12-01

    While the relationship between fractional cover of anthropogenic and vegetation features and the urban heat island has been well studied, the effect of spatial arrangements (e.g., clustered, dispersed) of these features on urban warming or cooling are not well understood. The goal of this study is to examine if and how spatial configuration of land cover features influence land surface temperatures (LST) in urban areas. This study focuses on Phoenix, AZ and Las Vegas, NV that have undergone dramatic urban expansion. The data used to classify detailed urban land cover types include Geoeye-1 (Las Vegas) and QuickBird (Phoenix). The Geoeye-1 image (3 m resolution) was acquired on October 12, 2011 and the QuickBird image (2.4 m resolution) was taken on May 29, 2007. Classification was performed using object based image analysis (OBIA). We employed a spatial autocorrelation approach (i.e., Moran's I) that measures the spatial dependence of a point to its neighboring points and describes how clustered or dispersed points are arranged in space. We used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired over Phoenix (daytime on June 10, 2011 and nighttime on October 17, 2011) and Las Vegas (daytime on July 6, 2005 and nighttime on August 27, 2005) to examine daytime and nighttime LST with regards to the spatial arrangement of anthropogenic and vegetation features. We spatially correlate Moran's I values of each land cover per surface temperature, and develop regression models. The spatial configuration of grass and trees shows strong negative correlations with LST, implying that clustered vegetation lowers surface temperatures more effectively. In contrast, a clustered spatial arrangement of anthropogenic land-cover features, especially impervious surfaces, significantly elevates surface temperatures. Results from this study suggest that the spatial configuration of anthropogenic and vegetation features influence urban warming and cooling.

  11. A large-scale integrated karst-vegetation recharge model to understand the impact of climate and land cover change

    NASA Astrophysics Data System (ADS)

    Sarrazin, Fanny; Hartmann, Andreas; Pianosi, Francesca; Wagener, Thorsten

    2017-04-01

    Karst aquifers are an important source of drinking water in many regions of the world, but their resources are likely to be affected by changes in climate and land cover. Karst areas are highly permeable and produce large amounts of groundwater recharge, while surface runoff is typically negligible. As a result, recharge in karst systems may be particularly sensitive to environmental changes compared to other less permeable systems. However, current large-scale hydrological models poorly represent karst specificities. They tend to provide an erroneous water balance and to underestimate groundwater recharge over karst areas. A better understanding of karst hydrology and estimating karst groundwater resources at a large-scale is therefore needed for guiding water management in a changing world. The first objective of the present study is to introduce explicit vegetation processes into a previously developed karst recharge model (VarKarst) to better estimate evapotranspiration losses depending on the land cover characteristics. The novelty of the approach for large-scale modelling lies in the assessment of model output uncertainty, and parameter sensitivity to avoid over-parameterisation. We find that the model so modified is able to produce simulations consistent with observations of evapotranspiration and soil moisture at Fluxnet sites located in carbonate rock areas. Secondly, we aim to determine the model sensitivities to climate and land cover characteristics, and to assess the relative influence of changes in climate and land cover on aquifer recharge. We perform virtual experiments using synthetic climate inputs, and varying the value of land cover parameters. In this way, we can control for variations in climate input characteristics (e.g. precipitation intensity, precipitation frequency) and vegetation characteristics (e.g. canopy water storage capacity, rooting depth), and we can isolate the effect that each of these quantities has on recharge. Our results show that these factors are strongly interacting and are generating non-linear responses in recharge.

  12. EFFECTS OF LANDSCAPE CHARACTERISTICS ON LAND-COVER CLASS ACCURACY

    EPA Science Inventory



    Utilizing land-cover data gathered as part of the National Land-Cover Data (NLCD) set accuracy assessment, several logistic regression models were formulated to analyze the effects of patch size and land-cover heterogeneity on classification accuracy. Specific land-cover ...

  13. Combining inventories of land cover and forest resources with prediction models and remotely sensed data

    Treesearch

    Raymond L. Czaplewski

    1989-01-01

    It is difficult to design systems for national and global resource inventory and analysis that efficiently satisfy changing, and increasingly complex objectives. It is proposed that individual inventory, monitoring, modeling, and remote sensing systems be specialized to achieve portions of the objectives. These separate systems can be statistically linked to accomplish...

  14. Extracting Features of Acacia Plantation and Natural Forest in the Mountainous Region of Sarawak, Malaysia by ALOS/AVNIR2 Image

    NASA Astrophysics Data System (ADS)

    Fadaei, H.; Ishii, R.; Suzuki, R.; Kendawang, J.

    2013-12-01

    The remote sensing technique has provided useful information to detect spatio-temporal changes in the land cover of tropical forests. Land cover characteristics derived from satellite image can be applied to the estimation of ecosystem services and biodiversity over an extensive area, and such land cover information would provide valuable information to global and local people to understand the significance of the tropical ecosystem. This study was conducted in the Acacia plantations and natural forest situated in the mountainous region which has different ecological characteristic from that in flat and low land area in Sarawak, Malaysia. The main objective of this study is to compare extract the characteristic of them by analyzing the ALOS/AVNIR2 images and ground truthing obtained by the forest survey. We implemented a ground-based forest survey at Aacia plantations and natural forest in the mountainous region in Sarawak, Malaysia in June, 2013 and acquired the forest structure data (tree height, diameter at breast height (DBH), crown diameter, tree spacing) and spectral reflectance data at the three sample plots of Acacia plantation that has 10 x 10m area. As for the spectral reflectance data, we measured the spectral reflectance of the end members of forest such as leaves, stems, road surface, and forest floor by the spectro-radiometer. Such forest structure and spectral data were incorporated into the image analysis by support vector machine (SVM) and object-base/texture analysis. Consequently, land covers on the AVNIR2 image were classified into three forest types (natural forest, oil palm plantation and acacia mangium plantation), then the characteristic of each category was examined. We additionally used the tree age data of acacia plantation for the classification. A unique feature was found in vegetation spectral reflectance of Acacia plantations. The curve of the spectral reflectance shows two peaks around 0.3μm and 0.6 - 0.8μm that can be assumed to be corresponded to the reflectance from the bare land part (soil) and forest crown in the Acacia forest, respectively. In accordance with this spectral characteristic, we can estimate the proportional areas of the bare land and crown cover of the tree in the acacia plantation forest that will provide essential information for evaluating the forest ecosystem. We will define Bare land and Tree Crown Ratio Index (BTRI) that represent ratio of the areas of tree crown to areas of their access roads. Such information will delineate the characteristics of Acacia plantation and natural forest in mountainous region, and enable us to compare them with the plantation and forest in flat and low land.

  15. Modelling and optimization of land use/land cover change in a developing urban catchment.

    PubMed

    Xu, Ping; Gao, Fei; He, Junchao; Ren, Xinxin; Xi, Weijin

    2017-06-01

    The impacts of land use/cover change (LUCC) on hydrological processes and water resources are mainly reflected in changes in runoff and pollutant variations. Low impact development (LID) technology is utilized as an effective strategy to control urban stormwater runoff and pollution in the urban catchment. In this study, the impact of LUCC on runoff and pollutants in an urbanizing catchment of Guang-Ming New District in Shenzhen, China, were quantified using a dynamic rainfall-runoff model with the EPA Storm Water Management Model (SWMM). Based on the simulations and observations, the main objectives of this study were: (1) to evaluate the catchment runoff and pollutant variations with LUCC, (2) to select and optimize the appropriate layout of LID in a planning scenario for reducing the growth of runoff and pollutants under LUCC, (3) to assess the optimal planning schemes for land use/cover. The results showed that compared to 2013, the runoff volume, peak flow and pollution load of suspended solids (SS), and chemical oxygen demand increased by 35.1%, 33.6% and 248.5%, and 54.5% respectively in a traditional planning scenario. The assessment result of optimal planning of land use showed that annual rainfall control of land use for an optimal planning scenario with LID technology was 65%, and SS pollutant load reduction efficiency 65.6%.

  16. Land cover characterization and mapping of South America for the year 2010 using Landsat 30 m satellite data

    USGS Publications Warehouse

    Giri, Chandra; Long, Jordan

    2014-01-01

    Detailed and accurate land cover and land cover change information is needed for South America because the continent is in constant flux, experiencing some of the highest rates of land cover change and forest loss in the world. The land cover data available for the entire continent are too coarse (250 m to 1 km) for resource managers, government and non-government organizations, and Earth scientists to develop conservation strategies, formulate resource management options, and monitor land cover dynamics. We used Landsat 30 m satellite data of 2010 and prepared the land cover database of South America using state-of-the-science remote sensing techniques. We produced regionally consistent and locally relevant land cover information by processing a large volume of data covering the entire continent. Our analysis revealed that in 2010, 50% of South America was covered by forests, 2.5% was covered by water, and 0.02% was covered by snow and ice. The percent forest area of South America varies from 9.5% in Uruguay to 96.5% in French Guiana. We used very high resolution (<5 m) satellite data to validate the land cover product. The overall accuracy of the 2010 South American 30-m land cover map is 89% with a Kappa coefficient of 79%. Accuracy of barren areas needs to improve possibly using multi-temporal Landsat data. An update of land cover and change database of South America with additional land cover classes is needed. The results from this study are useful for developing resource management strategies, formulating biodiversity conservation strategies, and regular land cover monitoring and forecasting.

  17. [Difference of Karst Carbon Sink Under Different Land Use and Land Cover Areas in Dry Season].

    PubMed

    Zhao, Rui-yi; Liang, Zuo-bing; Wang, Zun-bo; Yu, Zheng-liang; Jiang, Ze-li

    2015-05-01

    In order to identify the distinction of soil CO2 consumed by carbonate rock dissolution, Baishuwan spring, Lanhuagou spring and Hougou spring were selected as objects to monitor the hydrochemistry from November 2013 to May 2014. The results showed that the highest HCO3- concentration was observed in Baishuwan spring which is covered by pine forest, while the lowest HCO3- concentration was observed in Hougou spring which is mainly covered by cultivated land. In Baishuwan spring, HCO3- was mainly derived from carbonic acid dissolving carbonate rock and the molar ratio between Ca(2+) + Mg2+ and HCO3- was close to 0. 5; while the molar ratio between Ca(2+) + Mg2+ and HCO3- exceeded 0.5 because the carbonate rock in Lanhuagou spring and Hougou spring was mainly dissolved by nitric acid and sulfuric acid. Because of the input of litter and the fact that gas-permeability of soil was limited in Baishuwan spring catchment, most of soil CO2 was dissolved in infiltrated water and reacted with bedrock. However, in Lanhuagou spring catchment and Hougou spring catchment, porous soil made soil CO2 easier to return to the atmosphere in the form of soil respiration. Therefore, in order to accurately estimate karst carbon sink, it was required to clarify the distinction of CO2 consumption by carbonate rock dissolution under different land use and land cover areas.

  18. Modelling catchment hydrological responses in a Himalayan Lake as a function of changing land use and land cover

    NASA Astrophysics Data System (ADS)

    Badar, Bazigha; Romshoo, Shakil A.; Khan, M. A.

    2013-04-01

    In this paper, we evaluate the impact of changing land use/land cover (LULC) on the hydrological processes in Dal lake catchment of Kashmir Himalayas by integrating remote sensing, simulation modelling and extensive field observations. Over the years, various anthropogenic pressures in the lake catchment have significantly altered the land system, impairing, inter-alia, sustained biotic communities and water quality of the lake. The primary objective of this paper was to help a better understanding of the LULC change, its driving forces and the overall impact on the hydrological response patterns. Multi-sensor and multi-temporal satellite data for 1992 and 2005 was used for determining the spatio-temporal dynamics of the lake catchment. Geographic Information System (GIS) based simulation model namely Generalized Watershed Loading Function (GWLF) was used to model the hydrological processes under the LULC conditions. We discuss spatio-temporal variations in LULC and identify factors contributing to these variations and analyze the corresponding impacts of the change on the hydrological processes like runoff, erosion and sedimentation. The simulated results on the hydrological responses reveal that depletion of the vegetation cover in the study area and increase in impervious and bare surface cover due to anthropogenic interventions are the primary reasons for the increased runoff, erosion and sediment discharges in the Dal lake catchment. This study concludes that LULC change in the catchment is a major concern that has disrupted the ecological stability and functioning of the Dal lake ecosystem.

  19. Generating local scale land use/cover change scenarios: case studies of high-risk mountain areas

    NASA Astrophysics Data System (ADS)

    Malek, Žiga; Glade, Thomas; Boerboom, Luc

    2014-05-01

    The relationship between land use/cover changes and consequences to human well-being is well acknowledged and has led to higher interest of both researchers and decision makers in driving forces and consequences of such changes. For example, removal of natural vegetation cover or urban expansion resulting in new elements at risk can increase hydro-meteorological risk. This is why it is necessary to study how the land use/cover could evolve in the future. Emphasis should especially be given to areas experiencing, or expecting, high rates of socio-economic change. A suitable approach to address these changes is scenario development; it offers exploring possible futures and the corresponding environmental consequences, and aids decision-making, as it enables to analyse possible options. Scenarios provide a creative methodology to depict possible futures, resulting from existing decisions, based on different assumptions of future socio-economic development. They have been used in various disciplines and on various scales, such as flood risk and soil erosion. Several studies have simulated future scenarios of land use/cover changes at a very high success rate, however usually these approaches are tailor made for specific case study areas and fit to available data. This study presents a multi-step scenario generation framework, which can be transferable to other local scale case study areas, taking into account the case study specific consequences of land use/cover changes. Through the use of experts' and decision-makers' knowledge, we aimed to develop a framework with the following characteristics: (1) it enables development of scenarios that are plausible, (2) it can overcome data inaccessibility, (3) it can address intangible and external driving forces of land use/cover change, and (4) it ensures transferability to other local scale case study areas with different land use/cover change processes and consequences. To achieve this, a set of different methods is applied including: qualitative methods such as interviews, group discussions and fuzzy cognitive mapping to identify land use/cover change processes, their driving forces and possible consequences, and final scenario generation; and geospatial methods such as GIS, geostatistics and environmental modeling in an environment for geoprocessing objects (Dinamica EGO) for spatial allocation of these scenarios. The methods were applied in the Italian Alps and the Romanian Carpathians. Both are mountainous areas, however they differ in terms of past and most likely future socio-economic development, and therefore consequent land use/cover changes. Whereas we focused on urban expansion due to tourism development in the Alps, we focused on possible deforestation trajectories in the Carpathians. In both areas, the recognized most significant driving forces were either not covered by accessible data, or were characterized as intangible. With the proposed framework we were able to generate futures scenarios despite these shortcomings, and enabling the transferability of the method.

  20. Detecting water yield variability due to the small proportional land use and land cover changes in a watershed on the Loess Plateau, China

    Treesearch

    S. Wang; Z. Zhang; G. Sun; S.G. McNulty; M. Zhang

    2009-01-01

    Soil conservation practices have been widely implemented on the Loess Plateau to reduce severe soil erosion in north-central China over the past three decades. However, the hydrologic impacts of these practices are not well documented and understood. The objective of this study was to examine how water yield has changed after implementing soil conservation practices...

  1. Consequences of land use and land cover change

    USGS Publications Warehouse

    Slonecker, E. Terrence; Barnes, Christopher; Karstensen, Krista; Milheim, Lesley E.; Roig-Silva, Coral M.

    2013-01-01

    The U.S. Geological Survey (USGS) Climate and Land Use Change Mission Area is one of seven USGS mission areas that focuses on making substantial scientific "...contributions to understanding how Earth systems interact, respond to, and cause global change". Using satellite and other remotely sensed data, USGS scientists monitor patterns of land cover change over space and time at regional, national, and global scales. These data are analyzed to understand the causes and consequences of changing land cover, such as economic impacts, effects on water quality and availability, the spread of invasive species, habitats and biodiversity, carbon fluctuations, and climate variability. USGS scientists are among the leaders in the study of land cover, which is a term that generally refers to the vegetation and artificial structures that cover the land surface. Examples of land cover include forests, grasslands, wetlands, water, crops, and buildings. Land use involves human activities that take place on the land. For example, "grass" is a land cover, whereas pasture and recreational parks are land uses that produce a cover of grass.

  2. Impact Assessment of Mikania Micrantha on Land Cover and Maxent Modeling to Predict its Potential Invasion Sites

    NASA Astrophysics Data System (ADS)

    Baidar, T.; Shrestha, A. B.; Ranjit, R.; Adhikari, R.; Ghimire, S.; Shrestha, N.

    2017-05-01

    Mikania micrantha is one of the major invasive alien plant species in tropical moist forest regions of Asia including Nepal. Recently, this weed is spreading at an alarming rate in Chitwan National Park (CNP) and threatening biodiversity. This paper aims to assess the impacts of Mikania micrantha on different land cover and to predict potential invasion sites in CNP using Maxent model. Primary data for this were presence point coordinates and perceived Mikania micrantha cover collected through systematic random sampling technique. Rapideye image, Shuttle Radar Topographic Mission data and bioclimatic variables were acquired as secondary data. Mikania micrantha distribution maps were prepared by overlaying the presence points on image classified by object based image analysis. The overall accuracy of classification was 90 % with Kappa coefficient 0.848. A table depicting the number of sample points in each land cover with respective Mikania micrantha coverage was extracted from the distribution maps to show the impact. The riverine forest was found to be the most affected land cover with 85.98 % presence points and sal forest was found to be very less affected with only 17.02 % presence points. Maxent modeling predicted the areas near the river valley as the potential invasion sites with statistically significant Area Under the Receiver Operating Curve (AUC) value of 0.969. Maximum temperature of warmest month and annual precipitation were identified as the predictor variables that contribute the most to Mikania micrantha's potential distribution.

  3. A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011

    USGS Publications Warehouse

    Jin, Suming; Yang, Limin; Zhu, Zhe; Homer, Collin G.

    2017-01-01

    Monitoring and mapping land cover changes are important ways to support evaluation of the status and transition of ecosystems. The Alaska National Land Cover Database (NLCD) 2001 was the first 30-m resolution baseline land cover product of the entire state derived from circa 2001 Landsat imagery and geospatial ancillary data. We developed a comprehensive approach named AKUP11 to update Alaska NLCD from 2001 to 2011 and provide a 10-year cyclical update of the state's land cover and land cover changes. Our method is designed to characterize the main land cover changes associated with different drivers, including the conversion of forests to shrub and grassland primarily as a result of wildland fire and forest harvest, the vegetation successional processes after disturbance, and changes of surface water extent and glacier ice/snow associated with weather and climate changes. For natural vegetated areas, a component named AKUP11-VEG was developed for updating the land cover that involves four major steps: 1) identify the disturbed and successional areas using Landsat images and ancillary datasets; 2) update the land cover status for these areas using a SKILL model (System of Knowledge-based Integrated-trajectory Land cover Labeling); 3) perform decision tree classification; and 4) develop a final land cover and land cover change product through the postprocessing modeling. For water and ice/snow areas, another component named AKUP11-WIS was developed for initial land cover change detection, removal of the terrain shadow effects, and exclusion of ephemeral snow changes using a 3-year MODIS snow extent dataset from 2010 to 2012. The overall approach was tested in three pilot study areas in Alaska, with each area consisting of four Landsat image footprints. The results from the pilot study show that the overall accuracy in detecting change and no-change is 90% and the overall accuracy of the updated land cover label for 2011 is 86%. The method provided a robust, consistent, and efficient means for capturing major disturbance events and updating land cover for Alaska. The method has subsequently been applied to generate the land cover and land cover change products for the entire state of Alaska.

  4. Using the FORE-SCE model to project land-cover change in the southeastern United States

    USGS Publications Warehouse

    Sohl, Terry; Sayler, Kristi L.

    2008-01-01

    A wide variety of ecological applications require spatially explicit current and projected land-use and land-cover data. The southeastern United States has experienced massive land-use change since European settlement and continues to experience extremely high rates of forest cutting, significant urban development, and changes in agricultural land use. Forest-cover patterns and structure are projected to change dramatically in the southeastern United States in the next 50 years due to population growth and demand for wood products [Wear, D.N., Greis, J.G. (Eds.), 2002. Southern Forest Resource Assessment. General Technical Report SRS-53. U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC, 635 pp]. Along with our climate partners, we are examining the potential effects of southeastern U.S. land-cover change on regional climate. The U.S. Geological Survey (USGS) Land Cover Trends project is analyzing contemporary (1973-2000) land-cover change in the conterminous United States, providing ecoregion-by-ecoregion estimates of the rates of change, descriptive transition matrices, and changes in landscape metrics. The FORecasting SCEnarios of future land-cover (FORE-SCE) model used Land Cover Trends data and theoretical, statistical, and deterministic modeling techniques to project future land-cover change through 2050 for the southeastern United States. Prescriptions for future proportions of land cover for this application were provided by ecoregion-based extrapolations of historical change. Logistic regression was used to develop relationships between suspected drivers of land-cover change and land cover, resulting in the development of probability-of-occurrence surfaces for each unique land-cover type. Forest stand age was initially established with Forest Inventory and Analysis (FIA) data and tracked through model iterations. The spatial allocation procedure placed patches of new land cover on the landscape until the scenario prescriptions were met, using measured Land Cover Trends data to guide patch characteristics and the probability surfaces to guide placement. The approach provides an efficient method for extrapolating historical land-cover trends and is amenable to the incorporation of more detailed and focused studies for the establishment of scenario prescriptions.

  5. Land-cover change and avian diversity in the conterminous United States

    Treesearch

    Chadwick D. Rittenhouse; Anna M. Pidgeon; Thomas P. Albright; Patrick D. Culbert; Murray K. Clayton; Curtis H. Flather; Jeffrey G. Masek; Volker C. Radeloff

    2012-01-01

    Changes in land use and land cover have affected and will continue to affect biological diversity worldwide. Yet, understanding the spatially extensive effects of land-cover change has been challenging because data that are consistent over space and time are lacking. We used the U.S. National Land Cover Dataset Land Cover Change Retrofit Product and North American...

  6. Global Land Product Validation Protocols: An Initiative of the CEOS Working Group on Calibration and Validation to Evaluate Satellite-derived Essential Climate Variables

    NASA Astrophysics Data System (ADS)

    Guillevic, P. C.; Nickeson, J. E.; Roman, M. O.; camacho De Coca, F.; Wang, Z.; Schaepman-Strub, G.

    2016-12-01

    The Global Climate Observing System (GCOS) has specified the need to systematically produce and validate Essential Climate Variables (ECVs). The Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV) and in particular its subgroup on Land Product Validation (LPV) is playing a key coordination role leveraging the international expertise required to address actions related to the validation of global land ECVs. The primary objective of the LPV subgroup is to set standards for validation methods and reporting in order to provide traceable and reliable uncertainty estimates for scientists and stakeholders. The Subgroup is comprised of 9 focus areas that encompass 10 land surface variables. The activities of each focus area are coordinated by two international co-leads and currently include leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR), vegetation phenology, surface albedo, fire disturbance, snow cover, land cover and land use change, soil moisture, land surface temperature (LST) and emissivity. Recent additions to the focus areas include vegetation indices and biomass. The development of best practice validation protocols is a core activity of CEOS LPV with the objective to standardize the evaluation of land surface products. LPV has identified four validation levels corresponding to increasing spatial and temporal representativeness of reference samples used to perform validation. Best practice validation protocols (1) provide the definition of variables, ancillary information and uncertainty metrics, (2) describe available data sources and methods to establish reference validation datasets with SI traceability, and (3) describe evaluation methods and reporting. An overview on validation best practice components will be presented based on the LAI and LST protocol efforts to date.

  7. Hydrologic impacts of land cover variability and change at seasonal to decadal time scales over North America, 1992-2016

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Vivoni, E. R.

    2017-12-01

    Land cover variability and change have been shown to influence the terrestrial hydrologic cycle by altering the partitioning of moisture and energy fluxes. However, the magnitude and directionality of the relationship between land cover and surface hydrology has been shown to vary substantially across regions. Here, we provide an assessment of the impacts of land cover change on hydrologic processes at seasonal (vegetation phenology) to decadal scales (land cover conversion) in the United States and Mexico. To this end, we combine time series of remotely-sensed land surface characteristics with land cover maps for different decades as input to the Variable Infiltration Capacity hydrologic model. Land surface characteristics (leaf area index, surface albedo, and canopy fraction derived from normalized difference vegetation index) were obtained from the Moderate Resolution Imaging Spectrometer (MODIS) at 8-day intervals over the period 2000-2016. Land cover maps representing conditions in 1992, 2001, and 2011 were derived by homogenizing the National Land Cover Database over the US and the INEGI Series I through V maps over Mexico. An additional map covering all of North America was derived from the most frequent land cover class observed in each pixel of the MODIS MOD12Q1 product during 2001-2013. Land surface characteristics were summarized over land cover fractions at 1/16 degree (6 km) resolution. For each land cover map, hydrologic simulations were conducted that covered the period 1980-2013, using the best-available, hourly meteorological forcings at a similar spatial resolution. Based on these simulations, we present a comparison of the contributions of land cover change and climate variability at seasonal to decadal scales on the hydrologic and energy budgets, identifying the dominant components through time and space. This work also offers a valuable dataset on land cover variability and its hydrologic response for continental-scale assessments and modeling.

  8. Land Cover Change Monitoring of Typical Functional Communities of Sichuan Province Based on ZY-3 Data

    NASA Astrophysics Data System (ADS)

    Li, G. M.; Li, S.; Ying, G. W.; Wu, X. P.

    2018-04-01

    According to the function, land space types are divided into key development areas, restricted development areas and forbidden development areas in Sichuan Province. This paper monitors and analyses the changes of land cover in different typical functional areas from 2010 to 2017, which based on ZY-3 high-score images data and combined with statistical yearbook and thematic data of Sichuan Province. The results show that: The land cover types of typical key development zones are mainly composed of cultivated land, forest land, garden land, and housing construction land, which accounts for the total area of land cover 87 %. The land cover types of typical restricted development zone mainly consists of forest land and grassland, which occupy 97.71 % of the total area of the surface coverage. The land cover types of the typical prohibition development zone mainly consist of forest land, grassland, desert and bared earth, which accounts for the total area of land cover 99.31 %.

  9. Monitoring Cloud-prone Complex Landscapes At Multiple Spatial Scales Using Medium And High Resolution Optical Data: A Case Study In Central Africa

    NASA Astrophysics Data System (ADS)

    Basnet, Bikash

    Tracking land surface dynamics over cloud-prone areas with complex mountainous terrain and a landscape that is heterogeneous at a scale of approximately 10 m, is an important challenge in the remote sensing of tropical regions in developing nations, due to the small plot sizes. Persistent monitoring of natural resources in these regions at multiple spatial scales requires development of tools to identify emerging land cover transformation due to anthropogenic causes, such as agricultural expansion and climate change. Along with the cloud cover and obstructions by topographic distortions due to steep terrain, there are limitations to the accuracy of monitoring change using available historical satellite imagery, largely due to sparse data access and the lack of high quality ground truth for classifier training. One such complex region is the Lake Kivu region in Central Africa. This work addressed these problems to create an effective process for monitoring the Lake Kivu region located in Central Africa. The Lake Kivu region is a biodiversity hotspot with a complex and heterogeneous landscape and intensive agricultural development, where individual plot sizes are often at the scale of 10m. Procedures were developed that use optical data from satellite and aerial observations at multiple scales to tackle the monitoring challenges. First, a novel processing chain was developed to systematically monitor the spatio-temporal land cover dynamics of this region over the years 1988, 2001, and 2011 using Landsat data, complemented by ancillary data. Topographic compensation was performed on Landsat reflectances to avoid the strong illumination angle impacts and image compositing was used to compensate for frequent cloud cover and thus incomplete annual data availability in the archive. A systematic supervised classification, using the state-of-the-art machine learning classifier Random Forest, was applied to the composite Landsat imagery to obtain land cover thematic maps with overall accuracies of 90% and higher. Subsequent change analysis between these years found extensive conversions of the natural environment as a result of human related activities. The gross forest cover loss for 1988--2001 and 2001--2011 periods was 216.4 and 130.5 thousand hectares, respectively, signifying significant deforestation in the period of civil war and a relatively stable and lower deforestation rate later, possibly due to conservation and reforestation efforts in the region. The other dominant land cover changes in the region were aggressive subsistence farming and urban expansion displacing natural vegetation and arable lands. Despite limited data availability, this study fills the gap of much needed detailed and updated land cover change information for this biologically important region of Central Africa. While useful on a regional scale, Landsat data can be inadequate for more detailed studies of land cover change. Based on an increasing availability of high resolution imagery and light detection and ranging (LiDAR) data from manned and unmanned aerial platforms (<1m resolution), a study was performed leading to a novel generic framework for land cover monitoring at fine spatial scales. The approach fuses high spatial resolution aerial imagery and LiDAR data to produce land cover maps with high spatial detail using object-based image analysis techniques. The classification framework was tested for a scene with both natural and cultural features and was found to be more than 90 percent accurate, sufficient for detailed land cover change studies.

  10. Completion of the National Land Cover Database (NLCD) 1992–2001 Land Cover Change Retrofit product

    USGS Publications Warehouse

    Fry, J.A.; Coan, Michael; Homer, Collin G.; Meyer, Debra K.; Wickham, J.D.

    2009-01-01

    The Multi-Resolution Land Characteristics Consortium has supported the development of two national digital land cover products: the National Land Cover Dataset (NLCD) 1992 and National Land Cover Database (NLCD) 2001. Substantial differences in imagery, legends, and methods between these two land cover products must be overcome in order to support direct comparison. The NLCD 1992-2001 Land Cover Change Retrofit product was developed to provide more accurate and useful land cover change data than would be possible by direct comparison of NLCD 1992 and NLCD 2001. For the change analysis method to be both national in scale and timely, implementation required production across many Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) path/rows simultaneously. To meet these requirements, a hybrid change analysis process was developed to incorporate both post-classification comparison and specialized ratio differencing change analysis techniques. At a resolution of 30 meters, the completed NLCD 1992-2001 Land Cover Change Retrofit product contains unchanged pixels from the NLCD 2001 land cover dataset that have been cross-walked to a modified Anderson Level I class code, and changed pixels labeled with a 'from-to' class code. Analysis of the results for the conterminous United States indicated that about 3 percent of the land cover dataset changed between 1992 and 2001.

  11. Comprehensive data set of global land cover change for land surface model applications

    NASA Astrophysics Data System (ADS)

    Sterling, Shannon; Ducharne, AgnèS.

    2008-09-01

    To increase our understanding of how humans have altered the Earth's surface and to facilitate land surface modeling experiments aimed to elucidate the direct impact of land cover change on the Earth system, we create and analyze a database of global land use/cover change (LUCC). From a combination of sources including satellite imagery and other remote sensing, ecological modeling, and country surveys, we adapt and synthesize existing maps of potential land cover and layers of the major anthropogenic land covers, including a layer of wetland loss, that are then tailored for land surface modeling studies. Our map database shows that anthropogenic land cover totals to approximately 40% of the Earth's surface, consistent with literature estimates. Almost all (92%) of the natural grassland on the Earth has been converted to human use, mostly grazing land, and the natural temperate savanna with mixed C3/C4 is almost completely lost (˜90%), due mostly to conversion to cropland. Yet the resultant change in functioning, in terms of plant functional types, of the Earth system from land cover change is dominated by a loss of tree cover. Finally, we identify need for standardization of percent bare soil for global land covers and for a global map of tree plantations. Estimates of land cover change are inherently uncertain, and these uncertainties propagate into modeling studies of the impact of land cover change on the Earth system; to begin to address this problem, modelers need to document fully areas of land cover change used in their studies.

  12. Reconstructed Historical Land Cover and Biophysical Parameters for Studies of Land-Atmosphere Interactions within the Eastern United States

    NASA Technical Reports Server (NTRS)

    Steyaert, Louis T.; Knox, Robert G.

    2007-01-01

    The local environment where we live within the Earth's biosphere is often taken for granted. This environment can vary depending on whether the land cover is a forest, grassland, wetland, water body, bare soil, pastureland, agricultural field, village, residential suburb, or an urban complex with concrete, asphalt, and large buildings. In general, the type and characteristics of land cover influence surface temperatures, sunlight exposure and duration, relative humidity, wind speed and direction, soil moisture amount, plant life, birds, and other wildlife in our backyards. The physical and biological properties (biophysical characteristics) of land cover help to determine our surface environment because they directly affect surface radiation, heat, and soil moisture processes, and also feedback to regional weather and climate. Depending on the spatial scale and land use intensity, land cover changes can have profound impacts on our local and regional environment. Over the past 350 years, the eastern half of the United States, an area extending from the grassland prairies of the Great Plains to the Gulf and Atlantic coasts, has experienced extensive land cover and land use changes that began with land clearing in the 1600s, led to extensive deforestation and intensive land use practices by 1920, and then evolved to the present-day landscape. Determining the consequences of such land cover changes on regional and global climate is a major research issue. Such research requires detailed historical land cover data and modeling experiments simulating historical climates. Given the need to understand the effects of historical land cover changes in the eastern United States, some questions include: - What were the most important land cover transformations and how did they alter biophysical characteristics of the land cover at key points in time since the mid-1600s? - How have land cover and land use changes over the past 350 years affected the land surface environment including surface weather, hydrologic, and climatic variability? - How do the potential effects of regional human-induced land cover change on the environment compare to similar changes that are caused by the natural variations of the Earth's climate system? To help answer these questions, we reconstructed a fractional land cover and biophysical parameter dataset for the eastern United States at 1650, 1850, 1920, and 1992 time-slices. Each land cover fraction is associated with a biophysical parameter class, a suite of parameters defining the biophysical characteristics of that kind of land cover. This new dataset is designed for use in computer models of land-atmosphere interactions, to understand and quantify the effects of historical land cover changes on the water, energy, and carbon cycles

  13. Global land cover mapping using Earth observation satellite data: Recent progresses and challenges

    NASA Astrophysics Data System (ADS)

    Ban, Yifang; Gong, Peng; Giri, Chandra

    2015-05-01

    Land cover is an important variable for many studies involving the Earth surface, such as climate, food security, hydrology, soil erosion, atmospheric quality, conservation biology, and plant functioning. Land cover not only changes with human caused land use changes, but also changes with nature. Therefore, the state of land cover is highly dynamic. In winter snow shields underneath various other land cover types in higher latitudes. Floods may persist for a long period in a year over low land areas in the tropical and subtropical regions. Forest maybe burnt or clear cut in a few days and changes to bare land. Within several months, the coverage of crops may vary from bare land to nearly 100% crops and then back to bare land following harvest. The highly dynamic nature of land cover creates a challenge in mapping and monitoring which remains to be adequately addressed. As economic globalization continues to intensify, there is an increasing trend of land cover/land use change, environmental pollution, land degradation, biodiversity loss at the global scale, timely and reliable information on global land cover and its changes is urgently needed to mitigate the negative impact of global environment change.

  14. GLCF: About GLCF

    Science.gov Websites

    on determining land cover and land cover change around the world. Land cover is the discernible imagery. Land cover change can be assessed by comparing one area with two images taken at different dates . Determining where, when, how much and why change occurs with land cover is a crucial scientific concern. It is

  15. Sensitivity of selected landscape pattern metrics to land-cover misclassification and differences in land-cover composition

    Treesearch

    James D. Wickham; Robert V. O' Neill; Kurt H. Riitters; Timothy G. Wade; K. Bruce Jones

    1997-01-01

    Calculation of landscape metrics from land-cover data is becoming increasingly common. Some studies have shown that these measurements are sensitive to differences in land-cover composition, but none are known to have tested also their a sensitivity to land-cover misclassification. An error simulation model was written to test the sensitivity of selected land-scape...

  16. Model of land cover change prediction in West Java using cellular automata-Markov chain (CA-MC)

    NASA Astrophysics Data System (ADS)

    Virtriana, Riantini; Sumarto, Irawan; Deliar, Albertus; Pasaribu, Udjianna S.; Taufik, Moh.

    2015-04-01

    Land is a fundamental factor that closely related to economic growth and supports the needs of human life. Land-use activity is a major issue and challenge for country planners. The cause of change in land use type activity may be due to socio economic development or due to changes in the environment or may be due to both. In an effort to understand the phenomenon of land cover changes, can be approached through land cover change modelling. Based on the facts and data contained, West Java has a high economic activity that will have an impact on land cover change. CA-MC is a model that used to determine the statistical change probabilistic for each of land cover type from land cover data at different time periods. CA-MC is able to provide the output of land cover type that should occurred. Results from a CA-MC modelling in predicting land cover changes showed an accuracy rate of 95.42%.

  17. Vegetation fire proneness in Europe

    NASA Astrophysics Data System (ADS)

    Pereira, Mário; Aranha, José; Amraoui, Malik

    2015-04-01

    Fire selectivity has been studied for vegetation classes in terms of fire frequency and fire size in a few European regions. This analysis is often performed along with other landscape variables such as topography, distance to roads and towns. These studies aims to assess the landscape sensitivity to forest fires in peri-urban areas and land cover changes, to define landscape management guidelines and policies based on the relationships between landscape and fires in the Mediterranean region. Therefore, the objectives of this study includes the: (i) analysis of the spatial and temporal variability statistics within Europe; and, (ii) the identification and characterization of the vegetated land cover classes affected by fires; and, (iii) to propose a fire proneness index. The datasets used in the present study comprises: Corine Land Cover (CLC) maps for 2000 and 2006 (CLC2000, CLC2006) and burned area (BA) perimeters, from 2000 to 2013 in Europe, provided by the European Forest Fire Information System (EFFIS). The CLC is a part of the European Commission programme to COoRdinate INformation on the Environment (Corine) and it provides consistent, reliable and comparable information on land cover across Europe. Both the CLC and EFFIS datasets were combined using geostatistics and Geographical Information System (GIS) techniques to access the spatial and temporal evolution of the types of shrubs and forest affected by fires. Obtained results confirms the usefulness and efficiency of the land cover classification scheme and fire proneness index which allows to quantify and to compare the propensity of vegetation classes and countries to fire. As expected, differences between northern and southern Europe are notorious in what concern to land cover distribution, fire incidence and fire proneness of vegetation cover classes. This work was supported by national funds by FCT - Portuguese Foundation for Science and Technology, under the project PEst-OE/AGR/UI4033/2014 and by the project SUSTAINSYS: Environmental Sustainable Agro-Forestry Systems (NORTE-07-0124-FEDER-000044), financed by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), as well as by National Funds (PIDDAC) through the Portuguese Foundation for Science and Technology (FCT/MEC).

  18. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection.

    PubMed

    Álvarez-Romero, Jorge G; Pressey, Robert L; Ban, Natalie C; Brodie, Jon

    2015-01-01

    Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our study demonstrates a practical approach to integrating models of catchments, land-use change, and river plumes with conservation planning software to inform prioritisation of catchment management.

  19. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection

    PubMed Central

    Álvarez-Romero, Jorge G.; Pressey, Robert L.; Ban, Natalie C.; Brodie, Jon

    2015-01-01

    Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our study demonstrates a practical approach to integrating models of catchments, land-use change, and river plumes with conservation planning software to inform prioritisation of catchment management. PMID:26714166

  20. MODIS Vegetative Cover Conversion and Vegetation Continuous Fields

    NASA Astrophysics Data System (ADS)

    Carroll, Mark; Townshend, John; Hansen, Matthew; DiMiceli, Charlene; Sohlberg, Robert; Wurster, Karl

    Land cover change occurs at various spatial and temporal scales. For example, large-scale mechanical removal of forests for agro-industrial activities contrasts with the small-scale clearing of subsistence farmers. Such dynamics vary in spatial extent and rate of land conversion. Such changes are attributable to both natural and anthropogenic factors. For example, lightning- or human-ignited fires burn millions of acres of land surface each year. Further, land cover conversion requires ­contrasting with the land cover modification. In the first instance, the dynamic represents extensive categorical change between two land cover types. Land cover modification mechanisms such as selective logging and woody encroachment depict changes within a given land cover type rather than a conversion from one land cover type to another. This chapter describes the production of two standard MODIS land products used to document changes in global land cover. The Vegetative Cover Conversion (VCC) product is designed primarily to serve as a global alarm for areas where land cover change occurs rapidly (Zhan et al. 2000). The Vegetation Continuous Fields (VCF) product is designed to continuously ­represent ground cover as a proportion of basic vegetation traits. Terra's launch in December 1999 afforded a new opportunity to observe the entire Earth every 1.2 days at 250-m spatial resolution. The MODIS instrument's appropriate spatial and ­temporal resolutions provide the opportunity to substantially improve the characterization of the land surface and changes occurring thereupon (Townshend et al. 1991).

  1. Developing a New North American Land Cover Product at 30m Resolution: Methods, Results and Future Plans

    NASA Astrophysics Data System (ADS)

    Homer, C.; Colditz, R. R.; Latifovic, R.; Llamas, R. M.; Pouliot, D.; Danielson, P.; Meneses, C.; Victoria, A.; Ressl, R.; Richardson, K.; Vulpescu, M.

    2017-12-01

    Land cover and land cover change information at regional and continental scales has become fundamental for studying and understanding the terrestrial environment. With recent advances in computer science and freely available image archives, continental land cover mapping has been advancing to higher spatial resolution products. The North American Land Change Monitoring System (NALCMS) remains the principal provider of seamless land cover maps of North America. Founded in 2006, this collaboration among the governments of Canada, Mexico and the United States has released two previous products based on 250m MODIS images, including a 2005 land cover and a 2005-2010 land cover change product. NALCMS has recently completed the next generation North America land cover product, based upon 30m Landsat images. This product now provides the first ever 30m land cover produced for the North American continent, providing 19 classes of seamless land cover. This presentation provides an overview of country-specific image classification processes, describes the continental map production process, provides results for the North American continent and discusses future plans. NALCMS is coordinated by the Commission for Environmental Cooperation (CEC) and all products can be obtained at their website - www.cec.org.

  2. Ecoregional differences in late-20th-century land-use and land-cover change in the U.S. northern great plains

    USGS Publications Warehouse

    Auch, Roger F.; Sayler, K. L.; Napton, D.E.; Taylor, Janis L.; Brooks, M.S.

    2011-01-01

    Land-cover and land-use change usually results from a combination of anthropogenic drivers and biophysical conditions found across multiple scales, ranging from parcel to regional levels. A group of four Level 111 ecoregions located in the U.S. northern Great Plains is used to demonstrate the similarities and differences in land change during nearly a 30-year period (1973-2000) using results from the U.S. Geological Survey's Land Cover Trends project. There were changes to major suites of land-cover; the transitions between agriculture and grassland/shrubland and the transitions among wetland, water, agriculture, and grassland/ shrubland were affected by different factors. Anthropogenic drivers affected the land-use tension (or land-use competition) between agriculture and grassland/shrubland land-covers, whereas changes between wetland and water land-covers, and their relationship to agriculture and grassland/shrubland land-covers, were mostly affected by regional weather cycles. More land-use tension between agriculture and grassland/shrubland landcovers occurred in ecoregions with greater amounts of economically marginal cropland. Land-cover change associated with weather variability occurred in ecoregions that had large concentrations of wetlands and water impoundments, such as the Missouri River reservoirs. The Northwestern Glaciated Plains ecoregion had the highest overall estimated percentage of change because it had both land-use tension between agriculture and grassland/shrubland land-covers and wetland-water changes. 

  3. The Application Research of National Geography Census Data in the Departmental Investigation and Management-Taking Land Management as AN Example

    NASA Astrophysics Data System (ADS)

    Jiang, N.

    2018-04-01

    According to the "Natural priority, Status quo priority" principle of acquisition, the national geography census data has the characteristics of objectivity, impartiality and accuracy. It provides a new perspective for the management and decision-making support of other industries as a "third party" and plays an important role in the professional management and investigation of various departments including land, transportation, forestry and water conservancy. Taking land resources supervision as an example, the Yellow River Delta efficient eco-economic zone as the research area, based on the national geographic census data and the land survey data, this paper established the correspondence of the two types of data through the reclassification of the land cover classification data, calculated the spatial coincidence rate of the same land class and the circulation relations among different land classes through the spatial overlay analysis and the calculation of space transfer matrix, quantified the differences between the data and objectively analysed the causes of the differences; On this basis, combined with land supervision hot spots, supplemented by multi-source remote sensing images and socio-economic data, analysed the application of geographic census data in the land regulation from multi-point.

  4. Seasonal land-cover regions of the United States

    USGS Publications Warehouse

    Loveland, Thomas R.; Merchant, James W.; Brown, Jesslyn F.; Ohlen, Donald O.; Reed, Bradley C.; Olson, Paul; Hutchinson, John

    1995-01-01

    Global-change investigations have been hindered by deficiencies in the availability and quality of land-cover data. The U.S. Geological Survey and the University of Nebraska-Lincoln have collaborated on the development of a new approach to land-cover characterization that attempts to address requirements of the global-change research community and others interested in regional patterns of land cover. An experimental 1 -kilometer-resolution database of land-cover characteristics for the coterminous U.S. has been prepared to test and evaluate the approach. Using multidate Advanced Very High Resolution Radiometer (AVHRR) satellite data complemented by elevation, climate, ecoregions, and other digital spatial datasets, the authors define 152, seasonal land-cover regions. The regionalization is based on a taxonomy of areas with respect to data on land cover, seasonality or phenology, and relative levels of primary production. The resulting database consists of descriptions of the vegetation, land cover, and seasonal, spectral, and site characteristics for each region. These data are used in the construction of an illustrative 1:7,500,000-scaIe map of the seasonal land-cover regions as well as of smaller-scale maps portraying general land cover and seasonality. The seasonal land-cover characteristics database can also be tailored to provide a broad range of other landscape parameters useful in national and global-scale environmental modeling and assessment.

  5. Impacts of global change on landslide hazard and risk in Europe in 21st century

    NASA Astrophysics Data System (ADS)

    Jaedicke, C.; Nadim, F.; Kalsnes, B.; Sverdrup-Thygeson, K.; Radermacher, C.; Fischer, G.; Hervas, J.; Van Den Eeckhaut, M.

    2012-04-01

    The research done previously in the SafeLand project (www.safeland-fp7.eu) identified the hotspots of landslide hazard and risk in Europe using three different models. All models were, however, based on the same input data. The analyses covered entire Europe, such that differences between regions and countries in Europe could be identified. This homogenous and objective analysis allowed comparing and ranking European countries in absolute or relative numbers of exposed land area, population and infrastructure. All models identified Italy as the country with the highest exposure to landslide risk. However, the small alpine countries had the highest relative exposure compared to their total land area and population. Overall, 4 to 7 million people in Europe, as well as significant amount of infrastructure are exposed to landslide threat. In the expectation of a changing climate, the question arises on how the level and spatial pattern of landslide hazard and risk in Europe will develop in the 21st century. To answer this question, several factors must be considered. Not only will the climate change in the next 90 years, but also the demography and land cover in Europe will change significantly. Prognosis of landslide risk must take into account a possible reduction in the total population and significant urbanisation in most parts of Europe. This again leads to changes in land cover where for example the amount of forested areas and urban areas may change dramatically. The paper presents the results of a study in the SafeLand project that explores the possible changes in landslide risk and hazard in Europe. The main objective of the study was to quantify the landslide hazard and risk in Europe now and in the future and see if there will be significant changes. Changing precipitation pattern, land cover and population were used as input to assess the landslide hazard and risk in the years 2030, 2050, 2070 and 2090. The results were then compared to the present situation in 2010. The effect of climate change varies depending on the type of landslide. In this study the focus was on precipitation-induced landslides, which are a direct consequence of the extreme precipitation events and therefore closely coupled to a change in the frequency of extreme events. Other landslides caused by draught or melt-freeze cycles are often followed a complex sequence of weather events that are difficult, if not impossible to forecast into the future. The study showed that climate change and changes in land cover will only cause minor variations in landslide hazard. The risk associated with landslides, however, is expected to change significantly due to changing patterns of population in Europe.

  6. Consequences of land-cover misclassification in models of impervious surface

    USGS Publications Warehouse

    McMahon, G.

    2007-01-01

    Model estimates of impervious area as a function of landcover area may be biased and imprecise because of errors in the land-cover classification. This investigation of the effects of land-cover misclassification on impervious surface models that use National Land Cover Data (NLCD) evaluates the consequences of adjusting land-cover within a watershed to reflect uncertainty assessment information. Model validation results indicate that using error-matrix information to adjust land-cover values used in impervious surface models does not substantially improve impervious surface predictions. Validation results indicate that the resolution of the landcover data (Level I and Level II) is more important in predicting impervious surface accurately than whether the land-cover data have been adjusted using information in the error matrix. Level I NLCD, adjusted for land-cover misclassification, is preferable to the other land-cover options for use in models of impervious surface. This result is tied to the lower classification error rates for the Level I NLCD. ?? 2007 American Society for Photogrammetry and Remote Sensing.

  7. A global dataset of crowdsourced land cover and land use reference data.

    PubMed

    Fritz, Steffen; See, Linda; Perger, Christoph; McCallum, Ian; Schill, Christian; Schepaschenko, Dmitry; Duerauer, Martina; Karner, Mathias; Dresel, Christopher; Laso-Bayas, Juan-Carlos; Lesiv, Myroslava; Moorthy, Inian; Salk, Carl F; Danylo, Olha; Sturn, Tobias; Albrecht, Franziska; You, Liangzhi; Kraxner, Florian; Obersteiner, Michael

    2017-06-13

    Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general.

  8. Land cover trends dataset, 1973-2000

    USGS Publications Warehouse

    Soulard, Christopher E.; Acevedo, William; Auch, Roger F.; Sohl, Terry L.; Drummond, Mark A.; Sleeter, Benjamin M.; Sorenson, Daniel G.; Kambly, Steven; Wilson, Tamara S.; Taylor, Janis L.; Sayler, Kristi L.; Stier, Michael P.; Barnes, Christopher A.; Methven, Steven C.; Loveland, Thomas R.; Headley, Rachel; Brooks, Mark S.

    2014-01-01

    The U.S. Geological Survey Land Cover Trends Project is releasing a 1973–2000 time-series land-use/land-cover dataset for the conterminous United States. The dataset contains 5 dates of land-use/land-cover data for 2,688 sample blocks randomly selected within 84 ecological regions. The nominal dates of the land-use/land-cover maps are 1973, 1980, 1986, 1992, and 2000. The land-use/land-cover maps were classified manually from Landsat Multispectral Scanner, Thematic Mapper, and Enhanced Thematic Mapper Plus imagery using a modified Anderson Level I classification scheme. The resulting land-use/land-cover data has a 60-meter resolution and the projection is set to Albers Equal-Area Conic, North American Datum of 1983. The files are labeled using a standard file naming convention that contains the number of the ecoregion, sample block, and Landsat year. The downloadable files are organized by ecoregion, and are available in the ERDAS IMAGINETM (.img) raster file format.

  9. A global dataset of crowdsourced land cover and land use reference data

    PubMed Central

    Fritz, Steffen; See, Linda; Perger, Christoph; McCallum, Ian; Schill, Christian; Schepaschenko, Dmitry; Duerauer, Martina; Karner, Mathias; Dresel, Christopher; Laso-Bayas, Juan-Carlos; Lesiv, Myroslava; Moorthy, Inian; Salk, Carl F.; Danylo, Olha; Sturn, Tobias; Albrecht, Franziska; You, Liangzhi; Kraxner, Florian; Obersteiner, Michael

    2017-01-01

    Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general. PMID:28608851

  10. Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management

    NASA Astrophysics Data System (ADS)

    Beck, Scott M.; McHale, Melissa R.; Hess, George R.

    2016-07-01

    Impervious surfaces degrade urban water quality, but their over-coverage has not explained the persistent water quality variation observed among catchments with similar rates of imperviousness. Land-cover patterns likely explain much of this variation, although little is known about how they vary among watersheds. Our goal was to analyze a series of urban catchments within a range of impervious cover to evaluate how land-cover varies among them. We then highlight examples from the literature to explore the potential effects of land-cover pattern variability for urban watershed management. High-resolution (1 m2) land-cover data were used to quantify 23 land-cover pattern and stormwater infrastructure metrics within 32 catchments across the Triangle Region of North Carolina. These metrics were used to analyze variability in land-cover patterns among the study catchments. We used hierarchical clustering to organize the catchments into four groups, each with a distinct landscape pattern. Among these groups, the connectivity of combined land-cover patches accounted for 40 %, and the size and shape of lawns and buildings accounted for 20 %, of the overall variation in land-cover patterns among catchments. Storm water infrastructure metrics accounted for 8 % of the remaining variation. Our analysis demonstrates that land-cover patterns do vary among urban catchments, and that trees and grass (lawns) are divergent cover types in urban systems. The complex interactions among land-covers have several direct implications for the ongoing management of urban watersheds.

  11. Combining NLCD and MODIS to create a land cover-albedo database for the continental United States

    USGS Publications Warehouse

    Wickham, J.; Barnes, Christopher A.; Nash, M.S.; Wade, T.G.

    2015-01-01

    Land surface albedo is an essential climate variable that is tightly linked to land cover, such that specific land cover classes (e.g., deciduous broadleaf forest, cropland) have characteristic albedos. Despite the normative of land-cover class specific albedos, there is considerable variability in albedo within a land cover class. The National Land Cover Database (NLCD) and the Moderate Resolution Imaging Spectroradiometer (MODIS) albedo product were combined to produce a long-term (14 years) integrated land cover-albedo database for the continental United States that can be used to examine the temporal behavior of albedo as a function of land cover. The integration identifies areas of homogeneous land cover at the nominal spatial resolution of the MODIS (MCD43A) albedo product (500 m × 500 m) from the NLCD product (30 m × 30 m), and provides an albedo data record per 500 m × 500 m pixel for 14 of the 16 NLCD land cover classes. Individual homogeneous land cover pixels have up to 605 albedo observations, and 75% of the pixels have at least 319 MODIS albedo observations (≥ 50% of the maximum possible number of observations) for the study period (2000–2013). We demonstrated the utility of the database by conducting a multivariate analysis of variance of albedo for each NLCD land cover class, showing that locational (pixel-to-pixel) and inter-annual variability were significant factors in addition to expected seasonal (intra-annual) and geographic (latitudinal) effects.

  12. Lake Michigan Diversion Accounting land cover change estimation by use of the National Land Cover Dataset and raingage network partitioning analysis

    USGS Publications Warehouse

    Sharpe, Jennifer B.; Soong, David T.

    2015-01-01

    This study used the National Land Cover Dataset (NLCD) and developed an automated process for determining the area of the three land cover types, thereby allowing faster updating of future models, and for evaluating land cover changes by use of historical NLCD datasets. The study also carried out a raingage partitioning analysis so that the segmentation of land cover and rainfall in each modeled unit is directly applicable to the HSPF modeling. Historical and existing impervious, grass, and forest land acreages partitioned by percentages covered by two sets of raingages for the Lake Michigan diversion SCAs, gaged basins, and ungaged basins are presented.

  13. LAND COVER ASSESSMENT OF INDIGENOUS COMMUNITIES IN THE BOSAWAS REGION OF NICARAGUA

    EPA Science Inventory


    Data derived from remotely sensed images were utilized to conduct land cover assessments of three indigenous communities in northern Nicaragua. Historical land use, present land cover and land cover change processes were all identified through the use of a geographic informat...

  14. Improving precipitation simulation from updated surface characteristics in South America

    NASA Astrophysics Data System (ADS)

    Pereira, Gabriel; Silva, Maria Elisa Siqueira; Moraes, Elisabete Caria; Chiquetto, Júlio Barboza; da Silva Cardozo, Francielle

    2017-07-01

    Land use and land cover maps and their physical-chemical and biological properties are important variables in the numerical modeling of Earth systems. In this context, the main objective of this study is to analyze the improvements resulting from the land use and land cover map update in numerical simulations performed using the Regional Climate Model system version 4 (RegCM4), as well as the seasonal variations of physical parameters used by the Biosphere Atmosphere Transfer Scheme (BATS). In general, the update of the South America 2007 land use and land cover map, used by the BATS, improved the simulation of precipitation by 10 %, increasing the mean temporal correlation coefficient, compared to observed data, from 0.84 to 0.92 (significant at p < 0.05, Student's t test). Correspondingly, the simulations performed with adjustments in maximum fractional vegetation cover, in visible and shortwave infrared reflectance, and in the leaf area index, showed a good agreement for maximum and minimum temperature, with values closer to observed data. The changes in physical parameters and land use updating in BATS/RegCM4 reduced overestimation of simulated precipitation from 19 to 7 % (significant at p < 0.05, Student's t test). Regarding evapotranspiration and precipitation, the most significant differences due to land use updating were located (1) in the Amazon deforestation arc; (2) around the Brazil-Bolivia border (in the Brazilian Pantanal wetlands); (3) in the Northeast region of Brazil; (4) in northwestern Paraguay; and (5) in the River Plate Basin, in Argentina. Moreover, the main precipitation differences between sensitivity and control experiments occurred during the rainy months in central-north South America (October to March). These were associated with a displacement in the South Atlantic convergence zone (SACZ) positioning, presenting a spatial pattern of alternated areas with higher and lower precipitation rates. These important differences occur due to the replacement of tropical rainforest for pasture and agriculture and the replacement of agricultural areas for pasture, scrubland, and deciduous forest.

  15. Land cover mapping of North and Central America—Global Land Cover 2000

    USGS Publications Warehouse

    Latifovic, Rasim; Zhu, Zhi-Liang

    2004-01-01

    The Land Cover Map of North and Central America for the year 2000 (GLC 2000-NCA), prepared by NRCan/CCRS and USGS/EROS Data Centre (EDC) as a regional component of the Global Land Cover 2000 project, is the subject of this paper. A new mapping approach for transforming satellite observations acquired by the SPOT4/VGTETATION (VGT) sensor into land cover information is outlined. The procedure includes: (1) conversion of daily data into 10-day composite; (2) post-seasonal correction and refinement of apparent surface reflectance in 10-day composite images; and (3) extraction of land cover information from the composite images. The pre-processing and mosaicking techniques developed and used in this study proved to be very effective in removing cloud contamination, BRDF effects, and noise in Short Wave Infra-Red (SWIR). The GLC 2000-NCA land cover map is provided as a regional product with 28 land cover classes based on modified Federal Geographic Data Committee/Vegetation Classification Standard (FGDC NVCS) classification system, and as part of a global product with 22 land cover classes based on Land Cover Classification System (LCCS) of the Food and Agriculture Organisation. The map was compared on both areal and per-pixel bases over North and Central America to the International Geosphere–Biosphere Programme (IGBP) global land cover classification, the University of Maryland global land cover classification (UMd) and the Moderate Resolution Imaging Spectroradiometer (MODIS) Global land cover classification produced by Boston University (BU). There was good agreement (79%) on the spatial distribution and areal extent of forest between GLC 2000-NCA and the other maps, however, GLC 2000-NCA provides additional information on the spatial distribution of forest types. The GLC 2000-NCA map was produced at the continental level incorporating specific needs of the region.

  16. Quantifying the Effects of Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates

    NASA Astrophysics Data System (ADS)

    Di Vittorio, A. V.; Mao, J.; Shi, X.; Chini, L.; Hurtt, G.; Collins, W. D.

    2018-01-01

    Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. Here we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO2 in 2004, and generates carbon uncertainty that is equivalent to 80% of the net effects of CO2 and climate and 124% of the effects of nitrogen deposition during 1850-2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. We conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.

  17. Quantifying the Effects of Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates

    DOE PAGES

    Di Vittorio, A. V.; Mao, J.; Shi, X.; ...

    2018-01-03

    Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. In this paper, we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO 2 in 2004, and generates carbon uncertainty that is equivalentmore » to 80% of the net effects of CO 2 and climate and 124% of the effects of nitrogen deposition during 1850–2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. Finally, we conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.« less

  18. Quantifying the Effects of Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Vittorio, A. V.; Mao, J.; Shi, X.

    Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. In this paper, we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO 2 in 2004, and generates carbon uncertainty that is equivalentmore » to 80% of the net effects of CO 2 and climate and 124% of the effects of nitrogen deposition during 1850–2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. Finally, we conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.« less

  19. Completion of the 2006 National Land Cover Database Update for the Conterminous United States

    EPA Science Inventory

    Under the organization of the Multi-Resolution Land Characteristics (MRLC) Consortium, the National Land Cover Database (NLCD) has been updated to characterize both land cover and land cover change from 2001 to 2006. An updated version of NLCD 2001 (Version 2.0) is also provided....

  20. Commentary: A cautionary tale regarding use of the National Land Cover Dataset 1992

    USGS Publications Warehouse

    Thogmartin, Wayne E.; Gallant, Alisa L.; Knutson, Melinda G.; Fox, Timothy J.; Suarez, Manuel J.

    2004-01-01

    Digital land-cover data are among the most popular data sources used in ecological research and natural resource management. However, processes for accurate land-cover classification over large regions are still evolving. We identified inconsistencies in the National Land Cover Dataset 1992, the most current and available representation of land cover for the conterminous United States. We also report means to address these inconsistencies in a bird-habitat model. We used a Geographic Information System (GIS) to position a regular grid (or lattice) over the upper midwestern United States and summarized the proportion of individual land covers in each cell within the lattice. These proportions were then mapped back onto the lattice, and the resultant lattice was compared to satellite paths, state borders, and regional map classification units. We observed mapping inconsistencies at the borders between mapping regions, states, and Thematic Mapper (TM) mapping paths in the upper midwestern United States, particularly related to grass I and-herbaceous, emergent-herbaceous wetland, and small-grain land covers. We attributed these discrepancies to differences in image dates between mapping regions, suboptimal image dates for distinguishing certain land-cover types, lack of suitable ancillary data for improving discrimination for rare land covers, and possibly differences among image interpreters. To overcome these inconsistencies for the purpose of modeling regional populations of birds, we combined grassland-herbaceous and pasture-hay land-cover classes and excluded the use of emergent-herbaceous and small-grain land covers. We recommend that users of digital land-cover data conduct similar assessments for other regions before using these data for habitat evaluation. Further, caution is advised in using these data in the analysis of regional land-cover change because it is not likely that future digital land-cover maps will repeat the same problems, thus resulting in biased estimates of change.

  1. Impact of land cover change on the environmental hydrology characteristics in Kelantan river basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Saadatkhah, Nader; Mansor, Shattri; Khuzaimah, Zailani; Asmat, Arnis; Adnan, Noraizam; Adam, Siti Noradzah

    2016-09-01

    Changing the land cover/ land use has serious environmental impacts affecting the ecosystem in Malaysia. The impact of land cover changes on the environmental functions such as surface water, loss water, and soil moisture is considered in this paper on the Kelantan river basin. The study area at the east coast of the peninsular Malaysia has suffered significant land cover changes in the recent years. The current research tried to assess the impact of land cover changes in the study area focused on the surface water, loss water, and soil moisture from different land use classes and the potential impact of land cover changes on the ecosystem of Kelantan river basin. To simulate the impact of land cover changes on the environmental hydrology characteristics, a deterministic regional modeling were employed in this study based on five approaches, i.e. (1) Land cover classification based on Landsat images; (2) assessment of land cover changes during last three decades; (3) Calculation the rate of water Loss/ Infiltration; (4) Assessment of hydrological and mechanical effects of the land cover changes on the surface water; and (5) evaluation the impact of land cover changes on the ecosystem of the study area. Assessment of land cover impact on the environmental hydrology was computed with the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) based on the transient infiltration, and subsequently changes in the surface water, due to precipitation events. The results showed the direct increased in surface water from development area, agricultural area, and grassland regions compared with surface water from other land covered areas in the study area. The urban areas or lower planting density areas tend to increase for surface water during the monsoon seasons, whereas the inter flow from forested and secondary jungle areas contributes to the normal surface water.

  2. Feasibility of Multispectral Airborne Laser Scanning for Land Cover Classification, Road Mapping and Map Updating

    NASA Astrophysics Data System (ADS)

    Matikainen, L.; Karila, K.; Hyyppä, J.; Puttonen, E.; Litkey, P.; Ahokas, E.

    2017-10-01

    This article summarises our first results and experiences on the use of multispectral airborne laser scanner (ALS) data. Optech Titan multispectral ALS data over a large suburban area in Finland were acquired on three different dates in 2015-2016. We investigated the feasibility of the data from the first date for land cover classification and road mapping. Object-based analyses with segmentation and random forests classification were used. The potential of the data for change detection of buildings and roads was also demonstrated. The overall accuracy of land cover classification results with six classes was 96 % compared with validation points. The data also showed high potential for road detection, road surface classification and change detection. The multispectral intensity information appeared to be very important for automated classifications. Compared to passive aerial images, the intensity images have interesting advantages, such as the lack of shadows. Currently, we focus on analyses and applications with the multitemporal multispectral data. Important questions include, for example, the potential and challenges of the multitemporal data for change detection.

  3. Monitoring coal mine changes and their impact on landscape patterns in an alpine region: a case study of the Muli coal mine in the Qinghai-Tibet Plateau.

    PubMed

    Qian, Dawen; Yan, Changzhen; Xing, Zanpin; Xiu, Lina

    2017-10-14

    The Muli coal mine is the largest open-cast coal mine in the Qinghai-Tibet Plateau, and it consists of two independent mining sites named Juhugeng and Jiangcang. It has received much attention due to the ecological problems caused by rapid expansion in recent years. The objective of this paper was to monitor the mining area and its surrounding land cover over the period 1976-2016 utilizing Landsat images, and the network structure of land cover changes was determined to visualize the relationships and pattern of the mining-induced land cover changes. In addition, the responses of the surrounding landscape pattern were analysed by constructing gradient transects. The results show that the mining area was increasing in size, especially after 2000 (increased by 71.68 km 2 ), and this caused shrinkage of the surrounding lands, including alpine meadow wetland (53.44 km 2 ), alpine meadow (6.28 km 2 ) and water (6.24 km 2 ). The network structure of the mining area revealed the changes in lands surrounding the mining area. The impact of mining development on landscape patterns was mainly distributed within a range of 1-6 km. Alpine meadow wetland was most affected in Juhugeng, while alpine meadow was most affected in Jiangcang. The results of this study provide a reference for the ecological assessment and restoration of the Muli coal mine land.

  4. Land-cover change in the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative, 1973 to 2000

    USGS Publications Warehouse

    Drummond, Mark A.; Stier, Michael P.; Coffin, Alisa W.

    2015-01-01

    This report summarizes baseline land-cover change information for four time intervals from between 1973 and 2000 for the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative (LCC). The study used sample data from the USGS Land Cover Trends dataset to develop estimates of change for 10 land-cover classes in the LCC. The results show that an estimated 17.7 percent of the LCC land cover had a change during the 27-year period. Cyclic forest dynamics—of timber harvest and regrowth—are the most extensive types of land conversion. Agricultural land had an estimated net decline of 3.5 percent as cropland and pasture were urbanized and developed and converted to forest use. Urban and other developed land covers expanded from 2.0 percent of the LCC in 1973 to 3.1 percent in 2000. The report also highlights causes and challenges of land-cover change.

  5. Alaska Interim Land Cover Mapping Program; final report

    USGS Publications Warehouse

    Fitzpatrick-Lins, Katherine; Doughty, E.F.; Shasby, Mark; Benjamin, Susan

    1989-01-01

    In 1985, the U.S. Geological Survey initiated a research project to develop an interim land cover data base for Alaska as an alternative to the nationwide Land Use and Land Cover Mapping Program. The Alaska Interim Land Cover Mapping Program was subsequently created to develop methods for producing a series of land cover maps that utilized the existing Landsat digital land cover classifications produced by and for the major land management agencies for mapping the vegetation of Alaska. The program was successful in producing digital land cover classifications and statistical summaries using a common statewide classification and in reformatting these data to produce l:250,000-scale quadrangle-based maps directly from the Scitex laser plotter. A Federal and State agency review of these products found considerable user support for the maps. Presently the Geological Survey is committed to digital processing of six to eight quadrangles each year.

  6. Four decades of land-cover, land-use and hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon.

    PubMed

    Souza-Filho, Pedro Walfir M; de Souza, Everaldo B; Silva Júnior, Renato O; Nascimento, Wilson R; Versiani de Mendonça, Breno R; Guimarães, José Tasso F; Dall'Agnol, Roberto; Siqueira, José Oswaldo

    2016-02-01

    Long-term human-induced impacts have significantly changed the Amazonian landscape. The most dramatic land cover and land use (LCLU) changes began in the early 1970s with the establishment of the Trans-Amazon Highway and large government projects associated with the expansion of agricultural settlement and cattle ranching, which cleared significant tropical forest cover in the areas of new and accelerated human development. Taking the changes in the LCLU over the past four decades as a basis, this study aims to determine the consequences of land cover (forest and savanna) and land use (pasturelands, mining and urban) changes on the hydroclimatology of the Itacaiúnas River watershed area of the located in the southeastern Amazon region. We analyzed a multi-decadal Landsat dataset from 1973, 1984, 1994, 2004 and 2013 and a 40-yr time series of water discharge from the Itacaiúnas River, as well as air temperature and relative humidity data over this drainage area for the same period. We employed standard Landsat image processing techniques in conjunction with a geographic object-based image analysis and multi-resolution classification approach. With the goal of detecting possible long-term trends, non-parametric Mann-Kendall test was applied, based on a Sen slope estimator on a 40-yr annual PREC, TMED and RH time series, considering the spatial average of the entire watershed. In the 1970s, the region was entirely covered by forest (99%) and savanna (∼0.3%). Four decades later, only ∼48% of the tropical forest remains, while pasturelands occupy approximately 50% of the watershed area. Moreover, in protected areas, nearly 97% of the tropical forest remains conserved, while the forest cover of non-protected areas is quite fragmented and, consequently, unevenly distributed, covering an area of only 30%. Based on observational data analysis, there is evidence that the conversion of forest cover to extensive and homogeneous pasturelands was accompanied by systematic modifications to the hydroclimatology cycle of the Itacaiúnas watershed, thus highlighting drier environmental conditions due to a rise in the region's air temperature, a decrease in the relative humidity, and an increase in river discharge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. GIS AND REMOTE SENSING BASEDLAND USE LAND COVER DYNAMICS AT SEMIEN MOUNTAIS NATIONAL PARK Authors name: Gebreanenya Gebru Kidane, Email. gglove2000@gmail.com University of Gondar Phone.251 920 88 84 62

    NASA Astrophysics Data System (ADS)

    Kidane, G. G., III; Belay, Y. G.; Kassa, B. A.; Yimam, D. A.

    2015-12-01

    ABSTRACT The main purpose of this study is to quantify the magnitude and rate of change of major land use/land cover types, and to identify the major drivers of change in SMNP using GIS and remote sensing. To address the pre-stated objective three landsat images of the periods between 1985, 2000 and 2015 with the time series of 15 (fifteen) years for the conceqative of 30 years land use land cover dynamics were classified and analyzed using Erdas Emagine 9.2 and ArcGIS 10 environments. The results depicted that a remarkable expansion was observed in forest cover followed by farmland and settlements between 1985 and 2015 by about 16% (22 ha/y) and 14.7% (21 ha/y) although some portions of their original extent were converted into other LUC classes. Expansion of forest cover was dominantly attributed to conversions of exposed rocks (1334.97 ha) and shrubs (1255.23 ha). These possibly attributed to conversion of some portions of exposed rocks and shrubs which were unsustainably utilized into protected areas by area closure and transformation of shrubs into forest cover. Similarly, farmlands and settlement has been expanded mainly due to area gains from grassland (984.51 ha) and forest cover (1037.25 ha). These largely associated with encroachment of farmlands and settlements into grasslands and original natural forest cover as a result of population pressure. The results also indicated that the reduction of areas under grassland, exposed volcanic rocks and shrubs by about 2.35% (5 ha/y), 18% (32 ha/y) and 11% (14 ha/y) evident because the added areas from other LUC classes could not compensate the losses, respectively. The major drivers identified in study area were civil war between 1984 and 1991 resulted in the agricultural exploitation, deforestation and illegal wildlife hunting, population pressure due to influx of settlers for the last decade. Finally revitalizing the nationally park is not only the duty of the government but also all the concerned individuals specially the communities around the park and different stock holders at different levels should be work in integrative and in synergism manner. Key Words: Dynamics, Land use, GIS, Remo sensing Email address of the authors: * gglove2000@gmail.com.

  8. Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia

    NASA Astrophysics Data System (ADS)

    Rokni Deilmai, B.; Ahmad, B. Bin; Zabihi, H.

    2014-06-01

    Mapping is essential for the analysis of the land use and land cover, which influence many environmental processes and properties. For the purpose of the creation of land cover maps, it is important to minimize error. These errors will propagate into later analyses based on these land cover maps. The reliability of land cover maps derived from remotely sensed data depends on an accurate classification. In this study, we have analyzed multispectral data using two different classifiers including Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM). To pursue this aim, Landsat Thematic Mapper data and identical field-based training sample datasets in Johor Malaysia used for each classification method, which results indicate in five land cover classes forest, oil palm, urban area, water, rubber. Classification results indicate that SVM was more accurate than MLC. With demonstrated capability to produce reliable cover results, the SVM methods should be especially useful for land cover classification.

  9. Using Satellite Data to Evaluate Linkages Between Land Cover/Land Use and Hypertension in a National Cohort

    NASA Technical Reports Server (NTRS)

    McClure, Leslie; Crosson, Bill; Al-Hamdan, Mohammed; Estes, Maury; Estes, Sue; Quattrochi, Dale

    2009-01-01

    Coincident with global expansion of urban areas has been an increase in hypertension. It is unclear how much the urban environment contributes as a risk factor for blood pressure differences, and how much is due to a variety of environmental, lifestyle, and demographic correlates of urbanization. Objectives/Purpose: The purpose of this study is to examine the relationship between living environment (defined as urban, suburban, or rural) and hypertension in selected regions from the REasons for Geographic And Racial Differences in Stroke (REGARDS) cohort. Methods: REGARDS is a national cohort of 30,228 participants from the 48 contiguous United States. We used data from 4 metropolitan regions (Philadelphia, Atlanta, Minneapolis and Chicago) for this study (n=3928). We used Land Cover/Land Use (LCLU) information from the 30-meter National Land Cover Data. Results: Overall, 1996 (61%) of the participants were hypertensive. We characterized participants into urban, suburban or rural living environments using the LCLU data. In univariate models, we found that living environment is associated with hypertension, but that after adjustment for known hypertension risk factors, the relationship was no longer present at the 95% confidence level. Conclusions: LCLU data can be utilized to characterize the living environment, which in turn can be applied to studies of public health outcomes. Further study regarding the relationship between hypertension and living environment should focus on additional characteristics of the associated environment.

  10. Raster Vs. Point Cloud LiDAR Data Classification

    NASA Astrophysics Data System (ADS)

    El-Ashmawy, N.; Shaker, A.

    2014-09-01

    Airborne Laser Scanning systems with light detection and ranging (LiDAR) technology is one of the fast and accurate 3D point data acquisition techniques. Generating accurate digital terrain and/or surface models (DTM/DSM) is the main application of collecting LiDAR range data. Recently, LiDAR range and intensity data have been used for land cover classification applications. Data range and Intensity, (strength of the backscattered signals measured by the LiDAR systems), are affected by the flying height, the ground elevation, scanning angle and the physical characteristics of the objects surface. These effects may lead to uneven distribution of point cloud or some gaps that may affect the classification process. Researchers have investigated the conversion of LiDAR range point data to raster image for terrain modelling. Interpolation techniques have been used to achieve the best representation of surfaces, and to fill the gaps between the LiDAR footprints. Interpolation methods are also investigated to generate LiDAR range and intensity image data for land cover classification applications. In this paper, different approach has been followed to classifying the LiDAR data (range and intensity) for land cover mapping. The methodology relies on the classification of the point cloud data based on their range and intensity and then converted the classified points into raster image. The gaps in the data are filled based on the classes of the nearest neighbour. Land cover maps are produced using two approaches using: (a) the conventional raster image data based on point interpolation; and (b) the proposed point data classification. A study area covering an urban district in Burnaby, British Colombia, Canada, is selected to compare the results of the two approaches. Five different land cover classes can be distinguished in that area: buildings, roads and parking areas, trees, low vegetation (grass), and bare soil. The results show that an improvement of around 10 % in the classification results can be achieved by using the proposed approach.

  11. Land cover characterization and land surface parameterization research

    USGS Publications Warehouse

    Steyaert, Louis T.; Loveland, Thomas R.; Parton, William J.

    1997-01-01

    The understanding of land surface processes and their parameterization in atmospheric, hydrologic, and ecosystem models has been a dominant research theme over the past decade. For example, many studies have demonstrated the key role of land cover characteristics as controlling factors in determining land surface processes, such as the exchange of water, energy, carbon, and trace gases between the land surface and the lower atmosphere. The requirements for multiresolution land cover characteristics data to support coupled-systems modeling have also been well documented, including the need for data on land cover type, land use, and many seasonally variable land cover characteristics, such as albedo, leaf area index, canopy conductance, surface roughness, and net primary productivity. Recently, the developers of land data have worked more closely with the land surface process modelers in these efforts.

  12. The effects of changing land cover on streamflow simulation in Puerto Rico

    USGS Publications Warehouse

    Van Beusekom, Ashley E.; Hay, Lauren E.; Viger, Roland; Gould, William A.; Collazo, Jaime; Henareh Khalyani, Azad

    2014-01-01

    This study quantitatively explores whether land cover changes have a substantive impact on simulated streamflow within the tropical island setting of Puerto Rico. The Precipitation Runoff Modeling System (PRMS) was used to compare streamflow simulations based on five static parameterizations of land cover with those based on dynamically varying parameters derived from four land cover scenes for the period 1953-2012. The PRMS simulations based on static land cover illustrated consistent differences in simulated streamflow across the island. It was determined that the scale of the analysis makes a difference: large regions with localized areas that have undergone dramatic land cover change may show negligible difference in total streamflow, but streamflow simulations using dynamic land cover parameters for a highly altered subwatershed clearly demonstrate the effects of changing land cover on simulated streamflow. Incorporating dynamic parameterization in these highly altered watersheds can reduce the predictive uncertainty in simulations of streamflow using PRMS. Hydrologic models that do not consider the projected changes in land cover may be inadequate for water resource management planning for future conditions.

  13. Specifications for updating USGS land use and land cover maps

    USGS Publications Warehouse

    Milazzo, Valerie A.

    1983-01-01

    To meet the increasing demands for up-to-date land use and land cover information, a primary goal of the U.S. Geological Survey's (USGS) national land use and land cover mapping program is to provide for periodic updating of maps and data in a timely and uniform manner. The technical specifications for updating existing USGS land use and land cover maps that are presented here cover both the interpretive aspects of detecting and identifying land use and land cover changes and the cartographic aspects of mapping and presenting the change data in conventional map format. They provide the map compiler with the procedures and techniques necessary to then use these change data to update existing land use and land cover maps in a manner that is both standardized and repeatable. Included are specifications for the acquisition of remotely sensed source materials, selection of compilation map bases, handling of data base corrections, editing and quality control operations, generation of map update products for USGS open file, and the reproduction and distribution of open file materials. These specifications are planned to become part of the National Mapping Division's Technical Instructions.

  14. Land use and land cover data changes in Indian Ocean Islands: Case study of Unguja in Zanzibar Island.

    PubMed

    Mwalusepo, Sizah; Muli, Eliud; Faki, Asha; Raina, Suresh

    2017-04-01

    Land use and land cover changes will continue to affect resilient human communities and ecosystems as a result of climate change. However, an assessment of land use and land cover changes over time in Indian Ocean Islands is less documented. The land use/cover data changes over 10 years at smaller geographical scale across Unguja Island in Zanzibar were analyzed. Downscaling of the data was obtained from SERVIR through partnership with Kenya-based Regional Centre for Mapping of Resources for Development (RCMRD) database (http://www.servirglobal.net), and clipped down in ArcMap (Version 10.1) to Unguja Island. SERVIR and RCMRD Land Cover Dataset are mainly 30 m multispectral images include Landsat TM and ETM+Multispectral Images. Landscape ecology Statistics tool (LecoS) was used to analysis the land use and land cover changes. The data provide information on the status of the land use and land cover changes along the Unguja Island in Zanzibar. The data is of great significance to the future research on global change.

  15. Land cover change of watersheds in Southern Guam from 1973 to 2001.

    PubMed

    Wen, Yuming; Khosrowpanah, Shahram; Heitz, Leroy

    2011-08-01

    Land cover change can be caused by human-induced activities and natural forces. Land cover change in watershed level has been a main concern for a long time in the world since watersheds play an important role in our life and environment. This paper is focused on how to apply Landsat Multi-Spectral Scanner (MSS) satellite image of 1973 and Landsat Thematic Mapper (TM) satellite image of 2001 to determine the land cover changes of coastal watersheds from 1973 to 2001. GIS and remote sensing are integrated to derive land cover information from Landsat satellite images of 1973 and 2001. The land cover classification is based on supervised classification method in remote sensing software ERDAS IMAGINE. Historical GIS data is used to replace the areas covered by clouds or shadows in the image of 1973 to improve classification accuracy. Then, temporal land cover is utilized to determine land cover change of coastal watersheds in southern Guam. The overall classification accuracies for Landsat MSS image of 1973 and Landsat TM image of 2001 are 82.74% and 90.42%, respectively. The overall classification of Landsat MSS image is particularly satisfactory considering its coarse spatial resolution and relatively bad data quality because of lots of clouds and shadows in the image. Watershed land cover change in southern Guam is affected greatly by anthropogenic activities. However, natural forces also affect land cover in space and time. Land cover information and change in watersheds can be applied for watershed management and planning, and environmental modeling and assessment. Based on spatio-temporal land cover information, the interaction behavior between human and environment may be evaluated. The findings in this research will be useful to similar research in other tropical islands.

  16. Forest Aboveground Biomass Mapping and Canopy Cover Estimation from Simulated ICESat-2 Data

    NASA Astrophysics Data System (ADS)

    Narine, L.; Popescu, S. C.; Neuenschwander, A. L.

    2017-12-01

    The assessment of forest aboveground biomass (AGB) can contribute to reducing uncertainties associated with the amount and distribution of terrestrial carbon. With a planned launch date of July 2018, the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) will provide data which will offer the possibility of mapping AGB at global scales. In this study, we develop approaches for utilizing vegetation data that will be delivered in ICESat-2's land-vegetation along track product (ATL08). The specific objectives are to: (1) simulate ICESat-2 photon-counting lidar (PCL) data using airborne lidar data, (2) utilize simulated PCL data to estimate forest canopy cover and AGB and, (3) upscale AGB predictions to create a wall-to-wall AGB map at 30-m spatial resolution. Using existing airborne lidar data for Sam Houston National Forest (SHNF) located in southeastern Texas and known ICESat-2 beam locations, PCL data are simulated from discrete return lidar points. We use multiple linear regression models to relate simulated PCL metrics for 100 m segments along the ICESat-2 ground tracks to AGB from a biomass map developed using airborne lidar data and canopy cover calculated from the same. Random Forest is then used to create an AGB map from predicted estimates and explanatory data consisting of spectral metrics derived from Landsat TM imagery and land cover data from the National Land Cover Database (NLCD). Findings from this study will demonstrate how data that will be acquired by ICESat-2 can be used to estimate forest structure and characterize the spatial distribution of AGB.

  17. Mapping land cover through time with the Rapid Land Cover Mapper—Documentation and user manual

    USGS Publications Warehouse

    Cotillon, Suzanne E.; Mathis, Melissa L.

    2017-02-15

    The Rapid Land Cover Mapper is an Esri ArcGIS® Desktop add-in, which was created as an alternative to automated or semiautomated mapping methods. Based on a manual photo interpretation technique, the tool facilitates mapping over large areas and through time, and produces time-series raster maps and associated statistics that characterize the changing landscapes. The Rapid Land Cover Mapper add-in can be used with any imagery source to map various themes (for instance, land cover, soils, or forest) at any chosen mapping resolution. The user manual contains all essential information for the user to make full use of the Rapid Land Cover Mapper add-in. This manual includes a description of the add-in functions and capabilities, and step-by-step procedures for using the add-in. The Rapid Land Cover Mapper add-in was successfully used by the U.S. Geological Survey West Africa Land Use Dynamics team to accurately map land use and land cover in 17 West African countries through time (1975, 2000, and 2013).

  18. Regional land cover characterization using Landsat thematic mapper data and ancillary data sources

    USGS Publications Warehouse

    Vogelmann, James E.; Sohl, Terry L.; Campbell, P.V.; Shaw, D.M.; ,

    1998-01-01

    As part of the activities of the Multi-Resolution Land Characteristics (MRLC) Interagency Consortium, an intermediate-scale land cover data set is being generated for the conterminous United States. This effort is being conducted on a region-by-region basis using U.S. Standard Federal Regions. To date, land cover data sets have been generated for Federal Regions 3 (Pennsylvania, West Virginia, Virginia, Maryland, and Delaware) and 2 (New York and New Jersey). Classification work is currently under way in Federal Region 4 (the southeastern United States), and land cover mapping activities have been started in Federal Regions 5 (the Great Lakes region) and 1 (New England). It is anticipated that a land cover data set for the conterminous United States will be completed by the end of 1999. A standard land cover classification legend is used, which is analogous to and compatible with other classification schemes. The primary MRLC regional classification scheme contains 23 land cover classes.The primary source of data for the project is the Landsat thematic mapper (TM) sensor. For each region, TM scenes representing both leaf-on and leaf-off conditions are acquired, preprocessed, and georeferenced to MRLC specifications. Mosaicked data are clustered using unsupervised classification, and individual clusters are labeled using aerial photographs. Individual clusters that represent more than one land cover unit are split using spatial modeling with multiple ancillary spatial data layers (most notably, digital elevation model, population, land use and land cover, and wetlands information). This approach yields regional land cover information suitable for a wide array of applications, including landscape metric analyses, land management, land cover change studies, and nutrient and pesticide runoff modeling.

  19. Towards realistic Holocene land cover scenarios: integration of archaeological, palynological and geomorphological records and comparison to global land cover scenarios.

    NASA Astrophysics Data System (ADS)

    De Brue, Hanne; Verstraeten, Gert; Broothaerts, Nils; Notebaert, Bastiaan

    2016-04-01

    Accurate and spatially explicit landscape reconstructions for distinct time periods in human history are essential for the quantification of the effect of anthropogenic land cover changes on, e.g., global biogeochemical cycles, ecology, and geomorphic processes, and to improve our understanding of interaction between humans and the environment in general. A long-term perspective covering Mid and Late Holocene land use changes is recommended in this context, as it provides a baseline to evaluate human impact in more recent periods. Previous efforts to assess the evolution and intensity of agricultural land cover in past centuries or millennia have predominantly focused on palynological records. An increasing number of quantitative techniques has been developed during the last two decades to transfer palynological data to land cover estimates. However, these techniques have to deal with equifinality issues and, furthermore, do not sufficiently allow to reconstruct spatial patterns of past land cover. On the other hand, several continental and global databases of historical anthropogenic land cover changes based on estimates of global population and the required agricultural land per capita have been developed in the past decennium. However, at such long temporal and spatial scales, reconstruction of past anthropogenic land cover intensities and spatial patterns necessarily involves many uncertainties and assumptions as well. Here, we present a novel approach that combines archaeological, palynological and geomorphological data for the Dijle catchment in the central Belgium Loess Belt in order to arrive at more realistic Holocene land cover histories. Multiple land cover scenarios (> 60.000) are constructed using probabilistic rules and used as input into a sediment delivery model (WaTEM/SEDEM). Model outcomes are confronted with a detailed geomorphic dataset on Holocene sediment fluxes and with REVEALS based estimates of vegetation cover using palynological data from six alluvial sites. This comparison drastically reduces the number of realistic land cover scenarios for various cultural periods. REVEALS based land cover histories provide more accurate estimates of Holocene sediment fluxes compared to global land cover scenarios (KK10 and HYDE 3.1). Both global land cover scenarios produce erroneous results when applied at their original coarse scale resolution. However, spatially allocating KK10 land cover data to a finer spatial resolution increases its performance, whereas this is not the case for HYDE 3.1. Results suggest that KK10 also offers a more realistic history of human impact than HYDE 3.1 although it overestimates human impact in the Belgian Loess Belt prior to the Roman Age, whereas it underestimates human impact from the Medieval Period onwards.

  20. A combined spectral and object-based approach to transparent cloud removal in an operational setting for Landsat ETM+

    NASA Astrophysics Data System (ADS)

    Watmough, Gary R.; Atkinson, Peter M.; Hutton, Craig W.

    2011-04-01

    The automated cloud cover assessment (ACCA) algorithm has provided automated estimates of cloud cover for the Landsat ETM+ mission since 2001. However, due to the lack of a band around 1.375 μm, cloud edges and transparent clouds such as cirrus cannot be detected. Use of Landsat ETM+ imagery for terrestrial land analysis is further hampered by the relatively long revisit period due to a nadir only viewing sensor. In this study, the ACCA threshold parameters were altered to minimise omission errors in the cloud masks. Object-based analysis was used to reduce the commission errors from the extended cloud filters. The method resulted in the removal of optically thin cirrus cloud and cloud edges which are often missed by other methods in sub-tropical areas. Although not fully automated, the principles of the method developed here provide an opportunity for using otherwise sub-optimal or completely unusable Landsat ETM+ imagery for operational applications. Where specific images are required for particular research goals the method can be used to remove cloud and transparent cloud helping to reduce bias in subsequent land cover classifications.

  1. Land use change analysis using spectral similarity and vegetation indices and its effect on runoff and sediment yield in tropical environment

    NASA Astrophysics Data System (ADS)

    Christanto, N.; Sartohadi, J.; Setiawan, M. A.; Shrestha, D. B. P.; Jetten, V. G.

    2018-04-01

    Land use change influences the hydrological as well as landscape processes such as runoff and sediment yields. The main objectives of this study are to assess the land use change and its impact on the runoff and sediment yield of the upper Serayu Catchment. Land use changes of 1991 to 2014 have been analyzed. Spectral similarity and vegetation indices were used to classify the old image. Therefore, the present and the past images are comparable. The influence of the past and present land use on runoff and sediment yield has been compared with field measurement. The effect of land use changes shows the increased surface runoff which is the result of change in the curve number (CN) values. The study shows that it is possible to classify previously obtained image based on spectral characteristics and indices of major land cover types derived from recently obtained image. This avoids the necessity of having training samples which will be difficult to obtain. On the other hand, it also demonstrates that it is possible to link land cover changes with land degradation processes and finally to sedimentation in the reservoir. The only condition is the requirement for having the comparable dataset which should not be difficult to generate. Any variation inherent in the data which are other than surface reflectance has to be corrected.

  2. Spatiotemporal dynamics of LUCC from 2001 to 2010 in Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Li, Z. J.; Yu, J. S.; Yao, X. L.; Chen, X.; Li, Z. L.

    2016-08-01

    LUCC (Land use and land cover change) is increasingly regarded as an important component of global environmental change and sustainable development. In this study, regional land cover type maps were drawn using the MODIS products from 2001 and 2010 based on the modified classification scheme embodied by the characteristics of land cover in Yunnan. Dynamic change in each type of land cover was investigated by classification statistics, dynamic transfer matrices, and landscape pattern metrics. In addition, the driving factors of LUCC were discussed. The results showed that the land cover types of the Yunnan province, especially woodland (WL), cropland (CL) and grassland (GL), had experienced noticeable changes with an area of about 30% of land during the study period. And there was an obvious vertical distribution pattern for land cover types. The average altitude of different land cover types from the highest to the lowest were unused land (UUT), WL, GL, water (WT), urban and built-up areas (UB) and CL. The average slope for most of the land-cover types did not vary over the past 10 years. Stabilization and homogenization will be the direction of land cover in the future according to landscape metrics analysis. The regional differences of land use structure in the area are strongly influenced by such factors as the geographical position, level of economic development and land use policy. The new policy of land use, Construction of Mountainous Town, would be provided to achieve the economical and intensive utilization of land resources during the rapid development of urbanization and industrialization in Yunnan.

  3. Analyzing landscape changes in the Bafa Lake Nature Park of Turkey using remote sensing and landscape structure metrics.

    PubMed

    Esbah, Hayriye; Deniz, Bulent; Kara, Baris; Kesgin, Birsen

    2010-06-01

    Bafa Lake Nature Park is one of Turkey's most important legally protected areas. This study aimed at analyzing spatial change in the park environment by using object-based classification technique and landscape structure metrics. SPOT 2X (1994) and ASTER (2005) images are the primary research materials. Results show that artificial surfaces, low maqui, garrigue, and moderately high maqui covers have increased and coniferous forests, arable lands, permanent crop, and high maqui covers have decreased; coniferous forest, high maqui, grassland, and saline areas are in a disappearance stage of the land transformation; and the landscape pattern is more fragmented outside the park boundaries. The management actions should support ongoing vegetation regeneration, mitigate transformation of vegetation structure to less dense and discontinuous cover, control the dynamics at the agricultural-natural landscape interface, and concentrate on relatively low but steady increase of artificial surfaces.

  4. Land cover change detection of Hatiya Island, Bangladesh, using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit; Ghosh, Manoj Kumer

    2012-01-01

    Land cover change is a significant issue for environmental managers for sustainable management. Remote sensing techniques have been shown to have a high probability of recognizing land cover patterns and change detection due to periodic coverage, data integrity, and provision of data in a broad range of the electromagnetic spectrum. We evaluate the applicability of remote sensing techniques for land cover pattern recognition, as well as land cover change detection of the Hatiya Island, Bangladesh, and quantify land cover changes from 1977 to 1999. A supervised classification approach was used to classify Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM), and Multispectral Scanner (MSS) images into eight major land cover categories. We detected major land cover changes over the 22-year study period. During this period, marshy land, mud, mud with small grass, and bare soil had decreased by 85%, 46%, 44%, and 24%, respectively, while agricultural land, medium forest, forest, and settlement had positive changes of 26%, 45%, 363%, and 59%, respectively. The primary drivers of such landscape change were erosion and accretion processes, human pressure, and the reforestation and land reclamation programs of the Bangladesh Government.

  5. Exploring dust emission responses to land cover change using an ecological land classification

    NASA Astrophysics Data System (ADS)

    Galloza, Magda S.; Webb, Nicholas P.; Bleiweiss, Max P.; Winters, Craig; Herrick, Jeffrey E.; Ayers, Eldon

    2018-06-01

    Despite efforts to quantify the impacts of land cover change on wind erosion, assessment uncertainty remains large. We address this uncertainty by evaluating the application of ecological site concepts and state-and-transition models (STMs) for detecting and quantitatively describing the impacts of land cover change on wind erosion. We apply a dust emission model over a rangeland study area in the northern Chihuahuan Desert, New Mexico, USA, and evaluate spatiotemporal patterns of modelled horizontal sediment mass flux and dust emission in the context of ecological sites and their vegetation states; representing a diversity of land cover types. Our results demonstrate how the impacts of land cover change on dust emission can be quantified, compared across land cover classes, and interpreted in the context of an ecological model that encapsulates land management intensity and change. Results also reveal the importance of established weaknesses in the dust model soil characterisation and drag partition scheme, which appeared generally insensitive to the impacts of land cover change. New models that address these weaknesses, coupled with ecological site concepts and field measurements across land cover types, could significantly reduce assessment uncertainties and provide opportunities for identifying land management options.

  6. Thematic accuracy of the National Land Cover Database (NLCD) 2001 land cover for Alaska

    USGS Publications Warehouse

    Selkowitz, D.J.; Stehman, S.V.

    2011-01-01

    The National Land Cover Database (NLCD) 2001 Alaska land cover classification is the first 30-m resolution land cover product available covering the entire state of Alaska. The accuracy assessment of the NLCD 2001 Alaska land cover classification employed a geographically stratified three-stage sampling design to select the reference sample of pixels. Reference land cover class labels were determined via fixed wing aircraft, as the high resolution imagery used for determining the reference land cover classification in the conterminous U.S. was not available for most of Alaska. Overall thematic accuracy for the Alaska NLCD was 76.2% (s.e. 2.8%) at Level II (12 classes evaluated) and 83.9% (s.e. 2.1%) at Level I (6 classes evaluated) when agreement was defined as a match between the map class and either the primary or alternate reference class label. When agreement was defined as a match between the map class and primary reference label only, overall accuracy was 59.4% at Level II and 69.3% at Level I. The majority of classification errors occurred at Level I of the classification hierarchy (i.e., misclassifications were generally to a different Level I class, not to a Level II class within the same Level I class). Classification accuracy was higher for more abundant land cover classes and for pixels located in the interior of homogeneous land cover patches. ?? 2011.

  7. Appendix E: Research papers. Analysis of landfills with historic airphotos

    NASA Technical Reports Server (NTRS)

    Liang, T.; Philipson, W. R. (Principal Investigator); Erb, T. L.; Teng, W. L.

    1980-01-01

    The nature of landfill-related information that can be derived from existing, or historic, aerial photographs, is reviewed. This information can be used for conducting temporal assessments of landfill existence, land use and land cover, and the physical environment. As such, analysis of low cost, readily available aerial photographs can provide important, objective input to landfill inventories, assessing contamination or health hazards, planning corrective measures, planning waste collection and facilities, and developing on inactive landfills.

  8. Mediterranean Land Use and Land Cover Classification Assessment Using High Spatial Resolution Data

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Boteva, Silvena

    2016-10-01

    Landscape fragmentation is noticeably practiced in Mediterranean regions and imposes substantial complications in several satellite image classification methods. To some extent, high spatial resolution data were able to overcome such complications. For better classification performances in Land Use Land Cover (LULC) mapping, the current research adopts different classification methods comparison for LULC mapping using Sentinel-2 satellite as a source of high spatial resolution. Both of pixel-based and an object-based classification algorithms were assessed; the pixel-based approach employs Maximum Likelihood (ML), Artificial Neural Network (ANN) algorithms, Support Vector Machine (SVM), and, the object-based classification uses the Nearest Neighbour (NN) classifier. Stratified Masking Process (SMP) that integrates a ranking process within the classes based on spectral fluctuation of the sum of the training and testing sites was implemented. An analysis of the overall and individual accuracy of the classification results of all four methods reveals that the SVM classifier was the most efficient overall by distinguishing most of the classes with the highest accuracy. NN succeeded to deal with artificial surface classes in general while agriculture area classes, and forest and semi-natural area classes were segregated successfully with SVM. Furthermore, a comparative analysis indicates that the conventional classification method yielded better accuracy results than the SMP method overall with both classifiers used, ML and SVM.

  9. Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibbard, Kathleen A.; Janetos, Anthony C.; Van Vuuren, Detlef

    2010-11-15

    This special issue has highlighted recent and innovative methods and results that integrate observations and AQ3 modelling analyses of regional to global aspect of biophysical and biogeochemical interactions of land-cover change with the climate system. Both the Earth System and the Integrated Assessment modeling communities recognize the importance of an accurate representation of land use and land-cover change to understand and quantify the interactions and feedbacks with the climate and socio-economic systems, respectively. To date, cooperation between these communities has been limited. Based on common interests, this work discusses research priorities in representing land use and land-cover change for improvedmore » collaboration across modelling, observing and measurement communities. Major research topics in land use and land-cover change are those that help us better understand (1) the interaction of land use and land cover with the climate system (e.g. carbon cycle feedbacks), (2) the provision of goods and ecosystem services by terrestrial (natural and anthropogenic) land-cover types (e.g. food production), (3) land use and management decisions and (4) opportunities and limitations for managing climate change (for both mitigation and adaptation strategies).« less

  10. Evaluating Anthropogenic Risk of Grassland and Forest Habitat Degradation Using Land-Cover Data

    EPA Science Inventory

    The effects of landscape context on habitat quality are receiving increased attention in conservation biology. The objective of this research is to demonstrate an approach to mapping and evaluating the anthropogenic risks of grassland and forest habitat degradation by examining ...

  11. An approach for using AVHRR data to monitor U.S. great plains grasslands

    USGS Publications Warehouse

    Reed, B.C.; Loveland, Thomas R.; Tieszen, L.L.

    1996-01-01

    Environmental monitoring requires regular observations regarding the status of the landscape- The concept behind most monitoring efforts using satellite data involve deriving normalized difference vegetation index (NDVI) values or accumulating the NDVI over a specified time period. These efforts attempt to estimate the continuous growth of green biomass by using continuous additions of NDVI as a surrogate measure. To build upon this concept, this study proposes three refinements; 1) use an objective definition of the current growing season to adjust the time window during which the NDVI is accumulated, 2) accumulate only the NDVI values which are affected by green vegetation, and 3) base monitoring units upon land cover type. These refinements improve the sensitivity of detecting interannual vegetation variability, reduce the need for extensive and detailed knowledge of ground conditions and crop calendars, provide a framework in which several types of monitoring can take place over diverse land cover types, and provide an objective time frame during which monitoring takes place.

  12. Simulation of regional temperature change effect of land cover change in agroforestry ecotone of Nenjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Liu, Tingxiang; Zhang, Shuwen; Yu, Lingxue; Bu, Kun; Yang, Jiuchun; Chang, Liping

    2017-05-01

    The Northeast China is one of typical regions experiencing intensive human activities within short time worldwide. Particularly, as the significant changes of agriculture land and forest, typical characteristics of pattern and process of agroforestry ecotone change formed in recent decades. The intensive land use change of agroforestry ecotone has made significant change for regional land cover, which had significant impact on the regional climate system elements and the interactions among them. This paper took agroforestry ecotone of Nenjiang River Basin in China as study region and simulated temperature change based on land cover change from 1950s to 1978 and from 1978 to 2010. The analysis of temperature difference sensitivity to land cover change based on Weather Research and Forecasting (WRF) model showed that the land cover change from 1950s to 1978 induced warming effect over all the study area, including the change of grassland to agriculture land, grassland to deciduous broad-leaved forest, and deciduous broad-leaved forest to shrub land. The land cover change from 1978 to 2010 induced cooling effect over all the study area, including the change of deciduous broad-leaved forest to agriculture land, grassland to agriculture land, shrub land to agriculture land, and deciduous broad-leaved forest to grassland. In addition, the warming and cooling effect of land cover change was more significant in the region scale than specific land cover change area.

  13. Vegetation and terrain mapping in Alaska using Landsat MSS and digital terrain data

    USGS Publications Warehouse

    Shasby, Mark; Carneggie, David M.

    1986-01-01

    During the past 5 years, the U.S. Geological Survey's (USGS) Earth Resources Observation Systems (EROS) Data Center Field Office in Anchorage, Alaska has worked cooperatively with Federal and State resource management agencies to produce land-cover and terrain maps for 245 million acres of Alaska. The need for current land-cover information in Alaska comes principally from the mandates of the Alaska National Interest Lands Conservation Act (ANILCA), December 1980, which requires major land management agencies to prepare comprehensive management plans. The land-cover mapping projects integrate digital Landsat data, terrain data, aerial photographs, and field data. The resultant land-cover and terrain maps and associated data bases are used for resource assessment, management, and planning by many Alaskan agencies including the U.S. Fish and Wildlife Service, U.S. Forest Service, Bureau of Land Management, and Alaska Department of Natural Resources. Applications addressed through use of the digital land-cover and terrain data bases range from comprehensive refuge planning to multiphased sampling procedures designed to inventory vegetation statewide. The land-cover mapping programs in Alaska demonstrate the operational utility of digital Landsat data and have resulted in a new land-cover mapping program by the USGS National Mapping Division to compile 1:250,000-scale land-cover maps in Alaska using a common statewide land-cover map legend.

  14. Effect of landslides on the structural characteristics of land-cover based on complex networks

    NASA Astrophysics Data System (ADS)

    He, Jing; Tang, Chuan; Liu, Gang; Li, Weile

    2017-09-01

    Landslides have been widely studied by geologists. However, previous studies mainly focused on the formation of landslides and never considered the effect of landslides on the structural characteristics of land-cover. Here we define the modeling of the graph topology for the land-cover, using the satellite images of the earth’s surface before and after the earthquake. We find that the land-cover network satisfies the power-law distribution, whether the land-cover contains landslides or not. However, landslides may change some parameters or measures of the structural characteristics of land-cover. The results show that the linear coefficient, modularity and area distribution are all changed after the occurence of landslides, which means the structural characteristics of the land-cover are changed.

  15. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods

    USGS Publications Warehouse

    Xian, George; Homer, Collin G.; Fry, Joyce

    2009-01-01

    The recent release of the U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001, which represents the nation's land cover status based on a nominal date of 2001, is widely used as a baseline for national land cover conditions. To enable the updating of this land cover information in a consistent and continuous manner, a prototype method was developed to update land cover by an individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season in 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, land cover classifications at the full NLCD resolution for 2006 areas of change were completed by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain several metropolitan areas including Seattle, Washington; San Diego, California; Sioux Falls, South Dakota; Jackson, Mississippi; and Manchester, New Hampshire. Results from the five study areas show that the vast majority of land cover change was captured and updated with overall land cover classification accuracies of 78.32%, 87.5%, 88.57%, 78.36%, and 83.33% for these areas. The method optimizes mapping efficiency and has the potential to provide users a flexible method to generate updated land cover at national and regional scales by using NLCD 2001 as the baseline.

  16. West Africa land use and land cover time series

    USGS Publications Warehouse

    Cotillon, Suzanne E.

    2017-02-16

    Started in 1999, the West Africa Land Use Dynamics project represents an effort to map land use and land cover, characterize the trends in time and space, and understand their effects on the environment across West Africa. The outcome of the West Africa Land Use Dynamics project is the production of a three-time period (1975, 2000, and 2013) land use and land cover dataset for the Sub-Saharan region of West Africa, including the Cabo Verde archipelago. The West Africa Land Use Land Cover Time Series dataset offers a unique basis for characterizing and analyzing land changes across the region, systematically and at an unprecedented level of detail.

  17. Assessing uncertainties in land cover projections.

    PubMed

    Alexander, Peter; Prestele, Reinhard; Verburg, Peter H; Arneth, Almut; Baranzelli, Claudia; Batista E Silva, Filipe; Brown, Calum; Butler, Adam; Calvin, Katherine; Dendoncker, Nicolas; Doelman, Jonathan C; Dunford, Robert; Engström, Kerstin; Eitelberg, David; Fujimori, Shinichiro; Harrison, Paula A; Hasegawa, Tomoko; Havlik, Petr; Holzhauer, Sascha; Humpenöder, Florian; Jacobs-Crisioni, Chris; Jain, Atul K; Krisztin, Tamás; Kyle, Page; Lavalle, Carlo; Lenton, Tim; Liu, Jiayi; Meiyappan, Prasanth; Popp, Alexander; Powell, Tom; Sands, Ronald D; Schaldach, Rüdiger; Stehfest, Elke; Steinbuks, Jevgenijs; Tabeau, Andrzej; van Meijl, Hans; Wise, Marshall A; Rounsevell, Mark D A

    2017-02-01

    Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover. © 2016 John Wiley & Sons Ltd.

  18. Exploring the Interactions between Land Use, Climate Change and Carbon Cycle using Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ray, R. L.; Fares, A.; He, Y.; Awal, R.; Risch, E.

    2017-12-01

    Most climate change impacts are linked to terrestrial vegetation productivity, carbon stocks and land use change. Changes in land use and climate drive the dynamics of terrestrial carbon cycle. These carbon cycle dynamics operate at different spatial and temporal scales. Quantification of the spatial and temporal variability of carbon flux has been challenging because land-atmosphere-carbon exchange is influenced by many factors, including but not limited to, land use change and climate change and variability. The study of terrestrial carbon cycle, mainly gross primary product (GPP), net ecosystem exchange (NEE), soil organic carbon (SOC) and ecosystem respiration (Re) and their interactions with land use and climate change, are critical to understanding the terrestrial ecosystem. The main objective of this study was to examine the interactions among land use, climate change and terrestrial carbon cycling in the state of Texas using satellite measurements. We studied GPP, NEE, Re and SOC distributions for five selected major land covers and all ten climate zones in Texas using Soil Moisture Active Passive (SMAP) carbon products. SMAP Carbon products (Res=9 km) were compared with observed CO2 flux data measured at EC flux site on Prairie View A&M University Research Farm. Results showed the same land cover in different climate zones has significantly different carbon sequestration potentials. For example, cropland of the humid climate zone has higher (-228 g C/m2) carbon sequestration potentials than the semiarid climate zone (-36 g C/m2). Also, shrub land in the humid zone and in the semiarid zone showed high (-120 g C/m2) and low (-36 g C/m2) potentials of carbon sequestration, respectively, in the state. Overall, the analyses indicate CO2 storage and exchange respond differently to various land covers, and environments due to differences in water availability, root distribution and soil properties.

  19. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data

    USGS Publications Warehouse

    Loveland, Thomas R.; Reed, B.C.; Brown, Jesslyn F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W.

    2000-01-01

    Researchers from the U.S. Geological Survey, University of Nebraska-Lincoln and the European Commission's Joint Research Centre, Ispra, Italy produced a 1 km resolution global land cover characteristics database for use in a wide range of continental-to global-scale environmental studies. This database provides a unique view of the broad patterns of the biogeographical and ecoclimatic diversity of the global land surface, and presents a detailed interpretation of the extent of human development. The project was carried out as an International Geosphere-Biosphere Programme, Data and Information Systems (IGBP-DIS) initiative. The IGBP DISCover global land cover product is an integral component of the global land cover database. DISCover includes 17 general land cover classes defined to meet the needs of IGBP core science projects. A formal accuracy assessment of the DISCover data layer will be completed in 1998. The 1 km global land cover database was developed through a continent-by-continent unsupervised classification of 1 km monthly Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) composites covering 1992-1993. Extensive post-classification stratification was necessary to resolve spectral/temporal confusion between disparate land cover types. The complete global database consists of 961 seasonal land cover regions that capture patterns of land cover, seasonality and relative primary productivity. The seasonal land cover regions were aggregated to produce seven separate land cover data sets used for global environmental modelling and assessment. The data sets include IGBP DISCover, U.S. Geological Survey Anderson System, Simple Biosphere Model, Simple Biosphere Model 2, Biosphere-Atmosphere Transfer Scheme, Olson Ecosystems and Running Global Remote Sensing Land Cover. The database also includes all digital sources that were used in the classification. The complete database can be sourced from the website: http://edcwww.cr.usgs.gov/landdaac/glcc/glcc.html.

  20. Linear Subpixel Learning Algorithm for Land Cover Classification from WELD using High Performance Computing

    NASA Technical Reports Server (NTRS)

    Kumar, Uttam; Nemani, Ramakrishna R.; Ganguly, Sangram; Kalia, Subodh; Michaelis, Andrew

    2017-01-01

    In this work, we use a Fully Constrained Least Squares Subpixel Learning Algorithm to unmix global WELD (Web Enabled Landsat Data) to obtain fractions or abundances of substrate (S), vegetation (V) and dark objects (D) classes. Because of the sheer nature of data and compute needs, we leveraged the NASA Earth Exchange (NEX) high performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into 4 classes namely, forest, farmland, water and urban areas (with NPP-VIIRS-national polar orbiting partnership visible infrared imaging radiometer suite nighttime lights data) over California, USA using Random Forest classifier. Validation of these land cover maps with NLCD (National Land Cover Database) 2011 products and NAFD (North American Forest Dynamics) static forest cover maps showed that an overall classification accuracy of over 91 percent was achieved, which is a 6 percent improvement in unmixing based classification relative to per-pixel-based classification. As such, abundance maps continue to offer an useful alternative to high-spatial resolution data derived classification maps for forest inventory analysis, multi-class mapping for eco-climatic models and applications, fast multi-temporal trend analysis and for societal and policy-relevant applications needed at the watershed scale.

  1. Linear Subpixel Learning Algorithm for Land Cover Classification from WELD using High Performance Computing

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Kumar, U.; Nemani, R. R.; Kalia, S.; Michaelis, A.

    2017-12-01

    In this work, we use a Fully Constrained Least Squares Subpixel Learning Algorithm to unmix global WELD (Web Enabled Landsat Data) to obtain fractions or abundances of substrate (S), vegetation (V) and dark objects (D) classes. Because of the sheer nature of data and compute needs, we leveraged the NASA Earth Exchange (NEX) high performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into 4 classes namely, forest, farmland, water and urban areas (with NPP-VIIRS - national polar orbiting partnership visible infrared imaging radiometer suite nighttime lights data) over California, USA using Random Forest classifier. Validation of these land cover maps with NLCD (National Land Cover Database) 2011 products and NAFD (North American Forest Dynamics) static forest cover maps showed that an overall classification accuracy of over 91% was achieved, which is a 6% improvement in unmixing based classification relative to per-pixel based classification. As such, abundance maps continue to offer an useful alternative to high-spatial resolution data derived classification maps for forest inventory analysis, multi-class mapping for eco-climatic models and applications, fast multi-temporal trend analysis and for societal and policy-relevant applications needed at the watershed scale.

  2. Simulation of Land-Cover Change in Taipei Metropolitan Area under Climate Change Impact

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Ching; Huang, Thomas C. C.

    2014-02-01

    Climate change causes environment change and shows up on land covers. Through observing the change of land use, researchers can find out the trend and potential mechanism of the land cover change. Effective adaptation policies can affect pattern of land cover change and may decrease the risks of climate change impacts. By simulating land use dynamics with scenario settings, this paper attempts to explore the relationship between climate change and land-cover change through efficient adaptation polices. It involves spatial statistical model in estimating possibility of land-cover change, cellular automata model in modeling land-cover dynamics, and scenario analysis in response to adaptation polices. The results show that, without any control, the critical eco-areas, such as estuarine areas, will be destroyed and people may move to the vulnerable and important economic development areas. In the other hand, under the limited development condition for adaptation, people migration to peri-urban and critical eco-areas may be deterred.

  3. Predicting future land cover change and its impact on streamflow and sediment load in a trans-boundary river basin

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Hao; Ning, Shaowei; Hiroshi, Ishidaira

    2018-06-01

    Sediment load can provide very important perspective on erosion of river basin. The changes of human-induced vegetation cover, such as deforestation or afforestation, affect sediment yield process of a catchment. We have already evaluated that climate change and land cover change changed the historical streamflow and sediment yield, and land cover change is the main factor in Red river basin. But future streamflow and sediment yield changes under potential future land cover change scenario still have not been evaluated. For this purpose, future scenario of land cover change is developed based on historical land cover changes and land change model (LCM). In addition, future leaf area index (LAI) is simulated by ecological model (Biome-BGC) based on future land cover scenario. Then future scenarios of land cover change and LAI are used to drive hydrological model and new sediment rating curve. The results of this research provide information that decision-makers need in order to promote water resources planning efforts. Besides that, this study also contributes a basic framework for assessing climate change impacts on streamflow and sediment yield that can be applied in the other basins around the world.

  4. NASA applications project in Miami County, Indiana

    NASA Technical Reports Server (NTRS)

    Johannsen, Chris J.; Fernandez, R. Norberto; Lozano-Garcia, D. Fabian

    1990-01-01

    This project was designed to acquaint county government officials and their clientele with remote sensing and geographic information systems (GIS) products that contain information about land conditions and land use. The specific project objectives are: (1) to investigate the feasibility of using remotely sensed data to identify and quantify specific land cover categories and conditions for purposes of tax assessment, cropland area measurements, and land use evaluation; (2) to evaluate the use of remotely sensed data to assess soil resources and conditions which affect productivity; (3) to investigate the use of satellite remote sensing data as an aid in assessing soil management practices; and (4) to evaluate the market potential of products derived from the above projects.

  5. Trends and driving mechanism of land-use change in metropolitan areas of Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Chen, Feng-gui; Zhang, Hong-ou; Wang, Juan; Wu, Qi-tao

    2008-10-01

    Taking Pearl River Delta for an example this study focuses on the trends and the driving mechanism of land-use changes in metropolises, in order to achieve the fundamental objectives of LUCC study increasing the awareness on dynamics of global land-use and land-cover changes, and improving the ability of forecasting LUCC. By analyzing the land-use change in Pearl River Delta from 1996 to 2006, it is found that the differences among internal space are notable. By establishing time-sequence-curve with SPSS software, it is shown that trends of land-use change are very clear. With factor analysis on land-use change, the study summarizes four factors of driving mechanism, including factors of economic development level, regional industrial structure, demographic and agricultural structure adjustment, which impact land change in Pearl River Delta to a different extent.

  6. The Impact of Anthropogenic Land Cover Change on Continental River Flow

    NASA Astrophysics Data System (ADS)

    Sterling, S. M.; Ducharne, A.; Polcher, J.

    2006-12-01

    The 2003 World Water Forum highlighted a water crisis that forces over one billion people to drink contaminated water and leaves countless millions with insufficient supplies for agriculture industry. This crisis has spurred numerous recent calls for improved science and understanding of how we alter the water cycle. Here we investigate how this global water crisis is affected by human-caused land cover change. We examine the impact of the present extent of land cover change on the water cycle, in particular on evapotranspiration and streamflow, through numerical experiments with the ORCHIDEE land surface model. Using Geographic Information Systems, we characterise land cover change by assembling and modifying existing global-scale maps of land cover change. To see how the land cover change impacts river runoff streamflow, we input the maps into ORCHIDEE and run 50-year "potential vegetation" and "current land cover" simulations of the land surface and energy fluxes, forced by the 50-year NCC atmospheric forcing data set. We present global maps showing the "hotspot" areas with the largest change in ET and streamflow due to anthropogenic land cover change. The results of this project enhance scientific understanding of the nature of human impact on the global water cycle.

  7. How well do route survey areas represent landscapes at larger spatial extents? An analysis of land cover composition along Breeding Bird Survey routes

    USGS Publications Warehouse

    Veech, Joseph A.; Pardieck, Keith L.; Ziolkowski, David

    2017-01-01

    The occurrence of birds in a survey unit is partly determined by the habitat present. Moreover, some bird species preferentially avoid some land cover types and are attracted to others. As such, land cover composition within the 400 m survey areas along a Breeding Bird Survey (BBS) route clearly influences the species available to be detected. Ideally, to extend survey results to the larger landscape, land cover composition within the survey area should be similar to that at larger spatial extents defining the landscape. Such representativeness helps minimize possible roadside effects (bias), here defined as differences in bird species composition and abundance along a roadside as compared to a larger surrounding landscape. We used land cover data from the 2011 National Land Cover Database to examine representativeness of land cover composition along routes. Using ArcGIS, the percentages of each of 15 land cover types within 400 m buffers along 2,696 U.S. BBS routes were calculated and compared to percentages in 2 km, 5 km, and 10 km buffers surrounding each route. This assessment revealed that aquatic cover types and highly urbanized land tend to be slightly underrepresented in the survey areas. Two anthropogenic cover types (pasture/hay and cropland) may be slightly overrepresented in the survey areas. Over all cover types, 92% of the 2,696 routes exhibited “good” representativeness, with <5 percentage points per cover type difference in proportional cover between the 400 m and 10 km buffers. This assessment further supports previous research indicating that any land-cover-based roadside bias in the bird data of the BBS is likely minimal.

  8. Effect of land cover change on snow free surface albedo across the continental United States

    USGS Publications Warehouse

    Wickham, J.; Nash, M.S.; Barnes, Christopher A.

    2016-01-01

    Land cover changes (e.g., forest to grassland) affect albedo, and changes in albedo can influence radiative forcing (warming, cooling). We empirically tested albedo response to land cover change for 130 locations across the continental United States using high resolution (30 m-×-30 m) land cover change data and moderate resolution (~ 500 m-×-500 m) albedo data. The land cover change data spanned 10 years (2001 − 2011) and the albedo data included observations every eight days for 13 years (2001 − 2013). Empirical testing was based on autoregressive time series analysis of snow free albedo for verified locations of land cover change. Approximately one-third of the autoregressive analyses for woody to herbaceous or forest to shrub change classes were not significant, indicating that albedo did not change significantly as a result of land cover change at these locations. In addition, ~ 80% of mean differences in albedo arising from land cover change were less than ± 0.02, a nominal benchmark for precision of albedo measurements that is related to significant changes in radiative forcing. Under snow free conditions, we found that land cover change does not guarantee a significant albedo response, and that the differences in mean albedo response for the majority of land cover change locations were small.

  9. Unsupervised Framework to Monitor Lake Dynamics

    NASA Technical Reports Server (NTRS)

    Chen, Xi C. (Inventor); Boriah, Shyam (Inventor); Khandelwal, Ankush (Inventor); Kumar, Vipin (Inventor)

    2016-01-01

    A method of reducing processing time when assigning geographic areas to land cover labels using satellite sensor values includes a processor receiving a feature value for each pixel in a time series of frames of satellite sensor values, each frame containing multiple pixels and each frame covering a same geographic location. For each sub-area of the geographic location, the sub-area is assigned to one of at least three land cover labels. The processor determines a fraction function for a first sub-area assigned to a first land cover label. The sub-areas that were assigned to the first land cover label are reassigned to one of the second land cover label and the third land cover label based on the fraction functions of the sub-areas.

  10. Land cover mapping of Greater Mesoamerica using MODIS data

    USGS Publications Warehouse

    Giri, Chandra; Jenkins, Clinton N.

    2005-01-01

    A new land cover database of Greater Mesoamerica has been prepared using moderate resolution imaging spectroradiometer (MODIS, 500 m resolution) satellite data. Daily surface reflectance MODIS data and a suite of ancillary data were used in preparing the database by employing a decision tree classification approach. The new land cover data are an improvement over traditional advanced very high resolution radiometer (AVHRR) based land cover data in terms of both spatial and thematic details. The dominant land cover type in Greater Mesoamerica is forest (39%), followed by shrubland (30%) and cropland (22%). Country analysis shows forest as the dominant land cover type in Belize (62%), Cost Rica (52%), Guatemala (53%), Honduras (56%), Nicaragua (53%), and Panama (48%), cropland as the dominant land cover type in El Salvador (60.5%), and shrubland as the dominant land cover type in Mexico (37%). A three-step approach was used to assess the quality of the classified land cover data: (i) qualitative assessment provided good insight in identifying and correcting gross errors; (ii) correlation analysis of MODIS- and Landsat-derived land cover data revealed strong positive association for forest (r2 = 0.88), shrubland (r2 = 0.75), and cropland (r2 = 0.97) but weak positive association for grassland (r2 = 0.26); and (iii) an error matrix generated using unseen training data provided an overall accuracy of 77.3% with a Kappa coefficient of 0.73608. Overall, MODIS 500 m data and the methodology used were found to be quite useful for broad-scale land cover mapping of Greater Mesoamerica.

  11. Comparing long-term geomorphic model outcomes with sediment archives highlights the need for high-resolution Holocene land cover reconstructions

    NASA Astrophysics Data System (ADS)

    De Brue, Hanne; Verstraeten, Gert

    2013-04-01

    During the last decade, several global land cover reconstructions have been produced that enable to quantify human impact on the landscape since the introduction of agriculture. Application of these land cover maps in geomorphic models potentially allows to estimate the anthropogenic impact on sediment fluxes and thus to reconstruct changes in landscape morphology through time. However, current land cover reconstructions face some drawbacks. First of all, their low spatial resolution (i.e. 5 arc-minutes at best) questions their use in geomorphic models, as sub-catchment vegetation patterns play an important role in sediment dynamics. Existing global land cover reconstructions also do not differentiate the typology of human impact (cropland, grazing land, disturbed forests), although the susceptibility of different anthropogenic land uses towards erosion varies greatly. Finally, the various land cover reconstructions differ significantly regarding the estimated intensity of human impact for the preindustrial period. In this study, we assessed the performance of a spatially distributed erosion and sediment redistribution model that operates at high resolution (100 m) to the quality and spatial resolution of input land cover maps. This was done through a comparison of two sets of model runs. Firstly, low-resolution land cover (expressed as percentage of non-natural vegetation) maps were resampled to a spatial resolution of 100 m without differentiation of non-natural vegetation types. For the second set of model runs, estimated non-natural vegetation was differentiated in areas of cropland and grassland, and spatially allocated to a high-resolution grid (100 m) using a logistic model that relates contemporary land cover classes to slope, soil characteristics, landforms and distance to rivers. For both land cover maps, different scenarios for the ratio between cropland and grassland were simulated. Analyses were performed for several time periods throughout the Holocene, for the Scheldt River Basin (19,000 km2) in Belgium and northern France. Results indicate that low-resolution land cover information, regardless of the considered cropland/grassland ratio, leads to largely overestimated sediment fluxes when compared to field-based sediment budgets. Allocation of land cover to a higher spatial resolution yields far better results. Variations in model outcomes are related to differences in landscape connectivity between allocated and non-allocated land cover. These results point towards the need for higher-resolution land cover maps that incorporate the patchiness of vegetation at relevant scales regarding geomorphic processes. Also, model results with allocated and non-allocated land cover maps differ greatly for different cropland/grassland ratios. This indicates that there is not only a need for land cover reconstructions at high spatial resolution, but also that differentiation between cropland and grassland is essential for accurate geomorphic modeling. Further improvements in land cover reconstructions are thus needed before reliable quantitative estimates of anthropogenic impact on soil profiles and sediment redistribution can be simulated at continental scales. Detailed historic sediment budgets can provide an important tool not only for validating but also for reconstructing land cover histories.

  12. A Tool for Creating Regionally Calibrated High-Resolution Land Cover Data Sets for the West African Sahel: Using Machine Learning to Scale Up Hand-Classified Maps in a Data-Sparse Environment

    NASA Astrophysics Data System (ADS)

    Van Gordon, M.; Van Gordon, S.; Min, A.; Sullivan, J.; Weiner, Z.; Tappan, G. G.

    2017-12-01

    Using support vector machine (SVM) learning and high-accuracy hand-classified maps, we have developed a publicly available land cover classification tool for the West African Sahel. Our classifier produces high-resolution and regionally calibrated land cover maps for the Sahel, representing a significant contribution to the data available for this region. Global land cover products are unreliable for the Sahel, and accurate land cover data for the region are sparse. To address this gap, the U.S. Geological Survey and the Regional Center for Agriculture, Hydrology and Meteorology (AGRHYMET) in Niger produced high-quality land cover maps for the region via hand-classification of Landsat images. This method produces highly accurate maps, but the time and labor required constrain the spatial and temporal resolution of the data products. By using these hand-classified maps alongside SVM techniques, we successfully increase the resolution of the land cover maps by 1-2 orders of magnitude, from 2km-decadal resolution to 30m-annual resolution. These high-resolution regionally calibrated land cover datasets, along with the classifier we developed to produce them, lay the foundation for major advances in studies of land surface processes in the region. These datasets will provide more accurate inputs for food security modeling, hydrologic modeling, analyses of land cover change and climate change adaptation efforts. The land cover classification tool we have developed will be publicly available for use in creating additional West Africa land cover datasets with future remote sensing data and can be adapted for use in other parts of the world.

  13. Land cover mapping at Alkali Flat and Lake Lucero, White Sands, New Mexico, USA using multi-temporal and multi-spectral remote sensing data

    NASA Astrophysics Data System (ADS)

    Ghrefat, Habes A.; Goodell, Philip C.

    2011-08-01

    The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR-SWIR (0.4-2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen analysis between the various datasets helped to uncover the most optimum spatial-spectral-temporal and radiometric-resolution sensor characteristics for remote sensing based on monitoring of seasonal land cover, surface water, groundwater, and alluvial sediment input changes within the basin. The results demonstrated good agreement between ground truth data and XRD analysis of samples, and the results of Matched Filtering (MF) mapping method.

  14. SCALING-UP INFORMATION IN LAND-COVER DATA FOR LARGE-SCALE ENVIRONMENTAL ASSESSMENTS

    EPA Science Inventory

    The NLCD project provides national-scope land-cover data for the conterminous United States. The first land-cover data set was completed in 2000, and the continuing need for recent land-cover information has motivated continuation of the project to provide current and change info...

  15. A multitemporal (1979-2009) land-use/land-cover dataset of the binational Santa Cruz Watershed

    USGS Publications Warehouse

    2011-01-01

    Trends derived from multitemporal land-cover data can be used to make informed land management decisions and to help managers model future change scenarios. We developed a multitemporal land-use/land-cover dataset for the binational Santa Cruz watershed of southern Arizona, United States, and northern Sonora, Mexico by creating a series of land-cover maps at decadal intervals (1979, 1989, 1999, and 2009) using Landsat Multispectral Scanner and Thematic Mapper data and a classification and regression tree classifier. The classification model exploited phenological changes of different land-cover spectral signatures through the use of biseasonal imagery collected during the (dry) early summer and (wet) late summer following rains from the North American monsoon. Landsat images were corrected to remove atmospheric influences, and the data were converted from raw digital numbers to surface reflectance values. The 14-class land-cover classification scheme is based on the 2001 National Land Cover Database with a focus on "Developed" land-use classes and riverine "Forest" and "Wetlands" cover classes required for specific watershed models. The classification procedure included the creation of several image-derived and topographic variables, including digital elevation model derivatives, image variance, and multitemporal Kauth-Thomas transformations. The accuracy of the land-cover maps was assessed using a random-stratified sampling design, reference aerial photography, and digital imagery. This showed high accuracy results, with kappa values (the statistical measure of agreement between map and reference data) ranging from 0.80 to 0.85.

  16. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China

    PubMed Central

    Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun

    2017-01-01

    Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507

  17. Nitrate-nitrogen losses through subsurface drainage under various agricultural land covers.

    PubMed

    Qi, Zhiming; Helmers, Matthew J; Christianson, Reid D; Pederson, Carl H

    2011-01-01

    Nitrate-nitrogen (NO₃-N) loading to surface water bodies from subsurface drainage is an environmental concern in the midwestern United States. The objective of this study was to investigate the effect of various land covers on NO₃-N loss through subsurface drainage. Land-cover treatments included (i) conventional corn ( L.) (C) and soybean [ (L.) Merr.] (S); (ii) winter rye ( L.) cover crop before corn (rC) and before soybean (rS); (iii) kura clover ( M. Bieb.) as a living mulch for corn (kC); and (iv) perennial forage of orchardgrass ( L.) mixed with clovers (PF). In spring, total N uptake by aboveground biomass of rye in rC, rye in rS, kura clover in kC, and grasses in PF were 14.2, 31.8, 87.0, and 46.3 kg N ha, respectively. Effect of land covers on subsurface drainage was not significant. The NO₃-N loss was significantly lower for kC and PF than C and S treatments (p < 0.05); rye cover crop did not reduce NO₃-N loss, but NO₃-N concentration was significantly reduced in rC during March to June and in rS during July to November (p < 0.05). Moreover, the increase of soil NO₃-N from early to late spring in rS was significantly lower than the S treatment (p < 0.05). This study suggests that kC and PF are effective in reducing NO₃-N loss, but these systems could lead to concerns relative to grain yield loss and change in farming practices. Management strategies for kC need further study to achieve reasonable corn yield. The effectiveness of rye cover crop on NO-N loss reduction needs further investigation under conditions of different N rates, wider weather patterns, and fall tillage. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Land use, population dynamics, and land-cover change in eastern Puerto Rico: Chapter B in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    USGS Publications Warehouse

    Gould, William A.; Martinuzzi, Sebastián; Pares-Ramos, Isabel K.; Murphy, Sheila F.; Stallard, Robert F.; Murphy, Sheila F.; Stallard, Robert F.

    2012-01-01

    We assessed current and historic land use and land cover in the Luquillo Mountains and surrounding area in eastern Puerto Rico, including four small subwatersheds that are study watersheds of the U.S. Geological Survey's Water, Energy, and Biogeochemical Budgets (WEBB) program. This region occupies an area of 1,616 square kilometers, about 18 percent of the total land in Puerto Rico. Closed forests occupy about 37 percent of the area, woodlands and shrublands 7 percent, nonforest vegetation 43 percent, urban development 10 percent, and water and natural barrens total less than 2 percent. The area has been classified into three main land-use categories by integrating recent census information (population density per barrio in the year 2000) with satellite image analyses (degree of developed area versus natural land cover). Urban land use (in this analysis, land with more than 20 percent developed cover within a 1-square-kilometer area and population density greater than 500 people per square kilometer) covered 16 percent of eastern Puerto Rico. Suburban land use (more than 80 percent natural land cover, more than 500 people per square kilometer, and primarily residential) covers 50 percent of the area. Rural land use (more than 80 percent natural land cover, less than 500 people per square kilometer, and primarily active or abandoned agricultural, wetland, steep slope, or protected conservation areas) covered 34 percent of the area. Our analysis of land-cover change indicates that in the 1990s, forest cover increased at the expense of woodlands and grasslands. Urban development increased by 16 percent during that time. The most pronounced change in the last seven decades has been the shift from a nonforested to a forested landscape and the intensification of the ring of urbanization that surrounds the long-protected Luquillo Experimental Forest.

  19. Discrimination and Biophysical Characterization of Land Cover Types and Land Conversions in the Brazilian Cerrado Using EO-1 Hyperion Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Miura, T.; Huete, A. R.; Ferreira, L.

    2002-12-01

    The savanna, typically found in the sub-tropics and seasonal tropics, are the dominant vegetation biome type in the southern hemisphere, covering approximately 45 % of the South America. In Brazil, the savanna, locally known as "cerrado", is the most intensely stressed biome with rapid and aggressive land use conversions. Better characterization and discrimination of cerrado land cover types are needed in order to improve assessments of the impact of these land cover conversions on carbon storage, nutrient dynamics, and the prospect for sustainable land use in the Amazon region. In this study, we explored the utility of hyperspectral remote sensing in improving discrimination and biophysical/biochemical characterization of the cerrado land cover types by taking advantage of a newly available satellite-based, hyperspectral imaging sensor, "EO-1 Hyperion". A Hyperion image was acquired over the Brasilia National Park (BNP) and surrounding areas in Brasilia on July 20, 2001. Two commonly-used techniques, spectral derivatives and spectral mixture modeling, were applied to the atmospherically-corrected Hyperion scene. Derivative spectroscopy was useful in analyzing variations in spectral signatures and absorption depths, while spectral mixture modeling provided a means to simultaneously analyze variations in component fractions of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), and soil brightness. Data sets were extracted over a range of land cover types typically found in the Brazilian Cerrado. These included cerrado grassland, shrub cerrado, wooded cerrado, and cerrado woodland as undisturbed cerrado land cover types, and gallery forest as an undisturbed forest cover type in the Cerrado domain, and cultivated pasture as a converted land cover. In the derivative spectra analysis, both the position and magnitude of the red edge peak, and the ligno-cellulose absorptions at 2090nm and around 2300nm wavelengths showed large differences among the land cover types with the absorption depth of the latter correlating well with ground-measured % NPV cover. The multi-component fractional estimates successfully discriminated pasture and gallery forest from other cerrado land cover types. Likewise, PV and NPV fractional estimates for cerrado land cover types correlated well with ground-measured % green and NPV covers, respectively. These preliminary analyses showed a great potential of hyperspectral data in biophysical/biochemical characterization as well as discrimination of the land cover types in the Brazilian cerrado.

  20. Comparing Minnesota land cover/use area estimates using NRI and FIA data

    Treesearch

    Veronica C. Lessard; Mark H. Hansen; Mark D. Nelson

    2002-01-01

    Areas for land cover/use categories on non-Federal land in Minnesota were estimated from Forest Inventory and Analysis (FIA) data and National Resources Inventory (NRI) data. Six common land cover/use categories were defined, and the NRI and FIA land cover/use categories were assigned to them. Area estimates for these categories were calculated from the FIA and NRI...

  1. Change detection with heterogeneous data using ecoregional stratification, statistical summaries and a land allocation algorithm

    Treesearch

    Kathleen M. Bergen; Daniel G. Brown; James F. Rutherford; Eric J. Gustafson

    2005-01-01

    A ca. 1980 national-scale land-cover classification based on aerial photo interpretation was combined with 2000 AVHRR satellite imagery to derive land cover and land-cover change information for forest, urban, and agriculture categories over a seven-state region in the U.S. To derive useful land-cover change data using a heterogeneous dataset and to validate our...

  2. [Study of the microwave emissivity characteristics over different land cover types].

    PubMed

    Zhang, Yong-Pan; Jiang, Ling-Mei; Qiu, Yu-Bao; Wu, Sheng-Li; Shi, Jian-Cheng; Zhang, Li-Xin

    2010-06-01

    The microwave emissivity over land is very important for describing the characteristics of the lands, and it is also a key factor for retrieving the parameters of land and atmosphere. Different land covers have their emission behavior as a function of structure, water content, and surface roughness. In the present study the global land surface emissivities were calculated using six month (June, 2003-August, 2003, Dec, 2003-Feb, 2004) AMSR-E L2A brightness temperature, MODIS land surface temperature and the layered atmosphere temperature, and humidity and pressure profiles data retrieved from MODIS/Aqua under clear sky conditions. With the information of IGBP land cover types, "pure" pixels were used, which are defined when the fraction cover of each land type is larger than 85%. Then, the emissivity of sixteen land covers at different frequencies, polarization and their seasonal variation were analyzed respectively. The results show that the emissivity of vegetation including forests, grasslands and croplands is higher than that over bare soil, and the polarization difference of vegetation is smaller than that of bare soil. In summer, the emissivity of vegetation is relatively stable because it is in bloom, therefore the authors can use it as its emissivity in our microwave emissivity database over different land cover types. Furthermore, snow cover can heavily impact the change in land cover emissivity, especially in winter.

  3. The South/Southeast Asia Research Initiative (SARI) Update and Meeting Objectives

    NASA Technical Reports Server (NTRS)

    Vadrevu, Krishna Prasad

    2017-01-01

    Land Use/Cover Change (LU/CC) is one of the most important types of environmental change in South and Southeast Asian countries. Several studies suggest that LU/CC in these countries is in large part driven by population growth and economic development. In the region, changes that are most common include urban expansion, agricultural land loss, land abandonment, deforestation, logging, reforestation, etc. To address the research needs and priorities in the region, a regional initiative entitled South Southeast Asia Regional Initiative (SARI) has been developed involving US and regional scientists. The initiative is funded by NASA Land Cover, Land Use Change program. The goal of SARI is to integrate state-of-the-art remote sensing, natural sciences, engineering and social sciences to enrich LU/CC science in South Southeast Asian countries. In the presentation, LU/CC change research in SARI countries will be highlighted including the drivers of change. For example, in South Asia, forest cover has been increasing in countries like India, Nepal and Bhutan due to sustainable afforestation measures; whereas, large-scale deforestation in Southeast Asian countries is still continuing, due to oil palm plantation expansion driven by the international market demand in Malaysia and Indonesia. With respect to urbanization, South and Southeast Asian countries contain 23 megacities, each with more than 10 million people. Rapid urbanization is driving agricultural land loss and agricultural intensification has been increasing due to less availability of land for growing food crops such as in India, Vietnam, and Thailand. The drivers of LUCC vary widely in the region and include such factors as land tenure, local economic development, government policies, inappropriate land management, land speculation, improved road networks, etc. In addition, variability in the weather, climate, and socioeconomic factors also drive LU/CC resulting in disruptions of biogeochemical cycles, radiation and the surface energy balance of the atmosphere. The presentation will also highlight SARI collaborative activities with space agencies, universities and non-government organizations including data sharing mechanisms in the region.

  4. Land Use Influences Niche Size and the Assimilation of Resources by Benthic Macroinvertebrates in Tropical Headwater Streams

    PubMed Central

    Parreira de Castro, Diego Marcel; Reis de Carvalho, Débora; Pompeu, Paulo dos Santos; Moreira, Marcelo Zacharias; Nardoto, Gabriela Bielefeld; Callisto, Marcos

    2016-01-01

    It is well recognized that assemblage structure of stream macroinvertebrates changes with alterations in catchment or local land use. Our objective was to understand how the trophic ecology of benthic macroinvertebrate assemblages responds to land use changes in tropical streams. We used the isotope methodology to assess how energy flow and trophic relations among macroinvertebrates were affected in environments affected by different land uses (natural cover, pasture, sugar cane plantation). Macroinvertebrates were sampled and categorized into functional feeding groups, and available trophic resources were sampled and evaluated for the isotopic composition of 13C and 15N along streams located in the Cerrado (neotropical savanna). Streams altered by pasture or sugar cane had wider and more overlapped trophic niches, which corresponded to more generalist feeding habits. In contrast, trophic groups in streams with native vegetation had narrower trophic niches with smaller overlaps, suggesting greater specialization. Pasture sites had greater ranges of resources exploited, indicating higher trophic diversity than sites with natural cover and sugar cane plantation. We conclude that agricultural land uses appears to alter the food base and shift macroinvertebrate assemblages towards more generalist feeding behaviors and greater overlap of the trophic niches. PMID:26934113

  5. Land Use Influences Niche Size and the Assimilation of Resources by Benthic Macroinvertebrates in Tropical Headwater Streams.

    PubMed

    Parreira de Castro, Diego Marcel; Reis de Carvalho, Débora; Pompeu, Paulo dos Santos; Moreira, Marcelo Zacharias; Nardoto, Gabriela Bielefeld; Callisto, Marcos

    2016-01-01

    It is well recognized that assemblage structure of stream macroinvertebrates changes with alterations in catchment or local land use. Our objective was to understand how the trophic ecology of benthic macroinvertebrate assemblages responds to land use changes in tropical streams. We used the isotope methodology to assess how energy flow and trophic relations among macroinvertebrates were affected in environments affected by different land uses (natural cover, pasture, sugar cane plantation). Macroinvertebrates were sampled and categorized into functional feeding groups, and available trophic resources were sampled and evaluated for the isotopic composition of 13C and 15N along streams located in the Cerrado (neotropical savanna). Streams altered by pasture or sugar cane had wider and more overlapped trophic niches, which corresponded to more generalist feeding habits. In contrast, trophic groups in streams with native vegetation had narrower trophic niches with smaller overlaps, suggesting greater specialization. Pasture sites had greater ranges of resources exploited, indicating higher trophic diversity than sites with natural cover and sugar cane plantation. We conclude that agricultural land uses appears to alter the food base and shift macroinvertebrate assemblages towards more generalist feeding behaviors and greater overlap of the trophic niches.

  6. Identification of environmental covariates of West Nile virus vector mosquito population abundance.

    PubMed

    Trawinski, Patricia R; Mackay, D Scott

    2010-06-01

    The rapid spread of West Nile virus (WNv) in North America is a major public health concern. Culex pipiens-restuans is the principle mosquito vector of WNv in the northeastern United States while Aedes vexans is an important bridge vector of the virus in this region. Vector mosquito abundance is directly dependent on physical environmental factors that provide mosquito habitats. The objective of this research is to determine landscape elements that explain the population abundance and distribution of WNv vector mosquitoes using stepwise linear regression. We developed a novel approach for examining a large set of landscape variables based on a land use and land cover classification by selecting variables in stages to minimize multicollinearity. We also investigated the distance at which landscape elements influence abundance of vector populations using buffer distances of 200, 400, and 1000 m. Results show landscape effects have a significant impact on Cx. pipiens-estuans population distribution while the effects of landscape features are less important for prediction of Ae. vexans population distributions. Cx. pipiens-restuans population abundance is positively correlated with human population density, housing unit density, and urban land use and land cover classes and negatively correlated with age of dwellings and amount of forested land.

  7. Regional Climate Modeling over the Marmara Region, Turkey, with Improved Land Cover Data

    NASA Astrophysics Data System (ADS)

    Sertel, E.; Robock, A.

    2007-12-01

    Land surface controls the partitioning of available energy at the surface between sensible and latent heat,and controls partitioning of available water between evaporation and runoff. Current land cover data available within the regional climate models such as Regional Atmospheric Modeling System (RAMS), the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and Weather Research and Forecasting (WRF) was obtained from 1- km Advanced Very High Resolution Radiometer satellite images spanning April 1992 through March 1993 with an unsupervised classification technique. These data are not up-to-date and are not accurate for all regions and some land cover types such as urban areas. Here we introduce new, up-to-date and accurate land cover data for the Marmara Region, Turkey derived from Landsat Enhanced Thematic Mapper images into the WRF regional climate model. We used several image processing techniques to create accurate land cover data from Landsat images obtained between 2001 and 2005. First, all images were atmospherically and radiometrically corrected to minimize contamination effects of atmospheric particles and systematic errors. Then, geometric correction was performed for each image to eliminate geometric distortions and define images in a common coordinate system. Finally, unsupervised and supervised classification techniques were utilized to form the most accurate land cover data yet for the study area. Accuracy assessments of the classifications were performed using error matrix and kappa statistics to find the best classification results. Maximum likelihood classification method gave the most accurate results over the study area. We compared the new land cover data with the default WRF land cover data. WRF land cover data cannot represent urban areas in the cities of Istanbul, Izmit, and Bursa. As an example, both original satellite images and new land cover data showed the expansion of urban areas into the Istanbul metropolitan area, but in the WRF land cover data only a limited area along the Bosporus is shown as urban. In addition, the new land cover data indicate that the northern part of Istanbul is covered by evergreen and deciduous forest (verified by ground truth data), but the WRF data indicate that most of this region is croplands. In the northern part of the Marmara Region, there is bare ground as a result of open mining activities and this class can be identified in our land cover data, whereas the WRF data indicated this region as woodland. We then used this new data set to conduct WRF simulations for one main and two nested domains, where the inner-most domain represents the Marmara Region with 3 km horizontal resolution. The vertical domain of both main and nested domains extends over 28 vertical levels. Initial and boundary conditions were obtained from National Centers for Environmental Prediction-Department of Energy Reanalysis II and the Noah model was selected as the land surface model. Two model simulations were conducted; one with available land cover data and one with the newly created land cover data. Using detailed meteorological station data within the study area, we find that the simulation with the new land cover data set produces better temperature and precipitation simulations for the region, showing the value of accurate land cover data and that changing land cover data can be an important influence on local climate change.

  8. Relationships between aerodynamic roughness and land use and land cover in Baltimore, Maryland

    USGS Publications Warehouse

    Nicholas, F.W.; Lewis, J.E.

    1980-01-01

    Urbanization changes the radiative, thermal, hydrologic, and aerodynamic properties of the Earth's surface. Knowledge of these surface characteristics, therefore, is essential to urban climate analysis. Aerodynamic or surface roughness of urban areas is not well documented, however, because of practical constraints in measuring the wind profile in the presence of large buildings. Using an empirical method designed by Lettau, and an analysis of variance of surface roughness values calculated for 324 samples averaging 0.8 hectare (ha) of land use and land cover sample in Baltimore, Md., a strong statistical relation was found between aerodynamic roughness and urban land use and land cover types. Assessment of three land use and land cover systems indicates that some of these types have significantly different surface roughness characteristics. The tests further indicate that statistically significant differences exist in estimated surface roughness values when categories (classes) from different land use and land cover classification systems are used as surrogates. A Level III extension of the U.S. Geological Survey Level II land use and land cover classification system provided the most reliable results. An evaluation of the physical association between the aerodynamic properties of land use and land cover and the surface climate by numerical simulation of the surface energy balance indicates that changes in surface roughness within the range of values typical of the Level III categories induce important changes in the surface climate.

  9. Creation of a High-Resolution Product CLC2006_BACKDATING by a Backward Look from the Digital Land Cover Model DLM-DE2009 to 2006 - a Contribution to the German Corine Land Cover 2012 Project Within a Bottom-Up Approach

    NASA Astrophysics Data System (ADS)

    Keil, M.; Esch, T.; Feigenspan, S.; Marconcini, M.; Metz, A.; Ottinger, M.; Zeidler, J.

    2015-04-01

    For the update 2012 of CORINE Land Cover, in Germany a new approach has been developed in order to profit from the higher accuracies of the national topographic database. In agreement between the Federal Environment Agency (UBA) and the Federal Agency for Cartography and Geodesy (BKG), CLC2012 has been derived from an updated digital landscape model DLM-DE, which is based on the Official Topographical Cartographic Information System ATKIS of the land survey authorities. The DLM-DE 2009 created by the BKG served as the base for the update 2012 in the national and EU context, both under the responsibility of the BKG. In addition to the updated CLC2012, a second product, the layer "CLC_Change" (2006-2012) was also requested by the European Environment Agency. The objective of the project part of DLR-DFD was to contribute the primary change areas from 2006 to 2009 in the phase of method change using the refined 2009 geometry of the DLM-DE 2009 for a retrospective view back to 2006. A semiautomatic approach was developed for this task, with an important role of AWiFS time series data of 2005 / 2006 in the context of separation between grassland - arable land. Other valuable datasets for the project were already available GMES land monitoring products of 2006 like the soil sealing layer 2006. The paper describes the developed method and discusses exemplary results of the CORINE backdating project part.

  10. The role of land use/land cover dependent preferential flow paths in hydrologic response of steep and seasonal tropical catchments

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Ogden, F. L.; Zhu, J.

    2017-12-01

    The hydrologic behavior of steep catchments with saprolitic soils in the humid seasonal tropics varies with land use and cover, even when they have identical topographic index and slope distributions, underlying geology and soils textures. Forested catchments can produce more baseflow during the dry season compared to catchments containing substantial amount of pasture, the so-called "sponge effect". During rainfall events, forested catchments can also exhibit lower peak runoff rates and runoff efficiencies compared to pasture catchments. We hypothesize that hydrologic effects of land use arise from differences in preferential flow paths (PFPs) formed by biotic and abiotic factors in the upper one to two meters of soil and that land use effects on hydrological response are described by the relative amounts of forest and pasture within a catchment. Furthermore, we hypothesize that infiltration measurements at different scales allow estimation of PFP-related parameters. These hypotheses are tested by a model that explicitly simulates PFPs using distinct input parameter sets for forest and pasture. Runoff observations from three catchments with pasture, forest, and a mosaic of subsistence agricultural land covers allow model evaluation. Multiple objective criteria indicate that field measurements of infiltration enable PFP-relevant parameter identification and that pasture and forest end member parameter sets describe much of the observed difference. Analysis of water balance components and comparison between average transient water table depth and vertical PFP flow capacity demonstrate that the interplay of lateral and vertical PFPs contribute to the sponge-effect and can explain differences in peak runoff and runoff efficiency.

  11. Geomatics for Mapping of Groundwater Potential Zones in Northern Part of the United Arab Emiratis - Sharjah City

    NASA Astrophysics Data System (ADS)

    Al-Ruzouq, R.; Shanableh, A.; Merabtene, T.

    2015-04-01

    In United Arab Emirates (UAE) domestic water consumption has increased rapidly over the last decade. The increased demand for high-quality water, create an urgent need to evaluate the groundwater production of aquifers. The development of a reasonable model for groundwater potential is therefore crucial for future systematic developments, efficient management, and sustainable use of groundwater resources. The objective of this study is to map the groundwater potential zones in northern part of UAE and assess the contributing factors for exploration of potential groundwater resources. Remote sensing data and geographic information system will be used to locate potential zones for groundwater. Various maps (i.e., base, soil, geological, Hydro-geological, Geomorphologic Map, structural, drainage, slope, land use/land cover and average annual rainfall map) will be prepared based on geospatial techniques. The groundwater availability of the basin will qualitatively classified into different classes based on its hydro-geo-morphological conditions. The land use/land cover map will be also prepared for the different seasons using a digital classification technique with a ground truth based on field investigation.

  12. Land cover characterization and mapping of continental southeast Asia using multi-resolution satellite sensor data

    USGS Publications Warehouse

    Giri, Chandra; Defourny, Pierre; Shrestha, Surendra

    2003-01-01

    Land use/land cover change, particularly that of tropical deforestation and forest degradation, has been occurring at an unprecedented rate and scale in Southeast Asia. The rapid rate of economic development, demographics and poverty are believed to be the underlying forces responsible for the change. Accurate and up-to-date information to support the above statement is, however, not available. The available data, if any, are outdated and are not comparable for various technical reasons. Time series analysis of land cover change and the identification of the driving forces responsible for these changes are needed for the sustainable management of natural resources and also for projecting future land cover trajectories. We analysed the multi-temporal and multi-seasonal NOAA Advanced Very High Resolution Radiometer (AVHRR) satellite data of 1985/86 and 1992 to (1) prepare historical land cover maps and (2) to identify areas undergoing major land cover transformations (called ‘hot spots’). The identified ‘hot spot’ areas were investigated in detail using high-resolution satellite sensor data such as Landsat and SPOT supplemented by intensive field surveys. Shifting cultivation, intensification of agricultural activities and change of cropping patterns, and conversion of forest to agricultural land were found to be the principal reasons for land use/land cover change in the Oudomxay province of Lao PDR, the Mekong Delta of Vietnam and the Loei province of Thailand, respectively. Moreover, typical land use/land cover change patterns of the ‘hot spot’ areas were also examined. In addition, we developed an operational methodology for land use/land cover change analysis at the national level with the help of national remote sensing institutions.

  13. NLCD 2011 database

    EPA Pesticide Factsheets

    National Land Cover Database 2011 (NLCD 2011) is the most recent national land cover product created by the Multi-Resolution Land Characteristics (MRLC) Consortium. NLCD 2011 provides - for the first time - the capability to assess wall-to-wall, spatially explicit, national land cover changes and trends across the United States from 2001 to 2011. As with two previous NLCD land cover products NLCD 2011 keeps the same 16-class land cover classification scheme that has been applied consistently across the United States at a spatial resolution of 30 meters. NLCD 2011 is based primarily on a decision-tree classification of circa 2011 Landsat satellite data. This dataset is associated with the following publication:Homer, C., J. Dewitz, L. Yang, S. Jin, P. Danielson, G. Xian, J. Coulston, N. Herold, J. Wickham , and K. Megown. Completion of the 2011 National Land Cover Database for the Conterminous United States – Representing a Decade of Land Cover Change Information. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING. American Society for Photogrammetry and Remote Sensing, Bethesda, MD, USA, 81(0): 345-354, (2015).

  14. Developed land cover of Puerto Rico

    Treesearch

    William A. Gould; Sebastian Martinuzzi; Olga M. Ramos Gonzalez

    2008-01-01

    This map shows the distribution of developed land cover in Puerto Rico (Martinuzzi et al. 2007). Developed land cover refers to urban, built-up and non-vegetated areas that result from human activity. These typically include built structures, concrete, asphalt, and other infrastructure. The developed land cover was estimated using Landsat 7 ETM+ satellite images pan...

  15. National land-cover pattern data

    Treesearch

    Kurt H. Riitters; James D. Wickham; James E. Vogelmann; K. Bruce Jones

    2000-01-01

    Land cover and its spatial patterns are key ingredients in ecological studies that consider large regions and the impacts of human activities. Because humanity is a principal driver of land-cover change over large regions (Turner et al. 1990), land-cover data provide direct measures of human activity, and both direct and indirect measures of ecological conditions...

  16. Land cover changes in central Sonora Mexico

    Treesearch

    Diego Valdez-Zamudio; Alejandro Castellanos-Villegas; Stuart Marsh

    2000-01-01

    Remote sensing techniques have been demonstrated to be very effective tools to help detect, analyze, and evaluate land cover changes in natural areas of the world. Changes in land cover can generally be attributed to either natural or anthropogenic forces. Multitemporal satellite imagery and airborne videography were used to detect, analyze, and evaluate land cover...

  17. Impacts of land use/cover classification accuracy on regional climate simulations

    NASA Astrophysics Data System (ADS)

    Ge, Jianjun; Qi, Jiaguo; Lofgren, Brent M.; Moore, Nathan; Torbick, Nathan; Olson, Jennifer M.

    2007-03-01

    Land use/cover change has been recognized as a key component in global change. Various land cover data sets, including historically reconstructed, recently observed, and future projected, have been used in numerous climate modeling studies at regional to global scales. However, little attention has been paid to the effect of land cover classification accuracy on climate simulations, though accuracy assessment has become a routine procedure in land cover production community. In this study, we analyzed the behavior of simulated precipitation in the Regional Atmospheric Modeling System (RAMS) over a range of simulated classification accuracies over a 3 month period. This study found that land cover accuracy under 80% had a strong effect on precipitation especially when the land surface had a greater control of the atmosphere. This effect became stronger as the accuracy decreased. As shown in three follow-on experiments, the effect was further influenced by model parameterizations such as convection schemes and interior nudging, which can mitigate the strength of surface boundary forcings. In reality, land cover accuracy rarely obtains the commonly recommended 85% target. Its effect on climate simulations should therefore be considered, especially when historically reconstructed and future projected land covers are employed.

  18. [Spatiotemporal dynamics of land cover in northern Tibetan Plateau with responses to climate change].

    PubMed

    Song, Chun-qiao; You, Song-cai; Ke, Ling-hong; Liu, Gao-huan; Zhong, Xin-ke

    2011-08-01

    By using the 2001-2008 MOMS land cover products (MCDl2Ql) and based on the modified classification scheme embodied the characteristics of land cover in northern Tibetan Plateau, the annual land cover type maps of the Plateau were drawn, with the dynamic changes of each land cover type analyzed by classification statistics, dynamic transfer matrix, and landscape pattern indices. In 2001-2008, due to the acceleration of global climate warming, the areas of glacier and snow-covered land in the Plateau decreased rapidly, and the melted snow water gathered into low-lying valley or basin, making the lake level raised and the lake area enlarged. Some permanent wetlands were formed because of partially submersed grassland. The vegetation cover did not show any evident meliorated or degraded trend. From 2001 to 2004, as the climate became warmer and wetter, the spatial distribution of desert began to shrink, and the proportions of sparse grassland and grassland increased. From 2006 to 2007, due to the warmer and drier climate, the desert bare land increased, and the sparse grassland decreased. From 2001 to 2008, both the landscape fragmentation degree and the land cover heterogeneity decreased, and the differences in the proportions of all land cover types somewhat enlarged.

  19. Estimating accuracy of land-cover composition from two-stage cluster sampling

    USGS Publications Warehouse

    Stehman, S.V.; Wickham, J.D.; Fattorini, L.; Wade, T.D.; Baffetta, F.; Smith, J.H.

    2009-01-01

    Land-cover maps are often used to compute land-cover composition (i.e., the proportion or percent of area covered by each class), for each unit in a spatial partition of the region mapped. We derive design-based estimators of mean deviation (MD), mean absolute deviation (MAD), root mean square error (RMSE), and correlation (CORR) to quantify accuracy of land-cover composition for a general two-stage cluster sampling design, and for the special case of simple random sampling without replacement (SRSWOR) at each stage. The bias of the estimators for the two-stage SRSWOR design is evaluated via a simulation study. The estimators of RMSE and CORR have small bias except when sample size is small and the land-cover class is rare. The estimator of MAD is biased for both rare and common land-cover classes except when sample size is large. A general recommendation is that rare land-cover classes require large sample sizes to ensure that the accuracy estimators have small bias. ?? 2009 Elsevier Inc.

  20. U.S. landowner behavior, land use and land cover changes, and climate change mitigation.

    Treesearch

    Ralph J. Alig

    2003-01-01

    Landowner behavior is a major determinant of land use and land cover changes. an important consideration for policy analysts concerned with global change. Study of landowner behavior aids in designing more effective incentives for inducing land use and land cover changes to help mitigate climate change by reducing net greenhouse gas emissions. Afforestation,...

  1. National climate assessment technical report on the impacts of climate and land use and land cover change

    USGS Publications Warehouse

    Loveland, Thomas; Mahmood, Rezaul; Patel-Weynand, Toral; Karstensen, Krista; Beckendorf, Kari; Bliss, Norman; Carleton, Andrew

    2012-01-01

    This technical report responds to the recognition by the U.S. Global Change Research Program (USGCRP) and the National Climate Assessment (NCA) of the importance of understanding how land use and land cover (LULC) affects weather and climate variability and change and how that variability and change affects LULC. Current published, peer-reviewed, scientific literature and supporting data from both existing and original sources forms the basis for this report's assessment of the current state of knowledge regarding land change and climate interactions. The synthesis presented herein documents how current and future land change may alter environment processes and in turn, how those conditions may affect both land cover and land use by specifically investigating, * The primary contemporary trends in land use and land cover, * The land-use and land-cover sectors and regions which are most affected by weather and climate variability,* How land-use practices are adapting to climate change, * How land-use and land-cover patterns and conditions are affecting weather and climate, and * The key elements of an ongoing Land Resources assessment. These findings present information that can be used to better assess land change and climate interactions in order to better assess land management and adaptation strategies for future environmental change and to assist in the development of a framework for an ongoing national assessment.

  2. Buruli ulcer disease prevalence in Benin, West Africa: Associations with land use/cover and the identification of disease clusters

    USGS Publications Warehouse

    Wagner, T.; Benbow, M.E.; Brenden, T.O.; Qi, J.; Johnson, R.C.

    2008-01-01

    Background: Buruli ulcer (BU) disease, caused by infection with the environmental mycobacterium M. ulcerans, is an emerging infectious disease in many tropical and sub-tropical countries. Although vectors and modes of transmission remain unknown, it is hypothesized that the transmission of BU disease is associated with human activities in or around aquatic environments, and that characteristics of the landscape (e.g., land use/cover) play a role in mediating BU disease. Several studies performed at relatively small spatial scales (e.g., within a single village or region of a country) support these hypotheses; however, if BU disease is associated with land use/cover characteristics, either through spatial constraints on vector-host dynamics or by mediating human activities, then large-scale (i.e., country-wide) associations should also emerge. The objectives of this study were to (1) investigate associations between BU disease prevalence in villages in Benin, West Africa and surrounding land use/cover patterns and other map-based characteristics, and (2) identify areas with greater and lower than expected prevalence rates (i.e., disease clusters) to assist with the development of prevention and control programs. Results: Our landscape-based models identified low elevation, rural villages surrounded by forest land cover, and located in drainage basins with variable wetness patterns as being associated with higher BU disease prevalence rates. We also identified five spatial disease clusters. Three of the five clusters contained villages with greater than expected prevalence rates and two clusters contained villages with lower than expected prevalence rates. Those villages with greater than expected BU disease prevalence rates spanned a fairly narrow region of south-central Benin. Conclusion: Our analyses suggest that interactions between natural land cover and human alterations to the landscape likely play a role in the dynamics of BU disease. For example, urbanization, potentially by providing access to protected water sources, may reduce the likelihood of becoming infected with BU disease. Villages located at low elevations may have higher BU disease prevalence rates due to their close spatial proximity to high risk environments. In addition, forest land cover and drainage basins with variable wetness patterns may be important for providing suitable growth conditions for M. ulcerans, influencing the distribution and abundance of vectors, or mediating vector-human interactions. The identification of disease clusters in this study provides direction for future research aimed at better understanding these and other environmental and social determinants involved in BU disease outbreaks. ?? 2008 Wagner et al; licensee BioMed Central Ltd.

  3. Buruli ulcer disease prevalence in Benin, West Africa: associations with land use/cover and the identification of disease clusters

    PubMed Central

    Wagner, Tyler; Benbow, M Eric; Brenden, Travis O; Qi, Jiaguo; Johnson, R Christian

    2008-01-01

    Background Buruli ulcer (BU) disease, caused by infection with the environmental mycobacterium M. ulcerans, is an emerging infectious disease in many tropical and sub-tropical countries. Although vectors and modes of transmission remain unknown, it is hypothesized that the transmission of BU disease is associated with human activities in or around aquatic environments, and that characteristics of the landscape (e.g., land use/cover) play a role in mediating BU disease. Several studies performed at relatively small spatial scales (e.g., within a single village or region of a country) support these hypotheses; however, if BU disease is associated with land use/cover characteristics, either through spatial constraints on vector-host dynamics or by mediating human activities, then large-scale (i.e., country-wide) associations should also emerge. The objectives of this study were to (1) investigate associations between BU disease prevalence in villages in Benin, West Africa and surrounding land use/cover patterns and other map-based characteristics, and (2) identify areas with greater and lower than expected prevalence rates (i.e., disease clusters) to assist with the development of prevention and control programs. Results Our landscape-based models identified low elevation, rural villages surrounded by forest land cover, and located in drainage basins with variable wetness patterns as being associated with higher BU disease prevalence rates. We also identified five spatial disease clusters. Three of the five clusters contained villages with greater than expected prevalence rates and two clusters contained villages with lower than expected prevalence rates. Those villages with greater than expected BU disease prevalence rates spanned a fairly narrow region of south-central Benin. Conclusion Our analyses suggest that interactions between natural land cover and human alterations to the landscape likely play a role in the dynamics of BU disease. For example, urbanization, potentially by providing access to protected water sources, may reduce the likelihood of becoming infected with BU disease. Villages located at low elevations may have higher BU disease prevalence rates due to their close spatial proximity to high risk environments. In addition, forest land cover and drainage basins with variable wetness patterns may be important for providing suitable growth conditions for M. ulcerans, influencing the distribution and abundance of vectors, or mediating vector-human interactions. The identification of disease clusters in this study provides direction for future research aimed at better understanding these and other environmental and social determinants involved in BU disease outbreaks. PMID:18505567

  4. Predicting Plant Diversity Patterns in Madagascar: Understanding the Effects of Climate and Land Cover Change in a Biodiversity Hotspot

    PubMed Central

    Brown, Kerry A.; Parks, Katherine E.; Bethell, Colin A.; Johnson, Steig E.; Mulligan, Mark

    2015-01-01

    Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar’s plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future. PMID:25856241

  5. Completion of the 2011 National Land Cover Database for the conterminous United States – Representing a decade of land cover change information

    USGS Publications Warehouse

    Homer, Collin G.; Dewitz, Jon; Yang, Limin; Jin, Suming; Danielson, Patrick; Xian, George Z.; Coulston, John; Herold, Nathaniel; Wickham, James; Megown, Kevin

    2015-01-01

    The National Land Cover Database (NLCD) provides nationwide data on land cover and land cover change at the native 30-m spatial resolution of the Landsat Thematic Mapper (TM). The database is designed to provide five-year cyclical updating of United States land cover and associated changes. The recent release of NLCD 2011 products now represents a decade of consistently produced land cover and impervious surface for the Nation across three periods: 2001, 2006, and 2011 (Homer et al., 2007; Fry et al., 2011). Tree canopy cover has also been produced for 2011 (Coluston et al., 2012; Coluston et al., 2013). With the release of NLCD 2011, the database provides the ability to move beyond simple change detection to monitoring and trend assessments. NLCD 2011 represents the latest evolution of NLCD products, continuing its focus on consistency, production, efficiency, and product accuracy. NLCD products are designed for widespread application in biology, climate, education, land management, hydrology, environmental planning, risk and disease analysis, telecommunications and visualization, and are available for no cost at http://www.mrlc.gov. NLCD is produced by a Federal agency consortium called the Multi-Resolution Land Characteristics Consortium (MRLC) (Wickham et al., 2014). In the consortium arrangement, the U.S. Geological Survey (USGS) leads NLCD land cover and imperviousness production for the bulk of the Nation; the National Oceanic and Atmospheric Administration (NOAA) completes NLCD land cover for the conterminous U.S. (CONUS) coastal zones; and the U.S. Forest Service (USFS) designs and produces the NLCD tree canopy cover product. Other MRLC partners collaborate through resource or data contribution to ensure NLCD products meet their respective program needs (Wickham et al., 2014).

  6. Predicting plant diversity patterns in Madagascar: understanding the effects of climate and land cover change in a biodiversity hotspot.

    PubMed

    Brown, Kerry A; Parks, Katherine E; Bethell, Colin A; Johnson, Steig E; Mulligan, Mark

    2015-01-01

    Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.

  7. The Racial/Ethnic Distribution of Heat Risk–Related Land Cover in Relation to Residential Segregation

    PubMed Central

    Morello-Frosch, Rachel; Cushing, Lara

    2013-01-01

    Objective: We examined the distribution of heat risk–related land cover (HRRLC) characteristics across racial/ethnic groups and degrees of residential segregation. Methods: Block group–level tree canopy and impervious surface estimates were derived from the 2001 National Land Cover Dataset for densely populated urban areas of the United States and Puerto Rico, and linked to demographic characteristics from the 2000 Census. Racial/ethnic groups in a given block group were considered to live in HRRLC if at least half their population experienced the absence of tree canopy and at least half of the ground was covered by impervious surface (roofs, driveways, sidewalks, roads). Residential segregation was characterized for metropolitan areas in the United States and Puerto Rico using the multigroup dissimilarity index. Results: After adjustment for ecoregion and precipitation, holding segregation level constant, non-Hispanic blacks were 52% more likely (95% CI: 37%, 69%), non-Hispanic Asians 32% more likely (95% CI: 18%, 47%), and Hispanics 21% more likely (95% CI: 8%, 35%) to live in HRRLC conditions compared with non-Hispanic whites. Within each racial/ethnic group, HRRLC conditions increased with increasing degrees of metropolitan area-level segregation. Further adjustment for home ownership and poverty did not substantially alter these results, but adjustment for population density and metropolitan area population attenuated the segregation effects, suggesting a mediating or confounding role. Conclusions: Land cover was associated with segregation within each racial/ethnic group, which may be explained partly by the concentration of racial/ethnic minorities into densely populated neighborhoods within larger, more segregated cities. In anticipation of greater frequency and duration of extreme heat events, climate change adaptation strategies, such as planting trees in urban areas, should explicitly incorporate an environmental justice framework that addresses racial/ethnic disparities in HRRLC. PMID:23694846

  8. Using Landsat imagery to detect, monitor, and project net landscape change

    USGS Publications Warehouse

    Reker, Ryan R.; Sohl, Terry L.; Gallant, Alisa L.

    2015-01-01

    Detailed landscape information is a necessary component to bird habitat conservation planning. The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center has been providing information on the Earth’s surface for over 40 years via the continuous series of Landsat satellites. In addition to operating, processing, and disseminating satellite images, EROS is the home to nationwide and global landscape mapping, monitoring, and projection products, including:National Land Cover Database (NLCD) – the definitive land cover dataset for the U.S., with updates occurring at five-year intervals;Global Land Cover Monitoring – producing 30m resolution global land cover;LANDFIRE – Landscape Fire and Resource Management Planning Tools–EROS is a partner in this joint program between U.S. Department of Agriculture and Department of Interior that produces consistent, comprehensive, geospatial data and databases that describe vegetation, wildland fuel, and fire regimes across the U.S.;Land Cover Trends – a landscape monitoring and assessment effort to understand the rates, trends, causes, and consequences of contemporary U.S. land use and land cover change; andLand Use and Land Cover (LULC) Modeling – a project extending contemporary databases of landscape change forward and backward in time through moderate-resolution land cover projections.

  9. Quantifying Urban Watershed Stressor Gradients and Evaluating How Different Land Cover Datasets Affect Stream Management.

    PubMed

    Smucker, Nathan J; Kuhn, Anne; Charpentier, Michael A; Cruz-Quinones, Carlos J; Elonen, Colleen M; Whorley, Sarah B; Jicha, Terri M; Serbst, Jonathan R; Hill, Brian H; Wehr, John D

    2016-03-01

    Watershed management and policies affecting downstream ecosystems benefit from identifying relationships between land cover and water quality. However, different data sources can create dissimilarities in land cover estimates and models that characterize ecosystem responses. We used a spatially balanced stream study (1) to effectively sample development and urban stressor gradients while representing the extent of a large coastal watershed (>4400 km(2)), (2) to document differences between estimates of watershed land cover using 30-m resolution national land cover database (NLCD) and <1-m resolution land cover data, and (3) to determine if predictive models and relationships between water quality and land cover differed when using these two land cover datasets. Increased concentrations of nutrients, anions, and cations had similarly significant correlations with increased watershed percent impervious cover (IC), regardless of data resolution. The NLCD underestimated percent forest for 71/76 sites by a mean of 11 % and overestimated percent wetlands for 71/76 sites by a mean of 8 %. The NLCD almost always underestimated IC at low development intensities and overestimated IC at high development intensities. As a result of underestimated IC, regression models using NLCD data predicted mean background concentrations of NO3 (-) and Cl(-) that were 475 and 177 %, respectively, of those predicted when using finer resolution land cover data. Our sampling design could help states and other agencies seeking to create monitoring programs and indicators responsive to anthropogenic impacts. Differences between land cover datasets could affect resource protection due to misguided management targets, watershed development and conservation practices, or water quality criteria.

  10. The challenges associated with applying global models in heterogeneous landscapes: A case study using MOD17 GPP estimates in Hawaii

    NASA Astrophysics Data System (ADS)

    Kimball, H.; Selmants, P. C.; Running, S. W.; Moreno, A.; Giardina, C. P.

    2016-12-01

    In this study we evaluate the influence of spatial data product accuracy and resolution on the application of global models for smaller scale heterogeneous landscapes. In particular, we assess the influence of locally specific land cover and high-resolution climate data products on estimates of Gross Primary Production (GPP) for the Hawaiian Islands using the MOD17 model. The MOD17 GPP algorithm uses a measure of the fraction of absorbed photosynthetically active radiation from the National Aeronautics and Space Administration's Earth Observation System. This direct measurement is combined with global land cover (500-m resolution) and climate models ( 1/2-degree resolution) to estimate GPP. We first compared the alignment between the global land cover model used in MOD17 with a Hawaii specific land cover data product. We found that there was a 51.6% overall agreement between the two land cover products. We then compared four MOD17 GPP models: A global model that used the global land cover and low-resolution global climate data products, a model produced using the Hawaii specific land cover and low-resolution global climate data products, a model with global land cover and high-resolution climate data products, and finally, a model using both Hawaii specific land cover and high-resolution climate data products. We found that including either the Hawaii specific land cover or the high-resolution Hawaii climate data products with MOD17 reduced overall estimates of GPP by 8%. When both were used, GPP estimates were reduced by 16%. The reduction associated with land cover is explained by a reduction of the total area designated as evergreen broad leaf forest and an increase in the area designated as barren or sparsely vegetated in the Hawaii land cover product as compared to the global product. The climate based reduction is explained primarily by the spatial resolution and distribution of solar radiation in the Hawaiian Islands. This study highlights the importance of accuracy and resolution when applying global models to highly variable landscapes and provides an estimate of the influence of land cover and climate data products on estimates of GPP using MOD17.

  11. AN EXPERIMENTAL ASSESSMENT OF MINIMUM MAPPING UNIT SIZE

    EPA Science Inventory

    Land-cover (LC) maps derived from remotely sensed data are often presented using a minimum mapping unit (MMU). The choice of a MMU that is appropriate for the projected use of a classification is important. The objective of this experiment was to determine the optimal MMU of a L...

  12. Effects of growth stage on quality characteristics of triticale forages

    USDA-ARS?s Scientific Manuscript database

    The use of triticale (X Triticosecale Wittmack) in dairy-cropping systems has expanded greatly in recent years, partly to improve land stewardship by providing winter ground cover. Our objectives were to relate the nutritive value of triticale forages grown in central Wisconsin with plant growth sta...

  13. Quantifying outdoor water consumption of urban land use/land cover: sensitivity to drought.

    PubMed

    Kaplan, Shai; Myint, Soe W; Fan, Chao; Brazel, Anthony J

    2014-04-01

    Outdoor water use is a key component in arid city water systems for achieving sustainable water use and ensuring water security. Using evapotranspiration (ET) calculations as a proxy for outdoor water consumption, the objectives of this research are to quantify outdoor water consumption of different land use and land cover types, and compare the spatio-temporal variation in water consumption between drought and wet years. An energy balance model was applied to Landsat 5 TM time series images to estimate daily and seasonal ET for the Central Arizona Phoenix Long-Term Ecological Research region (CAP-LTER). Modeled ET estimations were correlated with water use data in 49 parks within CAP-LTER and showed good agreement (r² = 0.77), indicating model effectiveness to capture the variations across park water consumption. Seasonally, active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the desert and urban land cover types experienced lower ET during drought (<300 mm). Within urban locales of CAP-LTER, xeric neighborhoods show significant differences from year to year, while mesic neighborhoods retain their ET values (400-500 mm) during drought, implying considerable use of irrigation to sustain their greenness. Considering the potentially limiting water availability of this region in the future due to large population increases and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life.

  14. Land use change in the last century in the Veneto floodplain: effects on network drainage density, water storage, and related consequences on flood risk

    NASA Astrophysics Data System (ADS)

    Prosdocimi, Massimo; Sofia, Giulia; Dalla Fontana, Giancarlo; Tarolli, Paolo

    2013-04-01

    In a high-density populated country such as Italy, the anthropic pressure plays a fundamental role in the alteration and the modification of the landscape. Among the most evident anthropic alterations, the most important are the urbanization processes that have been occurring since the end of the second world war. Agricultural activities, housing and other land uses have shifted due to the progressive spreading of urban areas. These modifications affect the hydrologic regimes, but municipalities often are not aware of the real impact of land cover changes on such processes and, consequently, an increase of the elements at risk of flooding is generally registered. The main objective of this work is to evaluate the impact of land cover changes in the Veneto region (north-east Italy), from 1954 to 2006, on the minor drainage network system and on its capacity to attenuate the direct runoff. The major flood event occurred between October and November 2010. The study is a typical agrarian landscape and it has been chosen considering its involvement inthe major flood of 2010 and considering also the availability of high-resolution topographic data (LiDAR-derived DTMs) and historical aerial photographs. Aerial photographs dated back to 1954 and 1981, in particular, have been used either to classify the land cover in five categories according to the first level of the CORINE land cover classification and to identify the minor drainage network. A semi-automatic approach based on the high-resolution DTM (Cazorzi et al., 2012), was also considered to identify the minor drainage network and estimate its water storage capacity. The results underline how land cover variation over the last 50 years has strongly increased the propension of the soil to produce direct runoff (increase of the Curve Number value) and it has also reduced the extent of the minor network system. As a consequence, the capacity of the agrarian minor network to attenuate and laminate a flood event is decreased as well. These analysis can be considered useful tools for a suitable land use planning in flood prone areas. References Cazorzi, F., Dalla Fontana, G., De Luca, A., Sofia, G., Tarolli, P. (2012). Drainage network detection and assessment of network storage capacity in agrarian landscape, Hydrological Processes, ISSN: 0885-6087, doi:10.1002/hyp.9224

  15. Land-Cover Trends of the Sierra Nevada Ecoregion, 1973-2000

    USGS Publications Warehouse

    Raumann, Christian G.; Soulard, Christopher E.

    2007-01-01

    The U.S. Geological Survey has developed and is implementing the Land Cover Trends project to estimate and describe the temporal and spatial distribution and variability of contemporary land-use and land-cover change in the United States. As part of the Land Cover Trends project, the purpose of this study was to assess land-use/land-cover change in the Sierra Nevada ecoregion for the period 1973 to 2000 using a probability sampling technique and satellite imagery. We randomly selected 36 100-km2 sample blocks to derive thematic images of land-use/land-cover for five dates of Landsat imagery (1973, 1980, 1986, 1992, 2000). We visually interpreted as many as 11 land-use/land-cover classes using a 60-meter minimum mapping unit from the five dates of imagery yielding four periods for analysis. Change-detection results from post-classification comparison of our mapped data showed that landscape disturbance from fire was the dominant change from 1973-2000. The second most-common change was forest disturbance resulting from harvest of timber resources by way of clear-cutting. The rates of forest regeneration from temporary fire and harvest disturbances coincided with the rates of disturbance from the previous period. Relatively minor landscape changes were caused by new development and reservoir drawdown. Multiple linear regression analysis suggests that land ownership and the proportion of forest and developed cover types were significant determinants of the likelihood of direct human-induced change occurring in sampling units. Driving forces of change include land ownership, land management such as fire suppression policy, and demand for natural resources.

  16. The Land Cover Dynamics and Conversion of Agricultural Land in Northwestern Bangladesh, 1973-2003.

    NASA Astrophysics Data System (ADS)

    Pervez, M.; Seelan, S. K.; Rundquist, B. C.

    2006-05-01

    The importance of land cover information describing the nature and extent of land resources and changes over time is increasing; this is especially true in Bangladesh, where land cover is changing rapidly. This paper presents research into the land cover dynamics of northwestern Bangladesh for the period 1973-2003 using Landsat satellite images in combination with field survey data collected in January and February 2005. Land cover maps were produced for eight different years during the study period with an average 73 percent overall classification accuracy. The classification results and post-classification change analysis showed that agriculture is the dominant land cover (occupying 74.5 percent of the study area) and is being reduced at a rate of about 3,000 ha per year. In addition, 6.7 percent of the agricultural land is vulnerable to temporary water logging annually. Despite this loss of agricultural land, irrigated agriculture increased substantially until 2000, but has since declined because of diminishing water availability and uncontrolled extraction of groundwater driven by population pressures and the extended need for food. A good agreement (r = 0.73) was found between increases in irrigated land and the depletion of the shallow groundwater table, a factor affecting widely practiced small-scale irrigation in northwestern Bangladesh. Results quantified the land cover change patterns and the stresses placed on natural resources; additionally, they demonstrated an accurate and economical means to map and analyze changes in land cover over time at a regional scale, which can assist decision makers in land and natural resources management decisions.

  17. Riparian influences on stream fish assemblage structure in urbanizing streams

    USGS Publications Warehouse

    Roy, A.H.; Freeman, B.J.; Freeman, Mary C.

    2007-01-01

    We assessed the influence of land cover at multiple spatial extents on fish assemblage integrity, and the degree to which riparian forests can mitigate the negative effects of catchment urbanization on stream fish assemblages. Riparian cover (urban, forest, and agriculture) was determined within 30 m buffers at longitudinal distances of 200 m, 1 km, and the entire network upstream of 59 non-nested fish sampling locations. Catchment and riparian land cover within the upstream network were highly correlated, so we were unable to distinguish between those variables. Most fish assemblage variables were related to % forest and % urban land cover, with the strongest relations at the largest spatial extent of land cover (catchment), followed by riparian land cover in the 1-km and 200-m reach, respectively. For fish variables related to urban land cover in the catchment, we asked whether the influence of riparian land cover on fish assemblages was dependent on the amount of urban development in the catchment. Several fish assemblage metrics (endemic richness, endemic:cosmopolitan abundance, insectivorous cyprinid richness and abundance, and fluvial specialist richness) were all best predicted by single variable models with % urban land cover. However, endemic:cosmopolitan richness, cosmopolitan abundance, and lentic tolerant abundance were related to % forest cover in the 1-km stream reach, but only in streams that had <15% catchment urban land cover. In these cases, catchment urbanization overwhelmed the potential mitigating effects of riparian forests on stream fishes. Together, these results suggest that catchment land cover is an important driver of fish assemblages in urbanizing catchments, and riparian forests are important but not sufficient for protecting stream ecosystems from the impacts of high levels of urbanization.

  18. Analysis of land cover change and its driving forces in a desert oasis landscape of southern Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Amuti, T.; Luo, G.

    2014-07-01

    The combined effects of drought, warming and the changes in land cover have caused severe land degradation for several decades in the extremely arid desert oases of Southern Xinjiang, Northwest China. This study examined land cover changes during 1990-2008 to characterize and quantify the transformations in the typical oasis of Hotan. Land cover classifications of these images were performed based on the supervised classification scheme integrated with conventional vegetation and soil indexes. Change-detection techniques in remote sensing (RS) and a geographic information system (GIS) were applied to quantify temporal and spatial dynamics of land cover changes. The overall accuracies, Kappa coefficients, and average annual increase rate or decrease rate of land cover classes were calculated to assess classification results and changing rate of land cover. The analysis revealed that major trends of the land cover changes were the notable growth of the oasis and the reduction of the desert-oasis ecotone, which led to accelerated soil salinization and plant deterioration within the oasis. These changes were mainly attributed to the intensified human activities. The results indicated that the newly created agricultural land along the margins of the Hotan oasis could result in more potential areas of land degradation. If no effective measures are taken against the deterioration of the oasis environment, soil erosion caused by land cover change may proceed. The trend of desert moving further inward and the shrinking of the ecotone may lead to potential risks to the eco-environment of the Hotan oasis over the next decades.

  19. Optimal land use/land cover classification using remote sensing imagery for hydrological modeling in a Himalayan watershed

    NASA Astrophysics Data System (ADS)

    Saran, Sameer; Sterk, Geert; Kumar, Suresh

    2009-10-01

    Land use/land cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/land cover. This paper presents different approaches to attain an optimal land use/land cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/land cover map was not sufficient for the delineation of HRUs, since the agricultural land use/land cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Subsequently the digital classification on fused data (ASAR and ASTER) were attempted to map land use/land cover classes with emphasis to delineate the paddy and maize crops but the supervised classification over fused datasets did not provide the desired accuracy and proper delineation of paddy and maize crops. Eventually, we adopted a visual classification approach on fused data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modeling.

  20. Tropical land use land cover mapping in Pará (Brazil) using discriminative Markov random fields and multi-temporal TerraSAR-X data

    NASA Astrophysics Data System (ADS)

    Hagensieker, Ron; Roscher, Ribana; Rosentreter, Johannes; Jakimow, Benjamin; Waske, Björn

    2017-12-01

    Remote sensing satellite data offer the unique possibility to map land use land cover transformations by providing spatially explicit information. However, detection of short-term processes and land use patterns of high spatial-temporal variability is a challenging task. We present a novel framework using multi-temporal TerraSAR-X data and machine learning techniques, namely discriminative Markov random fields with spatio-temporal priors, and import vector machines, in order to advance the mapping of land cover characterized by short-term changes. Our study region covers a current deforestation frontier in the Brazilian state Pará with land cover dominated by primary forests, different types of pasture land and secondary vegetation, and land use dominated by short-term processes such as slash-and-burn activities. The data set comprises multi-temporal TerraSAR-X imagery acquired over the course of the 2014 dry season, as well as optical data (RapidEye, Landsat) for reference. Results show that land use land cover is reliably mapped, resulting in spatially adjusted overall accuracies of up to 79% in a five class setting, yet limitations for the differentiation of different pasture types remain. The proposed method is applicable on multi-temporal data sets, and constitutes a feasible approach to map land use land cover in regions that are affected by high-frequent temporal changes.

  1. Estimation of late twentieth century land-cover change in California

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Wilson, Tamara S.; Soulard, Christopher E.; Liu, Jinxun

    2011-01-01

    We present the first comprehensive multi-temporal analysis of land-cover change for California across its major ecological regions and primary land-cover types. Recently completed satellite-based estimates of land-cover and land-use change information for large portions of the United States allow for consistent measurement and comparison across heterogeneous landscapes. Landsat data were employed within a pure-panel stratified one-stage cluster sample to estimate and characterize land-cover change for 1973–2000. Results indicate anthropogenic and natural disturbances, such as forest cutting and fire, were the dominant changes, followed by large fluctuations between agriculture and rangelands. Contrary to common perception, agriculture remained relatively stable over the 27-year period with an estimated loss of 1.0% of agricultural land. The largest net declines occurred in the grasslands/shrubs class at 5,131 km2 and forest class at 4,722 km2. Developed lands increased by 37.6%, composing an estimated 4.2% of the state’s land cover by 2000.

  2. Using land-cover data to understand effects of agricultural and urban development on regional water quality

    USGS Publications Warehouse

    Karstensen, Krista A.; Warner, Kelly L.

    2010-01-01

    The Land-Cover Trends project is a collaborative effort between the Geographic Analysis and Monitoring Program of the U.S. Geological Survey (USGS), the U.S. Environmental Protection Agency (EPA) and the National Aeronautics and Space Administration (NASA) to understand the rates, trends, causes, and consequences of contemporary land-use and land-cover change in the United States. The data produced from this research can lead to an enriched understanding of the drivers of future landuse change, effects on environmental systems, and any associated feedbacks. USGS scientists are using the EPA Level III ecoregions as the geographic framework to process geospatial data collected between 1973 and 2000 to characterize ecosystem responses to land-use changes. General land-cover classes for these periods were interpreted from Landsat Multispectral Scanner, Thematic Mapper, and Enhanced Thematic Mapper Plus imagery to categorize and evaluate land-cover change using a modified Anderson Land-Use/Land-Cover Classification System for image interpretation.

  3. Evaluating Satellite and Supercomputing Technologies for Improved Coastal Ecosystem Assessments

    NASA Astrophysics Data System (ADS)

    McCarthy, Matthew James

    Water quality and wetlands represent two vital elements of a healthy coastal ecosystem. Both experienced substantial declines in the U.S. during the 20th century. Overall coastal wetland cover decreased over 50% in the 20th century due to coastal development and water pollution. Management and legislative efforts have successfully addressed some of the problems and threats, but recent research indicates that the diffuse impacts of climate change and non-point source pollution may be the primary drivers of current and future water-quality and wetland stress. In order to respond to these pervasive threats, traditional management approaches need to adopt modern technological tools for more synoptic, frequent and fine-scale monitoring and assessment. In this dissertation, I explored some of the applications possible with new, commercial satellite imagery to better assess the status of coastal ecosystems. Large-scale land-cover change influences the quality of adjacent coastal water. Satellite imagery has been used to derive land-cover maps since the 1960's. It provides multiple data points with which to evaluate the effects of land-cover change on water quality. The objective of the first chapter of this research was to determine how 40 years of land-cover change in the Tampa Bay watershed (6,500 km2) may have affected turbidity and chlorophyll concentration - two proxies for coastal water quality. Land cover classes were evaluated along with precipitation and wind stress as explanatory variables. Results varied between analyses for the entire estuary and those of segments within the bay. Changes in developed land percent cover best explained the turbidity and chlorophyll-concentration time series for the entire bay (R2 > 0.75, p < 0.02). The paucity of official land-cover maps (i.e. five maps) restricted the temporal resolution of the assessments. Furthermore, most estuaries along the Gulf of Mexico do not have forty years of water-quality time series with which to perform evaluations against land-cover change. Ocean-color satellite imagery was used to derive proxies for coastal water with near-daily satellite observations since 2000. The goal of chapter two was to identify drivers of turbidity variability for 11 National Estuary Program water bodies along the Gulf of Mexico. Land cover assessments could not be used as an explanatory variable because of the low temporal resolution (i.e. approximately one map per five-year period). Ocean color metrics were evaluated against atmospheric, meteorological, and oceanographic variables including precipitation, wind speed, U and V wind vectors, river discharge, and water level over weekly, monthly, seasonal and annual time steps. Climate indices like the North Atlantic Oscillation and El Nino Southern Oscillation index were also examined as possible drivers of long-term changes. Extreme turbidity events were defined by the 90th and 95th percentile observations over each time step. Wind speed, river discharge and El Nino best explained variability in turbidity time-series and extreme events (R2 > 0.2, p < 0.05), but this varied substantially between time steps and estuaries. The background land cover analyses conducted for coastal water quality studies showed that there are substantial discrepancies between the wetland extent estimates mapped by local, state and federal agencies. The third chapter of my research sought to examine these differences and evaluate the accuracy and precision of wetland maps using high spatial-resolution (i.e. two-meter) WorldView-2 satellite imagery. Ground validation data showed that wetlands mapped at two study sites in Tampa Bay were more accurately identified by WorldView-2 than by Landsat imagery (30-meter resolution). When compared to maps produced separately by the National Oceanic and Atmospheric Administration, Southwest Florida Water Management District, and National Wetland Inventory, we found that these historical land cover products overestimated by 2-10 times the actual extent of wetlands as identified in the WorldView-2 maps. We could find no study that had utilized more than six of these commercial images for a given project. Part of the problem is cost of the images, but there is also the cost of processing the images, which is typically done one at a time and with substantial human interaction. Chapter four explains an approach to automate the preprocessing and classification of imagery to detect wetlands within the Tampa Bay watershed (6,500 km2). Software scripts in Python, Matlab and Linux were used to ingest 130 WorldView-2 images and to generate maps that included wetlands, uplands, water, and bare and developed land. These maps proved to be more accurate at identifying forested wetland (78%) than those by NOAA, SWFWMD, and NWI (45-65%) based on ground validation data. Typical processing methods would have required 4-5 months to complete this work, but this protocol completed the 130 images in under 24 hours. Chapter five of the dissertation reviews coastal management case studies that have used satellite technologies. The objective was to illustrate the utility of this technology. The management sectors reviewed included coral reefs, wetlands, water quality, public health, and fisheries and aquaculture.

  4. Land-Cover Change in the Central Irregular Plains, 1973-2000

    USGS Publications Warehouse

    Karstensen, Krista A.

    2009-01-01

    Spearheaded by the Geographic Analysis and Monitoring Program of the U.S. Geological Survey (USGS) in collaboration with the U.S. Environmental Protection Agency (EPA) and the National Aeronautics and Space Administration (NASA), the Land Cover Trends is a research project focused on understanding the rates, trends, causes, and consequences of contemporary United States land-use and land-cover change. Using the EPA Level III ecoregions as the geographic framework, scientists process geospatial data collected between 1973 and 2000 to characterize ecosystem responses to land-use changes. The 27-year study period was divided into five temporal periods: 1973-1980, 1980-1986, 1986-1992, 1992-2000 and 1973-2000. General land-cover classes for these periods were interpreted from Landsat Multispectral Scanner, Thematic Mapper, and Enhanced Thematic Mapper Plus imagery to categorize land-cover change and evaluate using a modified Anderson Land Use Land Cover Classification System for image interpretation. The rates of land-cover change are estimated using a stratified, random sampling of 10-kilometer (km) by 10-km blocks allocated within each ecoregion. For each sample block, satellite images are used to interpret land-cover change. Additionally, historical aerial photographs from similar timeframes and other ancillary data such as census statistics and published literature are used. The sample block data are then incorporated into statistical analyses to generate an overall change matrix for the ecoregion. These change statistics are applicable for different levels of scale, including total change for the individual sample blocks and change estimates for the entire ecoregion. The results illustrate that there is no single profile of land-cover change but instead point to geographic variability that results from land uses within ecoregions continuously adapting to various factors including environmental, technological, and socioeconomic.

  5. Land Management, River Restoration and the Water Framework Directive

    NASA Astrophysics Data System (ADS)

    Smith, Ben; Clifford, Nicholas

    2014-05-01

    The influence of catchment land-use on river ecosystems is well established, with negative changes in hydrology, sediment supply and pollutants causing widespread degradation in modified catchments across Europe. The strength of relationship found between different land-use types and impacts on river systems varies from study to study as a result of issues around data quality, scale, study design and the interaction of stressors at multiple scales. Analysis of large-scale datasets can provide important information about the way that catchments pressures affect WFD objectives at a national scale. Comparisons of relationships between land-use and WFD status in different types of catchment within the UK allow an assessment of catchment sensitivity and analysis of the catchment characteristics which influence these relationships. The results suggest prioritising catchments at or near land-use thresholds, or targeting waterbodies with limited land-use pressures but which are failing to achieve GES or GEP. This paper uses UK datasets on land cover and WFD waterbody status to examine how catchment land-use impacts on WFD status and to evaluate opportunities to achieve Good Ecological Status or Good Ecological Potential. Agricultural and urban land-use are shown to have different types of relationship with respect to the likelihood of achieving Good Ecological Status, and with clear threshold effects apparent for urban land-use in the catchment. Broad-scale analysis shows the influence of different sized buffer strips in mitigating the negative effects of different types of land-cover, and reinforces the positive effects of riparian woodland on river ecosystems and their potential under the WFD.

  6. Land-cover change research at the U.S. Geological Survey-assessing our nation's dynamic land surface

    USGS Publications Warehouse

    Wilson, Tamara S.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed an unprecedented, 27-year assessment of land-use and land-cover change for the conterminous United States. For the period 1973 to 2000, scientists generated estimates of change in major types of land use and land cover, such as development, mining, agriculture, forest, grasslands, and wetlands. To help provide the insight that our Nation will need to make land-use decisions in coming decades, the historical trends data is now being used by the USGS to help model potential future land use/land cover under different scenarios, including climate, environmental, economic, population, public policy, and technological change.

  7. Development of a land-cover characteristics database for the conterminous U.S.

    USGS Publications Warehouse

    Loveland, Thomas R.; Merchant, J.W.; Ohlen, D.O.; Brown, Jesslyn F.

    1991-01-01

    Information regarding the characteristics and spatial distribution of the Earth's land cover is critical to global environmental research. A prototype land-cover database for the conterminous United States designed for use in a variety of global modelling, monitoring, mapping, and analytical endeavors has been created. The resultant database contains multiple layers, including the source AVHRR data, the ancillary data layers, the land-cover regions defined by the research, and translation tables linking the regions to other land classification schema (for example, UNESCO, USGS Anderson System). The land-cover characteristics database can be analyzed, transformed, or aggregated by users to meet a broad spectrum of requirements. -from Authors

  8. Preservation of Earth Science Data History with Digital Content Repository Technology

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Pan, J.; Shrestha, B.; Cook, R. B.

    2011-12-01

    An increasing need for derived and on-demand data product in Earth Science research makes the digital content more difficult for providers to manage and preserve and for users to locate, understand, and consume. Specifically, this increasing need presents additional challenges in managing data processing history information and delivering such information to end users. For example, the North American Carbon Program (NACP) Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) chose a modified SYNMAP land cover data as one of the input driver data for participating terrestrial biospheric models. The global 1km resolution SYNMAP data was created by harmonizing 3 remote sensing-based land cover products: GLCC, GLC2000, and the MODIS land cover product. The original SYNMAP land cover data was aggregated into half and quarter degree resolution. It was then enhanced with more detailed grassland and cropland types. Currently, there lacks an effective mechanism to convey this data processing information to different modeling teams for them to determine if a data product meets their needs. It still highly relies on offline human interaction. The NASA-sponsored ORNL DAAC has leveraged the contemporary digital object repository technology to promote the representation, management, and delivery of data processing history and provenance information. Within digital object repository, different data products are managed as objects, with metadata as attributes and content delivery and management services as dissemination methods. Derivation relationships among data products can be semantically referenced between digital objects. Within the repository, data users can easily track a derived data product back to its origin, explorer metadata and documents about each intermediate data product, and discover processing details involved in each derivation step. Coupled with Drupal Web Content Management System, the digital repository interface was enhanced to provide intuitive graphic representation of the data processing history. Each data product is also associated with a formal metadata record in FGDC standards, and the main fields of the FGDC record are indexed for search, and are displayed as attributes of the data product. These features enable data users to better understand and consume a data product. The representation of data processing history in digital repository can further promote long-term data preservation. Lineage information is a major aspect to make digital data understandable and usable long time into the future. Derivation references can be setup between digital objects not only within a single digital repository, but also across multiple distributed digital repositories. Along with emerging identification mechanisms, such as Digital Object Identifier (DOI), a flexible distributed digital repository network can be setup to better preserve digital content. In this presentation, we describe how digital content repository technology can be used to manage, preserve, and deliver digital data processing history information in Earth Science research domain, with selected data archived in ORNL DAAC and Model and Synthesis Thematic Data Center (MAST-DC) as testing targets.

  9. GlobCorine- A Joint EEA-ESA Project for Operational Land Cover and Land Use Mapping at Pan-European Scale

    NASA Astrophysics Data System (ADS)

    Bontemps, S.; Defourny, P.; Van Bogaert, E.; Weber, J. L.; Arino, O.

    2010-12-01

    Regular and global land cover mapping contributes to evaluating the impact of human activities on the environment. Jointly supported by the European Space Agency and the European Environmental Agency, the GlobCorine project builds on the GlobCover findings and aims at making the full use of the MERIS time series for frequent land cover monitoring. The GlobCover automated classification approach has been tuned to the pan-European continent and adjusted towards a classification compatible with the Corine typology. The GlobCorine 2005 land cover map has been achieved, validated and made available to a broad- level stakeholder community from the ESA website. A first version of the GlobCorine 2009 map has also been produced, demonstrating the possibility for an operational production of frequent and updated global land cover maps.

  10. Forest Cover Change Analysis in Inner Mongolia Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Xie, S.; Gong, J.; Huang, X.

    2018-04-01

    Forest is the lung of the earth, and it has important effect on maintaining the ecological balance of the whole earth. This study was conducted in Inner Mongolia during the year 1990-2015. Land use and land cover data were used to obtain forest cover change of Inner Mongolia. In addition, protected area data, road data, ASTER GDEM data were combined with forest cover change data to analyze the relationship between them. Moreover, patch density and landscape shape index were calculated to analyze forest change in perspective of landscape aspect. The results indicated that forest area increased overall during the study period. However, a few cities still had a phenomenon of reduced forest area. Results also demonstrated that the construction of protected area had positive effect on protecting forest while roads may disturbed forest due to human activities. In addition, forest patches in most of cities of Inner Mongolia tended to be larger and less fragmented. This paper reflected forest change in Inner Mongolia objectively, which is helpful for policy making by government.

  11. Detection of Deforestation and Land Conversion in Rondonia, Brazil Using Change Detection Techniques

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Cohen, Warren B,; Kauffman, J. Boone; Peterson, David L. (Technical Monitor)

    2001-01-01

    Fires associated with tropical deforestation, land conversion, and land use greatly contribute to emissions as well as the depletion of carbon and nutrient pools. The objective of this research was to compare change detection techniques for identifying deforestation and cattle pasture formation during a period of early colonization and agricultural expansion in the vicinity of Jamari, Rond6nia. Multi-date Landsat Thematic Mapper (TM) data between 1984 and 1992 was examined in a 94 370-ha area of active deforestation to map land cover change. The Tasseled Cap (TC) transformation was used to enhance the contrast between forest, cleared areas, and regrowth. TC images were stacked into a composite multi-date TC and used in a principal components (PC) transformation to identify change components. In addition, consecutive TC image pairs were differenced and stacked into a composite multi-date differenced image. A maximum likelihood classification of each image composite was compared for identification of land cover change. The multi-date TC composite classification had the best accuracy of 78.1% (kappa). By 1984, only 5% of the study area had been cleared, but by 1992, 11% of the area had been deforested, primarily for pasture and 7% lost due to hydroelectric dam flooding. Finally, discrimination of pasture versus cultivation was improved due to the ability to detect land under sustained clearing opened to land exhibiting regrowth with infrequent clearing.

  12. BOREAS AFM-12 1-km AVHRR Seasonal Land Cover Classification

    NASA Technical Reports Server (NTRS)

    Steyaert, Lou; Hall, Forrest G.; Newcomer, Jeffrey A. (Editor); Knapp, David E. (Editor); Loveland, Thomas R.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-12 team's efforts focused on regional scale Surface Vegetation and Atmosphere (SVAT) modeling to improve parameterization of the heterogeneous BOREAS landscape for use in larger scale Global Circulation Models (GCMs). This regional land cover data set was developed as part of a multitemporal one-kilometer Advanced Very High Resolution Radiometer (AVHRR) land cover analysis approach that was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. This land cover classification was derived by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly Normalized Difference Vegetation Index (NDVI) image composites (April-September 1992). This regional data set was developed for use by BOREAS investigators, especially those involved in simulation modeling, remote sensing algorithm development, and aircraft flux studies. Based on regional field data verification, this multitemporal one-kilometer AVHRR land cover mapping approach was effective in characterizing the biome-level land cover structure, embedded spatially heterogeneous landscape patterns, and other types of key land cover information of interest to BOREAS modelers.The land cover mosaics in this classification include: (1) wet conifer mosaic (low, medium, and high tree stand density), (2) mixed coniferous-deciduous forest (80% coniferous, codominant, and 80% deciduous), (3) recent visible bum, vegetation regeneration, or rock outcrops-bare ground-sparsely vegetated slow regeneration bum (four classes), (4) open water and grassland marshes, and (5) general agricultural land use/ grasslands (three classes). This land cover mapping approach did not detect small subpixel-scale landscape features such as fens, bogs, and small water bodies. Field observations and comparisons with Landsat Thematic Mapper (TM) suggest a minimum effective resolution of these land cover classes in the range of three to four kilometers, in part, because of the daily to monthly compositing process. In general, potential accuracy limitations are mitigated by the use of conservative parameterization rules such as aggregation of predominant land cover classes within minimum horizontal grid cell sizes of ten kilometers. The AFM-12 one-kilometer AVHRR seasonal land cover classification data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  13. Past and predicted future changes in the land cover of the Upper Mississippi River floodplain, USA

    USGS Publications Warehouse

    De Jager, N. R.; Rohweder, J.J.; Nelson, J.C.

    2013-01-01

    This study provides one historical and two alternative future contexts for evaluating land cover modifications within the Upper Mississippi River (UMR) floodplain. Given previously documented changes in land use, river engineering, restoration efforts and hydro-climatic changes within the UMR basin and floodplain, we wanted to know which of these changes are the most important determinants of current and projected future floodplain land cover. We used Geographic Information System data covering approximately 37% of the UMR floodplain (3232 km2) for ca 1890 (pre-lock and dam) and three contemporary periods (1975, 1989 and 2000) across which river restoration actions have increased and hydro-climatic changes have occurred. We further developed two 50-year future scenarios from the spatially dependent land cover transitions that occurred from 1975 to 1989 (scenario A) and from 1989 to 2000 (scenario B) using Markov models.Land cover composition of the UMR did not change significantly from 1975 to 2000, indicating that current land cover continues to reflect historical modifications that support agricultural production and commercial navigation despite some floodplain restoration efforts and variation in river discharge. Projected future land cover composition based on scenario A was not significantly different from the land cover for 1975, 1989 or 2000 but was different from the land cover of scenario B, which was also different from all other periods. Scenario B forecasts transition of some forest and marsh habitat to open water by the year 2050 for some portions of the northern river and projects that some agricultural lands will transition to open water in the southern portion of the river. Future floodplain management and restoration planning efforts in the UMR should consider the potential consequences of continued shifts in hydro-climatic conditions that may occur as a result of climate change and the potential effects on floodplain land cover.

  14. Assessing the effects of land use/cover change on carbon dioxide fluxes in a semiarid shrubland

    NASA Astrophysics Data System (ADS)

    Gong, Tingting; Lei, Huimin; Yang, Dawen; Jiao, Yang; Yang, Hanbo

    2017-04-01

    Land use/cover change has been generally considered a local environmental issue. Our study focuses on the effects of land use/cover change on the carbon cycle using long-term continuous field observation data, which is measured by the eddy covariance (EC) technique. The study site is at Yulin (38.45N, 109.47E), which is a desert shrubland ecosystem in Mu Us sandland, China. Before June 2012, the vegetation in this site was covered with mixed vegetation: typical desert shrubs (e.g., Salix psammophila and Artemisia ordosica) and grass. After July 2012, a part of the land use/cover condition within the footprint was changed by the local farmers, which converted the land use/cover condition changed first from mixed vegetation to bare soil and then from bare soil to grassland resulting from the re-growing grass. Four-year carbon fluxes are selected and separated into three periods: Period I is from July 1 2011 to June 30 2012 when land use/cover condition did not change; Period II is from July 1 2012 to June 30 2014 when land use/cover condition changed from mixed vegetation (shrubs and grass) to the mix of bare soil and desert shrubs; Period III is from July 1 2014 to June 30 2015 when land use/cover condition changed from the mix of desert shrubs and bare soil to the mix of desert shrubs and re-growing grass. A linear statistical model will be used to evaluate and quantify the effects of land use/cover change on the uptake or release of carbon fluxes (net ecosystem exchange (NEE), ecosystem respiration (Reco) and gross primary production (GPP)). Moreover, this study is expected to get insights into how agricultural cultivation influences on the local carbon balance (e.g., how NEE, Reco and GPP respond to the land use/cover change; Is the annual carbon balance changed during the land use/cover change process; and the contribution of land use/cover change on these changes of carbon fluxes).

  15. Next generation of global land cover characterization, mapping, and monitoring

    USGS Publications Warehouse

    Giri, Chandra; Pengra, Bruce; Long, J.; Loveland, Thomas R.

    2013-01-01

    Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).

  16. A comparison between the effects of artificial land cover and anthropogenic heat on a localized heavy rain event in 2008 in Zoshigaya, Tokyo, Japan

    NASA Astrophysics Data System (ADS)

    Souma, Kazuyoshi; Tanaka, Kenji; Suetsugi, Tadashi; Sunada, Kengo; Tsuboki, Kazuhisa; Shinoda, Taro; Wang, Yuqing; Sakakibara, Atsushi; Hasegawa, Koichi; Moteki, Qoosaku; Nakakita, Eiichi

    2013-10-01

    5 August 2008, a localized heavy rainfall event caused a rapid increase in drainpipe discharge, which killed five people working in a drainpipe near Zoshigaya, Tokyo. This study compared the effects of artificial land cover and anthropogenic heat on this localized heavy rainfall event based on three ensemble experiments using a cloud-resolving model that includes realistic urban features. The first experiment CTRL (control) considered realistic land cover and urban features, including artificial land cover, anthropogenic heat, and urban geometry. In the second experiment NOAH (no anthropogenic heat), anthropogenic heat was ignored. In the third experiment NOLC (no land cover), urban heating from artificial land cover was reduced by keeping the urban geometry but with roofs, walls, and roads of artificial land cover replaced by shallow water. The results indicated that both anthropogenic heat and artificial land cover increased the amount of precipitation and that the effect of artificial land cover was larger than that of anthropogenic heat. However, in the middle stage of the precipitation event, the difference between the two effects became small. Weak surface heating in NOAH and NOLC reduced the near-surface air temperature and weakened the convergence of horizontal wind and updraft over the urban areas, resulting in a reduced rainfall amount compared with that in CTRL.

  17. Application of spectrometer cropscan MSR 16R and Landsat imagery for identification the spectral characteristics of land cover

    NASA Astrophysics Data System (ADS)

    Tampubolon, Togi; Abdullah, Khiruddin bin; San, Lim Hwee

    2013-09-01

    The spectral characteristics of land cover are basic references in classifying satellite image for geophysics analysis. It can be obtained from the measurements using spectrometer and satellite image processing. The aims of this study to investigate the spectral characteristics of land cover based on the results of measurement using Spectrometer Cropscan MSR 16R and Landsat satellite imagery. The area of study in this research is in Medan, (Deli Serdang, North Sumatera) Indonesia. The scope of this study is the basic survey from the measurements of spectral land cover which is covered several type of land such as a cultivated and managed terrestrial areas, natural and semi-natural, cultivated aquatic or regularly flooded areas, natural and semi-natural aquatic, artificial surfaces and associated areas, bare areas, artificial waterbodies and natural waterbodies. The measurement and verification were conducted using a spectrometer provided their spectral characteristics and Landsat imagery, respectively. The results of the spectral characteristics of land cover shows that each type of land cover have a unique characteristic. The correlation of spectral land cover based on spectrometer Cropscan MSR 16R and Landsat satellite image are above 90 %. However, the land cover of artificial waterbodiese have a correlation under 40 %. That is because the measurement of spectrometer Cropscan MSR 16R and acquisition of Landsat satellite imagery has a time different.

  18. Spatially quantifying and attributing 17 years of land cover change to examine post-agricultural forest transition in Hawai`i

    NASA Astrophysics Data System (ADS)

    Lucas, M.; Trauernicht, C.; Carlson, K. M.; Miura, T.; Giambelluca, T. W.; Chen, Q.

    2017-12-01

    The past decades in Hawaii have seen large scale land use change and land cover shifts. However, much these dynamics are only described anecdotally or studied at a single locale, with little information on the extent, rate, or direction of change. This lack of data hinders any effort to assess, plan, and prioritize land management. To improve assessments of statewide vegetation and land cover change, this project developed high resolution, sub-pixel, percent cover maps of forest, grassland and bare earth at annual time steps from 1999 to 2016. Vegetation cover was quantified using archived LANDSAT imagery and a custom remote-sensing algorithm developed in the Google Earth Engine platform. A statistical trend analysis of annual maps of the these three proportional land covers were then used to detect land cover transitions across the archipelago. The aim of this work focused on quantifying the total area of change, annual rates of change and final vegetation cover outcomes statewide. Additionally these findings were attributed to past and current land uses and management history by compiling spatial datasets of development, agriculture, forest restoration sites and burned areas statewide. Results indicated that nearly 10% of the state's land surfaces are suspected to have transitioned between the three cover classes during the study period. Total statewide net change resulted in a gain in forest cover with largest areas of change occurring in unmanaged areas, current and past pastoral land, commercial forestry and abandoned cultivated land. The fastest annual rates of change were forest increases that occurred in restoration areas and commercial forestry. These findings indicate that Hawaii is going through a forest transition, primarily driven by agricultural abandonment with likely feedbacks from invasive species, but also influenced by the establishment of forestry production on former agricultural lands that show potential for native forest restoration. These results directly link land management history to land cover outcomes using an innovative approach to quantify change. It is also the first study to quantify forest transition dynamics in Hawaii and points to the need for similar assessments in post-agricultural landscapes on other oceanic islands.

  19. [Object-oriented remote sensing image classification in epidemiological studies of visceral leishmaniasis in urban areas].

    PubMed

    Almeida, Andréa Sobral de; Werneck, Guilherme Loureiro; Resendes, Ana Paula da Costa

    2014-08-01

    This study explored the use of object-oriented classification of remote sensing imagery in epidemiological studies of visceral leishmaniasis (VL) in urban areas. To obtain temperature and environmental information, an object-oriented classification approach was applied to Landsat 5 TM scenes from the city of Teresina, Piauí State, Brazil. For 1993-1996, VL incidence rates correlated positively with census tracts covered by dense vegetation, grass/pasture, and bare soil and negatively with areas covered by water and densely populated areas. In 2001-2006, positive correlations were found with dense vegetation, grass/pasture, bare soil, and densely populated areas and negative correlations with occupied urban areas with some vegetation. Land surface temperature correlated negatively with VL incidence in both periods. Object-oriented classification can be useful to characterize landscape features associated with VL in urban areas and to help identify risk areas in order to prioritize interventions.

  20. MRLC-LAND COVER MAPPING, ACCURACY ASSESSMENT AND APPLICATION RESEARCH

    EPA Science Inventory

    The National Land Cover Database (NLCD), produced by the Multi-Resolution Land Characteristics (MRLC) provides consistently classified land-cover and ancillary data for the United States. These data support many of the modeling and monitoring efforts related to GPRA goals of Cle...

  1. Development of a 30 m Spatial Resolution Land Cover of Canada: Contribution to the Harmonized North America Land Cover Dataset

    NASA Astrophysics Data System (ADS)

    Pouliot, D.; Latifovic, R.; Olthof, I.

    2017-12-01

    Land cover is needed for a large range of environmental applications regarding climate impacts and adaption, emergency response, wildlife habitat, air quality, water yield, etc. In Canada a 2008 user survey revealed that the most practical scale for provision of land cover data is 30 m, nationwide, with an update frequency of five years (Ball, 2008). In response to this need the Canada Centre for Remote Sensing has generated a 30 m land cover of Canada for the base year 2010 as part of a planned series of maps at the recommended five year update frequency. This land cover is the Canadian contribution to the North American Land Change Monitoring System initiative, which seeks to provide harmonized land cover across Canada, the United States, and Mexico. The methodology developed in this research utilized a combination of unsupervised and machine learning techniques to map land cover, blend results between mapping units, locally optimize results, and process some thematic attributes with specific features sets. Accuracy assessment with available field data shows it was on average 75% for the five study areas assessed. In this presentation an overview of the unique processing aspects, example results, and initial accuracy assessment will be discussed.

  2. GLCF: Help me

    Science.gov Websites

    ONLY Deforestation data -- displays changes in land cover MODIS (2001-2005) available globally Forest (1981-2000) available globally Land Cover Classification -- useful for identifying changes in land cover

  3. Land cover maps, BVOC emissions, and SOA burden in a global aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Stanelle, Tanja; Henrot, Alexandra; Bey, Isaelle

    2015-04-01

    It has been reported that different land cover representations influence the emission of biogenic volatile organic compounds (BVOC) (e.g. Guenther et al., 2006). But the land cover forcing used in model simulations is quite uncertain (e.g. Jung et al., 2006). As a consequence the simulated emission of BVOCs depends on the applied land cover map. To test the sensitivity of global and regional estimates of BVOC emissions on the applied land cover map we applied 3 different land cover maps into our global aerosol-climate model ECHAM6-HAM2.2. We found a high sensitivity for tropical regions. BVOCs are a very prominent precursor for the production of Secondary Organic Aerosols (SOA). Therefore the sensitivity of BVOC emissions on land cover maps impacts the SOA burden in the atmosphere. With our model system we are able to quantify that impact. References: Guenther et al. (2006), Estimates of global terrestrial isoprene emissions using MEGAN, Atmos. Chem. Phys., 6, 3181-3210, doi:10.5194/acp-6-3181-2006. Jung et al. (2006), Exploiting synergies of global land cover products for carbon cycle modeling, Rem. Sens. Environm., 101, 534-553, doi:10.1016/j.rse.2006.01.020.

  4. Using land-cover change as dynamic variables in surface-water and water-quality models

    USGS Publications Warehouse

    Karstensen, Krista A.; Warner, Kelly L.; Kuhn, Anne

    2010-01-01

    Land-cover data are typically used in hydrologic modeling to establish or describe land surface dynamics. This project is designed to demonstrate the use of land-cover change data in surface-water and water-quality models by incorporating land-cover as a variable condition. The project incorporates three different scenarios that vary hydrologically and geographically: 1) Agriculture in the Plains, 2) Loon habitat in New England, and 3) Forestry in the Ozarks.

  5. Development of 2010 national land cover database for the Nepal.

    PubMed

    Uddin, Kabir; Shrestha, Him Lal; Murthy, M S R; Bajracharya, Birendra; Shrestha, Basanta; Gilani, Hammad; Pradhan, Sudip; Dangol, Bikash

    2015-01-15

    Land cover and its change analysis across the Hindu Kush Himalayan (HKH) region is realized as an urgent need to support diverse issues of environmental conservation. This study presents the first and most complete national land cover database of Nepal prepared using public domain Landsat TM data of 2010 and replicable methodology. The study estimated that 39.1% of Nepal is covered by forests and 29.83% by agriculture. Patch and edge forests constituting 23.4% of national forest cover revealed proximate biotic interferences over the forests. Core forests constituted 79.3% of forests of Protected areas where as 63% of area was under core forests in the outside protected area. Physiographic regions wise forest fragmentation analysis revealed specific conservation requirements for productive hill and mid mountain regions. Comparative analysis with Landsat TM based global land cover product showed difference of the order of 30-60% among different land cover classes stressing the need for significant improvements for national level adoption. The online web based land cover validation tool is developed for continual improvement of land cover product. The potential use of the data set for national and regional level sustainable land use planning strategies and meeting several global commitments also highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. AVIRIS Land-Surface Mapping in Support of the Boreal Ecosystem-Atmosphere Study (BOREAS)

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Gamon, John; Keightley, Keir; Prentiss, Dylan; Reith, Ernest; Green, Robert

    2001-01-01

    A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely-sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS follow-on program is concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has the potential of contributing to BOREAS through: (1) accurate retrieved apparent surface reflectance; (2) improved landcover classification; and (3) direct assessment of biochemical/biophysical information such as canopy liquid water and chlorophyll concentration through pigment fits. In this paper, we present initial products for major flux tower sites including: (1) surface reflectance of dominant cover types; (2) a land-cover classification developed using spectral mixture analysis (SMA) and Multiple Endmember Spectral Mixture Analysis (MESMA); and (3) liquid water maps. Our goal is to compare these land-cover maps to existing maps and to incorporate AVIRIS image products into models of photosynthetic flux.

  7. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems

    USGS Publications Warehouse

    Stow, Douglas A.; Hope, Allen; McGuire, David; Verbyla, David; Gamon, John A.; Huemmrich, Fred; Houston, Stan; Racine, Charles H.; Sturm, Matthew; Tape, Ken D.; Hinzman, Larry D.; Yoshikawa, Kenji; Tweedie, Craig E.; Noyle, Brian; Silapaswan, Cherie; Douglas, David C.; Griffith, Brad; Jia, Gensuo; Howard E. Epstein,; Walker, Donald A.; Daeschner, Scott; Petersen, Aaron; Zhou, Liming; Myneni, Ranga B.

    2004-01-01

    The objective of this paper is to review research conducted over the past decade on the application of multi-temporal remote sensing for monitoring changes of Arctic tundra lands. Emphasis is placed on results from the National Science Foundation Land–Air–Ice Interactions (LAII) program and on optical remote sensing techniques. Case studies demonstrate that ground-level sensors on stationary or moving track platforms and wide-swath imaging sensors on polar orbiting satellites are particularly useful for capturing optical remote sensing data at sufficient frequency to study tundra vegetation dynamics and changes for the cloud prone Arctic. Less frequent imaging with high spatial resolution instruments on aircraft and lower orbiting satellites enable more detailed analyses of land cover change and calibration/validation of coarser resolution observations.The strongest signals of ecosystem change detected thus far appear to correspond to expansion of tundra shrubs and changes in the amount and extent of thaw lakes and ponds. Changes in shrub cover and extent have been documented by modern repeat imaging that matches archived historical aerial photography. NOAA Advanced Very High Resolution Radiometer (AVHRR) time series provide a 20-year record for determining changes in greenness that relates to photosynthetic activity, net primary production, and growing season length. The strong contrast between land materials and surface waters enables changes in lake and pond extent to be readily measured and monitored.

  8. Fractal simulation of urbanization for the analysis of vulnerability to natural hazards

    NASA Astrophysics Data System (ADS)

    Puissant, Anne; Sensier, Antoine; Tannier, Cécile; Malet, Jean-Philippe

    2016-04-01

    Since 50 years, mountain areas are affected by important land cover/use changes characterized by the decrease of pastoral activities, reforestation and urbanization with the development of tourism activities and infrastructures. These natural and anthropogenic transformations have an impact on the socio-economic activities but also on the exposure of the communities to natural hazards. In the context of the ANR Project SAMCO which aims at enhancing the overall resilience of societies on the impacts of mountain risks, the objective of this research was to help to determine where to locate new residential developments for different scenarios of land cover/use (based on the Prelude European Project) for the years 2030 and 2050. The Planning Support System (PSS), called MUP-City, based on a fractal multi-scale modeling approach is used because it allows taking into account local accessibility to some urban and rural amenities (Tannier et al., 2012). For this research, an experiment is performed on a mountain area in the French Alps (Barcelonnette Basin) to generate three scenarios of urban development with MUP-City at the scale of 1:10:000. The results are assessed by comparing the localization of residential developments with urban areas predicted by land cover and land use scenarios generated by cellular automata modelling (LCM and Dyna-clue) (Puissant et al., 2015). Based on these scenarios, the evolution of vulnerability is estimated.

  9. The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England

    PubMed Central

    Senapathi, Deepa; Carvalheiro, Luísa G.; Biesmeijer, Jacobus C.; Dodson, Cassie-Ann; Evans, Rebecca L.; McKerchar, Megan; Morton, R. Daniel; Moss, Ellen D.; Roberts, Stuart P. M.; Kunin, William E.; Potts, Simon G.

    2015-01-01

    Change in land cover is thought to be one of the key drivers of pollinator declines, and yet there is a dearth of studies exploring the relationships between historical changes in land cover and shifts in pollinator communities. Here, we explore, for the first time, land cover changes in England over more than 80 years, and relate them to concurrent shifts in bee and wasp species richness and community composition. Using historical data from 14 sites across four counties, we quantify the key land cover changes within and around these sites and estimate the changes in richness and composition of pollinators. Land cover changes within sites, as well as changes within a 1 km radius outside the sites, have significant effects on richness and composition of bee and wasp species, with changes in edge habitats between major land classes also having a key influence. Our results highlight not just the land cover changes that may be detrimental to pollinator communities, but also provide an insight into how increases in habitat diversity may benefit species diversity, and could thus help inform policy and practice for future land management. PMID:25833861

  10. Spatiotemporal Analysis of Urban Land Cover Changes in Kigali, Rwanda Using Multitemporal Landsat Data and Landscape Metrics

    NASA Astrophysics Data System (ADS)

    Mugiraneza, T.; Haas, J.; Ban, Y.

    2017-11-01

    Mapping urbanization and ensuing environmental impacts using satellite data combined with landscape metrics has become a hot research topic. The objectives of the study are to analyze the spatio-temporal evolution of urbanization patterns of Kigali, Rwanda over the last three decades (from 1984 to 2015) using multitemporal Landsat data and to assess the associated environmental impact using landscape metrics. Landsat images, Normalized Difference Vegetation Index (NDVI), Grey Level Co-occurrence Matrix (GLCM) variance texture and digital elevation model (DEM) data were classified using a support vector machine (SVM). Eight landscape indices were derived from classified images for urbanization environment impact assessment. Seven land cover classes were derived with an overall accuracy exceeding 88 % with Kappa Coefficients around 0.8. As most prominent changes, cropland was reduced considerably in favour of built-up areas that increased from 2,349 ha to 11,579 ha between 1984 and 2015. During those 31 years, the increased number of patches in most land cover classes illustrated landscape fragmentation, especially for forest. The landscape configuration indices demonstrate that in general the land cover pattern remained stable for cropland but it was highly changed in built-up areas. Satellite-based analysis and quantification of urbanization and its effects using landscape metrics are found to be interesting for grassroots and provide a cost-effective method for urban information production. This information can be used for e.g. potential design and implementation of early warning systems that cater for urbanization effects.

  11. Measuring phenological variability from satellite imagery

    USGS Publications Warehouse

    Reed, Bradley C.; Brown, Jesslyn F.; Vanderzee, D.; Loveland, Thomas R.; Merchant, James W.; Ohlen, Donald O.

    1994-01-01

    Vegetation phenological phenomena are closely related to seasonal dynamics of the lower atmosphere and are therefore important elements in global models and vegetation monitoring. Normalized difference vegetation index (NDVI) data derived from the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer (AVHRR) satellite sensor offer a means of efficiently and objectively evaluating phenological characteristics over large areas. Twelve metrics linked to key phenological events were computed based on time-series NDVI data collected from 1989 to 1992 over the conterminous United States. These measures include the onset of greenness, time of peak NDVI, maximum NDVI, rate of greenup, rate of senescence, and integrated NDVI. Measures of central tendency and variability of the measures were computed and analyzed for various land cover types. Results from the analysis showed strong coincidence between the satellite-derived metrics and predicted phenological characteristics. In particular, the metrics identified interannual variability of spring wheat in North Dakota, characterized the phenology of four types of grasslands, and established the phenological consistency of deciduous and coniferous forests. These results have implications for large- area land cover mapping and monitoring. The utility of re- motely sensed data as input to vegetation mapping is demonstrated by showing the distinct phenology of several land cover types. More stable information contained in ancillary data should be incorporated into the mapping process, particularly in areas with high phenological variability. In a regional or global monitoring system, an increase in variability in a region may serve as a signal to perform more detailed land cover analysis with higher resolution imagery.

  12. Land-cover change in the Lower Mississippi Valley, 1973-2000

    USGS Publications Warehouse

    Karstensen, Krista A.; Sayler, Kristi L.

    2009-01-01

    The Land Cover Trends is a research project focused on understanding the rates, trends, causes, and consequences of contemporary United States land-use and land-cover change. The project is coordinated by the Geographic Analysis and Monitoring Program of the U.S. Geological Survey (USGS) in conjunction with the U.S. Environmental Protection Agency (EPA) and the National Aeronautics and Space Administration (NASA). Using the EPA Level III ecoregions as the geographic framework, scientists process geospatial data collected between 1973 and 2000 were processed to characterize ecosystem responses to land-use changes. The 27-year study period was divided into four temporal periods: 1973 to1980, 1980 to 1986, 1986 to 1992, 1992 to 2000 and overall from 1973 to 2000. General land-cover classes for these periods were interpreted from Landsat Multispectral Scanner, Thematic Mapper, and Enhanced Thematic Mapper Plus imagery to categorize and evaluate land-cover change using a modified Anderson Land Use Land Cover Classification System (Anderson and others, 1976) for image interpretation.The rates of land-cover change were estimated using a stratified, random sampling of 10-kilometer (km) by 10-km blocks allocated within each ecoregion. For each sample block, satellite images were used to interpret land-cover change. The sample block data then were incorporated into statistical analyses to generate an overall change matrix for the ecoregion. These change statistics are applicable for different levels of scale, including total change for the individual sample blocks and change estimates for the entire ecoregion.

  13. Validation of national land-cover characteristics data for regional water-quality assessment

    USGS Publications Warehouse

    Zelt, Ronald B.; Brown, Jesslyn F.; Kelley, M.S.

    1995-01-01

    Land-cover information is used routinely to support the interpretation of water-quality data. The Prototype 1990 Conterminous US Land Cover Characteristics Data Set, developed primarily from Advanced Very High Resolution Radiometer (AVHRR) data, was made available to the US Geological Survey's National Water-Quality Assessment (NAWQA) Program. The study described in this paper explored the utility of the 1990 national data set for developing quantitative estimates of the areal extent of principal land-cover types within large areal units. Land-cover data were collected in 1993 at 210 sites in the Central Nebraska Basins, one of the NAWQA study units. Median percentage-corn estimates for each sampling stratum wre used to produce areally weighted estimates of the percentage-corn cover for hydrologic units. Comparison of those areal estimates with an independent source of 1992 land-cover data showed good agreement. -Authors

  14. US LAND-COVER MONITORING AND DETECTION OF CHANGES IN SCALE AND CONTEXT OF FOREST

    EPA Science Inventory

    Disparate land-cover mapping programs, previously focused solely on mission-oriented goals, have organized themselves as the Multi-Resolution Land Characteristics (MRLC) Consortium with a unified goal of producing land-cover nationwide at routine intervals. Under MRLC, United Sta...

  15. Quantifying urban land cover change between 2001 and 2006 in the Gulf of Mexico region

    USGS Publications Warehouse

    Xian, George Z.; Homer, Collin G.; Bunde, Brett; Danielson, Patrick; Dewitz, Jon; Fry, Joyce; Pu, Ruiliang

    2012-01-01

    We estimated urbanization rates (2001–2006) in the Gulf of Mexico region using the National Land Cover Database (NLCD) 2001 and 2006 impervious surface products. An improved method was used to update the NLCD impervious surface product in 2006 and associated land cover transition between 2001 and 2006. Our estimation reveals that impervious surface increased 416 km2 with a growth rate of 5.8% between 2001 and 2006. Approximately 1110.1 km2 of non-urban lands were converted into urban land, resulting in a 3.2% increase in the region. Hay/pasture, woody wetland, and evergreen forest represented the three most common land cover classes that transitioned to urban. Among these land cover transitions, more than 50% of the urbanization occurred within 50 km of the coast. Our analysis shows that the close-to-coast land cover transition trend, especially within 10 km off the coast, potentially imposes substantial long-term impacts on regional landscape and ecological conditions.

  16. Impact of Land Cover Characterization and Properties on Snow Albedo in Climate Models

    NASA Astrophysics Data System (ADS)

    Wang, L.; Bartlett, P. A.; Chan, E.; Montesano, P.

    2017-12-01

    The simulation of winter albedo in boreal and northern environments has been a particular challenge for land surface modellers. Assessments of output from CMIP3 and CMIP5 climate models have revealed that many simulations are characterized by overestimation of albedo in the boreal forest. Recent studies suggest that inaccurate representation of vegetation distribution, improper simulation of leaf area index, and poor treatment of canopy-snow processes are the primary causes of albedo errors. While several land cover datasets are commonly used to derive plant functional types (PFT) for use in climate models, new land cover and vegetation datasets with higher spatial resolution have become available in recent years. In this study, we compare the spatial distribution of the dominant PFTs and canopy cover fractions based on different land cover datasets, and present results from offline simulations of the latest version Canadian Land Surface Scheme (CLASS) over the northern Hemisphere land. We discuss the impact of land cover representation and surface properties on winter albedo simulations in climate models.

  17. GIS based mapping of land cover changes utilizing multi-temporal remotely sensed image data in Lake Hawassa Watershed, Ethiopia.

    PubMed

    Nigatu Wondrade; Dick, Øystein B; Tveite, Havard

    2014-03-01

    Classifying multi-temporal image data to produce thematic maps and quantify land cover changes is one of the most common applications of remote sensing. Mapping land cover changes at the regional level is essential for a wide range of applications including land use planning, decision making, land cover database generation, and as a source of information for sustainable management of natural resources. Land cover changes in Lake Hawassa Watershed, Southern Ethiopia, were investigated using Landsat MSS image data of 1973, and Landsat TM images of 1985, 1995, and 2011, covering a period of nearly four decades. Each image was partitioned in a GIS environment, and classified using an unsupervised algorithm followed by a supervised classification method. A hybrid approach was employed in order to reduce spectral confusion due to high variability of land cover. Classification of satellite image data was performed integrating field data, aerial photographs, topographical maps, medium resolution satellite image (SPOT 20 m), and visual image interpretation. The image data were classified into nine land cover types: water, built-up, cropland, woody vegetation, forest, grassland, swamp, bare land, and scrub. The overall accuracy of the LULC maps ranged from 82.5 to 85.0 %. The achieved accuracies were reasonable, and the observed classification errors were attributable to coarse spatial resolution and pixels containing a mixture of cover types. Land cover change statistics were extracted and tabulated using the ERDAS Imagine software. The results indicated an increase in built-up area, cropland, and bare land areas, and a reduction in the six other land cover classes. Predominant land cover is cropland changing from 43.6 % in 1973 to 56.4 % in 2011. A significant portion of land cover was converted into cropland. Woody vegetation and forest cover which occupied 21.0 and 10.3 % in 1973, respectively, diminished to 13.6 and 5.6 % in 2011. The change in water body was very peculiar in that the area of Lake Hawassa increased from 91.9 km(2) in 1973 to 95.2 km(2) in 2011, while that of Lake Cheleleka whose area was 11.3 km(2) in 1973 totally vanished in 2011 and transformed into mud-flat and grass dominated swamp. The "change and no change" analysis revealed that more than one third (548.0 km(2)) of the total area was exposed to change between 1973 and 2011. This study was useful in identifying the major land cover changes, and the analysis pursued provided a valuable insight into the ongoing changes in the area under investigation.

  18. Improving surface-subsurface water budgeting for Brownfield study sites using high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Dujardin, J.; Boel, S.; Anibas, C.; Batelaan, O.; Canters, F.

    2009-04-01

    Countries around the world have problems with contaminated brownfield sites as resulting from a relatively anarchic economical and industrial development during the 19th and 20th centuries. Since a few decades policy makers and stakeholders have become more aware of the risk posed by these sites because some of these sites present direct public hazards. Water is often the main vector of the mobility of contaminants. In order to propose remediation measures for the contaminated sites, it is required to describe and to quantify as accurately as possible the surface and subsurface water fluxes in the polluted site. In this research a modelling approach with integrated remote sensing analysis has been developed for accurately calculating water and contaminant fluxes on the polluted sites. Groundwater pollution in urban environments is linked to patterns of land use, so to identify the sources of contamination with great accuracy in urban environments it is essential to characterize the land cover in a detailed way. The use of high resolution spatial information is required because of the complexity of the urban land use. An object-oriented classification approach applied on high resolution satellite data has been adopted. Cluster separability analysis and visual interpretation of the image objects belonging to each cluster resulted in the selection of 8 land-cover categories (water, bare soil, meadow, mixed forest, grey urban surfaces, red roofs, bright roofs and shadow).To assign the image objects to one of the 8 selected classes a multiple layer perceptron (MLP) approach was adopted, using the NeuralWorks Predict software. After a post-classification shadow removal and a rule-based classification enhancement a kappa-value of 0.86 was obtained. Once the land cover was characterized, the groundwater recharge has been simulated using the spatially distributed WetSpass model and the subsurface water flow was simulated with GMS 6.0 in order to identify and budget the water fluxes on the brownfield. The obtained land use map shows to have a strong impact on the groundwater recharge, resulting in a high spatial variability. Simulated groundwater fluxes from brownfield to a receiving river where independently verified by measurements and simulation of groundwater-surface water interaction based on thermal gradients in the river bed. It is concluded that in order to better quantify total fluxes of contaminants from brownfields in the groundwater, remote sensing imagery can be operationally integrated in a modelling procedure. The developed methodology is applied to a case site in Vilvoorde, Brussels (Belgium).

  19. Using Remotely Sensed Data and Watershed and Hydrodynamic Models to Evaluate the Effects of Land Cover Land Use Change on Aquatic Ecosystems in Mobile Bay, AL

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad; Estes, Maurice G., Jr.; Judd, Chaeli; Woodruff, Dana; Ellis, Jean; Quattrochi, Dale; Watson, Brian; Rodriquez, Hugo; Johnson, Hoyt

    2012-01-01

    Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land cover land use (LCLU) change in the two counties surrounding Mobile Bay (Mobile and Baldwin) on SAV stressors and controlling factors (temperature, salinity, and sediment) in the Mobile Bay estuary. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for LCLU scenarios in 1948, 1992, 2001, and 2030. Remotely sensed Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 LCLU scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the estuary. These results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid throughout Mobile Bay and adjacent estuaries. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to LCLU driven flow changes with the restoration potential of SAVs. Data products and results are being integrated into NOAA s EcoWatch and Gulf of Mexico Data Atlas online systems for dissemination to coastal resource managers and stakeholders. Objective 1: Develop and utilize Land Use scenarios for Mobile and Baldwin Counties, AL as input to models to predict the affects on water properties (temperature,salinity,)for Mobile Bay through 2030. Objective 2: Evaluate the impact of land use change on seagrasses and SAV in Mobile Bay. Hypothesis: Urbanization will significantly increase surface flows and impact salinity and temperature variables that effect seagrasses and SAVs.

  20. Histogram Curve Matching Approaches for Object-based Image Classification of Land Cover and Land Use

    PubMed Central

    Toure, Sory I.; Stow, Douglas A.; Weeks, John R.; Kumar, Sunil

    2013-01-01

    The classification of image-objects is usually done using parametric statistical measures of central tendency and/or dispersion (e.g., mean or standard deviation). The objectives of this study were to analyze digital number histograms of image objects and evaluate classifications measures exploiting characteristic signatures of such histograms. Two histograms matching classifiers were evaluated and compared to the standard nearest neighbor to mean classifier. An ADS40 airborne multispectral image of San Diego, California was used for assessing the utility of curve matching classifiers in a geographic object-based image analysis (GEOBIA) approach. The classifications were performed with data sets having 0.5 m, 2.5 m, and 5 m spatial resolutions. Results show that histograms are reliable features for characterizing classes. Also, both histogram matching classifiers consistently performed better than the one based on the standard nearest neighbor to mean rule. The highest classification accuracies were produced with images having 2.5 m spatial resolution. PMID:24403648

  1. Linking land use changes to surface water quality variability in Lake Victoria: some insights from remote sensing

    NASA Astrophysics Data System (ADS)

    Mugo, R. M.; Limaye, A. S.; Nyaga, J. W.; Farah, H.; Wahome, A.; Flores, A.

    2016-12-01

    The water quality of inland lakes is largely influenced by land use and land cover changes within the lake's catchment. In Africa, some of the major land use changes are driven by a number of factors, which include urbanization, intensification of agricultural practices, unsustainable farm management practices, deforestation, land fragmentation and degradation. Often, the impacts of these factors are observable on changes in the land cover, and eventually in the hydrological systems. When the natural vegetation cover is reduced or changed, the surface water flow patterns, water and nutrient retention capacities are also changed. This can lead to high nutrient inputs into lakes, leading to eutrophication, siltation and infestation of floating aquatic vegetation. To assess the relationship between land use and land cover changes in part of the Lake Victoria Basin, a series of land cover maps were derived from Landsat imagery. Changes in land cover were identified through change maps and statistics. Further, the surface water chlorophyll-a concentration and turbidity were derived from MODIS-Aqua data for Lake Victoria. Chlrophyll-a and turbidity are good proxy indicators of nutrient inputs and siltation respectively. The trends in chlorophyll-a and turbidity concentrations were analyzed and compared to the land cover changes over time. Certain land cover changes related to agriculture and urban development were clearly identifiable. While these changes might not be solely responsible for variability in chlrophyll-a and turbidity concentrations in the lake, they are potentially contributing factors to this problem. This work illustrates the importance of addressing watershed degradation while seeking to solve water quality related problems.

  2. Measuring land-use and land-cover change using the U.S. department of agriculture's cropland data layer: Cautions and recommendations

    NASA Astrophysics Data System (ADS)

    Lark, Tyler J.; Mueller, Richard M.; Johnson, David M.; Gibbs, Holly K.

    2017-10-01

    Monitoring agricultural land is important for understanding and managing food production, environmental conservation efforts, and climate change. The United States Department of Agriculture's Cropland Data Layer (CDL), an annual satellite imagery-derived land cover map, has been increasingly used for this application since complete coverage of the conterminous United States became available in 2008. However, the CDL is designed and produced with the intent of mapping annual land cover rather than tracking changes over time, and as a result certain precautions are needed in multi-year change analyses to minimize error and misapplication. We highlight scenarios that require special considerations, suggest solutions to key challenges, and propose a set of recommended good practices and general guidelines for CDL-based land change estimation. We also characterize a problematic issue of crop area underestimation bias within the CDL that needs to be accounted for and corrected when calculating changes to crop and cropland areas. When used appropriately and in conjunction with related information, the CDL is a valuable and effective tool for detecting diverse trends in agriculture. By explicitly discussing the methods and techniques for post-classification measurement of land-cover and land-use change using the CDL, we aim to further stimulate the discourse and continued development of suitable methodologies. Recommendations generated here are intended specifically for the CDL but may be broadly applicable to additional remotely-sensed land cover datasets including the National Land Cover Database (NLCD), Moderate Resolution Imaging Spectroradiometer (MODIS)-based land cover products, and other regional, national, and global land cover classification maps.

  3. Building a Continental Scale Land Cover Monitoring Framework for Australia

    NASA Astrophysics Data System (ADS)

    Thankappan, Medhavy; Lymburner, Leo; Tan, Peter; McIntyre, Alexis; Curnow, Steven; Lewis, Adam

    2012-04-01

    Land cover information is critical for national reporting and decision making in Australia. A review of information requirements for reporting on national environmental indicators identified the need for consistent land cover information to be compared against a baseline. A Dynamic Land Cover Dataset (DLCD) for Australia has been developed by Geoscience Australia and the Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES) recently, to provide a comprehensive and consistent land cover information baseline to enable monitoring and reporting for sustainable farming practices, water resource management, soil erosion, and forests at national and regional scales. The DLCD was produced from the analysis of Enhanced Vegetation Index (EVI) data at 250-metre resolution derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) for the period from 2000 to 2008. The EVI time series data for each pixel was modelled as 12 coefficients based on the statistical, phenological and seasonal characteristics. The time series were then clustered in coefficients spaces and labelled using ancillary information on vegetation and land use at the catchment scale. The accuracy of the DLCD was assessed using field survey data over 25,000 locations provided by vegetation and land management agencies in State and Territory jurisdictions, and by ABARES. The DLCD is seen as the first in a series of steps to build a framework for national land cover monitoring in Australia. A robust methodology to provide annual updates to the DLCD is currently being developed at Geoscience Australia. There is also a growing demand from the user community for land cover information at better spatial resolution than currently available through the DLCD. Global land cover mapping initiatives that rely on Earth observation data offer many opportunities for national and international programs to work in concert and deliver better outcomes by streamlining efforts on development and validation of land cover products. Among the upcoming missions, the Global Monitoring for Environment and Security (GMES) Sentinel-2 satellites are seen as an important source of optical data for updating land cover information in Australia. This paper outlines the DLCD development, key applications that inform nationally significant issues, further work on updating the DLCD that would enable transition to a national land cover monitoring framework, challenges and approaches to delivering land cover information at higher spatial resolutions on a continental scale, and the potential value of data from the Sentinel-2 mission in supporting land cover monitoring in Australia and globally.

  4. Reconstructed historical land cover and biophysical parameters for studies of land-atmosphere interactions within the eastern United States

    USGS Publications Warehouse

    Steyaert, Louis T.; Knox, R.G.

    2008-01-01

    Over the past 350 years, the eastern half of the United States experienced extensive land cover changes. These began with land clearing in the 1600s, continued with widespread deforestation, wetland drainage, and intensive land use by 1920, and then evolved to the present-day landscape of forest regrowth, intensive agriculture, urban expansion, and landscape fragmentation. Such changes alter biophysical properties that are key determinants of land-atmosphere interactions (water, energy, and carbon exchanges). To understand the potential implications of these land use transformations, we developed and analyzed 20-km land cover and biophysical parameter data sets for the eastern United States at 1650, 1850, 1920, and 1992 time slices. Our approach combined potential vegetation, county-level census data, soils data, resource statistics, a Landsat-derived land cover classification, and published historical information on land cover and land use. We reconstructed land use intensity maps for each time slice and characterized the land cover condition. We combined these land use data with a mutually consistent set of biophysical parameter classes, to characterize the historical diversity and distribution of land surface properties. Time series maps of land surface albedo, leaf area index, a deciduousness index, canopy height, surface roughness, and potential saturated soils in 1650, 1850, 1920, and 1992 illustrate the profound effects of land use change on biophysical properties of the land surface. Although much of the eastern forest has returned, the average biophysical parameters for recent landscapes remain markedly different from those of earlier periods. Understanding the consequences of these historical changes will require land-atmosphere interactions modeling experiments.

  5. Status and trends of land change in the United States--1973 to 2000

    USGS Publications Warehouse

    ,

    2012-01-01

    U.S. Geological Survey (USGS) Professional Paper 1794 is a four-volume series on the status and trends of the Nation’s land use and land cover, providing an assessment of the rates and causes of land-use and land-cover change in the United States between 1973 and 2000. Volumes A, B, C, and D provide analyses for the Western United States, the Great Plains, the Midwest–South Central United States, and the Eastern United States, respectively. The assessments of land-use and land-cover trends are conducted on an ecoregion-by-ecoregion basis, and each ecoregion assessment is guided by a nationally consistent study design that includes mapping, statistical methods, field studies, and analysis. Individual assessments provide a picture of the characteristics of land change occurring in a given ecoregion; in combination, they provide a framework for understanding the complex national mosaic of change and also the causes and consequences of change. Thus, each volume in this series provides a regional assessment of how (and how fast) land use and land cover are changing, and why. The four volumes together form the first comprehensive picture of land change across the Nation. This report is only one of the products produced by USGS on land-use and land-cover change in the United States. Other reports and land-cover statistics are available online at http://landcovertrends.usgs.gov.

  6. Cases of Coastal Zone Change and Land Use/Land Cover Change: a learning module that goes beyond the "how" of doing image processing and change detection to asking the "why" about what are the "driving forces" of global change.

    NASA Astrophysics Data System (ADS)

    Ford, R. E.

    2006-12-01

    In 2006 the Loma Linda University ESSE21 Mesoamerican Project (Earth System Science Education for the 21st Century) along with partners such as the University of Redlands and California State University, Pomona, produced an online learning module that is designed to help students learn critical remote sensing skills-- specifically: ecosystem characterization, i.e. doing a supervised or unsupervised classification of satellite imagery in a tropical coastal environment. And, it would teach how to measure land use / land cover change (LULC) over time and then encourage students to use that data to assess the Human Dimensions of Global Change (HDGC). Specific objectives include: 1. Learn where to find remote sensing data and practice downloading, pre-processing, and "cleaning" the data for image analysis. 2. Use Leica-Geosystems ERDAS Imagine or IDRISI Kilimanjaro to analyze and display the data. 3. Do an unsupervised classification of a LANDSAT image of a protected area in Honduras, i.e. Cuero y Salado, Pico Bonito, or Isla del Tigre. 4. Virtually participate in a ground-validation exercise that would allow one to re-classify the image into a supervised classification using the FAO Global Land Cover Network (GLCN) classification system. 5. Learn more about each protected area's landscape, history, livelihood patterns and "sustainability" issues via virtual online tours that provide ground and space photos of different sites. This will help students in identifying potential "training sites" for doing a supervised classification. 6. Study other global, US, Canadian, and European land use/land cover classification systems and compare their advantages and disadvantages over the FAO/GLCN system. 7. Learn to appreciate the advantages and disadvantages of existing LULC classification schemes and adapt them to local-level user needs. 8. Carry out a change detection exercise that shows how land use and/or land cover has changed over time for the protected area of your choice. The presenter will demonstrate the module, assess the collaborative process which created it, and describe how it has been used so far by users in the US as well as in Honduras and elsewhere via a series joint workshops held in Mesoamerica. Suggestions for improvement will be requested. See the module and related content resources at: http://resweb.llu.edu/rford/ESSE21/LUCCModule/

  7. Land-use Scene Classification in High-Resolution Remote Sensing Images by Multiscale Deeply Described Correlatons

    NASA Astrophysics Data System (ADS)

    Qi, K.; Qingfeng, G.

    2017-12-01

    With the popular use of High-Resolution Satellite (HRS) images, more and more research efforts have been placed on land-use scene classification. However, it makes the task difficult with HRS images for the complex background and multiple land-cover classes or objects. This article presents a multiscale deeply described correlaton model for land-use scene classification. Specifically, the convolutional neural network is introduced to learn and characterize the local features at different scales. Then, learnt multiscale deep features are explored to generate visual words. The spatial arrangement of visual words is achieved through the introduction of adaptive vector quantized correlograms at different scales. Experiments on two publicly available land-use scene datasets demonstrate that the proposed model is compact and yet discriminative for efficient representation of land-use scene images, and achieves competitive classification results with the state-of-art methods.

  8. The managed clearing: An overlooked land-cover type in urbanizing regions?

    PubMed Central

    Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K.

    2018-01-01

    Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type–semi-natural, vegetated land surfaces with varying degrees of management practices–for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area– 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and mapping of managed clearings in urbanizing landscapes. Our findings also demonstrate the need to more carefully consider managed clearings and their critical ecological functions in landscape- to regional-scale studies of urbanizing ecosystems. PMID:29432442

  9. The managed clearing: An overlooked land-cover type in urbanizing regions?

    PubMed

    Singh, Kunwar K; Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K

    2018-01-01

    Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type-semi-natural, vegetated land surfaces with varying degrees of management practices-for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area- 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and mapping of managed clearings in urbanizing landscapes. Our findings also demonstrate the need to more carefully consider managed clearings and their critical ecological functions in landscape- to regional-scale studies of urbanizing ecosystems.

  10. Forest land cover change (1975-2000) in the Greater Border Lakes region

    Treesearch

    Peter T. Wolter; Brian R. Sturtevant; Brian R. Miranda; Sue M. Lietz; Phillip A. Townsend; John Pastor

    2012-01-01

    This document and accompanying maps describe land cover classifications and change detection for a 13.8 million ha landscape straddling the border between Minnesota, and Ontario, Canada (greater Border Lakes Region). Land cover classifications focus on discerning Anderson Level II forest and nonforest cover to track spatiotemporal changes in forest cover. Multi-...

  11. Land-use poverty traps identified in shifting cultivation systems shape long-term tropical forest cover

    PubMed Central

    Coomes, Oliver T.; Takasaki, Yoshito; Rhemtulla, Jeanine M.

    2011-01-01

    In this article we illustrate how fine-grained longitudinal analyses of land holding and land use among forest peasant households in an Amazonian village can enrich our understanding of the poverty/land cover nexus. We examine the dynamic links in shifting cultivation systems among asset poverty, land use, and land cover in a community where poverty is persistent and primary forests have been replaced over time—with community enclosure—by secondary forests (i.e., fallows), orchards, and crop land. Land cover change is assessed using aerial photographs/satellite imagery from 1965 to 2007. Household and plot level data are used to track land holding, portfolios, and use as well as land cover over the past 30 y, with particular attention to forest status (type and age). Our analyses find evidence for two important types of “land-use” poverty traps—a “subsistence crop” trap and a “short fallow” trap—and indicate that the initial conditions of land holding by forest peasants have long-term effects on future forest cover and household welfare. These findings suggest a new mechanism driving poverty traps: insufficient initial land holdings induce land use patterns that trap households in low agricultural productivity. Path dependency in the evolution of household land portfolios and land use strategies strongly influences not only the wellbeing of forest people but also the dynamics of tropical deforestation and secondary forest regrowth. PMID:21873179

  12. Operational monitoring of land-cover change using multitemporal remote sensing data

    NASA Astrophysics Data System (ADS)

    Rogan, John

    2005-11-01

    Land-cover change, manifested as either land-cover modification and/or conversion, can occur at all spatial scales, and changes at local scales can have profound, cumulative impacts at broader scales. The implication of operational land-cover monitoring is that researchers have access to a continuous stream of remote sensing data, with the long term goal of providing for consistent and repetitive mapping. Effective large area monitoring of land-cover (i.e., >1000 km2) can only be accomplished by using remotely sensed images as an indirect data source in land-cover change mapping and as a source for land-cover change model projections. Large area monitoring programs face several challenges: (1) choice of appropriate classification scheme/map legend over large, topographically and phenologically diverse areas; (2) issues concerning data consistency and map accuracy (i.e., calibration and validation); (3) very large data volumes; (4) time consuming data processing and interpretation. Therefore, this dissertation research broadly addresses these challenges in the context of examining state-of-the-art image pre-processing, spectral enhancement, classification, and accuracy assessment techniques to assist the California Land-cover Mapping and Monitoring Program (LCMMP). The results of this dissertation revealed that spatially varying haze can be effectively corrected from Landsat data for the purposes of change detection. The Multitemporal Spectral Mixture Analysis (MSMA) spectral enhancement technique produced more accurate land-cover maps than those derived from the Multitemporal Kauth Thomas (MKT) transformation in northern and southern California study areas. A comparison of machine learning classifiers showed that Fuzzy ARTMAP outperformed two classification tree algorithms, based on map accuracy and algorithm robustness. Variation in spatial data error (positional and thematic) was explored in relation to environmental variables using geostatistical interpolation techniques. Finally, the land-cover modification maps generated for three time intervals (1985--1990--1996--2000), with nine change-classes revealed important variations in land-cover gain and loss between northern and southern California study areas.

  13. Soil organic carbon stability across a Mediterranean oak agroecosystem

    Treesearch

    Leslie M. Roche; James F. Chang; Johan Six; Anthony T. O' Geen; Kenneth W. Tate

    2015-01-01

    Rangelands are estimated to cover 30 to 50 percent of the world's land surface and have significant belowground carbon (C) storage potential. Given their geographical extent, many have suggested that even modest changes in C storage via management practices could alter the global C cycle, creating climate change mitigation opportunities. Our objective was to...

  14. REMOTE SENSING AND SPATIALLY EXPLICIT LANDSCAPE-BASED NITROGEN MODELING METHODS DEVELOPMENT IN THE NEUSE RIVER BASIN, NC

    EPA Science Inventory

    The objective of this research was to model and map the spatial patterns of excess nitrogen (N) sources across the landscape within the Neuse River Basin (NRB) of North
    Carolina. The process included an initial land cover characterization effort to map landscape "patches" at ...

  15. Use of Aerial Hyperspectral Imaging For Monitoring Forest Health

    Treesearch

    Milton O. Smith; Nolan J. Hess; Stephen Gulick; Lori G. Eckhardt; Roger D. Menard

    2004-01-01

    This project evaluates the effectiveness of aerial hyperspectral digital imagery in the assessment of forest health of loblolly stands in central Alabama. The imagery covers 50 square miles, in Bibb and Hale Counties, south of Tuscaloosa, AL, which includes intensive managed forest industry sites and National Forest lands with multiple use objectives. Loblolly stands...

  16. ECOREGIONAL GAP ANALYSIS OF THE SOUTHWESTERN UNITED STATES: THE SOUTHWEST REGIONAL GAP ANALYSIS PROJECT FINAL REPORT

    EPA Science Inventory

    The Gap Analysis Program is a national program with the mission of developing key datasets needed to assess biological diversity across the nation. The primary objectives of the Gap Analysis Program are: (1) Land Cover Mapping – to map the distributions of natural communities; (2...

  17. Project ATLANTA (ATlanta Land-use ANalysis: Temperature and Air quality): A Study of how the Urban Landscape Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G.; Lo, C. P.; Kidder, Stanley Q.; Hafner, Jan; Taha, Haider; Bornstein, Robert D.; Gillies, Robert R.; Gallo, Kevin P.

    1998-01-01

    It is our intent through this investigation to help facilitate measures that can be Project ATLANTA (ATlanta Land-use ANalysis: applied to mitigate climatological or air quality Temperature and Air-quality) is a NASA Earth degradation, or to design alternate measures to sustain Observing System (EOS) Interdisciplinary Science or improve the overall urban environment in the future. investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta. The primary objectives for this research effort are: 1) To In the last half of the 20th century, Atlanta, investigate and model the relationship between Atlanta Georgia has risen as the premier commercial, urban growth, land cover change, and the development industrial, and transportation urban area of the of the urban heat island phenomenon through time at southeastern United States. The rapid growth of the nested spatial scales from local to regional; 2) To Atlanta area, particularly within the last 25 years, has investigate and model the relationship between Atlanta made Atlanta one of the fastest growing metropolitan urban growth and land cover change on air quality areas in the United States. The population of the through time at nested spatial scales from local to Atlanta metropolitan area increased 27% between 1970 regional; and 3) To model the overall effects of urban and 1980, and 33% between 1980-1990 (Research development on surface energy budget characteristics Atlanta, Inc., 1993). Concomitant with this high rate of across the Atlanta urban landscape through time at population growth, has been an explosive growth in nested spatial scales from local to regional. Our key retail, industrial, commercial, and transportation goal is to derive a better scientific understanding of how services within the Atlanta region. This has resulted in land cover changes associated with urbanization in the tremendous land cover change dynamics within the Atlanta area, principally in transforming forest lands to metropolitan region, wherein urbanization has urban land covers through time, has, and will, effect consumed vast acreas of land adjacent to the city local and regional climate, surface energy flux, and air proper and has pushed the rural/urban fringe farther quality characteristics. Allied with this goal is the and farther away from the original Atlanta urban core. prospect that the results from this research can be An enormous transition of land from forest and applied by urban planners, environmental managers agriculture to urban land uses has occurred in the and other decision-makers, for determining how Atlanta area in the last 25 years, along with subsequent urbanization has impacted the climate and overall

  18. The First Results of Monitoring the Formation and Destruction of the Ice Cover in Winter 2014-2015 on Ilmen Lake according to the Measurements of Dual-Frequency Precipitation Radar

    NASA Astrophysics Data System (ADS)

    Karaev, V. Yu.; Panfilova, M. A.; Titchenko, Yu. A.; Meshkov, E. M.; Balandina, G. N.; Andreeva, Z. V.

    2017-12-01

    The launch of the Dual-frequency Precipitation Radar (DPR) opens up new opportunities for studying and monitoring the land and inland waters. It is the first time radar with a swath (±65°) covering regions with cold climate where waters are covered with ice and land with snow for prolonged periods of time has been used. It is also the first time that the remote sensing is carried out at small incidence angles (less than 19°) at two frequencies (13.6 and 35.5 GHz). The high spatial resolution (4-5 km) significantly increases the number of objects that can be studied using the new radar. Ilmen Lake is chosen as the first test object for the development of complex programs for processing and analyzing data obtained by the DPR. The problem of diagnostics of ice-cover formation and destruction according to DPR data has been considered. It is shown that the dependence of the radar backscatter cross section on the incidence angle for autumn ice is different from that of spring ice, and can be used for classification. A comparison with scattering on the water surface has shown that, at incidence angles exceeding 10°, it is possible to discern all three types of reflecting surfaces: open water, autumn ice, and spring ice, under the condition of making repeated measurements to avoid possible ambiguity caused by wind.

  19. An Automated Algorithm for Producing Land Cover Information from Landsat Surface Reflectance Data Acquired Between 1984 and Present

    NASA Astrophysics Data System (ADS)

    Rover, J.; Goldhaber, M. B.; Holen, C.; Dittmeier, R.; Wika, S.; Steinwand, D.; Dahal, D.; Tolk, B.; Quenzer, R.; Nelson, K.; Wylie, B. K.; Coan, M.

    2015-12-01

    Multi-year land cover mapping from remotely sensed data poses challenges. Producing land cover products at spatial and temporal scales required for assessing longer-term trends in land cover change are typically a resource-limited process. A recently developed approach utilizes open source software libraries to automatically generate datasets, decision tree classifications, and data products while requiring minimal user interaction. Users are only required to supply coordinates for an area of interest, land cover from an existing source such as National Land Cover Database and percent slope from a digital terrain model for the same area of interest, two target acquisition year-day windows, and the years of interest between 1984 and present. The algorithm queries the Landsat archive for Landsat data intersecting the area and dates of interest. Cloud-free pixels meeting the user's criteria are mosaicked to create composite images for training the classifiers and applying the classifiers. Stratification of training data is determined by the user and redefined during an iterative process of reviewing classifiers and resulting predictions. The algorithm outputs include yearly land cover raster format data, graphics, and supporting databases for further analysis. Additional analytical tools are also incorporated into the automated land cover system and enable statistical analysis after data are generated. Applications tested include the impact of land cover change and water permanence. For example, land cover conversions in areas where shrubland and grassland were replaced by shale oil pads during hydrofracking of the Bakken Formation were quantified. Analytical analysis of spatial and temporal changes in surface water included identifying wetlands in the Prairie Pothole Region of North Dakota with potential connectivity to ground water, indicating subsurface permeability and geochemistry.

  20. Error and Uncertainty in the Accuracy Assessment of Land Cover Maps

    NASA Astrophysics Data System (ADS)

    Sarmento, Pedro Alexandre Reis

    Traditionally the accuracy assessment of land cover maps is performed through the comparison of these maps with a reference database, which is intended to represent the "real" land cover, being this comparison reported with the thematic accuracy measures through confusion matrixes. Although, these reference databases are also a representation of reality, containing errors due to the human uncertainty in the assignment of the land cover class that best characterizes a certain area, causing bias in the thematic accuracy measures that are reported to the end users of these maps. The main goal of this dissertation is to develop a methodology that allows the integration of human uncertainty present in reference databases in the accuracy assessment of land cover maps, and analyse the impacts that uncertainty may have in the thematic accuracy measures reported to the end users of land cover maps. The utility of the inclusion of human uncertainty in the accuracy assessment of land cover maps is investigated. Specifically we studied the utility of fuzzy sets theory, more precisely of fuzzy arithmetic, for a better understanding of human uncertainty associated to the elaboration of reference databases, and their impacts in the thematic accuracy measures that are derived from confusion matrixes. For this purpose linguistic values transformed in fuzzy intervals that address the uncertainty in the elaboration of reference databases were used to compute fuzzy confusion matrixes. The proposed methodology is illustrated using a case study in which the accuracy assessment of a land cover map for Continental Portugal derived from Medium Resolution Imaging Spectrometer (MERIS) is made. The obtained results demonstrate that the inclusion of human uncertainty in reference databases provides much more information about the quality of land cover maps, when compared with the traditional approach of accuracy assessment of land cover maps. None

  1. GC23G-1310: Investigation Into the Effects of Climate Variability and Land Cover Change on the Hydrologic System of the Lower Mekong Basin

    NASA Technical Reports Server (NTRS)

    Markert, Kel N.; Griffin, Robert; Limaye, Ashutosh S.; McNider, Richard T.; Anderson, Eric R.

    2016-01-01

    The Lower Mekong Basin (LMB) is an economically and ecologically important region that experiences hydrologic hazards such as floods and droughts, which can directly affect human well-being and limit economic growth and development. To effectively develop long-term plans for addressing hydrologic hazards, the regional hydrological response to climate variability and land cover change needs to be evaluated. This research aims to investigate how climate variability, specifically variations in the precipitation regime, and land cover change will affect hydrologic parameters both spatially and temporally within the LMB. The research goal is achieved by (1) modeling land cover change for a baseline land cover change scenario as well as changes in land cover with increases in forest or agriculture and (2) using projected climate variables and modeled land cover data as inputs into the Variable Infiltration Capacity (VIC) hydrologic model to simulate the changes to the hydrologic system. The VIC model outputs were analyzed against historic values to understand the relative contribution of climate variability and land cover to change, where these changes occur, and to what degree these changes affect the hydrology. This study found that the LMB hydrologic system is more sensitive to climate variability than land cover change. On average, climate variability was found to increase discharge and evapotranspiration (ET) while decreasing water storage. The change in land cover show that increasing forest area will slightly decrease discharge and increase ET while increasing agriculture area increases discharge and decreases ET. These findings will help the LMB by supporting individual country policy to plan for future hydrologic changes as well as policy for the basin as a whole.

  2. Modeling the Land Use/Cover Change in an Arid Region Oasis City Constrained by Water Resource and Environmental Policy Change using Cellular Automata Model

    NASA Astrophysics Data System (ADS)

    Hu, X.; Li, X.; Lu, L.

    2017-12-01

    Land use/cover change (LUCC) is an important subject in the research of global environmental change and sustainable development, while spatial simulation on land use/cover change is one of the key content of LUCC and is also difficult due to the complexity of the system. The cellular automata (CA) model had an irreplaceable role in simulating of land use/cover change process due to the powerful spatial computing power. However, the majority of current CA land use/cover models were binary-state model that could not provide more general information about the overall spatial pattern of land use/cover change. Here, a multi-state logistic-regression-based Markov cellular automata (MLRMCA) model and a multi-state artificial-neural-network-based Markov cellular automata (MANNMCA) model were developed and were used to simulate complex land use/cover evolutionary process in an arid region oasis city constrained by water resource and environmental policy change, the Zhangye city during the period of 1990-2010. The results indicated that the MANNMCA model was superior to MLRMCA model in simulated accuracy. These indicated that by combining the artificial neural network with CA could more effectively capture the complex relationships between the land use/cover change and a set of spatial variables. Although the MLRMCA model were also some advantages, the MANNMCA model was more appropriate for simulating complex land use/cover dynamics. The two proposed models were effective and reliable, and could reflect the spatial evolution of regional land use/cover changes. These have also potential implications for the impact assessment of water resources, ecological restoration, and the sustainable urban development in arid areas.

  3. Continuous Change Detection and Classification (CCDC) of Land Cover Using All Available Landsat Data

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Woodcock, C. E.

    2012-12-01

    A new algorithm for Continuous Change Detection and Classification (CCDC) of land cover using all available Landsat data is developed. This new algorithm is capable of detecting many kinds of land cover change as new images are collected and at the same time provide land cover maps for any given time. To better identify land cover change, a two step cloud, cloud shadow, and snow masking algorithm is used for eliminating "noisy" observations. Next, a time series model that has components of seasonality, trend, and break estimates the surface reflectance and temperature. The time series model is updated continuously with newly acquired observations. Due to the high variability in spectral response for different kinds of land cover change, the CCDC algorithm uses a data-driven threshold derived from all seven Landsat bands. When the difference between observed and predicted exceeds the thresholds three consecutive times, a pixel is identified as land cover change. Land cover classification is done after change detection. Coefficients from the time series models and the Root Mean Square Error (RMSE) from model fitting are used as classification inputs for the Random Forest Classifier (RFC). We applied this new algorithm for one Landsat scene (Path 12 Row 31) that includes all of Rhode Island as well as much of Eastern Massachusetts and parts of Connecticut. A total of 532 Landsat images acquired between 1982 and 2011 were processed. During this period, 619,924 pixels were detected to change once (91% of total changed pixels) and 60,199 pixels were detected to change twice (8% of total changed pixels). The most frequent land cover change category is from mixed forest to low density residential which occupies more than 8% of total land cover change pixels.

  4. Proceedings of the Near-Earth-Object Interception Workshop

    NASA Technical Reports Server (NTRS)

    Canavan, G. J. (Editor); Solem, J. C. (Editor); Rather, John D. G. (Editor)

    1993-01-01

    The National Aeronautics and Space Administration Headquarters sponsored the Near-Earth-Object Interception Workshop hosted by the Los Alamos National Laboratory on 14-16 Jan. 1992 at the J. Robert Oppenheimer Study Center in Los Alamos, New Mexico. The Workshop evaluated the issues involved in intercepting celestial objects that could hit the Earth. It covered the technologies for acquiring, tracking, and homing, as well as those for sending interceptors to inspect, rendezvous with, land on, irradiate, deflect, or destroy them. This report records the presentations and technical options reviewed.

  5. JPL's Role in Advancing Earth System Science to Meet the Challenges of Climate and Environmental Change

    NASA Technical Reports Server (NTRS)

    Evans, Diane

    2012-01-01

    Objective 2.1.1: Improve understanding of and improve the predictive capability for changes in the ozone layer, climate forcing, and air quality associated with changes in atmospheric composition. Objective 2.1.2: Enable improved predictive capability for weather and extreme weather events. Objective 2.1.3: Quantify, understand, and predict changes in Earth s ecosystems and biogeochemical cycles, including the global carbon cycle, land cover, and biodiversity. Objective 2.1.4: Quantify the key reservoirs and fluxes in the global water cycle and assess water cycle change and water quality. Objective 2.1.5: Improve understanding of the roles of the ocean, atmosphere, land and ice in the climate system and improve predictive capability for its future evolution. Objective 2.1.6: Characterize the dynamics of Earth s surface and interior and form the scientific basis for the assessment and mitigation of natural hazards and response to rare and extreme events. Objective 2.1.7: Enable the broad use of Earth system science observations and results in decision-making activities for societal benefits.

  6. Hydrological Responses of Climate and Land Use/Cover Changes in Tao'er River Basin Based on the SWAT Model

    NASA Astrophysics Data System (ADS)

    Liu, J.; Kou, L.

    2015-12-01

    Abstract: The changes of both climate and land use/cover have some impact on the water resources. For Tao'er River Basin, these changes have a direct impact on the land use pattern adjustment, wetland protection, connection project between rivers and reservoirs, local social and economic development, etc. Therefore, studying the impact of climate and land use/cover changes is of great practical significance. The Soil and Water Assessment Tool (SWAT) is used as the research method. With historical actual measured runoff data and the yearly land use classification caught by satellite remote sensing maps, analyze the impact of climate change on the runoff of Tao'er River. And according to the land use/cover classification of 1990, 2000 and 2010, analyze the land use/cover change in the recent 30 years, the impact of the land use/cover change on the river runoff and the contribution coefficient of farmland, woodland, grassland and other major land-use types to the runoff. These studies can provide some references to the rational allocation of water resource and adjustment of land use structure in this area.

  7. Late twentieth century land-cover change in the basin and range ecoregions of the United States

    USGS Publications Warehouse

    Soulard, Christopher E.; Sleeter, Benjamin M.

    2012-01-01

    As part of the US Geological Survey's Land Cover Trends project, land-use/land-cover change estimates between 1973 and 2000 are presented for the basin and range ecoregions, including Northern, Central, Mojave, and Sonoran. Landsat data were employed to estimate and characterize land-cover change from 1973, 1980, 1986, 1992, and 2000 using a post-classification comparison. Overall, spatial change was 2.5% (17,830 km2). Change increased steadily between 1973 and 1986 but decreased slightly between 1992 and 2000. The grassland/shrubland class, frequently used for livestock grazing, constituted the majority of the study area and had a net decrease from an estimated 83.8% (587,024 km2) in 1973 to 82.6% (578,242 km2) in 2000. The most common land-use/land-cover conversions across the basin and range ecoregions were indicative of the changes associated with natural, nonmechanical disturbances (i.e., fire), and grassland/shrubland loss to development, agriculture, and mining. This comprehensive look at contemporary land-use/land-cover change provides critical insight into how the deserts of the United States have changed and can be used to inform adaptive management practices of public lands.

  8. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data

    NASA Astrophysics Data System (ADS)

    Steyaert, L. T.; Hall, F. G.; Loveland, T. R.

    1997-12-01

    A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km × 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within the wet conifer mosaic. Major differences in the 1-km AVHRR and 30-m Landsat TM-derived land cover classes are most likely due to differences in the spatial resolution of the data sets. In general, the 1 km AVHRR land cover classes are vegetation mosaics consisting of mixed combinations of the Landsat classes. Detailed mapping of the global boreal forest with this approach will benefit from algorithms for cloud screening and to atmospherically correct reflectance data for both aerosol and water vapor effects. We believe that this 1 km AVHRR land cover analysis provides new and useful information for regional water, energy, carbon, and trace gases studies in BOREAS, especially given the significant spatial variability in land cover type and associated biophysical land cover parameters (e.g., albedo, leaf area index, FPAR, and surface roughness). Multiresolution land cover comparisons (30 m, l km, and 100 km grid cells) also illustrated how heterogeneous landscape patterns are represented in land cover maps with differing spatial scales and provided insights on the requirements and challenges for parameterizing landscape heterogeneity as part of land surface process research.

  9. Exploring geo-tagged photos for land cover validation with deep learning

    NASA Astrophysics Data System (ADS)

    Xing, Hanfa; Meng, Yuan; Wang, Zixuan; Fan, Kaixuan; Hou, Dongyang

    2018-07-01

    Land cover validation plays an important role in the process of generating and distributing land cover thematic maps, which is usually implemented by high cost of sample interpretation with remotely sensed images or field survey. With an increasing availability of geo-tagged landscape photos, the automatic photo recognition methodologies, e.g., deep learning, can be effectively utilised for land cover applications. However, they have hardly been utilised in validation processes, as challenges remain in sample selection and classification for highly heterogeneous photos. This study proposed an approach to employ geo-tagged photos for land cover validation by using the deep learning technology. The approach first identified photos automatically based on the VGG-16 network. Then, samples for validation were selected and further classified by considering photos distribution and classification probabilities. The implementations were conducted for the validation of the GlobeLand30 land cover product in a heterogeneous area, western California. Experimental results represented promises in land cover validation, given that GlobeLand30 showed an overall accuracy of 83.80% with classified samples, which was close to the validation result of 80.45% based on visual interpretation. Additionally, the performances of deep learning based on ResNet-50 and AlexNet were also quantified, revealing no substantial differences in final validation results. The proposed approach ensures geo-tagged photo quality, and supports the sample classification strategy by considering photo distribution, with accuracy improvement from 72.07% to 79.33% compared with solely considering the single nearest photo. Consequently, the presented approach proves the feasibility of deep learning technology on land cover information identification of geo-tagged photos, and has a great potential to support and improve the efficiency of land cover validation.

  10. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data

    USGS Publications Warehouse

    Steyaert, L.T.; Hall, F.G.; Loveland, Thomas R.

    1997-01-01

    A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km ?? 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within the wet conifer mosaic. Major differences in the 1-km AVHRR and 30-m Landsat TM-derived land cover classes are most likely due to differences in the spatial resolution of the data sets. In general, the 1 km AVHRR land cover classes are vegetation mosaics consisting of mixed combinations of the Landsat classes. Detailed mapping of the global boreal forest with this approach will benefit from algorithms for cloud screening and to atmospherically correct reflectance data for both aerosol and water vapor effects. We believe that this 1 km AVHRR land cover analysis provides new and useful information for regional water, energy, carbon, and trace gases studies in BOREAS, especially given the significant spatial variability in land cover type and associated biophysical land cover parameters (e.g., albedo, leaf area index, FPAR, and surface roughness). Multiresolution land cover comparisons (30 m, 1 km, and 100 km grid cells) also illustrated how heterogeneous landscape patterns are represented in land cover maps with differing spatial scales and provided insights on the requirements and challenges for parameterizing landscape heterogeneity as part of land surface process research.

  11. [Effects of sub-watershed landscape patterns at the upper reaches of Minjiang River on soil erosion].

    PubMed

    Yang, Meng; Li, Xiu-zhen; Yang, Zhao-ping; Hu, Yuan-man; Wen, Qing-chun

    2007-11-01

    Based on GIS, the spatial distribution of soil loss and sediment yield in Heishui and Zhenjiangguan sub-watersheds at the upper reaches of Minjiang River was simulated by using sediment delivery-distribution (SEDD) model, and the effects of land use/cover types on soil erosion and sediment yield were discussed, based on the simulated results and related land use maps. A landscape index named location-weighted landscape contrast index (LCI) was calculated to evaluate the effects of landscape components' spatial distribution, weight, and structure of land use/cover on soil erosion. The results showed the soil erosion modulus varied with land use pattern, and decreased in the order of bare rock > urban/village > rangeland > farmland > shrub > forest. There were no significant differences in sediment yield modules among different land use/covers. In the two sub-watersheds, the spatial distribution of land use/covers on slope tended to decrease the final sediment load at watershed outlet, hut as related to relative elevation, relative distance, and flow length, the spatial distribution tended to increase sediment yield. The two sub-watersheds had different advantages as related to landscape components' spatial distribution, but, when the land use/cover weight was considered, the advantages of Zhenjiangguan sub-watershed increased. If the land use/cover structure was considered in addition, the landscape pattern of Zhenjiangguan subwatershed was better. Therefore, only the three elements, i.e., landscape components' spatial distribution, land use/cover weight, and land use/cover structure, were considered comprehensively, can we get an overall evaluation on the effects of landscape pattern on soil erosion. The calculation of LCI related to slope suggested that this index couldn' t accurately reflect the effects of land use/cover weight and structure on soil erosion, and thus, needed to be modified.

  12. Towards monitoring land-cover and land-use changes at a global scale: the global land survey 2005

    USGS Publications Warehouse

    Gutman, G.; Byrnes, Raymond A.; Masek, J.; Covington, S.; Justice, C.; Franks, S.; Headley, Rachel

    2008-01-01

    Land cover is a critical component of the Earth system, infl uencing land-atmosphere interactions, greenhouse gas fl uxes, ecosystem health, and availability of food, fi ber, and energy for human populations. The recent Integrated Global Observations of Land (IGOL) report calls for the generation of maps documenting global land cover at resolutions between 10m and 30m at least every fi ve years (Townshend et al., in press). Moreover, despite 35 years of Landsat observations, there has not been a unifi ed global analysis of land-cover trends nor has there been a global assessment of land-cover change at Landsat-like resolution. Since the 1990s, the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) have supported development of data sets based on global Landsat observations (Tucker et al., 2004). These land survey data sets, usually referred to as GeoCover ™, provide global, orthorectifi ed, typically cloud-free Landsat imagery centered on the years 1975, 1990, and 2000, with a preference for leaf-on conditions. Collectively, these data sets provided a consistent set of observations to assess land-cover changes at a decadal scale. These data are freely available via the Internet from the USGS Center for Earth Resources Observation and Science (EROS) (see http://earthexplorer.usgs.gov or http://glovis.usgs.gov). This has resulted in unprecedented downloads of data, which are widely used in scientifi c studies of land-cover change (e.g., Boone et al., 2007; Harris et al., 2005; Hilbert, 2006; Huang et al. 2007; Jantz et al., 2005, Kim et al., 2007; Leimgruber, 2005; Masek et al., 2006). NASA and USGS are continuing to support land-cover change research through the development of GLS2005 - an additional global Landsat assessment circa 20051 . Going beyond the earlier initiatives, this data set will establish a baseline for monitoring changes on a 5-year interval and will pave the way toward continuous global land-cover monitoring at Landsat-like resolution in the next decade.

  13. Remote sensing and GIS for land use/cover mapping and integrated land management: case from the middle Ganga plain

    NASA Astrophysics Data System (ADS)

    Singh, R. B.; Kumar, Dilip

    2012-06-01

    In India, land resources have reached a critical stage due to the rapidly growing population. This challenge requires an integrated approach toward harnessing land resources, while taking into account the vulnerable environmental conditions. Remote sensing and Geographical Information System (GIS) based technologies may be applied to an area in order to generate a sustainable development plan that is optimally suited to the terrain and to the productive potential of the local resources. The present study area is a part of the middle Ganga plain, known as Son-Karamnasa interfluve, in India. Alternative land use systems and the integration of livestock enterprises with the agricultural system have been suggested for land resources management. The objective of this paper is to prepare a land resource development plan in order to increase the productivity of land for sustainable development. The present study will contribute necessary input for policy makers to improve the socio-economic and environmental conditions of the region.

  14. Estimation of evapotranspiration across the conterminous United States using a regression with climate and land-cover data

    USGS Publications Warehouse

    Sanford, Ward E.; Selnick, David L.

    2013-01-01

    Evapotranspiration (ET) is an important quantity for water resource managers to know because it often represents the largest sink for precipitation (P) arriving at the land surface. In order to estimate actual ET across the conterminous United States (U.S.) in this study, a water-balance method was combined with a climate and land-cover regression equation. Precipitation and streamflow records were compiled for 838 watersheds for 1971-2000 across the U.S. to obtain long-term estimates of actual ET. A regression equation was developed that related the ratio ET/P to climate and land-cover variables within those watersheds. Precipitation and temperatures were used from the PRISM climate dataset, and land-cover data were used from the USGS National Land Cover Dataset. Results indicate that ET can be predicted relatively well at a watershed or county scale with readily available climate variables alone, and that land-cover data can also improve those predictions. Using the climate and land-cover data at an 800-m scale and then averaging to the county scale, maps were produced showing estimates of ET and ET/P for the entire conterminous U.S. Using the regression equation, such maps could also be made for more detailed state coverages, or for other areas of the world where climate and land-cover data are plentiful.

  15. Scenarios of land use and land cover change in the conterminous United States: Utilizing the special report on emission scenarios at ecoregional scales

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Sohl, Terry L.; Bouchard, Michelle A.; Reker, Ryan R.; Soulard, Christopher E.; Acevedo, William; Griffith, Glenn E.; Sleeter, Rachel R.; Auch, Roger F.; Sayler, Kristi L.; Prisley, Stephen; Zhu, Zhi-Liang

    2012-01-01

    Global environmental change scenarios have typically provided projections of land use and land cover for a relatively small number of regions or using a relatively coarse resolution spatial grid, and for only a few major sectors. The coarseness of global projections, in both spatial and thematic dimensions, often limits their direct utility at scales useful for environmental management. This paper describes methods to downscale projections of land-use and land-cover change from the Intergovernmental Panel on Climate Change's Special Report on Emission Scenarios to ecological regions of the conterminous United States, using an integrated assessment model, land-use histories, and expert knowledge. Downscaled projections span a wide range of future potential conditions across sixteen land use/land cover sectors and 84 ecological regions, and are logically consistent with both historical measurements and SRES characteristics. Results appear to provide a credible solution for connecting regionalized projections of land use and land cover with existing downscaled climate scenarios, under a common set of scenario-based socioeconomic assumptions.

  16. Land Use/land Cover Changes in Semi-Arid Mountain Landscape in Southern India: a Geoinformatics Based Markov Chain Approach

    NASA Astrophysics Data System (ADS)

    Rahaman, S. A.; Aruchamy, S.; Balasubramani, K.; Jegankumar, R.

    2017-05-01

    Nowadays land use/ land cover in mountain landscape is in critical condition; it leads to high risky and uncertain environments. These areas are facing multiple stresses including degradation of land resources; vagaries of climate and depletion of water resources continuously affect land use practices and livelihoods. To understand the Land use/Land cover (Lu/Lc) changes in a semi-arid mountain landscape, Kallar watershed of Bhavani basin, in southern India has been chosen. Most of the hilly part in the study area covers with forest, plantation, orchards and vegetables and which are highly affected by severe soil erosion, landslide, frequent rainfall failures and associated drought. The foothill regions are mainly utilized for agriculture practices; due to water scarcity and meagre income, the productive agriculture lands are converted into settlement plots and wasteland. Hence, land use/land cover change deduction; a stochastic processed based method is indispensable for future prediction. For identification of land use/land cover, and vegetation changes, Landsat TM, ETM (1995, 2005) and IRS P6- LISS IV (2015) images were used. Through CAMarkov chain analysis, Lu/Lc changes in past three decades (1995, 2005, and 2015) were identified and projected for (2020 and 2025); Normalized Difference Vegetation Index (NDVI) were used to find the vegetation changes. The result shows that, maximum changes occur in the plantation and slight changes found in forest cover in the hilly terrain. In foothill areas, agriculture lands were decreased while wastelands and settlement plots were increased. The outcome of the results helps to farmer and policy makers to draw optimal lands use planning and better management strategies for sustainable development of natural resources.

  17. Coupling of Markov chains and cellular automata spatial models to predict land cover changes (case study: upper Ci Leungsi catchment area)

    NASA Astrophysics Data System (ADS)

    Marko, K.; Zulkarnain, F.; Kusratmoko, E.

    2016-11-01

    Land cover changes particular in urban catchment area has been rapidly occur. Land cover changes occur as a result of increasing demand for built-up area. Various kinds of environmental and hydrological problems e.g. floods and urban heat island can happen if the changes are uncontrolled. This study aims to predict land cover changes using coupling of Markov chains and cellular automata. One of the most rapid land cover changes is occurs at upper Ci Leungsi catchment area that located near Bekasi City and Jakarta Metropolitan Area. Markov chains has a good ability to predict the probability of change statistically while cellular automata believed as a powerful method in reading the spatial patterns of change. Temporal land cover data was obtained by remote sensing satellite imageries. In addition, this study also used multi-criteria analysis to determine which driving factor that could stimulate the changes such as proximity, elevation, and slope. Coupling of these two methods could give better prediction model rather than just using it separately. The prediction model was validated using existing 2015 land cover data and shown a satisfactory kappa coefficient. The most significant increasing land cover is built-up area from 24% to 53%.

  18. MODIS land cover uncertainty in regional climate simulations

    NASA Astrophysics Data System (ADS)

    Li, Xue; Messina, Joseph P.; Moore, Nathan J.; Fan, Peilei; Shortridge, Ashton M.

    2017-12-01

    MODIS land cover datasets are used extensively across the climate modeling community, but inherent uncertainties and associated propagating impacts are rarely discussed. This paper modeled uncertainties embedded within the annual MODIS Land Cover Type (MCD12Q1) products and propagated these uncertainties through the Regional Atmospheric Modeling System (RAMS). First, land cover uncertainties were modeled using pixel-based trajectory analyses from a time series of MCD12Q1 for Urumqi, China. Second, alternative land cover maps were produced based on these categorical uncertainties and passed into RAMS. Finally, simulations from RAMS were analyzed temporally and spatially to reveal impacts. Our study found that MCD12Q1 struggles to discriminate between grasslands and croplands or grasslands and barren in this study area. Such categorical uncertainties have significant impacts on regional climate model outputs. All climate variables examined demonstrated impact across the various regions, with latent heat flux affected most with a magnitude of 4.32 W/m2 in domain average. Impacted areas were spatially connected to locations of greater land cover uncertainty. Both biophysical characteristics and soil moisture settings in regard to land cover types contribute to the variations among simulations. These results indicate that formal land cover uncertainty analysis should be included in MCD12Q1-fed climate modeling as a routine procedure.

  19. Use of Binary Partition Tree and energy minimization for object-based classification of urban land cover

    NASA Astrophysics Data System (ADS)

    Li, Mengmeng; Bijker, Wietske; Stein, Alfred

    2015-04-01

    Two main challenges are faced when classifying urban land cover from very high resolution satellite images: obtaining an optimal image segmentation and distinguishing buildings from other man-made objects. For optimal segmentation, this work proposes a hierarchical representation of an image by means of a Binary Partition Tree (BPT) and an unsupervised evaluation of image segmentations by energy minimization. For building extraction, we apply fuzzy sets to create a fuzzy landscape of shadows which in turn involves a two-step procedure. The first step is a preliminarily image classification at a fine segmentation level to generate vegetation and shadow information. The second step models the directional relationship between building and shadow objects to extract building information at the optimal segmentation level. We conducted the experiments on two datasets of Pléiades images from Wuhan City, China. To demonstrate its performance, the proposed classification is compared at the optimal segmentation level with Maximum Likelihood Classification and Support Vector Machine classification. The results show that the proposed classification produced the highest overall accuracies and kappa coefficients, and the smallest over-classification and under-classification geometric errors. We conclude first that integrating BPT with energy minimization offers an effective means for image segmentation. Second, we conclude that the directional relationship between building and shadow objects represented by a fuzzy landscape is important for building extraction.

  20. Development of the USGS national land-cover database over two decades

    USGS Publications Warehouse

    Xian, George Z.; Homer, Collin G.; Yang, Limin; Weng, Qihao

    2011-01-01

    Land-cover composition and change have profound impacts on terrestrial ecosystems. Land-cover and land-use (LCLU) conditions and their changes can affect social and physical environments by altering ecosystem conditions and services. Information about LCLU change is often used to produce landscape-based metrics and evaluate landscape conditions to monitor LCLU status and trends over a specific time interval (Loveland et al. 2002; Coppin et al. 2004; Lunetta et al. 2006). Continuous, accurate, and up-to-date land-cover data are important for natural resource and ecosystem management and are needed to support consistent monitoring of landscape attributes over time. Large-area land-cover information at regional, national, and global scales is critical for monitoring landscape variations over large areas.

  1. Estimating Accuracy of Land-Cover Composition From Two-Stage Clustering Sampling

    EPA Science Inventory

    Land-cover maps are often used to compute land-cover composition (i.e., the proportion or percent of area covered by each class), for each unit in a spatial partition of the region mapped. We derive design-based estimators of mean deviation (MD), mean absolute deviation (MAD), ...

  2. "Land-Cover Conversion in Amazonia, The Role of ENV" Ironment and Substrate composition in Modifying SOI

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Chadwick, Oliver A.; Batista, Getulio T.

    2003-01-01

    LBA research from the first phase of LBA focused on three broad categories: 1) mapping land cover and quantifying rates of change, persistence of pasture, and area of recovering forest; 2) evaluating the role of environmental factors and land-use history on soil biogeochemistry; and 3) quantifying the natural and human controls on stream nutrient concentrations. The focus of the research was regional, concentrating primarily in the state of RondBnia, but also included land-cover mapping in the vicinity of Maraba, Para, and Manaus, Amazonas. Remote sensing analysis utilized Landsat Thematic Mapper (TM) and Multispectral Scanner (MS S) data to map historical patterns of land-cover change. Specific questions addressed by the remote sensing component of the research included: 1) what is the areal extent of dominant land-cover classes? 2) what are the rates of change of dominant land cover through processes of deforestation, disturbance and regeneration? and 3) what are the dynamic properties of each class that characterize temporal variability, duration, and frequency of repeat disturbance? Biogeochemical analysis focused on natural variability and impacts of land-use/land-cover changes on soil and stream biogeochemical properties at the regional scale. An emphasis was given to specific soil properties considered to be primary limiting factors regionally, including phosphorus, nitrogen, base cations and cation-exchange properties. Stream sampling emphasized the relative effects of the rates and timing of land-cover change on stream nutrients, demonstrating that vegetation conversion alone does not impact nutrients as much as subsequent land use and urbanization.

  3. Monthly fractional green vegetation cover associated with land cover classes of the conterminous USA

    USGS Publications Warehouse

    Gallo, Kevin P.; Tarpley, Dan; Mitchell, Ken; Csiszar, Ivan; Owen, Timothy W.; Reed, Bradley C.

    2001-01-01

    The land cover classes developed under the coordination of the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) have been analyzed for a study area that includes the Conterminous United States and portions of Mexico and Canada. The 1-km resolution data have been analyzed to produce a gridded data set that includes within each 20-km grid cell: 1) the three most dominant land cover classes, 2) the fractional area associated with each of the three dominant classes, and 3) the fractional area covered by water. Additionally, the monthly fraction of green vegetation cover (fgreen) associated with each of the three dominant land cover classes per grid cell was derived from a 5-year climatology of 1-km resolution NOAA-AVHRR data. The variables derived in this study provide a potential improvement over the use of monthly fgreen linked to a single land cover class per model grid cell.

  4. The 1980 land cover for the Puget Sound region

    NASA Technical Reports Server (NTRS)

    Shinn, R. D.; Westerlund, F. V.; Eby, J. R.

    1982-01-01

    Both LANDSAT imagery and the video information communications and retrieval software were used to develop a land cover classifiction of the Puget Sound of Washington. Planning agencies within the region were provided with a highly accurate land cover map registered to the 1980 census tracts which could subsequently be incorporated as one data layer in a multi-layer data base. Many historical activities related to previous land cover mapping studies conducted in the Puget Sound region are summarized. Valuable insight into conducting a project with a large community of users and in establishing user confidence in a multi-purpose land cover map derived from LANDSAT is provided.

  5. Land Use and Land Cover Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Daniel; Polsky, Colin; Bolstad, Paul V.

    2014-05-01

    A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.

  6. A land-cover map for South and Southeast Asia derived from SPOT-VEGETATION data

    USGS Publications Warehouse

    Stibig, H.-J.; Belward, A.S.; Roy, P.S.; Rosalina-Wasrin, U.; Agrawal, S.; Joshi, P.K.; ,; Beuchle, R.; Fritz, S.; Mubareka, S.; Giri, C.

    2007-01-01

    Aim  Our aim was to produce a uniform ‘regional’ land-cover map of South and Southeast Asia based on ‘sub-regional’ mapping results generated in the context of the Global Land Cover 2000 project.Location  The ‘region’ of tropical and sub-tropical South and Southeast Asia stretches from the Himalayas and the southern border of China in the north, to Sri Lanka and Indonesia in the south, and from Pakistan in the west to the islands of New Guinea in the far east.Methods  The regional land-cover map is based on sub-regional digital mapping results derived from SPOT-VEGETATION satellite data for the years 1998–2000. Image processing, digital classification and thematic mapping were performed separately for the three sub-regions of South Asia, continental Southeast Asia, and insular Southeast Asia. Landsat TM images, field data and existing national maps served as references. We used the FAO (Food and Agriculture Organization) Land Cover Classification System (LCCS) for coding the sub-regional land-cover classes and for aggregating the latter to a uniform regional legend. A validation was performed based on a systematic grid of sample points, referring to visual interpretation from high-resolution Landsat imagery. Regional land-cover area estimates were obtained and compared with FAO statistics for the categories ‘forest’ and ‘cropland’.Results  The regional map displays 26 land-cover classes. The LCCS coding provided a standardized class description, independent from local class names; it also allowed us to maintain the link to the detailed sub-regional land-cover classes. The validation of the map displayed a mapping accuracy of 72% for the dominant classes of ‘forest’ and ‘cropland’; regional area estimates for these classes correspond reasonably well to existing regional statistics.Main conclusions  The land-cover map of South and Southeast Asia provides a synoptic view of the distribution of land cover of tropical and sub-tropical Asia, and it delivers reasonable thematic detail and quantitative estimates of the main land-cover proportions. The map may therefore serve for regional stratification or modelling of vegetation cover, but could also support the implementation of forest policies, watershed management or conservation strategies at regional scales.

  7. Simulation of urban land surface temperature based on sub-pixel land cover in a coastal city

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Deng, Lei; Feng, Huihui; Zhao, Yanchuang

    2014-11-01

    The sub-pixel urban land cover has been proved to have obvious correlations with land surface temperature (LST). Yet these relationships have seldom been used to simulate LST. In this study we provided a new approach of urban LST simulation based on sub-pixel land cover modeling. Landsat TM/ETM+ images of Xiamen city, China on both the January of 2002 and 2007 were used to acquire land cover and then extract the transformation rule using logistic regression. The transformation possibility was taken as its percent in the same pixel after normalization. And cellular automata were used to acquire simulated sub-pixel land cover on 2007 and 2017. On the other hand, the correlations between retrieved LST and sub-pixel land cover achieved by spectral mixture analysis in 2002 were examined and a regression model was built. Then the regression model was used on simulated 2007 land cover to model the LST of 2007. Finally the LST of 2017 was simulated for urban planning and management. The results showed that our method is useful in LST simulation. Although the simulation accuracy is not quite satisfactory, it provides an important idea and a good start in the modeling of urban LST.

  8. Simulating Changes in Land-Atmosphere Interactions From Expanding Agriculture and Irrigation in India and the Potential Impacts on the Indian Monsoon.

    NASA Astrophysics Data System (ADS)

    Douglas, E. M.; Beltran-Przekurat, A.; Niyogi, D.; Pielke, R. A.

    2006-05-01

    With over 57 million hectares under irrigation in 2002, India has the largest irrigated agricultural area on the planet. Between 80 and 90% of India's water use goes to support irrigated agriculture. The Indian monsoon belt is a home to a large part of the world's population and agriculture is the major land-use activity in the region. Previous results showed that annual vapor fluxes in India have increased by 17% (340 km3) over that which would be expected from a natural (non-agricultural) land cover. Two-thirds of this increase was attributed to irrigated agriculture. The largest increases in vapor and latent heat fluxes occurred where both cropland and irrigated lands were the predominant contemporary land cover classes (particularly northwest and north-central India). Our current study builds upon this work by evaluating possible changes in near-surface energy fluxes and regional atmospheric circulation patterns resulting from the expansion of irrigated agriculture on the Indian sub-continent using a regional atmospheric model RAMS. We investigate three separate land- use scenarios: Scenario 1, with a potential (pre-agricultural) land cover, Scenario 2: the potential land-cover overlain by cropland and Scenario 3: potential land-cover overlain by cropland and irrigated area. We will assess the impact of agricultural land-cover conversion and intensive irrigation on water and energy fluxes between the land and the atmosphere and how these flux changes may affect regional weather patterns. The simulation period covers July 16-20, 2002 which allow us to assess potential impacts of land-cover changes on the onset of the Indian Monsoon.

  9. Land Cover Characterization Program

    USGS Publications Warehouse

    ,

    1997-01-01

    (2) identify sources, develop procedures, and organize partners to deliver data and information to meet user requirements. The LCCP builds on the heritage and success of previous USGS land use and land cover programs and projects. It will be compatible with current concepts of government operations, the changing needs of the land use and land cover data users, and the technological tools with which the data are applied.

  10. 43 CFR 3101.4 - Lands covered by application to close lands to mineral leasing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... lands to mineral leasing. 3101.4 Section 3101.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Issuance of Leases § 3101.4 Lands covered by application to close lands to mineral...

  11. 43 CFR 3101.4 - Lands covered by application to close lands to mineral leasing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... lands to mineral leasing. 3101.4 Section 3101.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Issuance of Leases § 3101.4 Lands covered by application to close lands to mineral...

  12. 43 CFR 3101.4 - Lands covered by application to close lands to mineral leasing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... lands to mineral leasing. 3101.4 Section 3101.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Issuance of Leases § 3101.4 Lands covered by application to close lands to mineral...

  13. Using the Landsat data archive to assess long-term regional forest dynamics assessment in Eastern Europe, 1985-2012

    NASA Astrophysics Data System (ADS)

    Turubanova, S.; Potapov, P.; Krylov, A.; Tyukavina, A.; McCarty, J. L.; Radeloff, V. C.; Hansen, M. C.

    2015-04-01

    Dramatic political and economic changes in Eastern European countries following the dissolution of the "Eastern Bloc" and the collapse of the Soviet Union greatly affected land-cover and land-use trends. In particular, changes in forest cover dynamics may be attributed to the collapse of the planned economy, agricultural land abandonment, economy liberalization, and market conditions. However, changes in forest cover are hard to quantify given inconsistent forest statistics collected by different countries over the last 30 years. The objective of our research was to consistently quantify forest cover change across Eastern Europe from 1985 until 2012 using the complete Landsat data archive. We developed an algorithm for processing imagery from different Landsat platforms and sensors (TM and ETM+), aggregating these images into a common set of multi-temporal metrics, and mapping annual gross forest cover loss and decadal gross forest cover gain. Our results show that forest cover area increased from 1985 to 2012 by 4.7% across the region. Average annual gross forest cover loss was 0.41% of total forest cover area, with a statistically significant increase from 1985 to 2012. Most forest disturbance recovered fast, with only 12% of the areas of forest loss prior to 1995 not being recovered by 2012. Timber harvesting was the main cause of forest loss. Logging area declined after the collapse of socialism in the late 1980s, increased in the early 2000s, and decreased in most countries after 2007 due to the global economic crisis. By 2012, Central and Baltic Eastern European countries showed higher logging rates compared to their Western neighbours. Comparing our results with official forest cover and change estimates showed agreement in total forest area for year 2010, but with substantial disagreement between Landsat-based and official net forest cover area change. Landsat-based logging areas exhibit strong relationship with reported roundwood production at national scale. Our results allow national and sub-national level analysis of forest cover extent, change, and logging intensity and are available on-line as a baseline for further analyses of forest dynamics and its drivers.

  14. Land-cover change in the Ozark Highlands, 1973-2000

    USGS Publications Warehouse

    Karstensen, Krista A.

    2010-01-01

    Led by the Geographic Analysis and Monitoring Program of the U.S. Geological Survey (USGS) in collaboration with the U.S. Environmental Protection Agency (EPA) and the National Aeronautics and Space Administration (NASA), the Land-Cover Trends Project was initiated in 1999 and aims to document the types, geographic distributions, and rates of land-cover change on a region by region basis for the conterminous United States, and to determine some of the key drivers and consequences of the change (Loveland and others, 2002). For 1973, 1980, 1986, 1992, and 2000 land-cover maps derived from the Landsat series are classified by visual interpretation, inspection of historical aerial photography and ground survey, into 11 land-cover classes. The classes are defined to capture land cover that is discernable in Landsat data. A stratified probability-based sampling methodology undertaken within the 84 Omernik Level III Ecoregions (Omernik, 1987) was used to locate the blocks, with 9 to 48 blocks per ecoregion. The sampling was designed to enable a statistically robust 'scaling up' of the sample-classification data to estimate areal land-cover change within each ecoregion (Loveland and others, 2002; Stehman and others, 2005). At the time of writing, approximately 90 percent of the 84 conterminous United States ecoregions have been processed by the Land-Cover Trends Project. Results from these completed ecoregions illustrate that across the conterminous United States there is no single profile of land-cover/land-use change, rather, there are varying pulses affected by clusters of change agents (Loveland and others, 2002). Land-Cover Trends Project results for the conterminous United States to-date are being used for collaborative environmental change research with partners such as; the National Science Foundation, the National Oceanic and Atmospheric Administration, and the U.S. Fish and Wildlife Service. The strategy has also been adapted for use in a NASA global deforestation initiative, and elements of the project design are being used in the North American Carbon Program's assessment of forest disturbance.

  15. The land-cover cascade: relationships coupling land and water

    Treesearch

    C.L. Burcher; H.M. Valett; E.F. Benfield

    2007-01-01

    We introduce the land-cover cascade (LCC) as a conceptual framework to quantify the transfer of land-cover-disturbance effects to stream biota. We hypothesize that disturbance is propagated through multivariate systems through key variables that transform a disturbance and pass a reorganized disturbance effect to the next hierarchical level where the process repeats...

  16. LAND COVER TRENDS: RATES, CAUSES, AND CONSEQUENCES OF LATE TWENTIETH CENTURY U.S LAND COVER CHANGE

    EPA Science Inventory

    Information on the rates, driving forces, and consequences of land use and land cover change is important in studies addressing issues ranging from the health of aquatic resources to climate change. This four-year research project between the U.S. Geological Survey and the U.S. ...

  17. Simultaneous comparison and assessment of eight remotely sensed maps of Philippine forests

    NASA Astrophysics Data System (ADS)

    Estoque, Ronald C.; Pontius, Robert G.; Murayama, Yuji; Hou, Hao; Thapa, Rajesh B.; Lasco, Rodel D.; Villar, Merlito A.

    2018-05-01

    This article compares and assesses eight remotely sensed maps of Philippine forest cover in the year 2010. We examined eight Forest versus Non-Forest maps reclassified from eight land cover products: the Philippine Land Cover, the Climate Change Initiative (CCI) Land Cover, the Landsat Vegetation Continuous Fields (VCF), the MODIS VCF, the MODIS Land Cover Type product (MCD12Q1), the Global Tree Canopy Cover, the ALOS-PALSAR Forest/Non-Forest Map, and the GlobeLand30. The reference data consisted of 9852 randomly distributed sample points interpreted from Google Earth. We created methods to assess the maps and their combinations. Results show that the percentage of the Philippines covered by forest ranges among the maps from a low of 23% for the Philippine Land Cover to a high of 67% for GlobeLand30. Landsat VCF estimates 36% forest cover, which is closest to the 37% estimate based on the reference data. The eight maps plus the reference data agree unanimously on 30% of the sample points, of which 11% are attributable to forest and 19% to non-forest. The overall disagreement between the reference data and Philippine Land Cover is 21%, which is the least among the eight Forest versus Non-Forest maps. About half of the 9852 points have a nested structure such that the forest in a given dataset is a subset of the forest in the datasets that have more forest than the given dataset. The variation among the maps regarding forest quantity and allocation relates to the combined effects of the various definitions of forest and classification errors. Scientists and policy makers must consider these insights when producing future forest cover maps and when establishing benchmarks for forest cover monitoring.

  18. Managed Clearings: an Unaccounted Land-cover in Urbanizing Regions

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Madden, M.; Meentemeyer, R. K.

    2016-12-01

    Managed clearings (MC), such as lawns, public parks and grassy transportation medians, are a common and ecologically important land cover type in urbanizing regions, especially those characterized by sprawl. We hypothesize that MC is underrepresented in land cover classification schemes and data products such as NLCD (National Land Cover Database) data, which may impact environmental assessments and models of urban ecosystems. We visually interpreted and mapped fine scale land cover with special attention to MC using 2012 NAIP (National Agriculture Imagery Program) images and compared the output with NLCD data. Areas sampled were 50 randomly distributed 1*1km blocks of land in three cities of the Char-lanta mega-region (Atlanta, Charlotte, and Raleigh). We estimated the abundance of MC relative to other land cover types, and the proportion of land-cover types in NLCD data that are similar to MC. We also assessed if the designations of recreation, transportation, and utility in MC inform the problem differently than simply tallying MC as a whole. 610 ground points, collected using the Google Earth, were used to evaluate accuracy of NLCD data and visual interpretation for consistency. Overall accuracy of visual interpretation and NLCD data was 78% and 58%, respectively. NLCD data underestimated forest and MC by 14.4km2 and 6.4km2, respectively, while overestimated impervious surfaces by 10.2km2 compared to visual interpretation. MC was the second most dominant land cover after forest (40.5%) as it covered about 28% of the total area and about 13% higher than impervious surfaces. Results also suggested that recreation in MC constitutes up to 90% of area followed by transportation and utility. Due to the prevalence of MC in urbanizing regions, the addition of MC to the synthesis of land-cover data can help delineate realistic cover types and area proportions that could inform ecologic/hydrologic models, and allow for accurate prediction of ecological phenomena.

  19. Land-cover change detection

    USGS Publications Warehouse

    Chen, Xuexia; Giri, Chandra; Vogelmann, James

    2012-01-01

    Land cover is the biophysical material on the surface of the earth. Land-cover types include grass, shrubs, trees, barren, water, and man-made features. Land cover changes continuously.  The rate of change can be either dramatic and abrupt, such as the changes caused by logging, hurricanes and fire, or subtle and gradual, such as regeneration of forests and damage caused by insects (Verbesselt et al., 2001).  Previous studies have shown that land cover has changed dramatically during the past sevearal centuries and that these changes have severely affected our ecosystems (Foody, 2010; Lambin et al., 2001). Lambin and Strahlers (1994b) summarized five types of cause for land-cover changes: (1) long-term natural changes in climate conditions, (2) geomorphological and ecological processes, (3) human-induced alterations of vegetation cover and landscapes, (4) interannual climate variability, and (5) human-induced greenhouse effect.  Tools and techniques are needed to detect, describe, and predict these changes to facilitate sustainable management of natural resources.

  20. Linking remote sensing, land cover and disease.

    PubMed

    Curran, P J; Atkinson, P M; Foody, G M; Milton, E J

    2000-01-01

    Land cover is a critical variable in epidemiology and can be characterized remotely. A framework is used to describe both the links between land cover and radiation recorded in a remotely sensed image, and the links between land cover and the disease carried by vectors. The framework is then used to explore the issues involved when moving from remotely sensed imagery to land cover and then to vector density/disease risk. This exploration highlights the role of land cover; the need to develop a sound knowledge of each link in the predictive sequence; the problematic mismatch between the spatial units of the remotely sensed and epidemiological data and the challenges and opportunities posed by adding a temporal mismatch between the remotely sensed and epidemiological data. The paper concludes with a call for both greater understanding of the physical components of the proposed framework and the utilization of optimized statistical tools as prerequisites to progress in this field.

  1. Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery

    PubMed Central

    Moran, Emilio Federico.

    2010-01-01

    High spatial resolution images have been increasingly used for urban land use/cover classification, but the high spectral variation within the same land cover, the spectral confusion among different land covers, and the shadow problem often lead to poor classification performance based on the traditional per-pixel spectral-based classification methods. This paper explores approaches to improve urban land cover classification with Quickbird imagery. Traditional per-pixel spectral-based supervised classification, incorporation of textural images and multispectral images, spectral-spatial classifier, and segmentation-based classification are examined in a relatively new developing urban landscape, Lucas do Rio Verde in Mato Grosso State, Brazil. This research shows that use of spatial information during the image classification procedure, either through the integrated use of textural and spectral images or through the use of segmentation-based classification method, can significantly improve land cover classification performance. PMID:21643433

  2. Global land cover mapping and characterization: present situation and future research priorities

    USGS Publications Warehouse

    Giri, Chandra

    2005-01-01

    The availability and accessibility of global land cover data sets plays an important role in many global change studies. The importance of such science‐based information is also reflected in a number of international, regional, and national projects and programs. Recent developments in earth observing satellite technology, information technology, computer hardware and software, and infrastructure development have helped developed better quality land cover data sets. As a result, such data sets are increasingly becoming available, the user‐base is ever widening, application areas have been expanding, and the potential of many other applications are enormous. Yet, we are far from producing high quality global land cover data sets. This paper examines the progress in the development of digital global land cover data, their availability, and current applications. Problems and opportunities are also explained. The overview sets the stage for identifying future research priorities needed for operational land cover assessment and monitoring.

  3. Assessments of SENTINEL-2 Vegetation Red-Edge Spectral Bands for Improving Land Cover Classification

    NASA Astrophysics Data System (ADS)

    Qiu, S.; He, B.; Yin, C.; Liao, Z.

    2017-09-01

    The Multi Spectral Instrument (MSI) onboard Sentinel-2 can record the information in Vegetation Red-Edge (VRE) spectral domains. In this study, the performance of the VRE bands on improving land cover classification was evaluated based on a Sentinel-2A MSI image in East Texas, USA. Two classification scenarios were designed by excluding and including the VRE bands. A Random Forest (RF) classifier was used to generate land cover maps and evaluate the contributions of different spectral bands. The combination of VRE bands increased the overall classification accuracy by 1.40 %, which was statistically significant. Both confusion matrices and land cover maps indicated that the most beneficial increase was from vegetation-related land cover types, especially agriculture. Comparison of the relative importance of each band showed that the most beneficial VRE bands were Band 5 and Band 6. These results demonstrated the value of VRE bands for land cover classification.

  4. Applying remote sensing and GIS techniques in solving rural county information needs

    NASA Technical Reports Server (NTRS)

    Johannsen, Chris J.; Fernandez, R. Norberto; Lozano-Garcia, D. Fabian

    1992-01-01

    The project designed was to acquaint county government officials and their clientele with remote sensing and GIS products that contain information about land conditions and land use. Other users determined through the course of this project were federal agencies working at the county level, agricultural businesses and others in need of spatial information. The specific project objectives were: (1) to investigate the feasibility of using remotely sensed data to identify and quantify specific land cover categories and conditions for purposes of tax assessment, cropland area measurements and land use evaluation; (2) to investigate the use of satellite remote sensing data as an aid in assessing soil management practices; and (3) to evaluate the use of remotely sensed data to assess soil resources and conditions which affect productivity.

  5. Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems

    PubMed Central

    Selmants, Paul C.; Moreno, Alvaro; Running, Steve W.; Giardina, Christian P.

    2017-01-01

    Gross primary production (GPP) is the Earth’s largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales. PMID:28886187

  6. Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales

    NASA Astrophysics Data System (ADS)

    Mitchell, Matthew G. E.; Bennett, Elena M.; Gonzalez, Andrew

    2015-09-01

    Human actions, such as converting natural land cover to agricultural or urban land, result in the loss and fragmentation of natural habitat, with important consequences for the provision of ecosystem services. Such habitat loss is especially important for services that are supplied by fragments of natural land cover and that depend on flows of organisms, matter, or people across the landscape to produce benefits, such as pollination, pest regulation, recreation and cultural services. However, our quantitative knowledge about precisely how different patterns of landscape fragmentation might affect the provision of these types of services is limited. We used a simple, spatially explicit model to evaluate the potential impact of natural land cover loss and fragmentation on the provision of hypothetical ecosystem services. Based on current literature, we assumed that fragments of natural land cover provide ecosystem services to the area surrounding them in a distance-dependent manner such that ecosystem service flow depended on proximity to fragments. We modeled seven different patterns of natural land cover loss across landscapes that varied in the overall level of landscape fragmentation. Our model predicts that natural land cover loss will have strong and unimodal effects on ecosystem service provision, with clear thresholds indicating rapid loss of service provision beyond critical levels of natural land cover loss. It also predicts the presence of a tradeoff between maximizing ecosystem service provision and conserving natural land cover, and a mismatch between ecosystem service provision at landscape versus finer spatial scales. Importantly, the pattern of landscape fragmentation mitigated or intensified these tradeoffs and mismatches. Our model suggests that managing patterns of natural land cover loss and fragmentation could help influence the provision of multiple ecosystem services and manage tradeoffs and synergies between services across different human-dominated landscapes.

  7. Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems

    USGS Publications Warehouse

    Kimball, Heather L.; Selmants, Paul; Moreno, Alvaro; Running Steve W,; Giardina, Christian P.

    2017-01-01

    Gross primary production (GPP) is the Earth’s largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales.

  8. Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems.

    PubMed

    Kimball, Heather L; Selmants, Paul C; Moreno, Alvaro; Running, Steve W; Giardina, Christian P

    2017-01-01

    Gross primary production (GPP) is the Earth's largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales.

  9. A local segmentation parameter optimization approach for mapping heterogeneous urban environments using VHR imagery

    NASA Astrophysics Data System (ADS)

    Grippa, Tais; Georganos, Stefanos; Lennert, Moritz; Vanhuysse, Sabine; Wolff, Eléonore

    2017-10-01

    Mapping large heterogeneous urban areas using object-based image analysis (OBIA) remains challenging, especially with respect to the segmentation process. This could be explained both by the complex arrangement of heterogeneous land-cover classes and by the high diversity of urban patterns which can be encountered throughout the scene. In this context, using a single segmentation parameter to obtain satisfying segmentation results for the whole scene can be impossible. Nonetheless, it is possible to subdivide the whole city into smaller local zones, rather homogeneous according to their urban pattern. These zones can then be used to optimize the segmentation parameter locally, instead of using the whole image or a single representative spatial subset. This paper assesses the contribution of a local approach for the optimization of segmentation parameter compared to a global approach. Ouagadougou, located in sub-Saharan Africa, is used as case studies. First, the whole scene is segmented using a single globally optimized segmentation parameter. Second, the city is subdivided into 283 local zones, homogeneous in terms of building size and building density. Each local zone is then segmented using a locally optimized segmentation parameter. Unsupervised segmentation parameter optimization (USPO), relying on an optimization function which tends to maximize both intra-object homogeneity and inter-object heterogeneity, is used to select the segmentation parameter automatically for both approaches. Finally, a land-use/land-cover classification is performed using the Random Forest (RF) classifier. The results reveal that the local approach outperforms the global one, especially by limiting confusions between buildings and their bare-soil neighbors.

  10. Assessing roadway contributions to stormwater flows, concentrations, and loads with the StreamStats application

    USGS Publications Warehouse

    Stonewall, Adam; Granato, Gregory E.; Haluska, Tana L.

    2018-01-01

    The Oregon Department of Transportation (ODOT) and other state departments of transportation need quantitative information about the percentages of different land cover categories above any given stream crossing in the state to assess and address roadway contributions to water-quality impairments and resulting total maximum daily loads. The U.S. Geological Survey, in cooperation with ODOT and the FHWA, added roadway and land cover information to the online StreamStats application to facilitate analysis of stormwater runoff contributions from different land covers. Analysis of 25 delineated basins with drainage areas of about 100 mi2 indicates the diversity of land covers in the Willamette Valley, Oregon. On average, agricultural, developed, and undeveloped land covers comprise 15%, 2.3%, and 82% of these basin areas. On average, these basins contained about 10 mi of state highways and 222 mi of non-state roads. The Stochastic Empirical Loading and Dilution Model was used with available water-quality data to simulate long-term yields of total phosphorus from highways, non-highway roadways, and agricultural, developed, and undeveloped areas. These yields were applied to land cover areas obtained from StreamStats for the Willamette River above Wilsonville, Oregon. This analysis indicated that highway yields were larger than yields from other land covers because highway runoff concentrations were higher than other land covers and the highway is fully impervious. However, the total highway area was a fraction of the other land covers. Accordingly, highway runoff mitigation measures can be effective for managing water quality locally, they may have limited effect on achieving basin-wide stormwater reduction goals.

  11. Identifying strategic sites for Green-Infrastructures (GI) to manage stormwater in a miscellaneous use urban African watershed

    NASA Astrophysics Data System (ADS)

    Selker, J. S.; Kahsai, S. K.

    2017-12-01

    Green Infrastructure (GI) or Low impact development (LID), is a land use planning and design approach with the objective of mitigating land development impacts to the environment, and is ever more looked to as a way to lessen runoff and pollutant loading to receiving water bodies. Broad-scale approaches for siting GI/LID have been developed for agricultural watersheds, but are rare for urban watersheds, largely due to greater land use complexity. And it is even more challenging when it comes to Urban Africa due to the combination of poor data quality, rapid and unplanned development, and civic institutions unable to reliably carry out regular maintenance. We present a spacio-temporal simulation-based approach to identify an optimal prioritization of sites for GI/LID based on DEM, land use and land cover. Optimization used is a multi-objective optimization tool along with an urban storm water management model (SWMM) to identify the most cost-effective combination of LID/GI. This was applied to an urban watershed in NW Kampala, Lubigi Catchment (notorious for being heavily flooded every year), with a miscellaneous use watershed in Uganda, as a case-study to demonstrate the approach.

  12. Estimating The Effect of Biofuel on Land Cover Change Using Multi-Year Modis Land Cover Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nagendra; Bhaduri, Budhendra L

    2010-01-01

    There has been a growing debate on the effects of the increase in demands of biofuels on land use land cover (LULC) change with apprehension in some quarters that the growing demand for bioenergy as a clean fuel will result in widespread direct and indirect LULC change. However estimating both direct and indirect LULC change is challenging and will require development of accurate high frequency, high resolution (temporal and spatial) land use land cover data as well as new LULC models which can be used to locate, quantify and predict these changes. To assess whether the demand for biofuel hasmore » caused significant LULC we used MODIS land cover data (MCD12Q1) from 2001 to 2008 along with cropland data layer (CDL) to estimate cropland and grassland changes in United States for the years 2002-2008 as well as its correlation with biofuel growth.« less

  13. Seasonal albedo of an urban/rural landscape from satellite observations

    NASA Technical Reports Server (NTRS)

    Brest, Christopher L.

    1987-01-01

    Using data from 27 calibrated Landsat observations of the Hartford, Connecticut area, the spatial distribution and seasonal variation of surface reflectance and albedo were examined. Mean values of visible reflectance, near-IR reflectance, and albedo are presented (for both snow-free and snow-cover observations) according to 14 land use/land cover categories. A diversity of albedo values was found to exist in this type of environment, associated with land cover. Many land-cover categories display a seasonal dependence, with intracategory seasonal differences being of comparable magnitude to intercategory differences. Key factors in determining albedo (and its seasonal dynamics) are the presence or absence of vegetation and the canopy structure. Snow-cover/snow-free differences range from a few percent (for urban land covers) to over 40 percent (for low-canopy vegetation).

  14. Producing Information for Corine Database by Using Classification Method: a Case Study of Sazlidere Basin, Istanbul

    NASA Astrophysics Data System (ADS)

    Sarıyılmaz, F. B.; Musaoğlu, N.; Uluğtekin, N.

    2017-11-01

    The Sazlidere Basin is located on the European side of Istanbul within the borders of Arnavutkoy and Basaksehir districts. The total area of the basin, which is largely located within the province of Arnavutkoy, is approximately 177 km2. The Sazlidere Basin is faced with intense urbanization pressures and land use / cover change due to the Northern Marmara Motorway, 3rd airport and Channel Istanbul Projects, which are planned to be realized in the Arnavutkoy region. Due to the mentioned projects, intense land use /cover changes occur in the basin. In this study, 2000 and 2012 dated LANDSAT images were supervised classified based on CORINE Land Cover first level to determine the land use/cover classes. As a result, four information classes were identified. These classes are water bodies, forest and semi-natural areas, agricultural areas and artificial surfaces. Accuracy analysis of the images were performed following the classification process. The supervised classified images that have the smallest mapping units 0.09 ha and 0.64 ha were generalized to be compatible with the CORINE Land Cover data. The image pixels have been rearranged by using the thematic pixel aggregation method as the smallest mapping unit is 25 ha. These results were compared with CORINE Land Cover 2000 and CORINE Land Cover 2012, which were obtained by digitizing land cover and land use classes on satellite images. It has been determined that the compared results are compatible with each other in terms of quality and quantity.

  15. Modeled impact of anthropogenic land cover change on climate

    USGS Publications Warehouse

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  16. Estimation of Fractional Plant Lifeform Cover Using Landsat and Airborne LiDAR/hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Parra, A. S.; Xu, Q.; Dilts, T.; Weisberg, P.; Greenberg, J. A.

    2017-12-01

    Land-cover change has generally been understood as the result of local, landscape or regional-scale processes with most studies focusing on case-study landscapes or smaller regions. However, as we observe similar types of land-cover change occurring across different biomes worldwide, it becomes clear that global-scale processes such as climate change and CO2 fertilization, in interaction with local influences, are underlying drivers in land-cover change patterns. Prior studies on global land-cover change may not have had a suitable spatial, temporal and thematic resolution for allowing the identification of such patterns. Furthermore, the lack of globally consistent spatial data products also constitutes a limiting factor in evaluating both proximate and ultimate causes of land-cover change. In this study, we derived a global model for broadleaf tree, needleleaf tree, shrub, herbaceous, and "other" fractional cover using Landsat imagery. Combined LiDAR/hyperspectral data sets were used for calibration and validation of the Landsat-derived products. Spatially explicit uncertainties were also created as part of the data products. Our results highlight the potential for large-scale studies that model local and global influences on land-cover transition types and rates at fine thematic, spatial, and temporal resolutions. These spatial data products are relevant for identifying patterns in land-cover change due to underlying global-scale processes and can provide valuable insights into climatic and land-use factors determining vegetation distributions.

  17. Effects of climate and land cover on hydrology in the southeastern U.S.: Potential impacts on watershed planning

    USGS Publications Warehouse

    LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland; Regan, R. Steve; Markstrom, Steven

    2015-01-01

    The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.

  18. Land-cover trends in the Mojave basin and range ecoregion

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Raumann, Christian G.

    2006-01-01

    The U.S. Geological Survey's Land-Cover Trends Project aims to estimate the rates of contemporary land-cover change within the conterminous United States between 1972 and 2000. A random sampling approach was used to select a representative sample of 10-km by 10-km sample blocks and to estimate change within +/- 1 percent at an 85-percent confidence interval. Landsat Multispectral Scanner, Thematic Mapper, and Enhanced Thematic Mapper Plus data were used, and each 60-m pixel was assigned to one of 11 distinct land-cover classes based upon a modified Anderson classification system. Upon completion of land-cover change mapping for five dates, land-cover change statistics were generated and analyzed. This paper presents estimates for the Mojave Basin and Range ecoregion located in the southwestern United States. Our research suggests land-cover change within the Mojave to be relatively rare and highly localized. The primary shift in land cover is unidirectional, with natural desert grass/shrubland being converted to development. We estimate that more than 1,300 km2 have been converted since 1973 and that the conversion is being largely driven by economic and recreational opportunities provided by the Mojave ecoregion. The time interval with the highest rate of change was 1986 to 1992, in which the rate was 0.21 percent (321.9 km2) per year total change.

  19. LACO-Wiki: A land cover validation tool and a new, innovative teaching resource for remote sensing and the geosciences

    NASA Astrophysics Data System (ADS)

    See, Linda; Perger, Christoph; Dresel, Christopher; Hofer, Martin; Weichselbaum, Juergen; Mondel, Thomas; Steffen, Fritz

    2016-04-01

    The validation of land cover products is an important step in the workflow of generating a land cover map from remotely-sensed imagery. Many students of remote sensing will be given exercises on classifying a land cover map followed by the validation process. Many algorithms exist for classification, embedded within proprietary image processing software or increasingly as open source tools. However, there is little standardization for land cover validation, nor a set of open tools available for implementing this process. The LACO-Wiki tool was developed as a way of filling this gap, bringing together standardized land cover validation methods and workflows into a single portal. This includes the storage and management of land cover maps and validation data; step-by-step instructions to guide users through the validation process; sound sampling designs; an easy-to-use environment for validation sample interpretation; and the generation of accuracy reports based on the validation process. The tool was developed for a range of users including producers of land cover maps, researchers, teachers and students. The use of such a tool could be embedded within the curriculum of remote sensing courses at a university level but is simple enough for use by students aged 13-18. A beta version of the tool is available for testing at: http://www.laco-wiki.net.

  20. Global albedo change and radiative cooling from anthropogenic land-cover change, 1700 to 2005 based on MODIS, land-use harmonization and radiative kernels

    USDA-ARS?s Scientific Manuscript database

    Widespread anthropogenic land-cover change over the last five centuries has influenced the global climate system through both biogeochemical and biophysical processes. Models indicate that warming from carbon emissions associated with land cover conversion have been partially offset if not outweigh...

  1. Estimating riparian area extent and land use in the Midwest.

    Treesearch

    Brian J. Palik; Swee May Tang; Quinn. Chavez

    2004-01-01

    This report quantifies the amount and land use/land cover of riparian area in the seven-State Midwest Region of the continental United States. We estimate that riparian areas cover 8.9 to 13.2 million hectares in the region and that approximately 72 percent of riparian areas support natural or semi-natural land cover.

  2. A Continental United States High Resolution NLCD Land Cover – MODIS Albedo Database to Examine Albedo and Land Cover Change Relationships

    EPA Science Inventory

    Surface albedo influences climate by affecting the amount of solar radiation that is reflected at the Earth’s surface, and surface albedo is, in turn, affected by land cover. General Circulation Models typically use modeled or prescribed albedo to assess the influence of land co...

  3. Analysis of Environmental Vulnerability in The Landslide Areas (Case Study: Semarang Regency)

    NASA Astrophysics Data System (ADS)

    Hani'ah; Firdaus, H. S.; Nugraha, A. L.

    2017-12-01

    The Land conversion can increase the risk of landslide disaster in Semarang Regency caused by human activity. Remote sensing and geographic information system to be used in this study to mapping the landslide areas because satellite image data can represent the object on the earth surface in wide area coverage. Satellite image Landsat 8 is used to mapping land cover that processed by supervised classification method. The parameters to mapping landslide areas are based on land cover, rainfall, slope, geological factors and soil types. Semarang Regency have the minimum value of landslide is 1.6 and the maximum value is 4.3, which is dominated by landslide prone areas about 791.27 km2. The calculation of the environmental vulnerability index in the study area is based on Perka BNPB No. 2/2012. Accumulation score of environmental vulnerability index is moderate value, that means environment condition must be considered, such as vegetation as ground cover and many others aspects. The range of NDVI value shows that density level in conservation areas (0.030 - 0.844) and conservation forest (0.045 - 0.849), which rarely until high density level. The results of this study furthermore can be assessed to reduce disaster risks from landslide as an effort of disaster preventive.

  4. High dimensional land cover inference using remotely sensed modis data

    NASA Astrophysics Data System (ADS)

    Glanz, Hunter S.

    Image segmentation persists as a major statistical problem, with the volume and complexity of data expanding alongside new technologies. Land cover classification, one of the most studied problems in Remote Sensing, provides an important example of image segmentation whose needs transcend the choice of a particular classification method. That is, the challenges associated with land cover classification pervade the analysis process from data pre-processing to estimation of a final land cover map. Many of the same challenges also plague the task of land cover change detection. Multispectral, multitemporal data with inherent spatial relationships have hardly received adequate treatment due to the large size of the data and the presence of missing values. In this work we propose a novel, concerted application of methods which provide a unified way to estimate model parameters, impute missing data, reduce dimensionality, classify land cover, and detect land cover changes. This comprehensive analysis adopts a Bayesian approach which incorporates prior knowledge to improve the interpretability, efficiency, and versatility of land cover classification and change detection. We explore a parsimonious, parametric model that allows for a natural application of principal components analysis to isolate important spectral characteristics while preserving temporal information. Moreover, it allows us to impute missing data and estimate parameters via expectation-maximization (EM). A significant byproduct of our framework includes a suite of training data assessment tools. To classify land cover, we employ a spanning tree approximation to a lattice Potts prior to incorporate spatial relationships in a judicious way and more efficiently access the posterior distribution of pixel labels. We then achieve exact inference of the labels via the centroid estimator. To detect land cover changes, we develop a new EM algorithm based on the same parametric model. We perform simulation studies to validate our models and methods, and conduct an extensive continental scale case study using MODIS data. The results show that we successfully classify land cover and recover the spatial patterns present in large scale data. Application of our change point method to an area in the Amazon successfully identifies the progression of deforestation through portions of the region.

  5. An object-based image analysis of pinyon and juniper woodlands treated to reduce fuels.

    PubMed

    Hulet, April; Roundy, Bruce A; Petersen, Steven L; Jensen, Ryan R; Bunting, Stephen C

    2014-03-01

    Mechanical and prescribed fire treatments are commonly used to reduce fuel loads and maintain or restore sagebrush steppe rangelands across the Great Basin where pinyon (Pinus) and juniper (Juniperus) trees are encroaching and infilling. Geospatial technologies, particularly remote sensing, could potentially be used in these ecosystems to (1) evaluate the longevity of fuel reduction treatments, (2) provide data for planning and designing future fuel-reduction treatments, and (3) assess the spatial distribution of horizontal fuel structure following fuel-reduction treatments. High-spatial resolution color-infrared imagery (0.06-m pixels) was acquired for pinyon and juniper woodland plots where fuels were reduced by either prescribed fire, tree cutting, or mastication at five sites in Oregon, California, Nevada, and Utah. Imagery was taken with a Vexcel UltraCam X digital camera in June 2009. Within each treatment plot, ground cover was measured as part of the Sagebrush Steppe Treatment Evaluation Project. Trimble eCognition Developer was used to classify land cover classes using object-based image analysis (OBIA) techniques. Differences between cover estimates using OBIA and ground-measurements were not consistently higher or lower for any land cover class and when evaluated for individual sites, were within ±5 % of each other. The overall accuracy and the K hat statistic for classified thematic maps for each treatment were: prescribed burn 85 % and 0.81; cut and fell 82 % and 0.77, and mastication 84 % and 0.80. Although cover assessments from OBIA differed somewhat from ground measurements, they are sufficiently accurate to evaluate treatment success and for supporting a broad range of management concerns.

  6. Mechanical fuel treatment effects on vegetation in a New Mexico dry mixed conifer forest

    Treesearch

    Glenn J. Mason; Terrell T. Baker; Douglas S. Cram; Jon C. Boren; Alexander G. Fernald; Dawn M. VanLeeuwen

    2009-01-01

    While the main objective of many silvicultural treatments in the western US is to reduce fire potential, their effects on overstory regeneration, midstory and herbaceous communities is of importance to land managers. To quantify these effects, we measured overstory regeneration, midstory density by species, herbaceous biomass, species richness and cover in commercial...

  7. Forest service contributions to the national land cover database (NLCD): Tree Canopy Cover Production

    Treesearch

    Bonnie Ruefenacht; Robert Benton; Vicky Johnson; Tanushree Biswas; Craig Baker; Mark Finco; Kevin Megown; John Coulston; Ken Winterberger; Mark Riley

    2015-01-01

    A tree canopy cover (TCC) layer is one of three elements in the National Land Cover Database (NLCD) 2011 suite of nationwide geospatial data layers. In 2010, the USDA Forest Service (USFS) committed to creating the TCC layer as a member of the Multi-Resolution Land Cover (MRLC) consortium. A general methodology for creating the TCC layer was reported at the 2012 FIA...

  8. Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Peter J.; Feddema, Johannes J.; Bonan, Gordon B.

    To assess the climate impacts of historical and projected land cover change and land use in the Community Climate System Model (CCSM4) we have developed new time series of transient Community Land Model (CLM4) Plant Functional Type (PFT) parameters and wood harvest parameters. The new parameters capture the dynamics of the Coupled Model Inter-comparison Project phase 5 (CMIP5) land cover change and wood harvest trajectories for the historical period from 1850 to 2005, and for the four Representative Concentration Pathways (RCP) periods from 2006 to 2100. Analysis of the biogeochemical impacts of land cover change in CCSM4 with the parametersmore » found the model produced an historical cumulative land use flux of 148.4 PgC from 1850 to 2005, which was in good agreement with other global estimates of around 156 PgC for the same period. The biogeophysical impacts of only applying the transient land cover change parameters in CCSM4 were cooling of the near surface atmospheric over land by -0.1OC, through increased surface albedo and reduced shortwave radiation absorption. When combined with other transient climate forcings, the higher albedo from land cover change was overwhelmed at global scales by decreases in snow albedo from black carbon deposition and from high latitude warming. At regional scales however the land cover change forcing persisted resulting in reduced warming, with the biggest impacts in eastern North America. The future CCSM4 RCP simulations showed that the CLM4 transient PFT and wood harvest parameters could be used to represent a wide range of human land cover change and land use scenarios. Furthermore, these simulations ranged from the RCP 4.5 reforestation scenario that was able to draw down 82.6 PgC from the atmosphere, to the RCP 8.5 wide scale deforestation scenario that released 171.6 PgC to the atmosphere.« less

  9. Built-Up Area and Land Cover Extraction Using High Resolution Pleiades Satellite Imagery for Midrand, in Gauteng Province, South Africa

    NASA Astrophysics Data System (ADS)

    Fundisi, E.; Musakwa, W.

    2017-09-01

    Urban areas, particularly in developing countries face immense challenges such as climate change, poverty, lack of resources poor land use management systems, and week environmental management practices. Mitigating against these challenges is often hampered by lack of data on urban expansion, urban footprint and land cover. To support the recently adopted new urban agenda 2030 there is need for the provision of information to support decision making in the urban areas. Earth observation has been identified as a tool to foster sustainable urban planning and smarter cities as recognized by the new urban agenda, because it is a solution to unavailability of data. Accordingly, this study uses high resolution EO data Pleiades satellite imagery to map and document land cover for the rapidly expanding area of Midrand in Johannesburg, South Africa. An unsupervised land cover classification of the Pleiades satellite imagery was carried out using ENVI software, whereas NDVI was derived using ArcGIS software. The land cover had an accuracy of 85% that is highly adequate to document the land cover in Midrand. The results are useful because it provides a highly accurate land cover and NDVI datasets at localised spatial scale that can be used to support land use management strategies within Midrand and the City of Johannesburg South Africa.

  10. Multi-source remotely sensed data fusion for improving land cover classification

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Huang, Bo; Xu, Bing

    2017-02-01

    Although many advances have been made in past decades, land cover classification of fine-resolution remotely sensed (RS) data integrating multiple temporal, angular, and spectral features remains limited, and the contribution of different RS features to land cover classification accuracy remains uncertain. We proposed to improve land cover classification accuracy by integrating multi-source RS features through data fusion. We further investigated the effect of different RS features on classification performance. The results of fusing Landsat-8 Operational Land Imager (OLI) data with Moderate Resolution Imaging Spectroradiometer (MODIS), China Environment 1A series (HJ-1A), and Advanced Spaceborne Thermal Emission and Reflection (ASTER) digital elevation model (DEM) data, showed that the fused data integrating temporal, spectral, angular, and topographic features achieved better land cover classification accuracy than the original RS data. Compared with the topographic feature, the temporal and angular features extracted from the fused data played more important roles in classification performance, especially those temporal features containing abundant vegetation growth information, which markedly increased the overall classification accuracy. In addition, the multispectral and hyperspectral fusion successfully discriminated detailed forest types. Our study provides a straightforward strategy for hierarchical land cover classification by making full use of available RS data. All of these methods and findings could be useful for land cover classification at both regional and global scales.

  11. Quantifying landscape pattern and assessing the land cover changes in Piatra Craiului National Park and Bucegi Natural Park, Romania, using satellite imagery and landscape metrics.

    PubMed

    Vorovencii, Iosif

    2015-11-01

    Protected areas of Romania have enjoyed particular importance after 1989, but, at the same time, they were subject to different anthropogenic and natural pressures which resulted in the occurrence of land cover changes. These changes have generally led to landscape degradation inside and at the borders of the protected areas. In this article, 12 landscape metrics were used in order to quantify landscape pattern and assess land cover changes in two protected areas, Piatra Craiului National Park (PCNP) and Bucegi Natural Park (BNP). The landscape metrics were obtained from land cover maps derived from Landsat Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper Plus (ETM+) images from 1987, 1993, 2000, 2009 and 2010. Three land cover classes were analysed in PCNP and five land cover map classes in BNP. The results show a landscape fragmentation trend for both parks, affecting different types of land covers. Between 1987 and 2010, in PCNP fragmentation was, in principle, the result not only of anthropogenic activities such as forest cuttings and illegal logging but also of natural causes. In BNP, between 1987 and 2009, the fragmentation affected the pasture which resulted in the occurrence of bare land and rocky areas because of the erosion on the Bucegi Plateau.

  12. Design and analysis for thematic map accuracy assessment: Fundamental principles

    Treesearch

    Stephen V. Stehman; Raymond L. Czaplewski

    1998-01-01

    Land-cover maps are used in numerous natural resource applications to describe the spatial distribution and pattern of land-cover, to estimate areal extent of various cover classes, or as input into habitat suitability models, land-cover change analyses, hydrological models, and risk analyses. Accuracy assessment quantifies data quality so that map users may evaluate...

  13. Upper Washita River experimental watersheds: Land cover data sets (1974-2007) for two southwestern Oklahoma agricultural watersheds

    USDA-ARS?s Scientific Manuscript database

    A retrospective land cover analysis covering the time period from the early 1970s to early 1990s was conducted to gain a sense of the dynamics of land cover changes on the Little Washita River and Fort Cobb Reservoir experimental watersheds (LWREW, FCREW), located in southwestern Oklahoma. This stu...

  14. Land Cover as a Framework For Assessing the Risk of Water Pollution

    Treesearch

    James D. Wickham; Kurt H. Riitters; Robert V. O' Neill; Kenneth H. Reckhow; Timothy G. Wade; K. Bruce Jones

    2000-01-01

    A survey of numerous field studies shows that nitrogen and phosphorous export coefficients are significantly different across forest, agriculture, and urban land-cover types. We used simulations to estimate the land-cover composition at which there was a significant risk of nutrient loads representative of watersheds without forest cover. The results suggest that at...

  15. Objective sampling design in a highly heterogeneous landscape - characterizing environmental determinants of malaria vector distribution in French Guiana, in the Amazonian region.

    PubMed

    Roux, Emmanuel; Gaborit, Pascal; Romaña, Christine A; Girod, Romain; Dessay, Nadine; Dusfour, Isabelle

    2013-12-01

    Sampling design is a key issue when establishing species inventories and characterizing habitats within highly heterogeneous landscapes. Sampling efforts in such environments may be constrained and many field studies only rely on subjective and/or qualitative approaches to design collection strategy. The region of Cacao, in French Guiana, provides an excellent study site to understand the presence and abundance of Anopheles mosquitoes, their species dynamics and the transmission risk of malaria across various environments. We propose an objective methodology to define a stratified sampling design. Following thorough environmental characterization, a factorial analysis of mixed groups allows the data to be reduced and non-collinear principal components to be identified while balancing the influences of the different environmental factors. Such components defined new variables which could then be used in a robust k-means clustering procedure. Then, we identified five clusters that corresponded to our sampling strata and selected sampling sites in each stratum. We validated our method by comparing the species overlap of entomological collections from selected sites and the environmental similarities of the same sites. The Morisita index was significantly correlated (Pearson linear correlation) with environmental similarity based on i) the balanced environmental variable groups considered jointly (p = 0.001) and ii) land cover/use (p-value < 0.001). The Jaccard index was significantly correlated with land cover/use-based environmental similarity (p-value = 0.001). The results validate our sampling approach. Land cover/use maps (based on high spatial resolution satellite images) were shown to be particularly useful when studying the presence, density and diversity of Anopheles mosquitoes at local scales and in very heterogeneous landscapes.

  16. Objective sampling design in a highly heterogeneous landscape - characterizing environmental determinants of malaria vector distribution in French Guiana, in the Amazonian region

    PubMed Central

    2013-01-01

    Background Sampling design is a key issue when establishing species inventories and characterizing habitats within highly heterogeneous landscapes. Sampling efforts in such environments may be constrained and many field studies only rely on subjective and/or qualitative approaches to design collection strategy. The region of Cacao, in French Guiana, provides an excellent study site to understand the presence and abundance of Anopheles mosquitoes, their species dynamics and the transmission risk of malaria across various environments. We propose an objective methodology to define a stratified sampling design. Following thorough environmental characterization, a factorial analysis of mixed groups allows the data to be reduced and non-collinear principal components to be identified while balancing the influences of the different environmental factors. Such components defined new variables which could then be used in a robust k-means clustering procedure. Then, we identified five clusters that corresponded to our sampling strata and selected sampling sites in each stratum. Results We validated our method by comparing the species overlap of entomological collections from selected sites and the environmental similarities of the same sites. The Morisita index was significantly correlated (Pearson linear correlation) with environmental similarity based on i) the balanced environmental variable groups considered jointly (p = 0.001) and ii) land cover/use (p-value << 0.001). The Jaccard index was significantly correlated with land cover/use-based environmental similarity (p-value = 0.001). Conclusions The results validate our sampling approach. Land cover/use maps (based on high spatial resolution satellite images) were shown to be particularly useful when studying the presence, density and diversity of Anopheles mosquitoes at local scales and in very heterogeneous landscapes. PMID:24289184

  17. Effects of Digitization and JPEG Compression on Land Cover Classification Using Astronaut-Acquired Orbital Photographs

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Webb, Edward L.; Evangelista, Arlene

    2000-01-01

    Studies that utilize astronaut-acquired orbital photographs for visual or digital classification require high-quality data to ensure accuracy. The majority of images available must be digitized from film and electronically transferred to scientific users. This study examined the effect of scanning spatial resolution (1200, 2400 pixels per inch [21.2 and 10.6 microns/pixel]), scanning density range option (Auto, Full) and compression ratio (non-lossy [TIFF], and lossy JPEG 10:1, 46:1, 83:1) on digital classification results of an orbital photograph from the NASA - Johnson Space Center archive. Qualitative results suggested that 1200 ppi was acceptable for visual interpretive uses for major land cover types. Moreover, Auto scanning density range was superior to Full density range. Quantitative assessment of the processing steps indicated that, while 2400 ppi scanning spatial resolution resulted in more classified polygons as well as a substantially greater proportion of polygons < 0.2 ha, overall agreement between 1200 ppi and 2400 ppi was quite high. JPEG compression up to approximately 46:1 also did not appear to have a major impact on quantitative classification characteristics. We conclude that both 1200 and 2400 ppi scanning resolutions are acceptable options for this level of land cover classification, as well as a compression ratio at or below approximately 46:1. Auto range density should always be used during scanning because it acquires more of the information from the film. The particular combination of scanning spatial resolution and compression level will require a case-by-case decision and will depend upon memory capabilities, analytical objectives and the spatial properties of the objects in the image.

  18. Generalized interpretation scheme for arbitrary HR InSAR image pairs

    NASA Astrophysics Data System (ADS)

    Boldt, Markus; Thiele, Antje; Schulz, Karsten

    2013-10-01

    Land cover classification of remote sensing imagery is an important topic of research. For example, different applications require precise and fast information about the land cover of the imaged scenery (e.g., disaster management and change detection). Focusing on high resolution (HR) spaceborne remote sensing imagery, the user has the choice between passive and active sensor systems. Passive systems, such as multispectral sensors, have the disadvantage of being dependent from weather influences (fog, dust, clouds, etc.) and time of day, since they work in the visible part of the electromagnetic spectrum. Here, active systems like Synthetic Aperture Radar (SAR) provide improved capabilities. As an interactive method analyzing HR InSAR image pairs, the CovAmCohTM method was introduced in former studies. CovAmCoh represents the joint analysis of locality (coefficient of variation - Cov), backscatter (amplitude - Am) and temporal stability (coherence - Coh). It delivers information on physical backscatter characteristics of imaged scene objects or structures and provides the opportunity to detect different classes of land cover (e.g., urban, rural, infrastructure and activity areas). As example, railway tracks are easily distinguishable from other infrastructure due to their characteristic bluish coloring caused by the gravel between the sleepers. In consequence, imaged objects or structures have a characteristic appearance in CovAmCoh images which allows the development of classification rules. In this paper, a generalized interpretation scheme for arbitrary InSAR image pairs using the CovAmCoh method is proposed. This scheme bases on analyzing the information content of typical CovAmCoh imagery using the semisupervised k-means clustering. It is shown that eight classes model the main local information content of CovAmCoh images sufficiently and can be used as basis for a classification scheme.

  19. Influence of snow cover changes on surface radiation and heat balance based on the WRF model

    NASA Astrophysics Data System (ADS)

    Yu, Lingxue; Liu, Tingxiang; Bu, Kun; Yang, Jiuchun; Chang, Liping; Zhang, Shuwen

    2017-10-01

    The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes, indicating the importance of snow cover changes in the surface-atmospheric feedback system.

  20. VLUIS, a land use data product for Victoria, Australia, covering 2006 to 2013

    PubMed Central

    Morse-McNabb, Elizabeth; Sheffield, Kathryn; Clark, Rob; Lewis, Hayden; Robson, Susan; Cherry, Don; Williams, Steve

    2015-01-01

    Land Use Information is a key dataset required to enable an understanding of the changing nature of our landscapes and the associated influences on natural resources and regional communities. The Victorian Land Use Information System (VLUIS) data product has been created within the State Government of Victoria to support land use assessments. The project began in 2007 using stakeholder engagement to establish product requirements such as format, classification, frequency and spatial resolution. Its genesis is significantly different to traditional methods, incorporating data from a range of jurisdictions to develop land use information designed for regular on-going creation and consistency. Covering the entire landmass of Victoria, the dataset separately describes land tenure, land use and land cover. These variables are co-registered to a common spatial base (cadastral parcels) across the state for the period 2006 to 2013; biennially for land tenure and land use, and annually for land cover. Data is produced as a spatial GIS feature class. PMID:26602150

  1. VLUIS, a land use data product for Victoria, Australia, covering 2006 to 2013.

    PubMed

    Morse-McNabb, Elizabeth; Sheffield, Kathryn; Clark, Rob; Lewis, Hayden; Robson, Susan; Cherry, Don; Williams, Steve

    2015-11-24

    Land Use Information is a key dataset required to enable an understanding of the changing nature of our landscapes and the associated influences on natural resources and regional communities. The Victorian Land Use Information System (VLUIS) data product has been created within the State Government of Victoria to support land use assessments. The project began in 2007 using stakeholder engagement to establish product requirements such as format, classification, frequency and spatial resolution. Its genesis is significantly different to traditional methods, incorporating data from a range of jurisdictions to develop land use information designed for regular on-going creation and consistency. Covering the entire landmass of Victoria, the dataset separately describes land tenure, land use and land cover. These variables are co-registered to a common spatial base (cadastral parcels) across the state for the period 2006 to 2013; biennially for land tenure and land use, and annually for land cover. Data is produced as a spatial GIS feature class.

  2. Impacts of Land Cover Changes on Climate over China

    NASA Astrophysics Data System (ADS)

    Chen, L.; Frauenfeld, O. W.

    2014-12-01

    Land cover changes can influence regional climate through modifying the surface energy balance and water fluxes, and can also affect climate at large scales via changes in atmospheric general circulation. With rapid population growth and economic development, China has experienced significant land cover changes, such as deforestation, grassland degradation, and farmland expansion. In this study, the Community Earth System Model (CESM) is used to investigate the climate impacts of anthropogenic land cover changes over China. To isolate the climatic effects of land cover change, we focus on the CAM and CLM models, with prescribed climatological sea surface temperature and sea ice cover. Two experiments were performed, one with current vegetation and the other with potential vegetation. Current vegetation conditions were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, and potential vegetation over China was obtained from Ramankutty and Foley's global potential vegetation dataset. Impacts of land cover changes on surface air temperature and precipitation are assessed based on the difference of the two experiments. Results suggest that land cover changes have a cold-season cooling effect in a large region of China, but a warming effect in summer. These temperature changes can be reconciled with albedo forcing and evapotranspiration. Moreover, impacts on atmospheric circulation and the Asian Monsoon is also discussed.

  3. Correlations between land covers and honey bee colony losses in a country with industrialized and rural regions.

    PubMed

    Clermont, Antoine; Eickermann, Michael; Kraus, François; Hoffmann, Lucien; Beyer, Marco

    2015-11-01

    High levels of honey bee colony losses were recently reported from Canada, China, Europe, Israel, Turkey and the United States, raising concerns of a global pollinator decline and questioning current land use practices, in particular intense agricultural cropping systems. Sixty-seven crops (data from the years 2010-2012) and 66 mid-term stable land cover classes (data from 2007) were analysed for statistical relationships with the honey bee colony losses experienced over the winters 2010/11-2012/13 in Luxembourg (Western Europe). The area covered by each land cover class, the shortest distance between each land cover class and the respective apiary, the number of plots covered by each land use class and the size of the biggest plot of each land cover class within radii of 2 km and 5 km around 166 apiaries (2010), 184 apiaries (2011) and 188 apiaries (2012) were tested for correlations with honey bee colony losses (% per apiary) experienced in the winter following the season when the crops were grown. Artificial water bodies, open urban areas, large industrial facilities including heavy industry, railways and associated installations, buildings and installations with socio-cultural purpose, camping-, sports-, playgrounds, golf courts, oilseed crops other than oilseed rape like sunflower or linseed, some spring cereals and former forest clearcuts or windthrows were the land cover classes most frequently associated with high honey bee colony losses. Grain maize, mixed forest and mixed coniferous forest were the land cover classes most frequently associated with low honey bee colony losses. The present data suggest that land covers related to transport, industry and leisure may have made a more substantial contribution to winter honey bee colony losses in developed countries than anticipated so far. Recommendations for the positioning of apiaries are discussed. Copyright © 2015. Published by Elsevier B.V.

  4. Simulating the hydrologic impacts of land cover and climate changes in a semi-arid watershed

    EPA Pesticide Factsheets

    Changes in climate and land cover are among the principal variables affecting watershed hydrology.This paper uses a cell-based model to examine the hydrologic impacts of climate and land-cover changes in thesemi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevada, USA. The cell-basedmodel is developed by considering direct runoff based on the Soil Conservation Service - Curve Number (SCSCN)method and surplus runoff based on the Thornthwaite water balance theory. After calibration and validation,the model is used to predict LVR discharge under future climate and land-cover changes. The hydrologicsimulation results reveal climate change as the dominant factor and land-cover change as a secondary factor inregulating future river discharge. The combined effects of climate and land-cover changes will slightly increaseriver discharge in summer but substantially decrease discharge in winter. This impact on water resources deservesattention in climate change adaptation planning.This dataset is associated with the following publication:Chen, H., S. Tong, H. Yang, and J. Yang. Simulating the hydrologic impacts of land cover and climate changes in a semi-arid watershed. Hydrological Sciences Journal. IAHS LIMITED, Oxford, UK, 60(10): 1739-1758, (2015).

  5. Hydrological Response to Land Cover Changes and Human Activities in Arid Regions Using a Geographic Information System and Remote Sensing

    PubMed Central

    Mahmoud, Shereif H.; Alazba, A. A.

    2015-01-01

    The hydrological response to land cover changes induced by human activities in arid regions has attracted increased research interest in recent decades. The study reported herein assessed the spatial and quantitative changes in surface runoff resulting from land cover change in the Al-Baha region of Saudi Arabia between 1990 and 2000 using an ArcGIS-surface runoff model and predicted land cover and surface runoff depth in 2030 using Markov chain analysis. Land cover maps for 1990 and 2000 were derived from satellite images using ArcGIS 10.1. The findings reveal a 26% decrease in forest and shrubland area, 28% increase in irrigated cropland, 1.5% increase in sparsely vegetated land and 0.5% increase in bare soil between 1990 and 2000. Overall, land cover changes resulted in a significant decrease in runoff depth values in most of the region. The decrease in surface runoff depth ranged from 25-106 mm/year in a 7020-km2 area, whereas the increase in such depth reached only 10 mm/year in a 243-km2 area. A maximum increase of 73 mm/year was seen in a limited area. The surface runoff depth decreased to the greatest extent in the central region of the study area due to the huge transition in land cover classes associated with the construction of 25 rainwater harvesting dams. The land cover prediction revealed a greater than twofold increase in irrigated cropland during the 2000-2030 period, whereas forest and shrubland are anticipated to occupy just 225 km2 of land area by 2030, a significant decrease from the 747 km2 they occupied in 2000. Overall, changes in land cover are predicted to result in an annual increase in irrigated cropland and dramatic decline in forest area in the study area over the next few decades. The increase in surface runoff depth is likely to have significant implications for irrigation activities. PMID:25923712

  6. Classification and area estimation of land covers in Kansas using ground-gathered and LANDSAT digital data

    NASA Technical Reports Server (NTRS)

    May, G. A.; Holko, M. L.; Anderson, J. E.

    1983-01-01

    Ground-gathered data and LANDSAT multispectral scanner (MSS) digital data from 1981 were analyzed to produce a classification of Kansas land areas into specific types called land covers. The land covers included rangeland, forest, residential, commercial/industrial, and various types of water. The analysis produced two outputs: acreage estimates with measures of precision, and map-type or photo products of the classification which can be overlaid on maps at specific scales. State-level acreage estimates were obtained and substate-level land cover classification overlays and estimates were generated for selected geographical areas. These products were found to be of potential use in managing land and water resources.

  7. Land-Cover Trends of the Southern California Mountains Ecoregion

    USGS Publications Warehouse

    Soulard, Christopher E.; Raumann, Christian G.; Wilson, Tamara S.

    2007-01-01

    This report presents an assessment of land-use and land-cover (LU/LC) change in the Southern California Mountains ecoregion for the period 1973-2001. The Southern California Mountains is one of 84 Level-III ecoregions as defined by the U.S. Environmental Protection Agency (EPA). Ecoregions have served as a spatial framework for environmental resource management, denoting areas that contain a geographically distinct assemblage of biotic and abiotic phenomena including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The established Land Cover Trends methodology generates estimates of change for ecoregions using a probability sampling approach and change-detection analysis of thematic land-cover images derived from Landsat satellite imagery.

  8. Combining Satellite Data and Models to Assess the Impacts of Urbanization on the Continental US Surface Climate

    NASA Technical Reports Server (NTRS)

    Bounoua, L.; Zhang, P.; Imhoff, M.; Santanello, J.; Kumar, S.; Shepherd, M.; Quattrochi, D.; Silva, J.; Rosenzweigh, C.; Gaffin, S.; hide

    2013-01-01

    Urbanization is one of the most important and long lasting forms of land transformation. Urbanization affects the surface climate in different ways: (1) by reduction of the vegetation fraction causing subsequent reduction in photosynthesis and plant s water transpiration, (2) by alternation of surface runoff and infiltration and their impacts on soil moisture and the water table, (3) by change in the surface albedo and surface energy partitioning, and (4) by transformation of the surface roughness length and modification of surface fluxes. Land cover and land use change maps including urban areas have been developed and will be used in a suite of land surface models of different complexity to assess the impacts of urbanization on the continental US surface climate. These maps and datasets based on a full range of available satellite data and ground observations will be used to characterize distant-past (pre-urban), recent-past (2001), present (2010), and near future (2020) land cover and land use changes. The main objective of the project is to assess the impacts of these land transformation on past, current and near-future climate and the potential feedbacks from these changes on the atmospheric, hydrologic, biological, and socio-economic properties beyond the immediate metropolitan regions of cities and their near suburbs. The WRF modeling system will be used to explore the nature and the magnitude of the two-way interactions between urban lands and the atmosphere and assess the overall regional dynamic effect of urban expansion on the northeastern US weather and climate

  9. The national land use data program of the US Geological Survey

    NASA Technical Reports Server (NTRS)

    Anderson, J. R.; Witmer, R. E.

    1975-01-01

    The Land Use Data and Analysis (LUDA) Program which provides a systematic and comprehensive collection and analysis of land use and land cover data on a nationwide basis is described. Maps are compiled at about 1:125,000 scale showing present land use/cover at Level II of a land use/cover classification system developed by the U.S. Geological Survey in conjunction with other Federal and state agencies and other users. For each of the land use/cover maps produced at 1:125,000 scale, overlays are also compiled showing Federal land ownership, river basins and subbasins, counties, and census county subdivisions. The program utilizes the advanced technology of the Special Mapping Center of the U.S. Geological Survey, high altitude NASA photographs, aerial photographs acquired for the USGS Topographic Division's mapping program, and LANDSAT data in complementary ways.

  10. Land-cover effects on soil organic carbon stocks in a European city.

    PubMed

    Edmondson, Jill L; Davies, Zoe G; McCormack, Sarah A; Gaston, Kevin J; Leake, Jonathan R

    2014-02-15

    Soil is the vital foundation of terrestrial ecosystems storing water, nutrients, and almost three-quarters of the organic carbon stocks of the Earth's biomes. Soil organic carbon (SOC) stocks vary with land-cover and land-use change, with significant losses occurring through disturbance and cultivation. Although urbanisation is a growing contributor to land-use change globally, the effects of urban land-cover types on SOC stocks have not been studied for densely built cities. Additionally, there is a need to resolve the direction and extent to which greenspace management such as tree planting impacts on SOC concentrations. Here, we analyse the effect of land-cover (herbaceous, shrub or tree cover), on SOC stocks in domestic gardens and non-domestic greenspaces across a typical mid-sized U.K. city (Leicester, 73 km(2), 56% greenspace), and map citywide distribution of this ecosystem service. SOC was measured in topsoil and compared to surrounding extra-urban agricultural land. Average SOC storage in the city's greenspace was 9.9 kg m(-2), to 21 cm depth. SOC concentrations under trees and shrubs in domestic gardens were greater than all other land-covers, with total median storage of 13.5 kg m(-2) to 21 cm depth, more than 3 kg m(-2) greater than any other land-cover class in domestic and non-domestic greenspace and 5 kg m(-2) greater than in arable land. Land-cover did not significantly affect SOC concentrations in non-domestic greenspace, but values beneath trees were higher than under both pasture and arable land, whereas concentrations under shrub and herbaceous land-covers were only higher than arable fields. We conclude that although differences in greenspace management affect SOC stocks, trees only marginally increase these stocks in non-domestic greenspaces, but may enhance them in domestic gardens, and greenspace topsoils hold substantial SOC stores that require protection from further expansion of artificial surfaces e.g. patios and driveways. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Reduction of livelihood risk for river bank erosion affected villagers

    NASA Astrophysics Data System (ADS)

    Majumder, S. Sen; Fox, D. M.; Chakrabari, S.; Bhandari, G.

    2014-12-01

    Bank erosion process of the Ganga River created a serious livelihood risk for the villagers situated on left bank of the river in Malda district of the State of West Bengal, India since last four decades. Due to the erosion of agriculture land by the river, most of the villagers having agriculture as their only means of livelihood became jobless suddenly. Presently they are living in a miserable condition. One of the main objectives of this paper is to find out an alternative means of livelihood for the victims to improve their miserable socio-economic condition. It has been found from field survey that some erosion affected villagers have started to live and practice agriculture temporarily on the riverine islands (large and stable since thirteen years) as these islands have very fertile soil. If the re-emerged land plots can again be demarcated on the newly formed islands and distributed among the landless people to practice agriculture over there, then it will be a useful alternative livelihood strategy for the victims. The demarcation of re-emerged plots can be achieved by georeferencing the cadastral maps and then overlaying the plots on the present river course. In the present study area geo-referencing process of the cadastral maps became a serious issue as the study area has been very dynamic in terms of land cover and land use. Most of the villages were lost into the river course. Thus the common permanent features, required for geo-referencing, shown in the cadastral maps (surveyed during 1954-1962) were not found in the present satellite images. The second important objective of the present study is to develop a proper methodology for geo-referencing the cadastral maps of this area. The Spatial Adjustment Transformation and Automatic Digitization tools of Arc GIS were used to prepare geo-referenced plot maps. In Projective Transformation method the geometrically corrected block maps having village boundaries were used as source file. Then the georeferenced plot maps were overlaid on the present river course and the plots covered by islands or lands were extracted. For e.g., Gopalpur village contains nearly 29% of its total area as riverine island and 36% of total plots are covered by this island area. These plots can be distributed to the land less people so that they can utilize it and reduce their livelihood risk in future.

  12. EVALUATING ECOREGIONS FOR SAMPLING AND MAPPING LAND-COVER PATTERNS

    EPA Science Inventory

    Ecoregional stratification has been proposed for sampling and mapping land- cover composition and pattern over time. Using a wall-to-wall land-cover map of the United States, we evaluated geographic scales of variance for 17 landscape pattern indices, and compared stratification ...

  13. Estimating Landscape Pattern Metrics from a Sample of Land Cover

    EPA Science Inventory

    Although landscape pattern metrics can be computed directly from wall-to-wall land-cover maps, statistical sampling offers a practical alternative when complete coverage land-cover information is unavailable. Partitioning a region into spatial units (“blocks”) to create a samplin...

  14. Global land-cover and land-use change of the last 6000 years for climate modelling studies: the PAGES LandCover6k initiative and its first achievements

    NASA Astrophysics Data System (ADS)

    Gaillard, Marie-Jose; Morrison, Kathleen; Madella, Marco; Whitehouse, Nicki J.; Pages Landcover6k Sub-Coordinators

    2016-04-01

    The goal of the PAGES LandCover6k initiative is to provide relevant, empirical data on past anthropogenic land-cover change (land-use change) to climate modellers (e.g. the CMIP5 initiative). Land-use change is one of many climate forcings and its effect on climate is still badly understood. Among the effects of land-cover change on climate, the best known are the biogeochemical effects, and in particular the influence on the exchange of CO2 between the land surface and the atmosphere. The biogeophysical effects are less well understood, i.e. the net effect of changes in the albedo and evapotranspiration is complex. Moreover, the net effect of both biogeochemical and biogeophysical processes due to land-use change is still a matter of debate. The LandCover6k working group infers land-use data from fossil pollen records from lake sediments and peat deposits, and from historical archives and archaeological records (including pollen and other palaeoecological records such as wood and plant micro/macroremains). The working group is divided into two activities, i) pollen-based reconstructions of past land cover using pollen-vegetation modelling approaches, and mapping of pollen-based land-cover change using spatial statistics (e.g. Trondman et al., 2015; Pirzimanbein et al., 2014), and ii) upscaling and summarizing historical and archaeological data into maps of major land-use categories linked to quantitative attributes. Studies on pollen productivity of major plant taxa are an essential part of activity i). Pollen productivity estimates are available for a large number of the northern hemisphere, major plant taxa, but are still missing for large parts of the tropics for which research is currently in progress. The results of both activities are then used to revise existing Anthropogenic Land-Cover Change (ALCC) scenarios, the HYDE database (Klein-Goldewijk et al.,) and KK (Kaplan et al.,). Climate modellers (e.g. the CMIP5 initiative) can use the LandCover6k products as such (i and ii above), and/or the revised HYDE and KK ALCCs. The LandCover6k working group focuses on regions of the world where humans have had a significant impact on land cover during the last 6000 (6k) calendar years (in some regions earlier than 6k ago) through deforestation and diverse agricultural practices, i.e. the Americas, Western and Eastern Africa, Europe, and Asia. In Asia, the emphasis has been placed so far on China, India and Japan. References: Kaplan JO et al. (2009) Quaternary Science Reviews 28(27-28): 3016-3034. doi: 10.1016/j.quascirev. 2009.09.028; Klein Goldewijk K et al. (2011) Global Ecology and Biogeography 20: 73-86. doi: 10.1111/j.1466-8238.2010.00587.x; Pirzamanbein B et al. (2014) Ecol Complex 20:127-141; Trondman A-K et al. (2015) Glob Chang Biol 21:676-697. doi:10.1111/gcb.12737.

  15. High Resolution Land Use Land Cover Classification using Landsat Earth Observation Data for the Continental Africa

    NASA Astrophysics Data System (ADS)

    Midekisa, A.; Bennet, A.; Gething, P. W.; Holl, F.; Andrade-Pacheco, R.; Savory, D. J.; Hugh, S. J.

    2016-12-01

    Spatially detailed and temporally dynamic land use land cover data is necessary to monitor the state of the land surface for various applications. Yet, such data at a continental to global scale is lacking. Here, we developed high resolution (30 meter) annual land use land cover layers for the continental Africa using Google Earth Engine. To capture ground truth training data, high resolution satellite imageries were visually inspected and used to identify 7, 212 sample Landsat pixels that were comprised entirely of one of seven land use land cover classes (water, man-made impervious surface, high biomass, low biomass, rock, sand and bare soil). For model validation purposes, 80% of points from each class were used as training data, with 20% withheld as a validation dataset. Cloud free Landsat 7 annual composites for 2000 to 2015 were generated and spectral bands from the Landsat images were then extracted for each of the training and validation sample points. In addition to the Landsat spectral bands, spectral indices such as normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used as covariates in the model. Additionally, calibrated night time light imageries from the National Oceanic and Atmospheric Administration (NOAA) were included as a covariate. A decision tree classification algorithm was applied to predict the 7 land cover classes for the periods 2000 to 2015 using the training dataset. Using the validation dataset, classification accuracy including omission error and commission error were computed for each land cover class. Model results showed that overall accuracy of classification was high (88%). This high resolution land cover product developed for the continental Africa will be available for public use and can potentially enhance the ability of monitoring and studying the state of the Earth's surface.

  16. Evaluation of the National Land Database for Hydrologic Applications in Urban And Suburban Baltimore, Maryland

    Treesearch

    Monica Lipscomb Smith; Weiqi Zhou; Mary Cadenasso; J. Morgan Grove; Lawrence Band

    2010-01-01

    We compared the National Land Cover Database (NLCD) 2001 land cover, impervious, and canopy data products to land cover data derived from 0.6-m resolution three-band digital imagery and ancillary data. We conducted this comparison at the 1 km2, 9 km2, and gauged watershed scales within the Baltimore Ecosystem Study to...

  17. Producing Alaska interim land cover maps from Landsat digital and ancillary data

    USGS Publications Warehouse

    Fitzpatrick-Lins, Katherine; Doughty, Eileen Flanagan; Shasby, Mark; Loveland, Thomas R.; Benjamin, Susan

    1987-01-01

    In 1985, the U.S. Geological Survey initiated a research program to produce 1:250,000-scale land cover maps of Alaska using digital Landsat multispectral scanner data and ancillary data and to evaluate the potential of establishing a statewide land cover mapping program using this approach. The geometrically corrected and resampled Landsat pixel data are registered to a Universal Transverse Mercator (UTM) projection, along with arc-second digital elevation model data used as an aid in the final computer classification. Areas summaries of the land cover classes are extracted by merging the Landsat digital classification files with the U.S. Bureau of Land Management's Public Land Survey digital file. Registration of the digital land cover data is verified and control points are identified so that a laser plotter can products screened film separate for printing the classification data at map scale directly from the digital file. The final land cover classification is retained both as a color map at 1:250,000 scale registered to the U.S. Geological Survey base map, with area summaries by township and range on the reverse, and as a digital file where it may be used as a category in a geographic information system.

  18. Status and trends of land change in the Eastern United States—1973 to 2000

    USGS Publications Warehouse

    Sayler, Kristi L.; Acevedo, William; Taylor, Janis

    2016-09-28

    PrefaceU.S. Geological Survey (USGS) Professional Paper 1794–D is the fourth in a four-volume series on the status and trends of the Nation’s land use and land cover, providing an assessment of the rates and causes of land-use and land-cover change in the Eastern United States between 1973 and 2000. Volumes A, B, and C provide similar analyses for the Western United States, the Great Plains of the United States, and the Midwest–South Central United States, respectively. The assessments of land-use and land-cover trends are conducted on an ecoregion-by-ecoregion basis, and each ecoregion assessment is guided by a nationally consistent study design that includes mapping, statistical methods, field studies, and analysis. Individual assessments provide a picture of the characteristics of land change occurring in a given ecoregion; in combination, they provide a framework for understanding the complex national mosaic of change and also the causes and consequences of change. Thus, each volume in this series provides a regional assessment of how (and how fast) land use and land cover are changing, and why. The four volumes together form the first comprehensive picture of land change across the Nation.Geographic understanding of land-use and land-cover change is directly relevant to a wide variety of stakeholders, including land and resource managers, policymakers, and scientists. The chapters in this volume present brief summaries of the patterns and rates of land change observed in each ecoregion in the Eastern United States, together with field photographs, statistics, and comparisons with other assessments. In addition, a synthesis chapter summarizes the scope of land change observed across the entire Eastern United States. The studies provide a way of integrating information across the landscape, and they form a critical component in the efforts to understand how land use and land cover affect important issues such as the provision of ecological goods and services and also the determination of risks to, and vulnerabilities of, human communities. Results from this project also are published in peer-reviewed journals, and they are further used to produce maps of change and other tools for land management, as well as to provide inputs for carbon-cycle modeling and other climate change research.This report is only one of the products produced by USGS on land-use and land-cover change in the United States. Other reports and land-cover statistics are available online at http://landcovertrends.usgs.gov.

  19. Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Wilson, Tamara S.; Acevedo, William

    2012-12-05

    U.S. Geological Survey (USGS) Professional Paper 1794–A is the first in a four-volume series on the status and trends of the Nation’s land use and land cover, providing an assessment of the rates and causes of land-use and land-cover change in the Western United States between 1973 and 2000. Volumes B, C, and D provide similar analyses for the Great Plains, the Midwest–South Central United States, and the Eastern United States, respectively. The assessments of land-use and land-cover trends are conducted on an ecoregion-by-ecoregion basis, and each ecoregion assessment is guided by a nationally consistent study design that includes mapping, statistical methods, field studies, and analysis. Individual assessments provide a picture of the characteristics of land change occurring in a given ecoregion; in combination, they provide a framework for understanding the complex national mosaic of change and also the causes and consequences of change. Thus, each volume in this series provides a regional assessment of how (and how fast) land use and land cover are changing, and why. The four volumes together form the first comprehensive picture of land change across the Nation. Geographic understanding of land-use and land-cover change is directly relevant to a wide variety of stakeholders, including land and resource managers, policymakers, and scientists. The chapters in this volume present brief summaries of the patterns and rates of land change observed in each ecoregion in the Western United States, together with field photographs, statistics, and comparisons with other assessments. In addition, a synthesis chapter summarizes the scope of land change observed across the entire Western United States. The studies provide a way of integrating information across the landscape, and they form a critical component in the efforts to understand how land use and land cover affect important issues such as the provision of ecological goods and services and also the determination of risks to, and vulnerabilities of, human communities. Results from this project also are published in peer-reviewed journals, and they are further used to produce maps of change and other tools for land management, as well as to provide inputs for carbon-cycle modeling and other climate change research. This report is only one of the products produced by USGS on land-use and land-cover change in the United States. Other reports and land-cover statistics are available online at http://landcovertrends.usgs.gov.

  20. Evaluating the Synergistic Use of Low-Altitude AVIRIS and AIRSAR Data for Land Cover Mapping in Northeast Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Berglund, Judith; Spruce, Joseph

    2001-01-01

    Current land cover maps are needed by Yellowstone National Park (YNP) managers to assist them in protecting and preserving native flora and fauna. Synergistic use of hyperspectral and radar imagery offers great promise for mapping habitat in terms of cover type composition and structure. In response, a study was conducted to assess the utility of combining low-altitude AVIRIS and AIRSAR data for mapping land cover in a portion of northeast YNP. Land cover maps were produced from individual AVIRIS and AIRSAR data sets, as well as from a hybrid data stack of selected AVIRIS and AIRSAR data bands. The three resulting classifications were compared to field survey data and aerial photography to assess apparent benefits of hyperspectral/SAR data fusion for land cover mapping. Preliminary results will be presented.

Top