Sample records for land surface features

  1. Does the spatial arrangement of vegetation and anthropogenic land cover features matter? Case studies of urban warming and cooling in Phoenix and Las Vegas

    NASA Astrophysics Data System (ADS)

    Myint, S. W.; Zheng, B.; Fan, C.; Kaplan, S.; Brazel, A.; Middel, A.; Smith, M.

    2014-12-01

    While the relationship between fractional cover of anthropogenic and vegetation features and the urban heat island has been well studied, the effect of spatial arrangements (e.g., clustered, dispersed) of these features on urban warming or cooling are not well understood. The goal of this study is to examine if and how spatial configuration of land cover features influence land surface temperatures (LST) in urban areas. This study focuses on Phoenix, AZ and Las Vegas, NV that have undergone dramatic urban expansion. The data used to classify detailed urban land cover types include Geoeye-1 (Las Vegas) and QuickBird (Phoenix). The Geoeye-1 image (3 m resolution) was acquired on October 12, 2011 and the QuickBird image (2.4 m resolution) was taken on May 29, 2007. Classification was performed using object based image analysis (OBIA). We employed a spatial autocorrelation approach (i.e., Moran's I) that measures the spatial dependence of a point to its neighboring points and describes how clustered or dispersed points are arranged in space. We used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired over Phoenix (daytime on June 10, 2011 and nighttime on October 17, 2011) and Las Vegas (daytime on July 6, 2005 and nighttime on August 27, 2005) to examine daytime and nighttime LST with regards to the spatial arrangement of anthropogenic and vegetation features. We spatially correlate Moran's I values of each land cover per surface temperature, and develop regression models. The spatial configuration of grass and trees shows strong negative correlations with LST, implying that clustered vegetation lowers surface temperatures more effectively. In contrast, a clustered spatial arrangement of anthropogenic land-cover features, especially impervious surfaces, significantly elevates surface temperatures. Results from this study suggest that the spatial configuration of anthropogenic and vegetation features influence urban warming and cooling.

  2. Mars Exploration Rovers Entry, Descent, and Landing Trajectory Analysis

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Knocke, Philip C.

    2007-01-01

    In this study we present a novel method of land surface classification using surface-reflected GPS signals in combination with digital imagery. Two GPS-derived classification features are merged with visible image data to create terrain-moisture (TM) classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding the GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping.

  3. Incorporating JULES into NASA's Land Information System (LIS) and Investigations of Land-Atmosphere Coupling

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph

    2011-01-01

    NASA's Land Information System (LIS; lis.gsfc.nasa.gov) is a flexible land surface modeling and data assimilation framework developed over the past decade with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. LIS features a high performance and flexible design, and operates on an ensemble of land surface models for extension over user-specified regional or global domains. The extensible interfaces of LIS allow the incorporation of new domains, land surface models (LSMs), land surface parameters, meteorological inputs, data assimilation and optimization algorithms. In addition, LIS has also been demonstrated for parameter estimation and uncertainty estimation, and has been coupled to the Weather Research and Forecasting (WRF) mesoscale model. A visiting fellowship is currently underway to implement JULES into LIS and to undertake some fundamental science on the feedbacks between the land surface and the atmosphere. An overview of the LIS system, features, and sample results will be presented in an effort to engage the community in the potential advantages of LIS-JULES for a range of applications. Ongoing efforts to develop a framework for diagnosing land-atmosphere coupling will also be presented using the suite of LSM and PBL schemes available in LIS and WRF along with observations from the U. S .. Southern Great Plains. This methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate coupling diagnostics within the community.

  4. Understanding the biological underpinnings of ecohydrological processes

    NASA Astrophysics Data System (ADS)

    Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.

    2012-12-01

    Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation has precluded determination of sufficient theoretical development. Understanding the land-surface response and feedback to climate change requires a mechanistic understanding of the coupling of ecological and hydrological processes and an expansion of theory from the life sciences to appropriately contribute to the broader Earth system science goal.

  5. Application of multispectral scanner data to the study of an abandoned surface coal mine

    NASA Technical Reports Server (NTRS)

    Spisz, E. W.

    1978-01-01

    The utility of aircraft multispectral scanner data for describing the land cover features of an abandoned contour-mined coal mine is considered. The data were obtained with an 11 band multispectral scanner at an altitude of 1.2 kilometers. Supervised, maximum-likelihood statistical classifications of the data were made to establish land-cover classes and also to describe in more detail the barren surface features as they may pertain to the reclamation or restoration of the area. The scanner data for the surface-water areas were studied to establish the variability and range of the spectral signatures. Both day and night thermal images of the area are presented. The results of the study show that a high degree of statistical separation can be obtained from the multispectral scanner data for the various land-cover features.

  6. Documentation of a digital spatial data base for hydrologic investigations, Broward County, Florida

    USGS Publications Warehouse

    Sonenshein, R.S.

    1992-01-01

    Geographic information systems have become an important tool in planning for the protection and development of natural resources, including ground water and surface water. A digital spatial data base consisting of 18 data layers that can be accessed by a geographic information system was developed for Broward County, Florida. Five computer programs, including one that can be used to create documentation files for each data layer and four that can be used to create data layers from data files not already in geographic information system format, were also developed. Four types of data layers have been developed. Data layers for manmade features include major roads, municipal boundaries, the public land-survey section grid, land use, and underground storage tank facilities. The data layer for topographic features consists of surveyed point land-surface elevations. Data layers for hydrologic features include surface-water and rainfall data-collection stations, surface-water bodies, water-control district boundaries, and water-management basins. Data layers for hydrogeologic features include soil associations, transmissivity polygons, hydrogeologic unit depths, and a finite-difference model grid for south-central Broward County. Each data layer is documented as to the extent of the features, number of features, scale, data sources, and a description of the attribute tables where applicable.

  7. Land surface and climate parameters and malaria features in Vietnam

    NASA Astrophysics Data System (ADS)

    Liou, Y. A.; Anh, N. K.

    2017-12-01

    Land surface parameters may affect local microclimate, which in turn alters the development of mosquito habitats and transmission risks (soil-vegetation-atmosphere-vector borne diseases). Forest malaria is a chromic issue in Southeast Asian countries, in particular, such as Vietnam (in 1991, approximate 2 million cases and 4,646 deaths were reported (https://sites.path.org)). Vietnam has lowlands, sub-tropical high humidity, and dense forests, resulting in wide-scale distribution and high biting rate of mosquitos in Vietnam, becoming a challenging and out of control scenario, especially in Vietnamese Central Highland region. It is known that Vietnam's economy mainly relies on agriculture and malaria is commonly associated with poverty. There is a strong demand to investigate the relationship between land surface parameters (land cover, soil moisture, land surface temperature, etc.) and climatic variables (precipitation, humidity, evapotranspiration, etc.) in association with malaria distribution. GIS and remote sensing have been proven their powerful potentials in supporting environmental and health studies. The objective of this study aims to analyze physical attributes of land surface and climate parameters and their links with malaria features. The outcomes are expected to illustrate how remotely sensed data has been utilized in geohealth applications, surveillance, and health risk mapping. In addition, a platform with promising possibilities of allowing disease early-warning systems with citizen participation will be proposed.

  8. Annual land cover change mapping using MODIS time series to improve emissions inventories.

    NASA Astrophysics Data System (ADS)

    López Saldaña, G.; Quaife, T. L.; Clifford, D.

    2014-12-01

    Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A prototype land cover product was created for 2006 to 2008. Several machine learning classifiers were tested as well as different sets of input features going from the BRDF parameters to spectral Albedo. We will present the results of the time series development and the first exercises when creating the prototype land cover product.

  9. Mission to Earth: LANDSAT Views the World. [Color imagery of the earth's surface

    NASA Technical Reports Server (NTRS)

    Short, N. M.; Lowman, P. D., Jr.; Freden, S. C.; Finch, W. A., Jr.

    1976-01-01

    The LANDSAT program and system is described. The entire global land surface of Earth is visualized in 400 color plates at a scale and resolution that specify natural land cultural features in man's familiar environments. A glossary is included.

  10. Effect of canopy and topography induced wakes on land-atmosphere fluxes of momentum and scalars

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.; Zhang, W.; Porté-Agel, F.; Stefan, H. G.

    2012-04-01

    Wakes shed from natural and anthropogenic landscape features affect land-atmosphere fluxes of momentum and scalars, including water vapor and trace gases (e.g. CO2). Canopies and bluff bodies, such as forests, buildings and topography, cause boundary layer flow separation, and lead to a break down of standard Monin-Obukhov similarity relationships in the atmospheric boundary layer (ABL). Wakes generated by these land surface features persist for significant distances (>100 typical length scales) and affect a large fraction of the Earth's terrestrial surface. This effect is currently not accounted for in land-atmosphere models, and little is known about how heterogeneity of wake-generating features affect land surface fluxes. Additionally flux measurements, made in wake-affected regions, do not satisfy the homogeneous flow requirements for the standard eddy correlation (EC) method. This phenomenon, often referred to as wind sheltering, has been shown to affect momentum and kinetic energy fluxes at the lake-atmosphere interface (Markfort et al. 2010). This presentation will highlight results from controlled wind tunnel experiments of neutral and thermally stratified boundary layers, using particle image velocimetry (PIV) and custom x-wire/cold-wire anemometry, to understand how the physical structure of upstream bluff bodies and porous canopies as well as how thermal stability affect the flow separation zone, boundary layer recovery and surface fluxes. We have found that there is a nonlinear relationship between canopy length/porosity and flow separation downwind of a canopy to clearing transition. Results will provide the basis for new parameterizations to account for wake effects on land-atmosphere fluxes and corrections for the EC measurements over open fields, lakes, and wetlands. Key words: Atmospheric boundary layer; Wakes; Stratification; Land-Atmosphere Parameterization; Canopy

  11. Apollo 14 visibility tests: Visibility of lunar surface features and lunar landing

    NASA Technical Reports Server (NTRS)

    Ziedman, K.

    1972-01-01

    An in-flight visibility test conducted on the Apollo 14 mission is discussed. The need for obtaining experimental data on lunar feature visibility arose from visibility problems associated with various aspects of the Apollo missions; and especially from anticipated difficulties of recognizing lunar surface features at the time of descent and landing under certain illumination conditions. Although visibility problems have influenced many other aspects of the Apollo mission, they have been particularly important for descent operations, due to the criticality of this mission phase and the crew's guidance and control role for landing site recognition and touchdown point selection. A series of analytical and photographic studies were conducted during the Apollo program (prior to as well as after the initial manned lunar operations) to delineate constraints imposed on landing operations by visibility limitations. The purpose of the visibility test conducted on Apollo 14 was to obtain data to reduce uncertainties and to extend the analytical models of visibility in the lunar environment.

  12. Examining Environmental Gradients with satellite data in permafrost regions - the current state of the ESA GlobPermafrost initative

    NASA Astrophysics Data System (ADS)

    Grosse, G.; Bartsch, A.; Kääb, A.; Westermann, S.; Strozzi, T.; Wiesmann, A.; Duguay, C. R.; Seifert, F. M.; Obu, J.; Nitze, I.; Heim, B.; Haas, A.; Widhalm, B.

    2017-12-01

    Permafrost cannot be directly detected from space, but many surface features of permafrost terrains and typical periglacial landforms are observable with a variety of EO sensors ranging from very high to medium resolution at various wavelengths. In addition, landscape dynamics associated with permafrost changes and geophysical variables relevant for characterizing the state of permafrost, such as land surface temperature or freeze-thaw state can be observed with spaceborne Earth Observation. Suitable regions to examine environmental gradients across the Arctic have been defined in a community white paper (Bartsch et al. 2014, hdl:10013/epic.45648.d001). These transects have been revised and adjusted within the DUE GlobPermafrost initiative of the European Space Agency. The ESA DUE GlobPermafrost project develops, validates and implements Earth Observation (EO) products to support research communities and international organisations in their work on better understanding permafrost characteristics and dynamics. Prototype product cases will cover different aspects of permafrost by integrating in situ measurements of subsurface and surface properties, Earth Observation, and modelling to provide a better understanding of permafrost today. The project will extend local process and permafrost monitoring to broader spatial domains, support permafrost distribution modelling, and help to implement permafrost landscape and feature mapping in a GIS framework. It will also complement active layer and thermal observing networks. Both lowland (latitudinal) and mountain (altitudinal) permafrost issues are addressed. The status of the Permafrost Information System and first results will be presented. Prototypes of GlobPermafrost datasets include: Modelled mean annual ground temperature by use of land surface temperature and snow water equivalent from satellites Land surface characterization including shrub height, land cover and parameters related to surface roughness Trends from Landsat time-series over selected transects For selected sites: subsidence, ground fast lake ice, land surface features and rock glacier monitoring

  13. Geological features and evolution history of Sinus Iridum, the Moon

    NASA Astrophysics Data System (ADS)

    Qiao, Le; Xiao, Long; Zhao, Jiannan; Huang, Qian; Haruyama, Junichi

    2014-10-01

    The Sinus Iridum region is one of the important candidate landing areas for the future Chinese lunar robotic and human missions. Considering its flat topography, abundant geomorphic features and complex evolutionary history, this region shows great significance to both lunar science and landing exploration, including powered descent, surface trafficability and in-situ exploration. First, we use Lunar Reconnaissance Orbiter (LRO) Altimeter (LOLA) and Camera (LROC) data to characterize regional topographic and geomorphological features within Sinus Iridum, e.g., wrinkle ridges and sinuous rilles. Then, we deduce the iron and titanium content for the mare surface using the Clementine ultraviolet-visible (UVVIS) data and generate mineral absorption features using the Chandrayaan-1 Moon Mineralogy Mapper (M3) spectrometer data. Later, we date the mare surface using crater size-frequency distribution (CSFD) method. CSFD measurements show that this region has experienced four major lava infilling events with model ages ranging from 3.32 Ga to 2.50 Ga. The regional magmatic activities evolved from Imbrian-aged low-titanium to Eratosthenian-aged medium-titanium. The inner Sinus Iridum is mainly composed of pyroxene-rich basalts with olivine abundance increasing with time, while the surrounding highlands have a feldspar-dominated composition. In the northern wall of Sinus Iridum, some potential olivine-rich materials directly excavated from the lunar mantle are visible. The Sinus Iridum region is an ideal target for future landing exploration, we propose two candidate landing sites for the future Chinese robotic and human missions.

  14. Volgograd and vicinity: a Landsat view

    USGS Publications Warehouse

    Dando, William A.; Johnson, Gary E.

    1981-01-01

    Many diverse features can be discerned on the Landsat image of Volgograd and vicinity. Some of these features have resulted directly from man's alteration of the land surface in accordance with Stalin's and Khrushchev's plans for control of climate and for development in Volgograd and the surrounding area. Landsat images such as the one in this example provide the opportunity to inventory and assess man's imprint upon the land on a regional basis from a unique perspective.

  15. Langley Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.; Stubbs, Sandy M.; Tanner, John A.

    1987-01-01

    The Langley Research Center has recently upgraded the Landing Loads Track (LLT) to improve the capability of low-cost testing of conventional and advanced landing gear systems. The unique feature of the Langley Aircraft Landing Dynamics Facility (ALDF) is the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A historical overview of the original LLT is given, followed by a detailed description of the new ALDF systems and operational capabilities.

  16. Understanding Decreases in Land Relative Humidity with Global Warming: Conceptual Model and GCM Simulations

    NASA Astrophysics Data System (ADS)

    Byrne, Michael P.; O'Gorman, Paul A.

    2016-12-01

    Climate models simulate a strong land-ocean contrast in the response of near-surface relative humidity to global warming: relative humidity tends to increase slightly over oceans but decrease substantially over land. Surface energy balance arguments have been used to understand the response over ocean but are difficult to apply over more complex land surfaces. Here, a conceptual box model is introduced, involving moisture transport between the land and ocean boundary layers and evapotranspiration, to investigate the decreases in land relative humidity as the climate warms. The box model is applied to idealized and full-complexity (CMIP5) general circulation model simulations, and it is found to capture many of the features of the simulated changes in land relative humidity. The box model suggests there is a strong link between fractional changes in specific humidity over land and ocean, and the greater warming over land than ocean then implies a decrease in land relative humidity. Evapotranspiration is of secondary importance for the increase in specific humidity over land, but it matters more for the decrease in relative humidity. Further analysis shows there is a strong feedback between changes in surface-air temperature and relative humidity, and this can amplify the influence on relative humidity of factors such as stomatal conductance and soil moisture.

  17. A study of the utilization of ERTS-1 data from the Wabash River Basin

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Nine projects are defined, five ERTS data applications experiments and four supporting technology tasks. The most significant applications results were achieved in the soil association mapping, earth surface feature identification, and urban land use mapping efforts. Four soil association boundaries were accurately delineated from ERTS-1 imagery. A data bank has been developed to test surface feature classifications obtained from ERTS-1 data. Preliminary forest cover classifications indicated that the number of acres estimated tended to be greater than actually existed by 25%. Urban land use analysis of ERTS-1 data indicated highly accurate classification could be obtained for many urban catagories. The wooded residential category tended to be misclassified as woods or agricultural land. Further statistical analysis revealed that these classes could be separated using sample variance.

  18. Summer precipitation anomalies in Asia and North America induced by Eurasian non-monsoon land heating versus ENSO.

    PubMed

    Zhao, Ping; Wang, Bin; Liu, Jiping; Zhou, Xiuji; Chen, Junming; Nan, Sulan; Liu, Ge; Xiao, Dong

    2016-02-26

    When floods ravage Asian monsoon regions in summer, megadroughts often attack extratropical North America, which feature an intercontinental contrasting precipitation anomaly between Asia and North America. However, the characteristics of the contrasting Asian-North American (CANA) precipitation anomalies and associated mechanisms have not been investigated specifically. In this article, we firmly establish this summer CANA pattern, providing evidence for a significant effect of the land surface thermal forcing over Eurasian non-monsoon regions on the CANA precipitation anomalies by observations and numerical experiments. We show that the origin of the CANA precipitation anomalies and associated anomalous anticyclones over the subtropical North Pacific and Atlantic has a deeper root in Eurasian non-monsoon land surface heating than in North American land surface heating. The ocean forcing from the ENSO is secondary and tends to be confined in the tropics. Our results have strong implications to interpretation of the feedback of global warming on hydrological cycle over Asia and North America. Under the projected global warming due to the anthropogenic forcing, the prominent surface warming over Eurasian non-monsoon regions is a robust feature which, through the mechanism discussed here, would favor a precipitation increase over Asian monsoon regions and a precipitation decrease over extratropical North America.

  19. Terrain-Moisture Classification Using GPS Surface-Reflected Signals

    NASA Technical Reports Server (NTRS)

    Grant, Michael S.; Acton, Scott T.; Katzberg, Stephen J.

    2006-01-01

    In this study we present a novel method of land surface classification using surface-reflected GPS signals in combination with digital imagery. Two GPS-derived classification features are merged with visible image data to create terrain-moisture (TM) classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding the GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping.

  20. Metacatalog of Planetary Surface Features for Multicriteria Evaluation of Surface Evolution: the Integrated Planetary Feature Database

    NASA Astrophysics Data System (ADS)

    Hargitai, Henrik

    2016-10-01

    We have created a metacatalog, or catalog or catalogs, of surface features of Mars that also includes the actual data in the catalogs listed. The goal is to make mesoscale surface feature databases available in one place, in a GIS-ready format. The databases can be directly imported to ArcGIS or other GIS platforms, like Google Mars. Some of the catalogs in our database are also ingested into the JMARS platform.All catalogs have been previously published in a peer-reviewed journal, but they may contain updates of the published catalogs. Many of the catalogs are "integrated", i.e. they merge databases or information from various papers on the same topic, including references to each individual features listed.Where available, we have included shapefiles with polygon or linear features, however, most of the catalogs only contain point data of their center points and morphological data.One of the unexpected results of the planetary feature metacatalog is that some features have been described by several papers, using different, i.e., conflicting designations. This shows the need for the development of an identification system suitable for mesoscale (100s m to km sized) features that tracks papers and thus prevents multiple naming of the same feature.The feature database can be used for multicriteria analysis of a terrain, thus enables easy distribution pattern analysis and the correlation of the distribution of different landforms and features on Mars. Such catalog makes a scientific evaluation of potential landing sites easier and more effective during the selection process and also supports automated landing site selections.The catalog is accessible at https://planetarydatabase.wordpress.com/.

  1. A comparison between the effects of artificial land cover and anthropogenic heat on a localized heavy rain event in 2008 in Zoshigaya, Tokyo, Japan

    NASA Astrophysics Data System (ADS)

    Souma, Kazuyoshi; Tanaka, Kenji; Suetsugi, Tadashi; Sunada, Kengo; Tsuboki, Kazuhisa; Shinoda, Taro; Wang, Yuqing; Sakakibara, Atsushi; Hasegawa, Koichi; Moteki, Qoosaku; Nakakita, Eiichi

    2013-10-01

    5 August 2008, a localized heavy rainfall event caused a rapid increase in drainpipe discharge, which killed five people working in a drainpipe near Zoshigaya, Tokyo. This study compared the effects of artificial land cover and anthropogenic heat on this localized heavy rainfall event based on three ensemble experiments using a cloud-resolving model that includes realistic urban features. The first experiment CTRL (control) considered realistic land cover and urban features, including artificial land cover, anthropogenic heat, and urban geometry. In the second experiment NOAH (no anthropogenic heat), anthropogenic heat was ignored. In the third experiment NOLC (no land cover), urban heating from artificial land cover was reduced by keeping the urban geometry but with roofs, walls, and roads of artificial land cover replaced by shallow water. The results indicated that both anthropogenic heat and artificial land cover increased the amount of precipitation and that the effect of artificial land cover was larger than that of anthropogenic heat. However, in the middle stage of the precipitation event, the difference between the two effects became small. Weak surface heating in NOAH and NOLC reduced the near-surface air temperature and weakened the convergence of horizontal wind and updraft over the urban areas, resulting in a reduced rainfall amount compared with that in CTRL.

  2. Effect of wakes on land-atmosphere fluxes

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.; Zhang, W.; Porte-Agel, F.; Stefan, H. G.

    2011-12-01

    Wakes affect land-atmosphere fluxes of momentum and scalars, including water vapor and trace gases. Canopies and bluff bodies, including forests, buildings and topography, cause boundary layer flow separation, significantly extend flow recovery, and lead to a break down of standard Monin-Obukhov similarity relationships in the atmospheric boundary layer (ABL). Wakes generated by these land surface features persist for significant distances affecting a large fraction of the Earth's terrestrial surface. This effect is currently not accounted for in land-atmosphere modeling, and little is known about how heterogeneity of wake-generating features effect land surface fluxes. Additionally flux measurements, made in wake-affected regions, do not satisfy the homogeneous requirements for the standard eddy correlation (EC) method. This phenomenon often referred to as sheltering has been shown to affect momentum and kinetic energy fluxes into lakes from the atmosphere (Markfort et al. 2010). This presentation will highlight results from controlled wind tunnel experiments of neutral and thermally stratified boundary layers, using PIV and custom x-wire/cold-wire anemometry, designed to understand how the physical structure of upstream bluff bodies or porous canopies and thermal stability affect the separation zone, boundary layer recovery and surface fluxes. We also compare these results to field measurements taken with a Doppler LiDAR in the wake of a canopy and a building. We have found that there is a nonlinear relationship between porosity and flow separation behind a canopy to clearing transition. Results will provide the basis for new parameterizations to account for wake effects on land-atmosphere fluxes and corrections for EC measurements over open fields, lakes, and wetlands.

  3. Analysis of landscape character for visual resource management

    Treesearch

    Paul F. Anderson

    1979-01-01

    Description, classification and delineation of visual landscape character are initial steps in developing visual resource management plans. Landscape characteristics identified as key factors in visual landscape analysis include land cover/land use and landform. Landscape types, which are combinations of landform and surface features, were delineated for management...

  4. Relationship among land surface temperature and LUCC, NDVI in typical karst area.

    PubMed

    Deng, Yuanhong; Wang, Shijie; Bai, Xiaoyong; Tian, Yichao; Wu, Luhua; Xiao, Jianyong; Chen, Fei; Qian, Qinghuan

    2018-01-12

    Land surface temperature (LST) can reflect the land surface water-heat exchange process comprehensively, which is considerably significant to the study of environmental change. However, research about LST in karst mountain areas with complex topography is scarce. Therefore, we retrieved the LST in a karst mountain area from Landsat 8 data and explored its relationships with LUCC and NDVI. The results showed that LST of the study area was noticeably affected by altitude and underlying surface type. In summer, abnormal high-temperature zones were observed in the study area, perhaps due to karst rocky desertification. LSTs among different land use types significantly differed with the highest in construction land and the lowest in woodland. The spatial distributions of NDVI and LST exhibited opposite patterns. Under the spatial combination of different land use types, the LST-NDVI feature space showed an obtuse-angled triangle shape and showed a negative linear correlation after removing water body data. In summary, the LST can be retrieved well by the atmospheric correction model from Landsat 8 data. Moreover, the LST of the karst mountain area is controlled by altitude, underlying surface type and aspect. This study provides a reference for land use planning, ecological environment restoration in karst areas.

  5. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2007-01-01

    Surface-subsurface flow interactions are critical to a wide range of geochemical and ecological processes and to the fate of contaminants in freshwater environments. Fractal scaling relationships have been found in distributions of both land surface topography and solute efflux from watersheds, but the linkage between those observations has not been realized. We show that the fractal nature of the land surface in fluvial and glacial systems produces fractal distributions of recharge, discharge, and associated subsurface flow patterns. Interfacial flux tends to be dominated by small-scale features while the flux through deeper subsurface flow paths tends to be controlled by larger-scale features. This scaling behavior holds at all scales, from small fluvial bedforms (tens of centimeters) to the continental landscape (hundreds of kilometers). The fractal nature of surface-subsurface water fluxes yields a single scale-independent distribution of subsurface water residence times for both near-surface fluvial systems and deeper hydrogeological flows. Copyright 2007 by the American Geophysical Union.

  6. Sensor feature fusion for detecting buried objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.

    1993-04-01

    Given multiple registered images of the earth`s surface from dual-band sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. The sensor suite currently includes two sensors (5 micron and 10 micron wavelengths) and one ground penetrating radar (GPR) of the wide-band pulsed synthetic aperture type. We use a supervised teaming pattern recognition approach to detect metal and plastic land mines buried in soil. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in amore » two step process to classify a subimage. Thee first step, referred to as feature selection, determines the features of sub-images which result in the greatest separability among the classes. The second step, image labeling, uses the selected features and the decisions from a pattern classifier to label the regions in the image which are likely to correspond to buried mines. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the sensors add value to the detection system. The most important features from the various sensors are fused using supervised teaming pattern classifiers (including neural networks). We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing feature information from multiple sensor types, including dual-band infrared and ground penetrating radar. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved operational problem of detecting buried land mines from an airborne standoff platform.« less

  7. Estimating the relationship between urban 3D morphology and land surface temperature using airborne LiDAR and Landsat-8 Thermal Infrared Sensor data

    NASA Astrophysics Data System (ADS)

    Lee, J. H.

    2015-12-01

    Urban forests are known for mitigating the urban heat island effect and heat-related health issues by reducing air and surface temperature. Beyond the amount of the canopy area, however, little is known what kind of spatial patterns and structures of urban forests best contributes to reducing temperatures and mitigating the urban heat effects. Previous studies attempted to find the relationship between the land surface temperature and various indicators of vegetation abundance using remote sensed data but the majority of those studies relied on two dimensional area based metrics, such as tree canopy cover, impervious surface area, and Normalized Differential Vegetation Index, etc. This study investigates the relationship between the three-dimensional spatial structure of urban forests and urban surface temperature focusing on vertical variance. We use a Landsat-8 Thermal Infrared Sensor image (acquired on July 24, 2014) to estimate the land surface temperature of the City of Sacramento, CA. We extract the height and volume of urban features (both vegetation and non-vegetation) using airborne LiDAR (Light Detection and Ranging) and high spatial resolution aerial imagery. Using regression analysis, we apply empirical approach to find the relationship between the land surface temperature and different sets of variables, which describe spatial patterns and structures of various urban features including trees. Our analysis demonstrates that incorporating vertical variance parameters improve the accuracy of the model. The results of the study suggest urban tree planting is an effective and viable solution to mitigate urban heat by increasing the variance of urban surface as well as evaporative cooling effect.

  8. Ultra-Compact Raman Spectrometer for Planetary Explorations

    NASA Technical Reports Server (NTRS)

    Davis, Derek; Hornef, James; Lucas, John; Elsayed-Ali, Hani; Abedin, M. Nurul

    2016-01-01

    To develop a compact Raman spectroscopy system with features that will make it suitable for future space missions which require surface landing. Specifically, this system will be appropriate for any mission in which planetary surface samples need to be measured and analyzed.

  9. Undercut Rocks at the MER Gusev Landing Site

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2004-01-01

    On January 3 2004, the NASA Spirit rover landed on the plains inside the Gusev Crater in the southern hemisphere of Mars, and has made observations of the landing site and nearby region in visual and infrared wavelengths, as well as making in-situ measurements of rocks and soil. A number of rocks at the Gusev site are perched, with a significant undercut above the surface; additional rocks show a feature of being eroded or etched at a height of one to three centimeters immediately above the soil line. Some rocks also show terracing, and others show a two-tone pattern of albedo, with a distinct dividing line between a lighter area near the surface and a darker color above the surface. In a small number of cases, the dividing line is correlated with a visible horizontal groove in the rock, most likely indicating an earlier location of burial of the rock. A number of explanations for this undercutting are possible. Perched rocks can be placed on the surface by deflation of the soil from underneath the rock. The surface etching may be abrasion due to reptation. Reptation, or surface creep, occurs as sand moves without leaving the surface, as small (100-200 micron particles) moved by saltation set larger particles in motion. These large particles are effective at abrading the rocks at the surface level. The structure of "ripple" features at the site is evidence to support reptation at the Gusev site. An alternate explanation is etching at the surface by chemically active grit.

  10. Effects of climate and land cover on hydrology in the southeastern U.S.: Potential impacts on watershed planning

    USGS Publications Warehouse

    LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland; Regan, R. Steve; Markstrom, Steven

    2015-01-01

    The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.

  11. Ducting arrangement for cooling a gas turbine structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ching-Pang; Morrison, Jay A.

    2015-07-21

    A ducting arrangement (10) for a can annular gas turbine engine, including: a duct (12, 14) disposed between a combustor (16) and a first row of turbine blades and defining a hot gas path (30) therein, the duct (12, 14) having raised geometric features (54) incorporated into an outer surface (80); and a flow sleeve (72) defining a cooling flow path (84) between an inner surface (78) of the flow sleeve (72) and the duct outer surface (80). After a cooling fluid (86) traverses a relatively upstream raised geometric feature (90), the inner surface (78) of the flow sleeve (72)more » is effective to direct the cooling fluid (86) toward a landing (94) separating the relatively upstream raised geometric feature (90) from a relatively downstream raised geometric feature (94).« less

  12. A hybrid HDRF model of GOMS and SAIL: GOSAIL

    NASA Astrophysics Data System (ADS)

    Dou, B.; Wu, S.; Wen, J.

    2016-12-01

    Understanding the surface reflectance anisotropy is the key facet in interpreting the features of land surface from remotely sensed information, which describes the property of land surface to reflect the solar radiation directionally. Most reflectance anisotropy models assumed the nature surface was illuminated only by the direct solar radiation, while the diffuse skylight becomes dominant especially for the over cast sky conditions and high rugged terrain. Correcting the effect of diffuse skylight on the reflectance anisotropy to obtain the intrinsic directional reflectance of land surface is highly desirable for remote sensing applications. This paper developed a hybrid HDRF model of GOMS and SAIL called GOSAIL model for discrete canopies. The accurate area proportions of four scene components are calculated by the GOMS model and the spectral signatures of scene components are provided by the SAIL model. Both the single scattering contribution and the multiple scattering contributions within and between the canopy and background under the clear and diffuse illumination conditions are considered in the GOSAIL model. The HDRF simulated by the 3-D Discrete Anisotropic Radiative Transfer (DART) model and the HDRF measurements over the 100m×100m mature pine stand at the Järvselja, Estonia are used for validating and evaluating the performance of proposed GOSAIL model. The comparison results indicate the GOSAIL model can accurately reproducing the angular feature of discrete canopy for both the clear and overcast atmospheric conditions. The GOSAIL model is promising for the land surface biophysical parameters retrieval (e.g. albedo, leaf area index) over the heterogeneous terrain.

  13. Parametric analysis of synthetic aperture radar data acquired over truck garden vegetation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1984-01-01

    An airborne X-band SAR acquired multipolarization and multiflight pass SAR images over a truck garden vegetation area. Based on a variety of land cover and row crop direction variations, the vertical (VV) polarization data contain the highest contrast, while cross polarization contains the least. When the radar flight path is parallel to the row direction, both horizontal (HH) and VV polarization data contain very high return which masks out the specific land cover that forms the row structure. Cross polarization data are not that sensitive to row orientation. The inclusion of like and cross polarization data help delineate special surface features (e.g., row crop against non-row-oriented land cover, very-rough-surface against highly row-oriented surface).

  14. Hydrologic and land-cover features of the Caloosahatchee River Basin, Lake Okeechobee to Franklin Lock, Florida

    USGS Publications Warehouse

    LaRose, Henry R.; McPherson, Benjamin F.

    1980-01-01

    The freshwater part of the Caloosahatchee River basin, Fla., from Franklin Lock to Lake Okeechobee, is shown at a scale of 1 inch equals 1 mile on an aerial photomosaic, dated January 1979. The basin is divided into 16 subbasins, and the land cover and land use in each subbasin are given. The basin is predominantly rangeland and agricultural land. Surface-water flow in the basin is largely controlled. Some selected data on water quality are given. (USGS)

  15. Trends in continental temperature and humidity directly linked to ocean warming.

    PubMed

    Byrne, Michael P; O'Gorman, Paul A

    2018-05-08

    In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.

  16. Application of Intel Many Integrated Core (MIC) accelerators to the Pleim-Xiu land surface scheme

    NASA Astrophysics Data System (ADS)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2015-10-01

    The land-surface model (LSM) is one physics process in the weather research and forecast (WRF) model. The LSM includes atmospheric information from the surface layer scheme, radiative forcing from the radiation scheme, and precipitation forcing from the microphysics and convective schemes, together with internal information on the land's state variables and land-surface properties. The LSM is to provide heat and moisture fluxes over land points and sea-ice points. The Pleim-Xiu (PX) scheme is one LSM. The PX LSM features three pathways for moisture fluxes: evapotranspiration, soil evaporation, and evaporation from wet canopies. To accelerate the computation process of this scheme, we employ Intel Xeon Phi Many Integrated Core (MIC) Architecture as it is a multiprocessor computer structure with merits of efficient parallelization and vectorization essentials. Our results show that the MIC-based optimization of this scheme running on Xeon Phi coprocessor 7120P improves the performance by 2.3x and 11.7x as compared to the original code respectively running on one CPU socket (eight cores) and on one CPU core with Intel Xeon E5-2670.

  17. Internal Physical Features of a Land Surface Model Employing a Tangent Linear Model

    NASA Technical Reports Server (NTRS)

    Yang, Runhua; Cohn, Stephen E.; daSilva, Arlindo; Joiner, Joanna; Houser, Paul R.

    1997-01-01

    The Earth's land surface, including its biomass, is an integral part of the Earth's weather and climate system. Land surface heterogeneity, such as the type and amount of vegetative covering., has a profound effect on local weather variability and therefore on regional variations of the global climate. Surface conditions affect local weather and climate through a number of mechanisms. First, they determine the re-distribution of the net radiative energy received at the surface, through the atmosphere, from the sun. A certain fraction of this energy increases the surface ground temperature, another warms the near-surface atmosphere, and the rest evaporates surface water, which in turn creates clouds and causes precipitation. Second, they determine how much rainfall and snowmelt can be stored in the soil and how much instead runs off into waterways. Finally, surface conditions influence the near-surface concentration and distribution of greenhouse gases such as carbon dioxide. The processes through which these mechanisms interact with the atmosphere can be modeled mathematically, to within some degree of uncertainty, on the basis of underlying physical principles. Such a land surface model provides predictive capability for surface variables including ground temperature, surface humidity, and soil moisture and temperature. This information is important for agriculture and industry, as well as for addressing fundamental scientific questions concerning global and local climate change. In this study we apply a methodology known as tangent linear modeling to help us understand more deeply, the behavior of the Mosaic land surface model, a model that has been developed over the past several years at NASA/GSFC. This methodology allows us to examine, directly and quantitatively, the dependence of prediction errors in land surface variables upon different vegetation conditions. The work also highlights the importance of accurate soil moisture information. Although surface variables are predicted imperfectly due to inherent uncertainties in the modeling process, our study suggests how satellite observations can be combined with the model, through land surface data assimilation, to improve their prediction.

  18. Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models

    NASA Astrophysics Data System (ADS)

    Song, J.; Wang, Z.

    2013-12-01

    Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models Jiyun Song and Zhi-Hua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, PO Box 875306, Tempe, AZ 85287-5306 Landuse landcover changes in urban area will modify surface energy budgets, turbulent fluxes as well as dynamic and thermodynamic structures of the overlying atmospheric boundary layer (ABL). In order to study urban land-atmospheric interactions, we coupled a single column atmospheric model (SCM) to a cutting-edge single layer urban canopy model (SLUCM). Modification of surface parameters such as the fraction of vegetation and engineered pavements, thermal properties of building and pavement materials, and geometrical features of street canyon, etc. in SLUCM dictates the evolution of surface balance of energy, water and momentum. The land surface states then provide lower boundary conditions to the overlying atmosphere, which in turn modulates the modification of ABL structure as well as vertical profiles of temperature, humidity, wind speed and tracer gases. The coupled SLUCM-SCM model is tested against field measurements of surface layer fluxes as well as profiles of temperature and humidity in the mixed layer under convective conditions. After model test, SLUCM-SCM is used to simulate the effect of changing urban land surface conditions on the evolution of ABL structure and dynamics. Simulation results show that despite the prescribed atmospheric forcing, land surface states impose significant impact on the physics of the overlying vertical atmospheric layer. Overall, this numerical framework provides a useful standalone modeling tool to assess the impacts of urban land surface conditions on the local hydrometeorology through land-atmospheric interactions. It also has potentially far-reaching implications to urban ecohydrological services for cities under future expansion and climate challenges.

  19. Sensitivity of WRF-Chem model to land surface schemes: Assessment in a severe dust outbreak episode in the Central Mediterranean (Apulia Region)

    NASA Astrophysics Data System (ADS)

    Rizza, Umberto; Miglietta, Mario Marcello; Mangia, Cristina; Ielpo, Pierina; Morichetti, Mauro; Iachini, Chiara; Virgili, Simone; Passerini, Giorgio

    2018-03-01

    The Weather Research and Forecasting model with online coupled chemistry (WRF-Chem) is applied to simulate a severe Saharan dust outbreak event that took place over Southern Italy in March 2016. Numerical experiments have been performed applying a physics-based dust emission model, with soil properties generated from three different Land Surface Models, namely Noah, RUC and Noah-MP. The model performance in reproducing the severe desert dust outbreak is analysed using an observational dataset of aerosol and desert dust features that includes optical properties from satellite and ground-based sun-photometers, and in-situ particulate matter mass concentration (PM) data. The results reveal that the combination of the dust emission model with the RUC Land Surface Model significantly over-predicts the emitted mineral dust; on the other side, the combination with Noah or Noah-MP Land Surface Model (LSM) gives better results, especially for the daily averaged PM10.

  20. Advanced Russian Mission Laplace-P to Study the Planetary System of Jupiter: Scientific Goals, Objectives, Special Features and Mission Profile

    NASA Astrophysics Data System (ADS)

    Martynov, M. B.; Merkulov, P. V.; Lomakin, I. V.; Vyatlev, P. A.; Simonov, A. V.; Leun, E. V.; Barabanov, A. A.; Nasyrov, A. F.

    2017-12-01

    The advanced Russian project Laplace-P is aimed at developing and launching two scientific spacecraft (SC)— Laplace-P1 ( LP1 SC) and Laplace-P2 ( LP2 SC)—designed for remote and in-situ studies of the system of Jupiter and its moon Ganymede. The LP1 and LP2 spacecraft carry an orbiter and a lander onboard, respectively. One of the orbiter's objectives is to map the surface of Ganymede from the artificial satellite's orbit and to acquire the data for the landing site selection. The main objective of the lander is to carry out in-situ investigations of Ganymede's surface. The paper describes the scientific goals and objectives of the mission, its special features, and the LP1 and LP2 mission profiles during all of the phases—from the launch to the landing on the surface of Ganymede.

  1. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site.

    PubMed

    Sullivan, R; Banfield, D; Bell, J F; Calvin, W; Fike, D; Golombek, M; Greeley, R; Grotzinger, J; Herkenhoff, K; Jerolmack, D; Malin, M; Ming, D; Soderblom, L A; Squyres, S W; Thompson, S; Watters, W A; Weitz, C M; Yen, A

    2005-07-07

    The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s(-1), most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.

  2. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site

    USGS Publications Warehouse

    Sullivan, R.; Banfield, D.; Bell, J.F.; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.; Ming, D.; Soderblom, L.A.; Squyres, S. W.; Thompson, S.; Watters, W.A.; Weitz, C.M.; Yen, A.

    2005-01-01

    The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s-1, most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.

  3. Impacts of spectral nudging on the simulated surface air temperature in summer compared with the selection of shortwave radiation and land surface model physics parameterization in a high-resolution regional atmospheric model

    NASA Astrophysics Data System (ADS)

    Park, Jun; Hwang, Seung-On

    2017-11-01

    The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.

  4. C-band RISAT-1 imagery for geospatial mapping of cryospheric surface features in the Antarctic environment

    NASA Astrophysics Data System (ADS)

    Jawak, Shridhar D.; Panditrao, Satej N.; Luis, Alvarinho J.

    2016-05-01

    Cryospheric surface feature classification is one of the widely used applications in the field of polar remote sensing. Precise surface feature maps derived from remotely sensed imageries are the major requirement for many geoscientific applications in polar regions. The present study explores the capabilities of C-band dual polarimetric (HH & HV) SAR imagery from Indian Radar Imaging Satellite (RISAT-1) for land cryospheric surface feature mapping. The study areas selected for the present task were Larsemann Hills and Schirmacher Oasis, East Antarctica. RISAT-1 Fine Resolution STRIPMAP (FRS-1) mode data with 3-m spatial resolution was used in the present research attempt. In order to provide additional context to the amount of information in dual polarized RISAT-1 SAR data, a band HH+HV was introduced to make use of the original two polarizations. In addition to the data calibration, transformed divergence (TD) procedure was performed for class separability analysis to evaluate the quality of the statistics before image classification. For most of the class pairs the TD values were comparable, which indicated that the classes have good separability. Fuzzy and Artificial Neural Network classifiers were implemented and accuracy was checked. Nonparametric classifier Support Vector Machine (SVM) was also used to classify RISAT-1 data with an optimized polarization combination into three land-cover classes consisting of sea ice/snow/ice, rocks/landmass, and lakes/waterbodies. This study demonstrates that C-band FRS1 image mode data from the RISAT-1 mission can be exploited to identify, map and monitor land cover features in the polar regions, even during dark winter period. For better landcover classification and analysis, hybrid polarimetric data (cFRS-1 mode) from RISAT-1, which incorporates phase information, unlike the dual-pol linear (HH, HV) can be used for obtaining better polarization signatures.

  5. Feedback of land subsidence on the movement and conjunctive use of water resources

    USGS Publications Warehouse

    Schmid, Wolfgang; Hanson, Randall T.; Leake, Stanley A.; Hughes, Joseph D.; Niswonger, Richard G.

    2014-01-01

    The dependency of surface- or groundwater flows and aquifer hydraulic properties on dewatering-induced layer deformation is not available in the USGS's groundwater model MODFLOW. A new integrated hydrologic model, MODFLOW-OWHM, formulates this dependency by coupling mesh deformation with aquifer transmissivity and storage and by linking land subsidence/uplift with deformation-dependent flows that also depend on aquifer head and other flow terms. In a test example, flows most affected were stream seepage and evapotranspiration from groundwater (ETgw). Deformation feedback also had an indirect effect on conjunctive surface- and groundwater use components: Changed stream seepage and streamflows influenced surface-water deliveries and returnflows. Changed ETgw affected irrigation demand, which jointly with altered surface-water supplies resulted in changed supplemental groundwater requirements and pumping and changed return runoff. This modeling feature will improve the impact assessment of dewatering-induced land subsidence/uplift (following irrigation pumping or coal-seam gas extraction) on surface receptors, inter-basin transfers, and surface-infrastructure integrity.

  6. Asian Monsoons: Variability, Predictability, and Sensitivity to External Forcing

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Kim, K.-M.

    1999-01-01

    In this study, we have addressed the interannual variations of Asian monsoons including both broad-scale and regional monsoon components. Particular attention is devoted to the identities of the South China Sea monsoon and Indian monsoon. We use CPC Merged Analysis of Precipitation and NCEP reanalyses to define regional monsoon indices and to depict the various monsoons. Parallel modeling studies have also been carried out to assess the potential predictability of the broad-scale and regional monsoons. Each monsoon is characterized by its unique features. While the South Asian monsoon represents a classical monsoon in which anomalous circulation is governed by Rossby-wave dynamics, the Southeast Asian monsoon symbolizes a "hybrid" monsoon that features multi-cellular meridional circulation over eastern Asia. The broad-scale Asian monsoon links to the basin-wide atmospheric circulation over the Indian-Pacific oceans. Both Sea Surface Temperatures (SST) and land surface processes are important for determining the variations of all monsoons. For the broad-scale monsoon, SST anomalies are more important than land surface processes. However, for regional monsoons, land surface processes may become equally important. Both observation and model shows that the broad-scale monsoon is potentially more predictable than regional monsoons, and that the Southeast Asian monsoon may possess higher predictability than the South Asian monsoon.

  7. Prescription of land-surface boundary conditions in GISS GCM 2: A simple method based on high-resolution vegetation data bases

    NASA Technical Reports Server (NTRS)

    Matthews, E.

    1984-01-01

    A simple method was developed for improved prescription of seasonal surface characteristics and parameterization of land-surface processes in climate models. This method, developed for the Goddard Institute for Space Studies General Circulation Model II (GISS GCM II), maintains the spatial variability of fine-resolution land-cover data while restricting to 8 the number of vegetation types handled in the model. This was achieved by: redefining the large number of vegetation classes in the 1 deg x 1 deg resolution Matthews (1983) vegetation data base as percentages of 8 simple types; deriving roughness length, field capacity, masking depth and seasonal, spectral reflectivity for the 8 types; and aggregating these surface features from the 1 deg x 1 deg resolution to coarser model resolutions, e.g., 8 deg latitude x 10 deg longitude or 4 deg latitude x 5 deg longitude.

  8. Application of Physics Based Distributed Hydrologic Models to Assess Anthropologic Land Disturbance in Watersheds

    NASA Astrophysics Data System (ADS)

    Downer, C. W.; Ogden, F. L.; Byrd, A. R.

    2008-12-01

    The Department of Defense (DoD) manages approximately 200,000 km2 of land within the United States on military installations and flood control and river improvement projects. The Watershed Systems Group (WSG) within the Coastal and Hydraulics Laboratory of the Engineer Research and Development Center (ERDC) supports the US Army and the US Army Corps of Engineers in both military and civil operations through the development, modification and application of surface and sub-surface hydrologic models. The US Army has a long history of land management and the development of analytical tools to assist with the management of US Army lands. The US Army has invested heavily in the distributed hydrologic model GSSHA and its predecessor CASC2D. These tools have been applied at numerous military and civil sites to analyze the effects of landscape alteration on hydrologic response and related consequences, changes in erosion and sediment transport, along with associated contaminants. Examples include: impacts of military training and land management activities, impact of changing land use (urbanization or environmental restoration), as well as impacts of management practices employed to abate problems, i.e. Best Management Practices (BMPs). Traditional models such as HSPF and SWAT, are largely conceptual in nature. GSSHA attempts to simulate the physical processes actually occurring in the watershed allowing the user to explicitly simulate changing parameter values in response to changes in land use, land cover, elevation, etc. Issues of scale raise questions: How do we best include fine-scale land use or management features in models of large watersheds? Do these features have to be represented explicitly through physical processes in the watershed domain? Can a point model, physical or empirical, suffice? Can these features be lumped into coarsely resolved numerical grids or sub-watersheds? In this presentation we will discuss the US Army's distributed hydrologic models in terms of how they simulate the relevant processes and present multiple applications of the models used for analyzing land management and land use change. Using these applications as a basis we will discuss issues related to the analysis of anthropogenic alterations in the landscape.

  9. Land cover change mapping using MODIS time series to improve emissions inventories

    NASA Astrophysics Data System (ADS)

    López-Saldaña, Gerardo; Quaife, Tristan; Clifford, Debbie

    2016-04-01

    MELODIES is an FP7 funded project to develop innovative and sustainable services, based upon Open Data, for users in research, government, industry and the general public in a broad range of societal and environmental benefit areas. Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A land cover product was created for 2003 to 2015 and a bayesian approach was created to identified land cover changes. We will present the results of the time series development and the first exercises when creating the land cover and land cover changes products.

  10. Construction and Analysis of Long-Term Surface Temperature Dataset in Fujian Province

    NASA Astrophysics Data System (ADS)

    Li, W. E.; Wang, X. Q.; Su, H.

    2017-09-01

    Land surface temperature (LST) is a key parameter of land surface physical processes on global and regional scales, linking the heat fluxes and interactions between the ground and atmosphere. Based on MODIS 8-day LST products (MOD11A2) from the split-window algorithms, we constructed and obtained the monthly and annual LST dataset of Fujian Province from 2000 to 2015. Then, we analyzed the monthly and yearly time series LST data and further investigated the LST distribution and its evolution features. The average LST of Fujian Province reached the highest in July, while the lowest in January. The monthly and annual LST time series present a significantly periodic features (annual and interannual) from 2000 to 2015. The spatial distribution showed that the LST in North and West was lower than South and East in Fujian Province. With the rapid development and urbanization of the coastal area in Fujian Province, the LST in coastal urban region was significantly higher than that in mountainous rural region. The LST distributions might affected by the climate, topography and land cover types. The spatio-temporal distribution characteristics of LST could provide good references for the agricultural layout and environment monitoring in Fujian Province.

  11. Land mine detection using multispectral image fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.

    1995-03-29

    Our system fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a varietymore » of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts. We use a supervised learning pattern recognition approach to detecting the metal and plastic land mines. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in a two step process to classify a subimage. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the spectral bands add value to the detection system. The most important features from the various sensors are fused using a supervised learning pattern classifier (the probabilistic neural network). We present results of experiments to detect land mines from real data collected from an airborne platform, and evaluate the usefulness of fusing feature information from multiple spectral bands.« less

  12. Mars Pathfinder Landing Site: Evidence for a Change in Wind Regime from Lander and Orbiter Data

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Kraft, Michael D.; Kuzmin, Ruslan O.; Bridges, Nathan T.

    2000-01-01

    Surface features related to the wind are observed in the vicinity of the Mars Pathfinder (MPR landing site data from the lander and in data from orbit by the Viking Orbiter and Mars Global Surveyor missions. Features seen from the surface include wind tails associated with small rocks, barchanoid duneforms, ripplelike patterns, and ventifact flutes cut into some rocks. Features seen from orbit include wind tails associated with impact craters, ridges inferred to be duneforms, and modified crater rims interpreted to have been eroded and mantled by windblown material. The orientations of these features show two prevailing directions. One is inferred to represent winds from the northeast, which is consistent with strongest winds predicted by a general circulation model to occur during the Martian northern winter under current conditions. A second wind blowing from the ESE was responsible for modifying the crater rims and cutting some of the ventifacts. The two wind regimes could reflect a change in climate related to Mars' obliquity or some other, unknown factor. Regardless of the cause, the MPF area has been subjected to a complex pattern of winds and supply of small particles, and the original surface formed by sedimentary processes from Tiu and Ares Vallis flooding events has been modified by repeated burial and exhumation.

  13. Mapping Urban Ecosystem Services Using High Resolution Aerial Photography

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Neale, A.; Wilhelm, D.

    2010-12-01

    Ecosystem services (ES) are the many life-sustaining benefits we receive from nature: e.g., clean air and water, food and fiber, cultural-aesthetic-recreational benefits, pollination and flood control. The ES concept is emerging as a means of integrating complex environmental and economic information to support informed environmental decision making. The US EPA is developing a web-based National Atlas of Ecosystem Services, with a component for urban ecosystems. Currently, the only wall-to-wall, national scale land cover data suitable for this analysis is the National Land Cover Data (NLCD) at 30 m spatial resolution with 5 and 10 year updates. However, aerial photography is acquired at higher spatial resolution (0.5-3 m) and more frequently (1-5 years, typically) for most urban areas. Land cover was mapped in Raleigh, NC using freely available USDA National Agricultural Imagery Program (NAIP) with 1 m ground sample distance to test the suitability of aerial photography for urban ES analysis. Automated feature extraction techniques were used to extract five land cover classes, and an accuracy assessment was performed using standard techniques. Results will be presented that demonstrate applications to mapping ES in urban environments: greenways, corridors, fragmentation, habitat, impervious surfaces, dark and light pavement (urban heat island). Automated feature extraction results mapped over NAIP color aerial photograph. At this scale, we can look at land cover and related ecosystem services at the 2-10 m scale. Small features such as individual trees and sidewalks are visible and mappable. Classified aerial photo of Downtown Raleigh NC Red: impervious surface Dark Green: trees Light Green: grass Tan: soil

  14. Perception via satellite

    USGS Publications Warehouse

    Robinove, Charles J.

    1970-01-01

    The earth resources observation satellite (EROS) program in the Department of the Interior is intended to gather and use data from satellites and aircraft on natural and man-made features of the earth's surface. Earth resources technology satellite will provide the EROS program with data for use in dealing with natural resource problems and understanding the interaction between man and the environment. Applications will include studies of tectonic features, hydrologic problems, location of fish schools, determination of the conditions of range land, mapping land use for urban planning, studies of erosion and change along coastlines and major streams, and inventories of land use and land forms. In addition, the ERTS data may be used for detecting forest and crop diseases and inventorying crops. The ERTS satellite will be in a polar, sun-synchronous orbit so that each point on the earth's surface will be sensed every 17 to 20 days, at the same time of day. Multispectral photography is being investigated for its usefulness in hydrology. Side-looking airborne radar has not yet been widely used in hydrologic studies, although it is an excellent tool for all-weather, day or night, coverage of large areas. Other techniques being investigated include passive microwave radiometry, ultraviolet and visible stimulated luminescence, and absorption spectroscopy.

  15. What is the role of historical anthropogenically-induced land-cover change on the surface climate of West Africa? Results from the LUCID intercomparison project

    NASA Astrophysics Data System (ADS)

    Souleymane, S.

    2015-12-01

    West Africa has been highlighted as a hot spot of land surface-atmosphere interactions. This study analyses the outputs of the project Land-Use and Climate, IDentification of Robust Impacts (LUCID) over West Africa. LUCID used seven atmosphere-land models with a common experimental design to explore the impacts of Land Use induced Land Cover Change (LULCC) that are robust and consistent across the climate models. Focusing the analysis on Sahel and Guinea, this study shows that, even though the seven climate models use the same atmospheric and land cover forcing, there are significant differences of West African Monsoon variability across the climate models. The magnitude of that variability differs significantly from model to model resulting two major "features": (1) atmosphere dynamics models; (2) how the land-surface functioning is parameterized in the Land surface Model, in particular regarding the evapotranspiration partitioning within the different land-cover types, as well as the role of leaf area index (LAI) in the flux calculations and how strongly the surface is coupled to the atmosphere. The major role that the models'sensitivity to land-cover perturbations plays in the resulting climate impacts of LULCC has been analysed in this study. The climate models show, however, significant differences in the magnitude and the seasonal partitioning of the temperature change. The LULCC induced cooling is directed by decreases in net shortwave radiation that reduced the available energy (QA) (related to changes in land-cover properties other than albedo, such as LAI and surface roughness), which decreases during most part of the year. The biophysical impacts of LULCC were compared to the impact of elevated greenhouse gases resulting changes in sea surface temperatures and sea ice extent (CO2SST). The results show that the surface cooling (related a decrease in QA) induced by the biophysical effects of LULCC are insignificant compared to surface warming (related an increase in QA), which is induced by the regional significance effect of CO2SST due to a small LULCC imposed. In contrast, the decrease of surface water balance resulting from LULCC effect is a similar sign to those resulting from CO2SST but the signal resulting of the biophysical effects of LULCC is stronger than the regional CO2SST impact.

  16. Highest Resolution Topography of 433 Eros and Implications for MUSES-C

    NASA Technical Reports Server (NTRS)

    Cheng, A. F.; Barnouin-Jha, O.

    2003-01-01

    The highest resolution observations of surface morphology and topography at asteroid 433 Eros were obtained by the Near Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft on 12 February 2001, as it landed within a ponded deposit on Eros. Coordinated observations were obtained by the imager and the laser rangefinder, at best image resolution of 1 cm/pixel and best topographic resolution of 0.4 m. The NEAR landing datasets provide unique information on rock size and height distributions and regolith processes. Rocks and soil can be distinguished photometrically, suggesting that bare rock is indeed exposed. The NEAR landing data are the only data at sufficient resolution to be relevant to hazard assessment on future landed missions to asteroids, such as the MUSES-C mission which will land on asteroid 25143 (1998 SF36) in order to obtain samples. In a typical region just outside the pond where NEAR landed, the areal coverage by resolved positive topographic features is 18%. At least one topographic feature in the vicinity of the NEAR landing site would have been hazardous for a spacecraft.

  17. Simulating effects of microtopography on wetland specific yield and hydroperiod

    USGS Publications Warehouse

    Summer, David M.; Wang, Xixi

    2011-01-01

    Specific yield and hydroperiod have proven to be useful parameters in hydrologic analysis of wetlands. Specific yield is a critical parameter to quantitatively relate hydrologic fluxes (e.g., rainfall, evapotranspiration, and runoff) and water level changes. Hydroperiod measures the temporal variability and frequency of land-surface inundation. Conventionally, hydrologic analyses used these concepts without considering the effects of land surface microtopography and assumed a smoothly-varying land surface. However, these microtopographic effects could result in small-scale variations in land surface inundation and water depth above or below the land surface, which in turn affect ecologic and hydrologic processes of wetlands. The objective of this chapter is to develop a physically-based approach for estimating specific yield and hydroperiod that enables the consideration of microtopographic features of wetlands, and to illustrate the approach at sites in the Florida Everglades. The results indicate that the physically-based approach can better capture the variations of specific yield with water level, in particular when the water level falls between the minimum and maximum land surface elevations. The suggested approach for hydroperiod computation predicted that the wetlands might be completely dry or completely wet much less frequently than suggested by the conventional approach neglecting microtopography. One reasonable generalization may be that the hydroperiod approaches presented in this chapter can be a more accurate prediction tool for water resources management to meet the specific hydroperiod threshold as required by a species of plant or animal of interest.

  18. Analysis of Summertime Convective Initiation in Central Alabama Using the Land Information System

    NASA Technical Reports Server (NTRS)

    James, Robert S.; Case, Jonathan L.; Molthan, Andrew L.; Jedlovec, Gary J.

    2011-01-01

    During the summer months in the southeastern United States, convective initiation presents a frequent challenge to operational forecasters. Thunderstorm development has traditionally been referred to as random due to their disorganized, sporadic appearance and lack of atmospheric forcing. Horizontal variations in land surface characteristics such as soil moisture, soil type, land and vegetation cover could possibly be a focus mechanism for afternoon convection during the summer months. The NASA Land Information System (LIS) provides a stand-alone land surface modeling framework that incorporates these varying soil and vegetation properties, antecedent precipitation, and atmospheric forcing to represent the soil state at high resolution. The use of LIS as a diagnostic tool may help forecasters to identify boundaries in land surface characteristics that could correlate to favored regions of convection initiation. The NASA Shortterm Prediction Research and Transition (SPoRT) team has been collaborating with the National Weather Service Office in Birmingham, AL to help incorporate LIS products into their operational forecasting methods. This paper highlights selected convective case dates from summer 2009 when synoptic forcing was weak, and identifies any boundaries in land surface characteristics that may have contributed to convective initiation. The LIS output depicts the effects of increased sensible heat flux from urban areas on the development of convection, as well as convection along gradients in land surface characteristics and surface sensible and latent heat fluxes. These features may promote mesoscale circulations and/or feedback processes that can either enhance or inhibit convection. With this output previously unavailable to operational forecasters, LIS provides a new tool to forecasters in order to help eliminate the randomness of summertime convective initiation.

  19. Humus depths under cut and uncut northern hardwood forests

    Treesearch

    George Hart

    1960-01-01

    Harvesting timber on lands devoted primarily to watershed management may alter, for better or worse, many features of a forested watershed. One such feature is forest humus. The beneficial role of forest humus in watershed management is widely recognized. A protective mantle of humus serves to cushion the impact of rain, to impede surface runoff, to restrict soil...

  20. Modification of Soil Temperature and Moisture Budgets by Snow Processes

    NASA Astrophysics Data System (ADS)

    Feng, X.; Houser, P.

    2006-12-01

    Snow cover significantly influences the land surface energy and surface moisture budgets. Snow thermally insulates the soil column from large and rapid temperature fluctuations, and snow melting provides an important source for surface runoff and soil moisture. Therefore, it is important to accurately understand and predict the energy and moisture exchange between surface and subsurface associated with snow accumulation and ablation. The objective of this study is to understand the impact of land surface model soil layering treatment on the realistic simulation of soil temperature and soil moisture. We seek to understand how many soil layers are required to fully take into account soil thermodynamic properties and hydrological process while also honoring efficient calculation and inexpensive computation? This work attempts to address this question using field measurements from the Cold Land Processes Field Experiment (CLPX). In addition, to gain a better understanding of surface heat and surface moisture transfer process between land surface and deep soil involved in snow processes, numerical simulations were performed at several Meso-Cell Study Areas (MSAs) of CLPX using the Center for Ocean-Land-Atmosphere (COLA) Simplified Version of the Simple Biosphere Model (SSiB). Measurements of soil temperature and soil moisture were analyzed at several CLPX sites with different vegetation and soil features. The monthly mean vertical profile of soil temperature during October 2002 to July 2003 at North Park Illinois River exhibits a large near surface variation (<5 cm), reveals a significant transition zone from 5 cm to 25 cm, and becomes uniform beyond 25cm. This result shows us that three soil layers are reasonable in solving the vertical variation of soil temperature at these study sites. With 6 soil layers, SSiB also captures the vertical variation of soil temperature during entire winter season, featuring with six soil layers, but the bare soil temperature is underestimated and root-zone soil temperature is overestimated during snow melting; which leads to overestimated temperature variations down to 20 cm. This is caused by extra heat loss from upper soil level and insufficient heat transport from the deep soil. Further work will need to verify if soil temperature displays similar vertical thermal structure for different vegetation and soil types during snow season. This study provides insight to the surface and subsurface thermodynamic and hydrological processes involved in snow modeling which is important for accurate snow simulation.

  1. An Evaluation of ALOS Data in Disaster Applications

    NASA Astrophysics Data System (ADS)

    Igarashi, Tamotsu; Igarashi, Tamotsu; Furuta, Ryoich; Ono, Makoto

    ALOS is the advanced land observing satellite, providing image data from onboard sensors; PRISM, AVNIR-2 and PALSAR. PRISM is the sensor of panchromatic stereo, high resolution three-line-scanner to characterize the earth surface. The accuracy of position in image and height of Digital Surface Model (DSM) are high, therefore the geographic information extraction is improved in the field of disaster applications with providing images of disaster area. Especially pan-sharpened 3D image composed with PRISM and the four-band visible near-infrared radiometer AVNIR-2 data is expected to provide information to understand the geographic and topographic feature. PALSAR is the advanced multi-functional synthetic aperture radar (SAR) operated in L-band, appropriate for the use of land surface feature characterization. PALSAR has many improvements from JERS-1/SAR, such as high sensitivity, having high resolution, polarimetric and scan SAR observation modes. PALSAR is also applicable for SAR interferometry processing. This paper describes the evaluation of ALOS data characteristic from the view point of disaster applications, through some exercise applications.

  2. Scientific rationale for selecting northwest Isidis Planitia (14 deg - 17 deg N latitude, 278 deg - 281 deg longitude) as a potential Mars Pathfinder landing site

    NASA Technical Reports Server (NTRS)

    Parker, Tim J.; Rice, Jim W.

    1994-01-01

    The northwest Isidis Basin offers a unique opportunity to land near a fretted terrain lowland/upland boundary that meets both the latitudinal and elevation requirements imposed on the spacecraft. The landing site lies east of erosional scarps and among remnant massif inselbergs of the Syrtis Major volcanic plains. The plains surface throughout Isidis exhibits abundant, low-relief mounds that are the local expression of the 'thumbprint terrain' that is common within a few hundred kilometers of the lowland/upland boundary. The massif inselbergs are not as numerous nor as massive as those fretted terrains to the northwest, so local slopes are not expected to be steep. Neither feature should pose a serious threat to the lander. Landing on or adjacent to one of these features would enhance the science return and would help to pinpoint the landing site in Viking and subsequent orbiter images by offering views of landmarks beyond the local horizon.

  3. Using Selective Drainage Methods to Extract Continuous Surface Flow from 1-Meter Lidar-Derived Digital Elevation Data

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.

    2010-01-01

    Digital elevation data commonly are used to extract surface flow features. One source for high-resolution elevation data is light detection and ranging (lidar). Lidar can capture a vast amount of topographic detail because of its fine-scale ability to digitally capture the surface of the earth. Because elevation is a key factor in extracting surface flow features, high-resolution lidar-derived digital elevation models (DEMs) provide the detail needed to consistently integrate hydrography with elevation, land cover, structures, and other geospatial features. The U.S. Geological Survey has developed selective drainage methods to extract continuous surface flow from high-resolution lidar-derived digital elevation data. The lidar-derived continuous surface flow network contains valuable information for water resource management involving flood hazard mapping, flood inundation, and coastal erosion. DEMs used in hydrologic applications typically are processed to remove depressions by filling them. High-resolution DEMs derived from lidar can capture much more detail of the land surface than courser elevation data. Therefore, high-resolution DEMs contain more depressions because of obstructions such as roads, railroads, and other elevated structures. The filling of these depressions can significantly affect the DEM-derived surface flow routing and terrain characteristics in an adverse way. In this report, selective draining methods that modify the elevation surface to drain a depression through an obstruction are presented. If such obstructions are not removed from the elevation data, the filling of depressions to create continuous surface flow can cause the flow to spill over an obstruction in the wrong location. Using this modified elevation surface improves the quality of derived surface flow and retains more of the true surface characteristics by correcting large filled depressions. A reliable flow surface is necessary for deriving a consistently connected drainage network, which is important in understanding surface water movement and developing applications for surface water runoff, flood inundation, and erosion. Improved methods are needed to extract continuous surface flow features from high-resolution elevation data based on lidar.

  4. Intermodel spread of the double-ITCZ bias in coupled GCMs tied to land surface temperature in AMIP GCMs

    NASA Astrophysics Data System (ADS)

    Zhou, Wenyu; Xie, Shang-Ping

    2017-08-01

    Global climate models (GCMs) have long suffered from biases of excessive tropical precipitation in the Southern Hemisphere (SH). The severity of the double-Intertropical Convergence Zone (ITCZ) bias, defined here as the interhemispheric difference in zonal mean tropical precipitation, varies strongly among models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble. Models with a more severe double-ITCZ bias feature warmer tropical sea surface temperature (SST) in the SH, coupled with weaker southeast trades. While previous studies focus on coupled ocean-atmosphere interactions, here we show that the intermodel spread in the severity of the double-ITCZ bias is closely related to land surface temperature biases, which can be further traced back to those in the Atmosphere Model Intercomparison Project (AMIP) simulations. By perturbing land temperature in models, we demonstrate that cooler land can indeed lead to a more severe double-ITCZ bias by inducing the above coupled SST-trade wind pattern in the tropics. The response to land temperature can be consistently explained from both the dynamic and energetic perspectives. Although this intermodel spread from the land temperature variation does not account for the ensemble model mean double-ITCZ bias, identifying the land temperature effect provides insights into simulating a realistic ITCZ for the right reasons.

  5. Terrestrial Analogs to Wind-Related Features at the Viking and Pathfinder Landing Sites on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Bridges, Nathan T.; Kuzmin, Ruslan O.; Laity, Julie E.

    2002-01-01

    Features in the Mojave Desert and Iceland provide insight into the characteristics and origin of Martian wind-related landforms seen by the Viking and Pathfinder landers. The terrestrial sites were chosen because they exhibit diverse wind features that are generally well understood. These features have morphologies comparable to those on Mars and include origins by deposition and erosion, with erosional processes modifying both soils and rocks. Duneforms and drifts are the most common depositional features seen at the Martian landing sites and indicate supplies of sand-sized particles blown by generally unidirectional winds. Erosional features include lag deposits, moat-like depressions around some rocks, and exhumed soil horizons. They indicate that wind can deflate at least some sediments and that this process is particularly effective where the wind interacts with rocks. The formation of ripples and wind tails involves a combination of depositional and erosional processes. Rock erosional features, or ventifacts, are recognized by their overall shapes, erosional flutes, and characteristic surface textures resulting from abrasion by windblown particles. The physics of saltation requires that particles in ripples and duneforms are predominantly sand-sized (60-2000 microns). The orientations of duneforms, wind tails, moats, and ventifacts are correlated with surface winds above particle threshold. Such winds are influenced by local topography and are correlated with winds at higher altitudes predicted by atmospheric models.

  6. Coupling a three-dimensional subsurface flow model with a land surface model to simulate stream-aquifer-land interactions

    NASA Astrophysics Data System (ADS)

    Huang, M.; Bisht, G.; Zhou, T.; Chen, X.; Dai, H.; Hammond, G. E.; Riley, W. J.; Downs, J.; Liu, Y.; Zachara, J. M.

    2016-12-01

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively-parallel multi-physics reactive tranport model (PFLOTRAN). The coupled model (CLM-PFLOTRAN) is applied to a 400m×400m study domain instrumented with groundwater monitoring wells in the Hanford 300 Area along the Columbia River. CLM-PFLOTRAN simulations are performed at three different spatial resolutions over the period 2011-2015 to evaluate the impact of spatial resolution on simulated variables. To demonstrate the difference in model simulations with and without lateral subsurface flow, a vertical-only CLM-PFLOTRAN simulation is also conducted for comparison. Results show that the coupled model is skillful in simulating stream-aquifer interactions, and the land-surface energy partitioning can be strongly modulated by groundwater-river water interactions in high water years due to increased soil moisture availability caused by elevated groundwater table. In addition, spatial resolution does not seem to impact the land surface energy flux simulations, although it is a key factor for accurately estimating the mass exchange rates at the boundaries and associated biogeochemical reactions in the aquifer. The coupled model developed in this study establishes a solid foundation for understanding co-evolution of hydrology and biogeochemistry along the river corridors under historical and future hydro-climate changes.

  7. Asian Monsoons: Variability, Predictability, and Sensitivity to External Forcing

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.

    1999-01-01

    In this study, we have addressed the interannual variations of Asian monsoons including both broad-scale and regional monsoon components. Particular attention is devoted to the identities of the South China Sea monsoon and Indian monsoon. We use CPC Merged Analysis of Precipitation and NCEP reanalyses to define regional monsoon indices and to depict the various monsoons. Parallel modeling studies have also been carried out to assess the role of boundary forcing and the potential predictability of the monsoons. Each monsoon is characterized by its unique features. While the South Asian monsoon represents a classical monsoon in which anomalous circulation is governed by Rossby-wave dynamics, the Southeast Asian monsoon symbolizes a "hybrid" monsoon that features multi-cellular meridional circulation over eastern Asia. The broad-scale Asian monsoon links to the basin-wide atmospheric circulation over the Indian-Pacific oceans. Both SST and land surface processes are important for determining the variations of all monsoons. For the broad-scale monsoon, SST anomalies are more important than land surface processes. For regional monsoons, however, land surface processes may become equally important. Both observation and model shows that the broad-scale monsoon is potentially more predictable than regional monsoons, and that the Southeast Asian monsoon may possess higher predictability than the South Asian monsoon.

  8. Impact of land surface conditions on the predictability of hydrologic processes and mountain-valley circulations in the North American Monsoon region

    NASA Astrophysics Data System (ADS)

    Xiang, T.; Vivoni, E. R.; Gochis, D. J.; Mascaro, G.

    2015-12-01

    Heterogeneous land surface conditions are essential components of land-atmosphere interactions in regions of complex terrain and have the potential to affect convective precipitation formation. Yet, due to their high complexity, hydrologic processes over mountainous regions are not well understood, and are usually parameterized in simple ways within coupled land-atmosphere modeling frameworks. With the improving model physics and spatial resolution of numerical weather prediction models, there is an urgent need to understand how land surface processes affect local and regional meteorological processes. In the North American Monsoon (NAM) region, the summer rainy season is accompanied by a dramatic greening of mountain ecosystems that adds spatiotemporal variability in vegetation which is anticipated to impact the conditions leading to convection, mountain-valley circulations and mesoscale organization. In this study, we present results from a detailed analysis of a high-resolution (1 km) land surface model, Noah-MP, in a large, mountainous watershed of the NAM region - the Rio Sonora (21,264 km2) in Mexico. In addition to capturing the spatial variations in terrain and soil distributions, recently-developed features in Noah-MP allow the model to read time-varying vegetation parameters derived from remotely-sensed vegetation indices; however, this new implementation has not been fully evaluated. Therefore, we assess the simulated spatiotemporal fields of soil moisture, surface temperature and surface energy fluxes through comparisons to remote sensing products and results from coarser land surface models obtained from the North American Land Data Assimilation System. We focus attention on the impact of vegetation changes along different elevation bands on the diurnal cycle of surface energy fluxes to provide a baseline for future analyses of mountain-valley circulations using a coupled land-atmosphere modeling system. Our study also compares limited streamflow observations in the large watershed to simulations using the terrain and channel routing when Noah-MP is run within the WRF-Hydro modeling framework, with the goals of validating the rainfall-runoff partitioning and translating the spatiotemporal mountain processes into improvements in streamflow predictions.

  9. Remote Sensing of Atlanta's Urban Sprawl and the Distribution of Land Cover and Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Estes, Maurice G., Jr.; Quattrochi, Dale A.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Between 1973 and 1992, an average of 20 ha of forest was lost each day to urban expansion of Atlanta, Georgia. Urban surfaces have very different thermal properties than natural surfaces-storing solar energy throughout the day and continuing to release it as sensible heat well after sunset. The resulting heat island effect serves as catalysts for chemical reactions from vehicular exhaust and industrialization leading to a deterioration in air quality. In this study, high spatial resolution multispectral remote sensing data has been used to characterize the type, thermal properties, and distribution of land surface materials throughout the Atlanta metropolitan area. Ten-meter data were acquired with the Advanced Thermal and Land Applications Sensor (ATLAS) on May 11 and 12, 1997. ATLAS is a 15-channel multispectral scanner that incorporates the Landsat TM bands with additional bands in the middle reflective infrared and thermal infrared range. The high spatial resolution permitted discrimination of discrete surface types (e.g., concrete, asphalt), individual structures (e.g., buildings, houses) and their associated thermal characteristics. There is a strong temperature contrast between vegetation and anthropomorphic features. Vegetation has a modal temperature at about 20 C, whereas asphalt shingles, pavement, and buildings have a modal temperature of about 39 C. Broad-leaf vegetation classes are indistinguishable on a thermal basis alone. There is slightly more variability (plus or minus 5 C) among the urban surfaces. Grasses, mixed vegetation and mixed urban surfaces are intermediate in temperature and are characterized by broader temperature distributions with modes of about 29 C. Thermal maps serve as a basis for understanding the distribution of "hotspots", i.e., how landscape features and urban fabric contribute the most heat to the lower atmosphere.

  10. Remote Sensing of Atlanta's Urban Sprawl and the Distribution of Land Cover and Surface Temperature

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Estes, Maurice G., Jr.; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    Between 1973 and 1992, an average of 20 ha of forest was lost each day to urban expansion of Atlanta, Georgia. Urban surfaces have very different thermal properties than natural surfaces-storing solar energy throughout the day and continuing to release it as sensible heat well after sunset. The resulting heat island effect serves as catalysts for chemical reactions from vehicular exhaust and industrialization leading to a deterioration in air quality. In this study, high spatial resolution multispectral remote sensing data has been used to characterize the type, thermal properties, and distribution of land surface materials throughout the Atlanta metropolitan area. Ten-meter data were acquired with the Advanced Thermal and Land Applications Sensor (ATLAS) on May 11 and 12, 1997. ATLAS is a 15-channel multispectral scanner that incorporates the Landsat TM bands with additional bands in the middle reflective infrared and thermal infrared range. The high spatial resolution permitted discrimination of discrete surface types (e.g., concrete, asphalt), individual structures (e.g., buildings, houses) and their associated thermal characteristics. There is a strong temperature contrast between vegetation and anthropomorphic features. Vegetation has a modal temperature at about 20 C, whereas asphalt shingles, pavement, and buildings have a modal temperature of about 39 C. Broad-leaf vegetation classes are indistinguishable on a thermal basis alone. There is slightly more variability (+/-5 C) among the urban surfaces. Grasses, mixed vegetation and mixed urban surfaces are intermediate in temperature and are characterized by broader temperature distributions with modes of about 29 C. Thermal maps serve as a basis for understanding the distribution of "hotspots", i.e., how landscape features and urban fabric contribute the most heat to the lower atmosphere.

  11. Multiple-Primitives Hierarchical Classification of Airborne Laser Scanning Data in Urban Areas

    NASA Astrophysics Data System (ADS)

    Ni, H.; Lin, X. G.; Zhang, J. X.

    2017-09-01

    A hierarchical classification method for Airborne Laser Scanning (ALS) data of urban areas is proposed in this paper. This method is composed of three stages among which three types of primitives are utilized, i.e., smooth surface, rough surface, and individual point. In the first stage, the input ALS data is divided into smooth surfaces and rough surfaces by employing a step-wise point cloud segmentation method. In the second stage, classification based on smooth surfaces and rough surfaces is performed. Points in the smooth surfaces are first classified into ground and buildings based on semantic rules. Next, features of rough surfaces are extracted. Then, points in rough surfaces are classified into vegetation and vehicles based on the derived features and Random Forests (RF). In the third stage, point-based features are extracted for the ground points, and then, an individual point classification procedure is performed to classify the ground points into bare land, artificial ground and greenbelt. Moreover, the shortages of the existing studies are analyzed, and experiments show that the proposed method overcomes these shortages and handles more types of objects.

  12. Geological survey of Maryland using EREP flight data. [mining, mapping, Chesapeake Bay islands, coastal water features

    NASA Technical Reports Server (NTRS)

    Weaver, K. N. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Underflight photography has been used in the Baltimore County mined land inventory to determine areas of disturbed land where surface mining of sand and ground clay, or stone has taken place. Both active and abandoned pits and quarries were located. Aircraft data has been used to update cultural features of Calvert, Caroline, St. Mary's, Somerset, Talbot, and Wicomico Counties. Islands have been located and catalogued for comparison with older film and map data for erosion data. Strip mined areas are being mapped to obtain total area disturbed to aid in future mining and reclamation problems. Coastal estuarine and Atlantic Coast features are being studied to determine nearshore bedforms, sedimentary, and erosional patterns, and manmade influence on natural systems.

  13. Diurnal Cycle of Surface Flows During NAME and Comparison to Model Reanalysis

    NASA Astrophysics Data System (ADS)

    Ciesielski, P. E.; Johnson, R. H.

    2007-05-01

    During the North American Monsoon Experiment (NAME) an unprecedented surface data set of winds and thermodynamic variables was collected over the core monsoon region. The surface network included 63 automated sites with 1-30 min resolution data, 27 SMN operational sites (1-3 hourly data), and 56 US operational sites (1-3 hourly data) along the northern fringe of the monsoon region. These data, along with twice daily QuikSCAT oceanic surface winds, were quality controlled and objectively analyzed on to a uniform grid with quarter-degree, 1-h resolution for the period from 1 July - 15 August. An important application of the gridded winds is their use in diagnosing surface vertical motion due to slope flows over the Sierra Madre Occidental (SMO) terrain. With this dataset we examine the diurnal characteristics of surface fields as the monsoon evolves and compare these analyses to similar surface products from the special North American Regional Reanalysis (NARR) for NAME. Observed surface fields indicate that a robust land-sea breeze circulation is present over most of Gulf of California (GOC) region in response to the strong diurnal heating of land masses on both sides of the gulf. For reasons unclear at this time, many features of this land-sea breeze circulation are missing in the NARR. Evolution of the diurnal cycle of temperature and the land- sea breeze circulation as the monsoon progresses through the season shows a strong sensitivity to rainfall over the SMO and the coastal plains. Such a relationship likely reflects changes in land surface characteristics, such as evapotranspiration and albedo, as the forests of the SMO respond to monsoonal rains.

  14. Photogrammetric analysis of horizon panoramas: The Pathfinder landing site in Viking orbiter images

    USGS Publications Warehouse

    Oberst, J.; Jaumann, R.; Zeitler, W.; Hauber, E.; Kuschel, M.; Parker, T.; Golombek, M.; Malin, M.; Soderblom, L.

    1999-01-01

    Tiepoint measurements, block adjustment techniques, and sunrise/sunset pictures were used to obtain precise pointing data with respect to north for a set of 33 IMP horizon images. Azimuth angles for five prominent topographic features seen at the horizon were measured and correlated with locations of these features in Viking orbiter images. Based on this analysis, the Pathfinder line/sample coordinates in two raw Viking images were determined with approximate errors of 1 pixel, or 40 m. Identification of the Pathfinder location in orbit imagery yields geological context for surface studies of the landing site. Furthermore, the precise determination of coordinates in images together with the known planet-fixed coordinates of the lander make the Pathfinder landing site the most important anchor point in current control point networks of Mars. Copyright 1999 by the American Geophysical Union.

  15. A new map of global ecological land units—An ecophysiographic stratification approach

    USGS Publications Warehouse

    Sayre, Roger; Dangermond, Jack; Frye, Charlie; Vaughan, Randy; Aniello, Peter; Breyer, Sean P.; Cribbs, Douglas; Hopkins, Dabney; Nauman, Richard; Derrenbacher, William; Wright, Dawn J.; Brown, Clint; Convis, Charles; Smith, Jonathan H.; Benson, Laurence; Van Sistine, Darren; Warner, Harumi; Cress, Jill Janene; Danielson, Jeffrey J.; Hamann, Sharon L.; Cecere, Thomas; Reddy, Ashwan D.; Burton, Devon; Grosse, Andrea; True, Diane; Metzger, Marc; Hartmann, Jens; Moosdorf, Nils; Durr, Hans; Paganini, Marc; Defourny, Pierre; Arino, Olivier; Maynard, Simone; Anderson, Mark; Comer, Patrick

    2014-01-01

    In response to the need and an intergovernmental commission for a high resolution and data-derived global ecosystem map, land surface elements of global ecological pattern were characterized in an ecophysiographic stratification of the planet. The stratification produced 3,923 terrestrial ecological land units (ELUs) at a base resolution of 250 meters. The ELUs were derived from data on land surface features in a three step approach. The first step involved acquiring or developing four global raster datalayers representing the primary components of ecosystem structure: bioclimate, landform, lithology, and land cover. These datasets generally represent the most accurate, current, globally comprehensive, and finest spatial and thematic resolution data available for each of the four inputs. The second step involved a spatial combination of the four inputs into a single, new integrated raster dataset where every cell represents a combination of values from the bioclimate, landforms, lithology, and land cover datalayers. This foundational global raster datalayer, called ecological facets (EFs), contains 47,650 unique combinations of the four inputs. The third step involved an aggregation of the EFs into the 3,923 ELUs. This subdivision of the Earth’s surface into relatively fine, ecological land areas is designed to be useful for various types of ecosystem research and management applications, including assessments of climate change impacts to ecosystems, economic and non-economic valuation of ecosystem services, and conservation planning.

  16. Modeling of Lunar Dust Contamination Due to Plume Impingement

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2009-01-01

    During the Apollo missions it became apparent that lunar dust was a significant hazard. Problems included: surface obscuration during landing sequence; abrasion damage to gouge faces and helmet visors; mechanism clogging; development of space suit pressurization leaks; loss of radiator heat rejection capabilities to the point where vulnerable equipment exceeded maximum survival temperature ratings; temporary vision and respiratory problems within the Apollo Lunar Module (LM). NASA Constellation Program features many system-level components, including the Altair Lunar Lander. Altair to endure longer periods at lunar surface conditions: Apollo LM, about three days; Altair, over seven months. Program managers interested in plume-generated dust transport onto thermal control surface radiators of the first Altair created by its own landing operations.

  17. Spatial database of mining-related features in 2001 at selected phosphate mines, Bannock, Bear Lake, Bingham, and Caribou Counties, Idaho

    USGS Publications Warehouse

    Moyle, Phillip R.; Kayser, Helen Z.

    2006-01-01

    This report describes the spatial database, PHOSMINE01, and the processes used to delineate mining-related features (active and inactive/historical) in the core of the southeastern Idaho phosphate resource area. The spatial data have varying degrees of accuracy and attribution detail. Classification of areas by type of mining-related activity at active mines is generally detailed; however, for many of the closed or inactive mines the spatial coverage does not differentiate mining-related surface disturbance features. Nineteen phosphate mine sites are included in the study, three active phosphate mines - Enoch Valley (nearing closure), Rasmussen Ridge, and Smoky Canyon - and 16 inactive (or historical) phosphate mines - Ballard, Champ, Conda, Diamond Gulch, Dry Valley, Gay, Georgetown Canyon, Henry, Home Canyon, Lanes Creek, Maybe Canyon, Mountain Fuel, Trail Canyon, Rattlesnake, Waterloo, and Wooley Valley. Approximately 6,000 hc (15,000 ac), or 60 km2 (23 mi2) of phosphate mining-related surface disturbance are documented in the spatial coverage. Spatial data for the inactive mines is current because no major changes have occurred; however, the spatial data for active mines were derived from digital maps prepared in early 2001 and therefore recent activity is not included. The inactive Gay Mine has the largest total area of disturbance, 1,900 hc (4,700 ac) or about 19 km2 (7.4 mi2). It encompasses over three times the disturbance area of the next largest mine, the Conda Mine with 610 hc (1,500 ac), and it is nearly four times the area of the Smoky Canyon Mine, the largest of the active mines with about 550 hc (1,400 ac). The wide range of phosphate mining-related surface disturbance features (141) from various industry maps were reduced to 15 types or features based on a generic classification system used for this study: mine pit; backfilled mine pit; waste rock dump; adit and waste rock dump; ore stockpile; topsoil stockpile; tailings or tailings pond; sediment catchment; facilities; road; railroad; water reservoir; disturbed land, undifferentiated; and undisturbed land. In summary, the spatial coverage includes polygons totaling about 1,100 hc (2,800 ac) of mine pits, 440 hc (1100 ac) of backfilled mine pits, 1,600 hc (3,800 ac) of waste rock dumps, 31 hc (75 ac) of ore stockpiles, and 44 hc (110 ac) of tailings or tailings ponds. Areas of undifferentiated phosphate mining-related land disturbances, called 'disturbed land, undifferentiated,' total about 2,200 hc (5,500 ac) or nearly 22 km2 (8.6 mi2). No determination has been made as to status of reclamation on any of the lands. Subsequent site-specific studies to delineate distinct mine features will allow additional revisions to this spatial database.

  18. Controlling the Charge State and Redox Properties of Supported Polyoxometalates via Soft Landing of Mass Selected Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunaratne, Kalupathirannehelage Don D.; Johnson, Grant E.; Andersen, Amity

    2014-12-04

    We investigate the controlled deposition of Keggin polyoxometalate (POM) anions, PMo12O403- and PMo12O402-, onto different self-assembled monolayer (SAM) surfaces via soft landing of mass-selected ions. Utilizing in situ infrared reflection absorption spectroscopy (IRRAS), ex situ cyclic voltammetry (CV) and electronic structure calculations, we examine the structure and charge retention of supported multiply-charged POM anions and characterize the redox properties of the modified surfaces. SAMs of alkylthiol (HSAM), perfluorinated alkylthiol (FSAM), and alkylthiol terminated with NH3+ functional groups (NH3+SAM) are chosen as model substrates for soft landing to examine the factors which influence the immobilization and charge retention of multiply chargedmore » anionic molecules. The distribution of charge states of POMs on different SAM surfaces are determined by comparing the IRRAS spectra with vibrational spectra calculated using density functional theory (DFT). In contrast to the results obtained previously for multiply charged cations, soft landed anions are found to retain charge on all three SAM surfaces. This charge retention is attributed to the substantial electron binding energy of the POM anions. Investigation of redox properties by CV reveals that, while surfaces prepared by soft landing exhibit similar features to those prepared by adsorption of POM from solution, the soft landed POM2- has a pronounced shift in oxidation potential compared to POM3- for one of the redox couples. These results demonstrate that ion soft landing is uniquely suited for precisely controlled preparation of substrates with specific electronic and chemical properties that cannot be achieved using conventional deposition techniques.« less

  19. Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun

    2018-03-01

    Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant sensitivity responses are found over the karst regions, including pronounced warming and cooling effects on the near-surface atmosphere from barren and forested land cover, respectively; (3) the barren ground in the karst regions provides conditions favourable for convective development under certain conditions. Therefore, it is suggested that karst and non-karst landscapes should be distinguished, and their physical processes should be considered for future model development.

  20. A four-layer model for the heat budget of homogeneous land surfaces

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Monteith, J. L.

    1988-01-01

    The present model envisions the heat balance of a homogeneous land surface in terms of available energy, a set of driving potentials, and parameters for the physical state of the soil and vegetation. Two unique features of the model are: (1) the expression of the interaction of evaporation from the soil and from foliage by changes in the value of the saturation vapor pressure deficit of air in the canopy (the conclusions of this interaction being consistent with field observations); and (2) the treatment of sensible and latent heat exchange between the atmosphere and a soil consisting of two discrete layers.

  1. Meteorological data for four sites at surface-disruption features in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1985-86

    USGS Publications Warehouse

    Carman, Rita L.

    1994-01-01

    Surface-disruption features, or craters, resulting from underground nuclear testing at the Nevada Test Site may increase the potential for ground-water recharge in an area that would normally produce little, if any, recharge. This report presents selected meteorological data resulting from a study of two surface-disruption features during May 1985 through June 1986. The data were collected at four adjacent sites in Yucca Flat, about 56 kilometers north of Mercury, Nevada. Three sites (one in each of two craters and one at an undisturbed site at the original land surface) were instrumented to collect meteorological data for calculating bare-soil evaporation. These data include (1) long-wave radiation, (2) short-wave radiation, (3) net radiation, (4) air temperae, and (5) soil surface temperature. Meteorological data also were collected at a weather station at an undisturbed site near the study craters. Data collected at this site include (1) air temperature, (2) relative humidity, (3) wind velocity, and (4) wind direction.

  2. Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0

    NASA Astrophysics Data System (ADS)

    Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.; Luke, Catherine M.

    2016-08-01

    Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model-data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. The new improved parameters for JULES are presented along with the associated uncertainties for each parameter.

  3. An investigation to improve selenodetic control through surface and orbital lunar photography

    NASA Technical Reports Server (NTRS)

    Sweet, H. J., III

    1970-01-01

    The use of lunar surface photography to achieve the photogrammetric transfer of available selenographic coordinates from future lunar landing sites to neighboring, photoidentifiable features was investigated. It can be implied from the procedures developed that overhead photography, were it available, could be utilized and would provide a material strengthening of the total solution. By the methodic selection of features and confirmation that they can in reality be identified from orbital photography, a modest selenodetic control system can be expanded into a net that could ultimately control all future, manned or unmanned, orbital photographic missions.

  4. Assessing the Reliability of Land-Use Data in Slovenia: A Case Study of Terraced Landscapes

    NASA Astrophysics Data System (ADS)

    Ažman Momirski, Lucija

    2017-10-01

    Land use relates to the exploitation of land through human activity in the landscape. Land use is also one of the best indicators of a landscape’s structure and processes. Land cover comprises manmade surfaces, agricultural areas, forest and semi-natural areas, wetlands, and bodies of water. In Slovenia more than half of the land (63%) is forested. Manmade surfaces represent less than 5%. A large proportion of relatively inaccessible forest is the main reason why society had a less critical impact on forests in the past in Slovenia in comparison to the majority of central European countries. Regarding the high-quality landscape in the country, Slovenia’s natural features are characterized by a mix of forest and farmland. These land categories (i.e., complex cultivation patterns and land principally used for agriculture with significant areas of natural vegetation) cover 23% of Slovenia. Land-use data for farmland are gathered and provided to the relevant institutions by landowners, who are not specialists in land-use data. In addition, land use is only a two-dimensional tool, which does not recognize elevation differences and terraced slopes. Terraced areas are either omitted from the inventory of land-use data because landowners do not report them, or they are included in the inventory because landowners do not realize that their land is not terraced. Consequently, the differences between the official data on vineyards, orchards, and olive groves on terraces and actual terraced slopes with such land use may differ significantly.

  5. Remote sensing with spaceborne synthetic aperture imaging radars: A review

    NASA Technical Reports Server (NTRS)

    Cimino, J. B.; Elachi, C.

    1983-01-01

    A review is given of remote sensing with Spaceborne Synthetic Aperture Radars (SAR's). In 1978, a spaceborne SA was flown on the SEASAT satellite. It acquired high resulution images over many regions in North America and the North Pacific. The acquired data clearly demonstrate the capability of spaceborne SARs to: image and track polar ice floes; image ocean surface patterns including swells, internal waves, current boundaries, weather boundaries and vessels; and image land features which are used to acquire information about the surface geology and land cover. In 1981, another SAR was flown on the second shuttle flight. This Shuttle Imaging Radar (SIR-A) acquired land and ocean images over many areas around the world. The emphasis of the SIR-A experiment was mainly toward geologic mapping. Some of the key results of the SIR-A experiment are given.

  6. Soil moisture status estimation over Three Gorges area with Landsat TM data based on temperature vegetation dryness index

    NASA Astrophysics Data System (ADS)

    Xu, Lina; Niu, Ruiqing; Li, Jiong; Dong, Yanfang

    2011-12-01

    Soil moisture is the important indicator of climate, hydrology, ecology, agriculture and other parameters of the land surface and atmospheric interface. Soil moisture plays an important role on the water and energy exchange at the land surface/atmosphere interface. Remote sensing can provide information on large area quickly and easily, so it is significant to do research on how to monitor soil moisture by remote sensing. This paper presents a method to assess soil moisture status using Landsat TM data over Three Gorges area in China based on TVDI. The potential of Temperature- Vegetation Dryness Index (TVDI) from Landsat TM data in assessing soil moisture was investigated in this region. After retrieving land surface temperature and vegetation index a TVDI model based on the features of Ts-NDVI space is established. And finally, soil moisture status is estimated according to TVDI. It shows that TVDI has the advantages of stability and high accuracy to estimating the soil moisture status.

  7. Detecting Changes of Thermal Environment over the Bohai Coastal Region by Spectral Change Vector Analysis

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Jia, G.

    2009-12-01

    Change vector analysis (CVA) is an effective approach for detecting and characterizing land-cover change by comparing pairs of multi-spectral and multi-temporal datasets over certain area derived from various satellite platforms. NDVI is considered as an effective detector for biophysical changes due to its sensitivity to red and near infrared signals, while land surface temperature (LST) is considered as a valuable indicator for changes of ground thermal conditions. Here we try to apply CVA over satellite derived LST datasets to detect changes of land surface thermal properties parallel to climate change and anthropogenic influence in a city cluster since 2001. In this study, monthly land surface temperature datasets from 2001-2008 derived from MODIS collection 5 were used to examine change pattern of thermal environment over the Bohai coastal region by using spectral change vector analysis. The results from principle component analysis (PCA) for LST show that the PC 1-3 contain over 80% information on monthly variations and these PCA components represent the main processes of land thermal environment change over the study area. Time series of CVA magnitude combined with land cover information show that greatest change occurred in urban and heavily populated area, featured with expansion of urban heat island, while moderate change appeared in grassland area in the north. However few changes were observed over large plain area and forest area. Strong signals also are related to economy level and especially the events of surface cover change, such as emergence of railway and port. Two main processes were also noticed about the changes of thermal environment. First, weak signal was detected in mostly natural area influenced by interannual climate change in temperate broadleaf forest area. Second, land surface temperature changes were controlled by human activities as 1) moderate change of LST happened in grassland influenced by grazing and 2) urban heat island was intensifier in major cities, such as Beijing and Tianjin. Further, the continual drier climate combined with human actions over past fifties years have intensified land thermal pattern change and the continuation will be an important aspects to understand land surface processes and local climate change. Land surface temperature trends from 2000-2008 over the Bohai coastal region

  8. Landing Site Studies Using High Resolution MGS Crater Counts and Phobos-2 Termoskan Data

    NASA Astrophysics Data System (ADS)

    Hartmann, Willian K.; Berman, Daniel C.; Betts, Bruce H.

    1999-06-01

    We have examined a number of potential landing sites to study effects associated with impact crater populations. We used Mars Global Surveyor high resolution MOC images, and emphasized "ground truth" by calibrating with the MOC images of Viking 1 and Pathfinder sites. An interesting result is that most of Mars (all surfaces with model ages older than 100 My) have small crater populations in saturation equilibrium below diameters D approx. = 60 meters (and down to the smallest resolvable, countable sizes, approx. = 15 m). This may have consequences for preservation of surface bedrock exposures accessible to rovers. In the lunar maria, a similar saturation equilibrium is reached for crater diameters below about 300 meters, and this has produced a regolith depth of about 10-20 meters in those areas. Assuming linear scaling, we infer that saturation at D approx. = 60 m would produce gardening and Martian regolith, or fragmental layers, about 2 to 4 meters deep over all but extremely young surfaces (such as the very fresh thin surface flows in southern Elysium Planitia, which have model ages around 10 My or less). This result may explain the global production of ubiquitous dust and fragmental material on Mars. Removal of fines may leave the boulders that have been seen at all three of the first landing sites. Accumulation of the fines elsewhere produces dunes. Due to these effects, it may be difficult to set down rovers in areas where bedrock is well preserved at depths of centimeters, unless we find cliff sides or areas of deflation where wind has exposed clean surfaces (among residual boulders?) We have also surveyed the PHOBOS 2 Termoskan data to look for regions of thermal anomalies that might produce interesting landing sites. For landing site selection, two of the more interesting types of features are thermally distinct ejecta blankets and thermally distinct channels and valleys. Martian "thermal features" such as these that correlate closely with nonaeolian geologic features are extremely rare, presumably due to reworking of the surface as discussed above, and due to aeolian processes. Thermally distinct ejecta blankets are excellent potential future locations for landers, as well as remote sensing, because they represent relatively dust free exposures of material excavated from depth. However, few, if any meet the current constraints on elevation for Mars '01. Thermally distinct channels, which tend to have fretted morphologies, and are higher in inertia than their surroundings, offer a unique history and probable surface presence of material from various stratigraphic layers and, locations, views of the surrounding walls, and possible areas of past standing water, flowing water, or increased amounts of diffusing water. Any presence of water (e.g., diffusing may have enhanced duricrust formation in the channels, thus increasing the thermal inertias (flowing water may alternatively have enhanced rock deposition, which also could explain the inertia enhancements instead of crust formation). Some of the thermally distinct channels do meet the elevation criteria for '01. We are looking particularly at the relatively flat areas at the northern end of Hydraotes Chaos (eastern end of Valles Marineris), near the beginnings of Tiu and Simud Valles, which appear to meet most all of the current '01 landing criteria. For thermally distinct channels, valleys, and ejecta blankets, we have searched and continue to search for MOC images that may help clarify their characteristics and assist with potential landing site characterization.

  9. Karst Aquifer in Qatar and its bearing on Natural Rainfall Recharge

    NASA Astrophysics Data System (ADS)

    Baalousha, Husam; Ackerer, Philippe

    2017-04-01

    Qatar is an arid country with little rainfall and high evaporation. Surface water is non-existent so aquifer is the only source of natural water. The annual long-term averages of rainfall and evaporation are 80 mm and more than 2000 mm, respectively. Despite the low rainfall and high evaporation, natural recharge from rainfall occurs at an average of approximately 50 million m3 per year. Rainfall recharge in Qatar takes in land depressions that occur all over the country. These depressions are a result of land collapse due to sinkholes and cavity in the limestone formation. In the northern part of the country, karst features occur as a result of dissolution of limestone, which leads to land depressions. Results of this study shows groundwater recharge occurs in land depression areas, especially in the northern part of the country, where surface runoff accumulates in these land depressions and recharges the aquifer. This paper was made possible by NPRP grant # [NPRP 9-030-1-008] from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the author[s]."

  10. Introducing the MIT Regional Climate Model (MRCM)

    NASA Astrophysics Data System (ADS)

    Eltahir, Elfatih A. B.; Winter, Jonathn M.; Marcella, Marc P.; Gianotti, Rebecca L.; Im, Eun-Soon

    2013-04-01

    During the last decade researchers at MIT have worked on improving the skill of Regional Climate Model version 3 (RegCM3) in simulating climate over different regions through the incorporation of new physical schemes or modification of original schemes. The MIT Regional Climate Model (MRCM) features several modifications over RegCM3 including coupling of Integrated Biosphere Simulator (IBIS), a new surface albedo assignment method, a new convective cloud and rainfall auto-conversion scheme, and a modified boundary layer height and cloud scheme. Here, we introduce the MRCM and briefly describe the major model modifications relative to RegCM3 and their impact on the model performance. The most significant difference relative to the RegCM3 original configuration is coupling the Integrated Biosphere Simulator (IBIS) land-surface scheme (Winter et al., 2009). Based on the simulations using IBIS over the North America, the Maritime Continent, Southwest Asia and West Africa, we demonstrate that the use of IBIS as the land surface scheme results in better representation of surface energy and water budgets in comparison to BATS. Furthermore, the addition of a new irrigation scheme to IBIS makes it possible to investigate the effects of irrigation over any region. Also a new surface albedo assignment method used together with IBIS brings further improvement in simulations of surface radiation (Marcella and Eltahir, 2013). Another important feature of the MRCM is the introduction of a new convective cloud and rainfall auto-conversion scheme (Gianotti and Eltahir, 2013). This modification brings more physical realism into an important component of the model, and succeeds in simulating convective-radiative feedback improving model performance across several radiation fields and rainfall characteristics. Other features of MRCM such as the modified boundary layer height and cloud scheme, and the improvements in the dust emission and transport representations will be discussed.

  11. Modelling the effect of urbanization on the transmission of an infectious disease.

    PubMed

    Zhang, Ping; Atkinson, Peter M

    2008-01-01

    This paper models the impact of urbanization on infectious disease transmission by integrating a CA land use development model, population projection matrix model and CA epidemic model in S-Plus. The innovative feature of this model lies in both its explicit treatment of spatial land use development, demographic changes, infectious disease transmission and their combination in a dynamic, stochastic model. Heuristically-defined transition rules in cellular automata (CA) were used to capture the processes of both land use development with urban sprawl and infectious disease transmission. A population surface model and dwelling distribution surface were used to bridge the gap between urbanization and infectious disease transmission. A case study is presented involving modelling influenza transmission in Southampton, a dynamically evolving city in the UK. The simulation results for Southampton over a 30-year period show that the pattern of the average number of infection cases per day can depend on land use and demographic changes. The modelling framework presents a useful tool that may be of use in planning applications.

  12. Techniques for Improved Retrospective Fine-scale Meteorology

    EPA Science Inventory

    Pleim-Xiu Land-Surface model (PX LSM) was developed for retrospective meteorological simulations to drive chemical transport models. One of the key features of the PX LSM is the indirect soil moisture and temperature nudging. The idea is to provide a three hourly 2-m temperature ...

  13. Variability and Predictability of Land-Atmosphere Interactions: Observational and Modeling Studies

    NASA Technical Reports Server (NTRS)

    Roads, John; Oglesby, Robert; Marshall, Susan; Robertson, Franklin R.

    2002-01-01

    The overall goal of this project is to increase our understanding of seasonal to interannual variability and predictability of atmosphere-land interactions. The project objectives are to: 1. Document the low frequency variability in land surface features and associated water and energy cycles from general circulation models (GCMs), observations and reanalysis products. 2. Determine what relatively wet and dry years have in common on a region-by-region basis and then examine the physical mechanisms that may account for a significant portion of the variability. 3. Develop GCM experiments to examine the hypothesis that better knowledge of the land surface enhances long range predictability. This investigation is aimed at evaluating and predicting seasonal to interannual variability for selected regions emphasizing the role of land-atmosphere interactions. Of particular interest are the relationships between large, regional and local scales and how they interact to account for seasonal and interannual variability, including extreme events such as droughts and floods. North and South America, including the Global Energy and Water Cycle Experiment Continental International Project (GEWEX GCIP), MacKenzie, and LBA basins, are currently being emphasized. We plan to ultimately generalize and synthesize to other land regions across the globe, especially those pertinent to other GEWEX projects.

  14. Land Use and Land Cover (LULC) Change Detection in Islamabad and its Comparison with Capital Development Authority (CDA) 2006 Master Plan

    NASA Astrophysics Data System (ADS)

    Hasaan, Zahra

    2016-07-01

    Remote sensing is very useful for the production of land use and land cover statistics which can be beneficial to determine the distribution of land uses. Using remote sensing techniques to develop land use classification mapping is a convenient and detailed way to improve the selection of areas designed to agricultural, urban and/or industrial areas of a region. In Islamabad city and surrounding the land use has been changing, every day new developments (urban, industrial, commercial and agricultural) are emerging leading to decrease in vegetation cover. The purpose of this work was to develop the land use of Islamabad and its surrounding area that is an important natural resource. For this work the eCognition Developer 64 computer software was used to develop a land use classification using SPOT 5 image of year 2012. For image processing object-based classification technique was used and important land use features i.e. Vegetation cover, barren land, impervious surface, built up area and water bodies were extracted on the basis of object variation and compared the results with the CDA Master Plan. The great increase was found in built-up area and impervious surface area. On the other hand vegetation cover and barren area followed a declining trend. Accuracy assessment of classification yielded 92% accuracies of the final land cover land use maps. In addition these improved land cover/land use maps which are produced by remote sensing technique of class definition, meet the growing need of legend standardization.

  15. Soft Landing of Bare Nanoparticles with Controlled Size, Composition, and Morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Colby, Robert J.; Laskin, Julia

    2015-01-01

    A kinetically-limited physical synthesis method based on magnetron sputtering and gas aggregation has been coupled with size-selection and ion soft landing to prepare bare metal nanoparticles on surfaces with controlled coverage, size, composition, and morphology. Employing atomic force microscopy (AFM) and scanning electron microscopy (SEM), it is demonstrated that the size and coverage of bare nanoparticles soft landed onto flat glassy carbon and silicon as well as stepped graphite surfaces may be controlled through size-selection with a quadrupole mass filter and the length of deposition, respectively. The bare nanoparticles are observed with AFM to bind randomly to the flat glassymore » carbon surface when soft landed at relatively low coverage (1012 ions). In contrast, on stepped graphite surfaces at intermediate coverage (1013 ions) the soft landed nanoparticles are shown to bind preferentially along step edges forming extended linear chains of particles. At the highest coverage (5 x 1013 ions) examined in this study the nanoparticles are demonstrated with both AFM and SEM to form a continuous film on flat glassy carbon and silicon surfaces. On a graphite surface with defects, however, it is shown with SEM that the presence of localized surface imperfections results in agglomeration of nanoparticles onto these features and the formation of neighboring depletion zones that are devoid of particles. Employing high resolution scanning transmission electron microscopy in the high angular annular dark field imaging mode (STEM-HAADF) and electron energy loss spectroscopy (EELS) it is demonstrated that the magnetron sputtering/gas aggregation synthesis technique produces single metal particles with controlled morphology as well as bimetallic alloy nanoparticles with clearly defined core-shell structure. Therefore, this kinetically-limited physical synthesis technique, when combined with ion soft landing, is a versatile complementary method for preparing a wide range of bare supported nanoparticles with selected properties that are free of the solvent, organic capping agents, and residual reactants present with nanoparticles synthesized in solution.« less

  16. Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates

    USGS Publications Warehouse

    Wang, A.; Freeman, J.J.; Jolliff, B.L.; Chou, I.-Ming

    2006-01-01

    The martian orbital and landed surface missions, OMEGA on Mar Express and the two Mars Explorations Rovers, respectively, have yielded evidence pointing to the presence of magnesium sulfates on the martian surface. In situ identification of the hydration states of magnesium sulfates, as well as the hydration states of other Ca- and Fe- sulfates, will be crucial in future landed missions on Mars in order to advance our knowledge of the hydrologic history of Mars as well as the potential for hosting life on Mars. Raman spectroscopy is a technique well-suited for landed missions on the martian surface. In this paper, we report a systematic study of the Raman spectra of the hydrates of magnesium sulfate. Characteristic and distinct Raman spectral patterns were observed for each of the 11 distinct hydrates of magnesium sulfates, crystalline and non-crystalline. The unique Raman spectral features along with the general tendency of the shift of the position of the sulfate ??1 band towards higher wavenumbers with a decrease in the degree of hydration allow in situ identification of these hydrated magnesium sulfates from the raw Raman spectra of mixtures. Using these Raman spectral features, we have started the study of the stability field of hydrated magnesium sulfates and the pathways of their transformations at various temperature and relative humidity conditions. In particular we report on the Raman spectrum of an amorphous hydrate of magnesium sulfate (MgSO4??2H2O) that may have specific relevance for the martian surface. ?? 2006 Elsevier Inc. All rights reserved.

  17. Preliminary results from the Viking orbiter imaging experiment

    USGS Publications Warehouse

    Carr, M.H.; Masursky, H.; Baum, W.A.; Blasius, K.R.; Briggs, G.A.; Cutts, J.A.; Duxbury, T.; Greeley, R.; Guest, J.E.; Smith, B.A.; Soderblom, L.A.; Veverka, J.; Wellman, J.B.

    1976-01-01

    During its first 30 orbits around Mars, the Viking orbiter took approximately 1000 photographic frames of the surface of Mars with resolutions that ranged from 100 meters to a little more than 1 kilometer. Most were of potential landing sites in Chryse Planitia and Cydonia and near Capri Chasma. Contiguous high-resolution coverage in these areas has led to an increased understanding of surface processes, particularly cratering, fluvial, and mass-wasting phenomena. Most of the surfaces examined appear relatively old, channel features abound, and a variety of features suggestive of permafrost have been identified. The ejecta patterns around large craters imply that fluid flow of ejecta occurred after ballistic deposition. Variable features in the photographed area appear to have changed little since observed 5 years ago from Mariner 9. A variety of atmospheric phenomena were observed, including diffuse morning hazes, both stationary and moving discrete white clouds, and wave clouds covering extensive areas.

  18. Coastal hazards: hurricanes, tsunamis, coastal erosion

    USGS Publications Warehouse

    Vandas, Stephen; Mersfelder, Lynne; Farrar, Frank; France, Rigoberto Guardado; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Oceans are the largest geographic feature on the surface of the Earth, covering approximately 70% of the planet's surface. As a result, oceans have a tremendous impact on the Earth, its climate, and its inhabitants. The coast or shoreline is the boundary between ocean environments and land habitats. By the year 2025, it is estimated that approximately two-thirds of the world's population will be living within 200 kilometers of a coast. In many ways, we treat the coast just like any other type of land area, as a safe and stable place to live and play. However, coastal environments are dynamic, and they constantly change in response to natural processes and to human activities.

  19. Weathered stony meteorites from Victoria Land, Antarctica, as possible guides to rock weathering on Mars

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1984-01-01

    Parallel studies of Martian geomorphic features and their analogs on Earth continue to be fruitful in deciphering the geologic history of Mars. In the context of rock weathering, the Earth-analog approach is admirably served by the study of meteorites recovered from ice sheets in Antarctica. The weathering environment of Victoria Land possesses several Mars-like attributes. Four of the five Antarctic meteorites being studied contain rust and EETA79005 further possesses a conspicuous, dark, weathering rind on one side. Secondary minerals (rust and salts) occur both on the surfaces and interiors of some of the samples and textural evidence indicates that such secondary mineralization contributed to physical weathering (by salt riving) of the rocks. Several different rust morphologies occur and emphasis is being placed on identifying the phase compositions of the various rust occurrances. A thorough understanding of terrestrial weathering features of the meteorites is a prerequisite for identifying possible Martian weathering features (if such features exist) that might be postulated to occur in some meteorites.

  20. Spaceborne imaging radar - Geologic and oceanographic applications

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1980-01-01

    Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies have been observed in numerous images taken by the Seasat imaging radar. This article gives an illustrated overview of these applications.

  1. Monitoring Land Subsidence in Arizona Due to Excessive Groundwater Withdrawal Using Interferometric Synthetic Aperture Radar (InSAR) Data

    NASA Astrophysics Data System (ADS)

    Conway, B. D.

    2014-12-01

    Land subsidence due to excess groundwater overdraft has been an ongoing problem in south-central and southern Arizona since the1940's. The first earth fissure attributed to excessive groundwater withdrawal was discovered in 1946 near Picacho, Arizona. In some areas of the State, groundwater declines of more than 400 feet have resulted in extensive earth fissuring and widespread land subsidence; land subsidence of more than 19 feet has been documented near Phoenix and Eloy. The Arizona Department of Water Resources (ADWR) has been monitoring land subsidence throughout Arizona since 1997 using Interferometric Synthetic Aperture Radar (InSAR) Data and Global Navigation Satellite System Data. The ADWR InSAR program has proven to be a critical resource in monitoring land subsidence throughout Arizona, resulting in the identification of more than twenty-five individual land subsidence features that cover an area of more than 1,200 square miles. The majority of these land subsidence features are a direct result of groundwater declines attributed to groundwater overdraft. Using InSAR data in conjunction with both automated and manual groundwater level datasets, ADWR is able to monitor active land subsidence areas as well as identify other areas that may require additional InSAR monitoring. InSAR data have also proven to be extremely useful in monitoring land surface uplift associated with rising groundwater levels near groundwater recharge facilities. InSAR data can show the impact of the recharged groundwater as the area of uplift extends down gradient from the recharge facility. Some highlights of recent InSAR results include the identification of a new land subsidence feature in the eastern portion of Metropolitan Phoenix where groundwater levels have recently declined; the identification of changes to a floodplain that may be exacerbating recent flooding; seasonal land subsidence and uplift related to seasonal groundwater demands; and the identification of uplift related to groundwater recharge facilities. The declining groundwater levels in Arizona are both a challenge for future groundwater availability but also for mitigating land subsidence. ADWR's InSAR program will continue to be a critical tool for monitoring land subsidence due to excessive groundwater withdrawal.

  2. A model of the extent and distribution of woody linear features in rural Great Britain.

    PubMed

    Scholefield, Paul; Morton, Dan; Rowland, Clare; Henrys, Peter; Howard, David; Norton, Lisa

    2016-12-01

    Hedges and lines of trees (woody linear features) are important boundaries that connect and enclose habitats, buffer the effects of land management, and enhance biodiversity in increasingly impoverished landscapes. Despite their acknowledged importance in the wider countryside, they are usually not considered in models of landscape function due to their linear nature and the difficulties of acquiring relevant data about their character, extent, and location. We present a model which uses national datasets to describe the distribution of woody linear features along boundaries in Great Britain. The method can be applied for other boundary types and in other locations around the world across a range of spatial scales where different types of linear feature can be separated using characteristics such as height or width. Satellite-derived Land Cover Map 2007 (LCM2007) provided the spatial framework for locating linear features and was used to screen out areas unsuitable for their occurrence, that is, offshore, urban, and forest areas. Similarly, Ordnance Survey Land-Form PANORAMA®, a digital terrain model, was used to screen out where they do not occur. The presence of woody linear features on boundaries was modelled using attributes from a canopy height dataset obtained by subtracting a digital terrain map (DTM) from a digital surface model (DSM). The performance of the model was evaluated against existing woody linear feature data in Countryside Survey across a range of scales. The results indicate that, despite some underestimation, this simple approach may provide valuable information on the extents and locations of woody linear features in the countryside at both local and national scales.

  3. LandingNav: a precision autonomous landing sensor for robotic platforms on planetary bodies

    NASA Astrophysics Data System (ADS)

    Katake, Anup; Bruccoleri, Chrisitian; Singla, Puneet; Junkins, John L.

    2010-01-01

    Increased interest in the exploration of extra terrestrial planetary bodies calls for an increase in the number of spacecraft landing on remote planetary surfaces. Currently, imaging and radar based surveys are used to determine regions of interest and a safe landing zone. The purpose of this paper is to introduce LandingNav, a sensor system solution for autonomous landing on planetary bodies that enables landing on unknown terrain. LandingNav is based on a novel multiple field of view imaging system that leverages the integration of different state of the art technologies for feature detection, tracking, and 3D dense stereo map creation. In this paper we present the test flight results of the LandingNav system prototype. Sources of errors due to hardware limitations and processing algorithms were identified and will be discussed. This paper also shows that addressing the issues identified during the post-flight test data analysis will reduce the error down to 1-2%, thus providing for a high precision 3D range map sensor system.

  4. Are the Viking Lander sites representative of the surface of Mars?

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.; Christensen, P. R.

    1986-01-01

    Global remote sensing data of the Martian surface, collected by earth- and satellite-based instruments, are compared with data from the two Viking Landers to determine if the Lander data are representative of the Martian surface. The landing sites are boulder-strewn and feature abundant fine material and evidence of strong eolian forces. One site (VL-1) is in a plains-covered basin which is associated with volcanic activity; the VL-2 site is in the northern plains. Thermal IR, broadband albedo, color imaging and radar remote sensing has been carried out of the global Martian surface. The VL-1 data do not fit a general correlation observed between increases in 70-cm radar cross-sections and thermal inertia. A better fit is found with 12.5-cm cross sections, implying the presence of a thinner or discontinuous duricrust at the VL-1 site, compared to other higher-inertia regions. A thin dust layer is also present at the VL-2 site, based on the Lander reflectance data. The Lander sites are concluded to be among the three observed regions of anomalous reflectivity, which can be expected in low regions selected for the landings. Recommendations are furnished for landing sites of future surface probes in order to choose sites more typical of the global Martian surface.

  5. LUNAR SITE MAP (APOLLO XV) - MSC

    NASA Image and Video Library

    1971-07-16

    S71-40085 (July 1971) --- An enlarged Lunar Orbiter photograph of the Apollo 15 landing area in the Hadley-Apennine region on the nearside of the moon. The overlay indicates the location of the numerous informally-named surface features. These names will facilitate understanding the verbal descriptions from the astronauts during their lunar surface extravehicular activity (EVA). This is an August 1967, Lunar Orbiter V photograph of Site 26.1.

  6. A Colorful Landing on Pluto

    NASA Image and Video Library

    2017-01-21

    What would it be like to actually land on Pluto? This image is one of more than 100 images taken by NASA's New Horizons spacecraft over six weeks of approach and close flyby in the summer of 2015. A video offers a trip down onto the surface of Pluto -- starting with a distant view of Pluto and its largest moon, Charon -- and leading up to an eventual ride in for a "landing" on the shoreline of Pluto's informally named Sputnik Planitia. After a 9.5-year voyage covering more than three billion miles, New Horizons flew through the Pluto system on July 14, 2015, coming within 7,800 miles (12,500 kilometers) of Pluto. Carrying powerful telescopic cameras that could spot features smaller than a football field, New Horizons sent back hundreds of images of Pluto and its moons that show how dynamic and fascinating their surfaces are. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA11709

  7. Investigation of the applications of GEOS-3 radar altimeter data in remote sensing of land and sea features

    NASA Technical Reports Server (NTRS)

    Miller, L. S.

    1977-01-01

    A number of GEOS-3 passes over the Atlantic Ocean and Southeastern U.S. are examined. Surface-truth and radar altimeter data comparisons are given in terms of surface correlation length, signal fluctuation characteristics, and altitude tracker dynamic response. Detailed analyses are given regarding spatial resolution and its dependency on angular backscatter behavior. These analyses include data from passes over ocean (diffuse scatter), land (large body scatter), and mirror-like inland water areas (pseudo-specular scatter). Altimeter data are examined for a pass over a large reservoir and marsh area of differing water levels; this geometry represents a stepchange in altitude which is usable in determination of the transient response of the tracker. The extent to which pulse-length limited operation pertains over-land is examined. A Wiener filter altitude algorithm is discussed which permits specification of tracker variance and geoidal spectral characteristics during operation.

  8. In Situ Enrichment of Phosphopeptides on MALDI Plates Functionalized by Reactive Landing of Zirconium(IV)–n-Propoxide Ions

    PubMed Central

    Blacken, Grady R.; Volný, Michael; Vaisar, Tomáš; Sadílek, Martin; Tureček, František

    2008-01-01

    We report substantial in situ enrichment of phosphopeptides in peptide mixtures using zirconium oxide coated plates for detection by MALDI-TOF mass spectrometry. The novel feature of this approach rests on the specific preparation of zirconium oxide coatings using reactive landing on stainless steel support of gas-phase positive ions produced by electrospray of zirconium(IV)–n-propoxide solutions in 1-propanol. Reactive landing was found to produce durable functionalized surfaces for selective phosphopeptide capture and desorption–ionization by MALDI. Enrichment factors on the order of 20–90 were achieved for several monophosphorylated peptides relative to abundant nonphosphorylated peptides in tryptic digests. We demonstrate the ability of the zirconium oxide functionalized MALDI surfaces to facilitate detection of enriched phosphopeptides in mid-femtomole amounts of α-casein digests per MALDI spot. PMID:17569507

  9. Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0

    DOE PAGES

    Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.; ...

    2016-08-25

    Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate–carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimationmore » system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model–data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. Furthermore, the new improved parameters for JULES are presented along with the associated uncertainties for each parameter.« less

  10. Remote sensing of soils, land forms, and land use in the northern great plains in preparation for ERTS applications

    NASA Technical Reports Server (NTRS)

    Frazee, C. J.; Westin, F. C.; Gropper, J.; Myers, V. I.

    1972-01-01

    Research to determine the optimum time or season for obtaining imagery to identify and map soil limitations was conducted in the proposed Oahe irrigation project area in South Dakota. The optimum time for securing photographs or imagery is when the soil surface patterns are most apparent. For cultivated areas similar to the study area, May is the optimum time. The fields are cultivated or the planted crop has not yet masked soil surface features. Soil limitations in 59 percent of the field of the flight line could be mapped using the above criteria. The remaining fields cannot be mapped because the vegetation or growing crops do not express features related to soil differences. This suggests that imagery from more than one year is necessary to map completely the soil limitations of Oahe area by remote sensing techniques. Imagery from the other times studied is not suitable for identifying and mapping soil limitations of Oahe area by remote sensing techniques. Imagery from the other times studied is not suitable for identifying and mapping soil limitations because the vegetative cover masked the soil surface and does not reflect soil differences.

  11. Location and Geologic Setting for the Three U.S. Mars Landers

    NASA Technical Reports Server (NTRS)

    Parker, T. J.; Kirk, R. L.

    1999-01-01

    Super resolution of the horizon at both Viking landing sites has revealed "new" features we use for triangulation, similar to the approach used during the Mars Pathfinder Mission. We propose alternative landing site locations for both landers for which we believe the confidence is very high. Super resolution of VL-1 images also reveals some of the drift material at the site to consist of gravel-size deposits. Since our proposed location for VL-2 is NOT on the Mie ejecta blanket, the blocky surface around the lander may represent the meter-scale texture of "smooth palins" in the region. The Viking Lander panchromatic images typically offer more repeat coverage than does the IMP on Mars Pathfinder, due to the longer duration of these landed missions. Sub-pixel offsets, necessary for super resolution to work, appear to be attributable to thermal effects on the lander and settling of the lander over time. Due to the greater repeat coverage (particularly in the near and mid-fields) and all-panchromatic images, the gain in resolution by super resolution processing is better for Viking than it is with most IMP image sequences. This enhances the study of textural details near the lander and enables the identification rock and surface textures at greater distances from the lander. Discernment of stereo in super resolution im-ages is possible to great distances from the lander, but is limited by the non-rotating baseline between the two cameras and the shorter height of the cameras above the ground compared to IMP. With super resolution, details of horizon features, such as blockiness and crater rim shapes, may be better correlated with Orbiter images. A number of horizon features - craters and ridges - were identified at VL-1 during the misison, and a few hils and subtle ridges were identified at VL-2. We have added a few "new" horizon features for triangulation at the VL-2 landing site in Utopia Planitia. These features were used for independent triangulation with features visible in Viking Orbiter and MGS MOC images, though the actual location of VL-1 lies in a data dropout in the MOC image of the area. Additional information is contained in the original extended abstract.

  12. Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role

    PubMed Central

    Ruairuen, Watcharee

    2015-01-01

    As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/R net (67%), G/R net (6%), H/R net (27%) where LE is latent heat flux, R net is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems. PMID:26368123

  13. Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role.

    PubMed

    Ruairuen, Watcharee; Fochesatto, Gilberto J; Sparrow, Elena B; Schnabel, William; Zhang, Mingchu; Kim, Yongwon

    2015-01-01

    As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/Rnet (67%), G/Rnet (6%), H/Rnet (27%) where LE is latent heat flux, Rnet is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems.

  14. Littoral Assessment of Mine Burial Signatures (LAMBS) buried land mine/background spectral signature analyses

    USGS Publications Warehouse

    Kenton, A.C.; Geci, D.M.; Ray, K.J.; Thomas, C.M.; Salisbury, J.W.; Mars, J.C.; Crowley, J.K.; Witherspoon, N.H.; Holloway, J.H.; Harmon R.S.Broach J.T.Holloway, Jr. J.H.

    2004-01-01

    The objective of the Office of Naval Research (ONR) Rapid Overt Reconnaissance (ROR) program and the Airborne Littoral Reconnaissance Technologies (ALRT) project's LAMBS effort is to determine if electro-optical spectral discriminants exist that are useful for the detection of land mines in littoral regions. Statistically significant buried mine overburden and background signature data were collected over a wide spectral range (0.35 to 14 ??m) to identify robust spectral features that might serve as discriminants for new airborne sensor concepts. LAMBS has expanded previously collected databases to littoral areas - primarily dry and wet sandy soils - where tidal, surf, and wind conditions can severely modify spectral signatures. At AeroSense 2003, we reported completion of three buried mine collections at an inland bay, Atlantic and Gulf of Mexico beach sites.1 We now report LAMBS spectral database analyses results using metrics which characterize the detection performance of general types of spectral detection algorithms. These metrics include mean contrast, spectral signal-to-clutter, covariance, information content, and spectral matched filter analyses. Detection performance of the buried land mines was analyzed with regard to burial age, background type, and environmental conditions. These analyses considered features observed due to particle size differences, surface roughness, surface moisture, and compositional differences.

  15. Change detection in Arctic satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Wilson, Cathy J.; Rowland, Joel C.; Altmann, Garrett L.

    2015-06-01

    Advanced pattern recognition and computer vision algorithms are of great interest for landscape characterization, change detection, and change monitoring in satellite imagery, in support of global climate change science and modeling. We present results from an ongoing effort to extend neuroscience-inspired models for feature extraction to the environmental sciences, and we demonstrate our work using Worldview-2 multispectral satellite imagery. We use a Hebbian learning rule to derive multispectral, multiresolution dictionaries directly from regional satellite normalized band difference index data. These feature dictionaries are used to build sparse scene representations, from which we automatically generate land cover labels via our CoSA algorithm: Clustering of Sparse Approximations. These data adaptive feature dictionaries use joint spectral and spatial textural characteristics to help separate geologic, vegetative, and hydrologic features. Land cover labels are estimated in example Worldview-2 satellite images of Barrow, Alaska, taken at two different times, and are used to detect and discuss seasonal surface changes. Our results suggest that an approach that learns from both spectral and spatial features is promising for practical pattern recognition problems in high resolution satellite imagery.

  16. Mars Pathfinder [foldout].

    PubMed

    1997-12-05

    The following foldout present images and analysis from the Mars Pathfinder Mission that are discussed in seven subsequent Reports. The center is a four-page panorama of the surface of Mars around the lander (Plate 1). The back of the foldout contains surface images (Plate 7), a different perspective of the landing site (Plate 2), rover targets (Plate 3), locations of rocks and other features (Plate 6) and data analysis (Plates 4, 4, 8, 9, and 10).

  17. Digital database of mining-related features at selected historic and active phosphate mines, Bannock, Bear Lake, Bingham, and Caribou counties, Idaho

    USGS Publications Warehouse

    Causey, J. Douglas; Moyle, Phillip R.

    2001-01-01

    This report provides a description of data and processes used to produce a spatial database that delineates mining-related features in areas of historic and active phosphate mining in the core of the southeastern Idaho phosphate resource area. The data have varying degrees of accuracy and attribution detail. Classification of areas by type of mining-related activity at active mines is generally detailed; however, the spatial coverage does not differentiate mining-related surface disturbance features at many of the closed or inactive mines. Nineteen phosphate mine sites are included in the study. A total of 5,728 hc (14,154 ac), or more than 57 km2 (22 mi2), of phosphate mining-related surface disturbance are documented in the spatial coverage of the core of the southeast Idaho phosphate resource area. The study includes 4 active phosphate mines—Dry Valley, Enoch Valley, Rasmussen Ridge, and Smoky Canyon—and 15 historic phosphate mines—Ballard, Champ, Conda, Diamond Gulch, Gay, Georgetown Canyon, Henry, Home Canyon, Lanes Creek, Maybe Canyon, Mountain Fuel, Trail Canyon, Rattlesnake Canyon, Waterloo, and Wooley Valley. Spatial data on the inactive historic mines is relatively up-to-date; however, spatially described areas for active mines are based on digital maps prepared in early 1999. The inactive Gay mine has the largest total area of disturbance: 1,917 hc (4,736 ac) or about 19 km2 (7.4 mi2). It encompasses over three times the disturbance area of the next largest mine, the Conda mine with 607 hc (1,504 ac), and it is nearly four times the area of the Smoky Canyon mine, the largest of the active mines with 497 hc (1,228 ac). The wide range of phosphate mining-related surface disturbance features (approximately 80) were reduced to 13 types or features used in this study—adit and pit, backfilled mine pit, facilities, mine pit, ore stockpile, railroad, road, sediment catchment, tailings or tailings pond, topsoil stockpile, water reservoir, and disturbed land (undifferentiated). In summary, the spatial coverage includes polygons totaling 1,114 hc (2,753 ac) of mine pits, 272 hc (671 ac) of backfilled mine pits, 1,570 hc (3,880 ac) of waste dumps, 26 hc (64 ac) of ore stockpiles, and 44 hc (110 ac) of tailings or tailings ponds. Areas of undifferentiated phosphate mining-related land disturbances, called “disturbed land,” total 2,176 (5,377 ac) or nearly 21.8 km2 (8.4 mi2). No determination has been made as to status of reclamation on these lands. Subsequent site-specific studies to delineate distinct mine features will allow modification of this preliminary spatial database.

  18. Introduction to Japanese exploration study to the moon

    NASA Astrophysics Data System (ADS)

    Hashimoto, T.; Hoshino, T.; Tanaka, S.; Otake, H.; Otsuki, M.; Wakabayashi, S.; Morimoto, H.; Masuda, K.

    2014-11-01

    The Japan Aerospace Exploration Agency (JAXA) views the lunar lander SELENE-2 as the successor to the SELENE mission. In this presentation, the mission objectives of SELENE-2 are shown together with the present design status of the spacecraft. JAXA launched the Kaguya (SELENE) lunar orbiter in September 2007, and the spacecraft observed the Moon and a couple of small satellites using 15 instruments. As the next step in lunar exploration, the lunar lander SELENE-2 is being considered. SELENE-2 will land on the lunar surface and perform in-situ scientific observations, environmental investigations, and research for future lunar utilization including human activity. At the same time, it will demonstrate key technologies for lunar and planetary exploration such as precise and safe landing, surface mobility, and overnight survival. The lander will carry laser altimeters, image sensors, and landing radars for precise and safe landing. Landing legs and a precisely controlled propulsion system will also be developed. A rover is being designed to be able to travel over a wide area and observe featured terrain using scientific instruments. Since some of the instruments require long-term observation on the lunar surface, technology for night survival over more than 2 weeks needs to be considered. The SELENE-2 technologies are expected to be one of the stepping stones towards future Japanese human activities on the moon and to expand the possibilities for deep space science.

  19. Europa Surface Radiation Environment for Lander Assessment

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Sturner, Steven J.

    2006-01-01

    The Jovian magnetospheric particle environment at Europa's surface is critical to assessment of landed astrobiological experiments in three respects: (1) the landing site must be chosen for the best prospects for detectable organic or inorganic signs of Life, e.g. regions of freshly emergent flows from the subsurface; (2) lander systems must reach the surface through the Jovian magnetospheric environment and operate long enough on the surface to return useful data; (3) lander instrumentation must be capable of detecting signs of life in the context of the local environmental radiation and associated chemistry. The Galileo, Voyager, and Pioneer missions have provided a wealth of data on energetic particle intensities throughout the Jovian magnetosphere including from many flybys of Europa. cumulative radiation dosages for spacecraft enroute to Europa can be well characterized, but knowledge of the surface radiation environment is very limited. Energetic electrons should primarily impact the trailing hemisphere with decreasing intensity towards the center of the leading hemisphere and are the most significant radiation component down to meter depths in the surface regolith due to secondary interactions. Observed surface distribution for sulfates is suggestive of electron irradiation but may have alternative interpretations. Having much-larger magnetic gyroradii than electrons, energetic protons and heavier ions irradiate more of the global surface. The particular orientations of electron, proton, and ion gyromotion would project into corresponding directional (e.g., east-west) anisotropies of particle flu into the surface. Particular topographic features at the landing site may therefore offer shielding from part of the incident radiation.

  20. Simulating fluxes from heterogeneous land surfaces: Explicit subgrid method employing the biosphere-atmosphere transfer scheme (BATS)

    NASA Technical Reports Server (NTRS)

    Seth, Anji; Giorgi, Filippo; Dickinson, Robert E.

    1994-01-01

    A vectorized version of the biosphere-atmosphere transfer scheme (VBATS) is used to study moisture, energy, and momentum fluxes from heterogeneous land surfaces st the scale of an atmospheric model (AM) grid cells. To incorporate subgrid scale inhomogeneity, VBATS includes two important features: (1) characterization of the land surface (vegetation and soil parameters) at N subgrid points within an AM grid cell and (2) explicit distribution of climate forcing (precipitation, clouds, etc.) over the subgrid. In this study, VBATS is used in stand-alone mode to simulate a single AM grid cell and to evaluate the effects of subgrid scale vegetation and climate specification on the surface fluxes and hydrology. It is found that the partitioning of energy can be affected by up to 30%, runoff by 50%, and surface stress in excess of 60%. Distributing climate forcing over the AM grid cell increases the Bowen ratio, as a result of enhanced sensible heat flux and reduced latent heat flux. The combined effect of heterogeneous vegetation and distribution of climate is found to be dependent on the dominat vegetation class in the AM grid cell. Development of this method is part of a larger program to explore the importance of subgrid scale processes in regional and global climate simulations.

  1. A two-dimensional hydrodynamic model of turbulent transfer of CO2 and H2O over a heterogeneous land surface

    NASA Astrophysics Data System (ADS)

    Mukhartova, Yu. V.; Krupenko, A. S.; Mangura, P. A.; Levashova, N. T.

    2018-01-01

    A two-dimensional hydrodynamic model was developed and applied to describe turbulent fluxes of CO2 and H2O within the atmospheric surface layer over a heterogeneous land surface featuring mosaic vegetation and complex topography. Numerical experiments were carried out with a 4.5-km profile that crosses a hilly region in the central part of European Russia, with the diverse land-use patterns (bare soil, crop areas, grasslands, and forests). The results showed very strong variability of the vertical and horizontal turbulent CO2 and H2O fluxes. The standard deviations of the vertical fluxes were estimated for separate profile sections with uniform vegetation cover for daylight conditions in summer, and they were comparable with the mean vertical fluxes for corresponding sections. The highest horizontal turbulent fluxes occurred at the boundaries between different plant communities and at irregularities in surface profile. In some cases, these fluxes reached 10-20% of the absolute values of the mean vertical fluxes for corresponding profile sections. Significant errors in estimating the local and integrated fluxes e.g. when using the eddy covariance technique, can result from ignoring the surface topography, even in the case of relatively large plots with uniform vegetation cover.

  2. Autumn olive (Elaeagnus umbellata) presence and proliferation on former surface coal mines in Eastern USA

    USGS Publications Warehouse

    Oliphant, Adam J.; Wynne, R.H.; Zipper, Carl E.; Ford, W. Mark; Donovan, P. F.; Li, Jing

    2017-01-01

    Invasive plants threaten native plant communities. Surface coal mines in the Appalachian Mountains are among the most disturbed landscapes in North America, but information about land cover characteristics of Appalachian mined lands is lacking. The invasive shrub autumn olive (Elaeagnus umbellata) occurs on these sites and interferes with ecosystem recovery by outcompeting native trees, thus inhibiting re-establishment of the native woody-plant community. We analyzed Landsat 8 satellite imagery to describe autumn olive’s distribution on post-mined lands in southwestern Virginia within the Appalachian coalfield. Eight images from April 2013 through January 2015 served as input data. Calibration and validation data obtained from high-resolution aerial imagery were used to develop a land cover classification model that identified areas where autumn olive was a primary component of land cover. Results indicate that autumn olive cover was sufficiently dense to enable detection on approximately 12.6 % of post-mined lands within the study area. The classified map had user’s and producer’s accuracies of 85.3 and 78.6 %, respectively, for the autumn olive coverage class. Overall accuracy was assessed in reference to an independent validation dataset at 96.8 %. Autumn olive was detected more frequently on mines disturbed prior to 2003, the last year of known plantings, than on lands disturbed by more recent mining. These results indicate that autumn olive growing on reclaimed coal mines in Virginia and elsewhere in eastern USA can be mapped using Landsat 8 Operational Land Imager imagery; and that autumn olive occurrence is a significant landscape vegetation feature on former surface coal mines in the southwestern Virginia segment of the Appalachian coalfield.

  3. Effects of urbanization on stream ecosystems along an agriculture-to-urban land-use gradient, Milwaukee to Green Bay, Wisconsin, 2003-2004

    USGS Publications Warehouse

    Richards, Kevin D.; Scudder, Barbara C.; Fitzpatrick, Faith A.; Steuer, Jeffery J.; Bell, Amanda H.; Peppler, Marie C.; Stewart, Jana S.; Harris, Mitchell A.

    2010-01-01

    In 2003 and 2004, 30 streams near Milwaukee and Green Bay, Wisconsin, were part of a national study by the U.S. Geological Survey to assess urbanization effects on physical, chemical, and biological characteristics along an agriculture-to-urban land-use gradient. A geographic information system was used to characterize natural landscape features that define the environmental setting and the degree of urbanization within each stream watershed. A combination of land cover, socioeconomic, and infrastructure variables were integrated into a multi-metric urban intensity index, scaled from 0 to 100, and assigned to each stream site to identify a gradient of urbanization within relatively homogeneous environmental settings. The 35 variables used to develop the final urban intensity index characterized the degree of urbanization and included road infrastructure (road area and road traffic index), 100-meter riparian land cover (percentage of impervious surface, shrubland, and agriculture), watershed land cover (percentage of impervious surface, developed/urban land, shrubland, and agriculture), and 26 socioeconomic variables (U.S. Census Bureau, 2001). Characteristics examined as part of this study included: habitat, hydrology, stream temperature, water chemistry (chloride, sulfate, nutrients, dissolved and particulate organic and inorganic carbon, pesticides, and suspended sediment), benthic algae, benthic invertebrates, and fish. Semipermeable membrane devices (SPMDs) were used to assess the potential for bioconcentration of hydrophobic organic contaminants (specifically polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine and pyrethroid insecticides) in biological membranes, such as the gills of fish. Physical habitat measurements reflective of channel enlargement, including bankfull channel size and bank erosion, increased with increasing urbanization within the watershed. In this study, percentage of riffles and streambed substrate size were more strongly related to local geologic setting, slope, watershed topography, and river-engineering practices than to urbanization. Historical local river-engineering features such as channelization, bank stabilization, and grade controls may have confounded relations among habitat characteristics and urbanization. A number of hydrologic-condition metrics (including flashiness and duration of high flow during pre- or post-ice periods) showed strong relations to the urban intensity index. Hydrologic-condition metrics cannot be used alone to predict habitat or geomorphic change. Chloride and SPMD measures of potential toxicity and polycyclic aromatic hydrocarbon concentrations showed the strongest positive correlations to urbanization including increases in road infrastructure, percentage of impervious surface in the watershed, urban land cover, and land-distribution related to urban land cover. This suggests that automobiles and the infrastructure required to support automobiles are a significant source of these compounds in this study area. Chloride in spring and summer showed a significant positive correlation with the urban intensity index; concentrations increased with increasing road infrastructure, urban land cover, and a number of landscape variables related to urbanization. Spring concentrations of sulfate, prometon, and diazinon correlated to fewer urban characteristics than chloride, including increases in road infrastructure, percentage of impervious surface, and urban land cover. Changes in biological communities correlated to the urban intensity index or individual urban-associated variables. Decreased percentages of pollution-sensitive diatoms and diatoms requiring high dissolved-oxygen saturation correlated to increases in the percentage of developed urban land, total impervious surface, stream flashiness, population density, road-area density, and decreases in the percentage of wetland in the watershed. Invertebrate taxa richness and Coleop

  4. QCGAT aircraft/engine design for reduced noise and emissions

    NASA Technical Reports Server (NTRS)

    Lanson, L.; Terrill, K. M.

    1980-01-01

    The high bypass ratio QCGAT engine played an important role in shaping the aircraft design. The aircraft which evolved is a sleek, advanced design, six-place aircraft with 3538 kg (7,800 lb) maximum gross weight. It offers a 2778 kilometer (1500 nautical mile) range with cruise speed of 0.5 Mach number and will take-off and land on the vast majority of general aviation airfields. Advanced features include broad application of composite materials and a supercritical wing design with winglets. Full-span fowler flaps were introduced to improve landing capability. Engines are fuselage-mounted with inlets over the wing to provide shielding of fan noise by the wing surfaces. The design objectives, noise, and emission considerations, engine cycle and engine description are discussed as well as specific design features.

  5. Impact of Land Use/Land Cover Conditions on WRF Model Evaluation for Heat Island Assessment

    NASA Astrophysics Data System (ADS)

    Bhati, S.; Mohan, M.

    2017-12-01

    Urban heat island effect has been assessed using Weather Research and Forecasting model (WRF v3.5) focusing on air temperature and surface skin temperature in the sub-tropical urban Indian megacity of Delhi. Impact of urbanization related changes in land use/land cover (LULC) on model outputs has been analyzed. Four simulations have been carried out with different types of LULC data viz. (1) USGS , (2) MODIS, (3) user-modified USGS and (4) user modified land use data coupled with urban canopy model (UCM) for incorporation of canopy features. Heat island intensities have been estimated based on these simulations and subsequently compared with those derived from in-situ and satellite observations. There is a significant improvement in model performance with modification of LULC and inclusion of UCM. Overall, RMSEs for near surface temperature improved from 6.3°C to 3.9°C and index of agreement for mean urban heat island intensities (UHI) improved from 0.4 to 0.7 with modified land use coupled with UCM. In general, model is able to capture the magnitude of UHI as well as high UHI zones well. The study highlights the importance of appropriate and updated representation of landuse-landcover and urban canopies for improving predictive capabilities of the mesoscale models.

  6. Airbag Tracks on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The circular shapes seen on the martian surface in these images are 'footprints' left by the Mars Exploration Rover Opportunity's airbags during landing as the spacecraft gently rolled to a stop. Opportunity landed at approximately 9:05 p.m. PST on Saturday, Jan. 24, 2004, Earth-received time. The circular region of the flower-like feature on the right is about the size of a basketball. Scientists are studying the prints for more clues about the makeup of martian soil. The images were taken at Meridiani Planum, Mars, by the panoramic camera on the Mars Exploration Rover Opportunity.

  7. Analysis of Synthetic Aperture Radar data acquired over a variety of land cover

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1983-01-01

    An analysis has been conducted of two-look-angle, multipolarization X-band SAR results. On the basis of the variety of land covers studied, the vertical-vertical polarization (VV) data is judged to contain the highest degree of contrast, while the horizontal-vertical (HV) polarization contained the least. VV polarization data is accordingly recommended for forest vegetation classification in those cases where only one data channel is available. The inclusion of horizontal-horizontal polarization data, however, is noted to be capable of delineating special surface features.

  8. Close-up multispectral images of the surface of comet 67P/Churyumov-Gerasimenko by the ROLIS camera onboard the Rosetta Philae lander

    NASA Astrophysics Data System (ADS)

    Schroeder, S.; Mottola, S.; Arnold, G.; Grothues, H. G.; Jaumann, R.; Michaelis, H.; Neukum, G.; Pelivan, I.; Bibring, J. P.

    2014-12-01

    In November 2014 the Philae lander onboard Rosetta is scheduled to land on the surface of comet 67P/Churyumov-Gerasimenko. The ROLIS camera will provide the ground truth for the Rosetta OSIRIS camera. ROLIS will acquire images both during the descent and after landing. In this paper we concentrate on the post-landing images. The close-up images will enable us to characterize the morphology and texture of the surface, and the shape, albedo, and size distribution of the particles on scales as small as 0.3 mm per pixel. We may see evidence for a dust mantle, a refractory crust, and exposed ice. In addition, we hope to identify features such as pores, cracks, or vents that allow volatiles to escape the surface. We will not only image the surface during the day but also the night, when LEDs will illuminate the surface in four different colors (blue, green, red, near-IR). This will characterize the spectral properties and heterogeneity of the surface, helping us to identify its composition. Although the ROLIS spectral range and resolution are too limited to allow an exact mineralogical characterization, a study of the spectral slope and albedo will allow a broad classification of the solid surface phases. We expect to be able to distinguish between organic material, silicates and ices. By repeated imaging over the course of the mission ROLIS may detect long term changes associated with cometary activity.

  9. Examples of deformation-dependent flow simulations of conjunctive use with MF-OWHM

    USGS Publications Warehouse

    Hanson, Randall T.; Traum, Jonathan A.; Boyce, Scott E.; Schmid, Wolfgang; Hughes, Joseph D.

    2015-01-01

    The dependency of surface- and groundwater flows and aquifer hydraulic properties on deformation induced by changes in aquifer head is not accounted for in the standard version of MODFLOW. A new USGS integrated hydrologic model, MODFLOW-OWHM, incorporates this dependency by linking subsidence and mesh deformation with changes in aquifer transmissivity and storage coefficient, and with flows that also depend on aquifer characteristics and land-surface geometry. This new deformation-dependent approach is being used for the further development of the integrated Central Valley hydrologic model (CVHM) in California. Preliminary results from this application and from hypothetical test cases of similar systems show that changes in canal flows, stream seepage, and evapotranspiration from groundwater (ETgw) are sensitive to deformation. Deformation feedback has been shown to also have an indirect effect on conjunctive surface- and groundwater use components with increased stream seepage and streamflows influencing surface-water deliveries and return flows. In the Central Valley model, land subsidence may significantly degrade the ability of the major canals to deliver surface water from the Delta to the San Joaquin and Tulare basins. Subsidence can also affect irrigation demand and ETgw, which, along with altered surface-water supplies, causes a feedback response resulting in changed estimates of groundwater pumping for irrigation. This modeling feature also may improve the impact assessment of dewatering-induced land subsidence/uplift (following irrigation pumping or coal-seam gas extraction) on surface receptors, inter-basin transfers, and surface infrastructure integrity.

  10. Summer U.S. Surface Air Temperature Variability: Controlling Factors and AMIP Simulation Biases

    NASA Astrophysics Data System (ADS)

    Merrifield, A.; Xie, S. P.

    2016-02-01

    This study documents and investigates biases in simulating summer surface air temperature (SAT) variability over the continental U.S. in the Coupled Model Intercomparison Project (CMIP5) Atmospheric Model Intercomparison Project (AMIP). Empirical orthogonal function (EOF) and multivariate regression analyses are used to assess the relative importance of circulation and the land surface feedback at setting summer SAT over a 30-year period (1979-2008). In observations, regions of high SAT variability are closely associated with midtropospheric highs and subsidence, consistent with adiabatic theory (Meehl and Tebaldi 2004, Lau and Nath 2012). Preliminary analysis shows the majority of the AMIP models feature high SAT variability over the central U.S., displaced south and/or west of observed centers of action (COAs). SAT COAs in models tend to be concomitant with regions of high sensible heat flux variability, suggesting an excessive land surface feedback in these models modulate U.S. summer SAT. Additionally, tropical sea surface temperatures (SSTs) play a role in forcing the leading EOF mode for summer SAT, in concert with internal atmospheric variability. There is evidence that models respond to different SST patterns than observed. Addressing issues with the bulk land surface feedback and the SST-forced component of atmospheric variability may be key to improving model skill in simulating summer SAT variability over the U.S.

  11. Regional Features and Seasonality of Land-Atmosphere Coupling over Eastern China

    NASA Astrophysics Data System (ADS)

    Gao, Chujie; Chen, Haishan; Sun, Shanlei; Xu, Bei; Ongoma, Victor; Zhu, Siguang; Ma, Hedi; Li, Xing

    2018-06-01

    Land-atmosphere coupling is a key process of the climate system, and various coupling mechanisms have been proposed before based on observational and numerical analyses. The impact of soil moisture (SM) on evapotranspiration (ET) and further surface temperature (ST) is an important aspect of such coupling. Using ERA-Interim data and CLM4.0 offline simulation results, this study further explores the relationships between SM/ST and ET to better understand the complex nature of the land-atmosphere coupling (i.e., spatial and seasonal variations) in eastern China, a typical monsoon area. It is found that two diagnostics of land-atmosphere coupling (i.e., SM-ET correlation and ST-ET correlation) are highly dependent on the climatology of SM and ST. By combining the SM-ET and ST-ET relationships, two "hot spots" of land-atmosphere coupling over eastern China are identified: Southwest China and North China. In Southwest China, ST is relatively high throughout the year, but SM is lowest in spring, resulting in a strong coupling in spring. However, in North China, SM is relatively low throughout the year, but ST is highest in summer, which leads to the strongest coupling in summer. Our results emphasize the dependence of land-atmosphere coupling on the seasonal evolution of climatic conditions and have implications for future studies related to land surface feedbacks.

  12. The PRISM4 (mid-Piacenzian) Palaeoenvironmental Reconstruction

    NASA Technical Reports Server (NTRS)

    Dowsett, Harry; Dolan, Aisling; Rowley, David; Moucha, Robert; Forte, Alessandro M.; Mitrovica, Jerry X.; Pound, Matthew; Salzmann, Ulrich; Robinson, Marci; Chandler, Mark; hide

    2016-01-01

    The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian (approximately 3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.

  13. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction

    USGS Publications Warehouse

    Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Moucha, Robert; Forte, Alessandro; Mitrovica, Jerry X.; Pound, Matthew; Salzmann, Ulrich; Robinson, Marci M.; Chandler, Mark; Foley, Kevin M.; Haywood, Alan M.

    2016-01-01

    The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian ( ∼ 3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.

  14. Quantifying Arctic Terrestrial Environment Behaviors Using Geophysical, Point-Scale and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Hubbard, S. S.; Ulrich, C.; Peterson, J. E.; Wu, Y.; Wainwright, H. M.; Gangodagamage, C.; Kholodov, A. L.; Kneafsey, T. J.

    2013-12-01

    Improvement in parameterizing Arctic process-rich terrestrial models to simulate feedbacks to a changing climate requires advances in estimating the spatiotemporal variations in active layer and permafrost properties - in sufficiently high resolution yet over modeling-relevant scales. As part of the DOE Next-Generation Ecosystem Experiments (NGEE-Arctic), we are developing advanced strategies for imaging the subsurface and for investigating land and subsurface co-variability and dynamics. Our studies include acquisition and integration of various measurements, including point-based, surface-based geophysical, and remote sensing datasets These data have been collected during a series of campaigns at the NGEE Barrow, AK site along transects that traverse a range of hydrological and geomorphological conditions, including low- to high- centered polygons and drained thaw lake basins. In this study, we describe the use of galvanic-coupled electrical resistance tomography (ERT), capacitively-coupled resistivity (CCR) , permafrost cores, above-ground orthophotography, and digital elevation model (DEM) to (1) explore complementary nature and trade-offs between characterization resolution, spatial extent and accuracy of different datasets; (2) develop inversion approaches to quantify permafrost characteristics (such as ice content, ice wedge frequency, and presence of unfrozen deep layer) and (3) identify correspondences between permafrost and land surface properties (such as water inundation, topography, and vegetation). In terms of methods, we developed a 1D-based direct search approach to estimate electrical conductivity distribution while allowing exploration of multiple solutions and prior information in a flexible way. Application of the method to the Barrow datasets reveals the relative information content of each dataset for characterizing permafrost properties, which shows features variability from below one meter length scales to large trends over more than a kilometer. Further, we used Pole- and Kite-based low-altitude aerial photography with inferred DEM, as well as DEM from LiDAR dataset, to quantify land-surface properties and their co-variability with the subsurface properties. Comparison of the above- and below-ground characterization information indicate that while some permafrost characteristics correspond with changes in hydrogeomorphological expressions, others features show more complex linkages with landscape properties. Overall, our results indicate that remote sensing data, point-scale measurements and surface geophysical measurements enable the identification of regional zones having similar relations between subsurface and land surface properties. Identification of such zonation and associated permafrost-land surface properties can be used to guide investigations of carbon cycling processes and for model parameterization.

  15. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    DOE PAGES

    Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming; ...

    2014-12-02

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less

  16. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less

  17. Wildlife associated with scoria outcrops: implications for reclamation of surface-mined lands

    Treesearch

    Mark A. Rumble

    1989-01-01

    Bird and mammal populations using scoria rock outcrop and adjacentsagebrush/grassland habitats were studied. Bird populations and bird species richness were greater in the outcrop habitats than in the surrounding sagebrush/grassland habitats. These differences were attributedto the structural features provided by the outcrops. Most, but not all, small mammal...

  18. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.

    PubMed

    Ma, Xu; Cheng, Yongmei; Hao, Shuai

    2016-12-10

    Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.

  19. GEONEX: Land Monitoring From a New Generation of Geostationary Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Nemani, Ramakrishna; Lyapustin, Alexei; Wang, Weile; Wang, Yujie; Hashimoto, Hirofumi; Li, Shuang; Ganguly, Sangram; Michaelis, Andrew; Higuchi, Atsushi; Takaneka, Hideaki; hide

    2017-01-01

    The latest generation of geostationary satellites carry sensors such as ABI (Advanced Baseline Imager on GOES-16) and the AHI (Advanced Himawari Imager on Himawari) that closely mimic the spatial and spectral characteristics of Earth Observing System flagship MODIS for monitoring land surface conditions. More importantly they provide observations at 5-15 minute intervals. Such high frequency data offer exciting possibilities for producing robust estimates of land surface conditions by overcoming cloud cover, enabling studies of diurnally varying local-to-regional biosphere-atmosphere interactions, and operational decision-making in agriculture, forestry and disaster management. But the data come with challenges that need special attention. For instance, geostationary data feature changing sun angle at constant view for each pixel, which is reciprocal to sun-synchronous observations, and thus require careful adaptation of EOS algorithms. Our goal is to produce a set of land surface products from geostationary sensors by leveraging NASA's investments in EOS algorithms and in the data/compute facility NEX. The land surface variables of interest include atmospherically corrected surface reflectances, snow cover, vegetation indices and leaf area index (LAI)/fraction of photosynthetically absorbed radiation (FPAR), as well as land surface temperature and fires. In order to get ready to produce operational products over the US from GOES-16 starting 2018, we have utilized 18 months of data from Himawari AHI over Australia to test the production pipeline and the performance of various algorithms for our initial tests. The end-to-end processing pipeline consists of a suite of modules to (a) perform calibration and automatic georeference correction of the AHI L1b data, (b) adopt the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm to produce surface spectral reflectances along with compositing schemes and QA, and (c) modify relevant EOS retrieval algorithms (e.g., LAI and FPAR, GPP, etc.) for subsequent science product generation. Initial evaluation of Himawari AHI products against standard MODIS products indicate general agreement, suggesting that data from geostationary sensors can augment low earth orbit (LEO) satellite observations.

  20. Study on a Dynamic Vegetation Model for Simulating Land Surface Flux Exchanges at Lien-Hua-Chih Flux Observation Site in Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, T. Y.; Li, M. H.; Chen, Y. Y.; Ryder, J.; McGrath, M.; Otto, J.; Naudts, K.; Luyssaert, S.; MacBean, N.; Bastrikov, V.

    2016-12-01

    Dynamic vegetation model ORCHIDEE (Organizing Carbon and Hydrology In Dynamic EcosystEms) is a state of art land surface component of the IPSL (Institute Pierre Simon Laplace) Earth System Model. It has been used world-wide to investigate variations of water, carbon, and energy exchanges between the land surface and the atmosphere. In this study we assessed the applicability of using ORCHIDEE-CAN, a new feature with 3-D CANopy structure (Naudts et al., 2015; Ryder et al., 2016), to simulate surface fluxes measured at tower-based eddy covariance fluxes at the Lien-Hua-Chih experimental watershed in Taiwan. The atmospheric forcing including radiation, air temperature, wind speed, and the dynamics of vertical canopy structure for driving the model were obtained from the observations site. Suitable combinations of default plant function types were examined to meet in-situ observations of soil moisture and leaf area index from 2009 to 2013. The simulated top layer soil moisture was ranging from 0.1 to 0.4 and total leaf area was ranging from 2.2 to 4.4, respectively. A sensitivity analysis was performed to investigate the sensitive of model parameters and model skills of ORCHIDEE-CAN on capturing seasonal variations of surface fluxes. The most sensitive parameters were suggested and calibrated by an automatic data assimilation tool ORCHDAS (ORCHIDEE Data Assimilation Systems; http://orchidas.lsce.ipsl.fr/). Latent heat, sensible heat, and carbon fluxes simulated by the model were compared with long-term observations at the site. ORCHIDEE-CAN by making use of calibrated surface parameters was used to study variations of land-atmosphere interactions on a variety of temporal scale in associations with changes in both land and atmospheric conditions. Ref: Naudts, K., et al.,: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geoscientific Model Development, 8, 2035-2065, doi:10.5194/gmd-8-2035-2015,2015. Ryder, J., et al. : A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations, Geoscientific Model Development, 9, 223-245, doi:10.5194/gmd-9-223-2016, 2016.

  1. GEONEX: Land monitoring from a new generation of geostationary satellite sensors

    NASA Astrophysics Data System (ADS)

    Nemani, R. R.; Lyapustin, A.; Wang, W.; Ganguly, S.; Wang, Y.; Michaelis, A.; Hashimoto, H.; Li, S.; Higuchi, A.; Huete, A. R.; Yeom, J. M.; camacho De Coca, F.; Lee, T. J.; Takenaka, H.

    2017-12-01

    The latest generation of geostationary satellites carry sensors such as ABI (Advanced Baseline Imager on GOES-16) and the AHI (Advanced Himawari Imager on Himawari) that closely mimic the spatial and spectral characteristics of Earth Observing System flagship MODIS for monitoring land surface conditions. More importantly they provide observations at 5-15 minute intervals. Such high frequency data offer exciting possibilities for producing robust estimates of land surface conditions by overcoming cloud cover, enabling studies of diurnally varying local-to-regional biosphere-atmosphere interactions, and operational decision-making in agriculture, forestry and disaster management. But the data come with challenges that need special attention. For instance, geostationary data feature changing sun angle at constant view for each pixel, which is reciprocal to sun-synchronous observations, and thus require careful adaptation of EOS algorithms. Our goal is to produce a set of land surface products from geostationary sensors by leveraging NASA's investments in EOS algorithms and in the data/compute facility NEX. The land surface variables of interest include atmospherically corrected surface reflectances, snow cover, vegetation indices and leaf area index (LAI)/fraction of photosynthetically absorbed radiation (FPAR), as well as land surface temperature and fires. In order to get ready to produce operational products over the US from GOES-16 starting 2018, we have utilized 18 months of data from Himawari AHI over Australia to test the production pipeline and the performance of various algorithms for our initial tests. The end-to-end processing pipeline consists of a suite of modules to (a) perform calibration and automatic georeference correction of the AHI L1b data, (b) adopt the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm to produce surface spectral reflectances along with compositing schemes and QA, and (c) modify relevant EOS retrieval algorithms (e.g., LAI and FPAR, GPP, etc.) for subsequent science product generation. Initial evaluation of Himawari AHI products against standard MODIS products indicate general agreement, suggesting that data from geostationary sensors can augment low earth orbit (LEO) satellite observations.

  2. Downscaling Soil Moisture in the Southern Great Plains Through a Calibrated Multifractal Model for Land Surface Modeling Applications

    NASA Technical Reports Server (NTRS)

    Mascaro, Giuseppe; Vivoni, Enrique R.; Deidda, Roberto

    2010-01-01

    Accounting for small-scale spatial heterogeneity of soil moisture (theta) is required to enhance the predictive skill of land surface models. In this paper, we present the results of the development, calibration, and performance evaluation of a downscaling model based on multifractal theory using aircraft!based (800 m) theta estimates collected during the southern Great Plains experiment in 1997 (SGP97).We first demonstrate the presence of scale invariance and multifractality in theta fields of nine square domains of size 25.6 x 25.6 sq km, approximately a satellite footprint. Then, we estimate the downscaling model parameters and evaluate the model performance using a set of different calibration approaches. Results reveal that small-scale theta distributions are adequately reproduced across the entire region when coarse predictors include a dynamic component (i.e., the spatial mean soil moisture ) and a stationary contribution accounting for static features (i.e., topography, soil texture, vegetation). For wet conditions, we found similar multifractal properties of soil moisture across all domains, which we ascribe to the signature of rainfall spatial variability. For drier states, the theta fields in the northern domains are more intermittent than in southern domains, likely because of differences in the distribution of vegetation coverage. Through our analyses, we propose a regional downscaling relation for coarse, satellite-based soil moisture estimates, based on ancillary information (static and dynamic landscape features), which can be used in the study area to characterize statistical properties of small-scale theta distribution required by land surface models and data assimilation systems.

  3. The Third Tibetan Plateau Atmospheric Scientific Experiment for Understanding the Earth-Atmosphere Coupled System

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Xu, X.; Chen, F.; Guo, X.; Zheng, X.; Liu, L. P.; Hong, Y.; Li, Y.; La, Z.; Peng, H.; Zhong, L. Z.; Ma, Y.; Tang, S. H.; Liu, Y.; Liu, H.; Li, Y. H.; Zhang, Q.; Hu, Z.; Sun, J. H.; Zhang, S.; Dong, L.; Zhang, H.; Zhao, Y.; Yan, X.; Xiao, A.; Wan, W.; Zhou, X.

    2016-12-01

    The Third Tibetan Plateau atmospheric scientific experiment (TIPEX-III) was initiated jointly by the China Meteorological Administration, the National Natural Scientific Foundation, and the Chinese Academy of Sciences. This paper presents the background, scientific objectives, and overall experimental design of TIPEX-III. It was designed to conduct an integrated observation of the earth-atmosphere coupled system over the Tibetan Plateau (TP) from land surface, planetary boundary layer (PBL), troposphere, and stratosphere for eight to ten years by coordinating ground- and air-based measurement facilities for understanding spatial heterogeneities of complex land-air interactions, cloud-precipitation physical processes, and interactions between troposphere and stratosphere. TIPEX-III originally began in 2014, and is ongoing. It established multiscale land-surface and PBL observation networks over the TP and a tropospheric meteorological radiosonde network over the western TP, and executed an integrated observation mission for cloud-precipitation physical features using ground-based radar systems and aircraft campaigns and an observation task for atmospheric ozone, aerosol, and water vapor. The archive, management, and share policy of the observation data are also introduced herein. Some TIPEX-III data have been preliminarily applied to analyze the features of surface sensible and latent heat fluxes, cloud-precipitation physical processes, and atmospheric water vapor and ozone over the TP, and to improve the local precipitation forecast. Furthermore, TIPEX-III intends to promote greater scientific and technological cooperation with international research communities and broader organizations. Scientists working internationally are invited to participate in the field campaigns and to use the TIPEX-III data for their own research.

  4. Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries

    DOE PAGES

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...

    2014-12-09

    We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labelsmore » are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.« less

  5. Quantifying the Components of Impervious Surfaces

    USGS Publications Warehouse

    Tilley, Janet S.; Slonecker, E. Terrence

    2006-01-01

    This study's objectives were to (1) determine the relative contribution of impervious surface individual components by collecting digital information from high-resolution imagery, 1-meter or better; and to (2) determine which of the more advanced techniques, such as spectral unmixing or the application of coefficients to land use or land cover data, was the most suitable method that could be used by State and local governments as well as Federal agencies to efficiently measure the imperviousness in any given watershed or area of interest. The components of impervious surfaces, combined from all the watersheds and time periods from objective one were the following: buildings 29.2-percent, roads 28.3-percent, parking lots 24.6-percent; with the remaining three totaling 14-percent - driveways, sidewalks, and other, where other were any other features that were not contained within the first five. Results from objective two were spectral unmixing techniques will ultimately be the most efficient method of determining imperviousness, but are not yet accurate enough as it is critical to achieve accuracy better than 10-percent of the truth, of which the method is not consistently accomplishing as observed in this study. Of the three techniques in coefficient application tested, land use coefficient application was not practical, while if the last two methods, coefficients applied to land cover data, were merged, their end results could be to within 5-percent or better, of the truth. Until the spectral unmixing technique has been further refined, land cover coefficients should be used, which offer quick results, but not current as they were developed for the 1992 National Land Characteristics Data.

  6. Determination of wetland ecosystem boundaries and validation of land use maps using remote sensing: Fuente de Piedra case study (Spain)

    NASA Astrophysics Data System (ADS)

    Sánchez, Antonio; Malak, Dania Abdul; Schröder, Christoph; Martinez-Murillo, Juan F.

    2016-04-01

    Remote sensing techniques (SRS) are valid tools for wetland monitoring that could support wetland managers in assessing the spatial and temporal changes in wetland ecosystems as well as in understanding their condition and the ecosystem services they provide. This study focuses on the one hand, on drawing hydro-ecological guidelines for the delimitation of wetland ecosystems; and on the other hand, to assess the reliability of widely available satellite images (Landsat) in estimating the land use/ land cover types covering wetlands. This research develops comprehensive guidelines to determine the boundaries of the Fuente de Piedra wetland ecosystem located in Andalusia, Spain and defines the main land use/ land cover classes covering this ecosystem using Landsat 8 images. An accuracy of the SRS results delivered is tested using the regional inventory of land use produced by the regional government of Andalusia in 2011. By using the ecological and hydrological settings of the area, the boundaries of the Fuente de Piedra wetland ecosystem are determined as an alternative to improve the current delimitations methodology (the Ramsar and Natura 2000 delineations), used by the local authorities so far and based mainly on administrative reasoning. In terms of the land use land cover definition in the area, Fuente de Piedra wetland ecosystem shows to cover a total area of 195 km2 composed mainly by agricultural areas (81.46%): olive groves, non-irrigated arable land and pastures, being 54.82%, 25.71% and 0.93% of the surface respectively. Wetland related land covers (water surface, wetland vegetation) represent 6.85% while natural vegetation is distributed in forest, 1.67%, and shrub areas, 4.14%, being 5.81% in total. 4.58% of the area corresponds to urban and other artificial surfaces. The rest, 1.30%, is composed of different areas without vegetation (sands, bare rock, dumps, etc.). The classification of the Landsat images made with the newly developed SWOS toolbox (under the Horizon 2020 SWOS project) provides reliable results (r2= 0.98). The image segmentation corresponds very closely with the plots of land observed in the satellite image, and the allocation of land use coverages corresponds in 82% of the segments. Forest and olive groves are the best identified coverages with an accuracy of 93% in both cases. Wetlands are correctly classified by 87%, where linear features (narrow streams, etc.) are not detected by the methodology used due to the limitations of Landsat resolution. Arable lands are classified with an accuracy of 85.5%; where the methodology seems to confuse this land use with sparse olive grove. In the case of shrubs, accuracy round the 72%, with confusions with this land use are related with arable land, sparse forests in wetland areas. In the case of urban areas, only 60.5% of the segments are correctly classified as the distinction between urban fabric and industrial areas does not seem to be possible and linear features are not detected (highways, secondary roads,…).

  7. Atmospheric Constraints on Landing Site Selection

    NASA Astrophysics Data System (ADS)

    Kass, David M.; Schofield, J. T.

    2001-01-01

    The Martian atmosphere is a significant part of the environment that the Mars Exploration Rovers (MER) will encounter. As such, it imposes important constraints on where the rovers can and cannot land. Unfortunately, as there are no meteorological instruments on the rovers, there is little atmospheric science that can be accomplished, and no scientific preference for landing sites. The atmosphere constrains landing site selection in two main areas, the entry descent and landing (EDL) process and the survivability of the rovers on the surface. EDL is influenced by the density profile and boundary layer winds (up to altitudes of 5 to 10 km). Surface survivability involves atmospheric dust, temperatures and winds. During EDL, the atmosphere is used to slow the lander down, both ballistically and on the parachute. This limits the maximum elevation of the landing site to -1.3 km below the MOLA reference aeroid. The landers need to encounter a sufficiently dense atmosphere to be able to stop, and the deeper the landing site, the more column integrated atmosphere the lander can pass through before reaching the surface. The current limit was determined both by a desire to be able to reach the hematite region and by a set of atmosphere models we developed for EDL simulations. These are based on Thermal Emission Spectrometer (TES) atmospheric profile measurements, Ames Mars General Circulation Model (MGCM) results, and the 1-D Ames GCM radiative/convective model by J. Murphy. The latter is used for the near surface diurnal cycle. The current version of our model encompasses representative latitude bands, but we intend to make specific models for the final candidate landing sites to insure that they fall within the general envelope. The second constraint imposed on potential landing sites through the EDL process is the near surface wind. The wind in the lower approximately 5 km determines the horizontal velocity that the landers have when they land. Due to the mechanics of the landing process, the total velocity (including both the horizontal and vertical components) determines whether or not the landers are successful. Unfortunately, the landing system has no easy way to nullify any horizontal velocity imparted by the wind, so the landing sites selected need to have as little wind as possible. In addition to the mean wind velocity, the landing system is sensitive to vertical wind shear in the lowest kilometer or so. Wind shear can deflect the retro rockets (RADs) from their nominal vertical orientation producing unwanted horizontal spacecraft velocities. Both mean velocity and wind shear are dominated by the the local topography and other surface properties (in particular albedo and thermal inertia which control the surface temperature). This is seen even in simplified 2-D mesoscale models. The effects in a fully 3-D model are expected to he even more topographically dependent. In particular there is potential for wind channeling in canyons and other terrain features. Boundary layer winds and wind shear are currently being modeled based on terrestrial data and boundary layer scaling laws modified for Martian conditions. We hope to supplement this with mesoscale model results (from several sources) once the number of landing sites is reduced to a manageable number.

  8. A Landing Site for ExoMars 2016

    NASA Image and Video Library

    2015-11-27

    This image from NASA Mars Reconnaissance Orbiter spacecraft is of a landing site that the flattest, safest place on Mars: part of Meridiani Planum, close to where the Opportunity rover landed. In March 2016, the European Space Agency in partnership with Roscosmos will launch the ExoMars Trace Gas Orbiter. This orbiter will also carry an Entry, Descent, and Landing Demonstration Module (EDM): a lander designed primarily to demonstrate the capability to land on Mars. The EDM will survive for only a few days, running on battery power, but will make a few environmental measurements. The landing site is the flattest, safest place on Mars: part of Meridiani Planum, close to where the Opportunity rover landed. This image shows what this terrain is like: very flat and featureless. A full-resolution sample reveals the major surface features: small craters and wind ripples. HiRISE has been imaging the landing site region in advance of the landing, and will re-image the site after landing to identify the major pieces of hardware: heat shield, backshell with parachute, and the lander itself. The distribution of these pieces will provide information about the entry, descent and landing. http://photojournal.jpl.nasa.gov/catalog/PIA20159

  9. Observational Evaluation of Simulated Land-Atmosphere Coupling on the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Phillips, T. J.; Klein, S. A.

    2014-12-01

    In a recent study of observed features of land-atmosphere coupling (LAC) at the ARM Southern Great Plains (ARM SGP) site in northern Oklahoma (Phillips and Klein, 2014 Journal of Geophysical Research), we identified statistically significant interactions between 1997-2008 summertime daily averages of soil moisture (at 10 cm depth) and a number of surface atmospheric variables, such as surface evaporation, relative humidity, and temperature. Here we will report on an evaluation of similar features of LAC simulated by version 5 of the global Community Atmosphere Model (CAM5), coupled to its native CLM4 land model, and downscaled to the vicinity of the ARM SGP site. In these case studies, the CAM5 was initialized from a 6-hourly atmospheric reanalysis for each day of the years 2008 and 2009 (where the CLM4 land state was equilibrated to the atmospheric model state), thus permitting a close comparison of the modeled and observed summer daily average features of the LAC in these years. Correlation coefficients R and "sensitivity indices" I (a measure of the comparative change of an atmospheric variable for a one-standard-deviation change in soil moisture) provided quantitative measures of the respective coupling strengths. Such a comparison of observed versus modeled LAC is complicated by differences in atmospheric forcings of the land; for example, the CAM5's summertime precipitation is too scant, and thus the model's upper soil layer often is drier than observed. The modeled daily average covariations of soil moisture with lower atmospheric variables also display less coherence (lower R values), but sometimes greater "sensitivity" (higher I values) than are observed at the ARM SGP site. Since the observational estimate of LAC may itself be sensitive to soil moisture measurement biases, we also will report on a planned investigation of the dependence of LAC on several alternative choices of soil moisture data sets local to the ARM SGP site. AcknowledgmentsThis work was funded by the U.S. Department of Energy Office of Science and was performed at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Remote sensing of the surface emissivity at 9 microns over the globe. [over desert regions with IR Interferometer Spectrometer data

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Dalu, G.

    1976-01-01

    The infrared spectral measurements made by the Nimbus 4 infrared interferometer spectrometer (Iris) for a period of about 10 months are used to study the surface emissivity properties over the globe. It is found that the surface emissivity at 9 microns, as measured by Iris with a circular field of view of about 100-km diameter, is significantly less than unity over arid and semiarid areas. The spectral features in the 8-12-micron window observed over these lands reveal emissivity characteristics essentially due to quartz (SiO2). It is found that these emissivity features are significantly weakened by the presence of clay, clay horizons, or pedogenic horizons in the soil. Low emissivity is observed over sandy or sandy loam areas (psamments) with no clay or pedogenic horizons.

  11. Water Mapping Using Multispectral Airborne LIDAR Data

    NASA Astrophysics Data System (ADS)

    Yan, W. Y.; Shaker, A.; LaRocque, P. E.

    2018-04-01

    This study investigates the use of the world's first multispectral airborne LiDAR sensor, Optech Titan, manufactured by Teledyne Optech to serve the purpose of automatic land-water classification with a particular focus on near shore region and river environment. Although there exist recent studies utilizing airborne LiDAR data for shoreline detection and water surface mapping, the majority of them only perform experimental testing on clipped data subset or rely on data fusion with aerial/satellite image. In addition, most of the existing approaches require manual intervention or existing tidal/datum data for sample collection of training data. To tackle the drawbacks of previous approaches, we propose and develop an automatic data processing workflow for land-water classification using multispectral airborne LiDAR data. Depending on the nature of the study scene, two methods are proposed for automatic training data selection. The first method utilizes the elevation/intensity histogram fitted with Gaussian mixture model (GMM) to preliminarily split the land and water bodies. The second method mainly relies on the use of a newly developed scan line elevation intensity ratio (SLIER) to estimate the water surface data points. Regardless of the training methods being used, feature spaces can be constructed using the multispectral LiDAR intensity, elevation and other features derived from these parameters. The comprehensive workflow was tested with two datasets collected for different near shore region and river environment, where the overall accuracy yielded better than 96 %.

  12. Environment of Mars, 1988

    NASA Technical Reports Server (NTRS)

    Kaplan, David I. (Compiler)

    1988-01-01

    A compilation of scientific knowledge about the planet Mars is provided. Information is divided into three categories: atmospheric data, surface data, and astrodynamic data. The discussion of atmospheric data includes the presentation of nine different models of the Mars atmosphere. Also discussed are Martian atmospheric constituents, winds, clouds, and solar irradiance. The great dust storms of Mars are presented. The section on Mars surface data provides an in-depth examination of the physical and chemical properties observed at the two Viking landing sites. Bulk densities, dielectric constants, and thermal inertias across the planet are then described and related back to those specific features found at the Viking landing sites. The astrodynamic materials provide the astronomical constants, time scales, and reference coordinate frames necessary to perform flightpath analysis, navigation design, and science observation design.

  13. Discovering the Ancient Maya from Space

    NASA Technical Reports Server (NTRS)

    Sever, T. L.

    2008-01-01

    The Pet6n region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use of limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.

  14. Discovering the Ancient Maya From Space

    NASA Technical Reports Server (NTRS)

    Sever, T. L.

    2007-01-01

    The Peten region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use o f limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.

  15. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  16. An Observing System Simulation Experiment of assimilating leaf area index and soil moisture over cropland

    NASA Astrophysics Data System (ADS)

    Lafont, Sebastien; Barbu, Alina; Calvet, Jean-Christophe

    2013-04-01

    A Land Data Assimilation System (LDAS) is an off-line data assimilation system featuring uncoupled land surface model which is driven by observation-based atmospheric forcing. In this study the experiments were conducted with a surface externalized (SURFEX) modelling platform developed at Météo-France. It encompasses the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The photosynthetic activity depends on the vegetation types. The input soil and vegetation parameters are provided by the ECOCLIMAP II global database which assigns the ecosystem classes in several plant functional types as grassland, crops, deciduous forest and coniferous forest. New versions of the model have been recently developed in order to better describe the agricultural plant functional types. We present a set of observing system simulation experiments (OSSE) which asses leaf area index (LAI) and soil moisture assimilation for improving the land surface estimates in a controlled synthetic environment. Synthetic data were assimilated into ISBA-A-gs using an Extended Kalman Filter (EKF). This allows for an understanding of model responses to an augmentation of the number of crop types and different parameters associated to this modification. In addition, the interactions between uncertainties in the model and in the observations were investigated. This study represents the first step of a process that envisages the extension of LDAS to the new versions of the ISBA-A-gs model in order to assimilate remote sensing observations.

  17. Evaluating the influence of antecedent soil moisture on variability of the North American Monsoon precipitation in the coupled MM5/VIC modeling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Chunmei; Leung, Lai R.; Gochis, David

    2009-11-29

    The influence of antecedent soil moisture on North American monsoon system (NAMS) precipitation variability was explored using the MM5 mesoscale model coupled with the Variable Infiltration Capacity (VIC) land surface model. Sensitivity experiments were performed with extreme wet and dry initial soil moisture conditions for both the 1984 wet monsoon year and the 1989 dry year. The MM5-VIC model reproduced the key features of NAMS in 1984 and 1989 especially over northwestern Mexico. Our modeling results indicate that the land surface has memory of the initial soil wetness prescribed at the onset of the monsoon that persists over most ofmore » the region well into the monsoon season (e.g. until August). However, in contrast to the classical thermal contrast concept, where wetter soils lead to cooler surface temperatures, less land-sea thermal contrast, weaker monsoon circulations and less precipitation, the coupled model consistently demonstrated a positive soil moisture – precipitation feedback. Specifically, anomalously wet premonsoon soil moisture always lead to enhanced monsoon precipitation, and the reverse was also true. The surface temperature changes induced by differences in surface energy flux partitioning associated with pre-monsoon soil moisture anomalies changed the surface pressure and consequently the flow field in the coupled model, which in turn changed moisture convergence and, accordingly, precipitation patterns. Both the largescale circulation change and local land-atmospheric interactions in response to premonsoon soil moisture anomalies play important roles in the coupled model’s positive soil moisture monsoon precipitation feedback. However, the former may be sensitive to the strength and location of the thermal anomalies, thus leaving open the possibility of both positive and negative soil moisture precipitation feedbacks.« less

  18. Land-cover change detection

    USGS Publications Warehouse

    Chen, Xuexia; Giri, Chandra; Vogelmann, James

    2012-01-01

    Land cover is the biophysical material on the surface of the earth. Land-cover types include grass, shrubs, trees, barren, water, and man-made features. Land cover changes continuously.  The rate of change can be either dramatic and abrupt, such as the changes caused by logging, hurricanes and fire, or subtle and gradual, such as regeneration of forests and damage caused by insects (Verbesselt et al., 2001).  Previous studies have shown that land cover has changed dramatically during the past sevearal centuries and that these changes have severely affected our ecosystems (Foody, 2010; Lambin et al., 2001). Lambin and Strahlers (1994b) summarized five types of cause for land-cover changes: (1) long-term natural changes in climate conditions, (2) geomorphological and ecological processes, (3) human-induced alterations of vegetation cover and landscapes, (4) interannual climate variability, and (5) human-induced greenhouse effect.  Tools and techniques are needed to detect, describe, and predict these changes to facilitate sustainable management of natural resources.

  19. Simulated Climate Impacts of Mexico City's Historical Urban Expansion

    NASA Astrophysics Data System (ADS)

    Benson-Lira, Valeria

    Urbanization, a direct consequence of land use and land cover change, is responsible for significant modification of local to regional scale climates. It is projected that the greatest urban growth of this century will occur in urban areas in the developing world. In addition, there is a significant research gap in emerging nations concerning this topic. Thus, this research focuses on the assessment of climate impacts related to urbanization on the largest metropolitan area in Latin America: Mexico City. Numerical simulations using a state-of-the-science regional climate model are utilized to address a trio of scientifically relevant questions with wide global applicability. The importance of an accurate representation of land use and land cover is first demonstrated through comparison of numerical simulations against observations. Second, the simulated effect of anthropogenic heating is quantified. Lastly, numerical simulations are performed using pre-historic scenarios of land use and land cover to examine and quantify the impact of Mexico City's urban expansion and changes in surface water features on its regional climate.

  20. Land use inventory of Salt Lake County, Utah from color infrared aerial photography 1982

    NASA Technical Reports Server (NTRS)

    Price, K. P.; Willie, R. D.; Wheeler, D. J.; Ridd, M. K.

    1983-01-01

    The preparation of land use maps of Salt Lake County, Utah from high altitude color infrared photography is described. The primary purpose of the maps is to aid in the assessment of the effects of urban development on the agricultural land base and water resources. The first stage of map production was to determine the categories of land use/land cover and the mapping unit detail. The highest level of interpretive detail was given to the land use categories found in the agricultural or urbanized portions of the county; these areas are of primary interest with regard to the consumptive use of water from surface streams and wells. A slightly lower level of mapping detail was given to wetland environments; areas to which water is not purposely diverted by man but which have a high consumptive rate of water use. Photos were interpreted on the basis of color, tone, texture, and pattern, together with features of the topographic, hydrologic, and ecological context.

  1. Reconstructing disturbance history for an intensively mined region by time-series analysis of Landsat imagery.

    PubMed

    Li, Jing; Zipper, Carl E; Donovan, Patricia F; Wynne, Randolph H; Oliphant, Adam J

    2015-09-01

    Surface mining disturbances have attracted attention globally due to extensive influence on topography, land use, ecosystems, and human populations in mineral-rich regions. We analyzed a time series of Landsat satellite imagery to produce a 28-year disturbance history for surface coal mining in a segment of eastern USA's central Appalachian coalfield, southwestern Virginia. The method was developed and applied as a three-step sequence: vegetation index selection, persistent vegetation identification, and mined-land delineation by year of disturbance. The overall classification accuracy and kappa coefficient were 0.9350 and 0.9252, respectively. Most surface coal mines were identified correctly by location and by time of initial disturbance. More than 8 % of southwestern Virginia's >4000-km(2) coalfield area was disturbed by surface coal mining over the 28-year period. Approximately 19.5 % of the Appalachian coalfield surface within the most intensively mined county (Wise County) has been disturbed by mining. Mining disturbances expanded steadily and progressively over the study period. Information generated can be applied to gain further insight concerning mining influences on ecosystems and other essential environmental features.

  2. Land surface temperature measurements from EOS MODIS data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1995-01-01

    A significant progress has been made in TIR instrumentation which is required to establish the spectral BRDF/emissivity knowledge base of land-surface materials and to validate the land-surface temperature (LST) algorithms. The SIBRE (spectral Infrared Bidirectional Reflectance and Emissivity) system and a TIR system for measuring spectral directional-hemispherical emissivity have been completed and tested successfully. Optical properties and performance features of key components (including spectrometer, and TIR source) of these systems have been characterized by integrated use of local standards (blackbody and reference plates). The stabilization of the spectrometer performance was improved by a custom designed and built liquid cooling system. Methods and procedures for measuring spectral TIR BRDF and directional-hemispheric emissivity with these two systems have been verified in sample measurements. These TIR instruments have been used in the laboratory and the field, giving very promising results. The measured spectral emissivities of water surface are very close to the calculated values based on well established water refractive index values in published papers. Preliminary results show that the TIR instruments can be used for validation of the MODIS LST algorithm in homogeneous test sites. The beta-3 version of the MODIS LST software is being prepared for its delivery scheduled in the early second half of this year.

  3. CARETS: A prototype regional environmental information system. Volume 5: Interpretation, compilation and field verification procedures in the CARETS project

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator); Deforth, P. W.; Fitzpatrick, K. A.; Lins, H. F., Jr.; Mcginty, H. K., III

    1975-01-01

    The author has identified the following significant results. Level 2 land use mapping from high altitude aircraft photography at a scale of 1:100,000 required production of a photomosaic mapping base for each of the 48, 50 x 50 km sheets, and the interpretation and coding of land use polygons on drafting film overlays. To enhance the value of the land use sheets, a series of overlays was compiled, showing cultural features, county boundaries and census tracts, surface geology, and drainage basins. In producing level 1 land use maps from LANDSAT imagery, at a scale of 1:250,000 drafting film was directly overlaid on LANDSAT color composite transparencies. Numerous areas of change were identified, but extensive areas of false changes were also noted.

  4. Bioreplicated visual features of nanofabricated buprestid beetle decoys evoke stereotypical male mating flights

    PubMed Central

    Domingue, Michael J.; Lakhtakia, Akhlesh; Pulsifer, Drew P.; Hall, Loyal P.; Badding, John V.; Bischof, Jesse L.; Martín-Palma, Raúl J.; Imrei, Zoltán; Janik, Gergely; Mastro, Victor C.; Hazen, Missy; Baker, Thomas C.

    2014-01-01

    Recent advances in nanoscale bioreplication processes present the potential for novel basic and applied research into organismal behavioral processes. Insect behavior potentially could be affected by physical features existing at the nanoscale level. We used nano-bioreplicated visual decoys of female emerald ash borer beetles (Agrilus planipennis) to evoke stereotypical mate-finding behavior, whereby males fly to and alight on the decoys as they would on real females. Using an industrially scalable nanomolding process, we replicated and evaluated the importance of two features of the outer cuticular surface of the beetle’s wings: structural interference coloration of the elytra by multilayering of the epicuticle and fine-scale surface features consisting of spicules and spines that scatter light into intense strands. Two types of decoys that lacked one or both of these elements were fabricated, one type nano-bioreplicated and the other 3D-printed with no bioreplicated surface nanostructural elements. Both types were colored with green paint. The light-scattering properties of the nano-bioreplicated surfaces were verified by shining a white laser on the decoys in a dark room and projecting the scattering pattern onto a white surface. Regardless of the coloration mechanism, the nano-bioreplicated decoys evoked the complete attraction and landing sequence of Agrilus males. In contrast, males made brief flying approaches toward the decoys without nanostructured features, but diverted away before alighting on them. The nano-bioreplicated decoys were also electroconductive, a feature used on traps such that beetles alighting onto them were stunned, killed, and collected. PMID:25225359

  5. The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission

    NASA Astrophysics Data System (ADS)

    Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.

    2017-11-01

    The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.

  6. Young Children's Ideas about the Earth in Space.

    ERIC Educational Resources Information Center

    Sharp, John G.

    1999-01-01

    Surveyed 7-year-olds' ideas about the Earth in space, focusing on their ideas about shape and their ability to represent and describe land masses or other surface features, Earth's size relative to the sun and moon, and its nature as a planet. Found that focusing on the Earth's shape and gravity alone has underestimated youngsters' learning…

  7. Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 1: Method and sensitivity to input data uncertainties

    NASA Technical Reports Server (NTRS)

    Zhang, Y.-C.; Rossow, W. B.; Lacis, A. A.

    1995-01-01

    The largest uncertainty in upwelling shortwave (SW) fluxes (approximately equal 10-15 W/m(exp 2), regional daily mean) is caused by uncertainties in land surface albedo, whereas the largest uncertainty in downwelling SW at the surface (approximately equal 5-10 W/m(exp 2), regional daily mean) is related to cloud detection errors. The uncertainty of upwelling longwave (LW) fluxes (approximately 10-20 W/m(exp 2), regional daily mean) depends on the accuracy of the surface temperature for the surface LW fluxes and the atmospheric temperature for the top of atmosphere LW fluxes. The dominant source of uncertainty is downwelling LW fluxes at the surface (approximately equal 10-15 W/m(exp 2)) is uncertainty in atmospheric temperature and, secondarily, atmospheric humidity; clouds play little role except in the polar regions. The uncertainties of the individual flux components and the total net fluxes are largest over land (15-20 W/m(exp 2)) because of uncertainties in surface albedo (especially its spectral dependence) and surface temperature and emissivity (including its spectral dependence). Clouds are the most important modulator of the SW fluxes, but over land areas, uncertainties in net SW at the surface depend almost as much on uncertainties in surface albedo. Although atmospheric and surface temperature variations cause larger LW flux variations, the most notable feature of the net LW fluxes is the changing relative importance of clouds and water vapor with latitude. Uncertainty in individual flux values is dominated by sampling effects because of large natrual variations, but uncertainty in monthly mean fluxes is dominated by bias errors in the input quantities.

  8. The ERTS-1 investigation (ER-600): A compendium of analysis results of the utility of ERTS-1 data for land resources management

    NASA Technical Reports Server (NTRS)

    Erb, R. B.

    1974-01-01

    The results of the ERTS-1 investigations conducted by the Earth Observations Division at the NASA Lyndon B. Johnson Space Center are summarized in this report, which is an overview of documents detailing individual investigations. Conventional image interpretation and computer-aided classification procedures were the two basic techniques used in analyzing the data for detecting, identifying, locating, and measuring surface features related to earth resources. Data from the ERTS-1 multispectral scanner system were useful for all applications studied, which included agriculture, coastal and estuarine analysis, forestry, range, land use and urban land use, and signature extension. Percentage classification accuracies are cited for the conventional and computer-aided techniques.

  9. The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration

    NASA Astrophysics Data System (ADS)

    Araujo, J. B.; Brusseau, M. L. L.

    2017-12-01

    Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.

  10. Multi-source remotely sensed data fusion for improving land cover classification

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Huang, Bo; Xu, Bing

    2017-02-01

    Although many advances have been made in past decades, land cover classification of fine-resolution remotely sensed (RS) data integrating multiple temporal, angular, and spectral features remains limited, and the contribution of different RS features to land cover classification accuracy remains uncertain. We proposed to improve land cover classification accuracy by integrating multi-source RS features through data fusion. We further investigated the effect of different RS features on classification performance. The results of fusing Landsat-8 Operational Land Imager (OLI) data with Moderate Resolution Imaging Spectroradiometer (MODIS), China Environment 1A series (HJ-1A), and Advanced Spaceborne Thermal Emission and Reflection (ASTER) digital elevation model (DEM) data, showed that the fused data integrating temporal, spectral, angular, and topographic features achieved better land cover classification accuracy than the original RS data. Compared with the topographic feature, the temporal and angular features extracted from the fused data played more important roles in classification performance, especially those temporal features containing abundant vegetation growth information, which markedly increased the overall classification accuracy. In addition, the multispectral and hyperspectral fusion successfully discriminated detailed forest types. Our study provides a straightforward strategy for hierarchical land cover classification by making full use of available RS data. All of these methods and findings could be useful for land cover classification at both regional and global scales.

  11. Mosaic of Apollo 16 Descartes landing site taken from TV transmission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A 360 degree field of view of the Apollo 16 Descartes landing site area composed of individual scenes taken from a color transmission made by the color RCA TV camera mounted on the Lunar Roving Vehicle. This panorama was made while the LRV was parked at the rim of Flag Crater (Station 1) during the first Apollo 16 lunar surface extravehicular activity (EVA-1) by Astronauts John W. Young and Charles M. Duke Jr. The overlay identifies the directions and the key lunar terrain features. The camera panned across the rear portion of the LRV in its 360 degree sweep.

  12. Visual Features Involving Motion Seen from Airport Control Towers

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Liston, Dorion

    2010-01-01

    Visual motion cues are used by tower controllers to support both visual and anticipated separation. Some of these cues are tabulated as part of the overall set of visual features used in towers to separate aircraft. An initial analyses of one motion cue, landing deceleration, is provided as a basis for evaluating how controllers detect and use it for spacing aircraft on or near the surface. Understanding cues like it will help determine if they can be safely used in a remote/virtual tower in which their presentation may be visually degraded.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.

    Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate–carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimationmore » system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model–data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. Furthermore, the new improved parameters for JULES are presented along with the associated uncertainties for each parameter.« less

  14. Improving the Fit of a Land-Surface Model to Data Using its Adjoint

    NASA Astrophysics Data System (ADS)

    Raoult, Nina; Jupp, Tim; Cox, Peter; Luke, Catherine

    2016-04-01

    Land-surface models (LSMs) are crucial components of the Earth System Models (ESMs) which are used to make coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. In this study, JULES is automatically differentiated using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum parameter sets by calibrating against observations. We present an introduction to the adJULES system and demonstrate its ability to improve the model-data fit using eddy covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the 5 Plant Functional Types (PFTS) in JULES. The optimised PFT-specific parameters improve the performance of JULES over 90% of the FLUXNET sites used in the study. These reductions in error are shown and compared to reductions found due to site-specific optimisations. Finally, we show that calculation of the 2nd derivative of JULES allows us to produce posterior probability density functions of the parameters and how knowledge of parameter values is constrained by observations.

  15. Integrated water flow model and modflow-farm process: A comparison of theory, approaches, and features of two integrated hydrologic models

    USGS Publications Warehouse

    Dogrul, Emin C.; Schmid, Wolfgang; Hanson, Randall T.; Kadir, Tariq; Chung, Francis

    2016-01-01

    Effective modeling of conjunctive use of surface and subsurface water resources requires simulation of land use-based root zone and surface flow processes as well as groundwater flows, streamflows, and their interactions. Recently, two computer models developed for this purpose, the Integrated Water Flow Model (IWFM) from the California Department of Water Resources and the MODFLOW with Farm Process (MF-FMP) from the US Geological Survey, have been applied to complex basins such as the Central Valley of California. As both IWFM and MFFMP are publicly available for download and can be applied to other basins, there is a need to objectively compare the main approaches and features used in both models. This paper compares the concepts, as well as the method and simulation features of each hydrologic model pertaining to groundwater, surface water, and landscape processes. The comparison is focused on the integrated simulation of water demand and supply, water use, and the flow between coupled hydrologic processes. The differences in the capabilities and features of these two models could affect the outcome and types of water resource problems that can be simulated.

  16. Using semi-variogram analysis for providing spatially distributed information on soil surface condition for land surface modeling

    NASA Astrophysics Data System (ADS)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented the change in soil surface structure during crusting. The laser data were also used to create digital surface models (DSM) of the soil states for visual comparison. This research has shown that aggregate breakdown and soil crusting can be shown quantitatively by a decrease in sill variance (silt soil: 11.67 (control) to 1.08 (after 90 mins rainfall)). Features present within semi-variograms were spatially linked to features at the soil surface, such as soil cracks, tillage lines and areas of deposition. Directional semi-variograms were used to provide a spatially orientated component, where the directional sill variance associated with a soil crack was shown to increase from 7.95 to 19.33. Periodicity within semi-variogram was also shown to quantify the spatial scale of soil cracking networks and potentially surface flowpaths; an average distance between soil cracks of 37 mm closely corresponded to the distance of 38 mm shown in the semi-variogram. The results provide a strong basis for the future retrieval of spatio-temporal variations in soil surface condition. Furthermore, the presence of process-based information on hydrological pathways within semi-variograms may work towards an inclusion of geostatisically-derived information in land surface models and the understanding of complex surface processes at different spatial scales.

  17. Synergistic use of optical and InSAR data for urban impervious surface mapping: A case study in Hong Kong

    USGS Publications Warehouse

    Jiang, L.; Liao, M.; Lin, H.; Yang, L.

    2009-01-01

    A wide range of urban ecosystem studies, including urban hydrology, urban climate, land use planning and watershed resource management, require accurate and up‐to‐date geospatial data of urban impervious surfaces. In this study, the potential of the synergistic use of optical and InSAR data in urban impervious surface mapping at the sub‐pixel level was investigated. A case study in Hong Kong was conducted for this purpose by applying a classification and regression tree (CART) algorithm to SPOT 5 multispectral imagery and ERS‐2 SAR data. Validated by reference data derived from high‐resolution colour‐infrared (CIR) aerial photographs, our results show that the addition of InSAR feature information can improve the estimation of impervious surface percentage (ISP) in comparison with using SPOT imagery alone. The improvement is especially notable in separating urban impervious surface from the vacant land/bare ground, which has been a difficult task in ISP modelling with optical remote sensing data. In addition, the results demonstrate the potential to map urban impervious surface by using InSAR data alone. This allows frequent monitoring of world's cities located in cloud‐prone and rainy areas.

  18. Modeling turbulent flows in the atmospheric boundary layer of Mars: application to Gale crater, Mars, landing site of the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Anderson, William; Day, Kenzie; Kocurek, Gary

    2016-11-01

    Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the exclusive mode of landscape variability on Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. We have also run one simulation of flow over a digital elevation map of Gale crater. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three-dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater. We have also used the immersed-boundary method body force distribution to compute the aerodynamic surface stress on the crater. These results suggest that secondary flows - originating from flow separation at the crater - have played an important role in shaping landscape features observed in craters (including the dune fields observed on Mars, many of which are actively evolving). None.

  19. Modeling turbulent flows in the atmospheric boundary layer of Mars: application to Gale crater, Mars, landing site of the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Anderson, William

    2017-04-01

    Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the exclusive mode of landscape variability on Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. We have also run one simulation of flow over a digital elevation map of Gale crater. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three-dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater. We have also used the immersed-boundary method body force distribution to compute the aerodynamic surface stress on the crater. These results suggest that secondary flows - originating from flow separation at the crater - have played an important role in shaping landscape features observed in craters (including the dune fields observed on Mars, many of which are actively evolving).

  20. Lidar Systems for Precision Navigation and Safe Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego F.; Petway, Larry B.; Hines, Glenn D.; Roback, Vincent E.

    2011-01-01

    The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of robotic and manned vehicles with a high degree of precision. Currently, NASA is developing novel lidar sensors aimed at needs of future planetary landing missions. These lidar sensors are a 3-Dimensional Imaging Flash Lidar, a Doppler Lidar, and a Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain that indicate hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase of a landing vehicle, at about 1 km above the ground, can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground relative velocity and distance data allowing for precision navigation to the landing site. Our Doppler lidar utilizes three laser beams pointed to different directions to measure line of sight velocities and ranges to the ground from altitudes of over 2 km. Throughout the landing trajectory starting at altitudes of about 20 km, the Laser Altimeter can provide very accurate ground relative altitude measurements that are used to improve the vehicle position knowledge obtained from the vehicle navigation system. At altitudes from approximately 15 km to 10 km, either the Laser Altimeter or the Flash Lidar can be used to generate contour maps of the terrain, identifying known surface features such as craters, to perform Terrain relative Navigation thus further reducing the vehicle s relative position error. This paper describes the operational capabilities of each lidar sensor and provides a status of their development. Keywords: Laser Remote Sensing, Laser Radar, Doppler Lidar, Flash Lidar, 3-D Imaging, Laser Altimeter, Precession Landing, Hazard Detection

  1. The Extraterrestrial Materials Simulation Laboratory

    NASA Technical Reports Server (NTRS)

    Green, J. R.

    2001-01-01

    In contrast to fly-by and orbital missions, in situ missions face an incredible array of challenges in near-target navigation, landing site selection, descent, landing, science operations, sample collection and handling, drilling, anchoring, subsurface descent, communications, and contamination. The wide range of materials characteristics and environments threaten mission safety and success. For example, many physical properties are poorly characterized, including strength, composition, heterogeneity, phase change, texture, thermal properties, terrain features, atmospheric interaction, and stratigraphy. Examples of the range of materials properties include, for example: (1) Comets, with a possible compressive strength ranging from a light fluff to harder than concrete: 10(exp 2) to 10 (exp 8) Pa; (2) Europa, including a possible phase change at the surface, unknown strength and terrain roughness; and (3) Titan, with a completely unknown surface and possible liquid ocean. Additional information is contained in the original extended abstract.

  2. Evaporite-karst problems and studies in the USA

    USGS Publications Warehouse

    Johnson, K.S.

    2008-01-01

    Evaporites, including rock salt (halite) and gypsum (or anhydrite), are the most soluble among common rocks; they dissolve readily to form the same types of karst features that commonly are found in limestones and dolomites. Evaporites are present in 32 of the 48 contiguous states in USA, and they underlie about 40% of the land area. Typical evaporite-karst features observed in outcrops include sinkholes, caves, disappearing streams, and springs, whereas other evidence of active evaporite karst includes surface-collapse structures and saline springs or saline plumes that result from salt dissolution. Many evaporites also contain evidence of paleokarst, such as dissolution breccias, breccia pipes, slumped beds, and collapse structures. All these natural karst phenomena can be sources of engineering or environmental problems. Dangerous sinkholes and caves can form rapidly in evaporite rocks, or pre-existing karst features can be reactivated and open up (collapse) under certain hydrologic conditions or when the land is put to new uses. Many karst features also propagate upward through overlying surficial deposits. Human activities also have caused development of evaporite karst, primarily in salt deposits. Boreholes (petroleum tests or solution-mining operations) or underground mines may enable unsaturated water to flow through or against salt deposits, either intentionally or accidentally, thus allowing development of small to large dissolution cavities. If the dissolution cavity is large enough and shallow enough, successive roof failures can cause land subsidence and/or catastrophic collapse. Evaporite karst, natural and human-induced, is far more prevalent than is commonly believed. ?? 2007 Springer-Verlag.

  3. Mapping the Apollo 17 landing site area based on Lunar Reconnaissance Orbiter Camera images and Apollo surface photography

    NASA Astrophysics Data System (ADS)

    Haase, I.; Oberst, J.; Scholten, F.; Wählisch, M.; Gläser, P.; Karachevtseva, I.; Robinson, M. S.

    2012-05-01

    Newly acquired high resolution Lunar Reconnaissance Orbiter Camera (LROC) images allow accurate determination of the coordinates of Apollo hardware, sampling stations, and photographic viewpoints. In particular, the positions from where the Apollo 17 astronauts recorded panoramic image series, at the so-called “traverse stations”, were precisely determined for traverse path reconstruction. We analyzed observations made in Apollo surface photography as well as orthorectified orbital images (0.5 m/pixel) and Digital Terrain Models (DTMs) (1.5 m/pixel and 100 m/pixel) derived from LROC Narrow Angle Camera (NAC) and Wide Angle Camera (WAC) images. Key features captured in the Apollo panoramic sequences were identified in LROC NAC orthoimages. Angular directions of these features were measured in the panoramic images and fitted to the NAC orthoimage by applying least squares techniques. As a result, we obtained the surface panoramic camera positions to within 50 cm. At the same time, the camera orientations, North azimuth angles and distances to nearby features of interest were also determined. Here, initial results are shown for traverse station 1 (northwest of Steno Crater) as well as the Apollo Lunar Surface Experiment Package (ALSEP) area.

  4. Possible Tuff Cones In Isidis Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Seabrook, A. M.; Rothery, D. A.; Bridges, J. C.; Wright, I. P.

    The Beagle 2 lander of the ESA Mars Express mission will touch down on the martian surface in December 2003 to conduct a primarily exobiological mission. The landing site will be within Isidis Planitia, an 1100 km diameter impact basin. Isidis contains many sub-kilometre-sized cones. These can be found singly, in clusters, and in straight or arcuate chains extending many kilometres. In some areas of the basin these cones can occupy over 10% of the surface, with the most densely populated areas being in the older western half of the basin. There are few cones around the basin rim. There is also variation in the erosional state of the cones both across the basin, and within smaller areas, implying a range in time of formation for the cones. We currently favour a tuff cone origin as an explanation for these features. Tuff cones on Earth are rooted volcanic features formed at vents by the interaction between magma or magmatic heat and surface or near-surface water. Lava flows likely to be associated with at least some of the cones if they had a cinder cone (rooted eruptions at vents in a dry environment) origin are absent. This suggests the involvement of suffi- cient volatiles both to explosively fragment the erupting magma, and to cool the ejecta enough to prevent the formation of clastogenic flows. If our tuff cone interpretation is correct, this has implications for the presence, abundance and long-term persistence of sub-surface volatiles (water or carbon dioxide) on Mars. An understanding of the mechanism of formation of the Isidis cones will assist the characterisation of the basin in preparation for the landing of Beagle 2, by providing information about the history of volatiles and volcanism in the basin, and the processes that resulted in the surface we see today.

  5. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  6. Description and validation of the Simple, Efficient, Dynamic, Global, Ecological Simulator (SEDGES v.1.0)

    NASA Astrophysics Data System (ADS)

    Paiewonsky, Pablo; Elison Timm, Oliver

    2018-03-01

    In this paper, we present a simple dynamic global vegetation model whose primary intended use is auxiliary to the land-atmosphere coupling scheme of a climate model, particularly one of intermediate complexity. The model simulates and provides important ecological-only variables but also some hydrological and surface energy variables that are typically either simulated by land surface schemes or else used as boundary data input for these schemes. The model formulations and their derivations are presented here, in detail. The model includes some realistic and useful features for its level of complexity, including a photosynthetic dependency on light, full coupling of photosynthesis and transpiration through an interactive canopy resistance, and a soil organic carbon dependence for bare-soil albedo. We evaluate the model's performance by running it as part of a simple land surface scheme that is driven by reanalysis data. The evaluation against observational data includes net primary productivity, leaf area index, surface albedo, and diagnosed variables relevant for the closure of the hydrological cycle. In this setup, we find that the model gives an adequate to good simulation of basic large-scale ecological and hydrological variables. Of the variables analyzed in this paper, gross primary productivity is particularly well simulated. The results also reveal the current limitations of the model. The most significant deficiency is the excessive simulation of evapotranspiration in mid- to high northern latitudes during their winter to spring transition. The model has a relative advantage in situations that require some combination of computational efficiency, model transparency and tractability, and the simulation of the large-scale vegetation and land surface characteristics under non-present-day conditions.

  7. Using the storm water management model to predict urban headwater stream hydrological response to climate and land cover change

    Treesearch

    J.Y. Wu; J.R. Thompson; R.K. Kolka; K.J. Franz; T.W. Stewart

    2013-01-01

    Streams are natural features in urban landscapes that can provide ecosystem services for urban residents. However, urban streams are under increasing pressure caused by multiple anthropogenic impacts, including increases in human population and associated impervious surface area, and accelerated climate change. The ability to anticipate these changes and better...

  8. Mass Wasting on the Moon: Implications for Seismicity

    NASA Technical Reports Server (NTRS)

    Weber, Renee; Nahm, Amanda; Schmerr, Nick; Yanites, Brian

    2016-01-01

    Seismicity estimates play an important role in creating regional geological characterizations, which are useful for understanding a planet's formation and evolution, and are of key importance to site selection for landed missions. Here we investigate the regional effects of seismicity in planetary environments with the goal of determining whether such surface features on the Moon, could be triggered by fault motion.

  9. Mass Wasting on the Moon: Implications for Seismicity

    NASA Technical Reports Server (NTRS)

    Weber, R. C.; Nahm, A. L.; Yanites, B.; Schmerr, N.

    2016-01-01

    Introduction: Seismicity estimates play an important role in creating regional geological characterizations, which are useful for understanding a planet's formation and evolution, and of key importance to site selection for landed missions. Here we investigate the regional effects of lunar seismicity with the goal of determining whether surface features such as landslides and boulder trails on the Moon are triggered by fault motion.

  10. Ghana watershed prototype products

    USGS Publications Warehouse

    ,

    2007-01-01

    A number of satellite data sets are available through the U.S. Geological Survey (USGS) for monitoring land surface features. Representative data sets include Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Shuttle Radar Topography Mission (SRTM). The Ghana Watershed Prototype Products cover an area within southern Ghana, Africa, and include examples of the aforementioned data sets along with sample SRTM derivative data sets.

  11. Winds at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Gunnlaugsson, H. P.; Taylor, P.; Lange, C.; Moores, J.; Lemmon, M.

    2008-12-01

    Local wind speeds and directions have been measured at the Phoenix landing site using the Telltale wind indicator. The Telltale is mounted on top of the meteorological mast at roughly 2 meters height above the surface. The Telltale is a mechanical anemometer consisting of a lightweight cylinder suspended by Kevlar fibers that are deflected under the action of wind. Images taken with the Surface Stereo Imager (SSI) of the Telltale deflection allows the wind speed and direction to be quantified. Winds aloft have been estimated using image series (10 images ~ 50 s apart) taken of the Zenith (Zenith Movies). In contrast enhanced images cloud like features are seen to move through the image field and give indication of directions and angular speed. Wind speeds depend on the height of where these features originate while directions are unambiguously determined. The wind data shows dominant wind directions and diurnal variations, likely caused by slope winds. Recent night time measurements show frost formation on the Telltale mirror. The results will be discussed in terms of global and slope wind modeling and the current calibration of the data is discussed. It will also be illustrated how wind data can aid in interpreting temperature fluctuations seen on the lander.

  12. Assessment of Mars Pathfinder landing site predictions

    USGS Publications Warehouse

    Golombek, M.P.; Moore, H.J.; Haldemann, A.F.C.; Parker, T.J.; Schofield, J.T.

    1999-01-01

    Remote sensing data at scales of kilometers and an Earth analog were used to accurately predict the characteristics of the Mars Pathfinder landing site at a scale of meters. The surface surrounding the Mars Pathfinder lander in Ares Vallis appears consistent with orbital interpretations, namely, that it would be a rocky plain composed of materials deposited by catastrophic floods. The surface and observed maximum clast size appears similar to predictions based on an analogous surface of the Ephrata Fan in the Channeled Scabland of Washington state. The elevation of the site measured by relatively small footprint delay-Doppler radar is within 100 m of that determined by two-way ranging and Doppler tracking of the spacecraft. The nearly equal elevations of the Mars Pathfinder and Viking Lander 1 sites allowed a prediction of the atmospheric conditions with altitude (pressure, temperature, and winds) that were well within the entry, descent, and landing design margins. High-resolution (~38 m/pixel) Viking Orbiter 1 images showed a sparsely cratered surface with small knobs with relatively low slopes, consistent with observations of these features from the lander. Measured rock abundance is within 10% of that expected from Viking orbiter thermal observations and models. The fractional area covered by large, potentially hazardous rocks observed is similar to that estimated from model rock distributions based on data from the Viking landing sites, Earth analog sites, and total rock abundance. The bulk and fine-component thermal inertias measured from orbit are similar to those calculated from the observed rock size-frequency distribution. A simple radar echo model based on the reflectivity of the soil (estimated from its bulk density), and the measured fraction of area covered by rocks was used to approximate the quasi-specular and diffuse components of the Earth-based radar echos. Color and albedo orbiter data were used to predict the relatively dust free or unweathered surface around the Pathfinder lander compared to the Viking landing sites. Comparisons with the experiences of selecting the Viking landing sites demonstrate the enormous benefit the Viking data and its analyses and models had on the successful predictions of the Pathfinder site. The Pathfinder experience demonstrates that, in certain locations, geologic processes observed in orbiter data can be used to infer surface characteristics where those processes dominate over other processes affecting the Martian surface layer. Copyright 1999 by the American Geophysical Union.

  13. Coordinates of anthropogenic features on the Moon

    NASA Astrophysics Data System (ADS)

    Wagner, R. V.; Nelson, D. M.; Plescia, J. B.; Robinson, M. S.; Speyerer, E. J.; Mazarico, E.

    2017-02-01

    High-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) reveal the landing locations of recent and historic spacecraft and associated impact sites across the lunar surface. Using multiple images of each site acquired between 2009 and 2015, an improved Lunar Reconnaissance Orbiter (LRO) ephemeris, and a temperature-dependent camera orientation model, we derived accurate coordinates (<12 m) for each soft-landed spacecraft, rover, deployed scientific payload, and spacecraft impact crater that we have identified. Accurate coordinates enhance the scientific interpretations of data returned by the surface instruments and of returned samples of the Apollo and Luna sites. In addition, knowledge of the sizes and positions of craters formed as the result of impacting spacecraft provides key benchmarks into the relationship between energy and crater size, as well as calibration points for reanalyzing seismic measurements acquired during the Apollo program. We identified the impact craters for the three spacecraft that impacted the surface during the LRO mission by comparing before and after NAC images.

  14. Coordinates of Anthropogenic Features on the Moon

    NASA Technical Reports Server (NTRS)

    Wagner, R. V.; Nelson, D. M.; Plescia, J. B.; Robinson, M. S.; Speyerer , E. J.; Mazarico, E.

    2016-01-01

    High-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) reveal the landing locations of recent and historic spacecraft and associated impact sites across the lunar surface. Using multiple images of each site acquired between 2009 and 2015, an improved Lunar Reconnaissance Orbiter (LRO) ephemeris, and a temperature-dependent camera orientation model, we derived accurate coordinates ( less than 12 meters) for each soft-landed spacecraft, rover, deployed scientific payload, and spacecraft impact crater that we have identified. Accurate coordinates enhance the scientific interpretations of data returned by the surface instruments and of returned samples of the Apollo and Luna sites. In addition, knowledge of the sizes and positions of craters formed as the result of impacting spacecraft provides key benchmarks into the relationship between energy and crater size, as well as calibration points for reanalyzing seismic measurements acquired during the Apollo program. We identified the impact craters for the three spacecraft that impacted the surface during the LRO mission by comparing before and after NAC images.

  15. The nature of terrains of different types on the surface of Venus and selection of potential landing sites for a descent probe of the Venera-D Mission

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Zasova, L. V.; Gerasimov, M. V.; Korablev, O. I.; Marov, M. Ya.; Zelenyi, L. M.; Ignat'ev, N. I.; Tuchin, A. G.

    2017-01-01

    We discuss a change in the resurfacing regimes of Venus and probable ways of forming the terrain types that make up the surface of the planet. The interpretation of the nature of the terrain types and their morphologic features allows us to characterize their scientific priority and the risk of landing on their surface to be estimated. From the scientific point of view, two terrain types are of special interest and represent easily achievable targets: the lower unit of regional plains and the smooth plains associated with impact craters. Regional plains are probably a melting from the upper fertile mantle. The material of smooth plains of impact origin is a well-mixed and representative sample of the Venusian crust. The lower unit of regional plains is the most widespread one on the surface of Venus, and it occurs within the boundaries of all of the precalculated approach trajectories of the lander. Smooth plains of impact origin are crossed by the approach trajectories precalculated for 2018 and 2026.

  16. TEAM - Titan Exploration Atmospheric Microprobes

    NASA Astrophysics Data System (ADS)

    Nixon, Conor; Esper, Jaime; Aslam, Shahid; Quilligan, Gerald

    2016-10-01

    The astrobiological potential of Titan's surface hydrocarbon liquids and probable interior water ocean has led to its inclusion as a destination in NASA's "Ocean Worlds" initiative, and near-term investigation of these regions is a high-level scientific goal. TEAM is a novel initiative to investigate the lake and sea environs using multiple dropsondes -scientific probes derived from an existing cubesat bus architecture (CAPE - the Cubesat Application for Planetary Exploration) developed at NASA GSFC. Each 3U probe will parachute to the surface, making atmospheric structure and composition measurements during the descent, and photographing the surface - land, shoreline and seas - in detail. TEAM probes offer a low-cost, high-return means to explore multiple areas on Titan, yielding crucial data about the condensing chemicals, haze and cloud layers, winds, and surface features of the lakes and seas. These microprobes may be included on a near-term New Frontiers class mission to the Saturn system as additional payload, bringing increased scientific return and conducting reconnaissance for future landing zones. In this presentation we describe the probe architecture, baseline payload, flight profile and the unique engineering and science data that can be returned.

  17. On the Effects of the Evolution of Microbial Mats and Land Plants on the Earth as a Planet. Photometric and Spectroscopic Light Curves of Paleo-Earths

    NASA Astrophysics Data System (ADS)

    Sanromá, E.; Pallé, E.; García Munõz, A.

    2013-04-01

    Understanding the spectral and photometric variability of the Earth and the rest of the solar system planets has become of utmost importance for the future characterization of rocky exoplanets. As this is not only interesting at present times but also along the planetary evolution, we studied the effect that the evolution of microbial mats and plants over land has had on the way our planet looks from afar. As life evolved, continental surfaces changed gradually and non-uniformly from deserts through microbial mats to land plants, modifying the reflective properties of the ground and most likely the distribution of moisture and cloudiness. Here, we used a radiative transfer model of the Earth, together with geological paleo-records of the continental distribution and a reconstructed cloud distribution, to simulate the visible and near-IR radiation reflected by our planet as a function of Earth's rotation. We found that the evolution from deserts to microbial mats and to land plants produces detectable changes in the globally averaged Earth's reflectance. The variability of each surface type is located in different bands and can induce reflectance changes of up to 40% in period of hours. We conclude that by using photometric observations of an Earth-like planet at different photometric bands it would be possible to discriminate between different surface types. While recent literature proposes the red-edge feature of vegetation near 0.7 μm as a signature for land plants, observations in near-IR bands can be equally or even better suited for this purpose.

  18. Using a GCM analogue model to investigate the potential for Amazonian forest dieback

    NASA Astrophysics Data System (ADS)

    Huntingford, C.; Harris, P. P.; Gedney, N.; Cox, P. M.; Betts, R. A.; Marengo, J. A.; Gash, J. H. C.

    A combined GCM analogue model and GCM land surface representation is used to investigate the influences of climatology and land surface parameterisation on modelled Amazonian vegetation change. This modelling structure (called IMOGEN) captures the main features of the changes in surface climate as estimated by a GCM with enhanced atmospheric greenhouse gas concentrations. Advantage is taken of IMOGEN's computational speed which allows multiple simulations to be carried out to assess the robustness of the GCM results. The timing of forest dieback is found to be sensitive to the initial ``pre-industrial'' climate, as well as uncertainties in the representation of land-atmosphere CO2 exchange. Changing from a Q10 form for plant dark and maintanence respiration (as used in the coupled GCM runs) to a respiration proportional to maximum photosynthesis, reduces the biomass lost from Amazonia in the 21st century. Replacing the GCM control climate (which has about 25% too little rain in the annual mean over Amazonia) with an observed climatology increases the CO2 concentration at which rainfall drops to critical levels, and thereby further delays the dieback. On the other hand, calibration of the canopy photosynthesis model against Amazonian flux data tends to lead to earlier forest dieback. Further advances are required in both GCM rainfall simulation and land-surface process representation before a clearer picture will emerge on the timing of possible Amazonian forest dieback. However, it seems likely that these advances will overall lead to projections of later forest dieback as GCM control climates become more realistic.

  19. An unsupervised classification approach for analysis of Landsat data to monitor land reclamation in Belmont county, Ohio

    NASA Technical Reports Server (NTRS)

    Brumfield, J. O.; Bloemer, H. H. L.; Campbell, W. J.

    1981-01-01

    Two unsupervised classification procedures for analyzing Landsat data used to monitor land reclamation in a surface mining area in east central Ohio are compared for agreement with data collected from the corresponding locations on the ground. One procedure is based on a traditional unsupervised-clustering/maximum-likelihood algorithm sequence that assumes spectral groupings in the Landsat data in n-dimensional space; the other is based on a nontraditional unsupervised-clustering/canonical-transformation/clustering algorithm sequence that not only assumes spectral groupings in n-dimensional space but also includes an additional feature-extraction technique. It is found that the nontraditional procedure provides an appreciable improvement in spectral groupings and apparently increases the level of accuracy in the classification of land cover categories.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1971-07-26

    The fifth marned lunar landing mission, Apollo 15 (SA-510), carrying a crew of three astronauts: Mission commander David R. Scott, Lunar Module pilot James B. Irwin, and Command Module pilot Alfred M. Worden Jr., lifted off on July 26, 1971. Astronauts Scott and Irwin were the first to use a wheeled surface vehicle, the Lunar Roving Vehicle, or the Rover, which was designed and developed by the Marshall Space Flight Center, and built by the Boeing Company. Astronauts spent 13 days, nearly 67 hours, on the Moon's surface to inspect a wide variety of its geological features.

  1. Southern Meridiani Planum - A candidate landing site for the first crewed mission to Mars

    NASA Astrophysics Data System (ADS)

    Clarke, J. D. A.; Willson, D.; Smith, H.; Hobbs, S. W.; Jones, E.

    2017-04-01

    Astronauts working on the surface of Mars have the capability to explore efficiently, rapidly, and flexibly, allowing them to perform a wide range of field investigations. NASA has begun an open international process to identify and evaluate candidate locations where crews could land, live and work on the martian surface, beginning with the First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars in October 2015. Forty seven sites were proposed, including several at or near the Meridiani area, the subject of this paper. We consider the Meridiani area an excellent candidate for the first missions to Mars. It is accessible, safe, contains potential water resources in the form of poly-hydrated magnesium sulphates, has diverse science features with high likelihood of meeting all science goals, has other potential resources and potential for further longer-ranged exploration. The presence of hardware from previous missions will be of benefit to studies of materials to martian conditions, assessing the effectiveness of historic planetary protection strategies, and engaging public interest. Lastly, parts of the Meridiani region have been well studied from the surface by the Opportunity mission, providing ground truth for orbital data. As one of the best documented regions of Mars this will allow a "Go where you know" approach for the first crewed missions, especially with regard to safety, trafficability, and water resource potential.

  2. Comparison of land-surface humidity between observations and CMIP5 models

    NASA Astrophysics Data System (ADS)

    Dunn, Robert; Willett, Kate; Ciavarella, Andrew; Stott, Peter; Jones, Gareth

    2017-04-01

    We compare the latest observational land-surface humidity dataset, HadISDH, with the CMIP5 model archive spatially and temporally over the period 1973-2015. None of the CMIP5 models or experiments capture the observed temporal behaviour of the globally averaged relative or specific humidity over the entire study period. When using an atmosphere-only model, driven by observed sea-surface temperatures and radiative forcing changes, the behaviour of regional average temperature and specific humidity are better captured, but there is little improvement in the relative humidity. Comparing the observed and historical model climatologies show that the models are generally cooler everywhere, are drier and less saturated in the tropics and extra tropics, and have comparable moisture levels but are more saturated in the high latitudes. The spatial pattern of linear trends are relatively similar between the models and HadISDH for temperature and specific humidity, but there are large differences for relative humidity, with less moistening shown in the models over the Tropics, and very little at high atitudes. The observed temporal behaviour appears to be a robust climate feature rather than observational error. It has been previously documented and is theoretically consistent with faster warming rates over land compared to oceans. Thus, the poor replication in the models, especially in the atmosphere only model, leads to questions over future projections of impacts related to changes in surface relative humidity.

  3. Wind Drifts at Viking 1 Landing Site

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image is of so-called wind drifts seen at the Viking 1 landing site. These are somewhat different from the features seen at the Pathfinder site in two important ways. 1) These landforms have no apparent slip-or avalanche-face as do both terrestrial dunes and the Pathfinder features, and may represent deposits of sediment falling from the air, as opposed to dune sand, which 'hops' or saltates along the ground; 2) these features may indicate erosion on one side, because of the layering and apparent scouring on their right sides. They may, therefore have been deposited by a wind moving left to right, partly or weakly cemented or solidified by surface processes at some later time, then eroded by a second wind (right to left), exposing their internal structure.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  4. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or calculated deliveries. IWFM utilizes a very straight-forward input file structure, allowing rapid development of complex simulations. A key feature of IWFM is a new algorithm for computation of groundwater flow across element faces. Enhancements to version 3.0 include automatic time-tracking of input and output data sets, linkage with the HEC-DSS database, and dynamic crop allocation using logit functions. Utilities linking IWFM to the PEST automated calibration suite are also available. All source code, executables and documentation are available for download from the DWR web site. IWFM is currently being used to develop hydrologic simulations of California's Central Valley (C2VSIM); the west side of California's San Joaquin Valley (WESTSIM); Butte County, CA; Solano County, CA; Merced County, CA; and the Oregon side of the Walla Walla River Basin.

  5. Relay Support for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D. Jr,; Bell, David J.; Gladden, Roy E.; Ilott, Peter A.; Jedrey, Thomas C.; Johnston, M. Daniel; Maxwell, Jennifer L.; Mendoza, Ricardo; McSmith, Gaylon W.; Potts, Christopher L.; hide

    2013-01-01

    The Mars Science Laboratory (MSL) mission landed the Curiosity Rover on the surface of Mars on August 6, 2012, beginning a one-Martian-year primary science mission. An international network of Mars relay orbiters, including NASA's 2001 Mars Odyssey Orbiter (ODY) and Mars Reconnaissance Orbiter (MRO), and ESA's Mars Express Orbiter (MEX), were positioned to provide critical event coverage of MSL's Entry, Descent, and Landing (EDL). The EDL communication plan took advantage of unique and complementary capabilities of each orbiter to provide robust information capture during this critical event while also providing low-latency information during the landing. Once on the surface, ODY and MRO have provided effectively all of Curiosity's data return from the Martian surface. The link from Curiosity to MRO incorporates a number of new features enabled by the Electra and Electra-Lite software-defined radios on MRO and Curiosity, respectively. Specifically, the Curiosity-MRO link has for the first time on Mars relay links utilized frequency-agile operations, data rates up to 2.048 Mb/s, suppressed carrier modulation, and a new Adaptive Data Rate algorithm in which the return link data rate is optimally varied throughout the relay pass based on the actual observed link channel characteristics. In addition to the baseline surface relay support by ODY and MRO, the MEX relay service has been verified in several successful surface relay passes, and MEX now stands ready to provide backup relay support should NASA's orbiters become unavailable for some period of time.

  6. Assimilation of Satellite-Derived Precipitation into the Regional Atmospheric Model System (RAMS): Its Impacts on the Weather and Hydrology in the Southwest United States

    NASA Astrophysics Data System (ADS)

    Yi, H.; Gao, X.; Sorooshian, S.

    2002-05-01

    As one aspect of the study of interactions between the atmosphere, vegetation, soil, and hydrology, there has been on going efforts to assimilate soil moisture data using coupled and uncoupled land surface-atmosphere hydrology models. The assimilation of soil moisture is expected to have influence due to its vital function in regulating runoff, partitioning latent and sensible heat, and through determining groundwater recharge. Soil moisture can provides long-term memory or persistence of the surface boundary condition, influencing large-scale atmospheric circulation over subsequent intervals. Now that the application of satellite remote sensing has become obvious to provide input parameters associated with land surface processes to the numerical models, this study utilizes remotely sensed precipitation data, PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) to assimilate soil moisture and other soil surface characteristics. Compared to the other earlier modeling experiments of seasonal or interannual temporal scale in continental or global spatial scale, this study investigates short term predictability in regional scale with the southwest United States as a study area, which has unique metrological and geographical features that provide special difficulties for mesoscale modeling. Research objectives are to assimilate the PERSIANN precipitation data into the mesoscale model for model initialization, examine the influence and memory of model precipitation errors on the land surface and atmospheric processes, and thereby study the short term predictability of meteorology and hydrology in the Southwest United States.

  7. A Reusable Design for Precision Lunar Landing Systems

    NASA Technical Reports Server (NTRS)

    Fuhrman, Linda; Brand, Timothy; Fill, Tom; Norris, Lee; Paschall, Steve

    2005-01-01

    The top-level architecture to accomplish NASA's Vision for Space Exploration is to use Lunar missions and systems not just as an end in themselves, but also as testbeds for the more ambitious goals of Human Mars Exploration (HME). This approach means that Lunar missions and systems are most likely going to be targeted for (Lunar) polar missions, and also for long-duration (months) surface stays. This overacting theme creates basic top-level requirements for any next-generation lander system: 1) Long duration stays: a) Multiple landers in close proximity; b) Pinpoint landings for "surface rendezvous"; c) Autonomous landing of pre-positioned assets; and d) Autonomous Hazard Detection and Avoidance. 2) Polar and deep-crater landings (dark); 3) Common/extensible systems for Moon and Mars, crew and cargo. These requirements pose challenging technology and capability needs. Compare and contrast: 4) Apollo: a) 1 km landing accuracy; b) Lunar near-side (well imaged and direct-to-Earth com. possible); c) Lunar equatorial (landing trajectories offer best navigation support from Earth); d) Limited lighting conditions; e) Significant ground-in-the-loop operations; 5) Lunar Access: a) 10-100m landing precision; b) "Anywhere" access includes polar (potentially poor nav. support from Earth) and far side (poor gravity and imaging; no direct-to-Earth com); c) "Anytime" access includes any lighting condition (including dark); d) Full autonomous landing capability; e) Extensible design for tele-operation or operator-in-the-loop; and f) Minimal ground support to reduce operations costs. The Lunar Access program objectives, therefore, are to: a) Develop a baseline Lunar Precision Landing System (PLS) design to enable pinpoint "anywhere, anytime" landings; b) landing precision 10m-100m; c) Any LAT, LON; and d) Any lighting condition; This paper will characterize basic features of the next generation Lunar landing system, including trajectory types, sensor suite options and a reference system architecture.

  8. The Joint UK Land Environment Simulator (JULES), model description - Part 2: Carbon fluxes and vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Clark, D. B.; Mercado, L. M.; Sitch, S.; Jones, C. D.; Gedney, N.; Best, M. J.; Pryor, M.; Rooney, G. G.; Essery, R. L. H.; Blyth, E.; Boucher, O.; Harding, R. J.; Huntingford, C.; Cox, P. M.

    2011-09-01

    The Joint UK Land Environment Simulator (JULES) is a process-based model that simulates the fluxes of carbon, water, energy and momentum between the land surface and the atmosphere. Many studies have demonstrated the important role of the land surface in the functioning of the Earth System. Different versions of JULES have been employed to quantify the effects on the land carbon sink of climate change, increasing atmospheric carbon dioxide concentrations, changing atmospheric aerosols and tropospheric ozone, and the response of methane emissions from wetlands to climate change. This paper describes the consolidation of these advances in the modelling of carbon fluxes and stores, in both the vegetation and soil, in version 2.2 of JULES. Features include a multi-layer canopy scheme for light interception, including a sunfleck penetration scheme, a coupled scheme of leaf photosynthesis and stomatal conductance, representation of the effects of ozone on leaf physiology, and a description of methane emissions from wetlands. JULES represents the carbon allocation, growth and population dynamics of five plant functional types. The turnover of carbon from living plant tissues is fed into a 4-pool soil carbon model. The process-based descriptions of key ecological processes and trace gas fluxes in JULES mean that this community model is well-suited for use in carbon cycle, climate change and impacts studies, either in standalone mode or as the land component of a coupled Earth system model.

  9. Utilizing Skylab data in on-going resources management programs in the state of Ohio

    NASA Technical Reports Server (NTRS)

    Baldridge, P. E. (Principal Investigator); Goesling, P. H.; Martin, T. A.; Wukelic, G. E.; Stephan, J. G.; Smail, H. E.; Ebbert, T. F.

    1975-01-01

    The author has identified the following significant results. The use of Skylab imagery for total area woodland surveys was found to be more accurate and cheaper than conventional surveys using aerial photo-plot techniques. Machine-aided (primarily density slicing) analyses of Skylab 190A and 190B color and infrared color photography demonstrated the feasibility of using such data for differentiating major timber classes including pines, hardwoods, mixed, cut, and brushland providing such analyses are made at scales of 1:24,000 and larger. Manual and machine-assisted image analysis indicated that spectral and spatial capabilities of Skylab EREP photography are adequate to distinguish most parameters of current, coal surface mining concern associated with: (1) active mining, (2) orphan lands, (3) reclaimed lands, and (4) active reclamation. Excellent results were achieved when comparing Skylab and aerial photographic interpretations of detailed surface mining features. Skylab photographs when combined with other data bases (e.g., census, agricultural land productivity, and transportation networks), provide a comprehensive, meaningful, and integrated view of major elements involved in the urbanization/encroachment process.

  10. Skylab

    NASA Image and Video Library

    1972-01-01

    This concept illustrates Skylab Earth observation studies, an Earth Resources Experiment Package (EREP). EREP was designed to explore the use of the widest possible portion of the electromagnetic spectrum for Earth resource investigations with sensors that recorded data in the visible, infrared, and microwave spectral regions. Resources subject to this study included a capability of mapping Earth resources and land uses, crop and forestry cover, health of vegetation, types of soil, water storage in snow pack, surface or near-surface mineral deposits, sea surface temperature, and the location of likely feeding areas for fish, etc. A significant feature of EREP was the ability of man to operate the sensors in a laboratory fashion.

  11. Multisource Imaging of Seasonal Dynamics in Land Surface Phenology Using Harmonized Landsat and Sentinel-2 Data

    NASA Astrophysics Data System (ADS)

    Melaas, E. K.; Graesser, J.; Friedl, M. A.

    2017-12-01

    Land surface phenology, including the timing of phenophase transitions and the entire seasonal cycle of surface reflectance and vegetation indices, is important for a myriad of applications including monitoring the response of terrestrial ecosystems to climate variability and extreme events, and land cover mapping. While methods to monitor and map phenology from coarse spatial resolution instruments such as MODIS are now relatively mature, the spatial resolution of these instruments is inadequate where vegetation properties, land use, and land cover vary at spatial scales of tens of meters. To address this need, algorithms to map phenology at moderate spatial resolution (30 m) using data from Landsat have recently been developed. However, the 16-day repeat cycle of Landsat presents significant challenges in regions where changes are rapid or where cloud cover reduces the frequency of clear-sky views. The European Space Agency's Sentinel-2 satellites, which are designed to provide moderate spatial resolution data at 5-day revisit frequency near the equator and 3 day revisit frequency in the mid-latitudes, will alleviate this constraint in many parts of the world. Here, we use harmonized time series of data from Sentinel-2A and Landsat OLI (HLS) to quantify the timing of land surface phenology metrics across a sample of deciduous forest and grassland-dominated sites, and then compare these estimates with co-located in situ observations. The resulting phenology maps demonstrate the improved information related to landscape-scale features that can be estimated from HLS data relative to comparable metrics from coarse spatial resolution instruments. For example, our results based on HLS data reveal spatial patterns in phenological metrics related to topographic and land cover controls that are not resolved in MODIS data, and show good agreement with transition dates observed from in situ measurements. Our results also show systematic bias toward earlier timing of spring, which is caused by inadequate density of observations that will be mitigated once data from Sentinel-2B are available. Overall, our results highlight the potential for using moderate spatial resolution data from Landsat and Sentinel-2 for developing operational phenology algorithms and products in support of the science community.

  12. A preliminary experiment definition for video landmark acquisition and tracking

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Tietz, J. C.; Hulstrom, R. L.; Cunningham, R. A.; Reel, G. M.

    1976-01-01

    Six scientific objectives/experiments were derived which consisted of agriculture/forestry/range resources, land use, geology/mineral resources, water resources, marine resources and environmental surveys. Computer calculations were then made of the spectral radiance signature of each of 25 candidate targets as seen by a satellite sensor system. An imaging system capable of recognizing, acquiring and tracking specific generic type surface features was defined. A preliminary experiment definition and design of a video Landmark Acquisition and Tracking system is given. This device will search a 10-mile swath while orbiting the earth, looking for land/water interfaces such as coastlines and rivers.

  13. Remote sensing of land degradation: experiences from Latin America and the Caribbean.

    PubMed

    Metternicht, G; Zinck, J A; Blanco, P D; del Valle, H F

    2010-01-01

    Land degradation caused by deforestation, overgrazing, and inappropriate irrigation practices affects about 16% of Latin America and the Caribbean (LAC). This paper addresses issues related to the application of remote sensing technologies for the identification and mapping of land degradation features, with special attention to the LAC region. The contribution of remote sensing to mapping land degradation is analyzed from the compilation of a large set of research papers published between the 1980s and 2009, dealing with water and wind erosion, salinization, and changes of vegetation cover. The analysis undertaken found that Landsat series (MSS, TM, ETM+) are the most commonly used data source (49% of the papers report their use), followed by aerial photographs (39%), and microwave sensing (ERS, JERS-1, Radarsat) (27%). About 43% of the works analyzed use multi-scale, multi-sensor, multi-spectral approaches for mapping degraded areas, with a combination of visual interpretation and advanced image processing techniques. The use of more expensive hyperspectral and/or very high spatial resolution sensors like AVIRIS, Hyperion, SPOT-5, and IKONOS tends to be limited to small surface areas. The key issue of indicators that can directly or indirectly help recognize land degradation features in the visible, infrared, and microwave regions of the electromagnetic spectrum are discussed. Factors considered when selecting indicators for establishing land degradation baselines include, among others, the mapping scale, the spectral characteristics of the sensors, and the time of image acquisition. The validation methods used to assess the accuracy of maps produced with satellite data are discussed as well.

  14. UAS-SfM for coastal research: Geomorphic feature extraction and land cover classification from high-resolution elevation and optical imagery

    USGS Publications Warehouse

    Sturdivant, Emily; Lentz, Erika; Thieler, E. Robert; Farris, Amy; Weber, Kathryn; Remsen, David P.; Miner, Simon; Henderson, Rachel

    2017-01-01

    The vulnerability of coastal systems to hazards such as storms and sea-level rise is typically characterized using a combination of ground and manned airborne systems that have limited spatial or temporal scales. Structure-from-motion (SfM) photogrammetry applied to imagery acquired by unmanned aerial systems (UAS) offers a rapid and inexpensive means to produce high-resolution topographic and visual reflectance datasets that rival existing lidar and imagery standards. Here, we use SfM to produce an elevation point cloud, an orthomosaic, and a digital elevation model (DEM) from data collected by UAS at a beach and wetland site in Massachusetts, USA. We apply existing methods to (a) determine the position of shorelines and foredunes using a feature extraction routine developed for lidar point clouds and (b) map land cover from the rasterized surfaces using a supervised classification routine. In both analyses, we experimentally vary the input datasets to understand the benefits and limitations of UAS-SfM for coastal vulnerability assessment. We find that (a) geomorphic features are extracted from the SfM point cloud with near-continuous coverage and sub-meter precision, better than was possible from a recent lidar dataset covering the same area; and (b) land cover classification is greatly improved by including topographic data with visual reflectance, but changes to resolution (when <50 cm) have little influence on the classification accuracy.

  15. Development of LIDAR sensor systems for autonomous safe landing on planetary bodies

    NASA Astrophysics Data System (ADS)

    Amzajerdian, F.; Pierrottet, D.; Petway, L.; Vanek, M.

    2017-11-01

    Future NASA exploratory missions to the Moon and Mars will require safe soft-landings at the designated sites with a high degree of precision. These sites may include areas of high scientific value with relatively rough terrain with little or no solar illumination and possibly areas near pre-deployed assets. The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of large robotic and manned vehicles with a high degree of precision. Currently, NASA-LaRC is developing novel lidar sensors aimed at meeting NASA's objectives for future planetary landing missions under the Autonomous Landing and Hazard Avoidance (ALHAT) project. These lidar sensors are 3-Dimensional Imaging Flash Lidar, Doppler Lidar, and Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain identifying hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase between 1000 m to 500 m above the ground can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground velocity and distance data allowing for precision navigation to the selected landing site. Prior to the approach phase at altitudes of over 15 km, the Laser Altimeter can provide sufficient data for updating the vehicle position and attitude data from the Inertial Measurement Unit. At these higher altitudes, either the Laser Altimeter or the Flash Lidar can be used for generating a contour map of the terrain below for identifying known surface features such as craters for further reducing the vehicle relative position error.

  16. Development of lidar sensor systems for autonomous safe landing on planetary bodies

    NASA Astrophysics Data System (ADS)

    Amzajerdian, F.; Pierrottet, D.; Petway, L.; Vanek, M.

    2017-11-01

    Future NASA exploratory missions to the Moon and Mars will require safe soft-landings at the designated sites with a high degree of precision. These sites may include areas of high scientific value with relatively rough terrain with little or no solar illumination and possibly areas near pre-deployed assets. The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of large robotic and manned vehicles with a high degree of precision. Currently, NASA-LaRC is developing novel lidar sensors aimed at meeting NASA's objectives for future planetary landing missions under the Autonomous Landing and Hazard Avoidance (ALHAT) project [1]. These lidar sensors are 3-Dimensional Imaging Flash Lidar, Doppler Lidar, and Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain identifying hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase between 1000 m to 500 m above the ground can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground velocity and distance data allowing for precision navigation to the selected landing site. Prior to the approach phase at altitudes of over 15 km, the Laser Altimeter can provide sufficient data for updating the vehicle position and attitude data from the Inertial Measurement Unit. At these higher altitudes, either the Laser Altimeter or the Flash Lidar can be used for generating a contour map of the terrain below for identifying known surface features such as craters for further reducing the vehicle relative position error.

  17. View of the Lunar Module 'Orion' and Lunar Roving Vehicle during first EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A view of the Lunar Module (LM) 'Orion' and Lunar Roving Vehicle (LRV), as photographed by Astronaut Charles M. Duke Jr., lunar module pilot, during the first Apollo 16 extravehicular activity (EVA-1) at the Descates landing site. Astronaut John W. Young, commander, can be seen directly behind the LRV. The lunar surface feature in the left background is Stone Mountain.

  18. Land cover characterization and land surface parameterization research

    USGS Publications Warehouse

    Steyaert, Louis T.; Loveland, Thomas R.; Parton, William J.

    1997-01-01

    The understanding of land surface processes and their parameterization in atmospheric, hydrologic, and ecosystem models has been a dominant research theme over the past decade. For example, many studies have demonstrated the key role of land cover characteristics as controlling factors in determining land surface processes, such as the exchange of water, energy, carbon, and trace gases between the land surface and the lower atmosphere. The requirements for multiresolution land cover characteristics data to support coupled-systems modeling have also been well documented, including the need for data on land cover type, land use, and many seasonally variable land cover characteristics, such as albedo, leaf area index, canopy conductance, surface roughness, and net primary productivity. Recently, the developers of land data have worked more closely with the land surface process modelers in these efforts.

  19. Untangling the effects of urban development on subsurface storage in Baltimore

    NASA Astrophysics Data System (ADS)

    Bhaskar, Aditi S.; Welty, Claire; Maxwell, Reed M.; Miller, Andrew J.

    2015-02-01

    The impact of urban development on surface flow has been studied extensively over the last half century, but effects on groundwater systems are still poorly understood. Previous studies of the influence of urban development on subsurface storage have not revealed any consistent pattern, with results showing increases, decreases, and negligible change in groundwater levels. In this paper, we investigated the effects of four key features that impact subsurface storage in urban landscapes. These include reduced vegetative cover, impervious surface cover, infiltration and inflow (I&I) of groundwater and storm water into wastewater pipes, and other anthropogenic recharge and discharge fluxes including water supply pipe leakage and well and reservoir withdrawals. We applied the integrated groundwater-surface water-land surface model ParFlow.CLM to the Baltimore metropolitan area. We compared the base case (all four features) to simulations in which an individual urban feature was removed. For the Baltimore region, the effect of infiltration of groundwater into wastewater pipes had the greatest effect on subsurface storage (I&I decreased subsurface storage 11.1% relative to precipitation minus evapotranspiration after 1 year), followed by the impact of water supply pipe leakage and lawn irrigation (combined anthropogenic discharges and recharges led to a 7.4% decrease) and reduced vegetation (1.9% increase). Impervious surface cover led to a small increase in subsurface storage (0.56% increase) associated with decreased groundwater discharge as base flow. The change in subsurface storage due to infiltration of groundwater into wastewater pipes was largest despite the smaller spatial extent of surface flux modifications, compared to other features.

  20. Near-shore Evaluation of Holocene Faulting and Earthquake Hazard in the New York City Metropolitan Region

    NASA Astrophysics Data System (ADS)

    Cormier, M. H.; King, J. W.; Seeber, L.; Heil, C. W., Jr.; Caccioppoli, B.

    2016-12-01

    During its relatively short historic period, the Atlantic Seaboard of North America has experienced a few M6+ earthquakes. These events raise the specter of a similar earthquake occurring anywhere along the eastern seaboard, including in the greater New York City (NYC) metropolitan area. Indeed, the NYC Seismic Zone is one of several concentrations of earthquake activity that stand out in the field of epicenters over eastern North America. Various lines of evidence point to a maximum magnitude in the M7 range for metropolitan NYC - a dramatic scenario that is counterbalanced by the low probability of such an event. Several faults mapped near NYC strike NW, sub-normal to the NE-striking structural trends of the Appalachians, and all earthquake sequences with well-established fault sources in the NYC seismic zone originate from NW-striking faults. With funding from the USGS Earthquake Hazard Program, we recently (July 2016) collected 85 km of high-resolution sub-bottom (CHIRP) profiles along the north shore of western Long Island Sound, immediately adjacent to metropolitan NYC. This survey area is characterized by a smooth, 15.5 kyr-old erosional surface and overlying strata with small original relief. CHIRP sonar profiles of these reflectors are expected to resolve fault or fold-related vertical relief (if present) greater than 50 cm. They would also resolve horizontal fault displacements with similar resolution, as may be expressed by offsets of either sedimentary or geomorphic features. No sedimentary cover on the land portion of the metro area offers such ideal reference surfaces, which are continuous in both time and space. Seismic profiles have a spacing of 200 m and have been acquired mostly perpendicular to the NW-striking faults mapped on land. These new data will be analyzed systematically for all resolvable features and then interpreted, distinguishing sedimentary, geomorphic, and tectonic features. The absence of evidence of post-glacial tectonic deformation would be a reliable negative result with implications regarding the lateral dimensions and southeastward continuity of the brittle faults mapped on land, and their potential for generation of large earthquakes with surface ruptures.

  1. Surficial Geologic Map of the Pocasset-Provincetown-Cuttyhunk-Nantucket 24-Quadrangle Area of Cape Cod and Islands, Southeast Massachusetts

    USGS Publications Warehouse

    Stone, Byron D.; DiGiacomo-Cohen, Mary L.

    2006-01-01

    The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of 24 7.5-minute quadrangles (555 mi2 total) in southeast Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. On Cape Cod and adjacent islands, these materials completely cover the bedrock surface. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relations, and age. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.

  2. Sky radiance at a coastline and effects of land and ocean reflectivities

    NASA Astrophysics Data System (ADS)

    Kreuter, Axel; Blumthaler, Mario; Tiefengraber, Martin; Kift, Richard; Webb, Ann R.

    2017-12-01

    We present a unique case study of the spectral sky radiance distribution above a coastline. Results are shown from a measurement campaign in Italy involving three diode array spectroradiometers which are compared to 3-D model simulations from the Monte Carlo model MYSTIC. On the coast, the surrounding is split into two regions, a diffusely reflecting land surface and a water surface which features a highly anisotropic reflectance function. The reflectivities and hence the resulting radiances are a nontrivial function of solar zenith and azimuth angle and wavelength. We show that for low solar zenith angles (SZAs) around noon, the higher land albedo causes the sky radiance at 20° above the horizon to increase by 50 % in the near infrared at 850 nm for viewing directions towards the land with respect to the ocean. Comparing morning and afternoon radiances highlights the effect of the ocean's sun glint at high SZA, which contributes around 10 % to the measured radiance ratios. The model simulations generally agree with the measurements to better than 10 %. We investigate the individual effects of model input parameters representing land and ocean albedo and aerosols. Different land and ocean bi-directional reflectance functions (BRDFs) do not generally improve the model agreement. However, consideration of the uncertainties in the diurnal variation of aerosol optical depth can explain the remaining discrepancies between measurements and model. We further investigate the anisotropy effect of the ocean BRDF which is featured in the zenith radiances. Again, the uncertainty of the aerosol loading is dominant and obscures the modelled sun glint effect of 7 % at 650 nm. Finally, we show that the effect on the zenith radiance is restricted to a few kilometres from the coastline by model simulations along a perpendicular transect and by comparing the radiances at the coast to those measured at a site 15 km inland. Our findings are relevant to, for example, ground-based remote sensing of aerosol characteristics, since a common technique is based on sky radiance measurements along the solar almucantar.

  3. Implementation of 5-layer thermal diffusion scheme in weather research and forecasting model with Intel Many Integrated Cores

    NASA Astrophysics Data System (ADS)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2014-10-01

    For weather forecasting and research, the Weather Research and Forecasting (WRF) model has been developed, consisting of several components such as dynamic solvers and physical simulation modules. WRF includes several Land- Surface Models (LSMs). The LSMs use atmospheric information, the radiative and precipitation forcing from the surface layer scheme, the radiation scheme, and the microphysics/convective scheme all together with the land's state variables and land-surface properties, to provide heat and moisture fluxes over land and sea-ice points. The WRF 5-layer thermal diffusion simulation is an LSM based on the MM5 5-layer soil temperature model with an energy budget that includes radiation, sensible, and latent heat flux. The WRF LSMs are very suitable for massively parallel computation as there are no interactions among horizontal grid points. The features, efficient parallelization and vectorization essentials, of Intel Many Integrated Core (MIC) architecture allow us to optimize this WRF 5-layer thermal diffusion scheme. In this work, we present the results of the computing performance on this scheme with Intel MIC architecture. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.1x. Accordingly, the same CPU-based optimizations improved the performance on Intel Xeon E5- 2603 by a factor of 1.6x as compared to the first version of multi-threaded code.

  4. Surficial geologic map of the Heath-Northfield-Southwick-Hampden 24-quadrangle area in the Connecticut Valley region, west-central Massachusetts

    USGS Publications Warehouse

    Stone, Janet R.; DiGiacomo-Cohen, Mary L.

    2010-01-01

    The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of 24 7.5-minute quadrangles (1,238 mi2 total) in west-central Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, and organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text, quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.

  5. Surficial geologic map of the Norton-Manomet-Westport-Sconticut Neck 23-quadrangle area in southeast Massachusetts

    USGS Publications Warehouse

    Stone, Byron D.; Stone, Janet R.; DiGiacomo-Cohen, Mary L.; Kincare, Kevin A.

    2012-01-01

    The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of 23 7.5-minute quadrangles (919 mi2 total) in southeastern Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, and organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.

  6. Surficial geologic map of the Mount Grace-Ashburnham-Monson-Webster 24-quadrangle area in central Massachusetts

    USGS Publications Warehouse

    Stone, Janet R.

    2013-01-01

    The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of 24 7.5-minute quadrangles (1,238 mi2 total) in central Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, and organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction-aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.

  7. Application of ground-penetrating-radar methods in hydrogeologic studies

    USGS Publications Warehouse

    Beres, Milan; Haeni, F.P.

    1991-01-01

    A ground-penetrating-radar system was used to study selected stratified-drift deposits in Connecticut. Ground-penetrating radar is a surface-geophysical method that depends on the emission, transmission, reflection, and reception of an electromagnetic pulse and can produce continuous high-resolution profiles of the subsurface rapidly and efficiently. Traverse locations on land included a well field in the town of Mansfield, a sand and gravel pit and a farm overlying a potential aquifer in the town of Coventry, and Haddam Meadows State Park in the town of Haddam. Traverse locations on water included the Willimantic River in Coventry and Mansfield Hollow Lake in Mansfield. The penetration depth of the radar signal ranged from about 20 feet in fine-grained glaciolacustrine sediments to about 70 feet in coarse sand and gravel. Some land records in coarse-grained sediments show a distinct, continuous reflection from the water table about 5 to 11 feet below land surface. Parallel reflectors on the records are interpreted as fine-grained sediments. Hummocky or chaotic reflectors are interpreted as cross-bedded or coarse-grained sediments. Other features observed on some of the radar records include the till and bedrock surface. Records collected on water had distinct water-bottom multiples (more than one reflection) and diffraction patterns from boulders. The interpretation of the radar records, which required little or no processing, was verified by using lithologic logs from test holes located along some of the land traverses and near the water traverses.

  8. An object-mediated updating account of insensitivity to transsaccadic change

    PubMed Central

    Tas, A. Caglar; Moore, Cathleen M.; Hollingworth, Andrew

    2012-01-01

    Recent evidence has suggested that relatively precise information about the location and visual form of a saccade target object is retained across a saccade. However, this information appears to be available for report only when the target is removed briefly, so that the display is blank when the eyes land. We hypothesized that the availability of precise target information is dependent on whether a post-saccade object is mapped to the same object representation established for the presaccade target. If so, then the post-saccade features of the target overwrite the presaccade features, a process of object mediated updating in which visual masking is governed by object continuity. In two experiments, participants' sensitivity to the spatial displacement of a saccade target was improved when that object changed surface feature properties across the saccade, consistent with the prediction of the object-mediating updating account. Transsaccadic perception appears to depend on a mechanism of object-based masking that is observed across multiple domains of vision. In addition, the results demonstrate that surface-feature continuity contributes to visual stability across saccades. PMID:23092946

  9. Machine processing of remotely sensed data; Proceedings of the Fifth Annual Symposium, Purdue University, West Lafayette, Ind., June 27-29, 1979

    NASA Technical Reports Server (NTRS)

    Tendam, I. M. (Editor); Morrison, D. B.

    1979-01-01

    Papers are presented on techniques and applications for the machine processing of remotely sensed data. Specific topics include the Landsat-D mission and thematic mapper, data preprocessing to account for atmospheric and solar illumination effects, sampling in crop area estimation, the LACIE program, the assessment of revegetation on surface mine land using color infrared aerial photography, the identification of surface-disturbed features through a nonparametric analysis of Landsat MSS data, the extraction of soil data in vegetated areas, and the transfer of remote sensing computer technology to developing nations. Attention is also given to the classification of multispectral remote sensing data using context, the use of guided clustering techniques for Landsat data analysis in forest land cover mapping, crop classification using an interactive color display, and future trends in image processing software and hardware.

  10. Application of aerial photography to water-related programs in Michigan

    NASA Technical Reports Server (NTRS)

    Enslin, W. R.; Hill-Rowley, R.; Tilmann, S. E.

    1977-01-01

    Aerial photography and information system technology were used to generate information required for the effective operation of three water-related programs in Michigan. Potential mosquito breeding sites were identified from specially acquired low altitude 70 mm color photography for the city of Lansing; the inventory identified 35% more surface water areas than indicated on existing field maps. A comprehensive inventory of surface water sources and potential access sites was prepared to assist fire departments in Antrim County with fire truck water-recharge operations. Remotely-sensed land cover/use data for Windsor Township, Eaton County, were integrated with other resource data into a computer-based information system for regional water quality studies. Eleven thematic maps focusing on landscape features affecting non-point water pollution and waste disposal were generated from analyses of a four-hectare grid-based data file containing land cover/use, soils, topographic and geologic (well-log) data.

  11. A sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image

    NASA Astrophysics Data System (ADS)

    Li, Jing; Xie, Weixin; Pei, Jihong

    2018-03-01

    Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.

  12. Land use classification using texture information in ERTS-A MSS imagery

    NASA Technical Reports Server (NTRS)

    Haralick, R. M. (Principal Investigator); Shanmugam, K. S.; Bosley, R.

    1973-01-01

    The author has identified the following significant results. Preliminary digital analysis of ERTS-1 MSS imagery reveals that the textural features of the imagery are very useful for land use classification. A procedure for extracting the textural features of ERTS-1 imagery is presented and the results of a land use classification scheme based on the textural features are also presented. The land use classification algorithm using textural features was tested on a 5100 square mile area covered by part of an ERTS-1 MSS band 5 image over the California coastline. The image covering this area was blocked into 648 subimages of size 8.9 square miles each. Based on a color composite of the image set, a total of 7 land use categories were identified. These land use categories are: coastal forest, woodlands, annual grasslands, urban areas, large irrigated fields, small irrigated fields, and water. The automatic classifier was trained to identify the land use categories using only the textural characteristics of the subimages; 75 percent of the subimages were assigned correct identifications. Since texture and spectral features provide completely different kinds of information, a significant increase in identification accuracy will take place when both features are used together.

  13. Rosetta Images of Comet 67P/CHURYUMOV-GERASIMENKO: Inferences from its Terrain and Structure

    NASA Astrophysics Data System (ADS)

    Wallis, Max; Wickramasinghe, N. Chandra

    The Rosetta mission has given us remarkable images of comet 67P/C-G both from the orbiter, and recently from the Philae lander during its brief days before running out of power. Though its crust is very black, there are several indicators of an underlying icy morphology. Comet 67P displays smooth, planar `seas' (the largest 600 m × 800 m) and flat-bottomed craters, both features seen also on Comet Tempel-1. Comet 67P's surface is peppered with mega-boulders (10-70 km) like Comet Hartley-2, while parallel furrowed terrain appears as a new ice feature. The largest sea (`Cheops' Sea, 600 m × 800 m) curves around one lobe of the 4 km diameter comet, and the crater lakes extending to ~150 m across are re-frozen bodies of water overlain with organic-rich debris (sublimation lag) of order 10 cm. The parallel furrows relate to flexing of the asymmetric and spinning two-lobe body, which generates fractures in an underlying body of ice. The mega-boulders are hypothesised to arise from bolide impacts into ice. In the very low gravity, boulders ejected at a fraction of 1 m/s would readily reach ~100 m from the impact crater and could land perched on elevated surfaces. Where they stand proud, they indicate stronger refrozen terrain or show that the surface they land on (and crush) sublimates more quickly. Outgassing due to ice-sublimation was already evident in September at 3.3 AU, with surface temperature peaks of 220-230 K, which implies impure ice mixtures with less strongly-bound H2O. Increasing rates of sublimation as Rosetta follows comet 67P around its 1.3 AU perihelion will further reveal the nature and prevalence of near-surface ices.

  14. Interpretation, compilation and field verification procedures in the CARETS project

    USGS Publications Warehouse

    Alexander, Robert H.; De Forth, Peter W.; Fitzpatrick, Katherine A.; Lins, Harry F.; McGinty, Herbert K.

    1975-01-01

    The production of the CARETS map data base involved the development of a series of procedures for interpreting, compiling, and verifying data obtained from remote sensor sources. Level II land use mapping from high-altitude aircraft photography at a scale of 1:100,000 required production of a photomosaic mapping base for each of the 48, 50 x 50 km sheets, and the interpretation and coding of land use polygons on drafting film overlays. CARETS researchers also produced a series of 1970 to 1972 land use change overlays, using the 1970 land use maps and 1972 high-altitude aircraft photography. To enhance the value of the land use sheets, researchers compiled series of overlays showing cultural features, county boundaries and census tracts, surface geology, and drainage basins. In producing Level I land use maps from Landsat imagery, at a scale of 1:250,000, interpreters overlaid drafting film directly on Landsat color composite transparencies and interpreted on the film. They found that such interpretation involves pattern and spectral signature recognition. In studies using Landsat imagery, interpreters identified numerous areas of change but also identified extensive areas of "false change," where Landsat spectral signatures but not land use had changed.

  15. Nocturnal Near-Surface Temperature, but not Flow Dynamics, can be Predicted by Microtopography in a Mid-Range Mountain Valley

    NASA Astrophysics Data System (ADS)

    Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph K.

    2017-11-01

    We investigate nocturnal flow dynamics and temperature behaviour near the surface of a 170-m long gentle slope in a mid-range mountain valley. In contrast to many existing studies focusing on locations with significant topographic variations, gentle slopes cover a greater spatial extent of the Earth's surface. Air temperatures were measured using the high-resolution distributed-temperature-sensing method within a two-dimensional fibre-optic array in the lowest metre above the surface. The main objectives are to characterize the spatio-temporal patterns in the near-surface temperature and flow dynamics, and quantify their responses to the microtopography and land cover. For the duration of the experiment, including even clear-sky nights with weak winds and strong radiative forcing, the classical cold-air drainage predicted by theory could not be detected. In contrast, we show that the airflow for the two dominant flow modes originates non-locally. The most abundant flow mode is characterized by vertically-decoupled layers featuring a near-surface flow perpendicular to the slope and strong stable stratification, which contradicts the expectation of a gravity-driven downslope flow of locally produced cold air. Differences in microtopography and land cover clearly affect spatio-temporal temperature perturbations. The second most abundant flow mode is characterized by strong mixing, leading to vertical coupling with airflow directed down the local slope. Here variations of microtopography and land cover lead to negligible near-surface temperature perturbations. We conclude that spatio-temporal temperature perturbations, but not flow dynamics, can be predicted by microtopography, which complicates the prediction of advective-heat components and the existence and dynamics of cold-air pools in gently sloped terrain in the absence of observations.

  16. Geomorphic response to tectonically-induced ground deformation in the Wabash Valley

    USGS Publications Warehouse

    Fraser, G.S.; Thompson, T.A.; Olyphant, G.A.; Furer, L.; Bennett, S.W.

    1997-01-01

    Numerous low- to moderate-intensity earthquakes have been recorded in a zone of diffuse modern seismicity in southwest Indiana, southeast Illinois, and northernmost Kentucky. Structural elements within the zone include the Wabash Valley Fault System, the LaSalle Anticlinal Belt in western Illinois, and the Rough Creek-Shawneetown Fault System in northern Kentucky. The presence of seismically-induced liquefaction features in the near-surface alluvial sediments in the region indicates that strong ground motion has occurred in the recent geological past, but because the glacial and alluvial sediments in the Wabash Valley appear to be otherwise undisturbed, post-Paleozoic ground deformation resulting from movement on these structural elements has not yet been documented. Morphometric analysis of the land surface, detailed mapping of geomorphic elements in the valley, reconnaissance drilling of the Holocene and Pleistocene alluvium, and structural analysis of the bedrock underlying the valley were used to determine whether the geomorphology of the valley and the patterns of alluviation of the Wabash River were affected by surface deformation associated with the seismic zone during the late Pleistocene and Holocene. Among the observed features in the valley that can be attributed to deformation are: (1) tilting of the modern land surface to the west, (2) preferred channel migration toward the west side of the valley, with concomitant impact on patterns of soil development and sedimentation rate, (3) a convex longitudinal profile of the Wabash River where it crosses the LaSalle Anticlinal Belt, and (4) increased incision of the river into its floodplain downstream from the anticlinal belt.

  17. The Effect of Landing Surface on the Plantar Kinetics of Chinese Paratroopers Using Half-Squat Landing

    PubMed Central

    Li, Yi; Wu, Ji; Zheng, Chao; Huang, Rong Rong; Na, Yuhong; Yang, Fan; Wang, Zengshun; Wu, Di

    2013-01-01

    The objective of the study was to determine the effect of landing surface on plantar kinetics during a half-squat landing. Twenty male elite paratroopers with formal parachute landing training and over 2 years of parachute jumping experience were recruited. The subjects wore parachuting boots in which pressure sensing insoles were placed. Each subject was instructed to jump off a platform with a height of 60 cm, and land on either a hard or soft surface in a half-squat posture. Outcome measures were maximal plantar pressure, time to maximal plantar pressure (T-MPP), and pressure-time integral (PTI) upon landing on 10 plantar regions. Compared to a soft surface, hard surface produced higher maximal plantar pressure in the 1st to 4th metatarsal and mid-foot regions, but lower maximal plantar pressure in the 5th metatarsal region. Shorter T- MPP was found during hard surface landing in the 1st and 2nd metatarsal and medial rear foot. Landing on a hard surface landing resulted in a lower PTI than a soft surface in the 1stphalangeal region. For Chinese paratroopers, specific foot prosthesis should be designed to protect the1st to 4thmetatarsal region for hard surface landing, and the 1stphalangeal and 5thmetatarsal region for soft surface landing. Key Points Understanding plantar kinetics during the half-squat landing used by Chinese paratroopers can assist in the design of protective footwear. Compared to landing on a soft surface, a hard surface produced higher maximal plantar pressure in the 1st to 4th metatarsal and mid-foot regions, but lower maximal plantar pressure in the 5th metatarsal region. A shorter time to maximal plantar pressure was found during a hard surface landing in the 1st and 2nd metatarsals and medial rear foot. Landing on a hard surface resulted in a lower pressure-time integral than landing on a soft surface in the 1st phalangeal region. For Chinese paratroopers, specific foot prosthesis should be designed to protect the 1st to 4th metatarsal region for a hard surface landing, and the 1st phalangeal and 5th metatarsal region for a soft surface landing. PMID:24149145

  18. Characterization of surface properties over permafrost soils using a high resolution mid-infrared camera as part of the Carbon in the Arctic Vulnerability Experiment (CARVE)

    NASA Astrophysics Data System (ADS)

    Steiner, N.; McDonald, K. C.; Podest, E.; Dinardo, S. J.; Miller, C. E.

    2016-12-01

    Freeze/thaw and hydrologic cycling have important influence over surface processes in Arctic ecosystems and in Arctic carbon cycling. The seasonal freezing and thawing of soils bracket negative and positive modes of CO2 and CH4 flux of the bulk landscape. Hydrologic processes, such as seasonal inundation of thawed tundra create a complex microtopography where greenhouse-gas sources and sinks occur over short distances. Because of a high spatial variability hydrologic features must be mapped at fine resolution. These mappings can then be compared to local and regional scale observations of surface conditions, such as temperature and freeze/thaw state, to create better estimates of these important surface fields. The Carbon in the Arctic Vulnerability Experiment (CARVE) monitors carbon gas cycling in Alaskan using aircraft-deployed gas sampling instruments along with remote sensing observations of the land surface condition. A nadir-pointed, forward looking infrared (FLIR) imager mounted on the CARVE air-craft is used to measure upwelling mid-infrared spectral radiance at 3-5 microns. The FLIR instrument was operated during the spring, summer and fall seasons, 2013 through 2015. The instantaneous field of view (IFOV) of the FLIR instrument allows for a sub-meter resolution from a height of 500 m. High resolution data products allows for the discrimination of individual landscape components such as soil, vegetation and surface water features in the image footprint. We assess the effectiveness of the FLIR thermal images in monitoring thawing and inundation processes at very high resolutions. Analyses of FLIR datasets over focused study areas emphasizing exploration of the FLIR dataset utility for detailed land surface characterization as related to surface moisture and temperature. Emphasis is given to the Barrow CMDL station site and employ the tram-based data collections there. We will also examine potential at other high latitude sites of interest, e.g. Atqasuk, Ivotuk Alaska and tundra polygon sites under study by collaborators at UT Austin. The combination of high resolution temperature observations with associated estimates of temperature from other instruments can be used to discriminate hydrologic from temperature features in the mid-infrared to produce a high-resolution hydrology product.

  19. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Ning, Jicai; Gao, Zhiqiang; Meng, Ran; Xu, Fuxiang; Gao, Meng

    2018-06-01

    This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.

  20. Relationships between aerodynamic roughness and land use and land cover in Baltimore, Maryland

    USGS Publications Warehouse

    Nicholas, F.W.; Lewis, J.E.

    1980-01-01

    Urbanization changes the radiative, thermal, hydrologic, and aerodynamic properties of the Earth's surface. Knowledge of these surface characteristics, therefore, is essential to urban climate analysis. Aerodynamic or surface roughness of urban areas is not well documented, however, because of practical constraints in measuring the wind profile in the presence of large buildings. Using an empirical method designed by Lettau, and an analysis of variance of surface roughness values calculated for 324 samples averaging 0.8 hectare (ha) of land use and land cover sample in Baltimore, Md., a strong statistical relation was found between aerodynamic roughness and urban land use and land cover types. Assessment of three land use and land cover systems indicates that some of these types have significantly different surface roughness characteristics. The tests further indicate that statistically significant differences exist in estimated surface roughness values when categories (classes) from different land use and land cover classification systems are used as surrogates. A Level III extension of the U.S. Geological Survey Level II land use and land cover classification system provided the most reliable results. An evaluation of the physical association between the aerodynamic properties of land use and land cover and the surface climate by numerical simulation of the surface energy balance indicates that changes in surface roughness within the range of values typical of the Level III categories induce important changes in the surface climate.

  1. Satellite remotely-sensed land surface parameters and their climatic effects for three metropolitan regions

    USGS Publications Warehouse

    Xian, George

    2008-01-01

    By using both high-resolution orthoimagery and medium-resolution Landsat satellite imagery with other geospatial information, several land surface parameters including impervious surfaces and land surface temperatures for three geographically distinct urban areas in the United States – Seattle, Washington, Tampa Bay, Florida, and Las Vegas, Nevada, are obtained. Percent impervious surface is used to quantitatively define the spatial extent and development density of urban land use. Land surface temperatures were retrieved by using a single band algorithm that processes both thermal infrared satellite data and total atmospheric water vapor content. Land surface temperatures were analyzed for different land use and land cover categories in the three regions. The heterogeneity of urban land surface and associated spatial extents were shown to influence surface thermal conditions because of the removal of vegetative cover, the introduction of non-transpiring surfaces, and the reduction in evaporation over urban impervious surfaces. Fifty years of in situ climate data were integrated to assess regional climatic conditions. The spatial structure of surface heating influenced by landscape characteristics has a profound influence on regional climate conditions, especially through urban heat island effects.

  2. Impact of high resolution land surface initialization in Indian summer monsoon simulation using a regional climate model

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara

    2016-06-01

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.

  3. Multispectral image fusion for detecting land mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.

    1995-04-01

    This report details a system which fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite ofmore » sensors detects a variety of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts.« less

  4. False-color display of special sensor microwave/imager (SSM/I) data

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.; Kummerow, Christian D.

    1989-01-01

    Displays of multifrequency passive microwave data from the Special Sensor Microwave/Imager (SSM/I) flying on the Defense Meteorological Satellite Program (DMSP) spacecraft are presented. Observed brightness temperatures at 85.5 GHz (vertical and horizontal polarizations) and 37 GHz (vertical polarization) are respectively used to 'drive' the red, green, and blue 'guns' of a color monitor. The resultant false-color images can be used to distinguish land from water, highlight precipitation processes and structure over both land and water, and detail variations in other surfaces such as deserts, snow cover, and sea ice. The observations at 85.5 GHz also add a previously unavailable frequency to the problem of rainfall estimation from space. Examples of mesoscale squall lines, tropical and extra-tropical storms, and larger-scale land and atmospheric features as 'viewed' by the SSM/I are shown.

  5. False-color display of special sensor microwave/imager (SSM/I) data

    NASA Astrophysics Data System (ADS)

    Negri, Andrew J.; Adler, Robert F.; Kummerow, Christian D.

    1989-02-01

    Displays of multifrequency passive microwave data from the Special Sensor Microwave/Imager (SSM/I) flying on the Defense Meteorological Satellite Program (DMSP) spacecraft are presented. Observed brightness temperatures at 85.5 GHz (vertical and horizontal polarizations) and 37 GHz (vertical polarization) are respectively used to 'drive' the red, green, and blue 'guns' of a color monitor. The resultant false-color images can be used to distinguish land from water, highlight precipitation processes and structure over both land and water, and detail variations in other surfaces such as deserts, snow cover, and sea ice. The observations at 85.5 GHz also add a previously unavailable frequency to the problem of rainfall estimation from space. Examples of mesoscale squall lines, tropical and extra-tropical storms, and larger-scale land and atmospheric features as 'viewed' by the SSM/I are shown.

  6. Synergies and Tradeoffs Among Environmental Impacts Under Conservation Planning of Shale Gas Surface Infrastructure

    NASA Astrophysics Data System (ADS)

    Milt, Austin W.; Gagnolet, Tamara; Armsworth, Paul R.

    2016-01-01

    Hydraulic fracturing and related ground water issues are growing features in public discourse. Few have given much attention to surface impacts from shale gas development, which result from building necessary surface infrastructure. One way to reduce future impacts from gas surface development without radically changing industry practice is by formulating simple, conservation-oriented planning guidelines. We explore how four such guidelines affect the locations of well pads, access roads, and gathering pipelines on state lands in Pennsylvania. Our four guidelines aim to (1) reduce impacts on water, reduce impacts from (2) gathering pipelines and (3) access roads, and (4) reduce impacts on forests. We assessed whether the use of such guidelines accompanies tradeoffs among impacts, and if any guidelines perform better than others at avoiding impacts. We find that impacts are mostly synergistic, such that avoiding one impact will result in avoiding others. However, we found that avoiding forest fragmentation may result in increased impacts on other environmental features. We also found that single simple planning guidelines can be effective in targeted situations, but no one guideline was universally optimal in avoiding all impacts. As such, we suggest that when multiple environmental features are important in an area, more comprehensive planning strategies and tools should be used.

  7. Synergies and Tradeoffs Among Environmental Impacts Under Conservation Planning of Shale Gas Surface Infrastructure.

    PubMed

    Milt, Austin W; Gagnolet, Tamara; Armsworth, Paul R

    2016-01-01

    Hydraulic fracturing and related ground water issues are growing features in public discourse. Few have given much attention to surface impacts from shale gas development, which result from building necessary surface infrastructure. One way to reduce future impacts from gas surface development without radically changing industry practice is by formulating simple, conservation-oriented planning guidelines. We explore how four such guidelines affect the locations of well pads, access roads, and gathering pipelines on state lands in Pennsylvania. Our four guidelines aim to (1) reduce impacts on water, reduce impacts from (2) gathering pipelines and (3) access roads, and (4) reduce impacts on forests. We assessed whether the use of such guidelines accompanies tradeoffs among impacts, and if any guidelines perform better than others at avoiding impacts. We find that impacts are mostly synergistic, such that avoiding one impact will result in avoiding others. However, we found that avoiding forest fragmentation may result in increased impacts on other environmental features. We also found that single simple planning guidelines can be effective in targeted situations, but no one guideline was universally optimal in avoiding all impacts. As such, we suggest that when multiple environmental features are important in an area, more comprehensive planning strategies and tools should be used.

  8. Skylab

    NASA Image and Video Library

    1973-09-01

    This Earth Resource Experiment Package (EREP) photograph of the Uncompahgre area of Colorado was electronically acquired in September of 1973 by the Multi-spectral Scarner, Skylab Experiment S192. EREP images were used to analyze the vegetation conditions and landscape characteristic of this area. Skylab's Earth sensors played the dual roles of gathering information about the planet and perfecting instruments and techniques for future satellites and manned stations. An array of six fixed cameras, another for high resolution, and the astronauts' handheld cameras photographed surface features. Other instruments, recording on magnetic tape, measured the reflectivity of plants, soils, and water. Radar measured the altitude of land and water surfaces. The sensors' objectives were to survey croplands and forests, identify soils and rock types, map natural features and urban developments, detect sediments and the spread of pollutants, study clouds and the sea, and determine the extent of snow and ice cover.

  9. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  10. Characterizing continuous urban growth using composited time-series Landsat data

    NASA Astrophysics Data System (ADS)

    Song, X. P.; Sexton, J. O.; Huang, C.; Feng, M.; Channan, S.; Baker, M. E.; Townshend, J. R.

    2014-12-01

    Impervious surfaces are land cover features through which water cannot penetrate into the soil. As an indicator of urban land use, impervious surface cover (ISC) is disproportionally important to human beings-although covering only 0.5% of the Earth's terrestrial surface, cities support over 50% the Earth's population. The increasing demand for built-up space by a growing urban population has been driving land use change in urban areas worldwide. An increase in ISC can significantly impact the biophysical characteristics of land surface, such as altering the local surface energy balance, or transforming regional hydrological systems. Remotely sensed data is commonly used as the primary data source for extracting impervious surface information for monitoring urban growth, but current studies often lack the sufficient temporal resolution or thematic detail to reveal the long-term, nonlinear development of impervious surfaces over time. In a previous study (Sexton et al. 2013), we created an annual stack of 30-m percent ISC estimates for the Washington DC-Baltimore metropolitan region from 1984 to 2010 by compositing all available Landsat images in the USGS archive. Here we developed a robust time-series method to detect impervious surface change. The method employs a customized logistic function for every pixel to model the continuous process of urban growth. It quantifies the fractional intensity of ISC change at the sub-pixel level and also characterizes the timing and length (in years) of urban development. The new method detects change based on a sequence of observations before, during and after change and thus is highly resistant to random noises. Our results showed that the DC-Baltimore metropolitan region experienced an accelerated growth pathway from the late 1980s to the late 2000s. The majority of urban and sub-urban development occurred at scales finer than the Landsat resolution (30 m), with a region-wide mean intensity of 46% ISC increase. Our study demonstrates the value of the long-term and fine temporal resolution data offered by the Landsat archive, and also highlights the possible limitations of Landsat's spatial resolution in characterizing continuous urban development.

  11. A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling

    NASA Astrophysics Data System (ADS)

    Leandro, J.; Schumann, A.; Pfister, A.

    2016-04-01

    Some of the major challenges in modelling rainfall-runoff in urbanised areas are the complex interaction between the sewer system and the overland surface, and the spatial heterogeneity of the urban key features. The former requires the sewer network and the system of surface flow paths to be solved simultaneously. The latter is still an unresolved issue because the heterogeneity of runoff formation requires high detailed information and includes a large variety of feature specific rainfall-runoff dynamics. This paper discloses a methodology for considering the variability of building types and the spatial heterogeneity of land surfaces. The former is achieved by developing a specific conceptual rainfall-runoff model and the latter by defining a fully distributed approach for infiltration processes in urban areas with limited storage capacity dependent on OpenStreetMaps (OSM). The model complexity is increased stepwise by adding components to an existing 2D overland flow model. The different steps are defined as modelling levels. The methodology is applied in a German case study. Results highlight that: (a) spatial heterogeneity of urban features has a medium to high impact on the estimated overland flood-depths, (b) the addition of multiple urban features have a higher cumulative effect due to the dynamic effects simulated by the model, (c) connecting the runoff from buildings to the sewer contributes to the non-linear effects observed on the overland flood-depths, and (d) OSM data is useful in identifying pounding areas (for which infiltration plays a decisive role) and permeable natural surface flow paths (which delay the flood propagation).

  12. Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah

    2014-01-01

    Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.

  13. WRF model sensitivity to land surface model and cumulus parameterization under short-term climate extremes over the southern Great Plains of the United States

    Treesearch

    Lisi Pei; Nathan Moore; Shiyuan Zhong; Lifeng Luo; David W. Hyndman; Warren E. Heilman; Zhiqiu Gao

    2014-01-01

    Extreme weather and climate events, especially short-term excessive drought and wet periods over agricultural areas, have received increased attention. The Southern Great Plains (SGP) is one of the largest agricultural regions in North America and features the underlying Ogallala-High Plains Aquifer system worth great economic value in large part due to production...

  14. Photogeologic mapping in central southwest Bahia, using LANDSAT-1 multispectral images. [Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Ohara, T.

    1981-01-01

    The interpretation of LANDSAT multispectral imagery for geologic mapping of central southwest Bahia, Brazil is described. Surface features such as drainage, topography, vegetation and land use are identified. The area is composed of low grade Precambrian rocks covered by Mezozoic and Cenozoic sediments. The principal mineral prospects of economic value are fluorite and calcareous rocks. Gold, calcite, rock crystal, copper, potassium nitrate and alumina were also identified.

  15. Littoral assessment of mine burial signatures (LAMBS): buried landmine/background spectral-signature analyses

    NASA Astrophysics Data System (ADS)

    Kenton, Arthur C.; Geci, Duane M.; Ray, Kristofer J.; Thomas, Clayton M.; Salisbury, John W.; Mars, John C.; Crowley, James K.; Witherspoon, Ned H.; Holloway, John H., Jr.

    2004-09-01

    The objective of the Office of Naval Research (ONR) Rapid Overt Reconnaissance (ROR) program and the Airborne Littoral Reconnaissance Technologies (ALRT) project's LAMBS effort is to determine if electro-optical spectral discriminants exist that are useful for the detection of land mines in littoral regions. Statistically significant buried mine overburden and background signature data were collected over a wide spectral range (0.35 to 14 μm) to identify robust spectral features that might serve as discriminants for new airborne sensor concepts. LAMBS has expanded previously collected databases to littoral areas - primarily dry and wet sandy soils - where tidal, surf, and wind conditions can severely modify spectral signatures. At AeroSense 2003, we reported completion of three buried mine collections at an inland bay, Atlantic and Gulf of Mexico beach sites. We now report LAMBS spectral database analyses results using metrics which characterize the detection performance of general types of spectral detection algorithms. These metrics include mean contrast, spectral signal-to-clutter, covariance, information content, and spectral matched filter analyses. Detection performance of the buried land mines was analyzed with regard to burial age, background type, and environmental conditions. These analyses considered features observed due to particle size differences, surface roughness, surface moisture, and compositional differences.

  16. CRT--Cascade Routing Tool to define and visualize flow paths for grid-based watershed models

    USGS Publications Warehouse

    Henson, Wesley R.; Medina, Rose L.; Mayers, C. Justin; Niswonger, Richard G.; Regan, R.S.

    2013-01-01

    The U.S. Geological Survey Cascade Routing Tool (CRT) is a computer application for watershed models that include the coupled Groundwater and Surface-water FLOW model, GSFLOW, and the Precipitation-Runoff Modeling System (PRMS). CRT generates output to define cascading surface and shallow subsurface flow paths for grid-based model domains. CRT requires a land-surface elevation for each hydrologic response unit (HRU) of the model grid; these elevations can be derived from a Digital Elevation Model raster data set of the area containing the model domain. Additionally, a list is required of the HRUs containing streams, swales, lakes, and other cascade termination features along with indices that uniquely define these features. Cascade flow paths are determined from the altitudes of each HRU. Cascade paths can cross any of the four faces of an HRU to a stream or to a lake within or adjacent to an HRU. Cascades can terminate at a stream, lake, or HRU that has been designated as a watershed outflow location.

  17. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements.

    PubMed

    Pal, Sandip

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream-aquifer-land interactions (CP v1.0)

    NASA Astrophysics Data System (ADS)

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian; Chen, Xingyuan; Dai, Heng; Hammond, Glenn E.; Riley, William J.; Downs, Janelle L.; Liu, Ying; Zachara, John M.

    2017-12-01

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year period to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater-river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater-river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater-river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.

  19. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)

    DOE PAGES

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian; ...

    2017-12-12

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year periodmore » to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.« less

  20. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year period to evaluate themore » impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.« less

  1. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)

    DOE PAGES

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian; ...

    2017-01-01

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year period to evaluate themore » impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.« less

  2. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year periodmore » to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.« less

  3. Image quality prediction: an aid to the Viking Lander imaging investigation on Mars.

    PubMed

    Huck, F O; Wall, S D

    1976-07-01

    Two Viking spacecraft scheduled to land on Mars in the summer of 1976 will return multispectral panoramas of the Martian surface with resolutions 4 orders of magnitude higher than have been previously obtained and stereo views with resolutions approaching that of the human eye. Mission constraints and uncertainties require a carefully planned imaging investigation that is supported by a computer model of camera response and surface features to aid in diagnosing camera performance, in establishing a preflight imaging strategy, and in rapidly revising this strategy if pictures returned from Mars reveal unfavorable or unanticipated conditions.

  4. Herbicides and nitrate in near-surface aquifers in the midcontinental United States, 1991

    USGS Publications Warehouse

    Kolpin, Dana W.; Burkart, Michael R.; Thurman, E. Michael

    1994-01-01

    Hydrogeologic factors, land use, agricultural practices, local features, and water chemistry were analyzed for possible relation to herbicide and excess-nitrate detections. Herbicides and excess nitrate were detected more frequently in near-surface unconsolidated aquifers than in nearsurface bedrock aquifers. The depth to the top of the aquifer was inversely related to the frequency of detection of herbicides and excess nitrate. The proximity of streams to sampled wells also affected the frequency of herbicide detection. Significant seasonal differences were determined for the frequency of herbicide detection, but not for the frequency of excess nitrate.

  5. Land surface-precipitation feedback and ramifications on storm dynamics.

    NASA Astrophysics Data System (ADS)

    Baisya, H.; PV, R.; Pattnaik, S.

    2017-12-01

    A series of numerical experiments are carried out to investigate the sensitivity of a landfalling monsoon depression to land surface conditions using the Weather Research and Forecasting (WRF) model. Results suggest that precipitation is largely modulated by moisture influx and precipitation efficiency. Three cloud microphysical schemes (WSM6, WDM6, and Morrison) are examined, and Morrison is chosen for assessing the land surface-precipitation feedback analysis, owing to better precipitation forecast skills. It is found that increased soil moisture facilitates Moisture Flux Convergence (MFC) with reduced moisture influx, whereas a reduced soil moisture condition facilitates moisture influx but not MFC. A higher Moist Static Energy (MSE) is noted due to increased evapotranspiration in an elevated moisture scenario which enhances moist convection. As opposed to moist surface, sensible heat dominates in a reduced moisture scenario, ensued by an overall reduction in MSE throughout the Planetary Boundary Layer (PBL). Stability analysis shows that Convective Available Potential Energy (CAPE) is comparable in magnitude for both increased and decreased moisture scenarios, whereas Convective Inhibition (CIN) shows increased values for the reduced moisture scenario as a consequence of drier atmosphere leading to suppression of convection. Simulations carried out with various fixed soil moisture levels indicate that the overall precipitation features of the storm are characterized by initial soil moisture condition, but precipitation intensity at any instant is modulated by soil moisture availability. Overall results based on this case study suggest that antecedent soil moisture plays a crucial role in modulating precipitation distribution and intensity of a monsoon depression.

  6. The Joint UK Land Environment Simulator (JULES), Model description - Part 2: Carbon fluxes and vegetation

    NASA Astrophysics Data System (ADS)

    Clark, D. B.; Mercado, L. M.; Sitch, S.; Jones, C. D.; Gedney, N.; Best, M. J.; Pryor, M.; Rooney, G. G.; Essery, R. L. H.; Blyth, E.; Boucher, O.; Harding, R. J.; Cox, P. M.

    2011-03-01

    The Joint UK Land Environment Simulator (JULES) is a process-based model that simulates the fluxes of carbon, water, energy and momentum between the land surface and the atmosphere. Past studies with JULES have demonstrated the important role of the land surface in the Earth System. Different versions of JULES have been employed to quantify the effects on the land carbon sink of separately changing atmospheric aerosols and tropospheric ozone, and the response of methane emissions from wetlands to climate change. There was a need to consolidate these and other advances into a single model code so as to be able to study interactions in a consistent manner. This paper describes the consolidation of these advances into the modelling of carbon fluxes and stores, in the vegetation and soil, in version 2.2 of JULES. Features include a multi-layer canopy scheme for light interception, including a sunfleck penetration scheme, a coupled scheme of leaf photosynthesis and stomatal conductance, representation of the effects of ozone on leaf physiology, and a description of methane emissions from wetlands. JULES represents the carbon allocation, growth and population dynamics of five plant functional types. The turnover of carbon from living plant tissues is fed into a 4-pool soil carbon model. The process-based descriptions of key ecological processes and trace gas fluxes in JULES mean that this community model is well-suited for use in carbon cycle, climate change and impacts studies, either in standalone mode or as the land component of a coupled Earth system model.

  7. Analysis of RFI Statistics for Aquarius RFI Detection and Mitigation Improvements

    NASA Technical Reports Server (NTRS)

    de Matthaeis, Paolo; Soldo, Yan; Le Vine, David M.

    2016-01-01

    Aquarius is an L-band active/passive sensor designed to globally map sea surface salinity from space. Two instruments, a radar scatterometer and a radiometer, observe the same surface footprint almost simultaneously. The radiometer is the primary instrument for sensing sea surface salinity (SSS), while the scatterometer is included to provide a correction for sea surface roughness, which is a primary source of error in the salinity retrieval. Although the primary objective is the measurement of SSS, the instrument combination operates continuously, acquiring data over land and sea ice as well. An important feature of the data processing includes detection and mitigation of Radio Frequency Interference (RFI) which is done separately for both active and passive instruments. Correcting for RFI is particularly critical over ocean because of the high accuracy required in the brightness temperature measurements for SSS retrieval. It is also necessary for applications of the Aquarius data over land, where man-made interference is widespread, even though less accuracy is required in this case. This paper will provide an overview of the current status of the Aquarius RFI processing and an update on the ongoing work on the improvement of the RFI detection and mitigation performance.

  8. Utilization of 3D imaging flash lidar technology for autonomous safe landing on planetary bodies

    NASA Astrophysics Data System (ADS)

    Amzajerdian, Farzin; Vanek, Michael; Petway, Larry; Pierrottet, Diego; Busch, George; Bulyshev, Alexander

    2010-01-01

    NASA considers Flash Lidar a critical technology for enabling autonomous safe landing of future large robotic and crewed vehicles on the surface of the Moon and Mars. Flash Lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes during the final stages of descent and landing. The onboard flight comptuer can use the 3-D map of terain to guide the vehicle to a safe site. The capabilities of Flash Lidar technology were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard a helicopter and a fixed wing airctarft. The aircraft flight tests were perfomed over Moonlike terrain in the California and Nevada deserts. This paper briefly describes the Flash Lidar static and aircraft flight test results. These test results are analyzed against the landing application requirements to identify the areas of technology improvement. The ongoing technology advancement activities are then explained and their goals are described.

  9. Utilization of 3-D Imaging Flash Lidar Technology for Autonomous Safe Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Vanek, Michael; Petway, Larry; Pierrotter, Diego; Busch, George; Bulyshev, Alexander

    2010-01-01

    NASA considers Flash Lidar a critical technology for enabling autonomous safe landing of future large robotic and crewed vehicles on the surface of the Moon and Mars. Flash Lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes during the final stages of descent and landing. The onboard flight computer can use the 3-D map of terrain to guide the vehicle to a safe site. The capabilities of Flash Lidar technology were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard a helicopter and a fixed wing aircraft. The aircraft flight tests were performed over Moon-like terrain in the California and Nevada deserts. This paper briefly describes the Flash Lidar static and aircraft flight test results. These test results are analyzed against the landing application requirements to identify the areas of technology improvement. The ongoing technology advancement activities are then explained and their goals are described.

  10. Spectral characteristics and feature selection of satellite remote sensing data for climate and anthropogenic changes assessment in Bucharest area

    NASA Astrophysics Data System (ADS)

    Zoran, Maria; Savastru, Roxana; Savastru, Dan; Tautan, Marina; Miclos, Sorin; Cristescu, Luminita; Carstea, Elfrida; Baschir, Laurentiu

    2010-05-01

    Urban systems play a vital role in social and economic development in all countries. Their environmental changes can be investigated on different spatial and temporal scales. Urban and peri-urban environment dynamics is of great interest for future planning and decision making as well as in frame of local and regional changes. Changes in urban land cover include changes in biotic diversity, actual and potential primary productivity, soil quality, runoff, and sedimentation rates, and cannot be well understood without the knowledge of land use change that drives them. The study focuses on the assessment of environmental features changes for Bucharest metropolitan area, Romania by satellite remote sensing and in-situ monitoring data. Rational feature selection from the varieties of spectral channels in the optical wavelengths of electromagnetic spectrum (VIS and NIR) is very important for effective analysis and information extraction of remote sensing data. Based on comprehensively analyses of the spectral characteristics of remote sensing data is possibly to derive environmental changes in urban areas. The information quantity contained in a band is an important parameter in evaluating the band. The deviation and entropy are often used to show information amount. Feature selection is one of the most important steps in recognition and classification of remote sensing images. Therefore, it is necessary to select features before classification. The optimal features are those that can be used to distinguish objects easily and correctly. Three factors—the information quantity of bands, the correlation between bands and the spectral characteristic (e.g. absorption specialty) of classified objects in test area Bucharest have been considered in our study. As, the spectral characteristic of an object is influenced by many factors, being difficult to define optimal feature parameters to distinguish all the objects in a whole area, a method of multi-level feature selection was suggested. On the basis of analyzing the information quantity of bands, correlation between different bands, spectral absorption characteristics of objects and object separability in bands, a fundamental method of optimum band selection and feature extraction from remote sensing data was discussed. Spectral signatures of different terrain features have been used to extract structural patterns aiming to separate surface units and to classify the general categories. The synergetic analysis and interpretation of the different satellite images (LANDSAT: TM, ETM; MODIS, IKONOS) acquired over a period of more than 20 years reveals significant aspects regarding impacts of climate and anthropogenic changes on urban/periurban environment. It was delimited residential zones of industrial zones which are very often a source of pollution. An important role has urban green cover assessment. Have been emphasized the particularities of the functional zones from different points of view: architectural, streets and urban surface traffic, some components of urban infrastructure as well as habitat quality. The growth of Bucharest urban area in Romania has been a result of a rapid process of industrialization, and also of the increase of urban population. Information on the spatial pattern and temporal dynamics of land cover and land use of urban areas is critical to address a wide range of practical problems relating to urban regeneration, urban sustainability and rational planning policy.

  11. Using WEED to simulate the global wetland distribution in a ESM

    NASA Astrophysics Data System (ADS)

    Stacke, Tobias; Hagemann, Stefan

    2016-04-01

    Lakes and wetlands are an important land surface feature. In terms of hydrology, they regulate river discharge, mitigate flood events and constitute a significant surface water storage. Considering physical processes, they link the surface water and energy balances by altering the separation of incoming energy into sensible and latent heat fluxes. Finally, they impact biogeochemical processes and may act as carbon sinks or sources. Most global hydrology and climate models regard wetland extent and properties as constant in time. However, to study interactions between wetlands and different states of climate, it is necessary to implement surface water bodies (thereafter referred to as wetlands) with dynamical behavior into these models. Besides an improved representation of geophysical feedbacks between wetlands, land surface and atmosphere, a dynamical wetland scheme could also provide estimates of soil wetness as input for biogeochemical models, which are used to compute methane production in wetlands. Recently, a model for the representation of wetland extent dynamics (WEED) was developed as part of the hydrology model (MPI-HM) of the Max-Planck-Institute for Meteorology (MPI-M). The WEED scheme computes wetland extent in agreement with the range of observations for the high northern latitudes. It simulates a realistic seasonal cycle which shows sensitivity to northern snow-melt as well as rainy seasons in the tropics. Furthermore, flood peaks in river discharge are mitigated. However, the WEED scheme overestimates wetland extent in the Tropics which might be related to the MPI-HM's simplified potential evapotranspiration computation. In order to overcome this limitation, the WEED scheme is implemented into the MPI-M's land surface model JSBACH. Thus, not only its effect on water fluxes can be investigated but also its impact on the energy cycle, which is not included in the MPI-HM. Furthermore, it will be possible to analyze the physical effects of wetlands in a coupled land-atmosphere simulation. First simulations with JSBACH-WEED show results similar to the MPI-HM simulations. As the next step, the scheme is modified to account for energy cycle relevant issues such as the dynamical alteration of surface albedo as well as the allocation of appropriate thermal properties to the wetlands. In our presentation, we will give an overview on the functionality of the WEED scheme and the effect of wetlands in coupled land-atmosphere simulations.

  12. Albedo and its Relationship to Land Cover and the Urban Heat Island in the Boston Metropolitan Region

    NASA Astrophysics Data System (ADS)

    Trlica, A.; Hutyra, L.; Wang, J.; Schaaf, C.; Erb, A.

    2016-12-01

    The urban built environment creates key changes in the biophysical character of the landscape, including the creation of Urban Heat Islands (UHIs) with increased near-surface temperatures in and around cities. Alteration in surface albedo is believed to partially drive UHIs through greater absorption of solar energy, but few empirical studies have specifically quantified albedo across a heterogeneous urban landscape, or investigated linkages between albedo, the UHI, and other surface socio-biophysical characteristics at a high enough spatial resolution to discern urban-scale features. This study used data derived from observations by Landsat and other remote sensing platforms to measure albedo across a varied urban landscape centered on Boston, Massachusetts, and examined the relationship between albedo, several key indicators of urban surface character (canopy cover, impervious fraction, and population density) and land surface temperature at resolutions of both 30 and 500 m. Albedo tended to be lower in areas with highest urbanization intensity indicators compared to rural undeveloped areas, and areas with lower albedo tended also to have higher median daytime summer surface temperatures. A k-means classification utilizing all the data available for each pixel revealed several distinct patterns of urban land cover corresponding mainly to the density of population and constructed surfaces and their impact on tree canopy cover. Mean 30-m summer surface temperatures ranged from 40.0 °C (SD = 2.6) in urban core areas to 26.2 °C (SD = 1.1) in nearby forest, but we only observed correspondingly large albedo decreases in the highest density urban core, with mean albedo of 0.116 (SD = 0.015) compared with 0.155 (SD = 0.015) in forest. Observations show that lower albedo in the Boston metropolitan region may be an important component of the local UHI in the most densely built-up urban core regions, while the UHI temperature effect in less densely settled peripheral regions is more likely to be driven primarily by reduced evapotranspiration due to diminished tree canopy and greater impervious surface coverage. These results empirically characterize surface albedo across a suite of land cover categories and biophysical characteristics and reveal how albedo relates to surface temperatures in this urbanized region.

  13. View of the Lunar Module "Orion" and Lunar Roving Vehicle during first EVA

    NASA Image and Video Library

    1972-04-21

    AS16-107-17436 (21 April 1972) --- An excellent view of the Lunar Module (LM) "Orion" and Lunar Roving Vehicle (LRV), as photographed by astronaut Charles M. Duke Jr., lunar module pilot, during the first Apollo 16 extravehicular activity (EVA) at the Descartes landing site. Astronaut John W. Young, commander, can be seen directly behind the LRV. The lunar surface feature in the left background is Stone Mountain. While astronauts Young and Duke descended in the LM to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  14. Use of NOAA-N satellites for land/water discrimination and flood monitoring

    NASA Technical Reports Server (NTRS)

    Tappan, G.; Horvath, N. C.; Doraiswamy, P. C.; Engman, T.; Goss, D. W. (Principal Investigator)

    1983-01-01

    A tool for monitoring the extent of major floods was developed using data collected by the NOAA-6 advanced very high resolution radiometer (AVHRR). A basic understanding of the spectral returns in AVHRR channels 1 and 2 for water, soil, and vegetation was reached using a large number of NOAA-6 scenes from different seasons and geographic locations. A look-up table classifier was developed based on analysis of the reflective channel relationships for each surface feature. The classifier automatically separated land from water and produced classification maps which were registered for a number of acquisitions, including coverage of a major flood on the Parana River of Argentina.

  15. Landscape requirements of a primate population in a human-dominated environment

    PubMed Central

    2012-01-01

    Introduction As urban and rural land development become widespread features of the global landscape so an understanding of the landscape requirements of displaced and isolated wildlife species becomes increasingly important for conservation planning. In the Cape Peninsula, South Africa, rapid human population growth, and the associated urban and rural land transformation, threatens the sustainability of the local chacma baboon population. Here we analyse spatial data collected from nine of the 12 extant troops to determine their population-level landscape requirements. We use hurdle models to ascertain the key landscape features influencing baboon occurrence and abundance patterns on two hierarchical spatial scales. Results Both spatial scales produced similar results that were ecologically reliable and interpretable. The models indicated that baboons were more likely to occur, and be more abundant, at low altitudes, on steep slopes and in human-modified habitats. The combination of these landscape variables provides baboons with access to the best quality natural and anthropogenic food sources in close proximity to one another and suitable sleeping sites. Surface water did not emerge as an influential landscape feature presumably as the area is not water stressed. Conclusions The model results indicate that land development in the Cape Peninsula has pushed baboons into increasingly marginal natural habitat while simultaneously providing them with predictable and easily accessible food sources in human-modified habitats. The resultant spatial competition between humans and baboons explains the high levels of human-baboon conflict and further erosion of the remaining land fragments is predicted to exacerbate competition. This study demonstrates how the quantification of animal landscape requirements can provide a mechanism for identifying priority conservation areas at the human-wildlife interface. PMID:22269662

  16. Simulation of the West African Monsoon using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Gianotti, Rebecca L.; Eltahir, Elfatih A. B.

    2013-04-01

    We test the performance of the MIT Regional Climate Model (MRCM) in simulating the West African Monsoon. MRCM introduces several improvements over Regional Climate Model version 3 (RegCM3) including coupling of Integrated Biosphere Simulator (IBIS) land surface scheme, a new albedo assignment method, a new convective cloud and rainfall auto-conversion scheme, and a modified boundary layer height and cloud scheme. Using MRCM, we carried out a series of experiments implementing two different land surface schemes (IBIS and BATS) and three convection schemes (Grell with the Fritsch-Chappell closure, standard Emanuel, and modified Emanuel that includes the new convective cloud scheme). Our analysis primarily focused on comparing the precipitation characteristics, surface energy balance and large scale circulations against various observations. We document a significant sensitivity of the West African monsoon simulation to the choices of the land surface and convection schemes. In spite of several deficiencies, the simulation with the combination of IBIS and modified Emanuel schemes shows the best performance reflected in a marked improvement of precipitation in terms of spatial distribution and monsoon features. In particular, the coupling of IBIS leads to representations of the surface energy balance and partitioning that are consistent with observations. Therefore, the major components of the surface energy budget (including radiation fluxes) in the IBIS simulations are in better agreement with observation than those from our BATS simulation, or from previous similar studies (e.g Steiner et al., 2009), both qualitatively and quantitatively. The IBIS simulations also reasonably reproduce the dynamical structure of vertically stratified behavior of the atmospheric circulation with three major components: westerly monsoon flow, African Easterly Jet (AEJ), and Tropical Easterly Jet (TEJ). In addition, since the modified Emanuel scheme tends to reduce the precipitation amount, it improves the precipitation over regions suffering from systematic wet bias.

  17. Powered Flight Design and Reconstructed Performance Summary for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Sell, Steven; Chen, Allen; Davis, Jody; San Martin, Miguel; Serricchio, Frederick; Singh, Gurkirpal

    2013-01-01

    The Powered Flight segment of Mars Science Laboratory's (MSL) Entry, Descent, and Landing (EDL) system extends from backshell separation through landing. This segment is responsible for removing the final 0.1% of the kinetic energy dissipated during EDL and culminating with the successful touchdown of the rover on the surface of Mars. Many challenges exist in the Powered Flight segment: extraction of Powered Descent Vehicle from the backshell, performing a 300m divert maneuver to avoid the backshell and parachute, slowing the descent from 85 m/s to 0.75 m/s and successfully lowering the rover on a 7.5m bridle beneath the rocket-powered Descent Stage and gently placing it on the surface using the Sky Crane Maneuver. Finally, the nearly-spent Descent Stage must execute a Flyaway maneuver to ensure surface impact a safe distance from the Rover. This paper provides an overview of the powered flight design, key features, and event timeline. It also summarizes Curiosity's as flown performance on the night of August 5th as reconstructed by the flight team.

  18. Land Surface Modeling and Data Assimilation to Support Physical Precipitation Retrievals for GPM

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Tian. Yudong; Kumar, Sujay; Geiger, James; Choudhury, Bhaskar

    2010-01-01

    Objective: The objective of this proposal is to provide a routine land surface modeling and data assimilation capability for GPM in order to provide global land surface states that are necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in GPM, is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. Therefore, providing a robust capability to routinely provide these critical land states is essential to support GPM-era physical retrieval algorithms over land.

  19. Change detection and classification of land cover in multispectral satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.

    Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less

  20. Change detection and classification of land cover in multispectral satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    DOE PAGES

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...

    2014-10-01

    Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less

  1. Surface features of soil particles of three types of soils under different land use strategies

    NASA Astrophysics Data System (ADS)

    Matveeva, Nataliy; Kotelnikova, Anna; Rogova, Olga; Proskurnin, Mikhail

    2017-04-01

    Nowadays, there is a clear need in a deep investigation of molecular composition of soils and of its influence on surface characteristics of soil particles. The aim of this study is to evaluate the composition and properties of physical fractions in different soil types in determining functional specificity of soil solid-phase surface. The experiments were carried out with three different types of Russian soils—Sod-Podzolic, Chestnut, and Chernozem soils—under various treatments (fallow, different doses of mineral fertilizers and their aftereffects). The samples were separated into three fractions: silt (SF) with a particle size of <2 μm, light fraction (LF) with a density of <2 g/cm3, and residual fraction (RF) with a size >2 μm and the density >2 g/cm3. We measured specific surface area, surface hydrophobicity (contact angle, CA), ζ-potential, and the point of zero charge (PZC). For Chernozem and Chestnut soils and their fractions of we observed an increase in hydrophobicity for SF and RF under fertilizer treatment. At the sites not treated with fertilizers and aftereffect sites, the hydrophobicity of fractions was lower compared to the sites under treatment. The CA of the original soils and fractions were different: in 35% of cases CA was higher for SF and RF by 12-16%. The rest of samples demonstrated CA of all three physical fractions lower than CA of the original soil. The variability of the mean CA indicates considerable differences in ζ-potential and PZC between different types of soils and soil fractions. The results of potentiometric titration of PZC for Sod-Podzolic soil showed that all values are in acidic range, which suggests predominance of acidic functional groups at the surface of soil particles. Specific surface area determines soil sorption processes, bioavailability of nutrients, water etc. Here, specific surface area of Sod-Podzolic soil was low and SF-dependent. We calculated specific surface charge from obtained data on specific surface area and PZC. The results suggested considerable differences between sorption features of both soils and fractions under different land use strategies.

  2. NIAC Phase 1 Final Study Report on Titan Aerial Daughtercraft

    NASA Technical Reports Server (NTRS)

    Matthies, Larry

    2017-01-01

    Saturns giant moon Titan has become one of the most fascinating bodies in the Solar System. Even though it is a billion miles from Earth, data from the Cassini mission reveals that Titan has a very diverse, Earth-like surface, with mountains, fluvial channels, lakes, evaporite basins, plains, dunes, and seas [Lopes 2010] (Figure 1). But unlike Earth, Titans surface likely is composed of organic chemistry products derived from complex atmospheric photochemistry [Lorenz 2008]. In addition, Titan has an active meteorological system with observed storms and precipitation-induced surface darkening suggesting a hydrocarbon cycle analogous to Earths water cycle [Turtle 2011].Titan is the richest laboratory in the solar system for studying prebiotic chemistry, which makes studying its chemistry from the surface and in the atmosphere one of the most important objectives in planetary science [Decadal 2011]. The diversity of surface features on Titan related to organic solids and liquids makes long-range mobility with surface access important [Decadal 2011]. This has not been possible to date, because mission concepts have had either no mobility (landers), no surface access (balloons and airplanes), or low maturity, high risk, and/or high development costs for this environment (e,g. large, self-sufficient, long-duration helicopters). Enabling in situ mobility could revolutionize Titan exploration, similarly to the way rovers revolutionized Mars exploration. Recent progress on several fronts has suggested that small-scale rotorcraft deployed as daughtercraft from a lander or balloon mothercraft may be an effective, affordable approach to expanding Titan surface access. This includes rapid progress on autonomous navigation capabilities of such aircraft for terrestrial applications and on miniaturization, driven by the consumer mobile electronics market, of high performance of sensors, processors, and other avionics components needed for such aircraft. Chemical analysis, for example with a mass spectrometer, will be important to any Titan surface mission. Anticipating that it may be more practical to host chemical analysis instruments on a mothership than a daughtercraft, we defined system and mission concepts that deploy a small rotorcraft, termed a Titan Aerial Daughtercraft (TAD), from a lander or balloon to perform high-resolution imaging and mapping, potentially land to acquire microscopic images or other in situ measurements, and acquire samples to return to analytical instruments on the mothership. In principle, the ability to recharge batteries in TAD from a radioisotope or other long-lived power source on the mothership could enable multiple sorties. For a lander-based mission, a variety of landing sites is conceivable, including near lake margins, in dry lake beds, or in regions of plains, dunes, or putative cryovolanic or impact melt features. Such missions may require landing with greater precision than in previous missions (Huygens) and mission studies; this could also enhance the ability of TAD to reach interesting terrain from the landing site. Precision descent may also benefit balloon missions, with or without a daughtercraft, by increasing the probability that the balloon will drift over desired terrain early in its mission. Given these potential benefits, the overall concept studied here includes brief consideration of precision descent for landing or balloon deployment, followed by one or more sorties by a rotorcraft deployed from the mothership, with the ability to return to the mothership.

  3. Hydrogeomorphic features mediate the effects of land use/cover on reservoir productivity and food webs

    USGS Publications Warehouse

    Bremigan, M.T.; Soranno, P.A.; Gonzalez, M.J.; Bunnell, D.B.; Arend, K.K.; Renwick, W.H.; Stein, R.A.; Vanni, M.J.

    2008-01-01

    Although effects of land use/cover on nutrient concentrations in aquatic systems are well known, half or more of the variation in nutrient concentration remains unexplained by land use/cover alone. Hydrogeomorphic (HGM) landscape features can explain much remaining variation and influence food web interactions. To explore complex linkages among land use/cover, HGM features, reservoir productivity, and food webs, we sampled 11 Ohio reservoirs, ranging broadly in agricultural catchment land use/cover, for 3 years. We hypothesized that HGM features mediate the bottom-up effects of land use/cover on reservoir productivity, chlorophyll a, zooplankton, and recruitment of gizzard shad, an omnivorous fish species common throughout southeastern U.S. reservoirs and capable of exerting strong effects on food web and nutrient dynamics. We tested specific hypotheses using a model selection approach. Percent variation explained was highest for total nitrogen (R2 = 0.92), moderately high for total phosphorus, chlorophyll a, and rotifer biomass (R2 = 0.57 to 0.67), relatively low for crustacean zooplankton biomass and larval gizzard shad hatch abundance (R2 = 0.43 and 0.42), and high for larval gizzard shad survivor abundance (R2 = 0.79). The trophic status models included agricultural land use/cover and an HGM predictor, whereas the zooplankton models had few HGM predictors. The larval gizzard shad models had the highest complexity, including more than one HGM feature and food web components. We demonstrate the importance of integrating land use/cover, HGM features, and food web interactions to investigate critical interactions and feedbacks among physical, chemical, and biological components of linked land-water ecosystems.

  4. High Resolution Land Surface Modeling with the next generation Land Data Assimilation Systems

    NASA Astrophysics Data System (ADS)

    Kumar, S. V.; Eylander, J.; Peters-Lidard, C.

    2005-12-01

    Knowledge of land surface processes is important to many real-world applications such as agricultural production, water resources management, and flood predication. The Air Force Weather Agency (AFWA) has provided the USDA and other customers global soil moisture and temperature data for the past 30 years using the agrometeorological data assimilation model (now called AGRMET), merging atmospheric data. Further, accurate initialization of land surface conditions has been shown to greatly influence and improve weather forecast model and seasonal-to-interannual climate predictions. The AFWA AGRMET model exploits real time precipitation observations and analyses, global forecast model and satellite data to generate global estimates of soil moisture, soil temperature and other land surface states at 48km spatial resolution. However, to truly address the land surface initialization and climate prediction problem, and to mitigate the errors introduced by the differences in spatial scales of models, representations of land surface conditions need to be developed at the same fine scales such as that of cloud resolving models. NASA's Goddard Space Flight Center has developed an offline land data assimilation system known as the Land Information System (LIS) capable of modeling land atmosphere interactions at spatial resolutions as fine as 1km. LIS provides a software architecture that integrates the use of the state of the art land surface models, data assimilation techniques, and high performance computing and data management tools. LIS also employs many high resolution surface parameters such as the NASA Earth Observing System (EOS)-era products. In this study we describe the development of a next generation high resolution land surface modeling and data assimilation system, combining the capabilities of LIS and AGRMET. We investigate the influence of high resolution land surface data and observations on the land surface conditions by comparing with the operational AGRMET outputs.

  5. Progress in remote sensing of global land surface heat fluxes and evaporations with a turbulent heat exchange parameterization method

    NASA Astrophysics Data System (ADS)

    Chen, Xuelong; Su, Bob

    2017-04-01

    Remote sensing has provided us an opportunity to observe Earth land surface with a much higher resolution than any of GCM simulation. Due to scarcity of information for land surface physical parameters, up-to-date GCMs still have large uncertainties in the coupled land surface process modeling. One critical issue is a large amount of parameters used in their land surface models. Thus remote sensing of land surface spectral information can be used to provide information on these parameters or assimilated to decrease the model uncertainties. Satellite imager could observe the Earth land surface with optical, thermal and microwave bands. Some basic Earth land surface status (land surface temperature, canopy height, canopy leaf area index, soil moisture etc.) has been produced with remote sensing technique, which already help scientists understanding Earth land and atmosphere interaction more precisely. However, there are some challenges when applying remote sensing variables to calculate global land-air heat and water exchange fluxes. Firstly, a global turbulent exchange parameterization scheme needs to be developed and verified, especially for global momentum and heat roughness length calculation with remote sensing information. Secondly, a compromise needs to be innovated to overcome the spatial-temporal gaps in remote sensing variables to make the remote sensing based land surface fluxes applicable for GCM model verification or comparison. A flux network data library (more 200 flux towers) was collected to verify the designed method. Important progress in remote sensing of global land flux and evaporation will be presented and its benefits for GCM models will also be discussed. Some in-situ studies on the Tibetan Plateau and problems of land surface process simulation will also be discussed.

  6. A 3D convolutional neural network approach to land cover classification using LiDAR and multi-temporal Landsat imagery

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Guan, K.; Peng, B.; Casler, N. P.; Wang, S. W.

    2017-12-01

    Landscape has complex three-dimensional features. These 3D features are difficult to extract using conventional methods. Small-footprint LiDAR provides an ideal way for capturing these features. Existing approaches, however, have been relegated to raster or metric-based (two-dimensional) feature extraction from the upper or bottom layer, and thus are not suitable for resolving morphological and intensity features that could be important to fine-scale land cover mapping. Therefore, this research combines airborne LiDAR and multi-temporal Landsat imagery to classify land cover types of Williamson County, Illinois that has diverse and mixed landscape features. Specifically, we applied a 3D convolutional neural network (CNN) method to extract features from LiDAR point clouds by (1) creating occupancy grid, intensity grid at 1-meter resolution, and then (2) normalizing and incorporating data into a 3D CNN feature extractor for many epochs of learning. The learned features (e.g., morphological features, intensity features, etc) were combined with multi-temporal spectral data to enhance the performance of land cover classification based on a Support Vector Machine classifier. We used photo interpretation for training and testing data generation. The classification results show that our approach outperforms traditional methods using LiDAR derived feature maps, and promises to serve as an effective methodology for creating high-quality land cover maps through fusion of complementary types of remote sensing data.

  7. Assessment of MERRA-2 Land Surface Energy Flux Estimates

    NASA Technical Reports Server (NTRS)

    Draper, Clara; Reichle, Rolf; Koster, Randal

    2017-01-01

    In MERRA-2, observed precipitation is inserted in place of model-generated precipitation at the land surface. The use of observed precipitation was originally developed for MERRA-Land(a land-only replay of MERRA with model-generated precipitation replaced with observations).Previously shown that the land hydrology in MERRA-2 and MERRA-Land is better than MERRA. We test whether the improved land surface hydrology in MERRA-2 leads to the expected improvements in the land surface energy fluxes and 2 m air temperatures (T2m).

  8. Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification.

    PubMed

    Zhou, Tao; Li, Zhaofu; Pan, Jianjun

    2018-01-27

    This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively.

  9. Surficial Geologic Map of the Ashby-Lowell-Sterling-Billerica 11-Quadrangle Area in Northeast-Central Massachusetts

    USGS Publications Warehouse

    Stone, Byron D.; Stone, Janet R.

    2007-01-01

    The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of eleven 7.5-minute quadrangles (total 505 mi2) in northeast-central Massachusetts. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for water resources, construction aggregate resources, earth-surface hazards assessments, and land-use decisions. This compilation of surficial geologic materials is an interim product that defines the areas of exposed bedrock, and the boundaries between glacial till, glacial stratified deposits, and overlying postglacial deposits. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), a regional map at 1:50,000 scale (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.

  10. Surficial Geologic Map of the Salem Depot-Newburyport East-Wilmington-Rockport 16-Quadrangle Area in Northeast Massachusetts

    USGS Publications Warehouse

    Stone, Byron D.; Stone, Janet Radway; DiGiacomo-Cohen, Mary L.

    2006-01-01

    The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of 16 7.5-minute quadrangles (total 658 mi2) in northeast Massachusetts. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (grain size, sedimentary structures, mineral and rock-particle composition), constructional geomorphic features, stratigraphic relationships, and age. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for water resources, construction aggregate resources, earth-surface hazards assessments, and land-use decisions. This compilation of surficial geologic materials is an interim product that defines the areas of exposed bedrock, and the boundaries between glacial till, glacial stratified deposits, and overlying postglacial deposits. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), a regional map at 1:50,000 scale (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.

  11. Mars 2020 Candidate Landing Site in McLaughlin Crater

    NASA Image and Video Library

    2016-01-14

    McLaughlin Crater (21.9 N, 337.6 E) is a large, approximately 95-kilometer diameter impact crater located north of Mawrth Vallis, in Arabia Terra, a region that was made famous by the book and movie "The Martian" by Andy Weir. McLaughlin Crater straddles three major terrain types: the Northern lowlands, the Southern highlands and the Mawrth Vallis region. The crater floor is thought to be covered by clays and carbonates that were deposited in a deep lake at least 3.8 billion years ago perhaps by ground water upwelling from beneath the crater floor (Michalski et al., 2013, Nature Geoscience). McLaughlin Crater is listed as a candidate landing site for the 2020 Mars surface mission. Although it is described as a "flat, low-risk and low-elevation landing zone," the region in this image on the southern floor of the crater shows a complex surface of eroded layers that are rough in places. An unusual feature is a straight fracture cutting diagonally across the layered material at the bottom portion of the image that may be a fault line. http://photojournal.jpl.nasa.gov/catalog/PIA20338

  12. Observation of a Distinct Transition in Transport Response to Injection Stress in the Floridan Aquifer System, Southeastern Florida, U.S.A

    NASA Astrophysics Data System (ADS)

    King, J. N.; Cunningham, K. J.; Foster, A. L.

    2011-12-01

    The Miami-Dade Water and Sewer Department (MDWASD) injects effluent approximately one km below land surface into the Boulder Zone (BZ) at the North District Wastewater Treatment Plant (NDWWTP). The BZ is highly conductive and composed of fractured dolomite. MDWASD monitors upward effluent migration 450 m below land surface in the Avon Park Permeable Zone (APPZ). The BZ and APPZ---units within the Floridan aquifer system---are separated by a series of inter-bedded aquifers and leaky confining units with hydraulic conductivities that are orders of magnitude smaller than the BZ. MDWASD injected effluent at the NDWWTP during two distinct periods: (1) July 1997 to September 1999, and (2) August 2004 to January 2011. No effluent was injected between October 1999 and July 2004. A few months after the July 1997 injection, MDWASD observed effluent constituents in the APPZ (Figure 1). Some confinement bypass feature permits effluent constituents to be transported from the BZ to the APPZ. Bypass features may include poorly-cased wells, or natural conduits such as fractures, faults, or karst collapse systems. It is possible to describe confinement bypass features with conductance KA/L, where K is hydraulic conductivity, A is cross-sectional area, and L is length. MDWASD observed a distinct transition in the transport response to injection stress of total dissolved solids (TDS) concentration in the APPZ. The conductance required to describe early system response (1997-1999) is one order-of-magnitude larger than the conductance required to describe late system response (2004-2011). Hypotheses to explain transient conductance include clogging of bypass features by some geochemical or biological process that results from the mixing of effluent with groundwater; dissolution or precipitation; or changes in bypass-feature geometry forced by cyclical changes in aquifer-fluid pressure associated with injection. Hypotheses may be tested with geochemical analyses, tracer tests, hydraulic tomography, or microseismic monitoring.

  13. Sea-land segmentation for infrared remote sensing images based on superpixels and multi-scale features

    NASA Astrophysics Data System (ADS)

    Lei, Sen; Zou, Zhengxia; Liu, Dunge; Xia, Zhenghuan; Shi, Zhenwei

    2018-06-01

    Sea-land segmentation is a key step for the information processing of ocean remote sensing images. Traditional sea-land segmentation algorithms ignore the local similarity prior of sea and land, and thus fail in complex scenarios. In this paper, we propose a new sea-land segmentation method for infrared remote sensing images to tackle the problem based on superpixels and multi-scale features. Considering the connectivity and local similarity of sea or land, we interpret the sea-land segmentation task in view of superpixels rather than pixels, where similar pixels are clustered and the local similarity are explored. Moreover, the multi-scale features are elaborately designed, comprising of gray histogram and multi-scale total variation. Experimental results on infrared bands of Landsat-8 satellite images demonstrate that the proposed method can obtain more accurate and more robust sea-land segmentation results than the traditional algorithms.

  14. A lake-centric geospatial database to guide research and inform management decisions in an Arctic watershed in northern Alaska experiencing climate and land-use changes

    USGS Publications Warehouse

    Jones, Benjamin M.; Arp, Christopher D.; Whitman, Matthew S.; Nigro, Debora A.; Nitze, Ingmar; Beaver, John; Gadeke, Anne; Zuck, Callie; Liljedahl, Anna K.; Daanen, Ronald; Torvinen, Eric; Fritz, Stacey; Grosse, Guido

    2017-01-01

    Lakes are dominant and diverse landscape features in the Arctic, but conventional land cover classification schemes typically map them as a single uniform class. Here, we present a detailed lake-centric geospatial database for an Arctic watershed in northern Alaska. We developed a GIS dataset consisting of 4362 lakes that provides information on lake morphometry, hydrologic connectivity, surface area dynamics, surrounding terrestrial ecotypes, and other important conditions describing Arctic lakes. Analyzing the geospatial database relative to fish and bird survey data shows relations to lake depth and hydrologic connectivity, which are being used to guide research and aid in the management of aquatic resources in the National Petroleum Reserve in Alaska. Further development of similar geospatial databases is needed to better understand and plan for the impacts of ongoing climate and land-use changes occurring across lake-rich landscapes in the Arctic.

  15. The Blue Marble

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This spectacular Moderate Resolution Imaging Spectroradiometer (MODIS) 'blue marble' image is based on the most detailed collection of true-color imagery of the entire Earth to date. Using a collection of satellite-based observations, scientists and visualizers stitched together months of observations of the land surface, oceans, sea ice, and clouds into a seamless, true-color mosaic of every square kilometer (.386 square mile) of our planet. Most of the information contained in this image came from MODIS, illustrating MODIS' outstanding capacity to act as an integrated tool for observing a variety of terrestrial, oceanic, and atmospheric features of the Earth. The land and coastal ocean portions of this image is based on surface observations collected from June through September 2001 and combined, or composited, every eight days to compensate for clouds that might block the satellite's view on any single day. Global ocean color (or chlorophyll) data was used to simulate the ocean surface. MODIS doesn't measure 3-D features of the Earth, so the surface observations were draped over topographic data provided by the U.S. Geological Survey EROS Data Center. MODIS observations of polar sea ice were combined with observations of Antarctica made by the National Oceanic and Atmospheric Administration's AVHRR sensor-the Advanced Very High Resolution Radiometer. The cloud image is a composite of two days of MODIS imagery collected in visible light wavelengths and a third day of thermal infra-red imagery over the poles. A large collection of imagery based on the blue marble in a variety of sizes and formats, including animations and the full (1 km) resolution imagery, is available at the Blue Marble page. Image by Reto Stockli, Render by Robert Simmon. Based on data from the MODIS Science Team

  16. Modelling of Singapore's topographic transformation based on DEMs

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Belle, Iris; Hassler, Uta

    2015-02-01

    Singapore's topography has been heavily transformed by industrialization and urbanization processes. To investigate topographic changes and evaluate soil mass flows, historical topographic maps of 1924 and 2012 were employed, and basic topographic features were vectorized. Digital elevation models (DEMs) for the two years were reconstructed based on vector features. Corresponding slope maps, a surface difference map and a scatter plot of elevation changes were generated and used to quantify and categorize the nature of the topographic transformation. The surface difference map is aggregated into five main categories of changes: (1) areas without significant height changes, (2) lowered-down areas where hill ranges were cut down, (3) raised-up areas where valleys and swamps were filled in, (4) reclaimed areas from the sea, and (5) new water-covered areas. Considering spatial proximity and configurations of different types of changes, topographic transformation can be differentiated as either creating inland flat areas or reclaiming new land from the sea. Typical topographic changes are discussed in the context of Singapore's urbanization processes. The two slope maps and elevation histograms show that generally, the topographic surface of Singapore has become flatter and lower since 1924. More than 89% of height changes have happened within a range of 20 m and 95% have been below 40 m. Because of differences in land surveying and map drawing methods, uncertainties and inaccuracies inherent in the 1924 topographic maps are discussed in detail. In this work, a modified version of a traditional scatter plot is used to present height transformation patterns intuitively. This method of deriving categorical maps of topographical changes from a surface difference map can be used in similar studies to qualitatively interpret transformation. Slope maps and histograms were also used jointly to reveal additional patterns of topographic change.

  17. Advances in land modeling of KIAPS based on the Noah Land Surface Model

    NASA Astrophysics Data System (ADS)

    Koo, Myung-Seo; Baek, Sunghye; Seol, Kyung-Hee; Cho, Kyoungmi

    2017-08-01

    As of 2013, the Noah Land Surface Model (LSM) version 2.7.1 was implemented in a new global model being developed at the Korea Institute of Atmospheric Prediction Systems (KIAPS). This land surface scheme is further refined in two aspects, by adding new physical processes and by updating surface input parameters. Thus, the treatment of glacier land, sea ice, and snow cover are addressed more realistically. Inconsistencies in the amount of absorbed solar flux at ground level by the land surface and radiative processes are rectified. In addition, new parameters are available by using 1-km land cover data, which had usually not been possible at a global scale. Land surface albedo/emissivity climatology is newly created using Moderate-Resolution Imaging Spectroradiometer (MODIS) satellitebased data and adjusted parameterization. These updates have been applied to the KIAPS-developed model and generally provide a positive impact on near-surface weather forecasting.

  18. Earthshots: Satellite images of environmental change – Breiðamerkurjökull Glacier, Iceland

    USGS Publications Warehouse

    Adamson, Thomas

    2015-01-01

    In these false color Landsat images, vegetated land surfaces appear red. Snow and ice are white. The Vatnajökull glacier is the bright white area in the upper left. Outlet glaciers streak away from it toward the Atlantic Ocean in the lower right. Breiðamerkurjökull is the largest glacial tongue on Vatnajökull and is featured in the center of these images.

  19. Elements of the Chicxulub Impact Structure as Revealed in SRTM and Surface GPS Topographic Data

    NASA Technical Reports Server (NTRS)

    Kinsland, Gary L.; Sanchez, Gary; Kobrick, Michael; Cardador, Manuel Hurtado

    2003-01-01

    Pope et al. [1] utilized the elevations from the Petroleos Mexicanos (PEMEX) gravity data files to show that the main component of the surface expression of the Chicxulub Impact Structure is a roughly semi-circular, lowrelief depression about 90 km in diameter. They also identified other topographic features and the elements of the buried impact, which possibly led to the development of these features. These are summarized in Table 1. Kinsland et al. [2] presented a connection between these topographic anomalies, small gravity anomalies and buried structure of the impact. Very recently we have acquired digital topography data from NASA s Shuttle Radar Topography Mission (SRTM). Our subset covers 6 square degrees from 20deg N 91degW to 22deg N 88degW (corner to corner) with a pixel size of about 90m. This area includes all of the identified portion of the crater on land.

  20. Mud Volcanoes in the Martian Lowlands: Potential Windows to Fluid-Rich Samples from Depth

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2009-01-01

    The regional setting of the Chryse-Acidalia area augurs well for a fluid-rich subsurface, accumulation of diverse rock types reflecting the wide catchment area, astrobiological prospectivity, and mud volcanism. This latter provides a mechanism for transporting samples from relatively great depth to the surface. Since mud volcanoes are not associated with extreme heat or shock pressures, materials they transport to the surface are likely to be relatively unaltered; thus such materials could contain interpretable remnants of potential martian life (e.g., organic chemical biomarkers, mineral biosignatures, or structural remains) as well as unmetamorphosed rock samples. None of the previous landings on Mars was located in an area with features identified as potential mud volcanoes (Fig. 3), but some of these features may offer targets for future missions aimed at sampling deep fluid-rich strata with potential habitable zones.

  1. Finding Your Way with Map and Compass

    USGS Publications Warehouse

    ,

    2001-01-01

    A topographic map tells you where things are and how to get to them, whether you're hiking, biking, hunting, fishing, or just interested in the world around you. These maps describe the shape of the land. They define and locate natural and manmade features like woodlands, waterways, important buildings, and bridges. They show the distance between any two places, and they also show the direction from one point to another. Distances and directions take a bit of figuring, but the topography and features of the land are easy to determine. The topography is shown by contours. These are imaginary lines that follow the ground surface at a constant elevation; they are usually printed in brown, in two thicknesses. The heavier lines are called index contours, and they are usually marked with numbers that give the height in feet or meters. The contour interval, a set difference in elevation between the brown lines, varies from map to map; its value is given in the margin of each map. Contour lines that are close together represent steep slopes. Natural and manmade features are represented by colored areas and by a set of standard symbols on all U.S. Geological Survey (USGS) topographic maps. Woodlands, for instance, are shown in a green tint; waterways, in blue. Buildings may be shown on the map as black squares or outlines. Recent changes in an area may be shown by a purple overprint. A road may be printed in red or black solid or dashed lines, depending on its size and surface. A list of symbols is available from the Earth Science Information Center (ESIC).

  2. Multi-sensor technologies for analyzing sinkholes in Hamedan, west Iran

    NASA Astrophysics Data System (ADS)

    Vajedian, Sanaz; Motagh, Mahdi; Hojati, Ahmad; Wetzel, Hans-Ulrich

    2017-04-01

    Dissolution of the carbonate beds such as limestone, dolomite or gypsum by acidic groundwater flowing through fractures and joints in the bedrock alters land surface and enhances the development of sinkholes. Sinkhole formation causes the surface to subside or even collapse suddenly without any prior warning, leading to extensive damage and sometimes loss of life and property, in particular in urban areas. Delineating sinkholes is critical for understanding hydrological processes and mitigating geological hazards in karst areas. The recent availability of high-resolution digital elevation models (DEM) from TanDEM-X (TDX) mission enables us to delineate and analyze geomorphologic features and landscape structures at an unprecedented level of details, in comparison to previous missions such as c-band and x-band Shuttle Radar Topography Mission (SRTM). In this study, we develop an adaptive sinkhole-delineating method based on photogrammetry techniques to detect karst sinkholes in Hamedan , west Iran, using TDX-derived DEMs. We apply automatic feature extraction using watershed algorithm in order to detect depression areas. We show that using high-resolution TDX data from different geometries and time periods we could effectively distinguish sinkholes from other depression features of the basin. We also use interferometric synthetic aperture radar (InSAR) technique with SAR data acquired from a variety of sensors including Envisat, ALOS, TerraSAR-X and Sentinel-1 to quantify long-term subsidence in areas prone to sinkhole formation. Our results indicate that the formation of a lot of sinkholes is influenced by land subsidence, affecting the region over 100 km with the maximum rate of 4-5 cm/yr during 2003 to 2016.

  3. Mars Pathfinder Landing Site: Evidence for a Change in Wind Regime and Climate from Lander and Orbiter Data

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Kraft, M. D.; Kuzmin, R. O.; Bridges, N. T.

    1999-01-01

    Surface features related to the wind are observed in data from the Mars Pathfinder lander and from orbit by the Viking Orbiter and Mars Global Surveyor missions. Features seen from the surface include wind tails associated with small rocks, barchanoid duneforms, ripplelike patterns, and ventifact flutes cut into some rocks. Features seen from orbit include wind tails associated with impact craters, ridges inferred to be duneforms, and modified crater rims interpreted to have been eroded and mantled by windblown material. The orientations of these features show two prevailing directions, one inferred to represent winds from the northeast which is consistent with strongest winds predicted by a general circulation model to occur during the Martian northern winter under current conditions, and a second wind pattern oriented approx. 90 degrees to the first. This latter wind could be from the W-NW or from the E-SE and was responsible for cutting the ventifacts and modifying the crater rims. The two wind regimes could reflect a change in climate related to Mars' obliquity or some other, unknown factor. Regardless of the cause, the MPF area has been subjected to a complex pattern of winds and supply of small particles, in which the original surface formed by sedimentary processes from Tiu and Ares Vallis events has been modified by repeated burial and exhumation.

  4. Martian Meteorological Lander

    NASA Astrophysics Data System (ADS)

    Vorontsov, V.; Pichkhadze, K.; Polyakov, A.

    2002-01-01

    Martian meteorological lander (MML) is dedicated for landing onto the Mars surface with the purpose to carry on the monitoring of Mars atmosphere condition at a landing point during one Martian year. MML is supposed to become the basic element of a global net of meteorological mini stations and will permit to observe the dynamics of Martian atmosphere parameters changes during a long time duration. The main scientific tasks of MML are as follows: -study of vertical structure of Mars atmosphere during MML descending; -meteorological observations on Mars surface during one Martian year. One of the essential factor influencing to the lander design is descent trajectory design. During the preliminary phase of development five (5) options of MML were considered. In our opinion, these variants provide the accomplishment of the above-mentioned tasks with a high effectiveness. Joined into the first group, variants with parachute system and with Inflatable Air Brakes+Inflatable Airbag are similar in arranging of pre-landing braking stage and completely analogous in landing by means of airbags. The usage of additional Inflatable Braking Unit (IBU) in the second variant does not affect the procedure of braking - decreasing of velocity by the moment of touching the surface due to decreasing of ballistic parameter Px. A distinctive feature of MML development variants of other three concepts is the presence of Inflatable Braking Unit (IBU) in their configurations (IBU is rigidly joined with landing module up to the moment of its touching the surface). Besides, in variant with the tore-shaped IBU it acts as a shock- absorbing unit. In two options, Inflatable Braking Shock-Absorbing Unit (IBSAU) (or IBU) releases the surface module after its landing at the moment of IBSAU (or IBU) elastic recoil. Variants of this concept are equal in terms of mass (approximately 15 kg). For variants of concepts with IBU the landing velocity is up to50-70 m/s. Stations of last three options are much more reliable in comparison with MML of first and second options because their functional diagram is realized by operation of 3-4 (instead of 8-10 for MML of first and second concepts) executive devices. A distinctive moment for MML of last three concepts , namely for variants 3 and 5, is the final stage of landing stipulated by penetration of forebody into the soil. Such a profile of landing was taken into account during the development of one of the landing vehicles for the "MARS-96" SC. This will permit to implement simple technical decisions for putting the meteorological complex into operation and to carry out its further operations on the surface. After comparative analysis of 5 concepts for the more detailed development concepts with parachute system and with IBU and penetration unit have been chosen as most prospective. However, finally, on the next step the new modification of the lander (hybrid version of third and fifth option with inflatable braking device and penetrating unit) has been proposed and chosen for the next step of development. The several small stations should be transported to Mars in frameworks of Scout Mars mission, or Phobos Sample Return mission as piggyback payload.

  5. Impact of Land Surface Initialization Approach on Subseasonal Forecast Skill: a Regional Analysis in the Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Hirsch, Annette L.; Kala, Jatin; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Haverd, Vanessa; Mocko, David

    2014-01-01

    The authors use a sophisticated coupled land-atmosphere modeling system for a Southern Hemisphere subdomain centered over southeastern Australia to evaluate differences in simulation skill from two different land surface initialization approaches. The first approach uses equilibrated land surface states obtained from offline simulations of the land surface model, and the second uses land surface states obtained from reanalyses. The authors find that land surface initialization using prior offline simulations contribute to relative gains in subseasonal forecast skill. In particular, relative gains in forecast skill for temperature of 10%-20% within the first 30 days of the forecast can be attributed to the land surface initialization method using offline states. For precipitation there is no distinct preference for the land surface initialization method, with limited gains in forecast skill irrespective of the lead time. The authors evaluated the asymmetry between maximum and minimum temperatures and found that maximum temperatures had the largest gains in relative forecast skill, exceeding 20% in some regions. These results were statistically significant at the 98% confidence level at up to 60 days into the forecast period. For minimum temperature, using reanalyses to initialize the land surface contributed to relative gains in forecast skill, reaching 40% in parts of the domain that were statistically significant at the 98% confidence level. The contrasting impact of the land surface initialization method between maximum and minimum temperature was associated with different soil moisture coupling mechanisms. Therefore, land surface initialization from prior offline simulations does improve predictability for temperature, particularly maximum temperature, but with less obvious improvements for precipitation and minimum temperature over southeastern Australia.

  6. Quasistationary areas of NDVI trend dynamics is a powerful research tool for studying spatial patterns of land vegetation

    NASA Astrophysics Data System (ADS)

    Shevyrnogov, Anatoly; Larko, Aleksandr

    The most important task for humankind is to study and understand global processes on Earth. Large factual material on the dynamics of the optical spectral characteristics of the land surface has been accumulated in recent decades. This has been only made possible due to the use of satellite information. The development of satellite measurement technologies and new methods for pre-processing and interpretation of satellite data allowed the research adequate to the scale of the Earth. This adequacy includes the compliance of scale terrestrial objects to the scale of satellite measurements. Research is not limited by any latitude or longitude of the objects studied. The second most important quality is the adequacy of the technologies used to velocities of processes on Earth. This is enabled by long-term continuous satellite measurements at almost all latitudes. Effectiveness of this approach to the study of natural systems has been shown by the authors in ASR publications (AP Shevyrnogov, GS Vysotskaya, JI Gitelson, Quasistationary areas of chlorophyll concentration in the world ocean as observed satellite data Advances in Space Research, Volume 18, Issue 7, Pages 129-132, 1996), which reported a method for determining the ocean surface quasistationary zones. This approach allowed us to identify different types of phytopigment dynamics and the hydrological structure of the ocean. We proposed a similar approach for the study of land vegetation. In some aspects, it is similar to the previously published approach, despite the different nature of terrestrial and aquatic ecosystems. The results are based on the processing of satellite data from 1981 to 2006. Dynamics is the most interesting and important parameter of ecosystems, especially their trends. Therefore, it has been chosen for the analysis of spatial patterns of plant biota. The first results showed great heterogeneity of variances in nonlinear trends of the study areas of the Earth's surface. They corresponded to different natural systems. Various scales of temporal and spatial windows highlight different features of land vegetation. Methods for normalization of the initial information are also effective for highlighting the features of the spatial structure of vegetation. Thus, we have a powerful tool to analyze the spatial distribution and dynamics of terrestrial vegetation based on satellite data. This approach provides a great opportunity to get fundamental knowledge on the functioning of the biosphere. This is global warming, shifts in permafrost boundaries, global gas exchange, etc. It can be used for practical applications in various fields of human activity: forestry, environmental protection, agriculture, etc. We show the illustration of this method: the global maps of land surface dynamics of trends with different parameters of data processing.

  7. DEVELOPMENT OF RIPARIAN ZONE INDICATORS (INT. GRANT)

    EPA Science Inventory

    Landscape features (e.g., land use) influence water quality characteristics on a variety of spatial scales. For example, while land use is controlled by anthropogenic features at a local scale, geologic features are set at larger spatial, and longer temporal scales. Individual ...

  8. Influence of climate and land use change on spatially resolved volatilization of persistent organic pollutants (POPs) from background soils.

    PubMed

    Komprda, Jiří; Komprdová, Klára; Sáňka, Milan; Možný, Martin; Nizzetto, Luca

    2013-07-02

    The subject of this study is the assessment of the influence of climate and land use change on the potential re-emission of organochlorine pesticides (OCPs) from background and agricultural soils. A deterministic spatially and temporally explicit model of the air-surface exchange was created, fed with distributed data of soil and atmospheric concentrations from real measurements, and run under various scenarios of temperature and land use change for a case study area representative of central European conditions. To describe land use influence, some important features were implemented including effect of plowing, influence of land cover, temperature of soil, and seasonal changes of air layer stability. Results show that volatilization of pesticides from soil largely exceeded dry gas deposition in most of the area. Agricultural soils accounted for more than 90% of the total re-emissions both because of the generally higher soil fugacities (higher loads of chemicals and relatively low organic carbon content), but also due to physical characteristics and land management practices enhancing the dynamics of the exchange. An increase of 1 °C in air temperature produced an increase of 8% in the averaged total volatilization flux, however this effect can be neutralized by a change of land use of 10% of the arable lands to grassland or forest, which is consistent with projected land use change in Europe. This suggests that future assessment of climate impact on POP fate and distribution should take into consideration land use aspects.

  9. Stepping towards new parameterizations for non-canonical atmospheric surface-layer conditions

    NASA Astrophysics Data System (ADS)

    Calaf, M.; Margairaz, F.; Pardyjak, E.

    2017-12-01

    Representing land-atmosphere exchange processes as a lower boundary condition remains a challenge. This is partially a result of the fact that land-surface heterogeneity exists at all spatial scales and its variability does not "average" out with decreasing scales. Such variability need not rapidly blend away from the boundary thereby impacting the near-surface region of the atmosphere. Traditionally, momentum and energy fluxes linking the land surface to the flow in NWP models have been parameterized using atmospheric surface layer (ASL) similarity theory. There is ample evidence that such representation is acceptable for stationary and planar-homogeneous flows in the absence of subsidence. However, heterogeneity remains a ubiquitous feature eliciting appreciable deviations when using ASL similarity theory, especially in scalars such moisture and air temperature whose blending is less efficient when compared to momentum. The focus of this project is to quantify the effect of surface thermal heterogeneity with scales Ο(1/10) the height of the atmospheric boundary layer and characterized by uniform roughness. Such near-canonical cases describe inhomogeneous scalar transport in an otherwise planar homogeneous flow when thermal stratification is weak or absent. In this work we present a large-eddy simulation study that characterizes the effect of surface thermal heterogeneities on the atmospheric flow using the concept of dispersive fluxes. Results illustrate a regime in which the flow is mostly driven by the surface thermal heterogeneities, in which the contribution of the dispersive fluxes can account for up to 40% of the total sensible heat flux. Results also illustrate an alternative regime in which the effect of the surface thermal heterogeneities is quickly blended, and the dispersive fluxes provide instead a quantification of the flow spatial heterogeneities produced by coherent turbulent structures result of the surface shear stress. A threshold flow-dynamics parameter is introduced to differentiate dispersive fluxes driven by surface thermal heterogeneities from those induced by surface shear. We believe that results from this research are a first step in developing new parameterizations appropriate for non-canonical ASL conditions.

  10. Scanning Electron Microscopy with Samples in an Electric Field

    PubMed Central

    Frank, Ludĕk; Hovorka, Miloš; Mikmeková, Šárka; Mikmeková, Eliška; Müllerová, Ilona; Pokorná, Zuzana

    2012-01-01

    The high negative bias of a sample in a scanning electron microscope constitutes the “cathode lens” with a strong electric field just above the sample surface. This mode offers a convenient tool for controlling the landing energy of electrons down to units or even fractions of electronvolts with only slight readjustments of the column. Moreover, the field accelerates and collimates the signal electrons to earthed detectors above and below the sample, thereby assuring high collection efficiency and high amplification of the image signal. One important feature is the ability to acquire the complete emission of the backscattered electrons, including those emitted at high angles with respect to the surface normal. The cathode lens aberrations are proportional to the landing energy of electrons so the spot size becomes nearly constant throughout the full energy scale. At low energies and with their complete angular distribution acquired, the backscattered electron images offer enhanced information about crystalline and electronic structures thanks to contrast mechanisms that are otherwise unavailable. Examples from various areas of materials science are presented.

  11. A study of variation characteristics of Gobi broadband emissivity based on field observational experiments in northwestern China

    NASA Astrophysics Data System (ADS)

    Zheng, Zhi-yuan; Wei, Zhi-gang; Wen, Zhi-ping; Dong, Wen-jie; Li, Zhen-chao; Wen, Xiao-hang; Zhu, Xian; Chen, Chen; Hu, Shan-shan

    2018-02-01

    Land surface emissivity is a significant variable in energy budgets, land cover assessments, and environment and climate studies. However, the assumption of an emissivity constant is being used in Gobi broadband emissivity (GbBE) parameterization scheme in numerical models because of limited knowledge surrounding the spatiotemporal variation characteristics of GbBE. To address this issue, we analyzed the variation characteristics of GbBE and possible impact factor-surface soil moisture based on long-term continuous and high temporal resolution field observational experiments over a typical Gobi underlying surface in arid and semiarid areas in northwestern China. The results indicate that GbBE has obvious daily and diurnal variation features, especially diurnal cycle characteristics. The multi-year average of the daily average of GbBE is in the range of 0.932 to 0.970 with an average of 0.951 ± 0.008, and the average diurnal GbBE is in the range of 0.880 to 0.940 with an average of 0.906 ± 0.018. GbBE varies with surface soil moisture content. We observed a slight decrease in GbBE with an increase in soil moisture, although this change was not very obvious because of the low soil moisture in this area. Nevertheless, we think that soil moisture must be one of the most significant impact factors on GbBE in arid and semiarid areas. Soil moisture must be taken into account into the parameterization schemes of bare soil broadband emissivity in land surface models. Additional field experiments and studies should be carried out in order to clarify this issue.

  12. Impact of Land Model Calibration on Coupled Land-Atmosphere Prediction

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Harrison, Ken; Zhou, Shujia

    2012-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry and wet land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through calibration of the Noah land surface model using the new optimization and uncertainty estimation subsystem in NASA's Land Information System (LIS-OPT/UE). The impact of the calibration on the a) spinup of the land surface used as initial conditions, and b) the simulated heat and moisture states and fluxes of the coupled WRF simulations is then assessed. Changes in ambient weather and land-atmosphere coupling are evaluated along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Results indicate that the offline calibration leads to systematic improvements in land-PBL fluxes and near-surface temperature and humidity, and in the process provide guidance on the questions of what, how, and when to calibrate land surface models for coupled model prediction.

  13. Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington

    NASA Technical Reports Server (NTRS)

    Golombek, M. P. (Editor); Edgett, K. S. (Editor); Rice, J. W., Jr. (Editor)

    1995-01-01

    This volume, the first of two comprising the technical report for this workshop, contains papers that have been accepted for presentation at the Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region, September 24-30, 1995, in Spokane, Washington. The Mars Pathfinder Project received a new start in October 1993 as one of the next missions in NASA's long-term Mars exploration program. The mission involves landing a single vehicle on the surface of Mars in 1997. The project is one of the first Discovery-class missions and is required to be a quick, low-cost mission and achieve a set of significant but focused engineering, science, and technology objectives. The primary objective is to demonstrate a low-cost cruise, entry, descent, and landing system required to place a payload on the martian surface in a safe, operational configuration. Additional objectives include the deployment and operation of various science instruments and a microrover. Pathfinder paves the way for a cost-effective implementation of future Mars lander missions. Also included in this volume is the field trip guide to the Channeled Scabland and Missoula Lake Break-out. On July 4, 1997, Mars Pathfinder is scheduled to land near 19.5 deg N, 32.8 deg W, in a portion of Ares Vallis. The landing ellipse covers a huge (100 x 200 km) area that appears to include both depositional and erosional landforms created by one or more giant, catastrophic floods. One of the best known terrestrial analogs to martian outflow channels (such as Ares Vallis) is the region known as the Channeled Scabland. The field trip guide describes some of the geomorphological features of the Channeled Scabland and adjacent Lake Missoula break-out area near Lake Pend Oreille, Idaho.

  14. Land use and land cover classification for rural residential areas in China using soft-probability cascading of multifeatures

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Liu, Yueyan; Zhang, Zuyu; Shen, Yonglin

    2017-10-01

    A multifeature soft-probability cascading scheme to solve the problem of land use and land cover (LULC) classification using high-spatial-resolution images to map rural residential areas in China is proposed. The proposed method is used to build midlevel LULC features. Local features are frequently considered as low-level feature descriptors in a midlevel feature learning method. However, spectral and textural features, which are very effective low-level features, are neglected. The acquisition of the dictionary of sparse coding is unsupervised, and this phenomenon reduces the discriminative power of the midlevel feature. Thus, we propose to learn supervised features based on sparse coding, a support vector machine (SVM) classifier, and a conditional random field (CRF) model to utilize the different effective low-level features and improve the discriminability of midlevel feature descriptors. First, three kinds of typical low-level features, namely, dense scale-invariant feature transform, gray-level co-occurrence matrix, and spectral features, are extracted separately. Second, combined with sparse coding and the SVM classifier, the probabilities of the different LULC classes are inferred to build supervised feature descriptors. Finally, the CRF model, which consists of two parts: unary potential and pairwise potential, is employed to construct an LULC classification map. Experimental results show that the proposed classification scheme can achieve impressive performance when the total accuracy reached about 87%.

  15. Ocean-color remote sensing of the Nile delta shelf and SE Levantine basin and possible linkage to some mesoscale circulation features and Nile river run-off

    NASA Astrophysics Data System (ADS)

    Moufaddal, Wahid; Lavender, Samantha

    To date, and despite the passage of more than 30 years since the launch of the first satellite based ocean-color sensor, no systematic study of the variability of chlorophyll in the Egyptian Mediterranean coast off the Nile delta has been undertaken using this kind of data. Meantime, available in-situ measurements on chlorophyll and other nutrient parameters along this coast are indeed very modest and scarce. The lack of data has in turn created a large gap in our knowledge on the biogeochemical characteristics of the coastal water and impacts of the Aswan High Dam and other land-use changes on the marine ecosystems and nutrient budget in the Nile delta shelf and the SE Mediterranean. The present study aims to fill part of this gap through application of ocean-color remote sensing and satellite retrieval of phytoplankton chlorophyll. For this purpose a 10-year (1997-2006) monthly satellite dataset from ESA Globcolour project (an ESA Data User Element project: http://www.globcolour.info) was retrieved and subjected to time-series analysis. Results of this analysis revealed that the oceanic and coastal parts off the Nile delta coast and SE Mediterranean manifest from time to time some of the most interesting and dynamical marine features including meso-scale gyres, coastal filaments, localized algal blooms and higher concentration of phytoplankton chlorophyll. These features together with certain physical pro-cesses and surface run-off from Nile mouthes and other land-based sources were found to exert pronounced effects on the nutrient supply and quality of the coastal and oceanic surface waters in this region. Results reveled also that there has been a general upward trend in concentration of surface chlorophyll during the 10-year period from 1997 to 2006 with a coincident rise of the coastal fisheries implying that improvement of nutrient supply is most likely responsible for this rise. Results confirmed also shift of the Nile phytoplankton bloom in space and time after construc-tion of the Aswan High Dam and other subsequent anthropogenic activities Conclusions and results achieved by this study show the importance of ocean-color satellite data for monitoring of biogeochemical impacts of land-use changes on coastal ecosystems and the role which it can play in assessment of the marine productivity and state of the marine fisheries.

  16. Environmental and hydrologic setting of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma

    USGS Publications Warehouse

    Adamski, James C.; Petersen, James C.; Freiwald, David A.; Davis, Jerri V.

    1995-01-01

    The environmental and hydrologic setting of the Ozark Plateaus National Water-Quality Assessment (NAWQA) study unit and the factors that affect water quality are described in this report. The primary natural and cultural features that affect water- quality characteristics and the potential for future water-quality problems are described. These environmental features include climate, physio- graphy, geology, soils, population, land use, water use, and surface- and ground-water flow systems. The study-unit area is approximately 47,600 square miles and includes most of the Ozark Plateaus Province and parts of the adjacent Osage Plains and Mississippi Alluvial Plain in parts of Arkansas, Kansas, Missouri, and Oklahoma. The geology is characterized by basement igneous rocks overlain by a thick sequence of dolomites, limestones, sandstones, and shales of Paleozoic age. Land use in the study unit is predominantly pasture and forest in the southeastern part, and pasture and cropland in the northwestern part. All or part of the White, Neosho-lllinois, Osage, Gasconade, Meramec, St. Francis, and Black River Basins are within the study unit. Streams in the Boston Mountains contain the least mineralized water, and those in the Osage Plains contain the most mineralized water. The study unit contains eight hydrogeologic units including three major aquifers--the Springfield Plateau, Ozark, and St. Francois aquifers. Streams and aquifers in the study unit generally contain calcium or calcium-magnesium bicarbonate waters. Ground- and surface-water interactions are greatest in the Salem and Springfield Plateaus and least in the Boston Mountains and Osage Plains. Geology, land use, and population probably are the most important environmental factors that affect water quality.

  17. The Urban Heat Island Impact in Consideration of Spatial Pattern of Urban Landscape and Structure

    NASA Astrophysics Data System (ADS)

    Kim, J.; Lee, D. K.; Jeong, W.; Sung, S.; Park, J.

    2015-12-01

    Preceding study has established a clear relationship between land surface temperature and area of land covers. However, only few studies have specifically examined the effects of spatial patterns of land covers and urban structure. To examine how much the local climate is affected by the spatial pattern in highly urbanized city, we investigated the correlation between land surface temperature and spatial patterns of land covers. In the analysis of correlation, we categorized urban structure to four different land uses: Apartment residential area, low rise residential area, industrial area and central business district. Through this study, we aims to examine the types of residential structure and land cover pattern for reducing urban heat island and sustainable development. Based on land surface temperature, we investigated the phenomenon of urban heat island through using the data of remote sensing. This study focused on Daegu in Korea. This city, one of the hottest city in Korea has basin form. We used high-resolution land cover data and land surface temperature by using Landsat8 satellite image to examine 100 randomly selected sample sites of 884.15km2 (1)In each land use, we quantified several landscape-levels and class-level landscape metrics for the sample study sites. (2)In addition, we measured the land surface temperature in 3 year hot summer seasons (July to September). Then, we investigated the pattern of land surface temperature for each land use through Ecognition package. (3)We deducted the Pearson correlation coefficients between land surface temperature and each landscape metrics. (4)We analyzed the variance among the four land uses. (5)Using linear regression, we determined land surface temperature model for each land use. (6)Through this analysis, we aims to examine the best pattern of land cover and artificial structure for reducing urban heat island effect in highly urbanized city. The results of linear regression showed that proportional land cover of grass, tree, water and impervious surfaces well explained the temperature in apartment residential areas. In contrast, the changes in the pattern of water, grass, tree and impervious surfaces were the best to determine the temperature in low rise residential area, central business district and industrial area.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-01

    This is the official three-member crew portrait of the Apollo 15 (SA-510). Pictured from left to right are: David R. Scott, Mission Commander; Alfred M. Worden Jr., Command Module pilot; and James B. Irwin, Lunar Module pilot. The fifth marned lunar landing mission, Apollo 15 (SA-510), lifted off on July 26, 1971. Astronauts Scott and Irwin were the first to use a wheeled surface vehicle, the Lunar Roving Vehicle (LRV), or the Rover, which was designed and developed by the Marshall Space Flight Center, and built by the Boeing Company. The astronauts spent 13 days, nearly 67 hours, on the Moon's surface to inspect a wide variety of its geological features.

  19. Database of historically documented springs and spring flow measurements in Texas

    USGS Publications Warehouse

    Heitmuller, Franklin T.; Reece, Brian D.

    2003-01-01

    Springs are naturally occurring features that convey excess ground water to the land surface; they represent a transition from ground water to surface water. Water issues through one opening, multiple openings, or numerous seeps in the rock or soil. The database of this report provides information about springs and spring flow in Texas including spring names, identification numbers, location, and, if available, water source and use. This database does not include every spring in Texas, but is limited to an aggregation of selected digital and hard-copy data of the U.S. Geological Survey (USGS), the Texas Water Development Board (TWDB), and Capitol Environmental Services.

  20. Localization, Localization, Localization

    NASA Technical Reports Server (NTRS)

    Parker, T.; Malin, M.; Golombek, M.; Duxbury, T.; Johnson, A.; Guinn, J.; McElrath, T.; Kirk, R.; Archinal, B.; Soderblom, L.

    2004-01-01

    Localization of the two Mars Exploration Rovers involved three independent approaches to place the landers with respect to the surface of Mars and to refine the location of those points on the surface with the Mars control net: 1) Track the spacecraft through entry, descent, and landing, then refine the final roll stop position by radio tracking and comparison to images taken during descent; 2) Locate features on the horizon imaged by the two rovers and compare them to the MOC and THEMIS VIS images, and the DIMES images on the two MER landers; and 3) 'Check' and refine locations by acquisition of MOC 1.5 meter and 50 cm/pixel images.

  1. North American Megadroughts in the Common Era: Reconstructions and Simulations

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Cook, Edward R.; Smerdon, Jason E.; Seager, Richard; Williams, A. Park; Coats, Sloan; Stahle, David W.; Villanueva Diaz, Jose

    2016-01-01

    During the Medieval Climate Anomaly (MCA), Western North America experienced episodes of intense aridity that persisted for multiple decades or longer. These megadroughts are well documented in many proxy records, but the causal mechanisms are poorly understood. General circulation models (GCMs) simulate megadroughts, but do not reproduce the temporal clustering of events during the MCA, suggesting they are not caused by the time history of volcanic or solar forcing. Instead, GCMs generate megadroughts through (1) internal atmospheric variability, (2) sea-surface temperatures, and (3) land surface and dust aerosol feedbacks. While no hypothesis has been definitively rejected, and no GCM has accurately reproduced all features (e.g., timing, duration, and extent) of any specific megadrought, their persistence suggests a role for processes that impart memory to the climate system (land surface and ocean dynamics). Over the 21st century, GCMs project an increase in the risk of megadrought occurrence through greenhouse gas forced reductions in precipitation and increases in evaporative demand. This drying is robust across models and multiple drought indicators, but major uncertainties still need to be resolved. These include the potential moderation of vegetation evaporative losses at higher atmospheric [CO2], variations in land surface model complexity, and decadal to multidecadal modes of natural climate variability that could delay or advance onset of aridification over the the next several decades. Because future droughts will arise from both natural variability and greenhouse gas forced trends in hydroclimate, improving our understanding of the natural drivers of persistent multidecadal megadroughts should be a major research priority.

  2. Land surface-precipitation feedback analysis for a landfalling monsoon depression in the Indian region

    NASA Astrophysics Data System (ADS)

    Baisya, Himadri; Pattnaik, Sandeep; Rajesh, P. V.

    2017-03-01

    A series of numerical experiments are carried out to investigate the sensitivity of a landfalling monsoon depression to land surface conditions using the Weather Research and Forecasting (WRF) model. Results suggest that precipitation is largely modulated by moisture influx and precipitation efficiency. Three cloud microphysical schemes (WSM6, WDM6, and Morrison) are examined, and Morrison is chosen for assessing the land surface-precipitation feedback analysis, owing to better precipitation forecast skills. It is found that increased soil moisture facilitates Moisture Flux Convergence (MFC) with reduced moisture influx, whereas a reduced soil moisture condition facilitates moisture influx but not MFC. A higher Moist Static Energy (MSE) is noted due to increased evapotranspiration in an elevated moisture scenario which enhances moist convection. As opposed to moist surface, sensible heat dominates in a reduced moisture scenario, ensued by an overall reduction in MSE throughout the Planetary Boundary Layer (PBL). Stability analysis shows that Convective Available Potential Energy (CAPE) is comparable in magnitude for both increased and decreased moisture scenarios, whereas Convective Inhibition (CIN) shows increased values for the reduced moisture scenario as a consequence of drier atmosphere leading to suppression of convection. Simulations carried out with various fixed soil moisture levels indicate that the overall precipitation features of the storm are characterized by initial soil moisture condition, but precipitation intensity at any instant is modulated by soil moisture availability. Overall results based on this case study suggest that antecedent soil moisture plays a crucial role in modulating precipitation distribution and intensity of a monsoon depression.

  3. Study on Remote Sensing Image Characteristics of Ecological Land: Case Study of Original Ecological Land in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    An, G. Q.

    2018-04-01

    Takes the Yellow River Delta as an example, this paper studies the characteristics of remote sensing imagery with dominant ecological functional land use types, compares the advantages and disadvantages of different image in interpreting ecological land use, and uses research results to analyse the changing trend of ecological land in the study area in the past 30 years. The main methods include multi-period, different sensor images and different seasonal spectral curves, vegetation index, GIS and data analysis methods. The results show that the main ecological land in the Yellow River Delta included coastal beaches, saline-alkaline lands, and water bodies. These lands have relatively distinct spectral and texture features. The spectral features along the beach show characteristics of absorption in the green band and reflection in the red band. This feature is less affected by the acquisition year, season, and sensor type. Saline-alkali land due to the influence of some saline-alkaline-tolerant plants such as alkali tent, Tamarix and other vegetation, the spectral characteristics have a certain seasonal changes, winter and spring NDVI index is less than the summer and autumn vegetation index. The spectral characteristics of a water body generally decrease rapidly with increasing wavelength, and the reflectance in the red band increases with increasing sediment concentration. In conclusion, according to the spectral characteristics and image texture features of the ecological land in the Yellow River Delta, the accuracy of image interpretation of such ecological land can be improved.

  4. Consequences of land-cover misclassification in models of impervious surface

    USGS Publications Warehouse

    McMahon, G.

    2007-01-01

    Model estimates of impervious area as a function of landcover area may be biased and imprecise because of errors in the land-cover classification. This investigation of the effects of land-cover misclassification on impervious surface models that use National Land Cover Data (NLCD) evaluates the consequences of adjusting land-cover within a watershed to reflect uncertainty assessment information. Model validation results indicate that using error-matrix information to adjust land-cover values used in impervious surface models does not substantially improve impervious surface predictions. Validation results indicate that the resolution of the landcover data (Level I and Level II) is more important in predicting impervious surface accurately than whether the land-cover data have been adjusted using information in the error matrix. Level I NLCD, adjusted for land-cover misclassification, is preferable to the other land-cover options for use in models of impervious surface. This result is tied to the lower classification error rates for the Level I NLCD. ?? 2007 American Society for Photogrammetry and Remote Sensing.

  5. Overview of Mars Science Laboratory (MSL) Environmental Program

    NASA Technical Reports Server (NTRS)

    Forgave, John C.; Man, Kin F.; Hoffman, Alan R.

    2006-01-01

    This viewgraph presentation is an overview of the Mars Science Laboratory (MSL) program. The engineering objectives of the program are to create a Mobile Science Laboratory capable of one Mars Year surface operational lifetime (670 Martian sols = 687 Earth days). It will be able to land and operation over wide range of latitudes, altitudes and seasons It must have controlled propulsive landing and demonstrate improved landing precision via guided entry The general science objectives are to perform science that will focus on Mars habitability, perform next generation analytical laboratory science investigations, perform remote sensing/contact investigations and carry a suite of environmental monitoring instruments. Specific scientific objectives of the MSL are: (1) Characterization of geological features, contributing to deciphering geological history and the processes that have modified rocks and regolith, including the role of water. (2) Determination of the mineralogy and chemical composition (including an inventory of elements such as C, H, N, O, P, S, etc. known to be building blocks for life) of surface and near-surface materials. (3) Determination of energy sources that could be used to sustain biological processes. (4) Characterization of organic compounds and potential biomarkers in representative regolith, rocks, and ices. (5) Determination the stable isotopic and noble gas composition of the present-day bulk atmosphere. (6) Identification potential bio-signatures (chemical, textural, isotopic) in rocks and regolith. (7) Characterization of the broad spectrum of surface radiation, including galactic cosmic radiation, solar proton events, and secondary neutrons. (8) Characterization of the local environment, including basic meteorology, the state and cycling of water and C02, and the near-surface distribution of hydrogen. Several views of the planned MSL and the rover are shown. The MSL environmental program is to: (1) Ensure the flight hardware design is capable of surviving all the environments throughout its mission life time, including ground, transportation, launch, cruise, entry decent and landing (EDL) and surface operation environments. (2) Verify environmental testing and analysis have adequately validated the flight hardware's ability to withstand all natural, self-induced, and mission-activity-induced environments. The planned tests to ascertain the capability of the MSL to perform as desired are reviewed.

  6. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    NASA Technical Reports Server (NTRS)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by including a water fraction correction. Also note that current reliance on the MODIS day-night algorithm as a source of LST limits the coverage of the database in the Polar Regions. We will consider relaxing the current restriction as part of future development.

  7. Generating Land Surface Reflectance for the New Generation of Geostationary Satellite Sensors with the MAIAC Algorithm

    NASA Astrophysics Data System (ADS)

    Wang, W.; Wang, Y.; Hashimoto, H.; Li, S.; Takenaka, H.; Higuchi, A.; Lyapustin, A.; Nemani, R. R.

    2017-12-01

    The latest generation of geostationary satellite sensors, including the GOES-16/ABI and the Himawari 8/AHI, provide exciting capability to monitor land surface at very high temporal resolutions (5-15 minute intervals) and with spatial and spectral characteristics that mimic the Earth Observing System flagship MODIS. However, geostationary data feature changing sun angles at constant view geometry, which is almost reciprocal to sun-synchronous observations. Such a challenge needs to be carefully addressed before one can exploit the full potential of the new sources of data. Here we take on this challenge with Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, recently developed for accurate and globally robust applications like the MODIS Collection 6 re-processing. MAIAC first grids the top-of-atmosphere measurements to a fixed grid so that the spectral and physical signatures of each grid cell are stacked ("remembered") over time and used to dramatically improve cloud/shadow/snow detection, which is by far the dominant error source in the remote sensing. It also exploits the changing sun-view geometry of the geostationary sensor to characterize surface BRDF with augmented angular resolution for accurate aerosol retrievals and atmospheric correction. The high temporal resolutions of the geostationary data indeed make the BRDF retrieval much simpler and more robust as compared with sun-synchronous sensors such as MODIS. As a prototype test for the geostationary-data processing pipeline on NASA Earth Exchange (GEONEX), we apply MAIAC to process 18 months of data from Himawari 8/AHI over Australia. We generate a suite of test results, including the input TOA reflectance and the output cloud mask, aerosol optical depth (AOD), and the atmospherically-corrected surface reflectance for a variety of geographic locations, terrain, and land cover types. Comparison with MODIS data indicates a general agreement between the retrieved surface reflectance products. Furthermore, the geostationary results satisfactorily capture the movement of clouds and variations in atmospheric dust/aerosol concentrations, suggesting that high quality land surface and vegetation datasets from the advanced geostationary sensors can help complement and improve the corresponding EOS products.

  8. Hydrological change during the last 600 years as observed from landscape analysis and historical maps: a case study from the Nete catchment, Campine area, NE-Belgium

    NASA Astrophysics Data System (ADS)

    Beerten, Koen; Leterme, Bertrand

    2015-04-01

    Reliably predicting the future state of the hydrological system under transient climate and land use conditions is a major challenge. Hydrological models are usually calibrated and validated for a short time period (e.g. 30 years), for conditions that are similar to today's. In order to test model performance for future (unverifiable) projections, palaeohydrological modelling is first needed to build confidence in model output under different conditions. One of the major challenges of palaeohydrological modelling is the acquisition of verification data that is representative for the past state(s) of the hydrological system. Here, we present the reconstructed evolution of the groundwater table depth over the last six centuries, in a sandy interfluvium (20 km² with altitude varying between 16 m and 28 m a.s.l.) of the Nete catchment. For periods before 1770 AD, the altitude (depth) of blown-out surfaces in the drift sand landscape is used as a proxy for the average highest groundwater level. These surfaces are generally interpreted as the lower limit for wind erosion. Soil profiles investigations where these surfaces are overblown by younger drift sand show that they were created in the time period between ca. 1400 AD and 1600 AD. For younger periods, historical maps were analysed for the presence of surface water features, such as fens (shallow lakes that are groundwater fed in this sandy landscape under temperate climate), marshes and wetlands. The results clearly show declining water levels in the second half of the 19th century, i.e., between 1854 AD and 1909 AD. The decline is most pronounced for the higher areas of the interfluve (drift sand landscape) and becomes less clear towards the floodplains. The amount of groundwater level decline is 1-2 m on average. The cause for the synchronous groundwater level drop seems to be linked to land use and land cover changes during that period. In the time interval between 1854 AD and 1909 AD, the total length of drains increased from 2 km to 25 km, while land cover changed from 80% heathland and almost no trees to only 20% heathland and 50% coniferous forest. Available palaeoclimate records suggest that there is no correlation between groundwater level change and average annual temperature or precipitation. Furthermore, population density seems to be uncorrelated with the observed hydrological changes. Internal consistency checks are performed and found satisfactory. For example, the high groundwater levels predicted by the blown-out surfaces for 1400-1600 AD are confirmed by surface water features on younger historical maps (~1770 AD and ~1850 AD). Indeed, pollen analysis, topographical maps and climate records show that land cover and climate did not change significantly throughout the period 1400 AD to 1850 AD. We conclude that the proposed methods are useful tools to gather verification data (i.e., groundwater table depth) for palaeohydrological modelling in the European sand belt during the last millenium.

  9. Global Precipitation Measurement, Validation, and Applications Integrated Hydrologic Validation to Improve Physical Precipitation Retrievals for GPM

    NASA Technical Reports Server (NTRS)

    Peters-Lidar, Christa D.; Tian, Yudong; Kenneth, Tian; Harrison, Kenneth; Kumar, Sujay

    2011-01-01

    Land surface modeling and data assimilation can provide dynamic land surface state variables necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in the Global Precipitation Measurement Mission (GPM), is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. In order to investigate the robustness of both the land surface model states and the microwave emissivity and forward radiative transfer models, we have undertaken a multi-site investigation as part of the NASA Precipitation Measurement Missions (PMM) Land Surface Characterization Working Group. Specifically, we will demonstrate the performance of the Land Information System (LIS; http://lis.gsfc.nasa.gov; Peters-Lidard et aI., 2007; Kumar et al., 2006) coupled to the Joint Center for Satellite Data Assimilation (JCSDA's) Community Radiative Transfer Model (CRTM; Weng, 2007; van Deist, 2009). The land surface is characterized by complex physical/chemical constituents and creates temporally and spatially heterogeneous surface properties in response to microwave radiation scattering. The uncertainties in surface microwave emission (both surface radiative temperature and emissivity) and very low polarization ratio are linked to difficulties in rainfall detection using low-frequency passive microwave sensors (e.g.,Kummerow et al. 2001). Therefore, addressing these issues is of utmost importance for the GPM mission. There are many approaches to parameterizing land surface emission and radiative transfer, some of which have been customized for snow (e.g., the Helsinki University of Technology or HUT radiative transfer model;) and soil moisture (e.g., the Land Surface Microwave Emission Model or LSMEM).

  10. Brandburg Prominance, Namibia, Africa

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Brandburg Prominance, Namibia (21.0S, 14.5E) is a round basaltic plug and is the highest feature (over 8,000 ft) in the country. Wind streaks on the surface of the coastal desert, aligned northeast to southwest, are the result of frequent sand storms. Coastal stratus clouds provide most of the life supporting moisture as fog droplets in this arid land where annual rainfall may be less than a quarter of an inch for decades at a time.

  11. Remote Sensing of Salinity and Overview of Results from Aquarius

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Dinnat, E. P.; Meissner, T.; Wentz, F.; Yueh, S. H.; Lagerloef, G. S. E.

    2015-01-01

    Aquarius is a combined active/passive microwave (L-band) instrument designed to map the salinity of global oceans from space. The specific goal of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the sea surface salinity (SSS) field of the open ocean (i.e. away from land). The instrumentation has been designed to provide monthly maps with a spatial resolution of 150 km and an accuracy of 0.2 psu

  12. Final Environmental Assessment, Conversion of Forest Land to Road Right-of-Way, Arnold Air Force Base, Tennessee

    DTIC Science & Technology

    2005-04-01

    birds overwinter in western parts of the state, particularly at Reelfoot Lake , and at Dale Hollow Reservoir. However, bald eagles may occur on almost...Department of Agriculture [USDA] Soil Conservation Service [SCS], 1949). 3.3.2 Hydrology Hydrological features consist of surface waters ( lakes ...in water resulting from erosion. Sediment from runoff causes cloudy water and covers the bottom of streams and lakes . These conditions limit the

  13. Effects of the New Madrid earthquake series in the Mississippi Alluvial Valley. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saucier, R.T.

    1977-02-01

    Geological effects of the New Madrid earthquake series of 1811-12 in the upper portion of the Lower Mississippi Valley include land subsidence, uplift or doming, landslides, bank caving, fissuring, and sand blow phenomena. Features resulting from the liquefaction of sand are widespread in the alluvial valley and offer the greatest potential for definitively assessing the effects of major earthquakes on thick alluvial deposits and predicting the recurrence interval of infrequent major earthquakes in the region. However, liquefaction phenomena have not been the subject of detailed geological investigations applying knowledge of alluvial morphology and earth sciences methodology. Comparative aerial photo interpretationmore » has been used to classify liquefaction phenomena according to morphology, distribution, and relationship to major depositional environments. Surface morphology and spatial distribution of sand blows and fissures indicate basic control by drainage lines, water table position, and thickness of fine-grained topstratum deposits, Research efforts have been aimed at locating field test sites where the subsurface expression of the liquefaction phenomena can be investigated through trenching and land planing. Subsurface expression is presumed to be more permanent than surface expression and may permit the recognition of such features in older formations. Evidence of fissures and related phenomena is being sought in older Quaternary deposits to permit estimates of the frequency of past major earthquakes.« less

  14. Sensitivity of Land Surface Parameters on Thunderstorm Simulation through HRLDAS-WRF Coupling Mode

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Kumar, Krishan; Mohanty, U. C.; Kisore Osuri, Krishna

    2016-07-01

    Land surface characteristics play an important role in large scale, regional and mesoscale atmospheric process. Representation of land surface characteristics can be improved through coupling of mesoscale atmospheric models with land surface models. Mesoscale atmospheric models depend on Land Surface Models (LSM) to provide land surface variables such as fluxes of heat, moisture, and momentum for lower boundary layer evolution. Studies have shown that land surface properties such as soil moisture, soil temperature, soil roughness, vegetation cover, have considerable effect on lower boundary layer. Although, the necessity to initialize soil moisture accurately in NWP models is widely acknowledged, monitoring soil moisture at regional and global scale is a very tough task due to high spatial and temporal variability. As a result, the available observation network is unable to provide the required spatial and temporal data for the most part of the globe. Therefore, model for land surface initializations rely on updated land surface properties from LSM. The solution for NWP land-state initialization can be found by combining data assimilation techniques, satellite-derived soil data, and land surface models. Further, it requires an intermediate step to use observed rainfall, satellite derived surface insolation, and meteorological analyses to run an uncoupled (offline) integration of LSM, so that the evolution of modeled soil moisture can be forced by observed forcing conditions. Therefore, for accurate land-state initialization, high resolution land data assimilation system (HRLDAS) is used to provide the essential land surface parameters. Offline-coupling of HRLDAS-WRF has shown much improved results over Delhi, India for four thunder storm events. The evolution of land surface variables particularly soil moisture, soil temperature and surface fluxes have provided more realistic condition. Results have shown that most of domain part became wetter and warmer after assimilation of soil moisture and soil temperature at the initial condition which helped to improve the exchange fluxes at lower atmospheric level. Mixing ratio were increased along with elevated theta-e at lower level giving a signature of improvement in LDAS experiment leading to a suitable condition for convection. In the analysis, moisture convergence, mixing ratio and vertical velocities have improved significantly in terms of intensity and time lag. Surface variables like soil moisture, soil temperature, sensible heat flux and latent heat flux have progressed in a possible realistic pattern. Above discussion suggests that assimilation of soil moisture and soil temperature improves the overall simulations significantly.

  15. Impacts of land cover transitions on surface temperature in China based on satellite observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhen; Liang, Shunlin

    2018-02-01

    China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short-term analysis of land cover transitions in China means our estimates should represent local temperature effects. Changes in ET and albedo explained <60% of the variation in LST change caused by land cover transitions; thus, additional factors that affect surface climate need consideration in future studies.

  16. Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification

    PubMed Central

    Pan, Jianjun

    2018-01-01

    This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively. PMID:29382073

  17. Imaging Systems Provide Maps for U.S. Soldiers

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Spanning nearly four decades, the remarkable Landsat program has continuously provided data about the Earth s surface, including detailed maps of vegetation, land use, forest extent and health, surface water, population distribution, as well as how these features have changed over time. Managed by NASA and the U.S. Geological Survey, Landsat s series of satellites obtain data through passive remote sensing, or the use of sensors to read the energy reflected or emitted from the Earth s surface. After the data from the sensors is processed and analyzed, it can be applied to create information-rich images of the planet. While the Landsat program has launched seven satellites since 1972, only Landsat 5 and 7 are currently operating. The next spacecraft in line to ensure continuity of data for years to come is the Landsat Data Continuity Mission (LDCM). Planned for launch in 2012, LDCM will take measurements of the Earth in visible, nearinfrared, shortwave infrared, and thermal infrared bands. In addition to widespread use for land use planning and monitoring on local to regional scales, support for disaster response and evaluations, as well as water use monitoring, LDCM measurements will directly serve NASA s research in the areas of climate, the carbon cycle, ecosystems, the water cycle, biogeochemistry, and Earth s surface and interior.

  18. Arecibo radar observations of Mars surface characteristics in the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Simpson, R. A.; Tyler, G. L.; Campbell, D. B.

    1978-01-01

    Mars surface characteristics at and near the Viking Chryse and Tritonis Lacus landing areas were determined by radio scatter using the 12.6-cm radar at the Arecibo Observatory during 1975-76. Interpretation of each power spectrum suggests rms surface tilts of 4 deg at the final A1WNW (47.9 deg W, 22.5 deg N) site, 5 deg near the original A1 site, and 6 deg between the two. At the back-up site (A2) surface-roughness estimates were about 4 deg. Striking changes in surface texture have been found near the eastern bases of Tharsis Montes and Albor Tholus, each volcanic feature marking the western boundary of very smooth surface units. The roughness sensed at 1- to 100-m scales by radar appears to be relatively independent of the surface units defined at large scale lengths by photogeologists. Radar properties thus provide an additional means by which planetary surfaces may be characterized.

  19. Cryptic photosynthesis--extrasolar planetary oxygen without a surface biological signature.

    PubMed

    Cockell, Charles S; Kaltenegger, Lisa; Raven, John A

    2009-09-01

    On Earth, photosynthetic organisms are responsible for the production of virtually all the oxygen in the atmosphere. On land, vegetation reflects in the visible and leads to a "red edge," which developed about 450 million years ago on Earth and has been proposed as a biosignature for life on extrasolar planets. However, in many regions on Earth, particularly where surface conditions are extreme--in hot and cold deserts, for example--photosynthetic organisms can be driven into and under substrates where light is still sufficient for photosynthesis. These communities exhibit no detectable surface spectral signature to indicate life. The same is true of the assemblages of photosynthetic organisms at more than a few meters' depth in water bodies. These communities are widespread and dominate local photosynthetic productivity. We review known cryptic photosynthetic communities and their productivity. We have linked geomicrobiology with observational astronomy by calculating the disk-averaged spectra of cryptic habitats and identifying detectable features on an exoplanet dominated by such a biota. The hypothetical cryptic photosynthesis worlds discussed here are Earth analogues that show detectable atmospheric biosignatures like our own planet but do not exhibit a discernable biological surface feature in the disc-averaged spectrum.

  20. Soil cover patterns influence on the land environmental functions, agroecological quality, land-use and monitoring efficiency in the Central Russia

    NASA Astrophysics Data System (ADS)

    Vasenev, Ivan; Yashin, Ivan; Lukin, Sergey; Valentini, Riccardo

    2015-04-01

    First decades of XXI century actualized for soil researches the principal methodical problem of most modern geosciences: what spatial and temporal scale would be optimal for land quality evaluation and land-use practice optimizing? It is becoming obvious that this question cannot have one solution and have to be solved with especial attention on the features of concrete region and landscape, land-use history and practical issues, land current state and environmental functions, soil cover patterns and variability, governmental requirements and local society needs, best available technologies and their potential profitability. Central Russia is one of the most dynamical economic regions with naturally high and man-made complicated landscape and soil cover variability, long-term land-use history and self-contradictory issues, high potential of profitable farming and increased risks of land degradation. Global climate and technological changes essentially complicate the originally high and sharply increased in XX century farming land heterogeneity in the Central Russia that actualizes system analysis of its zonal, intra-zonal and azonal soil cover patterns according to their influence on land environmental functions, agroecological quality, and land-use and monitoring efficiency variability. Developed by the Laboratory of agroecological monitoring, ecosystem modeling & prediction (LAMP / RTSAU with support of RF Governmental projects #11.G34.31.0079 and #14.120.14.4266) regional systems of greenhouse gases environmental monitoring RusFluxNet (6 fixed & 1 mobile eddy covariance stations with zonal functional sets of key plots with chamber investigations in 5 Russian regions) and of agroecological monitoring (in representative key plots with different farming practice in 9 RF regions) allow to do this analysis in frame of enough representative regional multi-factorial matrix of soil cover patterns, bioclimatic conditions, landscape features, and land-use history and current practice versions. Well-elaborated monitoring collaboration with the principal natural reserves in south-taiga and forest-steppe zones provides process-based interaction with long-term data on zonal climatic, landscape and soil features necessary to test the process, functional and evaluation models in the specific conditions of each bioclimatic zone. The dominated erosion and dehumification trends have been essentially activated for last 3-4 decades due to hu¬mus negative balance around 0.6-0.7 t ha-1year-1 and connected disaggregation with annual rate between 1 and 25 g/kg for aggregates 10-0.25 mm. "Standard" monitoring objects and regionally generalized data showed characteristic for Chernozems 2-2.5 % humus drop during this period and active processes of CO2 emission and humus eluvial-illuvial profile redistribution too. Forest-steppe Chernozems are usually characterized by higher stability than steppe ones. The ratio between erosive and biological losses in humus stock can be ten¬tatively estimated as fifty-fifty with essential variability within slope landscape. Both these processes have essential impacts on different sets of soil environmental and agroecological functions (including atmospheric air, surface and ground water quality, biodiversity and profitability) that we need to understand and predict. A drop of humus content below threshold values (for different soils between 1.5 and 6%) considerably reduces not only soil environmental regulation functions but also effectiveness of used fertilizers, crop yield quality and possibility of sustainable agricultural land-use. The carried out long-term researches of representative natural, rural and urban landscapes in Tver, Yaroslavl, Vladimir, Moscow, Kaluga, Kursk, Belgorod, Tambov, Voronezh and Saratov regions give us validation and ranging of the limiting factors of the elementary soil cover patterns current features and transformation processes, environmental functions and agroecological quality, monitoring results functional interpretation, spatial and temporal interpolation and extrapolation. These data allow essentially improve our understanding and quantitative assessments of the regional and within-field variability of land agroecological and environmental functions that is crucial for agroecosystem services evaluation, current and planned land-use environmental impacts, and DSS development for land-use agroecological optimizing taking into attention the regional and local landscapes features and most realistic scenarios of climate change and agro-technology transfer. Developed and verified within the project regionally adapted DSS (ACORD-R - RF #2012612944) gives effective informational and methodological support for land-use agroecological optimization.

  1. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2006-01-01

    It has been long known that land surface topography governs both groundwater flow patterns at the regional-to-continental scale and on smaller scales such as in the hyporheic zone of streams. Here we show that the surface topography can be separated in a Fourier-series spectrum that provides an exact solution of the underlying three-dimensional groundwater flows. The new spectral solution offers a practical tool for fast calculation of subsurface flows in different hydrological applications and provides a theoretical platform for advancing conceptual understanding of the effect of landscape topography on subsurface flows. We also show how the spectrum of surface topography influences the residence time distribution for subsurface flows. The study indicates that the subsurface head variation decays exponentially with depth faster than it would with equivalent two-dimensional features, resulting in a shallower flow interaction. Copyright 2006 by the American Geophysical Union.

  2. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements

    NASA Astrophysics Data System (ADS)

    Deuzé, J. L.; BréOn, F. M.; Devaux, C.; Goloub, P.; Herman, M.; Lafrance, B.; Maignan, F.; Marchand, A.; Nadal, F.; Perry, G.; Tanré, D.

    2001-03-01

    The polarization measurements achieved by the POLDER instrument on ADEOS-1 are used for the remote sensing of aerosols over land surfaces. The key advantage of using polarized observations is their ability to systematically correct for the ground contribution, whereas the classical approach using natural light fails. The estimation of land surface polarizing properties from POLDER has been examined in a previous paper. Here we consider how the optical thickness δ0 and Ångstrom exponent α of aerosols are derived from the polarized light backscattered by the particles. The inversion scheme is detailed, and illustrative results are presented. Maps of the retrieved optical thickness allow for detection of large aerosol features, and in the case of small aerosols, the δ0 and α retrievals are consistent with correlative ground-based measurements. However, because polarized light stems mainly from small particles, the results are biased for aerosol distributions containing coarser modes of particles. To overcome this limitation, an aerosol index defined as the product AI = δ0α is proposed. Theoretical analysis and comparison with ground-based measurements suggest that AI is approximately the same when using δ0, and α is related to the entire aerosol size distribution or derived from the polarized light originating from the small polarizing particles alone. This invariance is specially assessed by testing the continuity of AI across coastlines, given the unbiased properties of aerosol retrieval over ocean. Although reducing the information concerning the aerosols, this single parameter allows a link between the POLDER aerosol surveys over land and ocean. POLDER aerosol index global maps enable the monitoring of major aerosol sources over continental areas.

  3. Surface-water-quality assessment of the Yakima River basin, Washington; project description

    USGS Publications Warehouse

    McKenzie, S.W.; Rinella, J.F.

    1987-01-01

    In April 1986, the U.S. Geological Survey began the National Water Quality Assessment program to: (1) provide a nationally consistent description of the current status of water quality, (2) define water quality trends that have occurred over recent decades, and (3) relate past and present water quality conditions to relevant natural features, the history of land and water use, and land management and waste management practices. At present (1987), The National Water Quality Assessment program is in a pilot studies phase, in which assessment concepts and approaches are being tested and modified to prepare for possible full implementation of the program. Seven pilot projects (four surface water projects and three groundwater projects) have been started. The Yakima River basin in Washington is one of the pilot surface water project areas. The Yakima River basin drains in area of 6,155 sq mi and contains about 1,900 river mi of perennial streams. Major land use activities include growing and harvesting timber, dryland pasture grazing, intense farming and irrigated agriculture, and urbanization. Water quality issues that result from these land uses include potentially large concentrations of suspended sediment, bacteria, nutrients, pesticides, and trace elements that may affect water used for human consumption, fish propagation and passage, contact recreation, livestock watering, and irrigation. Data will be collected in a nine year cycle. The first three years of the cycle will be a period of concentrated data acquisition and interpretation. For the next six years, sample collection will be done at a much lower level of intensity to document the occurrence of any gross changes in water quality. This nine year cycle would then be repeated. Three types of sampling activities will be used for data acquisition: fixed location station sampling, synoptic sampling, and intensive reach studies. (Lantz-PTT)

  4. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data

    PubMed Central

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2016-01-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting. PMID:27667901

  5. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data.

    PubMed

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2015-08-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.

  6. The Mars NetLander panoramic camera

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf; Langevin, Yves; Hauber, Ernst; Oberst, Jürgen; Grothues, Hans-Georg; Hoffmann, Harald; Soufflot, Alain; Bertaux, Jean-Loup; Dimarellis, Emmanuel; Mottola, Stefano; Bibring, Jean-Pierre; Neukum, Gerhard; Albertz, Jörg; Masson, Philippe; Pinet, Patrick; Lamy, Philippe; Formisano, Vittorio

    2000-10-01

    The panoramic camera (PanCam) imaging experiment is designed to obtain high-resolution multispectral stereoscopic panoramic images from each of the four Mars NetLander 2005 sites. The main scientific objectives to be addressed by the PanCam experiment are (1) to locate the landing sites and support the NetLander network sciences, (2) to geologically investigate and map the landing sites, and (3) to study the properties of the atmosphere and of variable phenomena. To place in situ measurements at a landing site into a proper regional context, it is necessary to determine the lander orientation on ground and to exactly locate the position of the landing site with respect to the available cartographic database. This is not possible by tracking alone due to the lack of on-ground orientation and the so-called map-tie problem. Images as provided by the PanCam allow to determine accurate tilt and north directions for each lander and to identify the lander locations based on landmarks, which can also be recognized in appropriate orbiter imagery. With this information, it will be further possible to improve the Mars-wide geodetic control point network and the resulting geometric precision of global map products. The major geoscientific objectives of the PanCam lander images are the recognition of surface features like ripples, ridges and troughs, and the identification and characterization of different rock and surface units based on their morphology, distribution, spectral characteristics, and physical properties. The analysis of the PanCam imagery will finally result in the generation of precise map products for each of the landing sites. So far comparative geologic studies of the Martian surface are restricted to the timely separated Mars Pathfinder and the two Viking Lander Missions. Further lander missions are in preparation (Beagle-2, Mars Surveyor 03). NetLander provides the unique opportunity to nearly double the number of accessible landing site data by providing simultaneous and long-term observations at four different surface locations which becomes especially important for studies of variable surface features as well as properties and phenomena of the atmosphere. Major changes on the surface that can be detected by PanCam are caused by eolian activities and condensation processes, which directly reflect variations in the prevailing near-surface wind regime and the diurnal and seasonal volatile and dust cycles. Atmospheric studies will concentrate on the detection of clouds, measurements of the aerosol contents and the water vapor absorption at 936 nm. In order to meet these objectives, the proposed PanCam instrument is a highly miniaturized, dedicated stereo and multispectral imaging device. The camera consists of two identical camera cubes, which are arranged in a common housing at a fixed stereo base length of 11 cm. Each camera cube is equipped with a CCD frame transfer detector with 1024×1024 active pixels and optics with a focal length of 13 mm yielding a field-of-view of 53°×53° and an instantaneous filed of view of 1.1 mrad. A filter swivel with six positions provides different color band passes in the wavelength range of 400-950 nm. The camera head is mounted on top of a deployable scissors boom and can be rotated by 360° to obtain a full panorama, which is already covered by eight images. The boom raises the camera head to a final altitude of 90 cm above the surface. Most camera activities will take place within the first week and the first month of the mission. During the remainder of the mission, the camera will operate with a reduced data rate to monitor time-dependent variations on a daily basis. PanCam is a joint German/French project with contributions from DLR, Institute of Space Sensor Technology and Planetary Exploration, Berlin, Institut d'Astrophysique Spatiale, CNRS, Orsay, and Service d'Aéronomie, CNRS, Verrières-le-Buisson.

  7. New Versions of MISR Aerosol and Land Surface Products Available

    Atmospheric Science Data Center

    2018-02-14

    New Versions of MISR Aerosol and Land Surface Products Available Monday, February 12, ... the release of new versions of the MISR Level 2 (L2) Aerosol Product, the MISR L2 Land Surface Product, and the Level 3 (L3) Component Global Aerosol and Land Surface Products.   The new MISR L2 Aerosol Product ...

  8. Large-Eddy Atmosphere-Land-Surface Modelling over Heterogeneous Surfaces: Model Development and Comparison with Measurements

    NASA Astrophysics Data System (ADS)

    Shao, Yaping; Liu, Shaofeng; Schween, Jan H.; Crewell, Susanne

    2013-08-01

    A model is developed for the large-eddy simulation (LES) of heterogeneous atmosphere and land-surface processes. This couples a LES model with a land-surface scheme. New developments are made to the land-surface scheme to ensure the adequate representation of atmosphere-land-surface transfers on the large-eddy scale. These include, (1) a multi-layer canopy scheme; (2) a method for flux estimates consistent with the large-eddy subgrid closure; and (3) an appropriate soil-layer configuration. The model is then applied to a heterogeneous region with 60-m horizontal resolution and the results are compared with ground-based and airborne measurements. The simulated sensible and latent heat fluxes are found to agree well with the eddy-correlation measurements. Good agreement is also found in the modelled and observed net radiation, ground heat flux, soil temperature and moisture. Based on the model results, we study the patterns of the sensible and latent heat fluxes, how such patterns come into existence, and how large eddies propagate and destroy land-surface signals in the atmosphere. Near the surface, the flux and land-use patterns are found to be closely correlated. In the lower boundary layer, small eddies bearing land-surface signals organize and develop into larger eddies, which carry the signals to considerably higher levels. As a result, the instantaneous flux patterns appear to be unrelated to the land-use patterns, but on average, the correlation between them is significant and persistent up to about 650 m. For a given land-surface type, the scatter of the fluxes amounts to several hundred W { m }^{-2}, due to (1) large-eddy randomness; (2) rapid large-eddy and surface feedback; and (3) local advection related to surface heterogeneity.

  9. Results from Assimilating AMSR-E Soil Moisture Estimates into a Land Surface Model Using an Ensemble Kalman Filter in the Land Information System

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay B.; Crosson, William L.; Case, Jonathan L.; Hale, Robert

    2010-01-01

    Improve simulations of soil moisture/temperature, and consequently boundary layer states and processes, by assimilating AMSR-E soil moisture estimates into a coupled land surface-mesoscale model Provide a new land surface model as an option in the Land Information System (LIS)

  10. Coordination and establishment of centralized facilities and services for the University of Alaska ERTS survey of the Alaskan environment

    NASA Technical Reports Server (NTRS)

    Belon, A. E. (Principal Investigator); Miller, J. M.

    1973-01-01

    The author has identified the following significant results. Scene 1072-21173 of the Anaktuvuk Pass region of the Brooks Range, Alaska, was studied from the point of view of a resource survey for purposes of land use planning as part of the effort to develop ERTS data processing and interpretation techniques. Other data sources and surface observations were utilized to produce a resource survey of a remote and undeveloped region of Alaska. Three vegetative types are apparent: moist tundra, low brush, and high brush. Watersheds are easily defined on the multispectral imagery. Features related indirectly to economic minerals are discernible from ERTS-1 imagery supported by ground truth data. These include mountains, outwash plains and alluvial deposits, drainage patterns, lineaments and probable bedding planes. This region falls within present land class categories which are not inconsistent with the imperatives of the resources. These land class categories include native village withdrawals, regional deficiency area, national interest study area for possible inclusion in a national system, public interest areas, utility corridor, and state land selection.

  11. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China

    PubMed Central

    Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun

    2017-01-01

    Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507

  12. Surface Coatings on Lunar Volcanic Glasses

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; McKay, D. S.; Thomas,-Keprta, K. L.; Clemett, S. J.

    2007-01-01

    We are undertaking a detailed study of surface deposits on lunar volcanic glass beads. These tiny deposits formed by vapor condensation during cooling of the gases that drove the fire fountain eruptions responsible for the formation of the beads. Volcanic glass beads are present in most lunar soil samples in the returned lunar collection. The mare-composition beads formed as a result of fire-fountaining approx.3.4-3.7 Ga ago, within the age range of large-scale mare volcanism. Some samples from the Apollo 15 and Apollo 17 landing sites are enriched in volcanic spherules. Three major types of volcanic glass bead have been identified: Apollo 15 green glass, Apollo 17 orange glass, and Apollo 17 "black" glass. The Apollo 15 green glass has a primitive composition with low Ti. The high-Ti compositions of the orange and black glasses are essentially identical to each other but the black glasses are opaque because of quench crystallization. A poorly understood feature common to the Apollo 15 and 17 volcanic glasses is the presence of small deposits of unusual materials on their exterior surfaces. For example, early studies indicated that the Apollo 17 orange glasses had surface enrichments of In, Cd, Zn, Ga, Ge, Au, and Na, and possible Pb- and Zn-sulfides, but it was not possible to characterize the surface features in detail. Technological advances now permit us to examine such features in detail. Preliminary FE-TEM/X-ray studies of ultramicrotome sections of Apollo 15 green glass indicate that the surface deposits are heterogeneous and layered, with an inner layer consisting of Fe with minor S and an outer layer of Fe and no S, and scattered Zn enrichments. Layering in surface deposits has not been identified previously; it will be key to defining the history of lunar fire fountaining.

  13. Effect of water table dynamics on land surface hydrologic memory

    NASA Astrophysics Data System (ADS)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  14. Effects of Topography-based Subgrid Structures on Land Surface Modeling

    NASA Astrophysics Data System (ADS)

    Tesfa, T. K.; Ruby, L.; Brunke, M.; Thornton, P. E.; Zeng, X.; Ghan, S. J.

    2017-12-01

    Topography has major control on land surface processes through its influence on atmospheric forcing, soil and vegetation properties, network topology and drainage area. Consequently, accurate climate and land surface simulations in mountainous regions cannot be achieved without considering the effects of topographic spatial heterogeneity. To test a computationally less expensive hyper-resolution land surface modeling approach, we developed topography-based landunits within a hierarchical subgrid spatial structure to improve representation of land surface processes in the ACME Land Model (ALM) with minimal increase in computational demand, while improving the ability to capture the spatial heterogeneity of atmospheric forcing and land cover influenced by topography. This study focuses on evaluation of the impacts of the new spatial structures on modeling land surface processes. As a first step, we compare ALM simulations with and without subgrid topography and driven by grid cell mean atmospheric forcing to isolate the impacts of the subgrid topography on the simulated land surface states and fluxes. Recognizing that subgrid topography also has important effects on atmospheric processes that control temperature, radiation, and precipitation, methods are being developed to downscale atmospheric forcings. Hence in the second step, the impacts of the subgrid topographic structure on land surface modeling will be evaluated by including spatial downscaling of the atmospheric forcings. Preliminary results on the atmospheric downscaling and the effects of the new spatial structures on the ALM simulations will be presented.

  15. Autonomous Navigation Results from the Mars Exploration Rover (MER) Mission

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Johnson, Andrew; Cheng, Yang; Willson, Reg; Matthies, Larry H.

    2004-01-01

    In January, 2004, the Mars Exploration Rover (MER) mission landed two rovers, Spirit and Opportunity, on the surface of Mars. Several autonomous navigation capabilities were employed in space for the first time in this mission. ]n the Entry, Descent, and Landing (EDL) phase, both landers used a vision system called the, Descent Image Motion Estimation System (DIMES) to estimate horizontal velocity during the last 2000 meters (m) of descent, by tracking features on the ground with a downlooking camera, in order to control retro-rocket firing to reduce horizontal velocity before impact. During surface operations, the rovers navigate autonomously using stereo vision for local terrain mapping and a local, reactive planning algorithm called Grid-based Estimation of Surface Traversability Applied to Local Terrain (GESTALT) for obstacle avoidance. ]n areas of high slip, stereo vision-based visual odometry has been used to estimate rover motion, As of mid-June, Spirit had traversed 3405 m, of which 1253 m were done autonomously; Opportunity had traversed 1264 m, of which 224 m were autonomous. These results have contributed substantially to the success of the mission and paved the way for increased levels of autonomy in future missions.

  16. Sustainable land cover and terrain modification to enhance convection and precipitation in the arid region of the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Wulfmeyer, V.; Branch, O.; Adebabseh, A.; Temimi, M.

    2017-12-01

    Irrigated plantations and modified terrain can provide a sustainable means of enhancing convective rainfall in arid regions like the United Arab Emirates, or UAE, and can be used to aid ongoing cloud seeding operations through the geographic-localization of seedable cloud formation. The first method, the planting of vast irrigated plantations of hardy desert shrubs, can lead to wind convergence and vertical mixing through increased roughness and modified radiative balances. When upper-air atmospheric instability is present, these phenomena can initiate convection. The second method, increasing the elevation of moderate-sized mountains, is based on the correlation between elevation and the number of summertime convection initiation events observed in the mountains of the UAE and Oman. This augmentation of existing orographic features should therefore increase the likelihood and geographic range of convection initiation events. High-resolution simulations provide a powerful means of assessing the likely impacts of land surface modifications. Previous convection-permitting simulations have yielded some evidential support for these hypotheses, but higher resolutions down to 1 km provide more detail regarding convective processes and land surface representation. Using seasonal simulations with the WRF-NOAHMP land-atmosphere model at a 2.5 km resolution, we identify frequent zones of convergence and atmospheric instability in the UAE and select interesting cases. Using these results, as well as an agricultural feasibility study, we identify optimal plantation positions within the UAE. We then run realistic plantation scenarios for single case studies at 1 km resolution. Using the same cases, we simulate the impact of augmenting mountain elevations on convective processes, with the augmentation being achieved through GIS-based modification of the terrain data. For both methods, we assess the impacts quantitatively and qualitatively, and assess key processes and dependencies. If we can demonstrate that convective rainfall would be enhanced through feasible agricultural and engineering methods, then land surface-based weather modification deserves serious consideration as a solution for water scarcity and anthropogenic climate change.

  17. Anthropogenic modifications to drainage conditions on streamflow variability in the Wabash River basin, Indiana

    NASA Astrophysics Data System (ADS)

    Chiu, C.; Bowling, L. C.

    2011-12-01

    The Wabash River watershed is the largest watershed in Indiana and includes the longest undammed river reach east of the Mississippi River. The land use of the Wabash River basin began to significantly change from mixed woodland dominated by small lakes and wetlands to agriculture in the mid-1800s and agriculture is now the predominant land use. Over 80% of natural wetland areas were drained to facilitate better crop production through both surface and subsurface drainage applications. Quantifying the change in hydrologic response in this intensively managed landscape requires a hydrologic model that can represent wetlands, crop growth, and impervious area as well as subsurface and surface drainage enhancements, coupled with high resolution soil and topographic inputs. The Variable Infiltration Capacity (VIC) model wetland algorithm has been previously modified to incorporate spatially-varying estimates of water table distribution using a topographic index approach, as well as a simple urban representation. Now, the soil water characteristics curve and a derived drained to equilibrium moisture profile are used to improve the model's estimation of the water table. In order to represent subsurface (tile) drainage, the tile drainage component of subsurface flow is calculated when the simulated water table rises above a specified drain depth. A map of the current estimated extent of subsurface tile drainage for the Wabash River based on a decision tree classifier of soil drainage class, soil slope and agricultural land use is used to activate the new tile drainage feature in the VIC model, while wetland depressional storage capacity is extracted from digital elevation and soil information. This modified VIC model is used to evaluate the performance of model physical variations in the intensively managed hydrologic regime of the Wabash River system and to understand the role of surface and subsurface storage, and land use and land cover change on hydrologic change.

  18. Simulation of 1986 South China Sea Monsoon with a Regional Climate Model

    NASA Technical Reports Server (NTRS)

    Tao, W. -K.; Lau, W. K.-M.; Jia, Y.; Juang, H.; Wetzel, P.; Qian, J.; Chen, C.

    1999-01-01

    A Regional Land-Atmosphere Climate Simulation System (RELACS) project is being developed at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model with improved physical processes and in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water/energy cycles in the IndoChina/South China Sea (SCS) region. The Penn State/NCAR MM5 atmospheric modeling system, a state of the art atmospheric numerical model designed to simulate regional weather and climate, has been successfully coupled to the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. The original MM5 model (without PLACE) includes the option for either a simple slab soil model or a five-layer soil model (MRF) in which the soil moisture availability evolves over time. However, the MM5 soil models do not include the effects of vegetation, and thus important physical processes such as evapotranspiration and interception are precluded. The PLACE model incorporates vegetation type and has been shown in international comparisons to accurately predict evapotranspiration and runoff over a wide variety of land surfaces. The coupling of MM5 and PLACE creates a numerical modeling system with the potential to more realistically simulate atmosphere and land surface processes including land-sea interaction, regional circulations such as monsoons, and flash flood events. In addition, the Penn State/NCAR MM5 atmospheric modeling system has been: (1) coupled to the Goddard Ice Microphysical scheme; (2) coupled to a turbulent kinetic energy (TKE) scheme; (3) modified to ensure cloud budget balance; and (4) incorporated initialization with the Goddard EOS data sets at NASA/Goddard Laboratory for Atmospheres. The improved MM5 with two nested domains (60 and 20 km horizontal resolution) was used to simulate convective activity over IndoChina and the South China Sea, during the monsoon season, from May 6 to May 20, 1986. The model results captured several dominant observed features, such as twin cyclones, a depression system over the Bay of Bengal, strong south-westerly winds over IndoChina before and during the on-set of convection over the SCS, and a vortex over the SCS. Two additional MM5 runs with different land process models, Blackadar and MRF, were performed, and their results are compared to the run with PLACE. The preliminary results indicate that the MM5 results using PLACE and Blackadar are in very good agreement, but the results using MRF do not contain the south-westerly wind over IndoChina prior to the on-set of convection over the SCS.

  19. One-Water Hydrologic Flow Model (MODFLOW-OWHM)

    USGS Publications Warehouse

    Hanson, Randall T.; Boyce, Scott E.; Schmid, Wolfgang; Hughes, Joseph D.; Mehl, Steffen W.; Leake, Stanley A.; Maddock, Thomas; Niswonger, Richard G.

    2014-01-01

    The One-Water Hydrologic Flow Model (MF-OWHM) is a MODFLOW-based integrated hydrologic flow model (IHM) that is the most complete version, to date, of the MODFLOW family of hydrologic simulators needed for the analysis of a broad range of conjunctive-use issues. Conjunctive use is the combined use of groundwater and surface water. MF-OWHM allows the simulation, analysis, and management of nearly all components of human and natural water movement and use in a physically-based supply-and-demand framework. MF-OWHM is based on the Farm Process for MODFLOW-2005 (MF-FMP2) combined with Local Grid Refinement (LGR) for embedded models to allow use of the Farm Process (FMP) and Streamflow Routing (SFR) within embedded grids. MF-OWHM also includes new features such as the Surface-water Routing Process (SWR), Seawater Intrusion (SWI), and Riparian Evapotrasnpiration (RIP-ET), and new solvers such as Newton-Raphson (NWT) and nonlinear preconditioned conjugate gradient (PCGN). This IHM also includes new connectivities to expand the linkages for deformation-, flow-, and head-dependent flows. Deformation-dependent flows are simulated through the optional linkage to simulated land subsidence with a vertically deforming mesh. Flow-dependent flows now include linkages between the new SWR with SFR and FMP, as well as connectivity with embedded models for SFR and FMP through LGR. Head-dependent flows now include a modified Hydrologic Flow Barrier Package (HFB) that allows optional transient HFB capabilities, and the flow between any two layers that are adjacent along a depositional or erosional boundary or displaced along a fault. MF-OWHM represents a complete operational hydrologic model that fully links the movement and use of groundwater, surface water, and imported water for consumption by irrigated agriculture, but also of water used in urban areas and by natural vegetation. Supply and demand components of water use are analyzed under demand-driven and supply-constrained conditions. From large- to small-scale settings, MF-OWHM has the unique set of capabilities to simulate and analyze historical, present, and future conjunctive-use conditions. MF-OWHM is especially useful for the analysis of agricultural water use where few data are available for pumpage, land use, or agricultural information. The features presented in this IHM include additional linkages with SFR, SWR, Drain-Return (DRT), Multi-Node Wells (MNW1 and MNW2), and Unsaturated-Zone Flow (UZF). Thus, MF-OWHM helps to reduce the loss of water during simulation of the hydrosphere and helps to account for “all of the water everywhere and all of the time.” In addition to groundwater, surface-water, and landscape budgets, MF-OWHM provides more options for observations of land subsidence, hydraulic properties, and evapotranspiration (ET) than previous models. Detailed landscape budgets combined with output of estimates of actual evapotranspiration facilitates linkage to remotely sensed observations as input or as additional observations for parameter estimation or water-use analysis. The features of FMP have been extended to allow for temporally variable water-accounting units (farms) that can be linked to land-use models and the specification of both surface-water and groundwater allotments to facilitate sustainability analysis and connectivity to the Groundwater Management Process (GWM). An example model described in this report demonstrates the application of MF-OWHM with the addition of land subsidence and a vertically deforming mesh, delayed recharge through an unsaturated zone, rejected infiltration in a riparian area, changes in demand caused by deficiency in supply, and changes in multi-aquifer pumpage caused by constraints imposed through the Farm Process and the MNW2 Package, and changes in surface water such as runoff, streamflow, and canal flows through SFR and SWR linkages.

  20. Integrating peatlands into the coupled Canadian Land Surface Scheme (CLASS) v3.6 and the Canadian Terrestrial Ecosystem Model (CTEM) v2.0

    NASA Astrophysics Data System (ADS)

    Wu, Yuanqiao; Verseghy, Diana L.; Melton, Joe R.

    2016-08-01

    Peatlands, which contain large carbon stocks that must be accounted for in the global carbon budget, are poorly represented in many earth system models. We integrated peatlands into the coupled Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM), which together simulate the fluxes of water, energy, and CO2 at the land surface-atmosphere boundary in the family of Canadian Earth system models (CanESMs). New components and algorithms were added to represent the unique features of peatlands, such as their characteristic ground floor vegetation (mosses), the slow decomposition of carbon in the water-logged soils and the interaction between the water, energy, and carbon cycles. This paper presents the modifications introduced into the CLASS-CTEM modelling framework together with site-level evaluations of the model performance for simulated water, energy and carbon fluxes at eight different peatland sites. The simulated daily gross primary production (GPP) and ecosystem respiration are well correlated with observations, with values of the Pearson correlation coefficient higher than 0.8 and 0.75 respectively. The simulated mean annual net ecosystem production at the eight test sites is 87 g C m-2 yr-1, which is 22 g C m-2 yr-1 higher than the observed annual mean. The general peatland model compares well with other site-level and regional-level models for peatlands, and is able to represent bogs and fens under a range of climatic and geographical conditions.

  1. Integrating peatlands into the coupled Canadian Land Surface Scheme (CLASS) v3.6 and the Canadian Terrestrial Ecosystem Model (CTEM) v2.0

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Verseghy, D. L.; Melton, J. R.

    2015-11-01

    Peatlands, which contain large carbon stocks that must be accounted for in the global carbon budget, are poorly represented in many earth system models. We integrated peatlands into the coupled Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM), which together simulate the fluxes of water, energy and CO2 at the land surface-atmosphere boundary in the family of Canadian Earth System Models (CanESMs). New components and algorithms were added to represent the unique features of peatlands, such as their characteristic ground floor vegetation (mosses), the slow decomposition of carbon in the water-logged soils and the interaction between the water, energy and carbon cycles. This paper presents the modifications introduced into the CLASS-CTEM modelling framework together with site-level evaluations of the model performance for simulated water, energy and carbon fluxes at eight different peatland sites. The simulated daily gross primary production and ecosystem respiration are well correlated with observations, with values of the Pearson correlation coefficient higher than 0.8 and 0.75 respectively. The simulated mean annual net ecosystem production at the eight test sites is 87 g C m-2 yr-1, which is 22 g C m-2 yr-1 higher than the observed annual mean. The general peatland model compares well with other site-level and regional-level models for peatlands, and is able to represent bogs and fens under a range of climatic and geographical conditions.

  2. Overhead View of Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Planimetric (overhead view) map of the landing site, to a distance of 20 meters from the spacecraft. North is at the top in this and Plates 3-5. To produce this map, images were geometrically projected onto an assumed mean surface representing the ground. Features above the ground plane (primarily rocks) therefore appear displaced radially outward; the amount of distortion increases systematically with distance. The upper surfaces of the lander and rover also appear enlarged and displaced because of their height. Primary grid (white) is based on the Landing Site Cartographic (LSC) coordinate system, defined with X eastward, Y north, and Z up, and origin located at the mean ground surface immediately beneath the deployed position of the IMP camera gimbal center. Secondary ticks (cyan) are based on the Mars local level (LL) frame, which has X north, Y east, Z down, with origin in the center of the lander baseplate. Rover positions (including APXS measurements) are commonly reported in the LL frame. Yellow grid shows polar coordinates based on the LSC system. Cartographic image processing by U.S. Geological Survey.

    NOTE: original caption as published in Science Magazine

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  3. Remote sensing requirements as suggested by watershed model sensitivity analyses

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Rango, A.; Ormsby, J. P.; Ambaruch, R.

    1975-01-01

    A continuous simulation watershed model has been used to perform sensitivity analyses that provide guidance in defining remote sensing requirements for the monitoring of watershed features and processes. The results show that out of 26 input parameters having meaningful effects on simulated runoff, 6 appear to be obtainable with existing remote sensing techniques. Of these six parameters, 3 require the measurement of the areal extent of surface features (impervious areas, water bodies, and the extent of forested area), two require the descrimination of land use that can be related to overland flow roughness coefficient or the density of vegetation so as to estimate the magnitude of precipitation interception, and one parameter requires the measurement of distance to get the length over which overland flow typically occurs. Observational goals are also suggested for monitoring such fundamental watershed processes as precipitation, soil moisture, and evapotranspiration. A case study on the Patuxent River in Maryland shows that runoff simulation is improved if recent satellite land use observations are used as model inputs as opposed to less timely topographic map information.

  4. Surficial Geologic Map of the Clinton-Concord-Grafton-Medfield 12-Quadrangle Area in East Central Massachusetts

    USGS Publications Warehouse

    Stone, Janet R.; Stone, Byron D.

    2006-01-01

    The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of twelve 7.5-minute quadrangles (total 660 square miles) in east-central Massachusetts. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (grain size, sedimentary structures, mineral and rock-particle composition), constructional geomorphic features, stratigraphic relationships, and age. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for water resources, construction aggregate resources, earth-surface hazards assessments, and land-use decisions. This compilation of surficial geologic materials is an interim product that defines the areas of exposed bedrock, and the boundaries between glacial till, glacial stratified deposits, and overlying postglacial deposits. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), a regional map at 1:50,000 scale (PDF), quadrangle maps at 1:24,000 scale (12 PDF files), GIS data layers (ArcGIS shapefiles), scanned topographic base maps (TIF), metadata for the GIS layers, and a readme.txt file.

  5. Lunar prospector epithermal neutrons from impact craters and landing sites: Implications for surface maturity and hydrogen distribution

    USGS Publications Warehouse

    Johnson, J. R.; Feldman, W.C.; Lawrence, D.J.; Maurice, S.; Swindle, T.D.; Lucey, P.G.

    2002-01-01

    Initial studies of neutron spectrometer data returned by Lunar Prospector concentrated on the discovery of enhanced hydrogen abundances near both lunar poles. However, the nonpolar data exhibit intriguing patterns that appear spatially correlated with surface features such as young impact craters (e.g., Tycho). Such immature crater materials may have low hydrogen contents because of their relative lack of exposure to solar wind-implanted volatiles. We tested this hypothesis by comparing epithermal* neutron counts (i.e., epithermal -0.057 ?? thermal neutrons) for Copernican-age craters classified as relatively young, intermediate, and old (as determined by previous studies of Clementine optical maturity variations). The epithermal* counts of the crater and continuous ejecta regions suggest that the youngest impact materials are relatively devoid of hydrogen in the upper 1 m of regolith. We also show that the mean hydrogen contents measured in Apollo and Luna landing site samples are only moderately well correlated to the epithermal* neutron counts at the landing sites, likely owing to the effects of rare earth elements. These results suggest that further work is required to define better how hydrogen distribution can be revealed by epithermal neutrons in order to understand more fully the nature and sources (e.g., solar wind, meteorite impacts) of volatiles in the lunar regolith.

  6. NCA-LDAS: A Terrestrial Water Analysis System Enabling Sustained Assessment and Dissemination of National Climate Indicators

    NASA Astrophysics Data System (ADS)

    Jasinski, M. F.; Kumar, S.; Peters-Lidard, C. D.; Arsenault, K. R.; Beaudoing, H. K.; Bolten, J. D.; Borak, J.; Kempler, S.; Li, B.; Mocko, D. M.; Rodell, M.; Rui, H.; Silberstein, D. S.; Teng, W. L.; Vollmer, B.

    2016-12-01

    The National Climate Assessment - Land Data Assimilation System, or NCA-LDAS, is an integrated terrestrial water analysis system created as an end-to-end enabling tool for sustained assessment and dissemination of terrestrial hydrologic indicators in support of the NCA. The primary features are i) gridded, daily time series of over forty hydrologic variables including terrestrial water and energy balance stores, states and fluxes over the continental U.S. derived from land surface modeling with multivariate satellite data record assimilation (1979-2015), ii) estimated trends of the principal water balance components over a wide range of scales and locations, and iii) public dissemination of all NCA-LDAS model forcings, and input and output data products through dedicated NCA-LDAS and NASA GES-DISC websites. NCA-LDAS supports sustained assessment of our national terrestrial hydrologic climate for improved scientific understanding, and the adaptation and management of water resources and related energy sectors. This presentation provides an overview of the NCA-LDAS system together with an evaluation of the initial release of NCA-LDAS data products and trends using two land surface models; Noah Ver. 3.3 and Catchment Ver. Fortuna 2.5, and a listing of several available pathways for public access and visualization of NCA-LDAS background information and data products.

  7. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    NASA Astrophysics Data System (ADS)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  8. Impact of land cover change on the environmental hydrology characteristics in Kelantan river basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Saadatkhah, Nader; Mansor, Shattri; Khuzaimah, Zailani; Asmat, Arnis; Adnan, Noraizam; Adam, Siti Noradzah

    2016-09-01

    Changing the land cover/ land use has serious environmental impacts affecting the ecosystem in Malaysia. The impact of land cover changes on the environmental functions such as surface water, loss water, and soil moisture is considered in this paper on the Kelantan river basin. The study area at the east coast of the peninsular Malaysia has suffered significant land cover changes in the recent years. The current research tried to assess the impact of land cover changes in the study area focused on the surface water, loss water, and soil moisture from different land use classes and the potential impact of land cover changes on the ecosystem of Kelantan river basin. To simulate the impact of land cover changes on the environmental hydrology characteristics, a deterministic regional modeling were employed in this study based on five approaches, i.e. (1) Land cover classification based on Landsat images; (2) assessment of land cover changes during last three decades; (3) Calculation the rate of water Loss/ Infiltration; (4) Assessment of hydrological and mechanical effects of the land cover changes on the surface water; and (5) evaluation the impact of land cover changes on the ecosystem of the study area. Assessment of land cover impact on the environmental hydrology was computed with the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) based on the transient infiltration, and subsequently changes in the surface water, due to precipitation events. The results showed the direct increased in surface water from development area, agricultural area, and grassland regions compared with surface water from other land covered areas in the study area. The urban areas or lower planting density areas tend to increase for surface water during the monsoon seasons, whereas the inter flow from forested and secondary jungle areas contributes to the normal surface water.

  9. Translation of Land Surface Model Accuracy and Uncertainty into Coupled Land-Atmosphere Prediction

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A.; Kumar, Sujay; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Zhou, Shuija

    2012-01-01

    Land-atmosphere (L-A) Interactions playa critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (US-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF Simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.

  10. Digital photogrammetric analysis of the IMP camera images: Mapping the Mars Pathfinder landing site in three dimensions

    USGS Publications Warehouse

    Kirk, R.L.; Howington-Kraus, E.; Hare, T.; Dorrer, E.; Cook, D.; Becker, K.; Thompson, K.; Redding, B.; Blue, J.; Galuszka, D.; Lee, E.M.; Gaddis, L.R.; Johnson, J. R.; Soderblom, L.A.; Ward, A.W.; Smith, P.H.; Britt, D.T.

    1999-01-01

    This paper describes our photogrammetric analysis of the Imager for Mars Pathfinder data, part of a broader program of mapping the Mars Pathfinder landing site in support of geoscience investigations. This analysis, carried out primarily with a commercial digital photogrammetric system, supported by our in-house Integrated Software for Imagers and Spectrometers (ISIS), consists of three steps: (1) geometric control: simultaneous solution for refined estimates of camera positions and pointing plus three-dimensional (3-D) coordinates of ???103 features sitewide, based on the measured image coordinates of those features; (2) topographic modeling: identification of ???3 ?? 105 closely spaced points in the images and calculation (based on camera parameters from step 1) of their 3-D coordinates, yielding digital terrain models (DTMs); and (3) geometric manipulation of the data: combination of the DTMs from different stereo pairs into a sitewide model, and reprojection of image data to remove parallax between the different spectral filters in the two cameras and to provide an undistorted planimetric view of the site. These processes are described in detail and example products are shown. Plans for combining the photogrammetrically derived topographic data with spectrophotometry are also described. These include photometric modeling using surface orientations from the DTM to study surface microtextures and improve the accuracy of spectral measurements, and photoclinometry to refine the DTM to single-pixel resolution where photometric properties are sufficiently uniform. Finally, the inclusion of rover images in a joint photogrammetric analysis with IMP images is described. This challenging task will provide coverage of areas hidden to the IMP, but accurate ranging of distant features can be achieved only if the lander is also visible in the rover image used. Copyright 1999 by the American Geophysical Union.

  11. Land Covers Classification Based on Random Forest Method Using Features from Full-Waveform LIDAR Data

    NASA Astrophysics Data System (ADS)

    Ma, L.; Zhou, M.; Li, C.

    2017-09-01

    In this study, a Random Forest (RF) based land covers classification method is presented to predict the types of land covers in Miyun area. The returned full-waveforms which were acquired by a LiteMapper 5600 airborne LiDAR system were processed, including waveform filtering, waveform decomposition and features extraction. The commonly used features that were distance, intensity, Full Width at Half Maximum (FWHM), skewness and kurtosis were extracted. These waveform features were used as attributes of training data for generating the RF prediction model. The RF prediction model was applied to predict the types of land covers in Miyun area as trees, buildings, farmland and ground. The classification results of these four types of land covers were obtained according to the ground truth information acquired from CCD image data of the same region. The RF classification results were compared with that of SVM method and show better results. The RF classification accuracy reached 89.73% and the classification Kappa was 0.8631.

  12. Spectral-analysis-based extraction of land disturbances arising from oil and gas development in diverse landscapes

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Lantz, Nicholas; Guindon, Bert; Jiao, Xianfen

    2017-01-01

    Accurate and frequent monitoring of land surface changes arising from oil and gas exploration and extraction is a key requirement for the responsible and sustainable development of these resources. Petroleum deposits typically extend over large geographic regions but much of the infrastructure required for oil and gas recovery takes the form of numerous small-scale features (e.g., well sites, access roads, etc.) scattered over the landscape. Increasing exploitation of oil and gas deposits will increase the presence of these disturbances in heavily populated regions. An object-based approach is proposed to utilize RapidEye satellite imagery to delineate well sites and related access roads in diverse complex landscapes, where land surface changes also arise from other human activities, such as forest logging and agriculture. A simplified object-based change vector approach, adaptable to operational use, is introduced to identify the disturbances on land based on red-green spectral response and spatial attributes of candidate object size and proximity to roads. Testing of the techniques has been undertaken with RapidEye multitemporal imagery in two test sites located at Alberta, Canada: one was a predominant natural forest landscape and the other landscape dominated by intensive agricultural activities. Accuracies of 84% and 73%, respectively, have been achieved for the identification of well site and access road infrastructure of the two sites based on fully automated processing. Limited manual relabeling of selected image segments can improve these accuracies to 95%.

  13. Systematic Biases of Present-day's Land Surface Air Temperature and Precipitation and Associated Tendency of Future Projection in the Asia Monsoon of the CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ose, T.

    2016-12-01

    Seasonally varying land surface air temperature (SAT) is basically responsible for the occurrence of the Asia Monsoon precipitation whereas the precipitation may play more important roles in the appearance and variability of the Asia Monsoon circulations. A simple and basic analysis on model biases of land SAT simulations over the Eurasian Continent is done to find necessary improvements of land surface treatment in the models, their relationship with model precipitation and their influences to future projections. Specifically, the Empirical Orthogonal Function (EOF) analysis is applied to land SATs of the CMIP5 present-day's simulation (the June-July-August average during 1975-1999) ensemble. Associated biases of precipitation and other Asia Monsoon elements are obtained by the regression method onto the obtained EOF coefficients. The first EOF is the SAT bias over the dry region of the Eurasia. Positive deviations of the 1st EOF coefficient indicate northwestward shift of the Asia Monsoon System; northwestward (or inner-continent-ward) shifts of precipitation, the Tibetan High, the low-level jet, the Pacific High and so on. The second EOF is the SAT bias over the northeast Eurasia. It is interesting that warmer land SAT bias over the northeast Asia is related to more wet condition over East Asia like in early summer; southward shift of westerly jet and precipitation band in East Asia. The third one indicates the SAT bias over the Eurasian region between the 1st and 2nd EOF SAT regions. However, this EOF may be characterized by the accompanied model precipitation bias over the subtropical Northwest Pacific like in late summer; northeastward shift of upper westerly jet in the eastern Asia and the weak Pacific High in the subtropical Northwest Pacific. The most intrigued feature is a connection of the 3rd EOF with the future change of SAT in the extra-tropical Northern Hemisphere in the CMIP5 projections. This fact may indicate that precipitation climatology in the Asia Monsoon is an important factor in the heat budget of the northern summer in the future change as well as the present-day simulation.

  14. Land Surface Data Assimilation

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2012-12-01

    Information about land surface water, energy and carbon conditions is of critical importance to real-world applications such as agricultural production, water resource management, flood prediction, water supply, weather and climate forecasting, and environmental preservation. While ground-based observational networks are improving, the only practical way to observe these land surface states on continental to global scales is via satellites. Remote sensing can make spatially comprehensive measurements of various components of the terrestrial system, but it cannot provide information on the entire system (e.g. evaporation), and the observations represent only an instant in time. Land surface process models may be used to predict temporal and spatial terrestrial dynamics, but these predictions are often poor, due to model initialization, parameter and forcing, and physics errors. Therefore, an attractive prospect is to combine the strengths of land surface models and observations (and minimize the weaknesses) to provide a superior terrestrial state estimate. This is the goal of land surface data assimilation. Data Assimilation combines observations into a dynamical model, using the model's equations to provide time continuity and coupling between the estimated fields. Land surface data assimilation aims to utilize both our land surface process knowledge, as embodied in a land surface model, and information that can be gained from observations. Both model predictions and observations are imperfect and we wish to use both synergistically to obtain a more accurate result. Moreover, both contain different kinds of information, that when used together, provide an accuracy level that cannot be obtained individually. Model biases can be mitigated using a complementary calibration and parameterization process. Limited point measurements are often used to calibrate the model(s) and validate the assimilation results. This presentation will provide a brief background on land surface observation, modeling and data assimilation, followed by a discussion of various hydrologic data assimilation challenges, and finally conclude with several land surface data assimilation case studies.

  15. Maps of the Martian Landing Sites and Rover Traverses: Viking 1 and 2, Mars Pathfinder, and Phoenix Landers, and the Mars Exploration Rovers.

    NASA Astrophysics Data System (ADS)

    Parker, T. J.; Calef, F. J., III; Deen, R. G.; Gengl, H.

    2016-12-01

    The traverse maps produced tactically for the MER and MSL rover missions are the first step in placing the observations made by each vehicle into a local and regional geologic context. For the MER, Phoenix and MSL missions, 25cm/pixel HiRISE data is available for accurately localizing the vehicles. Viking and Mars Pathfinder, however, relied on Viking Orbiter images of several tens of m/pixel to triangulate to horizon features visible both from the ground and from orbit. After Pathfinder, MGS MOC images became available for these landing sites, enabling much better correlations to horizon features and localization predictions to be made, that were then corroborated with HiRISE images beginning 9 years ago. By combining topography data from MGS, Mars Express, and stereo processing of MRO CTX and HiRISE images into orthomosaics (ORRs) and digital elevation models (DEMs), it is possible to localize all the landers and rover positions to an accuracy of a few tens of meters with respect to the Mars global control net, and to better than half a meter with respect to other features within a HiRISE orthomosaic. JPL's MIPL produces point clouds of the MER Navcam stereo images that can be processed into 1cm/pixel ORR/DEMs that are then georeferenced to a HiRISE/CTX base map and DEM. This allows compilation of seamless mosaics of the lander and rover camera-based ORR/DEMs with the HiRISE ORR/DEM that can be viewed in 3 dimensions with GIS programs with that capability. We are re-processing the Viking Lander, Mars Pathfinder, and Phoenix lander data to allow similar ORR/DEM products to be made for those missions. For the fixed landers and Spirit, we will compile merged surface/CTX/HiRISE ORR/DEMs, that will enable accurate local and regional mapping of these landing sites, and allow comparisons of the results from these missions to be made with current and future surface missions.

  16. Constraining the JULES land-surface model for different land-use types using citizen-science generated hydrological data

    NASA Astrophysics Data System (ADS)

    Chou, H. K.; Ochoa-Tocachi, B. F.; Buytaert, W.

    2017-12-01

    Community land surface models such as JULES are increasingly used for hydrological assessment because of their state-of-the-art representation of land-surface processes. However, a major weakness of JULES and other land surface models is the limited number of land surface parameterizations that is available. Therefore, this study explores the use of data from a network of catchments under homogeneous land-use to generate parameter "libraries" to extent the land surface parameterizations of JULES. The network (called iMHEA) is part of a grassroots initiative to characterise the hydrological response of different Andean ecosystems, and collects data on streamflow, precipitation, and several weather variables at a high temporal resolution. The tropical Andes are a useful case study because of the complexity of meteorological and geographical conditions combined with extremely heterogeneous land-use that result in a wide range of hydrological responses. We then calibrated JULES for each land-use represented in the iMHEA dataset. For the individual land-use types, the results show improved simulations of streamflow when using the calibrated parameters with respect to default values. In particular, the partitioning between surface and subsurface flows can be improved. But also, on a regional scale, hydrological modelling was greatly benefitted from constraining parameters using such distributed citizen-science generated streamflow data. This study demonstrates the modelling and prediction on regional hydrology by integrating citizen science and land surface model. In the context of hydrological study, the limitation of data scarcity could be solved indeed by using this framework. Improved predictions of such impacts could be leveraged by catchment managers to guide watershed interventions, to evaluate their effectiveness, and to minimize risks.

  17. Estimating morning changes in land surface temperature from MODIS day/night land surface temperature: Applications for surface energy balance modeling

    USDA-ARS?s Scientific Manuscript database

    Observations of land surface temperature (LST) are crucial for the monitoring of surface energy fluxes from satellite. Methods that require high temporal resolution LST observations (e.g., from geostationary orbit) can be difficult to apply globally because several geostationary sensors are required...

  18. A COUPLED LAND-SURFACE AND DRY DEPOSITION MODEL AND COMPARISON TO FIELD MEASUREMENTS OF SURFACE HEAT, MOISTURE, AND OZONE FLUXES

    EPA Science Inventory

    We have developed a coupled land-surface and dry deposition model for realistic treatment of surface fluxes of heat, moisture, and chemical dry deposition within a comprehensive air quality modeling system. A new land-surface model (LSM) with explicit treatment of soil moisture...

  19. Climate and the equilibrium state of land surface hydrology parameterizations

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Eagleson, Peter S.

    1991-01-01

    For given climatic rates of precipitation and potential evaporation, the land surface hydrology parameterizations of atmospheric general circulation models will maintain soil-water storage conditions that balance the moisture input and output. The surface relative soil saturation for such climatic conditions serves as a measure of the land surface parameterization state under a given forcing. The equilibrium value of this variable for alternate parameterizations of land surface hydrology are determined as a function of climate and the sensitivity of the surface to shifts and changes in climatic forcing are estimated.

  20. Multi-temporal analysis of land surface temperature in highly urbanized districts

    NASA Astrophysics Data System (ADS)

    Kaya, S.; Celik, B.; Sertel, E.; Bayram, B.; Seker, D. Z.

    2017-12-01

    Istanbul is one of the largest cities around the world with population over 15 million and it has 39 districts. Due to high immigration rate after the 1980s, parallel to the urbanization rapid population increase has occurred in some of these districts. Thus, a significant increase in land surface temperature were monitored and this subject became one of the most popular subject of different researches. Natural landscapes transformed into residential areas with impervious surfaces that causes rise in land surface temperatures which is one of the component of urban heat islands. This study focuses on determining the land use/land cover changes and land surface temperature in highly urbanized districts for last 32 years and examining the relationship between these two parameters using multi-temporal optical and thermal remotely sensed data. In this study, Landsat5 Thematic Mapper and Landsat8 OLI/TIR imagery with acquisition dates June 1984 and June 2016 were used. In order to assess the land use/cover change between 1984 and 2016, Vegetation Impervious Surface-soil (V-I-S) model is used. Each end-member spectra are extracted from ASTER spectral library. Additionally, V-I-S model, NDVI, NDBI and NDBaI indices have been derived for further investigation of land cover changes. The results of the study, presented that in the last 32 years, the amount of impervious surfaces substantially increased along with land surface temperatures.

  1. Mars Pathfinder Landing Site and Surroundings

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Mars Pathfinder landed on Mars on July 4, 1997, and continued operating until Sept. 27 of that year. The landing site is on an ancient flood plain of the Ares and Tiu outflow channels. The High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter took an image on Dec. 21, 2006, that provides unprecedented detail of the geology of the region and hardware on the surface.

    [figure removed for brevity, see original site] HiRISE Image This is the entire image. The crater at center bottom was unofficially named 'Big Crater' by the Pathfinder team. Its wall was visible from Pathfinder, located 3 kilometers (2 miles) to the north. The two bright features to the upper left of Big Crater are the 'Twin Peaks,' also observed by Pathfinder. The bright mound to the upper right of the Twin Peaks is 'North Knob,' seen in Pathfinder images as peaking over the horizon.

    At this scale there is no obvious geologic evidence of an ancient flood. Rather, impact craters dominate the scene, attesting to an old surface. The age is probably on the order of 1.8 billion to 3.5 billion years, when the Ares and Tiu floods are estimated to have occurred. Wind-formed linear ripples and dunes are seen throughout and are concentrated within craters. Sets of polygonal ridges of enigmatic origin are seen east of the Pathfinder lander. Rocks are visible over the entire image, with heavy concentrations near fresh-looking craters. Most of them are probably blocks tossed outward by crater-forming impacts.

    The complete image is centered at 19.1 degrees north latitude, 326.8 degrees east longitude. The range to the target site was 284.7 kilometers (177.9 miles). At this distance the image scale is 28.5 centimeters (11 inches) per pixel, so objects about 85 centimeters (33 inches) across are resolved. The image shown here has been map-projected to 25 centimeters (10 inches) per pixel. North is up. The image was taken at a local Mars time of 3:35 p.m., and the scene is illuminated from the west with a solar incidence angle of 52 degrees, thus the sun was about 38 degrees above the horizon. At a solar longitude of 154.0 degrees, the season on Mars is northern summer.

    [figure removed for brevity, see original site] Landing Site Region This is a close-up of the area in the vicinity of the Pathfinder landing site. Major features are named. The white box outlines the area of the image, discussed next, where hardware is seen.

    [figure removed for brevity, see original site] Hardware on the Surface This image shows the Pathfinder lander on the surface. Zooming in, one can discern the ramps, science deck, and portions of the airbags on the Pathfinder lander. (See next image for closer view.) The back shell and parachute are to the south, and four features that may be portions of the heat shield are identified. Two of these were visible from Pathfinder. At the time of that mission, the nearest object was provisionally identified as the back shell. However, analysis of the HiRISE image and reinterpretation of Pathfinder images, plus an improved understanding of how hardware looks on the Martian surface based on ground-level and orbital images of the Mars Exploration Rover landing sites, indicate that the glint is bright enough that it may be insulating material from inside the heat shield. The back shell and parachute were out of sight behind a ridge from Pathfinder's ground view. One of the three bright features, identified as heat shield debris, was also identified during the Pathfinder mission.

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Annotated Version Unannotated Version Topographic Map of Landing Site Region Portions of the HiRISE image are overlaid onto color-coded topographic maps constructed by the U.S. Geological Survey from stereo images acquired by the Imager for Mars Pathfinder on the lander. The white feature at the center is Pathfinder lander. The scales on the x and y axes are in meters, with the lander as the zero point. The color code for elevation relative to the lander is different in the left and right images, and shown in meters underneath each image. The correspondence between the overhead view revealed by HiRISE and the positions of topographic features inferred almost a decade ago from Pathfinder's horizontal view of the landscape is striking. The close-up on the right complements panoramas taken by the lander's camera, including the accompanying composite version showing the Sojourner rover at various locations it reached during the mission.

    [figure removed for brevity, see original site] Mars Pathfinder Gallery Panorama This version of the Gallery Panorama taken with the lander's Imager for Mars Pathfinder camera shows many of the locations where the mission's Sojourner rover ended a Martian day during the 12-week mission. (There was only one Sojourner. The image is a composite.) One annotation indicates the last known position of Sojourner, near the rock 'Chimp,' at the time of the final data transmission from the lander. The location labeled 'Sojourner?' has been tentatively identified as the current position of the rover based on comparison of the ground-level view with the Dec. 21, 2006, image from NASA's Mars Reconnaissance Orbiter. At the proposed current location of the rover, a feature can be discerned in the 2006 orbital image that is about the right size for Sojourner and wasn't present when the Gallery Panorama was taken. Some rocks and other features that can be identified in the orbiter's high-resolution view are labeled in this ground-level view.

    [figure removed for brevity, see original site] Topographic Perspective of Landing Site Region) This is a perspective view based on the topographic map and artificial color derived from Pathfinder and other data. The vertical scale is exaggerated by a factor of three, compared with horizontal dimensions. The white feature at center is the Pathfinder lander. It appears flat because the topographic map derived from the Imager for Mars Pathfinder data did not include the spacecraft itself.

  2. Land Surface Precipitation and Hydrology in MERRA-2

    NASA Technical Reports Server (NTRS)

    Reichle, R.; Koster, R.; Draper, C.; Liu, Q.; Girotto, M.; Mahanama, S.; De Lannoy, G.; Partyka, G.

    2017-01-01

    The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), provides global, 1-hourly estimates of land surface conditions for 1980-present at 50-km resolution. Outside of the high latitudes, MERRA-2 uses observations-based precipitation data products to correct the precipitation falling on the land surface. This paper describes the precipitation correction method and evaluates the MERRA-2 land surface precipitation and hydrology. Compared to monthly GPCPv2.2 observations, the corrected MERRA-2 precipitation (M2CORR) is better than the precipitation generated by the atmospheric models within the cyclingMERRA-2 system and the earlier MERRA reanalysis. Compared to 3-hourlyTRMM observations, the M2CORR diurnal cycle has better amplitude but less realistic phasing than MERRA-2 model-generated precipitation. Because correcting the precipitation within the coupled atmosphere-land modeling system allows the MERRA-2 near-surface air temperature and humidity to respond to the improved precipitation forcing, MERRA-2 provides more self-consistent surface meteorological data than were available from the earlier, offline MERRA-Land reanalysis. Overall, MERRA-2 land hydrology estimates are better than those of MERRA-Land and MERRA. A comparison against GRACE satellite observations of terrestrial water storage demonstrates clear improvements in MERRA-2 over MERRA in South America and Africa but also reflects known errors in the observations used to correct the MERRA-2 precipitation. The MERRA-2 and MERRA-Land surface and root zone soil moisture skill vs. in situ measurements is slightly higher than that of ERA-Interim Land and higher than that of MERRA (significantly for surface soil moisture). Snow amounts from MERRA-2 have lower bias and correlate better against reference data than do those of MERRA-Land and MERRA, with MERRA-2 skill roughly matching that of ERA-Interim Land. Seasonal anomaly R values against naturalized stream flow measurements in the United States are, on balance, highest for MERRA-2 and ERA-Interim Land, somewhat lower for MERRA-Land, and lower still for MERRA.

  3. Global patterns of groundwater table depth.

    PubMed

    Fan, Y; Li, H; Miguez-Macho, G

    2013-02-22

    Shallow groundwater affects terrestrial ecosystems by sustaining river base-flow and root-zone soil water in the absence of rain, but little is known about the global patterns of water table depth and where it provides vital support for land ecosystems. We present global observations of water table depth compiled from government archives and literature, and fill in data gaps and infer patterns and processes using a groundwater model forced by modern climate, terrain, and sea level. Patterns in water table depth explain patterns in wetlands at the global scale and vegetation gradients at regional and local scales. Overall, shallow groundwater influences 22 to 32% of global land area, including ~15% as groundwater-fed surface water features and 7 to 17% with the water table or its capillary fringe within plant rooting depths.

  4. Solution pans and linear sand bedforms on the bare-rock limestone shelf of the Campeche Bank, Yucatán Peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Goff, John A.; Gulick, Sean P. S.; Cruz, Ligia Perez; Stewart, Heather A.; Davis, Marcy; Duncan, Dan; Saustrup, Steffen; Sanford, Jason; Fucugauchi, Jaime Urrutia

    2016-04-01

    A high-resolution, near-surface geophysical survey was conducted in 2013 on the Campeche Bank, a carbonate platform offshore of Yucatán, Mexico, to provide a hazard assessment for future scientific drilling into the Chicxulub impact crater. It also provided an opportunity to obtain detailed information on the seafloor morphology and shallow stratigraphy of this understudied region. The seafloor exhibited two morphologies: (1) small-scale (<2 m) bare-rock karstic features, and (2) thin (<1 m) linear sand accumulations overlying the bedrock. Solution pans, circular to oblong depressions featured flat bottoms and steep sides, were the dominant karstic features; they are known to form subaerially by the pooling of rainwater and dissolution of carbonate. Observed pans were 10-50 cm deep and generally 1-8 m wide, but occasionally reach 15 m, significantly larger than any solution pan observed on land (maximum 6 m). These features likely grew over the course of many 10's of thousands of years in an arid environment while subaerially exposed during lowered sea levels. Surface sands are organized into linear bedforms oriented NE-SW, 10's to 100's meters wide, and kilometers long. These features are identified as sand ribbons (longitudinal bedforms), and contained asymmetric secondary transverse bedforms that indicate NE-directed flow. This orientation is incompatible with the prevalent westward current direction; we hypothesize that these features are storm-generated.

  5. Soil Moisture Processes in the Near Surface Unsaturated Zone: Experimental Investigations in Multi-scale Test Systems

    NASA Astrophysics Data System (ADS)

    Illangasekare, T. H.; Sakaki, T.; Smits, K. M.; Limsuwat, A.; Terrés-Nícoli, J. M.

    2008-12-01

    Understanding the dynamics of soil moisture distribution near the ground surface is of interest in various applications involving land-atmospheric interaction, evaporation from soils, CO2 leakage from carbon sequestration, vapor intrusion into buildings, and land mine detection. Natural soil heterogeneity in combination with water and energy fluxes at the soil surface creates complex spatial and temporal distributions of soil moisture. Even though considerable knowledge exists on how soil moisture conditions change in response to flux and energy boundary conditions, emerging problems involving land atmospheric interactions require the quantification of soil moisture variability both at high spatial and temporal resolutions. The issue of up-scaling becomes critical in all applications, as in general, field measurements are taken at sparsely distributed spatial locations that require assimilation with measurements taken using remote sensing technologies. It is our contention that the knowledge that will contribute to both improving our understanding of the fundamental processes and practical problem solution cannot be obtained easily in the field due to a number of constraints. One of these basic constraints is the inability to make measurements at very fine spatial scales at high temporal resolutions in naturally heterogeneous field systems. Also, as the natural boundary conditions at the land/atmospheric interface are not controllable in the field, even in pilot scale studies, the developed theories and tools cannot be validated for the diversity of conditions that could be expected in the field. Intermediate scale testing using soil tanks packed to represent different heterogeneous test configurations provides an attractive and cost effective alternative to investigate a class of problems involving the shallow unsaturated zone. In this presentation, we will discuss the advantages and limitations of studies conducted in both two and three dimensional intermediate scale test systems together with instrumentation and measuring techniques. The features and capabilities of a new coupled porous media/climate wind tunnel test system that allows for the study of near surface unsaturated soil moisture conditions under climate boundary conditions will also be presented with the goal of exploring opportunities to use such a facility to study some of the multi-scale problems in the near surface unsaturated zone.

  6. Soil-vegetation-atmosphere energy fluxes: Land Surface Temperature evaluation by Terra/MODIS satellite images

    NASA Astrophysics Data System (ADS)

    Telesca, V.; Copertino, V. A.; Scavone, G.; Pastore, V.; Dal Sasso, S.

    2009-04-01

    Most of the hydrological models are by now founded on field and satellite data integration. In fact, the use of remote sensing techniques supplies the frequent lack of field-measured variables and parameters required to apply evaluation models of the hydrological cycle components at a regional scale. These components are very sensitive to the climatic and surface features and conditions. Remote sensing represent a complementary contribution to in situ investigation methodologies, furnishing repeated and real time observations. Naturally, the interest of these techniques is tied up to the existence of a solid correlation among the greatness to evaluate and the remote sensing information obtainable from the images. In this context, satellite remote sensing has become a basic tool since it allows the regular monitoring of extensive areas. Different surface variables and parameters can be extracted from the combination of the multi-spectral information contained in a satellite image. Land Surface Temperature (LST) is a fundamental parameter to estimate most of the components of the hydrological cycle and the soil-atmosphere energy balance, such as the net radiation, the sensible heat flux and the actual evapotranspiration. Besides, LST maps can be used in models for the fire monitoring and prevention. The aim of this work is to realize, exploiting the contribution of the remote sensing, some Land Surface Temperature maps, applying different "Split Windows" algorithms and to compare them with the "Day/Night" LST/MODIS, to select the best algorithm to apply in a Two-Source Energy Balance model (STSEB). Integrated into a rainfall/runoff model, it can contribute to cope with problems of land management for the protection from natural hazards. In particular, the energy balance procedure will be included into a model for the ‘in continuous' simulation and the forecast of floods. Another important application of our model is tied up to the forecast of scenarios connected to drought problems. In this context, they can contribute to the planning and the realization of mitigation interventions for the desertification risk.

  7. Changing Seasonality of Tundra Vegetation and Associated Climatic Variables

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Bieniek, P.; Epstein, H. E.; Comiso, J. C.; Pinzon, J.; Tucker, C. J.; Steele, M.; Ermold, W. S.; Zhang, J.

    2014-12-01

    This study documents changes in the seasonality of tundra vegetation productivity and its associated climate variables using long-term data sets. An overall increase of Pan-Arctic tundra greenness potential corresponds to increased land surface temperatures and declining sea ice concentrations. While sea ice has continued to decline, summer land surface temperature and vegetation productivity increases have stalled during the last decade in parts of the Arctic. To understand the processes behind these features we investigate additional climate parameters. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2013. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), ocean heat content (PIOMAS, model incorporating ocean data assimilation), and snow water equivalent (GlobSnow, assimilated snow data set) are explored. We analyzed the data for the full period (1982-2013) and for two sub-periods (1982-1998 and 1999-2013), which were chosen based on the declining Pan-Arctic SWI since 1998. MaxNDVI has increased from 1982-2013 over most of the Arctic but has declined from 1999 to 2013 over western Eurasia, northern Canada, and southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but displays widespread declines over the 1999-2013 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999. SWI has large relative increases over the 1982-2013 period in eastern Canada and Greenland and strong declines in western Eurasia and southern Canadian tundra. Weekly Pan-Arctic tundra land surface temperatures warmed throughout the summer during the 1982-1998 period but display midsummer declines from 1999-2013. Weekly snow water equivalent over Arctic tundra has declined over most seasons but shows slight increases in spring in North America and during fall over Eurasia. Later spring or earlier fall snow cover can both lead to reductions in TI-NDVI. The time-varying spatial patterns of NDVI trends can be largely explained using either snow cover or land surface temperature trends.

  8. Surface Hydrology in Global River Basins in the Off-Line Land-Surface GEOS Assimilation (OLGA) System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Yang, Runhua; Houser, Paul R.

    1998-01-01

    Land surface hydrology for the Off-line Land-surface GEOS Analysis (OLGA) system and Goddard Earth Observing System (GEOS-1) Data Assimilation System (DAS) has been examined using a river routing model. The GEOS-1 DAS land-surface parameterization is very simple, using an energy balance prediction of surface temperature and prescribed soil water. OLGA uses near-surface atmospheric data from the GEOS-1 DAS to drive a more comprehensive parameterization of the land-surface physics. The two global systems are evaluated using a global river routing model. The river routing model uses climatologic surface runoff from each system to simulate the river discharge from global river basins, which can be compared to climatologic river discharge. Due to the soil hydrology, the OLGA system shows a general improvement in the simulation of river discharge compared to the GEOS-1 DAS. Snowmelt processes included in OLGA also have a positive effect on the annual cycle of river discharge and source runoff. Preliminary tests of a coupled land-atmosphere model indicate improvements to the hydrologic cycle compared to the uncoupled system. The river routing model has provided a useful tool in the evaluation of the GCM hydrologic cycle, and has helped quantify the influence of the more advanced land surface model.

  9. SMOS after 2 YEARS and a half in orbit

    NASA Astrophysics Data System (ADS)

    Kerr, Y.; Richaume, P.; Wigneron, J.-P.; Waldteufel, P.; Mecklenburg, S.; Cabot, F.; Boutin, J.; Font, J.; Reul, N.

    2012-04-01

    The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface (with an accuracy goal of 0.04 m3/m3) and ocean salinity. These two geophysical features are important as they control the energy balance between the surface and the atmosphere. Their knowledge at a global scale is of interest for climatic and weather researches in particular in improving models forecasts. The purpose of this communication is to present the mission results after more than two years in orbit as well as some outstanding results already obtained. A special attention will be devoted to level 2 products. Modeling multi-angular brightness temperatures is not straightforward. The radiative model transfer model L-MEB (L-band Microwave Emission) is used over land while different models with different approaches as to the modeling of sea surface roughness are used over ocean surfaces. Over land the approach is based on semi-empirical relationships, adapted to different type of surface. The model computes a dielectric constant leading to surface emissivity. Surface features (roughness, vegetation) are also considered in the models. However, considering SMOS spatial resolution a wide area is seen by the instrument with strong heterogeneity. The L2 soil moisture retrieval scheme takes this into account. Brightness temperatures are computed for every classes composing a working area. A weighted function is applied for the incidence angle and the antenna beam. Once the brightness temperature is computed for the entire working area, the minimizing process starts. If no soil moisture is derived (not attempted or process failed) a dielectric constant is still derived from an simplified modeled (the cardioid model). SMOS data enabled very quickly to infer Sea surface salinity fields. As salinity retrieval is quite challenging, retrieving it enable to assess very finely the characteristics of the complete system in terms of stability, drift etc. Some anomalies such as the ascending descending temperature differences, temporal drifts or land sea contamination were used to infer issues and improve data quality. The modeling has to account for several perturbing factors 'galactic reflection, sea state, atmospheric path and Faraday rotation etc…as the useful signal is quite small when compared to the perturbing factors impact as well as the instrument sensitivity. Over sea ice several studies showed that it was possible to infer thin ice (first year ice, 50 cm or less) from SMOS measurements. Other studies focused on the Antarctic plateau with also very interesting new results. This presentation will show in detail the SMOS in flight results. The retrieval schemes have been developed to reach science requirements, that is to derive the surface soil moisture over continental surface with an accuracy better than 0,04m3/m3. Over the ocean the goals are not yet satisfied but results are already getting close to the requirements.

  10. Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery

    NASA Astrophysics Data System (ADS)

    Ma, W.; Ma, Y.; Hu, Z.; Su, Z.; Wang, J.; Ishikawa, H.

    2011-05-01

    Land surface heat fluxes are essential measures of the strengths of land-atmosphere interactions involving energy, heat and water. Correct parameterization of these fluxes in climate models is critical. Despite their importance, state-of-the-art observation techniques cannot provide representative areal averages of these fluxes comparable to the model grid. Alternative methods of estimation are thus required. These alternative approaches use (satellite) observables of the land surface conditions. In this study, the Surface Energy Balance System (SEBS) algorithm was evaluated in a cold and arid environment, using land surface parameters derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Field observations and estimates from SEBS were compared in terms of net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λE) over a heterogeneous land surface. As a case study, this methodology was applied to the experimental area of the Watershed Allied Telemetry Experimental Research (WATER) project, located on the mid-to-upstream sections of the Heihe River in northwest China. ASTER data acquired between 3 May and 4 June 2008, under clear-sky conditions were used to determine the surface fluxes. Ground-based measurements of land surface heat fluxes were compared with values derived from the ASTER data. The results show that the derived surface variables and the land surface heat fluxes furnished by SEBS in different months over the study area are in good agreement with the observed land surface status under the limited cases (some cases looks poor results). So SEBS can be used to estimate turbulent heat fluxes with acceptable accuracy in areas where there is partial vegetation cover in exceptive conditions. It is very important to perform calculations using ground-based observational data for parameterization in SEBS in the future. Nevertheless, the remote-sensing results can provide improved explanations of land surface fluxes over varying land coverage at greater spatial scales.

  11. KSC-2011-5969

    NASA Image and Video Library

    2011-07-25

    CAPE CANAVERAL, Fla. -- The Apollo/Saturn V Center at NASA's Kennedy Space Center in Florida hosted a celebration on the 40th anniversary of NASA's Apollo 15 mission. Apollo 15 Commander Dave Scott (right) and Command Module Pilot Al Worden and an elite gathering of Apollo-era astronauts were on hand for the event and panel discussion. Worden circled the moon while Scott and the late Jim Irwin, the Lunar Module commander, made history when they became the first humans to drive a vehicle on the surface of the moon. They also provided extensive descriptions and photographic documentation of geologic features in the vicinity of the Hadley Rille landing site during their three days on the lunar surface. Photo credit: NASA/Kim Shiflett

  12. Lunar apennine-hadley region: geological inplications of Earth-based radar and infrared measurements.

    PubMed

    Zisk, S H; Carr, M H; Masursky, H; Shorthill, R W; Thompson, T W

    1971-08-27

    Recently completed high-resolution radar maps of the moon contain information on the decimeter-scale structure of the surface. When this information is combined with eclipse thermal-enhancement data and with high-resolution Lunar Orbiter photography, the surface morphology is revealed in some detail. A geological history for certain features and subareas can be developed, which provides one possible framework for the interpretation of the findings from the Apollo 15 landing. Frequency of decimeter-and meter-size blocks in and around lunar craters, given by the remote-sensed data, supports a multilayer structure in the Palus Putredinis mare region, as well as a great age for the bordering Apennine Mountains scarp.

  13. Lunar Apennine-Hadley region: Geological implications of earth-based radar and infrared measurements

    USGS Publications Warehouse

    Zisk, S.H.; Carr, M.H.; Masursky, H.; Shorthill, R.W.; Thompson, T.W.

    1971-01-01

    Recently completed high-resolution radar maps of the moon contain information on the decimeter-scale structure of the surface. When this information is combined with eclipse thermal-enhancement data and with high-resolution Lunar Orbiter photography, the surface morphology is revealed in some detail. A geological history for certain features and subareas can be developed, which provides one possible framework for the interpretation of the findings from the Apollo 15 landing. Frequency of decimeter- and meter-size blocks in and around lunar craters, given by the remote-sensed data, supports a multilayer structure in the Palus Putredinis mare region, as well as a great age for the bordering Apennins Mountains scarp.

  14. Orbital observations of the lunar highlands on Apollo 16 and their interpretation

    NASA Technical Reports Server (NTRS)

    Mattingly, T. K.; El-Baz, F.

    1973-01-01

    From orbital altitudes, the lunar highlands display the same surface characteristics on both the far and near sides. Rugged terra and plains forming materials all appear as if dusted with a uniform mantle. No stratigraphy or evidence of layering are seen in highland craters, with the possible exception of South Ray Crater in the Descartes landing site area. Among the discussed small scale features of the lunar highlands are: fine lineaments, that appear to be real rather than artifacts of lighting, on both horizontal and inclined surfaces; ridge-like scarps that cut across highland topography; and benches that are believed to be high lava marks rather than talus accumulates.

  15. Monitoring land use/cover changes on the Romanian Black Sea Coast

    NASA Astrophysics Data System (ADS)

    Zoran, L. F. V.; Dida, A. I.; Zoran, M. A.

    2014-10-01

    Remotely sensed satellite data are critical to understanding the coastal zones' physical and social systems interaction, complementing ground based methods and providing accurate wide range, objective and comparable, at widely-varying scales, synoptically data. For some environmental agreements remote sensing may provide the only viable means of compliance verification because the phenomena are monitored occurs over large and inaccessible geographic areas. The main aim of this paper was the assessment of coastal zone land cover/use changes based on fusion technique of satellite remote sensing imagery. The evaluation of coastal zone landscapes was based upon different sub-functions which refer to landscape features such as water, soil, land-use, buildings, groundwater, biotope types. A newly proposed sub-pixel mapping algorithm was applied to a set of multispectral and multitemporal satellite data for Danube Delta, Constantza and Black Sea coastal zone areas in Romania. A land cover classification and subsequent environmental quality analysis for change detection was done based on Landsat TM , Landsat ETM, QuickBird satellite images over 1990 to 2013 period of time. Spectral signatures of different terrain features have been used to separate and classify surface units of coastal zone and sub-coastal zone area.The change in the position of the coastline in Constantza area was examined in relation with the urban expansion. A distinction was made between landfill/sedimentation processes on the one hand and dredging/erosion processes on the other. We considered the Romanian Black Sea coastal zone dynamics in connection with the spatio-temporal variation of physical and biogeochemical processes and their influences on the environmental state in the near-shore area.

  16. AccuCLASS - an Enhancement of the Canadian Land Surface Scheme for Climate Assessment Over the Prairies

    NASA Astrophysics Data System (ADS)

    Loukili, Y.; Woodbury, A. D.; Snelgrove, K. R.

    2006-12-01

    The Canadian Land Surface Scheme (CLASS) is a numerical model developed at the Canadian Atmospheric Environment Service by Verseghy et al. [1991, 1993, 2000] and used to evaluate the vertical transfer of energy and water between the land surface and three soil layers. Among the features of CLASS its treatment of the land surface as a composite of four primary subareas: canopy and snow covered ground, snow-covered ground, canopy covered soil, and bare soil. The vegetation properties are also related via weighted averages to four types: needleaf trees, broadleaf trees, grass and crops. The incorporation of meteorological data as forcing inputs drives the model through advanced formulae describing the earth surface physics. These include canopy radiation and evapotranspiration, sensible and latent heat fluxes, rainfall interception, infiltration and ponding, snow melt and soil freezing. Such treatment allows for a realistic estimation of the surface energy balance. In this work, a major revision of CLASS, called AccuCLASS, is introduced, which permits a user specified depth and as many soil layers as needed. Almost all the physically based calculations of heat and moisture transfer in CLASS are kept and adequately extended to fit the desired refined mesh. In the resolution of soil temperature and heat flux terms, the GMRES iterative method replaced the explicit algebraic manipulation. Moreover, in the moisture regime, a water table lower boundary condition is added for the future coupling with groundwater models. The results of AccuCLASS are extensively validated for some synthetic runs under real-like seasonal weather conditions and different soil types, through inter-comparing to simulation outputs from SHAW [Flerchinger and Saxon, 1989], HYDRUS-1D [Simunek et al., 1998] and HELP [Schroeder et al., 1994] models. We find that AccuCLASS and SHAW accurately predict moisture and bottom drainage amounts; and that the original CLASS code does not have sufficient grid refinement to track precisely the unsaturated flow below the soil surface. On the other hand, when considering short time scale responses, HELP overestimates the recharge for sandy soils and underestimates it for clayey soils. An improvement of surface energy terms estimation is also carried out by AccuCLASS. Furthermore, some stand-alone tests forced by actual meteorological data over two land squares representative of the Assiniboine Delta Aquifer (ADA) show the importance of our contributions and the ability to provide a more accurate forecast of water mass balance terms. The coupling of this novel version of CLASS to other GCM components will help study objectively the cyclic drought phenomenon on the Canadian Prairies as well as its medium and long term ecological and socio-economic impacts in the region.

  17. Impact of Calibrated Land Surface Model Parameters on the Accuracy and Uncertainty of Land-Atmosphere Coupling in WRF Simulations

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Harrison, Ken; Zhou, Shujia

    2012-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (LIS-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.

  18. Advanced Land Surface Processes in the Coupled WRF/CMAQ with MODIS Input

    EPA Science Inventory

    Land surface modeling (LSM) is important in WRF/CMAQ for simulating the exchange of heat, moisture, momentum, trace atmospheric chemicals, and windblown dust between the land surface and the atmosphere.? Vegetation and soil treatments are crucial in LSM for surface energy budgets...

  19. Land surface sensitivity of monsoon depressions formed over Bay of Bengal using improved high-resolution land state

    NASA Astrophysics Data System (ADS)

    Rajesh, P. V.; Pattnaik, S.; Mohanty, U. C.; Rai, D.; Baisya, H.; Pandey, P. C.

    2017-12-01

    Monsoon depressions (MDs) constitute a large fraction of the total rainfall during the Indian summer monsoon season. In this study, the impact of high-resolution land state is addressed by assessing the evolution of inland moving depressions formed over the Bay of Bengal using a mesoscale modeling system. Improved land state is generated using High Resolution Land Data Assimilation System employing Noah-MP land-surface model. Verification of soil moisture using Soil Moisture and Ocean Salinity (SMOS) and soil temperature using tower observations demonstrate promising results. Incorporating high-resolution land state yielded least root mean squared errors with higher correlation coefficient in the surface and mid tropospheric parameters. Rainfall forecasts reveal that simulations are spatially and quantitatively in accordance with observations and provide better skill scores. The improved land surface characteristics have brought about the realistic evolution of surface, mid-tropospheric parameters, vorticity and moist static energy that facilitates the accurate MDs dynamics in the model. Composite moisture budget analysis reveals that the surface evaporation is negligible compared to moisture flux convergence of water vapor, which supplies moisture into the MDs over land. The temporal relationship between rainfall and moisture convergence show high correlation, suggesting a realistic representation of land state help restructure the moisture inflow into the system through rainfall-moisture convergence feedback.

  20. Short-Term Retrospective Land Data Assimilation Schemes

    NASA Technical Reports Server (NTRS)

    Houser, P. R.; Cosgrove, B. A.; Entin, J. K.; Lettenmaier, D.; ODonnell, G.; Mitchell, K.; Marshall, C.; Lohmann, D.; Schaake, J. C.; Duan, Q.; hide

    2000-01-01

    Subsurface moisture and temperature and snow/ice stores exhibit persistence on various time scales that has important implications for the extended prediction of climatic and hydrologic extremes. Hence, to improve their specification of the land surface, many numerical weather prediction (NWP) centers have incorporated complex land surface schemes in their forecast models. However, because land storages are integrated states, errors in NWP forcing accumulates in these stores, which leads to incorrect surface water and energy partitioning. This has motivated the development of Land Data Assimilation Schemes (LDAS) that can be used to constrain NWP surface storages. An LDAS is an uncoupled land surface scheme that is forced primarily by observations, and is therefore less affected by NWP forcing biases. The implementation of an LDAS also provides the opportunity to correct the model's trajectory using remotely-sensed observations of soil temperature, soil moisture, and snow using data assimilation methods. The inclusion of data assimilation in LDAS will greatly increase its predictive capacity, as well as provide high-quality land surface assimilated data.

  1. The Value of GRACE Data in Improving, Assessing and Evaluating Land Surface and Climate Models

    NASA Astrophysics Data System (ADS)

    Yang, Z.

    2011-12-01

    I will review how the Gravity Recovery and Climate Experiment (GRACE) satellite measurements have improved land surface models that are developed for weather, climate, and hydrological studies. GRACE-derived terrestrial water storage (TWS) changes have been successfully used to assess and evaluate the improved representations of land-surface hydrological processes such as groundwater-soil moisture interaction, frozen soil and infiltration, and the topographic control on runoff production, as evident in the simulations from the latest Noah-MP, the Community Land Model, and the Community Climate System Model. GRACE data sets have made it possible to estimate key terrestrial water storage components (snow mass, surface water, groundwater or water table depth), biomass, and surface water fluxes (evapotranspiration, solid precipitation, melt of snow/ice). Many of the examples will draw from my Land, Environment and Atmosphere Dynamics group's work on land surface model developments, snow mass retrieval, and multi-sensor snow data assimilation using the ensemble Karman filter and the ensemble Karman smoother. Finally, I will briefly outline some future directions in using GRACE in land surface modeling.

  2. Expansion of oil palm and other cash crops causes an increase of the land surface temperature in the Jambi province in Indonesia

    NASA Astrophysics Data System (ADS)

    Sabajo, Clifton R.; le Maire, Guerric; June, Tania; Meijide, Ana; Roupsard, Olivier; Knohl, Alexander

    2017-10-01

    Indonesia is currently one of the regions with the highest transformation rate of land surface worldwide related to the expansion of oil palm plantations and other cash crops replacing forests on large scales. Land cover changes, which modify land surface properties, have a direct effect on the land surface temperature (LST), a key driver for many ecological functions. Despite the large historic land transformation in Indonesia toward oil palm and other cash crops and governmental plans for future expansion, this is the first study so far to quantify the impacts of land transformation on the LST in Indonesia. We analyze LST from the thermal band of a Landsat image and produce a high-resolution surface temperature map (30 m) for the lowlands of the Jambi province in Sumatra (Indonesia), a region which suffered large land transformation towards oil palm and other cash crops over the past decades. The comparison of LST, albedo, normalized differenced vegetation index (NDVI) and evapotranspiration (ET) between seven different land cover types (forest, urban areas, clear-cut land, young and mature oil palm plantations, acacia and rubber plantations) shows that forests have lower surface temperatures than the other land cover types, indicating a local warming effect after forest conversion. LST differences were up to 10.1 ± 2.6 °C (mean ± SD) between forest and clear-cut land. The differences in surface temperatures are explained by an evaporative cooling effect, which offsets the albedo warming effect. Our analysis of the LST trend of the past 16 years based on MODIS data shows that the average daytime surface temperature in the Jambi province increased by 1.05 °C, which followed the trend of observed land cover changes and exceeded the effects of climate warming. This study provides evidence that the expansion of oil palm plantations and other cash crops leads to changes in biophysical variables, warming the land surface and thus enhancing the increase of the air temperature because of climate change.

  3. MODIS-based spatiotemporal patterns of soil moisture and evapotranspiration interactions in Tampa Bay urban watershed

    NASA Astrophysics Data System (ADS)

    Chang, Ni-Bin; Xuan, Zhemin; Wimberly, Brent

    2011-09-01

    Soil moisture and evapotranspiration (ET) is affected by both water and energy balances in the soilvegetation- atmosphere system, it involves many complex processes in the nexus of water and thermal cycles at the surface of the Earth. These impacts may affect the recharge of the upper Floridian aquifer. The advent of urban hydrology and remote sensing technologies opens new and innovative means to undertake eventbased assessment of ecohydrological effects in urban regions. For assessing these landfalls, the multispectral Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing images can be used for the estimation of such soil moisture change in connection with two other MODIS products - Enhanced Vegetation Index (EVI), Land Surface Temperature (LST). Supervised classification for soil moisture retrieval was performed for Tampa Bay area on the 2 kmx2km grid with MODIS images. Machine learning with genetic programming model for soil moisture estimation shows advances in image processing, feature extraction, and change detection of soil moisture. ET data that were derived by Geostationary Operational Environmental Satellite (GOES) data and hydrologic models can be retrieved from the USGS web site directly. Overall, the derived soil moisture in comparison with ET time series changes on a seasonal basis shows that spatial and temporal variations of soil moisture and ET that are confined within a defined region for each type of surfaces, showing clustered patterns and featuring space scatter plot in association with the land use and cover map. These concomitant soil moisture patterns and ET fluctuations vary among patches, plant species, and, especially, location on the urban gradient. Time series plots of LST in association with ET, soil moisture and EVI reveals unique ecohydrological trends. Such ecohydrological assessment can be applied for supporting the urban landscape management in hurricane-stricken regions.

  4. Mars - Remote spectral identification of H2O frost and mineral hydrate

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.; Clark, R. N.; Mccord, T. B.

    1978-01-01

    A reflectance spectrum (0.62-2.6 microns) of Mars (integral disk) is obtained using a newly developed IR spectrometer at the 2.25 m telescope on Mauna Kea, Hawaii. Details of the instrument, observations, and data reduction are presented. Several distinct absorption features are evident that were apparently caused by H2O, but the positions and intensities of the features are quite unusual. In summary, the regolith is probably not as desiccated and dehydrated as the full disk reflectance spectrum and Viking soil analyses would suggest. The surface materials become desiccated and dehydrated as a result of solar UV effects and because of the relative adsorption and desorption rates during the strong diurnal cycling. There may be significant amounts of H2O at depth, and in the Solis Lacus region the H2O reservoir may extend to within a few centimeters of the surface. The Solis Lacus region may therefore be an important target for future Mars landing or sample return mission.

  5. Planetary entry, descent, and landing technologies

    NASA Astrophysics Data System (ADS)

    Pichkhadze, K.; Vorontsov, V.; Polyakov, A.; Ivankov, A.; Taalas, P.; Pellinen, R.; Harri, A.-M.; Linkin, V.

    2003-04-01

    Martian meteorological lander (MML) is intended for landing on the Martian surface in order to monitor the atmosphere at landing point for one Martian year. MMLs shall become the basic elements of a global network of meteorological mini-landers, observing the dynamics of changes of the atmospheric parameters on the Red Planet. The MML main scientific tasks are as follows: (1) Study of vertical structure of the Martian atmosphere throughout the MML descent; (2) On-surface meteorological observations for one Martian year. One of the essential factors influencing the lander's design is its entry, descent, and landing (EDL) sequence. During Phase A of the MML development, five different options for the lander's design were carefully analyzed. All of these options ensure the accomplishment of the above-mentioned scientific tasks with high effectiveness. CONCEPT A (conventional approach): Two lander options (with a parachute system + airbag and an inflatable airbrake + airbag) were analyzed. They are similar in terms of fulfilling braking phases and completely analogous in landing by means of airbags. CONCEPT B (innovative approach): Three lander options were analyzed. The distinguishing feature is the presence of inflatable braking units (IBU) in their configurations. SELECTED OPTION (innovative approach): Incorporating a unique design approach and modern technologies, the selected option of the lander represents a combination of the options analyzed in the framework of Concept B study. Currently, the selected lander option undergoes systems testing (Phase D1). Several MMLs can be delivered to Mars in frameworks of various missions as primary or piggybacking payload: (1) USA-led "Mars Scout" (2007); (2) France-led "NetLander" (2007/2009); (3) Russia-led "Mars-Deimos-Phobos sample return" (2007); (4) Independent mission (currently under preliminary study); etc.

  6. Modelling past hydrology of an interfluve area in the Campine region (NE Belgium)

    NASA Astrophysics Data System (ADS)

    Leterme, Bertrand; Beerten, Koen; Gedeon, Matej; Vandersteen, Katrijn

    2015-04-01

    This study aims at hydrological model verification of a small lowland interfluve area (18.6 km²) in NE Belgium, for conditions that are different than today. We compare the current state with five reference periods in the past (AD 1500, 1770, 1854, 1909 and 1961) representing important stages of landscape evolution in the study area. Historical information and proxy data are used to derive conceptual model features and boundary conditions specific to each period: topography, surface water geometry (canal, drains and lakes), land use, soils, vegetation and climate. The influence of landscape evolution on the hydrological cycle is assessed using numerical simulations of a coupled unsaturated zone - groundwater model (HYDRUS-MODFLOW). The induced hydrological changes are assessed in terms of groundwater level, recharge, evapotranspiration, and surface water discharge. HYDRUS-MODFLOW coupling allows including important processes such as the groundwater contribution to evapotranspiration. Major land use change occurred between AD 1854 and 1909, with about 41% of the study area being converted from heath to coniferous forest, together with the development of a drainage network. Results show that this led to a significant decrease of groundwater recharge and lowering of the groundwater table. A limitation of the study lies in the comparison of simulated past hydrology with appropriate palaeo-records. Examples are given as how some indicators (groundwater head, swamp zones) can be used to tend to model validation. Quantifying the relative impact of land use and climate changes requires running sensitivity simulations where the models using alternative land use are run with the climate forcing of other periods. A few examples of such sensitivity runs are presented in order to compare the influence of land use and climate change on the study area hydrology.

  7. KSC-98pc1046

    NASA Image and Video Library

    1998-09-11

    The Mars Climate Orbiter spacecraft arrives at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When the spacecraft arrives at the red planet, it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket

  8. Directional radiance measurements: Challenges in the sampling of landscapes

    NASA Technical Reports Server (NTRS)

    Deering, D. W.

    1994-01-01

    Most earth surfaces, particularly those supporting natural vegetation ecosystems, constitute structurally and spectrally complex surfaces that are distinctly non-Lambertian reflectors. Obtaining meaningful measurements of the directional radiances of landscapes and obtaining estimates of the complete bidirectional reflectance distribution functions of ground targets with complex and variable landscape and radiometric features are challenging tasks. Reasons for the increased interest in directional radiance measurements are presented, and the issues that must be addressed when trying to acquire directional radiances for vegetated land surfaces from different types of remote sensing platforms are discussed. Priority research emphases are suggested, concerning field measurements of directional surface radiances and reflectances for future research. Primarily, emphasis must be given to the acquisition of more complete and directly associated radiometric and biometric parameter data sets that will empower the exploitation of the 'angular dimension' in remote sensing of vegetation through enabling the further development and rigorous validation of state of the art plant canopy models.

  9. Development and application of multi-proxy indices of land use change for riparian soils in southern New England, USA.

    PubMed

    Ricker, M C; Donohue, S W; Stolt, M H; Zavada, M S

    2012-03-01

    Understanding the effects of land use on riparian systems is dependent upon the development of methodologies to recognize changes in sedimentation related to shifts in land use. Land use trends in southern New England consist of shifts from forested precolonial conditions, to colonial and agrarian land uses, and toward modern industrial-urban landscapes. The goals of this study were to develop a set of stratigraphic indices that reflect these land use periods and to illustrate their applications. Twenty-four riparian sites from first- and second-order watersheds were chosen for study. Soil morphological features, such as buried surface horizons (layers), were useful to identify periods of watershed instability. The presence of human artifacts and increases in heavy metal concentration above background levels, were also effective indicators of industrial-urban land use periods. Increases and peak abundance of non-arboreal weed pollen (Ambrosia) were identified as stratigraphic markers indicative of agricultural land uses. Twelve 14C dates from riparian soils indicated that the rise in non-arboreal pollen corresponds to the start of regional deforestation (AD 1749 +/- 56 cal yr; mean +/- 2 SD) and peak non-arboreal pollen concentration corresponds to maximum agricultural land use (AD 1820 +/- 51 cal yr). These indices were applied to elucidate the impact of land use on riparian sedimentation and soil carbon (C) dynamics. This analysis indicated that the majority of sediment and soil organic carbon (SOC) stored in regional riparian soils is of postcolonial origins. Mean net sedimentation rates increased -100-fold during postcolonial time periods, and net SOC sequestration rates showed an approximate 200-fold increase since precolonial times. These results suggest that headwater riparian zones have acted as an effective sink for alluvial sediment and SOC associated with postcolonial land use.

  10. Comparison of two perturbation methods to estimate the land surface modeling uncertainty

    NASA Astrophysics Data System (ADS)

    Su, H.; Houser, P.; Tian, Y.; Kumar, S.; Geiger, J.; Belvedere, D.

    2007-12-01

    In land surface modeling, it is almost impossible to simulate the land surface processes without any error because the earth system is highly complex and the physics of the land processes has not yet been understood sufficiently. In most cases, people want to know not only the model output but also the uncertainty in the modeling, to estimate how reliable the modeling is. Ensemble perturbation is an effective way to estimate the uncertainty in land surface modeling, since land surface models are highly nonlinear which makes the analytical approach not applicable in this estimation. The ideal perturbation noise is zero mean Gaussian distribution, however, this requirement can't be satisfied if the perturbed variables in land surface model have physical boundaries because part of the perturbation noises has to be removed to feed the land surface models properly. Two different perturbation methods are employed in our study to investigate their impact on quantifying land surface modeling uncertainty base on the Land Information System (LIS) framework developed by NASA/GSFC land team. One perturbation method is the built-in algorithm named "STATIC" in LIS version 5; the other is a new perturbation algorithm which was recently developed to minimize the overall bias in the perturbation by incorporating additional information from the whole time series for the perturbed variable. The statistical properties of the perturbation noise generated by the two different algorithms are investigated thoroughly by using a large ensemble size on a NASA supercomputer and then the corresponding uncertainty estimates based on the two perturbation methods are compared. Their further impacts on data assimilation are also discussed. Finally, an optimal perturbation method is suggested.

  11. Land surface phenology of Northeast China during 2000-2015: temporal changes and relationships with climate changes.

    PubMed

    Zhang, Yue; Li, Lin; Wang, Hongbin; Zhang, Yao; Wang, Naijia; Chen, Junpeng

    2017-10-01

    As an important crop growing area, Northeast China (NEC) plays a vital role in China's food security, which has been severely affected by climate change in recent years. Vegetation phenology in this region is sensitive to climate change, and currently, the relationship between the phenology of NEC and climate change remains unclear. In this study, we used a satellite-derived normalized difference vegetation index (NDVI) to obtain the temporal patterns of the land surface phenology in NEC from 2000 to 2015 and validated the results using ground phenology observations. We then explored the relationships among land surface phenology, temperature, precipitation, and sunshine hours for relevant periods. Our results showed that the NEC experienced great phenological changes in terms of spatial heterogeneity during 2000-2015. The spatial patterns of land surface phenology mainly changed with altitude and land cover type. In most regions of NEC, the start date of land surface phenology had advanced by approximately 1.0 days year -1 , and the length of land surface phenology had been prolonged by approximately 1.0 days year -1 except for the needle-leaf and cropland areas, due to the warm conditions. We found that a distinct inter-annual variation in land surface phenology related to climate variables, even if some areas presented non-significant trends. Land surface phenology was coupled with climate variables and distinct responses at different combinations of temperature, precipitation, sunshine hours, altitude, and anthropogenic influence. These findings suggest that remote sensing and our phenology extracting methods hold great potential for helping to understand how land surface phenology is sensitive to global climate change.

  12. Hydrologic impacts of climate and land use changes over the Three-North region of China: implication for the forestation programs in arid and semiarid regions

    NASA Astrophysics Data System (ADS)

    Xie, X.; Liang, S.

    2013-12-01

    The Three-North region of China, including the northeastern, northern, and northwestern areas, covers an area of more than three million square kilometers. This region is featured for its arid and semiarid environments with annual rainfall less than 450 mm. During the past few decades, the Three-North region has experienced noticeable water-cycle variations owing to the climate and land use changes. Typically, several large-scale forestation programs such as the Three Norths Forest Shelterbelt Program began since late 1970s, have been implemented across this region in order to solve desertification and dust storm problems, and to combat the loss of water and soil. These programs raised debates, however, because their effectiveness does not likely achieve what was expected and they even imposed negative influences on the eco-hydrologic system in some areas. Currently most studies were based on in-situ measurements and individual catchments and primarily attributed the water-cycle variations to the forestation. In this study we attempt to evaluate the impact of combined climate and land use changes using remote sensing data and a sophisticated land surface model, i.e., the Three-Layer Variable Infiltration Capacity (VIC-3L). Four land use maps derived from Landsat TM images for 1990, 1995, 2000 and 2005 were used to detect the land use changes in the three-north regions, and leaf area index (LAI) from the Global Land Surface Satellite (GLASS) LAI product was employed to assess the land cover change and the effect of forestation programs. After model calibration and validation based on gauged streamflow and evapotranspiration from China FluxNet, a series of simulation scenarios were designed to examine the impacts of climate and land use changes on soil moisture, runoff and evapotranspiration and to identify each contribution to water fluxes. It was found that within the study area as a whole, LAI shows an increasing trend during 1980-2009 in response to the forestation programs. However, the hydrologic variables (i.e., the soil moisture, runoff and evapotranspiration) in northern and northwestern regions are more significantly affected by the precipitation and temperature than by the land use changes, although the impacts of land use change are uneven across the entire region. So, the forestation probably plays a modest role in the hydrologic system.

  13. Numerical evaluation of surface modifications at landing site due to spacecraft (soft) landing on the moon

    NASA Astrophysics Data System (ADS)

    Mishra, Sanjeev Kumar; Prasad, K. Durga

    2018-07-01

    Understanding surface modifications at landing site during spacecraft landing on planetary surfaces is important for planetary missions from scientific as well as engineering perspectives. An attempt has been made in this work to numerically investigate the disturbance caused to the lunar surface during soft landing. The variability of eject velocity of dust, eject mass flux rate, ejecta amount etc. has been studied. The effect of lander hovering time and hovering altitude on the extent of disturbance is also evaluated. The study thus carried out will help us in understanding the surface modifications during landing thereby making it easier to plan a descent trajectory that minimizes the extent of disturbance. The information about the extent of damage will also be helpful in interpreting the data obtained from experiments carried on the lunar surface in vicinity of the lander.

  14. A Continental United States High Resolution NLCD Land Cover – MODIS Albedo Database to Examine Albedo and Land Cover Change Relationships

    EPA Science Inventory

    Surface albedo influences climate by affecting the amount of solar radiation that is reflected at the Earth’s surface, and surface albedo is, in turn, affected by land cover. General Circulation Models typically use modeled or prescribed albedo to assess the influence of land co...

  15. Landing Characteristics of a Lenticular-Shaped Reentry Vehicle

    NASA Technical Reports Server (NTRS)

    Blanchard, Ulysse J.

    1961-01-01

    An experimental investigation was made of the landing characteristics of a 1/9-scale dynamic model of a lenticular-shaped reentry vehicle having extendible tail panels for control after reentry and for landing control (flare-out). The landing tests were made by catapulting a free model onto a hard-surface runway and onto water. A "belly-landing" technique in which the vehicle was caused to skid and rock on its curved undersurface (heat shield), converting sinking speed into angular energy, was investigated on a hard-surface runway. Landings were made in calm water and in waves both with and without auxiliary landing devices. Landing motions and acceleration data were obtained over a range of landing attitudes and initial sinking speeds during hard-surface landings and for several wave conditions during water landings. A few vertical landings (parachute letdown) were made in calm water. The hard-surface landing characteristics were good. Maximum landing accelerations on a hard surface were 5g and 18 radians per sq second over a range of landing conditions. Horizontal landings on water resulted in large violent rebounds and some diving in waves. Extreme attitude changes during rebound at initial impact made the attitude of subsequent impact random. Maximum accelerations for water landings were approximately 21g and 145 radians per sq second in waves 7 feet high. Various auxiliary water-landing devices produced no practical improvement in behavior. Reduction of horizontal speed and positive control of impact attitude did improve performance in calm water. During vertical landings in calm water maximum accelerations of 15g and 110 radians per sq second were measured for a contact attitude of -45 deg and a vertical velocity of 70 feet per second.

  16. Real Time Land-Surface Hydrologic Modeling Over Continental US

    NASA Technical Reports Server (NTRS)

    Houser, Paul R.

    1998-01-01

    The land surface component of the hydrological cycle is fundamental to the overall functioning of the atmospheric and climate processes. Spatially and temporally variable rainfall and available energy, combined with land surface heterogeneity cause complex variations in all processes related to surface hydrology. The characterization of the spatial and temporal variability of water and energy cycles are critical to improve our understanding of land surface-atmosphere interaction and the impact of land surface processes on climate extremes. Because the accurate knowledge of these processes and their variability is important for climate predictions, most Numerical Weather Prediction (NWP) centers have incorporated land surface schemes in their models. However, errors in the NWP forcing accumulate in the surface and energy stores, leading to incorrect surface water and energy partitioning and related processes. This has motivated the NWP to impose ad hoc corrections to the land surface states to prevent this drift. A proposed methodology is to develop Land Data Assimilation schemes (LDAS), which are uncoupled models forced with observations, and not affected by NWP forcing biases. The proposed research is being implemented as a real time operation using an existing Surface Vegetation Atmosphere Transfer Scheme (SVATS) model at a 40 km degree resolution across the United States to evaluate these critical science questions. The model will be forced with real time output from numerical prediction models, satellite data, and radar precipitation measurements. Model parameters will be derived from the existing GIS vegetation and soil coverages. The model results will be aggregated to various scales to assess water and energy balances and these will be validated with various in-situ observations.

  17. A Compilation of Spatial Datasets to Support a Preliminary Assessment of Pesticides and Pesticide Use on Tribal Lands in Oklahoma

    USGS Publications Warehouse

    Mashburn, Shana L.; Winton, Kimberly T.

    2010-01-01

    This CD-ROM contains spatial datasets that describe natural and anthropogenic features and county-level estimates of agricultural pesticide use and pesticide data for surface-water, groundwater, and biological specimens in the state of Oklahoma. County-level estimates of pesticide use were compiled from the Pesticide National Synthesis Project of the U.S. Geological Survey, National Water-Quality Assessment Program. Pesticide data for surface water, groundwater, and biological specimens were compiled from U.S. Geological Survey National Water Information System database. These spatial datasets that describe natural and manmade features were compiled from several agencies and contain information collected by the U.S. Geological Survey. The U.S. Geological Survey datasets were not collected specifically for this compilation, but were previously collected for projects with various objectives. The spatial datasets were created by different agencies from sources with varied quality. As a result, features common to multiple layers may not overlay exactly. Users should check the metadata to determine proper use of these spatial datasets. These data were not checked for accuracy or completeness. If a question of accuracy or completeness arise, the user should contact the originator cited in the metadata.

  18. Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Morgan, T.; Chin, G.

    2007-08-01

    NASA's Lunar Reconnaissance Orbiter (LRO) plans to launch in October 2008 with a companion secondary impactor mission, LCROSS, as the inaugural missions for the Exploration System Mission Directorate. LRO is a pathfinder whose objective is to obtain the needed information to prepare for eventual human return to the Moon. LRO will undertake at least one baseline year of operation with additional extended mission phase sponsored by NASA's Science Mission Directorate. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions; Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources; Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration; Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits; Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only by starlight; Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging and interferometry using a light-weight synthetic aperture radar.

  19. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2012-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours. AFWA recognizes the importance of operational benchmarking and uncertainty characterization for land surface modeling and is developing standard methods, software, and metrics to verify and/or validate LIS output products. To facilitate this and other needs for land analysis activities at AFWA, the Model Evaluation Toolkit (MET) -- a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community -- and the Land surface Verification Toolkit (LVT), developed at the Goddard Space Flight Center (GSFC), have been adapted to operational benchmarking needs of AFWA's land characterization activities.

  20. Generation of High Resolution Land Surface Parameters in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Coleman, A. M.; Wigmosta, M. S.; Leung, L.; Huang, M.; Li, H.

    2010-12-01

    The Community Land Model (CLM) is the land surface model used for the Community Atmosphere Model (CAM) and the Community Climate System Model (CCSM). It examines the physical, chemical, and biological processes across a variety of spatial and temporal scales. Currently, efforts are being made to improve the spatial resolution of the CLM, in part, to represent finer scale hydrologic characteristics. Current land surface parameters of CLM4.0, in particular plant functional types (PFT) and leaf area index (LAI), are generated from MODIS and calculated at a 0.05 degree resolution. These MODIS-derived land surface parameters have also been aggregated to coarser resolutions (e.g., 0.5, 1.0 degrees). To evaluate the response of CLM across various spatial scales, higher spatial resolution land surface parameters need to be generated. In this study we examine the use of Landsat TM/ETM+ imagery and data fusion techniques for generating land surface parameters at a 1km resolution within the Pacific Northwest United States. . Land cover types and PFTs are classified based on Landsat multi-season spectral information, DEM, National Land Cover Database (NLCD) and the USDA-NASS Crop Data Layer (CDL). For each PFT, relationships between MOD15A2 high quality LAI values, Landsat-based vegetation indices, climate variables, terrain, and laser-altimeter derived vegetation height are used to generate monthly LAI values at a 30m resolution. The high-resolution PFT and LAI data are aggregated to create a 1km model grid resolution. An evaluation and comparison of CLM land surface response at both fine and moderate scale is presented.

  1. GeoComplexity and scale: surface processes and remote sensing of geosystems. GeoComplexity and scale: surface processes and remote sensing of geosystems

    NASA Astrophysics Data System (ADS)

    Muller, Jan-Peter

    2015-04-01

    Understanding the role of scaling in different planetary surface processes within our Solar System is one of the fundamental goals of planetary and solid earth scientific research. There has been a revolution in planetary surface observations over the past decade for the Earth, Mars and the Moon, especially in 3D imaging of surface shape (from the planetary scale down to resolutions of 75cm). I will examine three areas that I have been active in over the last 25 years giving examples of newly processed global datasets ripe for scaling analysis: topography, BRDF/albedo and imaging. For understanding scaling in terrestrial land surface topography we now have global 30m digital elevation models (DEMs) from different types of sensors (InSAR and stereo-optical) along with laser altimeter data to provide global reference models (to better than 1m in cross-over areas) and airborne laser altimeter data over small areas at resolutions better than 1m and height accuracies better than 10-15cm. We also have an increasing number of sub-surface observations from long wavelength SAR in arid regions, which will allow us to look at the true surface rather than the one buried by sand. We also still have a major limitation of these DEMs in that they represent an unknown observable surface with C-band InSAR DEMs representing being somewhere near the top of the canopy and X-band InSAR and stereo near the top of the canopy but only P-band representing the true understorey surface. I will present some of the recent highlights of topography on Mars including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m digital terrain models (as there is no land cover on Mars) DTMs from MRO stereo-HiRISE [3]. Comparable DTMs now exist for the Moon from 100m up to 1m. I will show examples of these DEM/DTM datasets along with some simple analyses of their scaling properties. Global 1km, 8-daily terrestrial land surface BRDF/albedo maps exist for US sensors from MODIS and by orbit from MISR. More recently, the ESA GlobAlbedo project [4] has produced land surface datasets on the same spatio-temporal sampling using optimal estimation with full uncertainty matrices associated with each and every 1km pixel. By exploiting these uncertainty estimates I show how upscaling can be performed as well as analysing their scaling properties. Recently, a very novel technique for the super-resolution restoration (SRR) of stacks of images has been developed at UCL [5]. First examples shown will be of the entire MER-A Spirit rover traverse taking a stack of 25cm HiRISE to generate a corridor of SRR images along the rover traverse of 5cm imagery of unresolved features such as rocks, created as a consequence of meteoritic bombardment, ridge and valley features. This SRR technique will allow us for ≈400 areas on Mars (where 5 or more HiRISE images have been captured) and similar numbers on the Moon to resolve sub-pixel features. Examples will be shown of how these SRR images can be employed to assist with the better understanding of surface geomorphology. Acknowledgements: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under PRoViDE grant agreement n˚312377 and the ESA GlobAlbedo project. Partial support is also provided from the STFC "MSSL Consolidated Grant" ST/K000977/1. References: [1] Gwinner, K., F. et al. (2010) Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth and Planetary Science Letters 294, 506-519, doi:10.1016/j.epsl.2009.11.007, 2010; [2] Gwinner, K., Muller, J-P., et al. (2015) MarsExpress High Resolution Stereo Camera (HRSC) Multi-orbit Data Products: Methodology, Mapping Concepts and Performance for the first Quadrangle (MC-11E). Geophysical Research Abstracts, Vol. 17, EGU2015-13832; [3] Kim, J., & Muller, J. (2009). Multi-resolution topographic data extraction from Martian stereo imagery. Planetary and Space Science, 57, 2095-2112. doi:10.1016/j.pss.2009.09.024; [4] Muller, J.-P., et al. (2011), The ESA GlobAlbedo Project for mapping the Earth's land surface albedo for 15 Years from European Sensors., Geophysical Research Abstracts, Vol. 13, EGU2011-10969; [5] Tao, Y., Muller, J.-P. (2015) Supporting lander and rover operation: a novel super-resolution restoration technique. Geophysical Research Abstracts, Vol. 17, EGU2015-6925

  2. Assessment of Mars Exploration Rover Landing Site Predictions

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.

    2005-05-01

    Comprehensive analyses of remote sensing data during the 3-year effort to select the Mars Exploration Rover landing sites at Gusev crater and Meridiani Planum correctly predicted the safe and trafficable surfaces explored by the two rovers. Gusev crater was predicted to be a relatively low relief surface that was comparably dusty, but less rocky than the Viking landing sites. Available data for Meridiani Planum indicated a very flat plain composed of basaltic sand to granules and hematite that would look completely unlike any of the existing landing sites with a dark, low albedo surface, little dust and very few rocks. Orbital thermal inertia measurements of 315 J m-2 s-0.5 K-1 at Gusev suggested surfaces dominated by duricrust to cemented soil-like materials or cohesionless sand or granules, which is consistent with observed soil characteristics and measured thermal inertias from the surface. THEMIS thermal inertias along the traverse at Gusev vary from 285 at the landing site to 330 around Bonneville rim and show systematic variations that can be related to the observed increase in rock abundance (5-30%). Meridiani has an orbital bulk inertia of ~200, similar to measured surface inertias that correspond to observed surfaces dominated by 0.2 mm sand size particles. Rock abundance derived from orbital thermal differencing techniques suggested that Meridiani Planum would have very low rock abundance, consistent with the rock free plain traversed by Opportunity. Spirit landed in an 8% orbital rock abundance pixel, consistent with the measured 7% of the surface covered by rocks >0.04 m diameter at the landing site, which is representative of the plains away from craters. The orbital albedo of the Spirit traverse varies from 0.19 to 0.30, consistent with surface measurements in and out of dust devil tracks. Opportunity is the first landing in a low albedo portion of Mars as seen from orbit, which is consistent with the dark, dust-free surface and measured albedos. The close correspondence between surface characteristics inferred from orbital remote sensing data and that found at the landing sites argues that future efforts to select safe landing sites will be successful. Linking the five landing sites to their remote sensing signatures suggests that they span most of the important, likely safe surfaces available for landing on Mars.

  3. Coupling of Community Land Model with RegCM4 for Indian Summer Monsoon Simulation

    NASA Astrophysics Data System (ADS)

    Maurya, R. K. S.; Sinha, P.; Mohanty, M. R.; Mohanty, U. C.

    2017-11-01

    Three land surface schemes available in the regional climate model RegCM4 have been examined to understand the coupling between land and atmosphere for simulation of the Indian summer monsoon rainfall. The RegCM4 is coupled with biosphere-atmosphere transfer scheme (BATS) and the National Center for Atmospheric Research (NCAR) Community Land Model versions 3.5, and 4.5 (CLM3.5 and CLM4.5, respectively) and model performance is evaluated for recent drought (2009) and normal (2011) monsoon years. The CLM4.5 has a more distinct category of surface and it is capable of representing better the land surface characteristics. National Centers for Environmental Prediction (NCEP) and Department of Energy (DOE) reanalysis version 2 (NNRP2) datasets are considered as driving force to conduct the experiments for the Indian monsoon region (30°E-120°E; 30°S-50°N). The NNRP2 and India Meteorological Department (IMD) gridded precipitation data are used for verification analysis. The results indicate that RegCM4 simulations with CLM4.5 (RegCM4-CLM4.5) and CLM3.5 (RegCM4-CLM3.5) surface temperature (at 2 ms) have very low warm biases ( 1 °C), while with BATS (RegCM4-BATS) has a cold bias of about 1-3 °C in peninsular India and some parts of central India. Warm bias in the RegCM4-BATS is observed over the Indo-Gangetic plain and northwest India and the bias is more for the deficit year as compared to the normal year. However, the warm (cold) bias is less in RegCM4-CLM4.5 than other schemes for both the deficit and normal years. The model-simulated maximum (minimum) surface temperature and sensible heat flux at the surface are positively (negatively) biased in all the schemes; however, the bias is higher in RegCM4-BATS and lower in RegCM4-CLM4.5 over India. All the land surface schemes overestimated the precipitation in peninsular India and underestimated in central parts of India for both the years; however, the biases are less in RegCM4-CLM4.5 and more in RegCM4-CLM3.5 and RegCM4-BATS. During both the years, BATS scheme in RegCM4 failed to represent low precipitation over the leeward than windward side of the Western Ghats, while CLM schemes (both versions) in the RegCM4 are able to depict this feature. In the topographic regions, such as the Western Ghats, northeast India and state of Jammu and Kashmir, RegCM4-BATS overestimates the rainfall amount with higher bias. Statistical analysis using anomaly correlation coefficient, root mean square error, equitable threat score, and critical success index confirms that RegCM4-CLM performs better than RegCM4-BATS in the simulation of the Indian summer monsoon.

  4. Mars Pathfinder meteorological observations on the basis of results of an atmospheric global circulation model

    NASA Technical Reports Server (NTRS)

    Forget, Francois; Hourdin, F.; Talagrand, O.

    1994-01-01

    The Mars Pathfinder Meteorological Package (ASI/MET) will measure the local pressure, temperature, and winds at its future landing site, somewhere between the latitudes 0 deg N and 30 deg N. Comparable measurements have already been obtained at the surface of Mars by the Viking Landers at 22 deg N (VL1) and 48 deg N (VL2), providing much useful information on the martian atmosphere. In particular the pressure measurements contain very instructive information on the global atmospheric circulation. At the Laboratoire de Meteorologie Dynamique (LMD), we have analyzed and simulated these measurements with a martian atmospheric global circulation model (GCM), which was the first to simulate the martian atmospheric circulation over more than 1 year. The model is able to reproduce rather accurately many observed features of the martian atmosphere, including the long- and short-period oscillations of the surface pressure observed by the Viking landers. From a meteorological point of view, we think that a landing site located near or at the equator would be an interesting choice.

  5. [A review on research of land surface water and heat fluxes].

    PubMed

    Sun, Rui; Liu, Changming

    2003-03-01

    Many field experiments were done, and soil-vegetation-atmosphere transfer(SVAT) models were stablished to estimate land surface heat fluxes. In this paper, the processes of experimental research on land surface water and heat fluxes are reviewed, and three kinds of SVAT model(single layer model, two layer model and multi-layer model) are analyzed. Remote sensing data are widely used to estimate land surface heat fluxes. Based on remote sensing and energy balance equation, different models such as simplified model, single layer model, extra resistance model, crop water stress index model and two source resistance model are developed to estimate land surface heat fluxes and evapotranspiration. These models are also analyzed in this paper.

  6. Does surface roughness dominate biophysical forcing of land use and land cover change in the eastern United States?

    NASA Astrophysics Data System (ADS)

    Burakowski, E. A.; Tawfik, A. B.; Ouimette, A.; Lepine, L. C.; Ollinger, S. V.; Bonan, G. B.; Zarzycki, C. M.; Novick, K. A.

    2016-12-01

    Changes in land use, land cover, or both promote changes in surface temperature that can amplify or dampen long-term trends driven by natural and anthropogenic climate change by modifying the surface energy budget, primarily through differences in albedo, evapotranspiration, and aerodynamic roughness. Recent advances in variable resolution global models provide the tools necessary to investigate local and global impacts of land use and land cover change by embedding a high-resolution grid over areas of interest in a seamless and computationally efficient manner. Here, we used two eddy covariance tower clusters in the Eastern US (University of New Hampshire UNH and Duke Forest) to validate simulation of surface energy fluxes and properties by the uncoupled Community Land Model (PTCLM4.5) and coupled land-atmosphere Variable-Resolution Community Earth System Model (VR-CESM1.3). Surface energy fluxes and properties are generally well captured by the models for grassland sites, however forested sites tend to underestimate latent heat and overestimate sensible heat flux. Surface roughness emerged as the dominant biophysical forcing factor affecting surface temperature in the eastern United States, generally leading to warmer nighttime temperatures and cooler daytime temperatures. However, the sign and magnitude of the roughness effect on surface temperature was highly sensitive to the calculation of aerodynamic resistance to heat transfer.

  7. Relationship Between Landcover Pattern and Surface Net Radiation in AN Coastal City

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Liu, L.; Liu, X.; Zhao, Y.

    2016-06-01

    Taking Xiamen city as the study area this research first retrieved surface net radiation using meteorological data and Landsat 5 TM images of the four seasons in the year 2009. Meanwhile the 65 different landscape metrics of each analysis unit were acquired using landscape analysis method. Then the most effective landscape metrics affecting surface net radiation were determined by correlation analysis, partial correlation analysis, stepwise regression method, etc. At both class and landscape levels, this paper comprehensively analyzed the temporal and spatial variations of the surface net radiation as well as the effects of land cover pattern on it in Xiamen from a multi-seasonal perspective. The results showed that the spatial composition of land cover pattern shows significant influence on surface net radiation while the spatial allocation of land cover pattern does not. The proportions of bare land and forest land are effective and important factors which affect the changes of surface net radiation all the year round. Moreover, the proportion of forest land is more capable for explaining surface net radiation than the proportion of bare land. So the proportion of forest land is the most important and continuously effective factor which affects and explains the cross-seasonal differences of surface net radiation. This study is helpful in exploring the formation and evolution mechanism of urban heat island. It also gave theoretical hints and realistic guidance for urban planning and sustainable development.

  8. In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions

    PubMed Central

    Johnson, Grant E.; Gunaratne, K. Don Dasitha; Laskin, Julia

    2014-01-01

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces. PMID:24961913

  9. In Situ SIMS and IR Spectroscopy of Well-Defined Surfaces Prepared by Soft Landing of Mass-Selected Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia

    2014-06-16

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivitymore » of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.« less

  10. Using land-cover change as dynamic variables in surface-water and water-quality models

    USGS Publications Warehouse

    Karstensen, Krista A.; Warner, Kelly L.; Kuhn, Anne

    2010-01-01

    Land-cover data are typically used in hydrologic modeling to establish or describe land surface dynamics. This project is designed to demonstrate the use of land-cover change data in surface-water and water-quality models by incorporating land-cover as a variable condition. The project incorporates three different scenarios that vary hydrologically and geographically: 1) Agriculture in the Plains, 2) Loon habitat in New England, and 3) Forestry in the Ozarks.

  11. Authentic Mars Research in the High School

    NASA Astrophysics Data System (ADS)

    Kortekaas, Katie; Leach, Dani

    2015-01-01

    As a 11th and 12th grade Astrobiology class we were charged with developing a scientific research question about the potential for life on Mars. We narrowed our big picture question to, 'Where should the next Mars rover land in order to study the volcanic and water features to find evidence of past or present extremophiles on Mars?'After a lot of searching through images on JMARS (although not extensive due to high school time constraints) we narrowed our interest to three areas of Mars we thought could be good candidates to land a rover there to do further research. We know from extremophiles on Earth that microscopic life need water and energy. It seems reasonable that Mars would be no different. We developed a research question, 'Does Kasei Valles, Dzigai Vallis and Hecate Tholus have volcanic features (lava flow, fractures, volcanoes, cryovolcanoes) and water features (layers of ice, hematite, carbonate, chaos)?'This question is important and interesting because by having a deeper understanding of whether these places have evidence of volcanic and water features, we will be able to decide where the best place to land a future rover would be. Evidence of volcanic and water features are important to help determine where to land our rover because in those areas, temperatures could have been warm and the land could be wet. In these conditions, the probability of life is higher.We individually did research through JMARS (CTX, THEMIS) in order to establish if those three areas could contain certain land features (volcanic and water features) that could possibly lead to the discovery of extremophiles. We evaluated the images to determine if the three areas have evidence of those volcanic and water features.Although we are not experts at identifying features we believe we have evidence to say that all three areas are interesting, astrobiologically, but Dzigai Vallis shows the most number of types of volcanic and water features. More importantly, through this process we as a class began to understand true authentic science and how it is performed.Thank you to Arizona State University for the curriculum and guidance.

  12. A NEW LAND-SURFACE MODEL IN MM5

    EPA Science Inventory

    There has recently been a general realization that more sophisticated modeling of land-surface processes can be important for mesoscale meteorology models. Land-surface models (LSMs) have long been important components in global-scale climate models because of their more compl...

  13. 30 CFR 740.10 - Information collection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS... surface coal mining operations on Federal lands. Persons intending to conduct such operations must respond...

  14. 30 CFR 740.10 - Information collection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS... surface coal mining operations on Federal lands. Persons intending to conduct such operations must respond...

  15. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design

    NASA Astrophysics Data System (ADS)

    Lawrence, David M.; Hurtt, George C.; Arneth, Almut; Brovkin, Victor; Calvin, Kate V.; Jones, Andrew D.; Jones, Chris D.; Lawrence, Peter J.; de Noblet-Ducoudré, Nathalie; Pongratz, Julia; Seneviratne, Sonia I.; Shevliakova, Elena

    2016-09-01

    Human land-use activities have resulted in large changes to the Earth's surface, with resulting implications for climate. In the future, land-use activities are likely to expand and intensify further to meet growing demands for food, fiber, and energy. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the impacts of land-use and land-cover change (LULCC) on climate, specifically addressing the following questions. (1) What are the effects of LULCC on climate and biogeochemical cycling (past-future)? (2) What are the impacts of land management on surface fluxes of carbon, water, and energy, and are there regional land-management strategies with the promise to help mitigate climate change? In addressing these questions, LUMIP will also address a range of more detailed science questions to get at process-level attribution, uncertainty, data requirements, and other related issues in more depth and sophistication than possible in a multi-model context to date. There will be particular focus on the separation and quantification of the effects on climate from LULCC relative to all forcings, separation of biogeochemical from biogeophysical effects of land use, the unique impacts of land-cover change vs. land-management change, modulation of land-use impact on climate by land-atmosphere coupling strength, and the extent to which impacts of enhanced CO2 concentrations on plant photosynthesis are modulated by past and future land use.LUMIP involves three major sets of science activities: (1) development of an updated and expanded historical and future land-use data set, (2) an experimental protocol for specific LUMIP experiments for CMIP6, and (3) definition of metrics and diagnostic protocols that quantify model performance, and related sensitivities, with respect to LULCC. In this paper, we describe LUMIP activity (2), i.e., the LUMIP simulations that will formally be part of CMIP6. These experiments are explicitly designed to be complementary to simulations requested in the CMIP6 DECK and historical simulations and other CMIP6 MIPs including ScenarioMIP, C4MIP, LS3MIP, and DAMIP. LUMIP includes a two-phase experimental design. Phase one features idealized coupled and land-only model simulations designed to advance process-level understanding of LULCC impacts on climate, as well as to quantify model sensitivity to potential land-cover and land-use change. Phase two experiments focus on quantification of the historic impact of land use and the potential for future land management decisions to aid in mitigation of climate change. This paper documents these simulations in detail, explains their rationale, outlines plans for analysis, and describes a new subgrid land-use tile data request for selected variables (reporting model output data separately for primary and secondary land, crops, pasture, and urban land-use types). It is essential that modeling groups participating in LUMIP adhere to the experimental design as closely as possible and clearly report how the model experiments were executed.

  16. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, David M.; Hurtt, George C.; Arneth, Almut

    Human land-use activities have resulted in large changes to the Earth's surface, with resulting implications for climate. In the future, land-use activities are likely to expand and intensify further to meet growing demands for food, fiber, and energy. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the impacts of land-use and land-cover change (LULCC) on climate, specifically addressing the following questions. (1) What are the effects of LULCC on climate and biogeochemical cycling (past-future)? (2) What are the impacts of land management on surface fluxes of carbon, water, and energy, and are there regional land-managementmore » st rategies with the promise to help mitigate climate change? In addressing these questions, LUMIP will also address a range of more detailed science questions to get at process-level attribution, uncertainty, data requirements, and other related issues in more depth and sophistication than possible in a multi-model context to date. There will be particular focus on the separation and quantification of the effects on climate from LULCC relative to all forcings, separation of biogeochemical from biogeophysical effects of land use, the unique impacts of land-cover change vs. land-management change, modulation of land-use impact on climate by land-atmosphere coupling strength, and the extent to which impacts of enhanced CO 2 concentrations on plant photosynthesis are modulated by past and future land use.LUMIP involves three major sets of science activities: (1) development of an updated and expanded historical and future land-use data set, (2) an experimental protocol for specific LUMIP experiments for CMIP6, and (3) definition of metrics and diagnostic protocols that quantify model performance, and related sensitivities, with respect to LULCC. In this paper, we describe LUMIP activity (2), i.e., the LUMIP simulations that will formally be part of CMIP6. These experiments are explicitly designed to be complementary to simulations requested in the CMIP6 DECK and historical simulations and other CMIP6 MIPs including ScenarioMIP, C4MIP, LS3MIP, and DAMIP. LUMIP includes a two-phase experimental design. Phase one features idealized coupled and land-only model simulations designed to advance process-level understanding of LULCC impacts on climate, as well as to quantify model sensitivity to potential land-cover and land-use change. Phase two experiments focus on quantification of the historic impact of land use and the potential for future land management decisions to aid in mitigation of climate change. This paper documents these simulations in detail, explains their rationale, outlines plans for analysis, and describes a new subgrid land-use tile data request for selected variables (reporting model output data separately for primary and secondary land, crops, pasture, and urban land-use types). It is essential that modeling groups participating in LUMIP adhere to the experimental design as closely as possible and clearly report how the model experiments were executed.« less

  17. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design

    DOE PAGES

    Lawrence, David M.; Hurtt, George C.; Arneth, Almut; ...

    2016-09-02

    Human land-use activities have resulted in large changes to the Earth's surface, with resulting implications for climate. In the future, land-use activities are likely to expand and intensify further to meet growing demands for food, fiber, and energy. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the impacts of land-use and land-cover change (LULCC) on climate, specifically addressing the following questions. (1) What are the effects of LULCC on climate and biogeochemical cycling (past-future)? (2) What are the impacts of land management on surface fluxes of carbon, water, and energy, and are there regional land-managementmore » st rategies with the promise to help mitigate climate change? In addressing these questions, LUMIP will also address a range of more detailed science questions to get at process-level attribution, uncertainty, data requirements, and other related issues in more depth and sophistication than possible in a multi-model context to date. There will be particular focus on the separation and quantification of the effects on climate from LULCC relative to all forcings, separation of biogeochemical from biogeophysical effects of land use, the unique impacts of land-cover change vs. land-management change, modulation of land-use impact on climate by land-atmosphere coupling strength, and the extent to which impacts of enhanced CO 2 concentrations on plant photosynthesis are modulated by past and future land use.LUMIP involves three major sets of science activities: (1) development of an updated and expanded historical and future land-use data set, (2) an experimental protocol for specific LUMIP experiments for CMIP6, and (3) definition of metrics and diagnostic protocols that quantify model performance, and related sensitivities, with respect to LULCC. In this paper, we describe LUMIP activity (2), i.e., the LUMIP simulations that will formally be part of CMIP6. These experiments are explicitly designed to be complementary to simulations requested in the CMIP6 DECK and historical simulations and other CMIP6 MIPs including ScenarioMIP, C4MIP, LS3MIP, and DAMIP. LUMIP includes a two-phase experimental design. Phase one features idealized coupled and land-only model simulations designed to advance process-level understanding of LULCC impacts on climate, as well as to quantify model sensitivity to potential land-cover and land-use change. Phase two experiments focus on quantification of the historic impact of land use and the potential for future land management decisions to aid in mitigation of climate change. This paper documents these simulations in detail, explains their rationale, outlines plans for analysis, and describes a new subgrid land-use tile data request for selected variables (reporting model output data separately for primary and secondary land, crops, pasture, and urban land-use types). It is essential that modeling groups participating in LUMIP adhere to the experimental design as closely as possible and clearly report how the model experiments were executed.« less

  18. Combining Imagery and Models to Understand River Dynamics

    NASA Astrophysics Data System (ADS)

    Blain, C. A.; Mied, R. P.; Linzell, R. S.

    2014-12-01

    Rivers pose one of the most challenging environments to characterize. Their geometric complexity and continually changing position and character are difficult to measure under optimal circumstances. Further compounding the problem is the often inaccessibility of these areas around the globe. Yet details of the river bank position and bed elevation are essential elements in the construction of accurate predictive river models. To meet this challenge, remote sensing imagery is first used to initialize the construction of advanced high resolution river circulation models. In turn, such models are applied to dynamically interpret remotely-sensed surface features. A method has been developed to automatically extract water and shoreline locations from arbitrarily sourced high resolution (~1m gsd) visual spectrum imagery without recourse to the spectral or color information. The approach relies on quantifying the difference in image texture between the relatively smooth water surface and the comparatively rough surface of surrounding land. Processing the segmented land/water interface results in ordered, continuous shoreline coordinates that bound river model construction. In the absence of observed bed elevations, one of several available analytic bathymetry cross-sectional relations are applied to complete the river model configuration. Successful application of this approach to the Snohomish River, WA and the Pearl River, MS are demonstrated. Once constructed, a hydrodynamic model of the river model can also be applied to unravel the dynamics responsible for observed surface features in the imagery. At a creek-river confluence in the Potomac River, MD, an ebb tide front observed in the imagery is analyzed using the model. The result is knowledge that an ebb shoal located just outside of the creek must be present and is essential for front formation. Furthermore, the front is found to be persistent throughout the tidal cycle, although it changes sign between ebb and flood phases. The presence of the creek only minimally modifies the underlying currents.

  19. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    USGS Publications Warehouse

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  20. Simulation of the Onset of the Southeast Asian Monsoon During 1997 and 1998: The Impact of Surface Processes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lau, W.; Baker, R.

    2004-01-01

    The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo-China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the low-level temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation. The model results will be compared to the simulation of the 6-7 May 2000 Missouri flash flood event. In addition, the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation will be examined.

  1. Simulation of the Onset of the Southeast Asian Monsoon during 1997 and 1998: The Impact of Surface Processes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Wang, Y.; Lau, W.; Baker, R. D.

    2004-01-01

    The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo-China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the low-level temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation. The model results will be compared to the simulation of the 6-7 May 2000 Missouri flash flood event. In addition, the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation will be examined.

  2. The role of land surface fluxes in Saudi-KAU AGCM: Temperature climatology over the Arabian Peninsula for the period 1981-2010

    NASA Astrophysics Data System (ADS)

    Ashfaqur Rahman, M.; Almazroui, Mansour; Nazrul Islam, M.; O'Brien, Enda; Yousef, Ahmed Elsayed

    2018-02-01

    A new version of the Community Land Model (CLM) was introduced to the Saudi King Abdulaziz University Atmospheric Global Climate Model (Saudi-KAU AGCM) for better land surface component representation, and so to enhance climate simulation. CLM replaced the original land surface model (LSM) in Saudi-KAU AGCM, with the aim of simulating more accurate land surface fluxes globally, but especially over the Arabian Peninsula. To evaluate the performance of Saudi-KAU AGCM, simulations were completed with CLM and LSM for the period 1981-2010. In comparison with LSM, CLM generates surface air temperature values that are closer to National Centre for Environmental Prediction (NCEP) observations. The global annual averages of land surface air temperature are 9.51, 9.52, and 9.57 °C for NCEP, CLM, and LSM respectively, although the same atmospheric radiative and surface forcing from Saudi-KAU AGCM are provided to both LSM and CLM at every time step. The better temperature simulations when using CLM can be attributed to the more comprehensive plant functional type and hierarchical tile approach to the land cover type in CLM, along with better parameterization of upward land surface fluxes compared to LSM. At global scale, CLM exhibits smaller annual and seasonal mean biases of temperature with respect to NCEP data. Moreover, at regional scale, CLM demonstrates reasonable seasonal and annual mean temperature over the Arabian Peninsula as compared to the Climatic Research Unit (CRU) data. Finally, CLM generated better matches to single point-wise observations of surface air temperature and surface fluxes for some case studies.

  3. Understanding Mesoscale Land-Atmosphere Interactions in Arctic Region

    NASA Astrophysics Data System (ADS)

    Hong, X.; Wang, S.; Nachamkin, J. E.

    2017-12-01

    Land-atmosphere interactions in Arctic region are examined using the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS©*) with the Noah Land Surface Model (LSM). Initial land surface variables in COAMPS are interpolated from the real-time NASA Land Information System (LIS). The model simulations are configured for three nest grids with 27-9-3 km horizontal resolutions. The simulation period is set for October 2015 with 12-h data assimilation update cycle and 24-h integration length. The results are compared with those simulated without using LSM and evaluated with observations from ONR Sea State R/V Sikuliaq cruise and the North Slope of Alaska (NSA). There are complex soil and vegetation types over the surface for simulation with LSM, compared to without LSM simulation. The results show substantial differences in surface heat fluxes between bulk surface scheme and LSM, which may have an important impact on the sea ice evolution over the Arctic region. Evaluations from station data show surface air temperature and relative humidity have smaller biases for simulation using LSM. Diurnal variation of land surface temperature, which is necessary for physical processes of land-atmosphere, is also better captured than without LSM.

  4. Accuracy assessment of land surface temperature retrievals from Landsat 7 ETM + in the Dry Valleys of Antarctica using iButton temperature loggers and weather station data.

    PubMed

    Brabyn, Lars; Zawar-Reza, Peyman; Stichbury, Glen; Cary, Craig; Storey, Bryan; Laughlin, Daniel C; Katurji, Marwan

    2014-04-01

    The McMurdo Dry Valleys of Antarctica are the largest snow/ice-free regions on this vast continent, comprising 1% of the land mass. Due to harsh environmental conditions, the valleys are bereft of any vegetation. Land surface temperature is a key determinate of microclimate and a driver for sensible and latent heat fluxes of the surface. The Dry Valleys have been the focus of ecological studies as they arguably provide the simplest trophic structure suitable for modelling. In this paper, we employ a validation method for land surface temperatures obtained from Landsat 7 ETM + imagery and compared with in situ land surface temperature data collected from four transects totalling 45 iButtons. A single meteorological station was used to obtain a better understanding of daily and seasonal cycles in land surface temperatures. Results show a good agreement between the iButton and the Landsat 7 ETM + product for clear sky cases. We conclude that Landsat 7 ETM + derived land surface temperatures can be used at broad spatial scales for ecological and meteorological research.

  5. Use of feature extraction techniques for the texture and context information in ERTS imagery. [discrimination of land use categories in Kansas from MSS textural-spectral features

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Kelly, G. L. (Principal Investigator); Bosley, R. J.

    1973-01-01

    The author has identified the following significant results. The land use category of subimage regions over Kansas within an MSS image can be identified with an accuracy of about 70% using the textural-spectral features of the multi-images from the four MSS bands.

  6. Comprehensive data set of global land cover change for land surface model applications

    NASA Astrophysics Data System (ADS)

    Sterling, Shannon; Ducharne, AgnèS.

    2008-09-01

    To increase our understanding of how humans have altered the Earth's surface and to facilitate land surface modeling experiments aimed to elucidate the direct impact of land cover change on the Earth system, we create and analyze a database of global land use/cover change (LUCC). From a combination of sources including satellite imagery and other remote sensing, ecological modeling, and country surveys, we adapt and synthesize existing maps of potential land cover and layers of the major anthropogenic land covers, including a layer of wetland loss, that are then tailored for land surface modeling studies. Our map database shows that anthropogenic land cover totals to approximately 40% of the Earth's surface, consistent with literature estimates. Almost all (92%) of the natural grassland on the Earth has been converted to human use, mostly grazing land, and the natural temperate savanna with mixed C3/C4 is almost completely lost (˜90%), due mostly to conversion to cropland. Yet the resultant change in functioning, in terms of plant functional types, of the Earth system from land cover change is dominated by a loss of tree cover. Finally, we identify need for standardization of percent bare soil for global land covers and for a global map of tree plantations. Estimates of land cover change are inherently uncertain, and these uncertainties propagate into modeling studies of the impact of land cover change on the Earth system; to begin to address this problem, modelers need to document fully areas of land cover change used in their studies.

  7. RCRA, superfund and EPCRA hotline training module. Introduction to: Land disposal units (40 cfr parts 264/265, subparts k, l, m, n) updated July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    The module provides an overview of the requirements for landfills, surface impoundments, waste piles, and land treatment units. It summarizes the differences between interim status (Part 265) and permitted (Part 264) standards for land disposal units. It defines `surface impoundment` and distinguishes surface impoundments from tanks and describes surface impoundment retrofitting and retrofitting variance procedures. It explains the connection between land disposal standards, post-closure, and groundwater monitoring.

  8. Shallow to Deep Convection Transition over a Heterogeneous Land Surface Using the Land Model Coupled Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Lee, J.; Zhang, Y.; Klein, S. A.

    2017-12-01

    The triggering of the land breeze, and hence the development of deep convection over heterogeneous land should be understood as a consequence of the complex processes involving various factors from land surface and atmosphere simultaneously. That is a sub-grid scale process that many large-scale models have difficulty incorporating it into the parameterization scheme partly due to lack of our understanding. Thus, it is imperative that we approach the problem using a high-resolution modeling framework. In this study, we use SAM-SLM (Lee and Khairoutdinov, 2015), a large-eddy simulation model coupled to a land model, to explore the cloud effect such as cold pool, the cloud shading and the soil moisture memory on the land breeze structure and the further development of cloud and precipitation over a heterogeneous land surface. The atmospheric large scale forcing and the initial sounding are taken from the new composite case study of the fair-weather, non-precipitating shallow cumuli at ARM SGP (Zhang et al., 2017). We model the land surface as a chess board pattern with alternating leaf area index (LAI). The patch contrast of the LAI is adjusted to encompass the weak to strong heterogeneity amplitude. The surface sensible- and latent heat fluxes are computed according to the given LAI representing the differential surface heating over a heterogeneous land surface. Separate from the surface forcing imposed from the originally modeled surface, the cases that transition into the moist convection can induce another layer of the surface heterogeneity from the 1) radiation shading by clouds, 2) adjusted soil moisture pattern by the rain, 3) spreading cold pool. First, we assess and quantifies the individual cloud effect on the land breeze and the moist convection under the weak wind to simplify the feedback processes. And then, the same set of experiments is repeated under sheared background wind with low level jet, a typical summer time wind pattern at ARM SGP site, to account for more realistic situations. Our goal is to assist answering the question: "Do the sub-grid scale land surface heterogeneity matter for the weather and climate modeling?" This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS- 736011.

  9. Improving land surface emissivty parameter for land surface models using portable FTIR and remote sensing observation in Taklimakan Desert

    NASA Astrophysics Data System (ADS)

    Liu, Yongqiang; Mamtimin, Ali; He, Qing

    2014-05-01

    Because land surface emissivity (ɛ) has not been reliably measured, global climate model (GCM) land surface schemes conventionally set this parameter as simply assumption, for example, 1 as in the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) model, 0.96 for soil and wetland in the Global and Regional Assimilation and Prediction System (GRAPES) Common Land Model (CoLM). This is the so-called emissivity assumption. Accurate broadband emissivity data are needed as model inputs to better simulate the land surface climate. It is demonstrated in this paper that the assumption of the emissivity induces errors in modeling the surface energy budget over Taklimakan Desert where ɛ is far smaller than original value. One feasible solution to this problem is to apply the accurate broadband emissivity into land surface models. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument has routinely measured spectral emissivities in six thermal infrared bands. The empirical regression equations have been developed in this study to convert these spectral emissivities to broadband emissivity required by land surface models. In order to calibrate the regression equations, using a portable Fourier Transform infrared (FTIR) spectrometer instrument, crossing Taklimakan Desert along with highway from north to south, to measure the accurate broadband emissivity. The observed emissivity data show broadband ɛ around 0.89-0.92. To examine the impact of improved ɛ to radiative energy redistribution, simulation studies were conducted using offline CoLM. The results illustrate that large impacts of surface ɛ occur over desert, with changes up in surface skin temperature, as well as evident changes in sensible heat fluxes. Keywords: Taklimakan Desert, surface broadband emissivity, Fourier Transform infrared spectrometer, MODIS, CoLM

  10. Advancing land surface model development with satellite-based Earth observations

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  11. High-resolution climate and land surface interactions modeling over Belgium: current state and decennial scale projections

    NASA Astrophysics Data System (ADS)

    Jacquemin, Ingrid; Henrot, Alexandra-Jane; Beckers, Veronique; Berckmans, Julie; Debusscher, Bos; Dury, Marie; Minet, Julien; Hamdi, Rafiq; Dendoncker, Nicolas; Tychon, Bernard; Hambuckers, Alain; François, Louis

    2016-04-01

    The interactions between land surface and climate are complex. Climate changes can affect ecosystem structure and functions, by altering photosynthesis and productivity or inducing thermal and hydric stresses on plant species. These changes then impact socio-economic systems, through e.g., lower farming or forestry incomes. Ultimately, it can lead to permanent changes in land use structure, especially when associated with other non-climatic factors, such as urbanization pressure. These interactions and changes have feedbacks on the climate systems, in terms of changing: (1) surface properties (albedo, roughness, evapotranspiration, etc.) and (2) greenhouse gas emissions (mainly CO2, CH4, N2O). In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), we aim at improving regional climate model projections at the decennial scale over Belgium and Western Europe by combining high-resolution models of climate, land surface dynamics and socio-economic processes. The land surface dynamics (LSD) module is composed of a dynamic vegetation model (CARAIB) calculating the productivity and growth of natural and managed vegetation, and an agent-based model (CRAFTY), determining the shifts in land use and land cover. This up-scaled LSD module is made consistent with the surface scheme of the regional climate model (RCM: ALARO) to allow simulations of the RCM with a fully dynamic land surface for the recent past and the period 2000-2030. In this contribution, we analyze the results of the first simulations performed with the CARAIB dynamic vegetation model over Belgium at a resolution of 1km. This analysis is performed at the species level, using a set of 17 species for natural vegetation (trees and grasses) and 10 crops, especially designed to represent the Belgian vegetation. The CARAIB model is forced with surface atmospheric variables derived from the monthly global CRU climatology or ALARO outputs (from a 4 km resolution simulation) for the recent past and the decennial projections. Evidently, these simulations lead to a first analysis of the impact of climate change on carbon stocks (e.g., biomass, soil carbon) and fluxes (e.g., gross and net primary productivities (GPP and NPP) and net ecosystem production (NEP)). The surface scheme is based on two land use/land cover databases, ECOPLAN for the Flemish region and, for the Walloon region, the COS-Wallonia database and the Belgian agricultural statistics for agricultural land. Land use and land cover are fixed through time (reference year: 2007) in these simulations, but a first attempt of coupling between CARAIB and CRAFTY will be made to establish dynamic land use change scenarios for the next decades. A simulation with variable land use would allow an analysis of land use change impacts not only on crop yields and the land carbon budget, but also on climate relevant parameters, such as surface albedo, roughness length and evapotranspiration towards a coupling with the RCM.

  12. The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania

    NASA Astrophysics Data System (ADS)

    Roşca, Cristina Florina; Harpa, Gabriela Victoria; Croitoru, Adina-Eliza; Herbel, Ioana; Imbroane, Alexandru Mircea; Burada, Doina Cristina

    2017-11-01

    Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986-2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.

  13. The CEOS constellation for land surface imaging

    USGS Publications Warehouse

    Bailey, G.B.; Berger, Marsha; Jeanjean, H.; Gallo, K.P.

    2007-01-01

    A constellation of satellites that routinely and frequently images the Earth's land surface in consistently calibrated wavelengths from the visible through the microwave and in spatial detail that ranges from sub-meter to hundreds of meters would offer enormous potential benefits to society. A well-designed and effectively operated land surface imaging satellite constellation could have great positive impact not only on the quality of life for citizens of all nations, but also on mankind's very ability to sustain life as we know it on this planet long into the future. The primary objective of the Committee on Earth Observation Satellites (CEOS) Land Surface Imaging (LSI) Constellation is to define standards (or guidelines) that describe optimal future LSI Constellation capabilities, characteristics, and practices. Standards defined for a LSI Constellation will be based on a thorough understanding of user requirements, and they will address at least three fundamental areas of the systems comprising a Land Surface Imaging Constellation: the space segments, the ground segments, and relevant policies and plans. Studies conducted by the LSI Constellation Study Team also will address current and shorter-term problems and issues facing the land remote sensing community today, such as seeking ways to work more cooperatively in the operation of existing land surface imaging systems and helping to accomplish tangible benefits to society through application of land surface image data acquired by existing systems. 2007 LSI Constellation studies are designed to establish initial international agreements, develop preliminary standards for a mid-resolution land surface imaging constellation, and contribute data to a global forest assessment.

  14. The ERTS-1 investigation (ER-600). Volume 5: ERTS-1 urban land use analysis

    NASA Technical Reports Server (NTRS)

    Erb, R. B.

    1974-01-01

    The Urban Land Use Team conducted a year's investigation of ERTS-1 MSS data to determine the number of Land Use categories in the Houston, Texas, area. They discovered unusually low classification accuracies occurred when a spectrally complex urban scene was classified with extensive rural areas containing spectrally homogeneous features. Separate computer processing of only data in the urbanized area increased classification accuracies of certain urban land use categories. Even so, accuracies of urban landscape were in the 40-70 percent range compared to 70-90 percent for the land use categories containing more homogeneous features (agriculture, forest, water, etc.) in the nonurban areas.

  15. Aircraft Landing Dynamics Facility - A unique facility with new capabilities

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Stubbs, S. M.; Tanner, J. A.

    1985-01-01

    The Aircraft Landing Dynamics Facility (ALDF), formerly called the Landing Loads Track, is described. The paper gives a historical overview of the original NASA Langley Research Center Landing Loads Track and discusses the unique features of this national test facility. Comparisons are made between the original track characteristics and the new capabilities of the Aircraft Landing Dynamics Facility following the recently completed facility update. Details of the new propulsion and arresting gear systems are presented along with the novel features of the new high-speed carriage. The data acquisition system is described and the paper concludes with a review of future test programs.

  16. Land Capability Potential Index (LCPI) for the Lower Missouri River Valley

    USGS Publications Warehouse

    Jacobson, Robert B.; Chojnacki, Kimberly A.; Reuter, Joanna M.

    2007-01-01

    The Land Capability Potential Index (LCPI) was developed to serve as a relatively coarse-scale index to delineate broad land capability classes in the valley of the Lower Missouri River. The index integrates fundamental factors that determine suitability of land for various uses, and may provide a useful mechanism to guide land-management decisions. The LCPI was constructed from integration of hydrology, hydraulics, land-surface elevations, and soil permeability (or saturated hydraulic conductivity) datasets for an area of the Lower Missouri River, river miles 423–670. The LCPI estimates relative wetness based on intersecting water-surface elevations, interpolated from measurements or calculated from hydraulic models, with a high-resolution land-surface elevation dataset. The potential for wet areas to retain or drain water is assessed using soil-drainage classes that are estimated from saturated hydraulic conductivity of surface soils. Terrain mapping that delineates areas with convex, concave, and flat parts of the landscape provides another means to assess tendency of landscape patches to retain surface water.

  17. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    PubMed

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  18. The CSIRO Mk3L climate system model v1.0 coupled to the CABLE land surface scheme v1.4b: evaluation of the control climatology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jiafu; Phipps, S.J.; Pitman, A.J.

    The CSIRO Mk3L climate system model, a reduced-resolution coupled general circulation model, has previously been described in this journal. The model is configured for millennium scale or multiple century scale simulations. This paper reports the impact of replacing the relatively simple land surface scheme that is the default parameterisation in Mk3L with a sophisticated land surface model that simulates the terrestrial energy, water and carbon balance in a physically and biologically consistent way. An evaluation of the new model s near-surface climatology highlights strengths and weaknesses, but overall the atmospheric variables, including the near-surface air temperature and precipitation, are simulatedmore » well. The impact of the more sophisticated land surface model on existing variables is relatively small, but generally positive. More significantly, the new land surface scheme allows an examination of surface carbon-related quantities including net primary productivity which adds significantly to the capacity of Mk3L. Overall, results demonstrate that this reduced-resolution climate model is a good foundation for exploring long time scale phenomena. The addition of the more sophisticated land surface model enables an exploration of important Earth System questions including land cover change and abrupt changes in terrestrial carbon storage.« less

  19. Impacts of land cover changes on climate trends in Jiangxi province China.

    PubMed

    Wang, Qi; Riemann, Dirk; Vogt, Steffen; Glaser, Rüdiger

    2014-07-01

    Land-use/land-cover (LULC) change is an important climatic force, and is also affected by climate change. In the present study, we aimed to assess the regional scale impact of LULC on climate change using Jiangxi Province, China, as a case study. To obtain reliable climate trends, we applied the standard normal homogeneity test (SNHT) to surface air temperature and precipitation data for the period 1951-1999. We also compared the temperature trends computed from Global Historical Climatology Network (GHCN) datasets and from our analysis. To examine the regional impacts of land surface types on surface air temperature and precipitation change integrating regional topography, we used the observation minus reanalysis (OMR) method. Precipitation series were found to be homogeneous. Comparison of GHCN and our analysis on adjusted temperatures indicated that the resulting climate trends varied slightly from dataset to dataset. OMR trends associated with surface vegetation types revealed a strong surface warming response to land barrenness and weak warming response to land greenness. A total of 81.1% of the surface warming over vegetation index areas (0-0.2) was attributed to surface vegetation type change and regional topography. The contribution of surface vegetation type change decreases as land cover greenness increases. The OMR precipitation trend has a weak dependence on surface vegetation type change. We suggest that LULC integrating regional topography should be considered as a force in regional climate modeling.

  20. A simple hydrologically based model of land surface water and energy fluxes for general circulation models

    NASA Technical Reports Server (NTRS)

    Liang, XU; Lettenmaier, Dennis P.; Wood, Eric F.; Burges, Stephen J.

    1994-01-01

    A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land surface. The infiltration algorithm for the upper layer is essentially the same as for the single layer VIC model, while the lower layer drainage formulation is of the form previously implemented in the Max-Planck-Institut GCM. The model partitions the area of interest (e.g., grid cell) into multiple land surface cover types; for each land cover type the fraction of roots in the upper and lower zone is specified. Evapotranspiration consists of three components: canopy evaporation, evaporation from bare soils, and transpiration, which is represented using a canopy and architectural resistance formulation. Once the latent heat flux has been computed, the surface energy balance is iterated to solve for the land surface temperature at each time step. The model was tested using long-term hydrologic and climatological data for Kings Creek, Kansas to estimate and validate the hydrological parameters, and surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment (FIFE) intensive field campaigns in the summer-fall of 1987 to validate the surface energy fluxes.

  1. Simulation of the Onset of the Southeast Asian Monsoon During 1997 and 1998: The Impact of Surface Processes

    NASA Technical Reports Server (NTRS)

    Wang, Yansen; Tao, W.-K.; Lau, K.-M.; Wetzel, Peter J.

    2003-01-01

    The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data fiom the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo- China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the lowlevel temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation.

  2. Linking crop structure, throughfall, soil surface conditions, runoff and soil detachment: 10 land uses analyzed in Northern Laos.

    PubMed

    Lacombe, Guillaume; Valentin, Christian; Sounyafong, Phabvilay; de Rouw, Anneke; Soulileuth, Bounsamai; Silvera, Norbert; Pierret, Alain; Sengtaheuanghoung, Oloth; Ribolzi, Olivier

    2018-03-01

    In Montane Southeast Asia, deforestation and unsuitable combinations of crops and agricultural practices degrade soils at an unprecedented rate. Typically, smallholder farmers gain income from "available" land by replacing fallow or secondary forest by perennial crops. We aimed to understand how these practices increase or reduce soil erosion. Ten land uses were monitored in Northern Laos during the 2015 monsoon, using local farmers' fields. Experiments included plots of the conventional system (food crops and fallow), and land uses corresponding to new market opportunities (e.g. commercial tree plantations). Land uses were characterized by measuring plant cover and plant mean height per vegetation layer. Recorded meteorological variables included rainfall intensity, throughfall amount, throughfall kinetic energy (TKE), and raindrop size. Runoff coefficient, soil loss, and the percentage areas of soil surface types (free aggregates and gravel; crusts; macro-faunal, vegetal and pedestal features; plant litter) were derived from observations and measurements in 1-m 2 micro-plots. Relationships between these variables were explored with multiple regression analyses. Our results indicate that TKE induces soil crusting and soil loss. By reducing rainfall infiltration, crusted area enhances runoff, which removes and transports soil particles detached by splash over non-crusted areas. TKE is lower under land uses reducing the velocity of raindrops and/or preventing an increase in their size. Optimal vegetation structures combine minimum height of the lowest layer (to reduce drop velocity at ground level) and maximum coverage (to intercept the largest amount of rainfall), as exemplified by broom grass (Thysanolaena latifolia). In contrast, high canopies with large leaves will increase TKE by enlarging raindrops, as exemplified by teak trees (Tectona grandis), unless a protective understorey exists under the trees. Policies that ban the burning of multi-layered vegetation structure under tree plantations should be enforced. Shade-tolerant shrubs and grasses with potential economic return could be promoted as understorey. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Application of ERTS-1 imagery to land use, forest density and soil investigations

    NASA Technical Reports Server (NTRS)

    Yassoglou, N. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Photographic and digital imagery obtained by ERTS-1 was analyzed and assigned to land features related to agricultural and forest resources. Land use and forest site evaluation maps were prepared by comparing remote sensing and ground truth data. Relationships found in this investigation between spectral signatures recorded by ERTS-1 and land features can be used for the assessment and development of agricultural and forest resources. The results are applicable to areas with ecological and geological conditions similar to those of Greece.

  4. Genetic diversity of Escherichia coli isolates from surface water and groundwater in a rural environment.

    PubMed

    Gambero, Maria Laura; Blarasin, Monica; Bettera, Susana; Giuliano Albo, Jesica

    2017-10-01

    The genetic characteristics among Escherichia coli strains can be grouped by origin of isolation. Then, it is possible to use the genotypes as a tool to determine the source of water contamination. The aim of this study was to define water aptitude for human consumption in a rural basin and to assess the diversity of E. coli water populations. Thus, it was possible to identify the main sources of fecal contamination and to explore linkages with the hydrogeological environment and land uses. The bacteriological analysis showed that more than 50% of samples were unfit for human consumption. DNA fingerprinting analysis by BOX-PCR indicated low genotypic diversity of E. coli isolates taken from surface water and groundwater. The results suggested the presence of a dominant source of fecal contamination. The relationship between low genotypic diversity and land use would prove that water contamination comes from livestock. The genetic diversity of E. coli isolated from surface water was less than that identified in groundwater because of the different hydraulic features of both environments. Furthermore, each one of the two big strain groups identified in this basin is located in different sub-basins, showing that hydrological dynamics exerts selective pressure on bacteria DNA.

  5. Soil chemical and physical properties that differentiate urban land-use and cover types

    Treesearch

    R.V. Pouyat; I.D. Yesilonis; J. Russell-Anelli; N.K. Neerchal

    2007-01-01

    We investigated the effects of land use and cover and surface geology on soil properties in Baltimore, MD, with the objectives to: (i) measure the physical and chemical properties of surface soils (0?10 cm) by land use and cover; and (ii) ascertain whether land use and cover explain differences in these properties relative to surface geology. Mean and median values of...

  6. Data-driven modeling of surface temperature anomaly and solar activity trends

    USGS Publications Warehouse

    Friedel, Michael J.

    2012-01-01

    A novel two-step modeling scheme is used to reconstruct and analyze surface temperature and solar activity data at global, hemispheric, and regional scales. First, the self-organizing map (SOM) technique is used to extend annual modern climate data from the century to millennial scale. The SOM component planes are used to identify and quantify strength of nonlinear relations among modern surface temperature anomalies (<150 years), tropical and extratropical teleconnections, and Palmer Drought Severity Indices (0–2000 years). Cross-validation of global sea and land surface temperature anomalies verifies that the SOM is an unbiased estimator with less uncertainty than the magnitude of anomalies. Second, the quantile modeling of SOM reconstructions reveal trends and periods in surface temperature anomaly and solar activity whose timing agrees with published studies. Temporal features in surface temperature anomalies, such as the Medieval Warm Period, Little Ice Age, and Modern Warming Period, appear at all spatial scales but whose magnitudes increase when moving from ocean to land, from global to regional scales, and from southern to northern regions. Some caveats that apply when interpreting these data are the high-frequency filtering of climate signals based on quantile model selection and increased uncertainty when paleoclimatic data are limited. Even so, all models find the rate and magnitude of Modern Warming Period anomalies to be greater than those during the Medieval Warm Period. Lastly, quantile trends among reconstructed equatorial Pacific temperature profiles support the recent assertion of two primary El Niño Southern Oscillation types. These results demonstrate the efficacy of this alternative modeling approach for reconstructing and interpreting scale-dependent climate variables.

  7. Noctis Landing: A Proposed Landing Site/Exploration Zone for Human Missions to the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Lee, Pascal; Acedillo, Shannen; Braham, Stephen; Brown, Adrian; Elphic, Richard; Fong, Terry; Glass, Brian; Hoftun, Christopher; Johansen, Brage W.; Lorber, Kira; hide

    2015-01-01

    The proposed Noctis Landing Site/Exploration Zone (LS/EZ) is shown in Figure 1. Our preliminary study suggests that the proposed site meets all key Science and Resources (incl. Civil Engineering) requirements. The site is of significant interest, as the EZ not only offers a large number and wide range of regions of interest (ROIs) for short-term exploration, it is also located strategically at the crossroads between Tharsis and Valles Marineris, which are key for long-term exploration. The proposed site contains Regions of Interest (ROIs) that meet the following Science requirements: -­- Access to (1) deposits with a high preservation potential for evidence of past habitability and fossil biosignatures and (2) sites that are promising for present habitability. The site presents a wide variety of ROIs qith likely aqueous features and deposits, including sinous channels and valleys, slope gullies, lobate debris aprons, impact craters with lobate ejecta flows, and "bathtub ring" deposits. Neutron spectrometry also suggests hydrogen is present within the topmost 0.3 m or so of 4 to 10 wt% WEH (Water Equivalent Hydrogen). -­- Noachian and/or Hesperian rocks in a stratigraphic context that have a high likelihood of containing trapped atmospheric gases. Collapsed canyon rim material with preserved stratigraphy is abundantly present and accessible. -­- Exposures of at least two crustal units that have regional or global extents, that are suitable for radiometric dating, and that have relative ages that sample a significant range of martian geological time. Canyons floors in Ius Chasma, Tithonium Chasma, and plateau tops on Tharsis and in Sinai Planum offer access to distinct crustal units of regional extent. -­- Access to outcrops with linked morphological and/or geochemical signatures indicative of aqueous or groundwater/ mineral interactions. Iron and sulfur-bearing deposits on canyon floors in Noctis Labyrinthus, and in Ius Chasma (IC) and Tithonium Chasma (TC) offer many such outcrop options. -­- Identifiable stratigraphic contacts and cross-cutting relationships from which relative ages can be determined. In place and collapsed canyon walls in NL, TC, and IC offer such opportunities. -­- Other types of ROIs include access points to surrounding plateau top areas for longer term regional exploration. A key attribute of the proposed Noctic Landing site is its strategic location to allow the shortest possible surface excusions to Tharsis and Valles Marineris (VM). VM is the feature and region on Mars that exposes the longest record of Mars' geology and evolution through time. Tharsis is the region of Mars that has experienced the longest and most extensive volcanic history, and might still be volcanically active. Some of the youngest lava flows on Mars have been identified on the western flanks of the Tharsis Bulge, i.e., within driving range of future longrange (500 - 1000 km) pressurized rover traverses. The proposed site also contains ROIs that offer the following Resources (incl. Civil Engineering) characteristics: -­- Access to raw material that exhibits the potential to (1) be used as feedstock for water-generating in situ resource utilization (ISRU) processes and (2) yield significant quantities (greater than 100 MT) of water. The raw material is likely in the form of hydrated minerals, and possibly ice/regolith mix. The top of the raw material deposit is at the surface. -­- Access to a region where infrastructure can be emplaced or constructed. This region is less than 5 km from the LS and contains flat, stable terrain. The region exhibits evidence for an abundant source of loose regolith. Several deep pits in the area combined with the availability of sand suggests that some natural terrain features can be adapted for construction purposes. -­- Access to raw material that exhibits the potential to be used as metal feedstock for ISRU and construction purposes. Iron and sulfur-rich mineral surface deposits have been identified in CRISM data in many locations in this area. Noctis Landing is the lowest-altitude location on Mars that straddles both the Tharsis region (above average geothermal gradients) and Valles Marineris (minimal crustal thickness from surface (valley floor) to a subsurface liquid water table. Noctis Landing has the potential for being an ideal site for eventual deep drilling on Mars to access deep subsurface liquid water and potentially encountering extant life. Available data remains insufficient to fully qualify the Noctis Landing site. Additional remote sensing data (visible, Near and Mid-IR, and radar) and surface reconnaissance via a high-mobility robotic rover are recommended. In particular, it will be important to assess the trafficability of the site, and its potential for yielding water and metals as a resource. Access to plateau tops from the Noctis Landing site on the canyon floor should be demonstrated. Future exploration of the site would also be enhanced significantly by the availability of robotic (tele-operatable) surveying and sample-collecting drones. Testing of the use of such collaborative science and exploration technologies should be conducted at terrestrial sites such as the Haughton-Mars Project site on Devon Island, High Arctic, among others. Note: Noctis Landing is not an official Mars nomenclature name for this location. Because the area of the proposed LS/EZ had no name, and because it is close to Noctis Labyrinthus to the West while being distinct from it, the provisional name Noctis Landing is proposed. Noctis means night in Latin.

  8. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2011-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours

  9. Viking Lander 2 Anniversary

    NASA Image and Video Library

    2002-12-13

    This portion of NASA Mars Odyssey image covers NASA Viking 2 landing site shown with the X. The second landing on Mars took place September 3, 1976 in Utopia Planitia. The exact location of Lander 2 is not as well established as Lander 1 because there were no clearly identifiable features in the lander images as there were for the site of Lander 1. The Utopia landing site region contains pedestal craters, shallow swales and gentle ridges. The crater Goldstone was named in honor of the Tracking Station in the desert of California. The two Viking Landers operated for over 6 years (nearly four martian years) after landing. This one band IR (band 9 at 12.6 microns) image shows bright and dark textures, which are primarily due to differences in the abundance of rocks on the surface. The relatively cool (dark) regions during the day are rocky or indurated materials, fine sand and dust are warmer (bright). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. The dark rings around several of the craters are due to the presence of rocky (cool) material ejected from the crater. These rocks are well below the resolution of any existing Mars camera, but THEMIS can detect the temperature variations they produce. Daytime temperature variations are produced by a combination of topographic (solar heating) and thermophysical (thermal inertia and albedo) effects. Due to topographic heating the surface morphologies seen in THEMIS daytime IR images are similar to those seen in previous imagery and MOLA topography. http://photojournal.jpl.nasa.gov/catalog/PIA04023

  10. Evaluating 20th Century precipitation characteristics between multi-scale atmospheric models with different land-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Phillips, M.; Denning, A. S.; Randall, D. A.; Branson, M.

    2016-12-01

    Multi-scale models of the atmosphere provide an opportunity to investigate processes that are unresolved by traditional Global Climate Models while at the same time remaining viable in terms of computational resources for climate-length time scales. The MMF represents a shift away from large horizontal grid spacing in traditional GCMs that leads to overabundant light precipitation and lack of heavy events, toward a model where precipitation intensity is allowed to vary over a much wider range of values. Resolving atmospheric motions on the scale of 4 km makes it possible to recover features of precipitation, such as intense downpours, that were previously only obtained by computationally expensive regional simulations. These heavy precipitation events may have little impact on large-scale moisture and energy budgets, but are outstanding in terms of interaction with the land surface and potential impact on human life. Three versions of the Community Earth System Model were used in this study; the standard CESM, the multi-scale `Super-Parameterized' CESM where large-scale parameterizations have been replaced with a 2D cloud-permitting model, and a multi-instance land version of the SP-CESM where each column of the 2D CRM is allowed to interact with an individual land unit. These simulations were carried out using prescribed Sea Surface Temperatures for the period from 1979-2006 with daily precipitation saved for all 28 years. Comparisons of the statistical properties of precipitation between model architectures and against observations from rain gauges were made, with specific focus on detection and evaluation of extreme precipitation events.

  11. The First Year of Cassini RADAR Observations of Titan

    NASA Astrophysics Data System (ADS)

    Elachi, C.; Lorenz, R. D.

    2005-12-01

    Titan`s atmosphere is essentially transparent to Radar, making it an ideal technique to study Titan`s surface. Cassini`s Titan Radar Mapper operates as a passive radiometer, scatterometer, altimeter, and synthetic aperture radar (SAR). Here we review data from four fly-bys in the first year of Cassini`s tour (Ta: October 2004, T3: February 2005, T7: September 2005, and T8: October 2005.) Early SAR images from Ta and T3 (showing < 3% of Titan`s surface) reveal that Titan is geologically young and complex (see Elachi et al., 2005, Science 13, 970-4). Significant variations were seen between the range of features seen in the Ta swath (centered at ~50N, 80W) and T3 (~ 30N, 70W) : the large-scale radiometric properties also differed, with T3 being radar-brighter. A variety of features have been identified in SAR, including two large impact craters, cryovolcanic flows and a probable volcanic dome. Dendritic and braided radar-bright sinuous channels, some 180km long, are evidence of fluvial activity. `Cat scratches`, arrays of linear dark features seem most likely to be Aeolian. Radar provides unique topographic information on Titan`s landscape e.g. the depth of the 80km crater observed in T3 can be geometrically determined to be around 1300m deep. Despite the shallow large-scale slopes indicated in altimetry to date, many small hills are seen in T3. Scatterometry and radiometry maps provide large-scale classification of surface types and polarization and incidence angle coverage being assembled will constrain dielectric and scattering properties of the surface. Judging from the TA/T3 diversity, we expect further variations in the types and distribution of surface materials and geologic features in T7, which spans a wide range of Southern latitudes. T8 SAR will cover a near-equatorial dark region, including the landing site of the Huygens probe.

  12. Mosaic of Apollo 16 Descartes landing site taken from TV transmission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A 360 degree field of view of the Apollo 16 Descartes landing site area composed of individual scenes taken from a color transmission made by the color RCA TV camera mounted on the Lunar Roving Vehicle. This panorama was made while the LRV was parked at the rim of North Ray crater (Stations 11 and 12) during the third Apollo 16 lunar surface extravehicular activity (EVA-3) by Astronauts John W. Young and Charles M. Duke Jr. The overlay identifies the directions and the key lunar terrain features. The camera panned across the rear portion of the LRV in its 360 degree sweep. Note Young and Duke walking along the edge of the crater in one of the scenes. The TV camera was remotely controlled from a console in the Mission Control Center.

  13. Spatially Complete Global Spectral Surface Albedos: Value-Added Datasets Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng

    2004-01-01

    Land surface albedo is an important parameter in describing the radiative properties of the earth s surface as it represents the amount of incoming solar radiation that is reflected from the surface. The amount and type of vegetation of the surface dramatically alters the amount of radiation that is reflected; for example, croplands that contain leafy vegetation will reflect radiation very differently than blacktop associated with urban areas. In addition, since vegetation goes through a growth, or phenological, cycle, the amount of radiation that is reflected changes over the course of a year. As a result, albedo is both temporally and spatially dependant upon global location as there is a distribution of vegetated surface types and growing conditions. Land surface albedo is critical for a wide variety of earth system research projects including but not restricted to remote sensing of atmospheric aerosol and cloud properties from space, ground-based analysis of aerosol optical properties from surface-based sun/sky radiometers, biophysically-based land surface modeling of the exchange of energy, water, momentum, and carbon for various land use categories, and surface energy balance studies. These projects require proper representation of the surface albedo s spatial, spectral, and temporal variations, however, these representations are often lacking in datasets prior to the latest generation of land surface albedo products.

  14. Reaching for the red planet

    PubMed

    David, L

    1996-05-01

    The distant shores of Mars were reached by numerous U.S. and Russian spacecraft throughout the 1960s to mid 1970s. Nearly 20 years have passed since those successful missions which orbited and landed on the Martian surface. Two Soviet probes headed for the planet in July, 1988, but later failed. In August 1993, the U.S. Mars Observer suddenly went silent just three days before it was to enter orbit around the planet and was never heard from again. In late 1996, there will be renewed activity on the launch pads with three probes departing for the red planet: 1) The U.S. Mars Global Surveyor will be launched in November on a Delta II rocket and will orbit the planet for global mapping purposes; 2) Russia's Mars '96 mission, scheduled to fly in November on a Proton launcher, consists of an orbiter, two small stations which will land on the Martian surface, and two penetrators that will plow into the terrain; and finally, 3) a U.S. Discovery-class spacecraft, the Mars Pathfinder, has a December launch date atop a Delta II booster. The mission features a lander and a microrover that will travel short distances over Martian territory. These missions usher in a new phase of Mars exploration, setting the stage for an unprecedented volley of spacecraft that will orbit around, land on, drive across, and perhaps fly at low altitudes over the planet.

  15. Comparison and Assessment of Three Advanced Land Surface Models in Simulating Terrestrial Water Storage Components over the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Youlong; Mocko, David; Huang, Maoyi

    2017-03-01

    In preparation for next generation North American Land Data Assimilation System (NLDAS), 3 three advanced land surface models (CLM4.0, Noah-MP, and CLSM-F2.5) were run from 1979 4 to 2014 within the NLDAS-based framework. Monthly total water storage anomaly (TWSA) and 5 its individual water storage components were evaluated against satellite-based and in situ 6 observations, and reference reanalysis products at basin-wide and statewide scales. In general, all 7 three models are able to reasonably capture the monthly and interannual variability and 8 magnitudes for TWSA. However, contributions of the anomalies of individual water 9 components to TWSA are very dependentmore » on the model and basin. A major contributor to the 10 TWSA is the anomaly of total column soil moisture content (SMCA) for CLM4.0 and Noah-MP 11 or groundwater storage anomaly (GWSA) for CLSM-F2.5 although other components such as 12 the anomaly of snow water equivalent (SWEA) also play some role. For each individual water 13 storage component, the models are able to capture broad features such as monthly and 14 interannual variability. However, there are large inter-model differences and quantitative 15 uncertainties in this study. Therefore, it should be thought of as a preliminary synthesis and 16 analysis.« less

  16. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  17. Using Landsat Thematic Mapper (TM) sensor to detect change in land surface temperature in relation to land use change in Yazd, Iran

    NASA Astrophysics Data System (ADS)

    Zareie, Sajad; Khosravi, Hassan; Nasiri, Abouzar; Dastorani, Mostafa

    2016-11-01

    Land surface temperature (LST) is one of the key parameters in the physics of land surface processes from local to global scales, and it is one of the indicators of environmental quality. Evaluation of the surface temperature distribution and its relation to existing land use types are very important to the investigation of the urban microclimate. In arid and semi-arid regions, understanding the role of land use changes in the formation of urban heat islands is necessary for urban planning to control or reduce surface temperature. The internal factors and environmental conditions of Yazd city have important roles in the formation of special thermal conditions in Iran. In this paper, we used the temperature-emissivity separation (TES) algorithm for LST retrieving from the TIRS (Thermal Infrared Sensor) data of the Landsat Thematic Mapper (TM). The root mean square error (RMSE) and coefficient of determination (R2) were used for validation of retrieved LST values. The RMSE of 0.9 and 0.87 °C and R2 of 0.98 and 0.99 were obtained for the 1998 and 2009 images, respectively. Land use types for the city of Yazd were identified and relationships between land use types, land surface temperature and normalized difference vegetation index (NDVI) were analyzed. The Kappa coefficient and overall accuracy were calculated for accuracy assessment of land use classification. The Kappa coefficient values are 0.96 and 0.95 and the overall accuracy values are 0.97 and 0.95 for the 1998 and 2009 classified images, respectively. The results showed an increase of 1.45 °C in the average surface temperature. The results of this study showed that optical and thermal remote sensing methodologies can be used to research urban environmental parameters. Finally, it was found that special thermal conditions in Yazd were formed by land use changes. Increasing the area of asphalt roads, residential, commercial and industrial land use types and decreasing the area of the parks, green spaces and fallow lands in Yazd caused a rise in surface temperature during the 11-year period.

  18. Wind variability and sheltering effects on measurements and modeling of air-water exchange for a small lake

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.; Resseger, Emily; Porté-Agel, Fernando; Stefan, Heinz

    2014-05-01

    Lakes with a surface area of less than 10 km2 account for over 50% of the global cumulative lake surface water area, and make up more than 99% of the total number of global lakes, ponds, and wetlands. Within the boreal regions as well as some temperate and tropical areas, a significant proportion of land cover is characterized by lakes or wetlands, which can have a dramatic effect on land-atmosphere fluxes as well as the local and regional energy budget. Many of these small water bodies are surrounded by complex terrain and forest, which cause the wind blowing over a small lake or wetland to be highly variable. Wind mixing of the lake surface layer affects thermal stratification, surface temperature and air-water gas transfer, e.g. O2, CO2, and CH4. As the wind blows from the land to the lake, wake turbulence behind trees and other shoreline obstacles leads to a recirculation zone and enhanced turbulence. This wake flow results in the delay of the development of wind shear stress on the lake surface, and the fetch required for surface shear stress to fully develop may be ~O(1 km). Interpretation of wind measurements made on the lake is hampered by the unknown effect of wake turbulence. We present field measurements designed to quantify wind variability over a sheltered lake. The wind data and water column temperature profiles are used to evaluate a new method to quantify wind sheltering of lakes that takes into account lake size, shape and the surrounding landscape features. The model is validated against field data for 36 Minnesota lakes. Effects of non-uniform sheltering and lake shape are also demonstrated. The effects of wind sheltering must be included in lake models to determine the effect of wind-derived energy inputs on lake stratification, surface gas transfer, lake water quality, and fish habitat. These effects are also important for correctly modeling momentum, heat, moisture and trace gas flux to the atmosphere.

  19. Combining Satellite Data and Models to Assess the Impacts of Urbanization on the Continental US Surface Climate

    NASA Technical Reports Server (NTRS)

    Bounoua, L.; Zhang, P.; Imhoff, M.; Santanello, J.; Kumar, S.; Shepherd, M.; Quattrochi, D.; Silva, J.; Rosenzweigh, C.; Gaffin, S.; hide

    2013-01-01

    Urbanization is one of the most important and long lasting forms of land transformation. Urbanization affects the surface climate in different ways: (1) by reduction of the vegetation fraction causing subsequent reduction in photosynthesis and plant s water transpiration, (2) by alternation of surface runoff and infiltration and their impacts on soil moisture and the water table, (3) by change in the surface albedo and surface energy partitioning, and (4) by transformation of the surface roughness length and modification of surface fluxes. Land cover and land use change maps including urban areas have been developed and will be used in a suite of land surface models of different complexity to assess the impacts of urbanization on the continental US surface climate. These maps and datasets based on a full range of available satellite data and ground observations will be used to characterize distant-past (pre-urban), recent-past (2001), present (2010), and near future (2020) land cover and land use changes. The main objective of the project is to assess the impacts of these land transformation on past, current and near-future climate and the potential feedbacks from these changes on the atmospheric, hydrologic, biological, and socio-economic properties beyond the immediate metropolitan regions of cities and their near suburbs. The WRF modeling system will be used to explore the nature and the magnitude of the two-way interactions between urban lands and the atmosphere and assess the overall regional dynamic effect of urban expansion on the northeastern US weather and climate

  20. Quantifying shallow and deep permafrost changes using radar remote sensing

    NASA Astrophysics Data System (ADS)

    Teshebaeva, K.; van Huissteden, K. J.

    2017-12-01

    Widespread thawing of permafrost in the northern Eurasian continent cause severe problems for infrastructure and global climate. Permafrost thaw by climate warming creates land surface instability, resulting in severe problems for infrastructure, and release of organic matter to the atmosphere as CO2 and CH4. Recent discoveries of CH4 seeps in lakes, in the Arctic Ocean, and CH4 emitting craters in the permafrost. These features indicate that permafrost destabilization might no longer be a surface feature only, but that also deeper layers of the permafrost, up to tens of meters, may be affected by warming. We study two potential areas in Siberian arctic; one of the test site is the Kytalyk research station near Chokurdagh town affected with a recent inundation of the Indigirka river in July 2017, which resulted in standing surface water for the period over a month. The wet soil and standing water may cause changes in active layer thickness and influence the thermal regime of the permafrost for the next decades in the region. The second test site is Yamal peninsula with recently CH4 emitting craters, which may start to contribute to emission hotspots. We hypothesize that these deeper subsurface processes also can be detected by mapping surface elevation changes using advanced SAR techniques. We test the potential of SAR imagery to enhance detection of these features, including surface movement related to permafrost active layer changes using InSAR time-series analysis. We also apply radar backscatter signal to detect seasonal changes related to the freeze-thaw cycles. The PRISM elevation data are used to estimate elevation changes in the region along with ground-based geophysical and geodetical fieldwork.

  1. 30 CFR 740.15 - Bonds on Federal lands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS... surface coal mining, the applicant for a mining permit, if unable to obtain the written consent of the...

  2. Impact of water use efficiency on eddy covariance flux partitioning using correlation structure analysis

    USDA-ARS?s Scientific Manuscript database

    Partitioned land surfaces fluxes (e.g. evaporation, transpiration, photosynthesis, and ecosystem respiration) are needed as input, calibration, and validation data for numerous hydrological and land surface models. However, one of the most commonly used techniques for measuring land surface fluxes,...

  3. Remote sensing for oceanography, hydrology and agriculture; Proceedings of Symposia A5, A3 and A9 of the COSPAR 29th Plenary Meeting, Washington, Aug. 28-Sept. 5, 1992

    NASA Technical Reports Server (NTRS)

    Gower, J. F. R. (Editor); Salomonson, V. V. (Editor); Engman, E. T. (Editor); Ormsby, J. P. (Editor); Gupta, R. K. (Editor)

    1993-01-01

    New results from satellite studies of the ocean and radar mapping of the earth are presented. Atttention is given to data from the ERS-1 satellite. Synthetic aperture radar mapping of land surface features and sea ice, radar backscatter measurements, and orbit altitude measurements are discussed. The use of remote sensing in hydrology, soil moisture determination, precipitation measurement, agricultural meteorology, and crop growth estimation is reviewed.

  4. Utility of Thermal Infrared Satellite Data For Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Xian, G.; Crane, M.; Granneman, B.

    2006-12-01

    Urban landscapes are comprised of a variety of surfaces that are characterized by contrasting radiative, thermal, aerodynamic, and moisture properties. These different surfaces possess diverse physical and thermal attributes that directly influence surface energy balance and our ability to determine surface characteristics in urban areas. Reflectance properties obtained from satellite imagery have proven useful for mapping urban land use and land cover change, as well as ecosystem health. Landsat reflectance bands are commonly used in regression tree models to generate linear equations that correspond to distinct land surface materials. However, urban land cover is generally a heterogeneous mix of bare soil, vegetation, rock, and anthropogenic impervious surfaces. Surface temperature obtained from satellite thermal infrared bands provides valuable information about surface biophysical properties and radiant thermal characteristics of land cover elements, especially for urban environments. This study demonstrates the improved characterization of land cover conditions for Seattle, Washington, and Las Vegas, Nevada, that were achieved by using both the reflectance and thermal bands of Landsat Enhanced Thematic Mapper Plus (ETM+) data. Including the thermal band in the image analysis increased the accuracy of discriminating cover types in heterogeneous landscapes with extreme contrasts, especially for mixed pixels at the urban interface.

  5. KSC-2011-5965

    NASA Image and Video Library

    2011-07-25

    CAPE CANAVERAL, Fla. -- The Apollo/Saturn V Center at NASA's Kennedy Space Center in Florida hosted a celebration on the 40th anniversary of NASA's Apollo 15 mission. Apollo 15 Commander Dave Scott, Command Module Pilot Al Worden and an elite gathering of Apollo-era astronauts were on hand for the event and panel discussion. Here, Apollo 11 Commander Neil Armstrong speaks to the invited guests. Worden circled the moon while Scott and the late Jim Irwin, the Lunar Module commander, made history when they became the first humans to drive a vehicle on the surface of the moon. They also provided extensive descriptions and photographic documentation of geologic features in the vicinity of the Hadley Rille landing site during their three days on the lunar surface. Photo credit: NASA/Kim Shiflett

  6. ICESat: Ice, Cloud and Land Elevation Satellite

    NASA Technical Reports Server (NTRS)

    Zwally, Jay; Shuman, Christopher

    2002-01-01

    Ice exists in the natural environment in many forms. The Earth dynamic ice features shows that at high elevations and/or high latitudes,snow that falls to the ground can gradually build up tu form thick consolidated ice masses called glaciers. Glaciers flow downhill under the force of gravity and can extend into areas that are too warm to support year-round snow cover. The snow line, called the equilibrium line on a glacier or ice sheet, separates the ice areas that melt on the surface and become show free in summer (net ablation zone) from the ice area that remain snow covered during the entire year (net accumulation zone). Snow near the surface of a glacier that is gradually being compressed into solid ice is called firm.

  7. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.

    Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less

  8. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model

    DOE PAGES

    Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.; ...

    2016-05-10

    Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less

  9. Study on temporal and spatial variations of urban land use based on land change data

    NASA Astrophysics Data System (ADS)

    Jiang, Ping; Liu, Yanfang; Fan, Min; Zhang, Yang

    2009-10-01

    With the rapid development of urbanization, demands of urban land increase in succession, hence, to analyze temporal and spatial variations of urban land use becomes more and more important. In this paper, the principle of trend surface analysis and formula of urban land sprawl index ( ULSI) are expatiated at first, and then based on land change data of Jiayu county, the author fits quadratic trend surface by choosing urban land area as dependent variable and urbanization and GDP as independent variables from 1996 to 2006, draws isoline of trend surface and residual values; and then urban land sprawl indexes of towns are calculated on the basis of urban land area of 1996 and 2006 and distribution map of ULSI is plotted. After analyzing those results, we can conclude that there is consanguineous relationship between urban land area and urbanization, economic level etc.

  10. Rock Abrasion on Mars: Clues from the Pathfinder and Viking Landing Sites

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Parker, T. J.; Kramer, G. M.

    2000-01-01

    A significant discovery of the Mars Pathfinder (MPF) mission was that many rocks exhibit characteristics of ventifacts, rocks that have been sculpted by saltating particles. Diagnostic features identifying the rocks as ventifacts am elongated pits, flutes, and grooves (collectively referred to as "flutes" unless noted otherwise). Faceted rocks or rock portions, circular pits, rills, and possibly polished rock surfaces are also seen and could be due, to aeolian abrasion. Many of these features were initially identified in rover images, where spatial resolution generally exceeded that of the IMP (Imager for Mars Pathfinder) camera. These images had two major limitations: 1) Only a limited number of rocks were viewed by the rover, biasing flute statistics; and 2) The higher resolution obtained by the rover images and the lack of such pictures at the Viking landing sites hampered comparisons of rock morphologies between the Pathfinder and Viking sites. To avoid this problem, rock morphology and ventifact statistics have been examined using new "super-resolution" IMP and Viking Lander images. Analyses of these images show that: 1) Flutes are seen on about 50% or more of the rocks in the near field at the MPF site; 2) The orientation of these flutes is similar to that for flutes identified in rover images; and 3) Ventifacts are significantly more abundant at the Pathfinder landing site than at the two Viking Landing sites, where rocks have undergone only a limited amount of aeolian abrasion. This is most likely due to the ruggedness of the Pathfinder site and a greater supply of abrading particles available shortly after the Arcs and Tiu Valles outflow channel floods.

  11. Reconstructed historical land cover and biophysical parameters for studies of land-atmosphere interactions within the eastern United States

    USGS Publications Warehouse

    Steyaert, Louis T.; Knox, R.G.

    2008-01-01

    Over the past 350 years, the eastern half of the United States experienced extensive land cover changes. These began with land clearing in the 1600s, continued with widespread deforestation, wetland drainage, and intensive land use by 1920, and then evolved to the present-day landscape of forest regrowth, intensive agriculture, urban expansion, and landscape fragmentation. Such changes alter biophysical properties that are key determinants of land-atmosphere interactions (water, energy, and carbon exchanges). To understand the potential implications of these land use transformations, we developed and analyzed 20-km land cover and biophysical parameter data sets for the eastern United States at 1650, 1850, 1920, and 1992 time slices. Our approach combined potential vegetation, county-level census data, soils data, resource statistics, a Landsat-derived land cover classification, and published historical information on land cover and land use. We reconstructed land use intensity maps for each time slice and characterized the land cover condition. We combined these land use data with a mutually consistent set of biophysical parameter classes, to characterize the historical diversity and distribution of land surface properties. Time series maps of land surface albedo, leaf area index, a deciduousness index, canopy height, surface roughness, and potential saturated soils in 1650, 1850, 1920, and 1992 illustrate the profound effects of land use change on biophysical properties of the land surface. Although much of the eastern forest has returned, the average biophysical parameters for recent landscapes remain markedly different from those of earlier periods. Understanding the consequences of these historical changes will require land-atmosphere interactions modeling experiments.

  12. Hyperspectral Thermal Infrared Remote Sensing of the Land Surface and Target Identification using Airborne Interferometry

    DTIC Science & Technology

    2009-10-01

    variational data assimilation technique are profiles of temperature, water vapour and ozone , surface temperature and spectrally varying emissivity. HOW TO...that are insensitive to the land surface because of the complexity of the land surface emissivity. We have utilised the techniques described here for...state as well as surface properties. Furthermore with by utilising a variational assimilation technique and a state of the art Numerical Weather

  13. [Nitrogen Losses Under the Action of Different Land Use Types of Small Catchment in Three Gorges Region].

    PubMed

    Chen, Cheng-long; Gao, Ming; Ni, Jiu-pai; Xie, De-ti; Deng, Hua

    2016-05-15

    As an independent water-collecting area, small catchment is the source of non-point source pollution in Three Gorges Region. Choosing 3 kinds of the most representative land-use types and using them to lay monitoring points of overland runoff within the small catchment of Wangjiagou in Fuling of Three Gorges Region, the author used the samples of surface runoff collected through the twelve natural rainfalls from May to December to analyze the feature of spatial-temporal change of Nitrogen's losses concentrations under the influence of different land use types and the hillslopes and small catchments composed by those land use types, revealing the relation between different land-use types and Nitrogen's losses of small catchments in Three Gorges Region. The result showed: the average losses concentration of TN showed the biggest difference for different land use types during the period of spring crops, and the average value of dry land was 1. 61 times and 6.73 times of the values of interplanting field of mulberry and paddy field, respectively; the change of the losses concentration of TN was most conspicuous in the 3 periods of paddy field. The main element was NO₃⁻-N, and the relation between TN and NO₃⁻-N showed a significant linear correlation. TN's and NO₃⁻-N's losses concentrations were significantly and positively correlated with the area ratio of corn and mustard, but got a significant negative correlation with the area ratio of paddy and mulberry; NH₄⁺-N's losses concentrations got a significant positive correlation with the area ratio of mustard. Among all the hillslopes composed by different land use types, TN's average losses concentration of surface runoff of the hillslope composed by interplantating field of mulberry and paddy land during the three periods was the lowest, and the values were 2.55, 11.52, 8.58 mg · L⁻¹, respectively; the hillslope of rotation plough land of corn and mustard had the maximum value, and the values were 27.51, 25.11, 27.11 mg · L⁻¹, respectively; different land use types and spatial combination ways of subcatchment had a greater influence on TN's losses concentrations, so using a reasonable way to adjust land use structure and spatial arrangement of whole catchment was an effective measure to control the source of non-point source pollution of Three Gorges Region.

  14. Analysis of surface energy budget data over varying land-cover conditions.

    USDA-ARS?s Scientific Manuscript database

    The surface energy budget plays an important role in boundary-layer meteorology and quantifying these budgets over varying land surface types is important in studying land-atmosphere interactions. In late April 2007, eddy covariance towers were erected at four sites in the Little Washita Watershed i...

  15. Estimation of effective aerodynamic roughness with altimeter measurements

    NASA Technical Reports Server (NTRS)

    Menenti, M.; Ritchie, J. C.

    1992-01-01

    A new method is presented for estimating the aerodynamic roughness length of heterogeneous land surfaces and complex landscapes using elevation measurements performed with an airborne laser altimeter and the Seasat radar altimeter. Land surface structure is characterized at increasing length scales by considering three basic landscape elements: (1) partial to complete canopies of herbaceous vegetation; (2) sparse obstacles (e.g., shrubs and trees); and (3) local relief. Measured parameters of land surface geometry are combined to obtain an effective aerodynamic roughness length which parameterizes the total atmosphere-land surface stress.

  16. Land Surface Process and Air Quality Research and Applications at MSFC

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale; Khan, Maudood

    2007-01-01

    This viewgraph presentation provides an overview of land surface process and air quality research at MSFC including atmospheric modeling and ongoing research whose objective is to undertake a comprehensive spatiotemporal analysis of the effects of accurate land surface characterization on atmospheric modeling results, and public health applications. Land use maps as well as 10 meter air temperature, surface wind, PBL mean difference heights, NOx, ozone, and O3+NO2 plots as well as spatial growth model outputs are included. Emissions and general air quality modeling are also discussed.

  17. Integration of environmental simulation models with satellite remote sensing and geographic information systems technologies: case studies

    USGS Publications Warehouse

    Steyaert, Louis T.; Loveland, Thomas R.; Brown, Jesslyn F.; Reed, Bradley C.

    1993-01-01

    Environmental modelers are testing and evaluating a prototype land cover characteristics database for the conterminous United States developed by the EROS Data Center of the U.S. Geological Survey and the University of Nebraska Center for Advanced Land Management Information Technologies. This database was developed from multi temporal, 1-kilometer advanced very high resolution radiometer (AVHRR) data for 1990 and various ancillary data sets such as elevation, ecological regions, and selected climatic normals. Several case studies using this database were analyzed to illustrate the integration of satellite remote sensing and geographic information systems technologies with land-atmosphere interactions models at a variety of spatial and temporal scales. The case studies are representative of contemporary environmental simulation modeling at local to regional levels in global change research, land and water resource management, and environmental simulation modeling at local to regional levels in global change research, land and water resource management and environmental risk assessment. The case studies feature land surface parameterizations for atmospheric mesoscale and global climate models; biogenic-hydrocarbons emissions models; distributed parameter watershed and other hydrological models; and various ecological models such as ecosystem, dynamics, biogeochemical cycles, ecotone variability, and equilibrium vegetation models. The case studies demonstrate the important of multi temporal AVHRR data to develop to develop and maintain a flexible, near-realtime land cover characteristics database. Moreover, such a flexible database is needed to derive various vegetation classification schemes, to aggregate data for nested models, to develop remote sensing algorithms, and to provide data on dynamic landscape characteristics. The case studies illustrate how such a database supports research on spatial heterogeneity, land use, sensitivity analysis, and scaling issues involving regional extrapolations and parameterizations of dynamic land processes within simulation models.

  18. Flow-Field Investigation of Gear-Flap Interaction on a Gulfstream Aircraft Model

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Jenkins, Luther N.; Bartram, Scott M.; Harris, Jerome; Khorrami, Mehdi R.; Mace, W. Derry

    2014-01-01

    Off-surface flow measurements of a high-fidelity 18% scale Gulfstream aircraft model in landing configuration with the main landing gear deployed are presented. Particle Image Velocimetry (PIV) and Laser Velocimetry (LV) were used to measure instantaneous velocities in the immediate vicinity of the main landing gear and its wake and near the inboard tip of the flap. These measurements were made during the third entry of a series of tests conducted in the NASA Langley Research Center (LaRC) 14- by 22-Foot Subsonic Tunnel (14 x 22) to obtain a comprehensive set of aeroacoustic measurements consisting of both aerodynamic and acoustic data. The majority of the off-body measurements were obtained at a freestream Mach number of 0.2, angle of attack of 3 degrees, and flap deflection angle of 39 degrees with the landing gear on. A limited amount of data was acquired with the landing gear off. LV was used to measure the velocity field in two planes upstream of the landing gear and to measure two velocity profiles in the landing gear wake. Stereo and 2-D PIV were used to measure the velocity field over a region extending from upstream of the landing gear to downstream of the flap trailing edge. Using a special traverse system installed under the tunnel floor, the velocity field was measured at 92 locations to obtain a comprehensive picture of the pertinent flow features and characteristics. The results clearly show distinct structures in the wake that can be associated with specific components on the landing gear and give insight into how the wake is entrained by the vortex at the inboard tip of the flap.

  19. Applying Geospatial Techniques to Investigate Boundary Layer Land-Atmosphere Interactions Involved in Tornadogensis

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Griffin, R.; Knupp, K. R.; Molthan, A.; Coleman, T.

    2017-12-01

    Northern Alabama is among the most tornado-prone regions in the United States. This region has a higher degree of spatial variability in both terrain and land cover than the more frequently studied North American Great Plains region due to its proximity to the southern Appalachian Mountains and Cumberland Plateau. More research is needed to understand North Alabama's high tornado frequency and how land surface heterogeneity influences tornadogenesis in the boundary layer. Several modeling and simulation studies stretching back to the 1970's have found that variations in the land surface induce tornadic-like flow near the surface, illustrating a need for further investigation. This presentation introduces research investigating the hypothesis that horizontal gradients in land surface roughness, normal to the direction of flow in the boundary layer, induce vertically oriented vorticity at the surface that can potentially aid in tornadogenesis. A novel approach was implemented to test this hypothesis using a GIS-based quadrant pattern analysis method. This method was developed to quantify spatial relationships and patterns between horizontal variations in land surface roughness and locations of tornadogenesis. Land surface roughness was modeled using the Noah land surface model parameterization scheme which, was applied to MODIS 500 m and Landsat 30 m data in order to compare the relationship between tornadogenesis locations and roughness gradients at different spatial scales. This analysis found a statistical relationship between areas of higher roughness located normal to flow surrounding tornadogenesis locations that supports the tested hypothesis. In this presentation, the innovative use of satellite remote sensing data and GIS technologies to address interactions between the land and atmosphere will be highlighted.

  20. Improved Surface and Tropospheric Temperatures Determined Using Only Shortwave Channels: The AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2011-01-01

    The Goddard DISC has generated products derived from AIRS/AMSU-A observations, starting from September 2002 when the AIRS instrument became stable, using the AIRS Science Team Version-5 retrieval algorithm. The AIRS Science Team Version-6 retrieval algorithm will be finalized in September 2011. This paper describes some of the significant improvements contained in the Version-6 retrieval algorithm, compared to that used in Version-5, with an emphasis on the improvement of atmospheric temperature profiles, ocean and land surface skin temperatures, and ocean and land surface spectral emissivities. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(sup -1) (15.38 micrometers) - 2665 cm(sup -1) (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometers (longwave) CO2 band, and the 4.3 micrometers (shortwave) CO2 absorption band. There are also two atmospheric window regions, the 12 micrometer - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses observations in longwave channels to determine coefficients which generate cloud cleared radiances R(sup ^)(sub i) for all channels, and uses R(sup ^)(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used in the AIRS Version-6 Retrieval Algorithm. Results are presented for both daytime and nighttime conditions showing improved Version-6 surface and atmospheric soundings under partial cloud cover.

Top