Land surface Verification Toolkit (LVT)
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.
2017-01-01
LVT is a framework developed to provide an automated, consolidated environment for systematic land surface model evaluation Includes support for a range of in-situ, remote-sensing and other model and reanalysis products. Supports the analysis of outputs from various LIS subsystems, including LIS-DA, LIS-OPT, LIS-UE. Note: The Land Information System Verification Toolkit (LVT) is a NASA software tool designed to enable the evaluation, analysis and comparison of outputs generated by the Land Information System (LIS). The LVT software is released under the terms and conditions of the NASA Open Source Agreement (NOSA) Version 1.1 or later. Land Information System Verification Toolkit (LVT) NOSA.
Land Surface Verification Toolkit (LVT) - A Generalized Framework for Land Surface Model Evaluation
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Peters-Lidard, Christa D.; Santanello, Joseph; Harrison, Ken; Liu, Yuqiong; Shaw, Michael
2011-01-01
Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it also supports hydrological data products from other, non-LIS environments. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community.
Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency
NASA Technical Reports Server (NTRS)
Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey
2012-01-01
The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours. AFWA recognizes the importance of operational benchmarking and uncertainty characterization for land surface modeling and is developing standard methods, software, and metrics to verify and/or validate LIS output products. To facilitate this and other needs for land analysis activities at AFWA, the Model Evaluation Toolkit (MET) -- a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community -- and the Land surface Verification Toolkit (LVT), developed at the Goddard Space Flight Center (GSFC), have been adapted to operational benchmarking needs of AFWA's land characterization activities.
WRF Simulation over the Eastern Africa by use of Land Surface Initialization
NASA Astrophysics Data System (ADS)
Sakwa, V. N.; Case, J.; Limaye, A. S.; Zavodsky, B.; Kabuchanga, E. S.; Mungai, J.
2014-12-01
The East Africa region experiences severe weather events associated with hazards of varying magnitude. It receives heavy precipitation which leads to wide spread flooding and lack of sufficient rainfall in some parts results into drought. Cases of flooding and drought are two key forecasting challenges for the Kenya Meteorological Service (KMS). The source of heat and moisture depends on the state of the land surface which interacts with the boundary layer of the atmosphere to produce excessive precipitation or lack of it that leads to severe drought. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface within weakly-sheared environments, such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in numerical weather prediction models. Improved modeling capabilities within the region have the potential to enhance forecast guidance in support of daily operations and high-impact weather over East Africa. KMS currently runs a configuration of the Weather Research and Forecasting (WRF) model in real time to support its daily forecasting operations, invoking the Non-hydrostatic Mesoscale Model (NMM) dynamical core. They make use of the National Oceanic and Atmospheric Administration / National Weather Service Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the WRF-NMM model runs on a 7-km regional grid over Eastern Africa.SPoRT and SERVIR provide land surface initialization datasets and model verification tool. The NASA Land Information System (LIS) provide real-time, daily soil initialization data in place of interpolated Global Forecast System soil moisture and temperature data. Model verification is done using the Model Evaluation Tools (MET) package, in order to quantify possible improvements in simulated temperature, moisture and precipitation resulting from the experimental land surface initialization. These MET tools enable KMS to monitor model forecast accuracy in near real time. This study highlights verification results of WRF runs over East Africa using the LIS land surface initialization.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Zavodsky, Bradley T.; Srikishen, Jayanthi; Limaye, Ashutosh; Blankenship, Clay B.
2016-01-01
Flooding, severe weather, and drought are key forecasting challenges for the Kenya Meteorological Department (KMD), based in Nairobi, Kenya. Atmospheric processes leading to convection, excessive precipitation and/or prolonged drought can be strongly influenced by land cover, vegetation, and soil moisture content, especially during anomalous conditions and dry/wet seasonal transitions. It is thus important to represent accurately land surface state variables (green vegetation fraction, soil moisture, and soil temperature) in Numerical Weather Prediction (NWP) models. The NASA SERVIR and the Short-term Prediction Research and Transition (SPoRT) programs in Huntsville, AL have established a working partnership with KMD to enhance its regional modeling capabilities. SPoRT and SERVIR are providing experimental land surface initialization datasets and model verification capabilities for capacity building at KMD. To support its forecasting operations, KMD is running experimental configurations of the Weather Research and Forecasting (WRF; Skamarock et al. 2008) model on a 12-km/4-km nested regional domain over eastern Africa, incorporating the land surface datasets provided by NASA SPoRT and SERVIR. SPoRT, SERVIR, and KMD participated in two training sessions in March 2014 and June 2015 to foster the collaboration and use of unique land surface datasets and model verification capabilities. Enhanced regional modeling capabilities have the potential to improve guidance in support of daily operations and high-impact weather and climate outlooks over Eastern Africa. For enhanced land-surface initialization, the NASA Land Information System (LIS) is run over Eastern Africa at 3-km resolution, providing real-time land surface initialization data in place of interpolated global model soil moisture and temperature data available at coarser resolutions. Additionally, real-time green vegetation fraction (GVF) composites from the Suomi-NPP VIIRS instrument is being incorporated into the KMD-WRF runs, using the product generated by NOAA/NESDIS. Model verification capabilities are also being transitioned to KMD using NCAR's Model *Corresponding author address: Jonathan Case, ENSCO, Inc., 320 Sparkman Dr., Room 3008, Huntsville, AL, 35805. Email: Jonathan.Case-1@nasa.gov Evaluation Tools (MET; Brown et al. 2009) software in conjunction with a SPoRT-developed scripting package, in order to quantify and compare errors in simulated temperature, moisture and precipitation in the experimental WRF model simulations. This extended abstract and accompanying presentation summarizes the efforts and training done to date to support this unique regional modeling initiative at KMD. To honor the memory of Dr. Peter J. Lamb and his extensive efforts in bolstering weather and climate science and capacity-building in Africa, we offer this contribution to the special Peter J. Lamb symposium. The remainder of this extended abstract is organized as follows. The collaborating international organizations involved in the project are presented in Section 2. Background information on the unique land surface input datasets is presented in Section 3. The hands-on training sessions from March 2014 and June 2015 are described in Section 4. Sample experimental WRF output and verification from the June 2015 training are given in Section 5. A summary is given in Section 6, followed by Acknowledgements and References.
Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency
NASA Technical Reports Server (NTRS)
Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey
2011-01-01
The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours
Exomars Mission Verification Approach
NASA Astrophysics Data System (ADS)
Cassi, Carlo; Gilardi, Franco; Bethge, Boris
According to the long-term cooperation plan established by ESA and NASA in June 2009, the ExoMars project now consists of two missions: A first mission will be launched in 2016 under ESA lead, with the objectives to demonstrate the European capability to safely land a surface package on Mars, to perform Mars Atmosphere investigation, and to provide communi-cation capability for present and future ESA/NASA missions. For this mission ESA provides a spacecraft-composite, made up of an "Entry Descent & Landing Demonstrator Module (EDM)" and a Mars Orbiter Module (OM), NASA provides the Launch Vehicle and the scientific in-struments located on the Orbiter for Mars atmosphere characterisation. A second mission with it launch foreseen in 2018 is lead by NASA, who provides spacecraft and launcher, the EDL system, and a rover. ESA contributes the ExoMars Rover Module (RM) to provide surface mobility. It includes a drill system allowing drilling down to 2 meter, collecting samples and to investigate them for signs of past and present life with exobiological experiments, and to investigate the Mars water/geochemical environment, In this scenario Thales Alenia Space Italia as ESA Prime industrial contractor is in charge of the design, manufacturing, integration and verification of the ESA ExoMars modules, i.e.: the Spacecraft Composite (OM + EDM) for the 2016 mission, the RM for the 2018 mission and the Rover Operations Control Centre, which will be located at Altec-Turin (Italy). The verification process of the above products is quite complex and will include some pecu-liarities with limited or no heritage in Europe. Furthermore the verification approach has to be optimised to allow full verification despite significant schedule and budget constraints. The paper presents the verification philosophy tailored for the ExoMars mission in line with the above considerations, starting from the model philosophy, showing the verification activities flow and the sharing of tests between the different levels (system, modules, subsystems, etc) and giving an overview of the main test defined at Spacecraft level. The paper is mainly focused on the verification aspects of the EDL Demonstrator Module and the Rover Module, for which an intense testing activity without previous heritage in Europe is foreseen. In particular the Descent Module has to survive to the Mars atmospheric entry and landing, its surface platform has to stay operational for 8 sols on Martian surface, transmitting scientific data to the Orbiter. The Rover Module has to perform 180 sols mission in Mars surface environment. These operative conditions cannot be verified only by analysis; consequently a test campaign is defined including mechanical tests to simulate the entry loads, thermal test in Mars environment and the simulation of Rover operations on a 'Mars like' terrain. Finally, the paper present an overview of the documentation flow defined to ensure the correct translation of the mission requirements in verification activities (test, analysis, review of design) until the final verification close-out of the above requirements with the final verification reports.
NASA Technical Reports Server (NTRS)
Case. Jonathan; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.
2014-01-01
Flooding and drought are two key forecasting challenges for the Kenya Meteorological Department (KMD). Atmospheric processes leading to excessive precipitation and/or prolonged drought can be quite sensitive to the state of the land surface, which interacts with the boundary layer of the atmosphere providing a source of heat and moisture. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface within weakly-sheared environments, such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in numerical weather prediction models. Enhanced regional modeling capabilities have the potential to improve forecast guidance in support of daily operations and high-end events over east Africa. KMD currently runs a configuration of the Weather Research and Forecasting (WRF) model in real time to support its daily forecasting operations, invoking the Nonhydrostatic Mesoscale Model (NMM) dynamical core. They make use of the National Oceanic and Atmospheric Administration / National Weather Service Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the WRF-NMM model runs on a 7-km regional grid over eastern Africa. Two organizations at the National Aeronautics and Space Administration Marshall Space Flight Center in Huntsville, AL, SERVIR and the Short-term Prediction Research and Transition (SPoRT) Center, have established a working partnership with KMD for enhancing its regional modeling capabilities. To accomplish this goal, SPoRT and SERVIR will provide experimental land surface initialization datasets and model verification capabilities to KMD. To produce a land-surface initialization more consistent with the resolution of the KMD-WRF runs, the NASA Land Information System (LIS) will be run at a comparable resolution to provide real-time, daily soil initialization data in place of interpolated Global Forecast System soil moisture and temperature data. Additionally, real-time green vegetation fraction data from the Visible Infrared Imaging Radiometer Suite will be incorporated into the KMD-WRF runs, once it becomes publicly available from the National Environmental Satellite Data and Information Service. Finally, model verification capabilities will be transitioned to KMD using the Model Evaluation Tools (MET) package, in order to quantify possible improvements in simulated temperature, moisture and precipitation resulting from the experimental land surface initialization. The transition of these MET tools will enable KMD to monitor model forecast accuracy in near real time. This presentation will highlight preliminary verification results of WRF runs over east Africa using the LIS land surface initialization.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.
2014-01-01
SPoRT/SERVIR/RCMRD/KMS Collaboration: Builds off strengths of each organization. SPoRT: Transition of satellite, modeling and verification capabilities; SERVIR-Africa/RCMRD: International capacity-building expertise; KMS: Operational organization with regional weather forecasting expertise in East Africa. Hypothesis: Improved land-surface initialization over Eastern Africa can lead to better temperature, moisture, and ultimately precipitation forecasts in NWP models. KMS currently initializes Weather Research and Forecasting (WRF) model with NCEP/Global Forecast System (GFS) model 0.5-deg initial / boundary condition data. LIS will provide much higher-resolution land-surface data at a scale more representative to regional WRF configuration. Future implementation of real-time NESDIS/VIIRS vegetation fraction to further improve land surface representativeness.
NASA Technical Reports Server (NTRS)
Jonathan L. Case; Kumar, Sujay V.; Srikishen, Jayanthi; Jedlovec, Gary J.
2010-01-01
One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse-type convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within parameterization schemes, model resolution limitations, and uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture, soil temperature, and sea surface temperature (SST) are necessary to better simulate the interactions between the surface and atmosphere, and ultimately improve predictions of summertime pulse convection. This paper describes a sensitivity experiment using the Weather Research and Forecasting (WRF) model. Interpolated land and ocean surface fields from a large-scale model are replaced with high-resolution datasets provided by unique NASA assets in an experimental simulation: the Land Information System (LIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) SSTs. The LIS is run in an offline mode for several years at the same grid resolution as the WRF model to provide compatible land surface initial conditions in an equilibrium state. The MODIS SSTs provide detailed analyses of SSTs over the oceans and large lakes compared to current operational products. The WRF model runs initialized with the LIS+MODIS datasets result in a reduction in the overprediction of rainfall areas; however, the skill is almost equally as low in both experiments using traditional verification methodologies. Output from object-based verification within NCAR s Meteorological Evaluation Tools reveals that the WRF runs initialized with LIS+MODIS data consistently generated precipitation objects that better matched observed precipitation objects, especially at higher precipitation intensities. The LIS+MODIS runs produced on average a 4% increase in matched precipitation areas and a simultaneous 4% decrease in unmatched areas during three months of daily simulations.
Landing System Development- Design and Test Prediction of a Lander Leg Using Nonlinear Analysis
NASA Astrophysics Data System (ADS)
Destefanis, Stefano; Buchwald, Robert; Pellegrino, Pasquale; Schroder, Silvio
2014-06-01
Several mission studies have been performed focusing on a soft and precision landing using landing legs. Examples for such missions are Mars Sample Return scenarios (MSR), Lunar landing scenarios (MoonNEXT, Lunar Lander) and small body sample return studies (Marco Polo, MMSR, Phootprint). Such missions foresee a soft landing on the planet surface for delivering payload in a controlled manner and limiting the landing loads.To ensure a successful final landing phase, a landing system is needed, capable of absorbing the residual velocities (vertical, horizontal and angular) at touch- down, and insuring a controlled attitude after landing. Such requirements can be fulfilled by using landing legs with adequate damping.The Landing System Development (LSD) study, currently in its phase 2, foresees the design, analysis, verification, manufacturing and testing of a representative landing leg breadboard based on the Phase B design of the ESA Lunar Lander. Drop tests of a single leg will be performed both on rigid and soft ground, at several impact angles. The activity is covered under ESA contract with TAS-I as Prime Contractor, responsible for analysis and verification, Astrium GmbH for design and test and QinetiQ Space for manufacturing. Drop tests will be performed at the Institute of Space Systems of the German Aerospace Center (DLR-RY) in Bremen.This paper presents an overview of the analytical simulations (test predictions and design verification) performed, comparing the results produced by Astrium made multi body model (rigid bodies, nonlinearities accounted for in mechanical joints and force definitions, based on development tests) and TAS-I made nonlinear explicit model (fully deformable bodies).
NASA Astrophysics Data System (ADS)
Rajesh, P. V.; Pattnaik, S.; Mohanty, U. C.; Rai, D.; Baisya, H.; Pandey, P. C.
2017-12-01
Monsoon depressions (MDs) constitute a large fraction of the total rainfall during the Indian summer monsoon season. In this study, the impact of high-resolution land state is addressed by assessing the evolution of inland moving depressions formed over the Bay of Bengal using a mesoscale modeling system. Improved land state is generated using High Resolution Land Data Assimilation System employing Noah-MP land-surface model. Verification of soil moisture using Soil Moisture and Ocean Salinity (SMOS) and soil temperature using tower observations demonstrate promising results. Incorporating high-resolution land state yielded least root mean squared errors with higher correlation coefficient in the surface and mid tropospheric parameters. Rainfall forecasts reveal that simulations are spatially and quantitatively in accordance with observations and provide better skill scores. The improved land surface characteristics have brought about the realistic evolution of surface, mid-tropospheric parameters, vorticity and moist static energy that facilitates the accurate MDs dynamics in the model. Composite moisture budget analysis reveals that the surface evaporation is negligible compared to moisture flux convergence of water vapor, which supplies moisture into the MDs over land. The temporal relationship between rainfall and moisture convergence show high correlation, suggesting a realistic representation of land state help restructure the moisture inflow into the system through rainfall-moisture convergence feedback.
NASA Astrophysics Data System (ADS)
Chen, Xuelong; Su, Bob
2017-04-01
Remote sensing has provided us an opportunity to observe Earth land surface with a much higher resolution than any of GCM simulation. Due to scarcity of information for land surface physical parameters, up-to-date GCMs still have large uncertainties in the coupled land surface process modeling. One critical issue is a large amount of parameters used in their land surface models. Thus remote sensing of land surface spectral information can be used to provide information on these parameters or assimilated to decrease the model uncertainties. Satellite imager could observe the Earth land surface with optical, thermal and microwave bands. Some basic Earth land surface status (land surface temperature, canopy height, canopy leaf area index, soil moisture etc.) has been produced with remote sensing technique, which already help scientists understanding Earth land and atmosphere interaction more precisely. However, there are some challenges when applying remote sensing variables to calculate global land-air heat and water exchange fluxes. Firstly, a global turbulent exchange parameterization scheme needs to be developed and verified, especially for global momentum and heat roughness length calculation with remote sensing information. Secondly, a compromise needs to be innovated to overcome the spatial-temporal gaps in remote sensing variables to make the remote sensing based land surface fluxes applicable for GCM model verification or comparison. A flux network data library (more 200 flux towers) was collected to verify the designed method. Important progress in remote sensing of global land flux and evaporation will be presented and its benefits for GCM models will also be discussed. Some in-situ studies on the Tibetan Plateau and problems of land surface process simulation will also be discussed.
High resolution land surface response of inland moving Indian monsoon depressions over Bay of Bengal
NASA Astrophysics Data System (ADS)
Rajesh, P. V.; Pattnaik, S.
2016-05-01
During Indian summer monsoon (ISM) season, nearly about half of the monsoonal rainfall is brought inland by the low pressure systems called as Monsoon Depressions (MDs). These systems bear large amount of rainfall and frequently give copious amount of rainfall over land regions, therefore accurate forecast of these synoptic scale systems at short time scale can help in disaster management, flood relief, food safety. The goal of this study is to investigate, whether an accurate moisture-rainfall feedback from land surface can improve the prediction of inland moving MDs. High Resolution Land Data Assimilation System (HRLDAS) is used to generate improved land state .i.e. soil moisture and soil temperature profiles by means of NOAH-MP land-surface model. Validation of the model simulated basic atmospheric parameters at surface layer and troposphere reveals that the incursion of high resolution land state yields least Root Mean Squared Error (RMSE) with a higher correlation coefficient and facilitates accurate depiction of MDs. Rainfall verification shows that HRLDAS simulations are spatially and quantitatively in more agreement with the observations and the improved surface characteristics could result in the realistic reproduction of the storm spatial structure, movement as well as intensity. These results signify the necessity of investigating more into the land surface-rainfall feedbacks through modifications in moisture flux convergence within the storm.
Dirmeyer, Paul A; Chen, Liang; Wu, Jiexia; Shin, Chul-Su; Huang, Bohua; Cash, Benjamin A; Bosilovich, Michael G; Mahanama, Sarith; Koster, Randal D; Santanello, Joseph A; Ek, Michael B; Balsamo, Gianpaolo; Dutra, Emanuel; Lawrence, D M
2018-02-01
We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring.
NASA Astrophysics Data System (ADS)
Hendricks Franssen, H. J.; Post, H.; Vrugt, J. A.; Fox, A. M.; Baatz, R.; Kumbhar, P.; Vereecken, H.
2015-12-01
Estimation of net ecosystem exchange (NEE) by land surface models is strongly affected by uncertain ecosystem parameters and initial conditions. A possible approach is the estimation of plant functional type (PFT) specific parameters for sites with measurement data like NEE and application of the parameters at other sites with the same PFT and no measurements. This upscaling strategy was evaluated in this work for sites in Germany and France. Ecosystem parameters and initial conditions were estimated with NEE-time series of one year length, or a time series of only one season. The DREAM(zs) algorithm was used for the estimation of parameters and initial conditions. DREAM(zs) is not limited to Gaussian distributions and can condition to large time series of measurement data simultaneously. DREAM(zs) was used in combination with the Community Land Model (CLM) v4.5. Parameter estimates were evaluated by model predictions at the same site for an independent verification period. In addition, the parameter estimates were evaluated at other, independent sites situated >500km away with the same PFT. The main conclusions are: i) simulations with estimated parameters reproduced better the NEE measurement data in the verification periods, including the annual NEE-sum (23% improvement), annual NEE-cycle and average diurnal NEE course (error reduction by factor 1,6); ii) estimated parameters based on seasonal NEE-data outperformed estimated parameters based on yearly data; iii) in addition, those seasonal parameters were often also significantly different from their yearly equivalents; iv) estimated parameters were significantly different if initial conditions were estimated together with the parameters. We conclude that estimated PFT-specific parameters improve land surface model predictions significantly at independent verification sites and for independent verification periods so that their potential for upscaling is demonstrated. However, simulation results also indicate that possibly the estimated parameters mask other model errors. This would imply that their application at climatic time scales would not improve model predictions. A central question is whether the integration of many different data streams (e.g., biomass, remotely sensed LAI) could solve the problems indicated here.
NASA Astrophysics Data System (ADS)
Kennedy, J. H.; Bennett, A. R.; Evans, K. J.; Fyke, J. G.; Vargo, L.; Price, S. F.; Hoffman, M. J.
2016-12-01
Accurate representation of ice sheets and glaciers are essential for robust predictions of arctic climate within Earth System models. Verification and Validation (V&V) is a set of techniques used to quantify the correctness and accuracy of a model, which builds developer/modeler confidence, and can be used to enhance the credibility of the model. Fundamentally, V&V is a continuous process because each model change requires a new round of V&V testing. The Community Ice Sheet Model (CISM) development community is actively developing LIVVkit, the Land Ice Verification and Validation toolkit, which is designed to easily integrate into an ice-sheet model's development workflow (on both personal and high-performance computers) to provide continuous V&V testing.LIVVkit is a robust and extensible python package for V&V, which has components for both software V&V (construction and use) and model V&V (mathematics and physics). The model Verification component is used, for example, to verify model results against community intercomparisons such as ISMIP-HOM. The model validation component is used, for example, to generate a series of diagnostic plots showing the differences between model results against observations for variables such as thickness, surface elevation, basal topography, surface velocity, surface mass balance, etc. Because many different ice-sheet models are under active development, new validation datasets are becoming available, and new methods of analysing these models are actively being researched, LIVVkit includes a framework to easily extend the model V&V analyses by ice-sheet modelers. This allows modelers and developers to develop evaluations of parameters, implement changes, and quickly see how those changes effect the ice-sheet model and earth system model (when coupled). Furthermore, LIVVkit outputs a portable hierarchical website allowing evaluations to be easily shared, published, and analysed throughout the arctic and Earth system communities.
Mars Smart Lander Simulations for Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Striepe, S. A.; Way, D. W.; Balaram, J.
2002-01-01
Two primary simulations have been developed and are being updated for the Mars Smart Lander Entry, Descent, and Landing (EDL). The high fidelity engineering end-to-end EDL simulation that is based on NASA Langley's Program to Optimize Simulated Trajectories (POST) and the end-to-end real-time, hardware-in-the-loop simulation testbed, which is based on NASA JPL's (Jet Propulsion Laboratory) Dynamics Simulator for Entry, Descent and Surface landing (DSENDS). This paper presents the status of these Mars Smart Lander EDL end-to-end simulations at this time. Various models, capabilities, as well as validation and verification for these simulations are discussed.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Blood as well as a Department of Defense verification of qualifying military service when I file my... include a Certificate of Indian Blood as well as a Department of Defense verification of qualifying... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) ALASKA...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Blood as well as a Department of Defense verification of qualifying military service when I file my... include a Certificate of Indian Blood as well as a Department of Defense verification of qualifying... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) ALASKA...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Blood as well as a Department of Defense verification of qualifying military service when I file my... include a Certificate of Indian Blood as well as a Department of Defense verification of qualifying... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) ALASKA...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Blood as well as a Department of Defense verification of qualifying military service when I file my... include a Certificate of Indian Blood as well as a Department of Defense verification of qualifying... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) ALASKA...
NASA Technical Reports Server (NTRS)
Newcomb, John
2004-01-01
The end-to-end test would verify the complex sequence of events from lander separation to landing. Due to the large distances involved and the significant delay time in sending a command and receiving verification, the lander needed to operate autonomously after it separated from the orbiter. It had to sense conditions, make decisions, and act accordingly. We were flying into a relatively unknown set of conditions-a Martian atmosphere of unknown pressure, density, and consistency to land on a surface of unknown altitude, and one which had an unknown bearing strength.
Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction
NASA Astrophysics Data System (ADS)
Baatz, Roland; Hendricks Franssen, Harrie-Jan; Han, Xujun; Hoar, Tim; Reemt Bogena, Heye; Vereecken, Harry
2017-05-01
In situ soil moisture sensors provide highly accurate but very local soil moisture measurements, while remotely sensed soil moisture is strongly affected by vegetation and surface roughness. In contrast, cosmic-ray neutron sensors (CRNSs) allow highly accurate soil moisture estimation on the field scale which could be valuable to improve land surface model predictions. In this study, the potential of a network of CRNSs installed in the 2354 km2 Rur catchment (Germany) for estimating soil hydraulic parameters and improving soil moisture states was tested. Data measured by the CRNSs were assimilated with the local ensemble transform Kalman filter in the Community Land Model version 4.5. Data of four, eight and nine CRNSs were assimilated for the years 2011 and 2012 (with and without soil hydraulic parameter estimation), followed by a verification year 2013 without data assimilation. This was done using (i) a regional high-resolution soil map, (ii) the FAO soil map and (iii) an erroneous, biased soil map as input information for the simulations. For the regional soil map, soil moisture characterization was only improved in the assimilation period but not in the verification period. For the FAO soil map and the biased soil map, soil moisture predictions improved strongly to a root mean square error of 0.03 cm3 cm-3 for the assimilation period and 0.05 cm3 cm-3 for the evaluation period. Improvements were limited by the measurement error of CRNSs (0.03 cm3 cm-3). The positive results obtained with data assimilation of nine CRNSs were confirmed by the jackknife experiments with four and eight CRNSs used for assimilation. The results demonstrate that assimilated data of a CRNS network can improve the characterization of soil moisture content on the catchment scale by updating spatially distributed soil hydraulic parameters of a land surface model.
NASA Technical Reports Server (NTRS)
Shue, Jack
2004-01-01
The end-to-end test would verify the complex sequence of events from lander separation to landing. Due to the large distances involved and the significant delay time in sending a command and receiving verification, the lander needed to operate autonomously after it separated from the orbiter. It had to sense conditions, make decisions, and act accordingly. We were flying into a relatively unknown set of conditions-a Martian atmosphere of unknown pressure, density, and consistency to land on a surface of unknown altitude, and one which had an unknown bearing strength. In order to touch down safely on Mars the lander had to orient itself for descent and entry, modulate itself to maintain proper lift, pop a parachute, jettison its aeroshell, deploy landing legs and radar, ignite a terminal descent engine, and fly a given trajectory to the surface. Once on the surface, it would determine its orientation, raise the high-gain antenna, perform a sweep to locate Earth, and begin transmitting information. It was this complicated, autonomous sequence that the end-to-end test was to simulate.
A dataset mapping the potential biophysical effects of vegetation cover change
NASA Astrophysics Data System (ADS)
Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro
2018-02-01
Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.
A dataset mapping the potential biophysical effects of vegetation cover change
Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro
2018-01-01
Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes. PMID:29461538
NASA Technical Reports Server (NTRS)
Case, Johnathan L.; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.
2014-01-01
Flooding and drought are two key forecasting challenges for the Kenya Meteorological Service (KMS). Atmospheric processes leading to excessive precipitation and/or prolonged drought can be quite sensitive to the state of the land surface, which interacts with the planetary boundary layer (PBL) of the atmosphere providing a source of heat and moisture. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface, particularly within weakly-sheared environments such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in land surface and numerical weather prediction (NWP) models. Enhanced regional modeling capabilities have the potential to improve forecast guidance in support of daily operations and high-impact weather over eastern Africa. KMS currently runs a configuration of the Weather Research and Forecasting (WRF) NWP model in real time to support its daily forecasting operations, making use of the NOAA/National Weather Service (NWS) Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the KMS-WRF runs on a regional grid over eastern Africa. Two organizations at the NASA Marshall Space Flight Center in Huntsville, AL, SERVIR and the Shortterm Prediction Research and Transition (SPoRT) Center, have established a working partnership with KMS for enhancing its regional modeling capabilities through new datasets and tools. To accomplish this goal, SPoRT and SERVIR is providing enhanced, experimental land surface initialization datasets and model verification capabilities to KMS as part of this collaboration. To produce a land-surface initialization more consistent with the resolution of the KMS-WRF runs, the NASA Land Information System (LIS) is run at a comparable resolution to provide real-time, daily soil initialization data in place of data interpolated from the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model soil moisture and temperature fields. Additionally, realtime green vegetation fraction (GVF) data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi- NPP) satellite will be incorporated into the KMS-WRF runs, once it becomes publicly available from the National Environmental Satellite Data and Information Service (NESDIS). Finally, model verification capabilities will be transitioned to KMS using the Model Evaluation Tools (MET; Brown et al. 2009) package in conjunction with a dynamic scripting package developed by SPoRT (Zavodsky et al. 2014), to help quantify possible improvements in simulated temperature, moisture and precipitation resulting from the experimental land surface initialization. Furthermore, the transition of these MET tools will enable KMS to monitor model forecast accuracy in near real time. This paper presents preliminary efforts to improve land surface model initialization over eastern Africa in support of operations at KMS. The remainder of this extended abstract is organized as follows: The collaborating organizations involved in the project are described in Section 2; background information on LIS and the configuration for eastern Africa is presented in Section 3; the WRF configuration used in this modeling experiment is described in Section 4; sample experimental WRF output with and without LIS initialization data are given in Section 5; a summary is given in Section 6 followed by acknowledgements and references.
Atmospheric observations for STS-1 landing
NASA Technical Reports Server (NTRS)
Turner, R. E.; Arnold, J. E.; Wilson, G. S.
1981-01-01
A summary of synoptic weather conditions existing over the western United States is given for the time of shuttle descent into Edwards Air Force Base, California. The techniques and methods used to furnish synoptic atmospheric data at the surface and aloft for flight verification of the STS-1 orbiter during its descent into Edwards Air Force Base are specified. Examples of the upper level data set are given.
The PRISM4 (mid-Piacenzian) Palaeoenvironmental Reconstruction
NASA Technical Reports Server (NTRS)
Dowsett, Harry; Dolan, Aisling; Rowley, David; Moucha, Robert; Forte, Alessandro M.; Mitrovica, Jerry X.; Pound, Matthew; Salzmann, Ulrich; Robinson, Marci; Chandler, Mark;
2016-01-01
The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian (approximately 3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.
The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction
Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Moucha, Robert; Forte, Alessandro; Mitrovica, Jerry X.; Pound, Matthew; Salzmann, Ulrich; Robinson, Marci M.; Chandler, Mark; Foley, Kevin M.; Haywood, Alan M.
2016-01-01
The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian ( ∼ 3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.
Tang, G.; Andre, B.; Hoffman, F. M.; Painter, S. L.; Thornton, P. E.; Yuan, F.; Bisht, G.; Hammond, G. E.; Lichtner, P. C.; Kumar, J.; Mills, R. T.; Xu, X.
2016-04-19
This Modeling Archive is in support of an NGEE Arctic discussion paper under review and available at doi:10.5194/gmd-9-927-2016. The purpose is to document the simulations to allow verification, reproducibility, and follow-up studies. This dataset contains shell scripts to create the CLM-PFLOTRAN cases, specific input files for PFLOTRAN and CLM, outputs, and python scripts to make the figures using the outputs in the publication. Through these results, we demonstrate that CLM-PFLOTRAN can approximately reproduce CLM results in selected cases for the Arctic, temperate and tropic sites. In addition, the new framework facilitates mechanistic representations of soil biogeochemistry processes in the land surface model.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Kumar, Sujay V.; Krikishen, Jayanthi; Jedlovec, Gary J.
2011-01-01
It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high resolution models. This paper presents model verification results of a case study period from June-August 2008 over the Southeastern U.S. using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the NASA Land Information System (LIS) and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spin-up run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer, but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS/MODIS data substantially impact surface and boundary layer properties.
NASA Technical Reports Server (NTRS)
Alexander, R. H. (Principal Investigator); Deforth, P. W.; Fitzpatrick, K. A.; Lins, H. F., Jr.; Mcginty, H. K., III
1975-01-01
The author has identified the following significant results. Level 2 land use mapping from high altitude aircraft photography at a scale of 1:100,000 required production of a photomosaic mapping base for each of the 48, 50 x 50 km sheets, and the interpretation and coding of land use polygons on drafting film overlays. To enhance the value of the land use sheets, a series of overlays was compiled, showing cultural features, county boundaries and census tracts, surface geology, and drainage basins. In producing level 1 land use maps from LANDSAT imagery, at a scale of 1:250,000 drafting film was directly overlaid on LANDSAT color composite transparencies. Numerous areas of change were identified, but extensive areas of false changes were also noted.
Surface Landing Site Weather Analysis for NASA's Constellation Program
NASA Technical Reports Server (NTRS)
Altino, Karen M.; Burns, K. L.
2008-01-01
Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing of the Ares vehicles to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is art important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface weather conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center (MSFC) Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. This paper wiI1 describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that cab be obtained.
An Inventory of Ohio's Land Use/Land Cover as Seen by Landsat
NASA Technical Reports Server (NTRS)
Schaal, Gary M.
1977-01-01
LANDSAT 2 (Land Satellite) was launched at Vandenburg, AFB, California on January 22, 1975. The satellite orbits the earth at an altitude of about 920 km (570 miles) and scans the earth's surface in a continuous track 185 km (115 miles) wide. LANDSAT 2 passes over the same spot every 18 days transmitting scanned data to receiving stations scattered around the globe. LANDSAT's continuously-scanning sensors provide useful information about the earth, one of the most important categories being land use. The statistics contained in the appendices of this report represent acreage and percentage of seven types of land cover in Ohio as seen by LANDSAT. The inventory represents a trial effort at determining the Sate's land cover by a method which is inexpensive, reliable, accurate and rapid. Given a successful method, the inventory and periodic updates could provide information to land use decision-makers and, over a period of time, would reveal patterns of land use change. Technical aspects of the project (process, methodology, and verification) are discussed in Schaal (1977) and Schmidt (1976).
NASA Astrophysics Data System (ADS)
Cescatti, A.; Duveiller, G.; Hooker, J.
2017-12-01
Changing vegetation cover not only affects the atmospheric concentration of greenhouse gases but also alters the radiative and non-radiative properties of the surface. The result of competing biophysical processes on Earth's surface energy balance varies spatially and seasonally, and can lead to warming or cooling depending on the specific vegetation change and on the background climate. To date these effects are not accounted for in land-based climate policies because of the complexity of the phenomena, contrasting model predictions and the lack of global data-driven assessments. To overcome the limitations of available observation-based diagnostics and of the on-going model inter-comparison, here we present a new benchmarking dataset derived from satellite remote sensing. This global dataset provides the potential changes induced by multiple vegetation transitions on the single terms of the surface energy balance. We used this dataset for two major goals: 1) Quantify the impact of actual vegetation changes that occurred during the decade 2000-2010, showing the overwhelming role of tropical deforestation in warming the surface by reducing evapotranspiration despite the concurrent brightening of the Earth. 2) Benchmark a series of ESMs against data-driven metrics of the land cover change impacts on the various terms of the surface energy budget and on the surface temperature. We anticipate that the dataset could be also used to evaluate future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.
NASA Technical Reports Server (NTRS)
Parinussa, Robert M.; de Jeu, Richard A. M.; van Der Schalie, Robin; Crow, Wade T.; Lei, Fangni; Holmes, Thomas R. H.
2016-01-01
Passive microwave observations from various spaceborne sensors have been linked to the soil moisture of the Earth's surface layer. A new generation of passive microwave sensors are dedicated to retrieving this variable and make observations in the single theoretically optimal L-band frequency (1-2 GHz). Previous generations of passive microwave sensors made observations in a range of higher frequencies, allowing for simultaneous estimation of additional variables required for solving the radiative transfer equation. One of these additional variables is land surface temperature, which plays a unique role in the radiative transfer equation and has an influence on the final quality of retrieved soil moisture anomalies. This study presents an optimization procedure for soil moisture retrievals through a quasi-global precipitation-based verification technique, the so-called Rvalue metric. Various land surface temperature scenarios were evaluated in which biases were added to an existing linear regression, specifically focusing on improving the skills to capture the temporal variability of soil moisture. We focus on the relative quality of the day-time (01:30 pm) observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), as these are theoretically most challenging due to the thermal equilibrium theory, and existing studies indicate that larger improvements are possible for these observations compared to their night-time (01:30 am) equivalent. Soil moisture data used in this study were retrieved through the Land Parameter Retrieval Model (LPRM), and in line with theory, both satellite paths show a unique and distinct degradation as a function of vegetation density. Both the ascending (01:30 pm) and descending (01:30 am) paths of the publicly available and widely used AMSR-E LPRM soil moisture products were used for benchmarking purposes. Several scenarios were employed in which the land surface temperature input for the radiative transfer was varied by imposing a bias on an existing regression. These scenarios were evaluated through the Rvalue technique, resulting in optimal bias values on top of this regression. In a next step, these optimal bias values were incorporated in order to re-calibrate the existing linear regression, resulting in a quasi-global uniform LST relation for day-time observations. In a final step, day-time soil moisture retrievals using the re-calibrated land surface temperature relation were again validated through the Rvalue technique. Results indicate an average increasing Rvalue of 16.5%, which indicates a better performance obtained through the re-calibration. This number was confirmed through an independent Triple Collocation verification over the same domain, demonstrating an average root mean square error reduction of 15.3%. Furthermore, a comparison against an extensive in situ database (679 stations) also indicates a generally higher quality for the re-calibrated dataset. Besides the improved day-time dataset, this study furthermore provides insights on the relative quality of soil moisture retrieved from AMSR-E's day- and night-time observations.
10 CFR 61.32 - Facility information and verification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Facility information and verification. 61.32 Section 61.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses Us/iaea Safeguards Agreement § 61.32 Facility information and verification. (a) In...
10 CFR 61.32 - Facility information and verification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Facility information and verification. 61.32 Section 61.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses Us/iaea Safeguards Agreement § 61.32 Facility information and verification. (a) In...
10 CFR 61.32 - Facility information and verification.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Facility information and verification. 61.32 Section 61.32 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses Us/iaea Safeguards Agreement § 61.32 Facility information and verification. (a) In...
Land Ice Verification and Validation Kit
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-07-15
To address a pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice-sheet models is underway. The associated verification and validation process of these models is being coordinated through a new, robust, python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVV). This release provides robust and automated verification and a performance evaluation on LCF platforms. The performance V&V involves a comprehensive comparison of model performance relative to expected behavior on a given computing platform. LIVV operates on a set of benchmark and testmore » data, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-4-bit evaluation, and plots of tests where differences occur.« less
Land Surface Data Assimilation and the Northern Gulf Coast Land/Sea Breeze
NASA Technical Reports Server (NTRS)
Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske; Arnold, James E. (Technical Monitor)
2002-01-01
A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSU/NCAR MM5 V3-4 and applied on a 4-km domain for this particular application. It is recognized that a 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Kumar, Sujay V.; Santos, Pablo; Medlin, Jeffrey M.; Jedlovec, Gary J.
2009-01-01
One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within physics parameterizations, model resolution limitations, as well as uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture and temperature, ground fluxes, and vegetation are necessary to better simulate the interactions between the land surface and atmosphere, and ultimately improve predictions of local circulations and summertime pulse convection. The NASA Short-term Prediction Research and Transition (SPORT) Center has been conducting studies to examine the impacts of high-resolution land surface initialization data generated by offline simulations of the NASA Land Informatiot System (LIS) on subsequent numerical forecasts using the Weather Research and Forecasting (WRF) model (Case et al. 2008, to appear in the Journal of Hydrometeorology). Case et al. presents improvements to simulated sea breezes and surface verification statistics over Florida by initializing WRF with land surface variables from an offline LIS spin-up run, conducted on the exact WRF domain and resolution. The current project extends the previous work over Florida, focusing on selected case studies of typical pulse convection over the southeastern U.S., with an emphasis on improving local short-term WRF simulations over the Mobile, AL and Miami, FL NWS county warning areas. Future efforts may involve examining the impacts of assimilating remotely-sensed soil moisture data, and/or introducing weekly greenness vegetation fraction composites (as opposed to monthly climatologies) into ol'fline NASA LIS runs. Based on positive impacts, the offline LIS runs could be transitioned into an operational mode, providing land surface initialization data to NWS forecast offices in real time.
Interpretation, compilation and field verification procedures in the CARETS project
Alexander, Robert H.; De Forth, Peter W.; Fitzpatrick, Katherine A.; Lins, Harry F.; McGinty, Herbert K.
1975-01-01
The production of the CARETS map data base involved the development of a series of procedures for interpreting, compiling, and verifying data obtained from remote sensor sources. Level II land use mapping from high-altitude aircraft photography at a scale of 1:100,000 required production of a photomosaic mapping base for each of the 48, 50 x 50 km sheets, and the interpretation and coding of land use polygons on drafting film overlays. CARETS researchers also produced a series of 1970 to 1972 land use change overlays, using the 1970 land use maps and 1972 high-altitude aircraft photography. To enhance the value of the land use sheets, researchers compiled series of overlays showing cultural features, county boundaries and census tracts, surface geology, and drainage basins. In producing Level I land use maps from Landsat imagery, at a scale of 1:250,000, interpreters overlaid drafting film directly on Landsat color composite transparencies and interpreted on the film. They found that such interpretation involves pattern and spectral signature recognition. In studies using Landsat imagery, interpreters identified numerous areas of change but also identified extensive areas of "false change," where Landsat spectral signatures but not land use had changed.
Wirojanagud, Wanpen; Srisatit, Thares
2014-01-01
Fuzzy overlay approach on three raster maps including land slope, soil type, and distance to stream can be used to identify the most potential locations of high arsenic contamination in soils. Verification of high arsenic contamination was made by collection samples and analysis of arsenic content and interpolation surface by spatial anisotropic method. A total of 51 soil samples were collected at the potential contaminated location clarified by fuzzy overlay approach. At each location, soil samples were taken at the depth of 0.00-1.00 m from the surface ground level. Interpolation surface of the analysed arsenic content using spatial anisotropic would verify the potential arsenic contamination location obtained from fuzzy overlay outputs. Both outputs of the spatial surface anisotropic and the fuzzy overlay mapping were significantly spatially conformed. Three contaminated areas with arsenic concentrations of 7.19 ± 2.86, 6.60 ± 3.04, and 4.90 ± 2.67 mg/kg exceeded the arsenic content of 3.9 mg/kg, the maximum concentration level (MCL) for agricultural soils as designated by Office of National Environment Board of Thailand. It is concluded that fuzzy overlay mapping could be employed for identification of potential contamination area with the verification by surface anisotropic approach including intensive sampling and analysis of the substances of interest. PMID:25110751
NASA Technical Reports Server (NTRS)
McGill, Matthew; Markus, Thorsten; Scott, V. Stanley; Neumann, Thomas
2012-01-01
The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission is currently under development by NASA. The primary mission of ICESat-2 will be to measure elevation changes of the Greenland and Antarctic ice sheets, document changes in sea ice thickness distribution, and derive important information about the current state of the global ice coverage. To make this important measurement, NASA is implementing a new type of satellite-based surface altimetry based on sensing of laser pulses transmitted to, and reflected from, the surface. Because the ICESat-2 measurement approach is different from that used for previous altimeter missions, a high-fidelity aircraft instrument, the Multiple Altimeter Beam Experimental Lidar (MABEL), was developed to demonstrate the measurement concept and provide verification of the ICESat-2 methodology. The MABEL instrument will serve as a prototype for the ICESat-2 mission and also provides a science tool for studies of land surface topography. This paper outlines the science objectives for the ICESat-2 mission, the current measurement concept for ICESat-2, and the instrument concept and preliminary data from MABEL.
NASA Astrophysics Data System (ADS)
Williams, John L.; Maxwell, Reed M.; Monache, Luca Delle
2013-12-01
Wind power is rapidly gaining prominence as a major source of renewable energy. Harnessing this promising energy source is challenging because of the chaotic nature of wind and its inherently intermittent nature. Accurate forecasting tools are critical to support the integration of wind energy into power grids and to maximize its impact on renewable energy portfolios. We have adapted the Data Assimilation Research Testbed (DART), a community software facility which includes the ensemble Kalman filter (EnKF) algorithm, to expand our capability to use observational data to improve forecasts produced with a fully coupled hydrologic and atmospheric modeling system, the ParFlow (PF) hydrologic model and the Weather Research and Forecasting (WRF) mesoscale atmospheric model, coupled via mass and energy fluxes across the land surface, and resulting in the PF.WRF model. Numerous studies have shown that soil moisture distribution and land surface vegetative processes profoundly influence atmospheric boundary layer development and weather processes on local and regional scales. We have used the PF.WRF model to explore the connections between the land surface and the atmosphere in terms of land surface energy flux partitioning and coupled variable fields including hydraulic conductivity, soil moisture, and wind speed and demonstrated that reductions in uncertainty in these coupled fields realized through assimilation of soil moisture observations propagate through the hydrologic and atmospheric system. The sensitivities found in this study will enable further studies to optimize observation strategies to maximize the utility of the PF.WRF-DART forecasting system.
NASA Technical Reports Server (NTRS)
Sung, Q. C.; Miller, L. D.
1977-01-01
Three methods were tested for collection of the training sets needed to establish the spectral signatures of the land uses/land covers sought due to the difficulties of retrospective collection of representative ground control data. Computer preprocessing techniques applied to the digital images to improve the final classification results were geometric corrections, spectral band or image ratioing and statistical cleaning of the representative training sets. A minimal level of statistical verification was made based upon the comparisons between the airphoto estimates and the classification results. The verifications provided a further support to the selection of MSS band 5 and 7. It also indicated that the maximum likelihood ratioing technique can achieve more agreeable classification results with the airphoto estimates than the stepwise discriminant analysis.
Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle
NASA Technical Reports Server (NTRS)
Carson, John M. III; Robertson, Edward A.; Trawny, Nikolas; Amzajerdian, Farzin
2015-01-01
A suite of prototype sensors, software, and avionics developed within the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project were terrestrially demonstrated onboard the NASA Morpheus rocket-propelled Vertical Testbed (VTB) in 2014. The sensors included a LIDAR-based Hazard Detection System (HDS), a Navigation Doppler LIDAR (NDL) velocimeter, and a long-range Laser Altimeter (LAlt) that enable autonomous and safe precision landing of robotic or human vehicles on solid solar system bodies under varying terrain lighting conditions. The flight test campaign with the Morpheus vehicle involved a detailed integration and functional verification process, followed by tether testing and six successful free flights, including one night flight. The ALHAT sensor measurements were integrated into a common navigation solution through a specialized ALHAT Navigation filter that was employed in closed-loop flight testing within the Morpheus Guidance, Navigation and Control (GN&C) subsystem. Flight testing on Morpheus utilized ALHAT for safe landing site identification and ranking, followed by precise surface-relative navigation to the selected landing site. The successful autonomous, closed-loop flight demonstrations of the prototype ALHAT system have laid the foundation for the infusion of safe, precision landing capabilities into future planetary exploration missions.
Estimation of effective hydrologic properties of soils from observations of vegetation density
NASA Technical Reports Server (NTRS)
Tellers, T. E.; Eagleson, P. S.
1980-01-01
A one-dimensional model of the annual water balance is reviewed. Improvements are made in the method of calculating the bare soil component of evaporation, and in the way surface retention is handled. A natural selection hypothesis, which specifies the equilibrium vegetation density for a given, water limited, climate soil system, is verified through comparisons with observed data. Comparison of CDF's of annual basin yield derived using these soil properties with observed CDF's provides verification of the soil-selection procedure. This method of parameterization of the land surface is useful with global circulation models, enabling them to account for both the nonlinearity in the relationship between soil moisture flux and soil moisture concentration, and the variability of soil properties from place to place over the Earth's surface.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Lazarus, Steven M.; Splitt, Michael E.; Crosson, William L.; Lapenta, William M.; Jedlovec, Gary J.; Peters-Lidard, Christa D.
2008-01-01
The exchange of energy and moisture between the Earth's surface and the atmospheric boundary layer plays a critical role in many meteorological processes. High-resolution, accurate representations of surface properties such as sea-surface temperature (SST), soil temperature and moisture content, ground fluxes, and vegetation are necessary to better understand the Earth-atmosphere interactions and improve numerical predictions of sensible weather. The NASA Short-term Prediction Research and Transition (SPoRT) Center has been conducting separate studies to examine the impacts of high-resolution land-surface initialization data from the Goddard Space Flight Center Land Information System (LIS) on subsequent WRF forecasts, as well as the influence of initializing WRF with SST composites derived from the MODIS instrument. This current project addresses the combined impacts of using high-resolution lower boundary data over both land (LIS data) and water (MODIS SSTs) on the subsequent daily WRF forecasts over Florida during May 2004. For this experiment, the WRF model is configured to run on a nested domain with 9- km and 3-kin grid spacing, centered on the Florida peninsula and adjacent coastal waters of the Gulf of Mexico and Atlantic Ocean. A control configuration of WRF is established to take all initial condition data from the NCEP Eta model. Meanwhile, two WRF experimental runs are configured to use high-resolution initialization data from (1) LIS land-surface data only, and (2) a combination of LIS data and high-resolution MODIS SST composites. The experiment involves running 24-hour simulations of the control WRF configuration, the MS-initialized WRF, and the LIS+MODIS-initialized WRF daily for the entire month of May 2004. All atmospheric data for initial and boundary conditions for the Control, LIS, and LIS+MODIS runs come from the NCEP Eta model on a 40-km grid. Verification statistics are generated at land surface observation sites and buoys, and the impacts of the high-resolution lower boundary data on the development and evolution of mesoscale circulations such as sea and land breezes are examined, This paper will present the results of these WRF modeling experiments using LIS and MODIS lower boundary datasets over the Florida peninsula during May 2004.
Mars Science Laboratory Propulsive Maneuver Design and Execution
NASA Technical Reports Server (NTRS)
Wong, Mau C.; Kangas, Julie A.; Ballard, Christopher G.; Gustafson, Eric D.; Martin-Mur, Tomas J.
2012-01-01
The NASA Mars Science Laboratory (MSL) rover, Curiosity, was launched on November 26, 2011 and successfully landed at the Gale Crater on Mars. For the 8-month interplanetary trajectory from Earth to Mars, five nominal and two contingency trajectory correction maneuvers (TCM) were planned. The goal of these TCMs was to accurately deliver the spacecraft to the desired atmospheric entry aimpoint in Martian atmosphere so as to ensure a high probability of successful landing on the Mars surface. The primary mission requirements on maneuver performance were the total mission propellant usage and the entry flight path angle (EFPA) delivery accuracy. They were comfortably met in this mission. In this paper we will describe the spacecraft propulsion system, TCM constraints and requirements, TCM design processes, and their implementation and verification.
Further Analysis on the Mystery of the Surveyor III Dust Deposits
NASA Technical Reports Server (NTRS)
Metzger, Philip; Hintze, Paul; Trigwell, Steven; Lane, John
2012-01-01
The Apollo 12 lunar module (LM) landing near the Surveyor III spacecraft at the end of 1969 has remained the primary experimental verification of the predicted physics of plume ejecta effects from a rocket engine interacting with the surface of the moon. This was made possible by the return of the Surveyor III camera housing by the Apollo 12 astronauts, allowing detailed analysis of the composition of dust deposited by the LM plume. It was soon realized after the initial analysis of the camera housing that the LM plume tended to remove more dust than it had deposited. In the present study, coupons from the camera housing have been reexamined. In addition, plume effects recorded in landing videos from each Apollo mission have been studied for possible clues.
Application of Land Surface Data Assimilation to Simulations of Sea Breeze Circulations
NASA Technical Reports Server (NTRS)
Mackaro, Scott; Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske
2003-01-01
A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite- observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSUNCAR MM5 V3-5 and applied at spatial resolutions of 12- and 4-km. It is recognized that even 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.
NASA Astrophysics Data System (ADS)
Tampubolon, Togi; Abdullah, Khiruddin bin; San, Lim Hwee
2013-09-01
The spectral characteristics of land cover are basic references in classifying satellite image for geophysics analysis. It can be obtained from the measurements using spectrometer and satellite image processing. The aims of this study to investigate the spectral characteristics of land cover based on the results of measurement using Spectrometer Cropscan MSR 16R and Landsat satellite imagery. The area of study in this research is in Medan, (Deli Serdang, North Sumatera) Indonesia. The scope of this study is the basic survey from the measurements of spectral land cover which is covered several type of land such as a cultivated and managed terrestrial areas, natural and semi-natural, cultivated aquatic or regularly flooded areas, natural and semi-natural aquatic, artificial surfaces and associated areas, bare areas, artificial waterbodies and natural waterbodies. The measurement and verification were conducted using a spectrometer provided their spectral characteristics and Landsat imagery, respectively. The results of the spectral characteristics of land cover shows that each type of land cover have a unique characteristic. The correlation of spectral land cover based on spectrometer Cropscan MSR 16R and Landsat satellite image are above 90 %. However, the land cover of artificial waterbodiese have a correlation under 40 %. That is because the measurement of spectrometer Cropscan MSR 16R and acquisition of Landsat satellite imagery has a time different.
Surface Landing Site Weather Analysis for Constellation Program
NASA Technical Reports Server (NTRS)
Altino, Karen M.; Burns, K. Lee
2008-01-01
Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is an important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface atmospheric conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. Climatological time series of operational surface weather observations are used to calculate probabilities of occurrence of various sets of hypothetical vehicle constraint thresholds, Data are available for numerous geographical locations such that statistical analysis can be performed for single sites as well as multiple-site network configurations. Results provide statistical descriptions of how often certain weather conditions are observed at the site(s) and the percentage that specified criteria thresholds are matched or exceeded. Outputs are tabulated by month and hour of day to show both seasonal and diurnal variation. This paper will describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that can be obtained,
Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China
NASA Astrophysics Data System (ADS)
Wang, Xun; Lin, Che-Jen; Yuan, Wei; Sommar, Jonas; Zhu, Wei; Feng, Xinbin
2016-09-01
Mercury (Hg) emission from natural surfaces plays an important role in global Hg cycling. The present estimate of global natural emission has large uncertainty and remains unverified against field data, particularly for terrestrial surfaces. In this study, a mechanistic model is developed for estimating the emission of elemental mercury vapor (Hg0) from natural surfaces in China. The development implements recent advancements in the understanding of air-soil and air-foliage exchange of Hg0 and redox chemistry in soil and on surfaces, incorporates the effects of soil characteristics and land use changes by agricultural activities, and is examined through a systematic set of sensitivity simulations. Using the model, the net exchange of Hg0 between the atmosphere and natural surfaces of mainland China is estimated to be 465.1 Mg yr-1, including 565.5 Mg yr-1 from soil surfaces, 9.0 Mg yr-1 from water bodies, and -100.4 Mg yr-1 from vegetation. The air-surface exchange is strongly dependent on the land use and meteorology, with 9 % of net emission from forest ecosystems; 50 % from shrubland, savanna, and grassland; 33 % from cropland; and 8 % from other land uses. Given the large agricultural land area in China, farming activities play an important role on the air-surface exchange over farmland. Particularly, rice field shift from a net sink (3.3 Mg uptake) during April-October (rice planting) to a net source when the farmland is not flooded (November-March). Summing up the emission from each land use, more than half of the total emission occurs in summer (51 %), followed by spring (28 %), autumn (13 %), and winter (8 %). Model verification is accomplished using observational data of air-soil/air-water fluxes and Hg deposition through litterfall for forest ecosystems in China and Monte Carlo simulations. In contrast to the earlier estimate by Shetty et al. (2008) that reported large emission from vegetative surfaces using an evapotranspiration approach, the estimate in this study shows natural emissions are primarily from grassland and dry cropland. Such an emission pattern may alter the current understanding of Hg emission outflow from China as reported by Lin et al. (2010b) because a substantial natural Hg emission occurs in West China.
Assemby, test, and launch operations for the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Wallace, Matthew T.; Hardy, Paul V.; Romero, Raul A.; Salvo, Christopher G.; Shain, Thomas W.; Thompson, Arthur D.; Wirth, John W.
2005-01-01
In January of 2004, NASA's twin Mars rovers, Spirit and Opportunity, successfully landed on opposite sides of the Red Planet after a seven month Earth to Mars cruise period. Both vehicles have operated well beyond their 90 day primary mission design life requirements. The Assembly, Test, and Launch Operations (ATLO) program for these missions presented unique technical and schedule challenges to the team at the Jet Propulsion Laboratory (JPL). Among these challenges were a highly compressed schedule and late deliveries leading to extended double shift staffing, dual spacecraft operations requiring test program diversification and resource arbitration, multiple atypical test configurations for airbag/rocket landings and surface mobility testing, and verification of an exceptionally large number of separations, deployments, and mechanisms. This paper discusses the flight system test philosophies and approach, and presents lessons learned.
NASA Astrophysics Data System (ADS)
Beerten, Koen; Leterme, Bertrand
2015-04-01
Reliably predicting the future state of the hydrological system under transient climate and land use conditions is a major challenge. Hydrological models are usually calibrated and validated for a short time period (e.g. 30 years), for conditions that are similar to today's. In order to test model performance for future (unverifiable) projections, palaeohydrological modelling is first needed to build confidence in model output under different conditions. One of the major challenges of palaeohydrological modelling is the acquisition of verification data that is representative for the past state(s) of the hydrological system. Here, we present the reconstructed evolution of the groundwater table depth over the last six centuries, in a sandy interfluvium (20 km² with altitude varying between 16 m and 28 m a.s.l.) of the Nete catchment. For periods before 1770 AD, the altitude (depth) of blown-out surfaces in the drift sand landscape is used as a proxy for the average highest groundwater level. These surfaces are generally interpreted as the lower limit for wind erosion. Soil profiles investigations where these surfaces are overblown by younger drift sand show that they were created in the time period between ca. 1400 AD and 1600 AD. For younger periods, historical maps were analysed for the presence of surface water features, such as fens (shallow lakes that are groundwater fed in this sandy landscape under temperate climate), marshes and wetlands. The results clearly show declining water levels in the second half of the 19th century, i.e., between 1854 AD and 1909 AD. The decline is most pronounced for the higher areas of the interfluve (drift sand landscape) and becomes less clear towards the floodplains. The amount of groundwater level decline is 1-2 m on average. The cause for the synchronous groundwater level drop seems to be linked to land use and land cover changes during that period. In the time interval between 1854 AD and 1909 AD, the total length of drains increased from 2 km to 25 km, while land cover changed from 80% heathland and almost no trees to only 20% heathland and 50% coniferous forest. Available palaeoclimate records suggest that there is no correlation between groundwater level change and average annual temperature or precipitation. Furthermore, population density seems to be uncorrelated with the observed hydrological changes. Internal consistency checks are performed and found satisfactory. For example, the high groundwater levels predicted by the blown-out surfaces for 1400-1600 AD are confirmed by surface water features on younger historical maps (~1770 AD and ~1850 AD). Indeed, pollen analysis, topographical maps and climate records show that land cover and climate did not change significantly throughout the period 1400 AD to 1850 AD. We conclude that the proposed methods are useful tools to gather verification data (i.e., groundwater table depth) for palaeohydrological modelling in the European sand belt during the last millenium.
A web-based system for supporting global land cover data production
NASA Astrophysics Data System (ADS)
Han, Gang; Chen, Jun; He, Chaoying; Li, Songnian; Wu, Hao; Liao, Anping; Peng, Shu
2015-05-01
Global land cover (GLC) data production and verification process is very complicated, time consuming and labor intensive, requiring huge amount of imagery data and ancillary data and involving many people, often from different geographic locations. The efficient integration of various kinds of ancillary data and effective collaborative classification in large area land cover mapping requires advanced supporting tools. This paper presents the design and development of a web-based system for supporting 30-m resolution GLC data production by combining geo-spatial web-service and Computer Support Collaborative Work (CSCW) technology. Based on the analysis of the functional and non-functional requirements from GLC mapping, a three tiers system model is proposed with four major parts, i.e., multisource data resources, data and function services, interactive mapping and production management. The prototyping and implementation of the system have been realised by a combination of Open Source Software (OSS) and commercially available off-the-shelf system. This web-based system not only facilitates the integration of heterogeneous data and services required by GLC data production, but also provides online access, visualization and analysis of the images, ancillary data and interim 30 m global land-cover maps. The system further supports online collaborative quality check and verification workflows. It has been successfully applied to China's 30-m resolution GLC mapping project, and has improved significantly the efficiency of GLC data production and verification. The concepts developed through this study should also benefit other GLC or regional land-cover data production efforts.
NASA Technical Reports Server (NTRS)
Lapenta, William M.; Suggs, Ron; Jedlovec, Gary; McNider, Richard T.
1999-01-01
As the parameterizations of surface energy budgets in regional models have become more complete physically, models have the potential to be much more realistic in simulations of coupling between surface radiation, hydrology, and surface energy transfer. Realizing the importance of properly specifying the surface energy budget, many institutions are using land-surface models to represent the lower boundary forcing associated with biophysical processes and soil hydrology. However, the added degrees of freedom due to inclusion of such land-surface schemes require the specification of additional parameters within the model system such as vegetative resistances, green vegetation fraction, leaf area index, soil physical and hydraulic characteristics, stream flow, runoff, and the vertical distribution of soil moisture. Spatial heterogeneity of these parameters makes correct specification problematic since measurements are not routinely available. A technique has been developed for assimilating GOES-IR skin temperature tendencies, solar insolation, and surface albedo into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. The technique has been successfully employed in a number of mesoscale models in case-study mode. We have taken the next step and developed a study to determine if assimilating these types of data into mesoscale models in real-time can improve short-term (648h) forecasts of temperature, relative humidity, and QPF on a daily basis over relatively large regions. Therefore, an operational modeling/assimilation system has been developed at the GHCC during the past summer that allows us to produce simulations out to 48 hours in a timely manor. The PSU/NCAR MM5 is used in a nested configuration with a 25 km grid covering the southeastern third of the US. The model has been on-line since 1 July 1998 and forecast products are posted on our web site. The satellite algorithms that generate data to be assimilated came on-line 17 October 1998. Quantitative assessment of the forecast quality is performed via traditional verification statistics. In addition, invaluable qualitative information is obtained through close collaboration with several NWSFO's who are using the MM5 products in real-time on a daily basis. The assimilation technique has been applied in an off-line mode since 17 October. Results based on bulk statistical verification of surface meteorology over the entire Southeastern US show that assimilating the GOES-derived land surface tendencies and solar radiation results in a significant reduction of the shelter air temperature and RH bias on a daily basis. In fact, the assimilation technique has produced improved temperature and RH forecasts for 97% of the 100 simulations performed to date. Work is currently underway to determine the sensitivity of the assimilation procedure to the availability of satellite data, length of assimilation period, model initialization, and synoptic-scale meteorological conditions. In addition, results from a detailed energy budget analysis using the Early Eta, our operational MM5, and the assimilation runs will help us to better understand the satellite assimilation the land-surface energy budge. Research during the spring-summer of 1999 will focus on the impact of the assimilation technique during the warm season where it is hypothesized that it can have a positive impact on QPF during conditions of weak synoptic-scale forcing.
Modelling carbon and water fluxes at global scale
NASA Astrophysics Data System (ADS)
Balzarolo, M.; Balsamo, G.; Barbu, A.; Boussetta, S.; Calvet, J.-C.; Chevallier, F.; de Vries, J.; Kullmann, L.; Lafont, S.; Maignan, F.; Papale, D.; Poulter, B.
2012-04-01
Modelling and predicting seasonal and inter-annual variability of terrestrial carbon and water fluxes play an important role in understanding processes and interactions between plant-atmosphere and climate. Testing the model's capability to simulate fluxes across and within the ecosystems against eddy covariance data is essential. Thanks to the existing eddy covariance (EC) networks (e.g FLUXNET), where CO2 and water exchanges are continuously measured, it is now possible to verify the model's goodness at global scale. This paper reports the outcomes of the verification activities of the Land Carbon Core Information Service (LC-CIS) of the Geoland2 European project. The three used land surface models are C-TESSEL from ECMWF, SURFEX from CNRM and ORCHIDEE from IPSL. These models differ in their hypotheses used to describe processes and the interactions between ecological compartments (plant, soil and atmosphere) and climate and environmental conditions. Results of the verification and model benchmarking are here presented. Surface fluxes of the models are verified against FLUXNET sites representing main worldwide Plant Functional Types (PFTs: forest, grassland and cropland). The quality and accuracy of the EC data is verified using the CarboEurope database methodology. Modelled carbon and water fluxes magnitude, daily and annual cycles, inter-annual anomalies are verified against eddy covariance data using robust statistical analysis (r, RMSE, E, BE). We also verify the performance of the models in predicting the functional responses of Gross Primary Production (GPP) and RE (Ecosystem Respiration) to the environmental driving variables (i.e. temperature, soil water content and radiation) by comparing the functional relationships obtained from the outputs and observed data. Obtained results suggest some ways of improving such models for global carbon modelling.
Design and Testing of a Prototype Lunar or Planetary Surface Landing Research Vehicle (LPSLRV)
NASA Technical Reports Server (NTRS)
Murphy, Gloria A.
2010-01-01
This handbook describes a two-semester senior design course sponsored by the NASA Office of Education, the Exploration Systems Mission Directorate (ESMD), and the NASA Space Grant Consortium. The course was developed and implemented by the Mechanical and Aerospace Engineering Department (MAE) at Utah State University. The course final outcome is a packaged senior design course that can be readily incorporated into the instructional curriculum at universities across the country. The course materials adhere to the standards of the Accreditation Board for Engineering and Technology (ABET), and is constructed to be relevant to key research areas identified by ESMD. The design project challenged students to apply systems engineering concepts to define research and training requirements for a terrestrial-based lunar landing simulator. This project developed a flying prototype for a Lunar or Planetary Surface Landing Research Vehicle (LPSRV). Per NASA specifications the concept accounts for reduced lunar gravity, and allows the terminal stage of lunar descent to be flown either by remote pilot or autonomously. This free-flying platform was designed to be sufficiently-flexible to allow both sensor evaluation and pilot training. This handbook outlines the course materials, describes the systems engineering processes developed to facilitate design fabrication, integration, and testing. This handbook presents sufficient details of the final design configuration to allow an independent group to reproduce the design. The design evolution and details regarding the verification testing used to characterize the system are presented in a separate project final design report. Details of the experimental apparatus used for system characterization may be found in Appendix F, G, and I of that report. A brief summary of the ground testing and systems verification is also included in Appendix A of this report. Details of the flight tests will be documented in a separate flight test report. This flight test report serves as a complement to the course handbook presented here. This project was extremely ambitious, and achieving all of the design and test objectives was a daunting task. The schedule ran slightly longer than a single academic year with the complete design closure not occurring until early April. Integration and verification testing spilled over into late May and the first flight did not occur until mid to late June. The academic year at Utah State University ended on May 8, 2010. Following the end of the academic year, testing and integration was performed by the faculty advisor, paid research assistants, and volunteer student help
Assimilation of SMOS Retrievals in the Land Information System
NASA Technical Reports Server (NTRS)
Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.; Crosson, William L.
2016-01-01
The Soil Moisture and Ocean Salinity (SMOS) satellite provides retrievals of soil moisture in the upper 5 cm with a 30-50 km resolution and a mission accuracy requirement of 0.04 cm(sub 3 cm(sub -3). These observations can be used to improve land surface model soil moisture states through data assimilation. In this paper, SMOS soil moisture retrievals are assimilated into the Noah land surface model via an Ensemble Kalman Filter within the NASA Land Information System. Bias correction is implemented using Cumulative Distribution Function (CDF) matching, with points aggregated by either land cover or soil type to reduce sampling error in generating the CDFs. An experiment was run for the warm season of 2011 to test SMOS data assimilation and to compare assimilation methods. Verification of soil moisture analyses in the 0-10 cm upper layer and root zone (0-1 m) was conducted using in situ measurements from several observing networks in the central and southeastern United States. This experiment showed that SMOS data assimilation significantly increased the anomaly correlation of Noah soil moisture with station measurements from 0.45 to 0.57 in the 0-10 cm layer. Time series at specific stations demonstrate the ability of SMOS DA to increase the dynamic range of soil moisture in a manner consistent with station measurements. Among the bias correction methods, the correction based on soil type performed best at bias reduction but also reduced correlations. The vegetation-based correction did not produce any significant differences compared to using a simple uniform correction curve.
Assimilation of SMOS Retrievals in the Land Information System
Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.; Crosson, William L.
2018-01-01
The Soil Moisture and Ocean Salinity (SMOS) satellite provides retrievals of soil moisture in the upper 5 cm with a 30-50 km resolution and a mission accuracy requirement of 0.04 cm3 cm−3. These observations can be used to improve land surface model soil moisture states through data assimilation. In this paper, SMOS soil moisture retrievals are assimilated into the Noah land surface model via an Ensemble Kalman Filter within the NASA Land Information System. Bias correction is implemented using Cumulative Distribution Function (CDF) matching, with points aggregated by either land cover or soil type to reduce sampling error in generating the CDFs. An experiment was run for the warm season of 2011 to test SMOS data assimilation and to compare assimilation methods. Verification of soil moisture analyses in the 0-10 cm upper layer and root zone (0-1 m) was conducted using in situ measurements from several observing networks in the central and southeastern United States. This experiment showed that SMOS data assimilation significantly increased the anomaly correlation of Noah soil moisture with station measurements from 0.45 to 0.57 in the 0-10 cm layer. Time series at specific stations demonstrate the ability of SMOS DA to increase the dynamic range of soil moisture in a manner consistent with station measurements. Among the bias correction methods, the correction based on soil type performed best at bias reduction but also reduced correlations. The vegetation-based correction did not produce any significant differences compared to using a simple uniform correction curve. PMID:29367795
NASA Technical Reports Server (NTRS)
Wheeler, Mark
1996-01-01
This report details the research, development, utility, verification and transition on wet microburst forecasting and detection the Applied Meteorology Unit (AMU) did in support of ground and launch operations at Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). The unforecasted wind event on 16 August 1994 of 33.5 ms-1 (65 knots) at the Shuttle Landing Facility raised the issue of wet microburst detection and forecasting. The AMU researched and analyzed the downburst wind event and determined it was a wet microburst event. A program was developed for operational use on the Meteorological Interactive Data Display System (MIDDS) weather system to analyze, compute and display Theta(epsilon) profiles, the microburst day potential index (MDPI), and wind index (WINDEX) maximum wind gust value. Key microburst nowcasting signatures using the WSR-88D data were highlighted. Verification of the data sets indicated that the MDPI has good potential in alerting the duty forecaster to the potential of wet microburst and the WINDEX values computed from the hourly surface data do have potential in showing a trend for the maximum gust potential. WINDEX should help in filling in the temporal hole between the MDPI on the last Cape Canaveral rawinsonde and the nowcasting radar data tools.
NASA Technical Reports Server (NTRS)
Stehura, Aaron; Rozek, Matthew
2013-01-01
The complexity of the Mars Science Laboratory (MSL) mission presented the Entry, Descent, and Landing systems engineering team with many challenges in its Verification and Validation (V&V) campaign. This paper describes some of the logistical hurdles related to managing a complex set of requirements, test venues, test objectives, and analysis products in the implementation of a specific portion of the overall V&V program to test the interaction of flight software with the MSL avionics suite. Application-specific solutions to these problems are presented herein, which can be generalized to other space missions and to similar formidable systems engineering problems.
Corrigan, Damion K; Cauchi, Michael; Piletsky, Sergey; Mccrossen, Sean
2009-01-01
Cleaning verification is the process by which pharmaceutical manufacturing equipment is determined as sufficiently clean to allow manufacture to continue. Surface-enhanced Raman spectroscopy (SERS) is a very sensitive spectroscopic technique capable of detection at levels appropriate for cleaning verification. In this paper, commercially available Klarite SERS substrates were employed in order to obtain the necessary enhancement of signal for the identification of chemical species at concentrations of 1 to 10 ng/cm2, which are relevant to cleaning verification. The SERS approach was combined with principal component analysis in the identification of drug compounds recovered from a contaminated steel surface.
NASA Astrophysics Data System (ADS)
Kennedy, Joseph H.; Bennett, Andrew R.; Evans, Katherine J.; Price, Stephen; Hoffman, Matthew; Lipscomb, William H.; Fyke, Jeremy; Vargo, Lauren; Boghozian, Adrianna; Norman, Matthew; Worley, Patrick H.
2017-06-01
To address the pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice sheet models is underway. Concurrent to the development of the Community Ice Sheet Model (CISM), the corresponding verification and validation (V&V) process is being coordinated through a new, robust, Python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVVkit). Incorporated into the typical ice sheet model development cycle, it provides robust and automated numerical verification, software verification, performance validation, and physical validation analyses on a variety of platforms, from personal laptops to the largest supercomputers. LIVVkit operates on sets of regression test and reference data sets, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-for-bit evaluation, and plots of model variables to indicate where differences occur. LIVVkit also provides an easily extensible framework to incorporate and analyze results of new intercomparison projects, new observation data, and new computing platforms. LIVVkit is designed for quick adaptation to additional ice sheet models via abstraction of model specific code, functions, and configurations into an ice sheet model description bundle outside the main LIVVkit structure. Ultimately, through shareable and accessible analysis output, LIVVkit is intended to help developers build confidence in their models and enhance the credibility of ice sheet models overall.
Kim, Moon H.; Ritz, Christian T.; Arvin, Donald V.
2012-01-01
Potential wetland extents were estimated for a 14-mile reach of the Wabash River near Terre Haute, Indiana. This pilot study was completed by the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS). The study showed that potential wetland extents can be estimated by analyzing streamflow statistics with the available streamgage data, calculating the approximate water-surface elevation along the river, and generating maps by use of flood-inundation mapping techniques. Planning successful restorations for Wetland Reserve Program (WRP) easements requires a determination of areas that show evidence of being in a zone prone to sustained or frequent flooding. Zone determinations of this type are used by WRP planners to define the actively inundated area and make decisions on restoration-practice installation. According to WRP planning guidelines, a site needs to show evidence of being in an "inundation zone" that is prone to sustained or frequent flooding for a period of 7 consecutive days at least once every 2 years on average in order to meet the planning criteria for determining a wetland for a restoration in agricultural land. By calculating the annual highest 7-consecutive-day mean discharge with a 2-year recurrence interval (7MQ2) at a streamgage on the basis of available streamflow data, one can determine the water-surface elevation corresponding to the calculated flow that defines the estimated inundation zone along the river. By using the estimated water-surface elevation ("inundation elevation") along the river, an approximate extent of potential wetland for a restoration in agricultural land can be mapped. As part of the pilot study, a set of maps representing the estimated potential wetland extents was generated in a geographic information system (GIS) application by combining (1) a digital water-surface plane representing the surface of inundation elevation that sloped in the downstream direction of flow and (2) land-surface elevation data. These map products from the pilot study will aid the NRCS and its partners with the onsite inundation-zone verification in agricultural land for a potential restoration and will assist in determining at what elevation to plant hardwood trees for increased survivability on ground above frequently flooded terraces.
Modelling past hydrology of an interfluve area in the Campine region (NE Belgium)
NASA Astrophysics Data System (ADS)
Leterme, Bertrand; Beerten, Koen; Gedeon, Matej; Vandersteen, Katrijn
2015-04-01
This study aims at hydrological model verification of a small lowland interfluve area (18.6 km²) in NE Belgium, for conditions that are different than today. We compare the current state with five reference periods in the past (AD 1500, 1770, 1854, 1909 and 1961) representing important stages of landscape evolution in the study area. Historical information and proxy data are used to derive conceptual model features and boundary conditions specific to each period: topography, surface water geometry (canal, drains and lakes), land use, soils, vegetation and climate. The influence of landscape evolution on the hydrological cycle is assessed using numerical simulations of a coupled unsaturated zone - groundwater model (HYDRUS-MODFLOW). The induced hydrological changes are assessed in terms of groundwater level, recharge, evapotranspiration, and surface water discharge. HYDRUS-MODFLOW coupling allows including important processes such as the groundwater contribution to evapotranspiration. Major land use change occurred between AD 1854 and 1909, with about 41% of the study area being converted from heath to coniferous forest, together with the development of a drainage network. Results show that this led to a significant decrease of groundwater recharge and lowering of the groundwater table. A limitation of the study lies in the comparison of simulated past hydrology with appropriate palaeo-records. Examples are given as how some indicators (groundwater head, swamp zones) can be used to tend to model validation. Quantifying the relative impact of land use and climate changes requires running sensitivity simulations where the models using alternative land use are run with the climate forcing of other periods. A few examples of such sensitivity runs are presented in order to compare the influence of land use and climate change on the study area hydrology.
To Duc, Khanh
2017-11-18
Receiver operating characteristic (ROC) surface analysis is usually employed to assess the accuracy of a medical diagnostic test when there are three ordered disease status (e.g. non-diseased, intermediate, diseased). In practice, verification bias can occur due to missingness of the true disease status and can lead to a distorted conclusion on diagnostic accuracy. In such situations, bias-corrected inference tools are required. This paper introduce an R package, named bcROCsurface, which provides utility functions for verification bias-corrected ROC surface analysis. The shiny web application of the correction for verification bias in estimation of the ROC surface analysis is also developed. bcROCsurface may become an important tool for the statistical evaluation of three-class diagnostic markers in presence of verification bias. The R package, readme and example data are available on CRAN. The web interface enables users less familiar with R to evaluate the accuracy of diagnostic tests, and can be found at http://khanhtoduc.shinyapps.io/bcROCsurface_shiny/ .
Environmental assessment of creosote-treated pilings in the marine environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butala, J.H.; Webb, D.A.; Jop, K.M.
1995-12-31
A comprehensive ecological risk assessment was conducted to evaluate the environmental impact of creosote-treated pilings in the marine environment at Moss Landing Harbor, Moss Landing, California. Four areas of investigation comprising the risk assessment were (1) evaluation of environmental conditions around existing creosote-treated pilings (2) investigating effects related to restoration of pilings (3) assessing creosote migration into surrounding environment, one year after pile-driving and (4) confirmation of creosote toxicity in laboratory studies. Biological and chemical evaluation of the impact of creosote-treated pilings was conducted on surface sheen, water column and sediment samples collected at Moss Landing Harbor. Water samples (surfacemore » sheen, water column and sediment pore water) were evaluated using short-term chronic exposures with Mysidopsis bahia, while bulk sediment samples were evaluated with 10-day sediment toxicity tests with Ampelisca abdita. Samples of surface, column water and sediment were analyzed for the constituents of creosote by GC mass spectrometry. In addition, a sample of neat material used to preserve treated pilings represented a reference for the polyaromatic hydrocarbons. Verification of organism response and analyses of field collected samples was performed by conducting 10-day A. abdita sediment and 7-day M. bahia elutriate exposures with creosote applied to clean sediment collected at Moss Landing, Evaluations were also performed to determine the effects of photoinduced toxicity on test organisms exposed to PAHs. The biological and analytical results of the field and laboratory exposures are being used to evaluate and determine risk of creosote-treated pilings on the marine environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, Joseph H.; Bennett, Andrew R.; Evans, Katherine J.
To address the pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice sheet models is underway. Concurrent to the development of the Community Ice Sheet Model (CISM), the corresponding verification and validation (V&V) process is being coordinated through a new, robust, Python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVVkit). Incorporated into the typical ice sheet model development cycle, it provides robust and automated numerical verification, software verification, performance validation, and physical validation analyses on a variety of platforms, from personal laptopsmore » to the largest supercomputers. LIVVkit operates on sets of regression test and reference data sets, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-for-bit evaluation, and plots of model variables to indicate where differences occur. LIVVkit also provides an easily extensible framework to incorporate and analyze results of new intercomparison projects, new observation data, and new computing platforms. LIVVkit is designed for quick adaptation to additional ice sheet models via abstraction of model specific code, functions, and configurations into an ice sheet model description bundle outside the main LIVVkit structure. Furthermore, through shareable and accessible analysis output, LIVVkit is intended to help developers build confidence in their models and enhance the credibility of ice sheet models overall.« less
Kennedy, Joseph H.; Bennett, Andrew R.; Evans, Katherine J.; ...
2017-03-23
To address the pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice sheet models is underway. Concurrent to the development of the Community Ice Sheet Model (CISM), the corresponding verification and validation (V&V) process is being coordinated through a new, robust, Python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVVkit). Incorporated into the typical ice sheet model development cycle, it provides robust and automated numerical verification, software verification, performance validation, and physical validation analyses on a variety of platforms, from personal laptopsmore » to the largest supercomputers. LIVVkit operates on sets of regression test and reference data sets, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-for-bit evaluation, and plots of model variables to indicate where differences occur. LIVVkit also provides an easily extensible framework to incorporate and analyze results of new intercomparison projects, new observation data, and new computing platforms. LIVVkit is designed for quick adaptation to additional ice sheet models via abstraction of model specific code, functions, and configurations into an ice sheet model description bundle outside the main LIVVkit structure. Furthermore, through shareable and accessible analysis output, LIVVkit is intended to help developers build confidence in their models and enhance the credibility of ice sheet models overall.« less
ERIC Educational Resources Information Center
Bramao, Ines; Faisca, Luis; Forkstam, Christian; Inacio, Filomena; Araujo, Susana; Petersson, Karl Magnus; Reis, Alexandra
2012-01-01
In this study, we used event-related potentials (ERPs) to evaluate the contribution of surface color and color knowledge information in object identification. We constructed two color-object verification tasks--a surface and a knowledge verification task--using high color diagnostic objects; both typical and atypical color versions of the same…
NASA Technical Reports Server (NTRS)
Tellers, T. E.
1980-01-01
An existing one-dimensional model of the annual water balance is reviewed. Slight improvements are made in the method of calculating the bare soil component of evaporation, and in the way surface retention is handled. A natural selection hypothesis, which specifies the equilibrium vegetation density for a given, water limited, climate-soil system, is verified through comparisons with observed data and is employed in the annual water balance of watersheds in Clinton, Ma., and Santa Paula, Ca., to estimate effective areal average soil properties. Comparison of CDF's of annual basin yield derived using these soil properties with observed CDF's provides excellent verification of the soil-selection procedure. This method of parameterization of the land surface should be useful with present global circulation models, enabling them to account for both the non-linearity in the relationship between soil moisture flux and soil moisture concentration, and the variability of soil properties from place to place over the Earth's surface.
Managing complexity in simulations of land surface and near-surface processes
Coon, Ethan T.; Moulton, J. David; Painter, Scott L.
2016-01-12
Increasing computing power and the growing role of simulation in Earth systems science have led to an increase in the number and complexity of processes in modern simulators. We present a multiphysics framework that specifies interfaces for coupled processes and automates weak and strong coupling strategies to manage this complexity. Process management is enabled by viewing the system of equations as a tree, where individual equations are associated with leaf nodes and coupling strategies with internal nodes. A dynamically generated dependency graph connects a variable to its dependencies, streamlining and automating model evaluation, easing model development, and ensuring models aremore » modular and flexible. Additionally, the dependency graph is used to ensure that data requirements are consistent between all processes in a given simulation. Here we discuss the design and implementation of these concepts within the Arcos framework, and demonstrate their use for verification testing and hypothesis evaluation in numerical experiments.« less
Li, Kun; Yu, Zhuang
2008-01-01
Urban heat islands are one of the most critical urban environment heat problems. Landsat ETM+ satellite data were used to investigate the land surface temperature and underlying surface indices such as NDVI and NDBI. A comparative study of the urban heat environment at different scales, times and locations was done to verify the heat island characteristics. Since remote sensing technology has limitations for dynamic flow analysis in the study of urban spaces, a CFD simulation was used to validate the improvement of the heat environment in a city by means of wind. CFD technology has its own shortcomings in parameter setting and verification, while RS technology is helpful to remedy this. The city of Wuhan and its climatological condition of being hot in summer and cold in winter were chosen to verify the comparative and combinative application of RS with CFD in studying the urban heat island. PMID:27873893
Atlas of Seasonal Means Simulated by the NSIPP 1 Atmospheric GCM. Volume 17
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Bacmeister, Julio; Pegion, Philip J.; Schubert, Siegfried D.; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
This atlas documents the climate characteristics of version 1 of the NASA Seasonal-to-Interannual Prediction Project (NSIPP) Atmospheric General Circulation Model (AGCM). The AGCM includes an interactive land model (the Mosaic scheme), and is part of the NSIPP coupled atmosphere-land-ocean model. The results presented here are based on a 20-year (December 1979-November 1999) "ANIIP-style" integration of the AGCM in which the monthly-mean sea-surface temperature and sea ice are specified from observations. The climate characteristics of the AGCM are compared with the National Centers for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasting (ECMWF) reanalyses. Other verification data include Special Sensor Microwave/Imager (SSNM) total precipitable water, the Xie-Arkin estimates of precipitation, and Earth Radiation Budget Experiment (ERBE) measurements of short and long wave radiation. The atlas is organized by season. The basic quantities include seasonal mean global maps and zonal and vertical averages of circulation, variance/covariance statistics, and selected physics quantities.
The Pilot Phase of the Global Soil Wetness Project Phase 3
NASA Astrophysics Data System (ADS)
Kim, H.; Oki, T.
2015-12-01
After the second phase of the Global Soil Wetness Project (GSWP2) as an early global continuous gridded multi-model analysis, a comprehensive set of land surface fluxes and state variables became available. It has been broadly utilized in the hydrology community, and its success has evolved to take advantages of recent scientific progress and to extend the relatively short time span (1986-1995) of the previous project. In the third phase proposed here (GSWP3), an extensive set of quantities for hydro-energy-eco systems will be produced to investigate their long-term (1901-2010) changes. The energy-water-carbon cycles and their interactions are also examined subcomponent-wise with appropriate model verifications in ensemble land simulations. In this study, the preliminary results and problems found from the first round analysis of the GSWP3 pilot study are shown. Also, it is discussed how the global offline simulation activity contributes to wider communities and a bigger scope such as Climate Model Intercomparison Project Phase 6 (CMIP6).
32 CFR Attachment 3 to Part 855 - Landing Permit Application Instructions
Code of Federal Regulations, 2010 CFR
2010-07-01
....13. Block 9c, Title. Self-explanatory. A3.1.14. Block 9d, Telephone Number. Self-explanatory. A3.1.15.... Block 3. Self-explanatory. (Users will not necessarily be denied landing rights if pilots are not... requested, it may be approved if warranted by unique circumstances. (The verification specified for each...
NASA Astrophysics Data System (ADS)
Separovic, Leo; Husain, Syed Zahid; Yu, Wei
2015-09-01
Internal variability (IV) in dynamical downscaling with limited-area models (LAMs) represents a source of error inherent to the downscaled fields, which originates from the sensitive dependence of the models to arbitrarily small modifications. If IV is large it may impose the need for probabilistic verification of the downscaled information. Atmospheric spectral nudging (ASN) can reduce IV in LAMs as it constrains the large-scale components of LAM fields in the interior of the computational domain and thus prevents any considerable penetration of sensitively dependent deviations into the range of large scales. Using initial condition ensembles, the present study quantifies the impact of ASN on IV in LAM simulations in the range of fine scales that are not controlled by spectral nudging. Four simulation configurations that all include strong ASN but differ in the nudging settings are considered. In the fifth configuration, grid nudging of land surface variables toward high-resolution surface analyses is applied. The results show that the IV at scales larger than 300 km can be suppressed by selecting an appropriate ASN setup. At scales between 300 and 30 km, however, in all configurations, the hourly near-surface temperature, humidity, and winds are only partly reproducible. Nudging the land surface variables is found to have the potential to significantly reduce IV, particularly for fine-scale temperature and humidity. On the other hand, hourly precipitation accumulations at these scales are generally irreproducible in all configurations, and probabilistic approach to downscaling is therefore recommended.
Use of Satellite Data Assimilation to Infer Land Surface Thermal Inertia
NASA Technical Reports Server (NTRS)
Lapenta, William; McNider, Richard T.; Biazar, Arastoo; Suggs, Ron; Jedlovec, Gary; Dembek, Scott
2002-01-01
There are two important but observationally uncertain parameters in the grid averaged surface energy budgets of mesoscale models - surface moisture availability and thermal heat capacity. A technique has been successfully developed for assimilating Geostationary Operational Environmental Satellite (GOES) skin temperature tendencies during the mid-morning time frame to improve specification of surface moisture. In a new application of the technique, the use of satellite skin temperature tendencies in early evening is explored to improve specification of the surface thermal heat capacity. Together, these two satellite assimilation constraints have been shown to significantly improve the characterization of the surface energy budget of a mesoscale model on fine spatial scales. The GOES assimilation without the adjusted heat capacity was run operationally during the International H2O Project on a 12-km grid. This paper presents the results obtained when using both the moisture availability and heat capacity retrievals in concert. Preliminary results indicate that retrieved moisture availability alone improved the verification statistics of 2-meter temperature and dew point forecasts. Results from the 1.5 month long study period using the bulk heat capacity will be presented at the meeting.
Lockheed L-1101 avionic flight control redundant systems
NASA Technical Reports Server (NTRS)
Throndsen, E. O.
1976-01-01
The Lockheed L-1011 automatic flight control systems - yaw stability augmentation and automatic landing - are described in terms of their redundancies. The reliability objectives for these systems are discussed and related to in-service experience. In general, the availability of the stability augmentation system is higher than the original design requirement, but is commensurate with early estimates. The in-service experience with automatic landing is not sufficient to provide verification of Category 3 automatic landing system estimated availability.
Further Analysis on the Mystery of the Surveyor III Dust Deposits
NASA Technical Reports Server (NTRS)
Metzger, Philip; Hintze, Paul; Trigwell, Steven; Lane, John
2011-01-01
The Apollo 12 lunar module (LM) landing near the Surveyor 1lI spacecraft at the end of 1969 has remained the primary experimental verification of the predicted physics of plume ejecta effects from a rocket engine interacting with the surface of the moon. This was made possible by the return of the Surveyor 1lI camera housing by the Apollo 12 astronauts, allowing detailed analysis of the composition of dust deposited by the Apollo 12 LM plume. It was soon realized after the initial analysis of the camera housing that the LM plume tended to remove more dust than it had deposited. In the present study, coupons from the camera housing were reexamined by a KSC research team using SEM/EDS and XPS analysis. In addition, plume effects recorded in landing videos from each Apollo mission have been studied for possible clues. Several likely scenarios are proposed to explain the Surveyor III dust observations. These include electrostatic attraction of the dust to the surface of the Surveyor as a result of electrostatic charging of the jet gas exiting the engine nozzle during descent; dust blown by the Apollo 12 LM fly-by while on its descent trajectory; dust ejected from the lunar surface due to gas forced into the soil by the Surveyor 1lI rocket nozzle, based on Darcy's law; and mechanical movement of dust during the Surveyor landing. Even though an absolute answer is not possible based on available data and theory, various computational models are employed to estimate the feasibility of each of these proposed mechanisms. Scenarios are then discussed which combine multiple mechanisms to produce results consistent with observations.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.
1982-01-01
The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free-surface model also provides surface height variations with time.
Hydrology for urban land planning - A guidebook on the hydrologic effects of urban land use
Leopold, Luna Bergere
1968-01-01
The application of current knowledge of the hydrologic effects of urbanization to the Brandywine should be viewed as a forecast of conditions which may be expected as urbanization proceeds. By making such forecasts in advance of actual urban development, the methods can be tested, data can be extended, and procedures improved as verification becomes possible.
Bong, Indah Waty; DePuy, Walker Holton; Jihadah, Lina Farida
2017-01-01
Measurement, Reporting, and Verification (MRV) systems are thought to be essential for effective carbon accounting and joint REDD+ carbon, conservation, and social development goals. Community participation in MRV (PMRV) has been shown to be both cost effective and accurate, as well as a method to potentially advance stakeholder empowerment and perceptions of legitimacy. Recognizing land tenure as a long-standing point of tension in REDD+ planning, we argue that its engagement also has a key role to play in developing a legitimate PMRV. Using household surveys, key informant interviews, and participatory mapping exercises, we present three ‘lived’ land tenure contexts in Indonesia to highlight their socially and ecologically situated natures and to consider the role of tenure pluralism in shaping PMRV. We then raise and interrogate three questions for incorporating lived land tenure contexts into a legitimate PMRV system: 1) Who holds the right to conduct PMRV activities?; 2) How are the impacts of PMRV differentially distributed within local communities?; and 3) What is the relationship between tenure security and motivation to participate in PMRV? We conclude with implementation lessons for REDD+ practitioners, including the benefits of collaborative practices, and point to critical areas for further research. PMID:28406908
Felker, Mary Elizabeth; Bong, Indah Waty; DePuy, Walker Holton; Jihadah, Lina Farida
2017-01-01
Measurement, Reporting, and Verification (MRV) systems are thought to be essential for effective carbon accounting and joint REDD+ carbon, conservation, and social development goals. Community participation in MRV (PMRV) has been shown to be both cost effective and accurate, as well as a method to potentially advance stakeholder empowerment and perceptions of legitimacy. Recognizing land tenure as a long-standing point of tension in REDD+ planning, we argue that its engagement also has a key role to play in developing a legitimate PMRV. Using household surveys, key informant interviews, and participatory mapping exercises, we present three 'lived' land tenure contexts in Indonesia to highlight their socially and ecologically situated natures and to consider the role of tenure pluralism in shaping PMRV. We then raise and interrogate three questions for incorporating lived land tenure contexts into a legitimate PMRV system: 1) Who holds the right to conduct PMRV activities?; 2) How are the impacts of PMRV differentially distributed within local communities?; and 3) What is the relationship between tenure security and motivation to participate in PMRV? We conclude with implementation lessons for REDD+ practitioners, including the benefits of collaborative practices, and point to critical areas for further research.
Critical Surface Cleaning and Verification Alternatives
NASA Technical Reports Server (NTRS)
Melton, Donald M.; McCool, A. (Technical Monitor)
2000-01-01
As a result of federal and state requirements, historical critical cleaning and verification solvents such as Freon 113, Freon TMC, and Trichloroethylene (TCE) are either highly regulated or no longer 0 C available. Interim replacements such as HCFC 225 have been qualified, however toxicity and future phase-out regulations necessitate long term solutions. The scope of this project was to qualify a safe and environmentally compliant LOX surface verification alternative to Freon 113, TCE and HCFC 225. The main effort was focused on initiating the evaluation and qualification of HCFC 225G as an alternate LOX verification solvent. The project was scoped in FY 99/00 to perform LOX compatibility, cleaning efficiency and qualification on flight hardware.
Detection of surface temperature from LANDSAT-7/ETM+
NASA Astrophysics Data System (ADS)
Suga, Y.; Ogawa, H.; Ohno, K.; Yamada, K.
Hiroshima Institute of Technology (HIT) in Japan has established LANDSAT-7 Ground Station in cooperated with NASDA for receiving and processing the ETM+ data on March 15t h , 2000 in Japan. The authors performed a verification study on the surface temperature derived from thermal infrared band image data of LANDSAT- 7/Enhanced Thematic Mapper Plus (ETM+) for the estimation of the thermal condition around Hiroshima City and Bay area in the western part of Japan as a test site. As to the thermal infrared band, the approximate functions for converting the spectral radiance into the surface temperature are estimated by considering both typical surface temperatures measured by the simultaneous field survey with the satellite observation and the spectral radiance observed by ETM+ band 6, and then the estimation of the surface temperature distribution around the test site was examined. In this paper, the authors estimated the surface temperature distribution equivalent to the land cover types around Hiroshima City and Bay area. For the further study, the authors performed the modification of approximate functions for converting the spectral radiance into the surface temperature by the field and satellite observation throughout a year and the development of various monitoring systems for the environmental issues such as the sea surface anomalies and heat island phenomena.
Corrigan, Damion K; Salton, Neale A; Preston, Chris; Piletsky, Sergey
2010-09-01
Cleaning verification is a scientific and economic problem for the pharmaceutical industry. A large amount of potential manufacturing time is lost to the process of cleaning verification. This involves the analysis of residues on spoiled manufacturing equipment, with high-performance liquid chromatography (HPLC) being the predominantly employed analytical technique. The aim of this study was to develop a portable cleaning verification system for nelarabine using surface enhanced Raman spectroscopy (SERS). SERS was conducted using a portable Raman spectrometer and a commercially available SERS substrate to develop a rapid and portable cleaning verification system for nelarabine. Samples of standard solutions and swab extracts were deposited onto the SERS active surfaces, allowed to dry and then subjected to spectroscopic analysis. Nelarabine was amenable to analysis by SERS and the necessary levels of sensitivity were achievable. It is possible to use this technology for a semi-quantitative limits test. Replicate precision, however, was poor due to the heterogeneous drying pattern of nelarabine on the SERS active surface. Understanding and improving the drying process in order to produce a consistent SERS signal for quantitative analysis is desirable. This work shows the potential application of SERS for cleaning verification analysis. SERS may not replace HPLC as the definitive analytical technique, but it could be used in conjunction with HPLC so that swabbing is only carried out once the portable SERS equipment has demonstrated that the manufacturing equipment is below the threshold contamination level.
Rafanoharana, Serge; Boissière, Manuel; Wijaya, Arief; Wardhana, Wahyu
2016-01-01
Remote sensing has been widely used for mapping land cover and is considered key to monitoring changes in forest areas in the REDD+ Measurement, Reporting and Verification (MRV) system. But Remote Sensing as a desk study cannot capture the whole picture; it also requires ground checking. Therefore, complementing remote sensing analysis using participatory mapping can help provide information for an initial forest cover assessment, gain better understanding of how local land use might affect changes, and provide a way to engage local communities in REDD+. Our study looked at the potential of participatory mapping in providing complementary information for remotely sensed maps. The research sites were located in different ecological and socio-economic contexts in the provinces of Papua, West Kalimantan and Central Java, Indonesia. Twenty-one maps of land cover and land use were drawn with local community participation during focus group discussions in seven villages. These maps, covering a total of 270,000ha, were used to add information to maps developed using remote sensing, adding 39 land covers to the eight from our initial desk assessment. They also provided additional information on drivers of land use and land cover change, resource areas, territory claims and land status, which we were able to correlate to understand changes in forest cover. Incorporating participatory mapping in the REDD+ MRV protocol would help with initial remotely sensed land classifications, stratify an area for ground checks and measurement plots, and add other valuable social data not visible at the RS scale. Ultimately, it would provide a forum for local communities to discuss REDD+ activities and develop a better understanding of REDD+. PMID:27977685
Evaluation of the 29-km Eta Model. Part 1; Objective Verification at Three Selected Stations
NASA Technical Reports Server (NTRS)
Nutter, Paul A.; Manobianco, John; Merceret, Francis J. (Technical Monitor)
1998-01-01
This paper describes an objective verification of the National Centers for Environmental Prediction (NCEP) 29-km eta model from May 1996 through January 1998. The evaluation was designed to assess the model's surface and upper-air point forecast accuracy at three selected locations during separate warm (May - August) and cool (October - January) season periods. In order to enhance sample sizes available for statistical calculations, the objective verification includes two consecutive warm and cool season periods. Systematic model deficiencies comprise the larger portion of the total error in most of the surface forecast variables that were evaluated. The error characteristics for both surface and upper-air forecasts vary widely by parameter, season, and station location. At upper levels, a few characteristic biases are identified. Overall however, the upper-level errors are more nonsystematic in nature and could be explained partly by observational measurement uncertainty. With a few exceptions, the upper-air results also indicate that 24-h model error growth is not statistically significant. In February and August 1997, NCEP implemented upgrades to the eta model's physical parameterizations that were designed to change some of the model's error characteristics near the surface. The results shown in this paper indicate that these upgrades led to identifiable and statistically significant changes in forecast accuracy for selected surface parameters. While some of the changes were expected, others were not consistent with the intent of the model updates and further emphasize the need for ongoing sensitivity studies and localized statistical verification efforts. Objective verification of point forecasts is a stringent measure of model performance, but when used alone, is not enough to quantify the overall value that model guidance may add to the forecast process. Therefore, results from a subjective verification of the meso-eta model over the Florida peninsula are discussed in the companion paper by Manobianco and Nutter. Overall verification results presented here and in part two should establish a reasonable benchmark from which model users and developers may pursue the ongoing eta model verification strategies in the future.
Zhang, Ying; Alonzo, Todd A
2016-11-01
In diagnostic medicine, the volume under the receiver operating characteristic (ROC) surface (VUS) is a commonly used index to quantify the ability of a continuous diagnostic test to discriminate between three disease states. In practice, verification of the true disease status may be performed only for a subset of subjects under study since the verification procedure is invasive, risky, or expensive. The selection for disease examination might depend on the results of the diagnostic test and other clinical characteristics of the patients, which in turn can cause bias in estimates of the VUS. This bias is referred to as verification bias. Existing verification bias correction in three-way ROC analysis focuses on ordinal tests. We propose verification bias-correction methods to construct ROC surface and estimate the VUS for a continuous diagnostic test, based on inverse probability weighting. By applying U-statistics theory, we develop asymptotic properties for the estimator. A Jackknife estimator of variance is also derived. Extensive simulation studies are performed to evaluate the performance of the new estimators in terms of bias correction and variance. The proposed methods are used to assess the ability of a biomarker to accurately identify stages of Alzheimer's disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Verification and Validation of a Navy ESPC Hindcast with Loosely Coupled Data Assimilation
NASA Astrophysics Data System (ADS)
Metzger, E. J.; Barton, N. P.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T. R.; Ridout, J. A.; Franklin, D. S.; Zamudio, L.; Posey, P. G.; Reynolds, C. A.; Phelps, M.
2016-12-01
The US Navy is developing an Earth System Prediction Capability (ESPC) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. It will be a fully coupled global atmosphere/ocean/ice/wave/land prediction system providing daily deterministic forecasts out to 16 days at high horizontal and vertical resolution, and daily probabilistic forecasts out to 45 days at lower resolution. The system will run at the Navy DoD Supercomputing Resource Center with an initial operational capability scheduled for the end of FY18 and the final operational capability scheduled for FY22. The individual model and data assimilation components include: atmosphere - NAVy Global Environmental Model (NAVGEM) and Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR); ocean - HYbrid Coordinate Ocean Model (HYCOM) and Navy Coupled Ocean Data Assimilation (NCODA); ice - Community Ice CodE (CICE) and NCODA; WAVEWATCH III™ and NCODA; and land - NAVGEM Land Surface Model (LSM). Currently, NAVGEM/HYCOM/CICE are three-way coupled and each model component is cycling with its respective assimilation scheme. The assimilation systems do not communicate with each other, but future plans call for these to be coupled as well. NAVGEM runs with a 6-hour update cycle while HYCOM/CICE run with a 24-hour update cycle. The T359L50 NAVGEM/0.08° HYCOM/0.08° CICE system has been integrated in hindcast mode and verification/validation metrics have been computed against unassimilated observations and against stand-alone versions of NAVGEM and HYCOM/CICE. This presentation will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled ESPC system is performing with comparable skill to the stand-alone systems at the nowcast time.
Classification of boreal forest by satellite and inventory data using neural network approach
NASA Astrophysics Data System (ADS)
Romanov, A. A.
2012-12-01
The main objective of this research was to develop methodology for boreal (Siberian Taiga) land cover classification in a high accuracy level. The study area covers the territories of Central Siberian several parts along the Yenisei River (60-62 degrees North Latitude): the right bank includes mixed forest and dark taiga, the left - pine forests; so were taken as a high heterogeneity and statistically equal surfaces concerning spectral characteristics. Two main types of data were used: time series of middle spatial resolution satellite images (Landsat 5, 7 and SPOT4) and inventory datasets from the nature fieldworks (used for training samples sets preparation). Method of collecting field datasets included a short botany description (type/species of vegetation, density, compactness of the crowns, individual height and max/min diameters representative of each type, surface altitude of the plot), at the same time the geometric characteristic of each training sample unit corresponded to the spatial resolution of satellite images and geo-referenced (prepared datasets both of the preliminary processing and verification). The network of test plots was planned as irregular and determined by the landscape oriented approach. The main focus of the thematic data processing has been allocated for the use of neural networks (fuzzy logic inc.); therefore, the results of field studies have been converting input parameter of type / species of vegetation cover of each unit and the degree of variability. Proposed approach involves the processing of time series separately for each image mainly for the verification: shooting parameters taken into consideration (time, albedo) and thus expected to assess the quality of mapping. So the input variables for the networks were sensor bands, surface altitude, solar angels and land surface temperature (for a few experiments); also given attention to the formation of the formula class on the basis of statistical pre-processing of results of field research (prevalence type). Besides some statistical methods of supervised classification has been used (minimal distance, maximum likelihood, Mahalanobis). During the study received various types of neural classifiers suitable for the mapping, and even for the high heterogenic areas neural network approach has shown better results in precision despite the validity of the assumption of Gaussian distribution (Table). Experimentally chosen optimum network structure consisting of three layers of ten neuron in each, but it should be clarified that such configuration requires larges computational resources in comparison the statistical methods presented above; necessary to increase the number of iteration in network learning process for RMS errors minimization. It should also be emphasized that the key issues of accuracy estimation of the classification results is lack of completeness of the training sets, this is especially true with summer image processing of mixed forest. However seems that proposed methodology can be used also for measure local dynamic of boreal land surface by the type of vegetation.Comparison of classification accuracyt;
NASA Technical Reports Server (NTRS)
Hughes, David W.; Hedgeland, Randy J.
1994-01-01
A mechanical simulator of the Hubble Space Telescope (HST) Aft Shroud was built to perform verification testing of the Servicing Mission Scientific Instruments (SI's) and to provide a facility for astronaut training. All assembly, integration, and test activities occurred under the guidance of a contamination control plan, and all work was reviewed by a contamination engineer prior to implementation. An integrated approach was followed in which materials selection, manufacturing, assembly, subsystem integration, and end product use were considered and controlled to ensure that the use of the High Fidelity Mechanical Simulator (HFMS) as a verification tool would not contaminate mission critical hardware. Surfaces were cleaned throughout manufacturing, assembly, and integration, and reverification was performed following major activities. Direct surface sampling was the preferred method of verification, but access and material constraints led to the use of indirect methods as well. Although surface geometries and coatings often made contamination verification difficult, final contamination sampling and monitoring demonstrated the ability to maintain a class M5.5 environment with surface levels less than 400B inside the HFMS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.C. Weaver
2009-04-29
The primary objective of the independent verification was to determine if BJC performed the appropriate actions to meet the specified “hot spot” cleanup criteria of 500 picocuries per gram (pCi/g) uranium-238 (U-238) in surface soil. Specific tasks performed by the independent verification team (IVT) to satisfy this objective included: 1) performing radiological walkover surveys, and 2) collecting soil samples for independent analyses. The independent verification (IV) efforts were designed to evaluate radioactive contaminants (specifically U-238) in the exposed surfaces below one foot of the original site grade, given that the top one foot layer of soil on the site wasmore » removed in its entirety.« less
Coupling of Community Land Model with RegCM4 for Indian Summer Monsoon Simulation
NASA Astrophysics Data System (ADS)
Maurya, R. K. S.; Sinha, P.; Mohanty, M. R.; Mohanty, U. C.
2017-11-01
Three land surface schemes available in the regional climate model RegCM4 have been examined to understand the coupling between land and atmosphere for simulation of the Indian summer monsoon rainfall. The RegCM4 is coupled with biosphere-atmosphere transfer scheme (BATS) and the National Center for Atmospheric Research (NCAR) Community Land Model versions 3.5, and 4.5 (CLM3.5 and CLM4.5, respectively) and model performance is evaluated for recent drought (2009) and normal (2011) monsoon years. The CLM4.5 has a more distinct category of surface and it is capable of representing better the land surface characteristics. National Centers for Environmental Prediction (NCEP) and Department of Energy (DOE) reanalysis version 2 (NNRP2) datasets are considered as driving force to conduct the experiments for the Indian monsoon region (30°E-120°E; 30°S-50°N). The NNRP2 and India Meteorological Department (IMD) gridded precipitation data are used for verification analysis. The results indicate that RegCM4 simulations with CLM4.5 (RegCM4-CLM4.5) and CLM3.5 (RegCM4-CLM3.5) surface temperature (at 2 ms) have very low warm biases ( 1 °C), while with BATS (RegCM4-BATS) has a cold bias of about 1-3 °C in peninsular India and some parts of central India. Warm bias in the RegCM4-BATS is observed over the Indo-Gangetic plain and northwest India and the bias is more for the deficit year as compared to the normal year. However, the warm (cold) bias is less in RegCM4-CLM4.5 than other schemes for both the deficit and normal years. The model-simulated maximum (minimum) surface temperature and sensible heat flux at the surface are positively (negatively) biased in all the schemes; however, the bias is higher in RegCM4-BATS and lower in RegCM4-CLM4.5 over India. All the land surface schemes overestimated the precipitation in peninsular India and underestimated in central parts of India for both the years; however, the biases are less in RegCM4-CLM4.5 and more in RegCM4-CLM3.5 and RegCM4-BATS. During both the years, BATS scheme in RegCM4 failed to represent low precipitation over the leeward than windward side of the Western Ghats, while CLM schemes (both versions) in the RegCM4 are able to depict this feature. In the topographic regions, such as the Western Ghats, northeast India and state of Jammu and Kashmir, RegCM4-BATS overestimates the rainfall amount with higher bias. Statistical analysis using anomaly correlation coefficient, root mean square error, equitable threat score, and critical success index confirms that RegCM4-CLM performs better than RegCM4-BATS in the simulation of the Indian summer monsoon.
Rosa, Sarah N.; Hay, Lauren E.
2017-12-01
In 2014, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense’s Strategic Environmental Research and Development Program, initiated a project to evaluate the potential impacts of projected climate-change on Department of Defense installations that rely on Guam’s water resources. A major task of that project was to develop a watershed model of southern Guam and a water-balance model for the Fena Valley Reservoir. The southern Guam watershed model provides a physically based tool to estimate surface-water availability in southern Guam. The U.S. Geological Survey’s Precipitation Runoff Modeling System, PRMS-IV, was used to construct the watershed model. The PRMS-IV code simulates different parts of the hydrologic cycle based on a set of user-defined modules. The southern Guam watershed model was constructed by updating a watershed model for the Fena Valley watersheds, and expanding the modeled area to include all of southern Guam. The Fena Valley watershed model was combined with a previously developed, but recently updated and recalibrated Fena Valley Reservoir water-balance model.Two important surface-water resources for the U.S. Navy and the citizens of Guam were modeled in this study; the extended model now includes the Ugum River watershed and improves upon the previous model of the Fena Valley watersheds. Surface water from the Ugum River watershed is diverted and treated for drinking water, and the Fena Valley watersheds feed the largest surface-water reservoir on Guam. The southern Guam watershed model performed “very good,” according to the criteria of Moriasi and others (2007), in the Ugum River watershed above Talofofo Falls with monthly Nash-Sutcliffe efficiency statistic values of 0.97 for the calibration period and 0.93 for the verification period (a value of 1.0 represents perfect model fit). In the Fena Valley watershed, monthly simulated streamflow volumes from the watershed model compared reasonably well with the measured values for the gaging stations on the Almagosa, Maulap, and Imong Rivers—tributaries to the Fena Valley Reservoir—with Nash-Sutcliffe efficiency values of 0.87 or higher. The southern Guam watershed model simulated the total volume of the critical dry season (January to May) streamflow for the entire simulation period within –0.54 percent at the Almagosa River, within 6.39 percent at the Maulap River, and within 6.06 percent at the Imong River.The recalibrated water-balance model of the Fena Valley Reservoir generally simulated monthly reservoir storage volume with reasonable accuracy. For the calibration and verification periods, errors in end-of-month reservoir-storage volume ranged from 6.04 percent (284.6 acre-feet or 92.7 million gallons) to –5.70 percent (–240.8 acre-feet or –78.5 million gallons). Monthly simulation bias ranged from –0.48 percent for the calibration period to 0.87 percent for the verification period; relative error ranged from –0.60 to 0.88 percent for the calibration and verification periods, respectively. The small bias indicated that the model did not consistently overestimate or underestimate reservoir storage volume.In the entirety of southern Guam, the watershed model has a “satisfactory” to “very good” rating when simulating monthly mean streamflow for all but one of the gaged watersheds during the verification period. The southern Guam watershed model uses a more sophisticated climate-distribution scheme than the older model to make use of the sparse climate data, as well as includes updated land-cover parameters and the capability to simulate closed depression areas.The new Fena Valley Reservoir water-balance model is useful as an updated tool to forecast short-term changes in the surface-water resources of Guam. Furthermore, the now spatially complete southern Guam watershed model can be used to evaluate changes in streamflow and recharge owing to climate or land-cover changes. These are substantial improvements to the previous models of the Fena Valley watershed and Reservoir. Datasets associated with this report are available as a U.S. Geological Survey data release (Rosa and Hay, 2017; DOI:10.5066/F7HH6HV4).
Verification testing of the Stormwater Management, Inc. StormFilter Using ZPG Filter Media was conducted on a 0.19 acre portion of the eastbound highway surface of Interstate 794, at an area commonly referred to as the "Riverwalk" site near downtown Milwaukee, Wisconsin...
Improved Detection Technique for Solvent Rinse Cleanliness Verification
NASA Technical Reports Server (NTRS)
Hornung, S. D.; Beeson, H. D.
2001-01-01
The NASA White Sands Test Facility (WSTF) has an ongoing effort to reduce or eliminate usage of cleaning solvents such as CFC-113 and its replacements. These solvents are used in the final clean and cleanliness verification processes for flight and ground support hardware, especially for oxygen systems where organic contaminants can pose an ignition hazard. For the final cleanliness verification in the standard process, the equivalent of one square foot of surface area of parts is rinsed with the solvent, and the final 100 mL of the rinse is captured. The amount of nonvolatile residue (NVR) in the solvent is determined by weight after the evaporation of the solvent. An improved process of sampling this rinse, developed at WSTF, requires evaporation of less than 2 mL of the solvent to make the cleanliness verification. Small amounts of the solvent are evaporated in a clean stainless steel cup, and the cleanliness of the stainless steel cup is measured using a commercially available surface quality monitor. The effectiveness of this new cleanliness verification technique was compared to the accepted NVR sampling procedures. Testing with known contaminants in solution, such as hydraulic fluid, fluorinated lubricants, and cutting and lubricating oils, was performed to establish a correlation between amount in solution and the process response. This report presents the approach and results and discusses the issues in establishing the surface quality monitor-based cleanliness verification.
NASA Technical Reports Server (NTRS)
Wessman, Carol A.; Archer, Steven R.; Asner, Gregory P.; Bateson, C. Ann
2004-01-01
Replacement of grasslands and savannas by shrublands and woodlands has been widely reported in tropical, temperate and high-latitude rangelands worldwide (Archer 1994). These changes in vegetation structure may reflect historical shifts in climate and land use; and are likely to influence biodiversity, productivity, above- and below ground carbon and nitrogen sequestration and biophysical aspects of land surface-atmosphere interactions. The goal of our proposed research is to investigate how changes in the relative abundance of herbaceous and woody vegetation affect carbon and nitrogen dynamics across heterogeneous savannas and shrub/woodlands. By linking actual land-cover composition (derived through spectral mixture analysis of AVIRIS, TM, and AVHRR imagery) with a process-based ecosystem model, we will generate explicit predictions of the C and N storage in plants and soils resulting from changes in vegetation structure. Our specific objectives will be to (1) continue development and test applications of spectral mixture analysis across grassland-to-woodland transitions; (2) quantify temporal changes in plant and soil C and N storage and turnover for remote sensing and process model parameterization and verification; and (3) couple landscape fraction maps to an ecosystem simulation model to observe biogeochemical dynamics under changing landscape structure and climatological forcings.
NASA Astrophysics Data System (ADS)
Selker, J. S.; Higgins, C. W.; Tai, L. C. M.
2014-12-01
The linkage between large-scale manipulation of land cover and resulting patterns of precipitation has been a long-standing problem. For example, what is the impact of the Columbia River project's 2,700 km^2 irrigated area (applying approximately 300 m^3/s) on the down-wind continental rainfall in North America? Similarly, can we identify places on earth where planting large-scale runoff-reducing forests might increase down-wind precipitation, thus leading to magnified carbon capture? In this talk we present an analytical Lagrangian framework for the prediction of incremental increases in down-wind precipitation due to land surface evaporation and transpiration. We compare these predictions to recently published rainfall recycling values from the literature. Focus is on the Columbia basin (Pacific Northwest of hte USA), with extensions to East Africa. We further explore the monitoring requirements for verification of any such impact, and see if the planned TAHMO African Observatory (TAHMO.org) has the potential to document any such processes over the 25-year and 1,000 km scales.
Land cover heterogeneity and soil respiration in a west Greenland tundra landscape
NASA Astrophysics Data System (ADS)
Bradley-Cook, J. I.; Burzynski, A.; Hammond, C. R.; Virginia, R. A.
2011-12-01
Multiple direct and indirect pathways underlie the association between land cover classification, temperature and soil respiration. Temperature is a main control of the biological processes that constitute soil respiration, yet the effect of changing atmospheric temperatures on soil carbon flux is unresolved. This study examines associations amongst land cover, soil carbon characteristics, soil respiration, and temperature in an Arctic tundra landscape in western Greenland. We used a 1.34 meter resolution multi-spectral WorldView2 satellite image to conduct an unsupervised multi-staged ISODATA classification to characterize land cover heterogeneity. The four band image was taken on July 10th, 2010, and captures an 18 km by 15 km area in the vicinity of Kangerlussuaq. The four major terrestrial land cover classes identified were: shrub-dominated, graminoid-dominated, mixed vegetation, and bare soil. The bare soil class was comprised of patches where surface soil has been deflated by wind and ridge-top fellfield. We hypothesize that soil respiration and soil carbon storage are associated with land cover classification and temperature. We set up a hierarchical field sampling design to directly observe spatial variation between and within land cover classes along a 20 km temperature gradient extending west from Russell Glacier on the margin of the Greenland Ice Sheet. We used the land cover classification map and ground verification to select nine sites, each containing patches of the four land cover classes. Within each patch we collected soil samples from a 50 cm pit, quantified vegetation, measured active layer depth and determined landscape characteristics. From a subset of field sites we collected additional 10 cm surface soil samples to estimate soil heterogeneity within patches and measured soil respiration using a LiCor 8100 Infrared Gas Analyzer. Soil respiration rates varied with land cover classes, with values ranging from 0.2 mg C/m^2/hr in the bare soil class to over 5 mg C/m^2/hr in the graminoid-dominated class. These findings suggest that shifts in land cover vegetation types, especially soil and vegetation loss (e.g. from wind deflation), can alter landscape soil respiration. We relate soil respiration measurements to soil, vegetation, and permafrost characteristics to understand how ecosystem properties and processes vary at the landscape scale. A long-term goal of this research is to develop a spatially explicit model of soil organic matter, soil respiration, and temperature sensitivity of soil carbon dynamics for a western Greenland permafrost tundra ecosystems.
Large area mapping of soil moisture using the ESTAR passive microwave radiometer
NASA Technical Reports Server (NTRS)
Jackson, T. J.; Levine, D. M.; Swift, C. T.; Schmugge, T. J.
1994-01-01
Investigations designed to study land surface hydrologic-atmospheric interactions, showing the potential of L band passive microwave radiometry for measuring surface soil moisture over large areas, are discussed. Satisfying the data needs of these investigations requires the ability to map large areas rapidly. With aircraft systems this means a need for more beam positions over a wider swath on each flightline. For satellite systems the essential problem is resolution. Both of these needs are currently being addressed through the development and verification of Electronically Scanned Thinned Array Radiometer (ESTAR) technology. The ESTAR L band radiometer was evaluated for soil moisture mapping applications in two studies. The first was conducted over the semiarid rangeland Walnut Gulch watershed located in south eastern Arizona (U.S.). The second was performed in the subhumid Little Washita watershed in south west Oklahoma (U.S.). Both tests showed that the ESTAR is capable of providing soil moisture with the same level of accuracy as existing systems.
Verification testing of the Hydro-Kleen(TM) Filtration System, a catch-basin filter designed to reduce hydrocarbon, sediment, and metals contamination from surface water flows, was conducted at NSF International in Ann Arbor, Michigan. A Hydro-Kleen(TM) system was fitted into a ...
Seasonal forecast of St. Louis encephalitis virus transmission, Florida.
Shaman, Jeffrey; Day, Jonathan F; Stieglitz, Marc; Zebiak, Stephen; Cane, Mark
2004-05-01
Disease transmission forecasts can help minimize human and domestic animal health risks by indicating where disease control and prevention efforts should be focused. For disease systems in which weather-related variables affect pathogen proliferation, dispersal, or transmission, the potential for disease forecasting exists. We present a seasonal forecast of St. Louis encephalitis virus transmission in Indian River County, Florida. We derive an empiric relationship between modeled land surface wetness and levels of SLEV transmission in humans. We then use these data to forecast SLEV transmission with a seasonal lead. Forecast skill is demonstrated, and a real-time seasonal forecast of epidemic SLEV transmission is presented. This study demonstrates how weather and climate forecast skill-verification analyses may be applied to test the predictability of an empiric disease forecast model.
Seasonal Forecast of St. Louis Encephalitis Virus Transmission, Florida
Day, Jonathan F.; Stieglitz, Marc; Zebiak, Stephen; Cane, Mark
2004-01-01
Disease transmission forecasts can help minimize human and domestic animal health risks by indicating where disease control and prevention efforts should be focused. For disease systems in which weather-related variables affect pathogen proliferation, dispersal, or transmission, the potential for disease forecasting exists. We present a seasonal forecast of St. Louis encephalitis virus transmission in Indian River County, Florida. We derive an empirical relationship between modeled land surface wetness and levels of SLEV transmission in humans. We then use these data to forecast SLEV transmission with a seasonal lead. Forecast skill is demonstrated, and a real-time seasonal forecast of epidemic SLEV transmission is presented. This study demonstrates how weather and climate forecast skill verification analyses may be applied to test the predictability of an empirical disease forecast model. PMID:15200812
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Nwadike, E. V.
1982-01-01
The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorate (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.
Verification tests of durable TPS concepts
NASA Technical Reports Server (NTRS)
Shideler, J. L.; Webb, G. L.; Pittman, C. M.
1984-01-01
Titanium multiwall, superalloy honeycomb, and Advanced Carbon-carbon (ACC) multipost Thermal Protection System (TPS) concepts are being developed to provide durable protection for surfaces of future space transportation systems. Verification tests including thermal, vibration, acoustic, water absorption, lightning strike, and aerothermal tests are described. Preliminary results indicate that the three TPS concepts are viable up to a surface temperature in excess of 2300 F.
In-Space Engine (ISE-100) Development - Design Verification Test
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Popp, Chris; Bullard, Brad
2017-01-01
In the past decade, NASA has formulated science mission concepts with an anticipation of landing spacecraft on the lunar surface, meteoroids, and other planets. Advancing thruster technology for spacecraft propulsion systems has been considered for maximizing science payload. Starting in 2010, development of In-Space Engine (designated as ISE-100) has been carried out. ISE-100 thruster is designed based on heritage Missile Defense Agency (MDA) technology aimed for a lightweight and efficient system in terms volume and packaging. It runs with a hypergolic bi-propellant system: MON-25 (nitrogen tetroxide, N2O4, with 25% of nitric oxide, NO) and MMH (monomethylhydrazine, CH6N2) for NASA spacecraft applications. The utilization of this propellant system will provide a propulsion system capable of operating at wide range of temperatures, from 50 C (122 F) down to -30 C (-22 F) to drastically reduce heater power. The thruster is designed to deliver 100 lb(sub f) of thrust with the capability of a pulse mode operation for a wide range of mission duty cycles (MDCs). Two thrusters were fabricated. As part of the engine development, this test campaign is dedicated for the design verification of the thruster. This presentation will report the efforts of the design verification hot-fire test program of the ISE-100 thruster in collaboration between NASA Marshall Space Flight Center (MSFC) and Aerojet Rocketdyne (AR) test teams. The hot-fire tests were conducted at Advance Mobile Propulsion Test (AMPT) facility in Durango, Colorado, from May 13 to June 10, 2016. This presentation will also provide a summary of key points from the test results.
Interfacing and Verifying ALHAT Safe Precision Landing Systems with the Morpheus Vehicle
NASA Technical Reports Server (NTRS)
Carson, John M., III; Hirsh, Robert L.; Roback, Vincent E.; Villalpando, Carlos; Busa, Joseph L.; Pierrottet, Diego F.; Trawny, Nikolas; Martin, Keith E.; Hines, Glenn D.
2015-01-01
The NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project developed a suite of prototype sensors to enable autonomous and safe precision landing of robotic or crewed vehicles under any terrain lighting conditions. Development of the ALHAT sensor suite was a cross-NASA effort, culminating in integration and testing on-board a variety of terrestrial vehicles toward infusion into future spaceflight applications. Terrestrial tests were conducted on specialized test gantries, moving trucks, helicopter flights, and a flight test onboard the NASA Morpheus free-flying, rocket-propulsive flight-test vehicle. To accomplish these tests, a tedious integration process was developed and followed, which included both command and telemetry interfacing, as well as sensor alignment and calibration verification to ensure valid test data to analyze ALHAT and Guidance, Navigation and Control (GNC) performance. This was especially true for the flight test campaign of ALHAT onboard Morpheus. For interfacing of ALHAT sensors to the Morpheus flight system, an adaptable command and telemetry architecture was developed to allow for the evolution of per-sensor Interface Control Design/Documents (ICDs). Additionally, individual-sensor and on-vehicle verification testing was developed to ensure functional operation of the ALHAT sensors onboard the vehicle, as well as precision-measurement validity for each ALHAT sensor when integrated within the Morpheus GNC system. This paper provides some insight into the interface development and the integrated-systems verification that were a part of the build-up toward success of the ALHAT and Morpheus flight test campaigns in 2014. These campaigns provided valuable performance data that is refining the path toward spaceflight infusion of the ALHAT sensor suite.
The classification of LANDSAT data for the Orlando, Florida, urban fringe area
NASA Technical Reports Server (NTRS)
Walthall, C. L.; Knapp, E. M.
1978-01-01
Procedures used to map residential land cover on the Orlando, Florida, Urban fringe zone are detailed. The NASA Bureau of the Census Applications Systems Verification and Transfer project and the test site are described as well as the LANDSAT data used as the land cover information sources. Both single-date LANDSAT data processing and multitemporal principal components LANDSAT data processing are described. A summary of significant findings is included.
Exomars mission description and architecture
NASA Astrophysics Data System (ADS)
Giorgio, Vincenzo; Cassi, Carlo; Santoro, Pasquale
Msftedit 5.41.15.1507; INTRODUCTION ExoMars is the first mission of the ESA Exploration Programme. It will demonstrate flight and in-situ verification of key exploration enabling technologies to support the European ambitions for future human exploration missions. The main technology demonstration objectives are: Entry, Descent and Landing (EDL) of a large payload on the surface of Mars, Surface mobility via a Rover having several kilometres of mobility range, Access to sub-surface via a Drill to acquire samples down to 2 meters, Automatic sample preparation and distribution for analyses of scientific experiments. In parallel, important scientific objectives will be accomplished through a state-of-the art scientific payload. The ExoMars scientific objectives, in order of priority, are: The search for traces of past and present life, To characterise the water/geochemical environment as a function of depth in the shallow subsurface; To study the surface environment and identify hazards to future human missions; To investigate the planet's subsurface and deep interior to better understand the evolution and habitability of Mars. mission scenario The combinations of the above constraints and other considerations have recently led to a re-definition of the baseline mission that can be summarised as follows: Launch date: Dec 2013 Spacecraft Composite: Carrier + Descent Module Launcher: Ariane 5 from Kourou (back-up Proton from Baikonur) Descent Module released from Mars orbit Courier Module expendable (crash on Mars) Landing between 5° South and 34 ° North Descent Module landing configuration with vented airbags Data relay function provided by a NASA spacecraft. This scenario has been named enhanced baseline, as it basically responds to the need of increasing the payload mass (larger DM mass) and improving the landing accuracy to meet a semi-major axis of the landing error ellipse, downrange of the nominal landing site, of 50 km (3σ) which proved to be unfeasible with the hyperbolic arrival. DESCENT MODULE CONFIGURATION The main DM elements are: the Front Shield, the Back Shell, and the Lander. The Front Shield is an Al honeycomb composite with CFRP skins, covered with light ablative material. Its diameter is 3.4 m. It is separated from the back shell after the deployment of the parachute. The conical Back Shell is made up of a structure covered by a back shield made from the same materials as the front one. This structure provides support for the accommodation of the CM/DM separation mechanisms, some DM equipment such as parachute and thrusters, and the interfaces with the Front Shield and Landing Platform. The Lander is formed by the Landing Platform (Support and Egress Structure, SES and Air Bag System, ABS) and the DM avionic subsystems. It also accommodates the Humboldt Payload. A view is provided in (note the use of the old terminology of GEP for the box housing some of the Humboldt instruments). The Rover with its Pasteur Payload is installed and locked onto the Lander.
Research on key technology of the verification system of steel rule based on vision measurement
NASA Astrophysics Data System (ADS)
Jia, Siyuan; Wang, Zhong; Liu, Changjie; Fu, Luhua; Li, Yiming; Lu, Ruijun
2018-01-01
The steel rule plays an important role in quantity transmission. However, the traditional verification method of steel rule based on manual operation and reading brings about low precision and low efficiency. A machine vison based verification system of steel rule is designed referring to JJG1-1999-Verificaiton Regulation of Steel Rule [1]. What differentiates this system is that it uses a new calibration method of pixel equivalent and decontaminates the surface of steel rule. Experiments show that these two methods fully meet the requirements of the verification system. Measuring results strongly prove that these methods not only meet the precision of verification regulation, but also improve the reliability and efficiency of the verification system.
Study of the Low Level Wind Shear using AMDAR reports
NASA Astrophysics Data System (ADS)
Urlea, Ana-Denisa; Pietrisi, Mirela
2015-04-01
The aim of this work is the study of the effects of the wind shear on aircraft flights, in particularly when it appears on path of take-off or landing phase which is the most troublesome phase. This phenomenon has a lot of generating sources as: convection, frontal surfaces, strong surface wind coupled with local topography, breezes (either sea or mountain originated), mountain waves or low level temperature inversions. Low Level Jet is also a most frequent cause of Low Level Wind Shear. It has a lot of generating causes, but in Romania the most encountered is the presence of a Mediterranean low in southeastern part of Europe mainly in winter, sometimes in the first days of spring or the last days of autumn. It generates Low Level Wind Shear between surface and up to 600m, affecting approaching, landing or take-off phases of an aircraft flight. Diagnosis of meteorological general and local conditions and presence of Low Level Jet- generating Low Level Wind Shear is made using Meteo-France ARPEGE products model and ALARO high resolution model dedicated to Romanian area. The study is focused on use of real-time and in situ data as AMDAR (Aircraft Meteorological Data Relay) registrations with verification of a mobile Doppler SODAR registrations-("SOnic Detection And Ranging" system -PCS.2000- Metek manufactured by Meteorologische Messtechnik GMBH) in the processes of estimation of the quantitative and qualitative manifestation of Low Level Wind Shear. The results will be used to improve the timing and the accuracy of the Low Level Wind Shear forecasting for the aerodrome area.
A Study of Rapidly Developing Low Cloud Ceilings in a Stable Atmosphere at the Florida Spaceport
NASA Technical Reports Server (NTRS)
Wheeler, Mark M.; Case, Jonathan L.; Baggett, G. Wayne
2006-01-01
Forecasters at the Space Meteorology Group (SMG) issue 30 to 90 minute forecasts for low cloud ceilings at the Shuttle Landing Facility (KTTS) in Kennedy Space Center, FL for all Space Shuttle missions. Mission verification statistics have shown cloud ceilings to be the biggest forecast challenge. SMG forecasters are especially concerned with rapidly developing cloud ceilings below 8000 ft. in a stable, capped thermodynamic environment because ceilings below 8000 ft restrict Shuttle landing operations and are the most challenging to predict accurately. This project involves the development of a database of these cases over east-central Florida in order to identify the onset, location, and if possible, dissipation times of rapidly-developing low cloud ceilings. Another goal is to document the atmospheric regimes favoring this type of cloud development to improve forecast skill of such events during Space Shuttle launch and landing operations. A 10-year database of stable, rapid low cloud development days during the daylight hours was compiled for the Florida cool-season months by examining the Cape Canaveral Air Force Station sounding data, and identifying days that had high boundary layer relative humidity associated with a thermally-capped environment below 8000 ft. Archived hourly surface observations from KTTS and Melbourne, Orlando, Sanford, and Ocala, FL were then examined for the onset of cloud ceilings below 8000 ft between 1100 and 2000 UTC. Once the database was supplemented with the hourly surface cloud observations, visible satellite imagery was examined in 30-minute intervals to confirm event occurrences. This paper will present results from some of the rapidly developing cloud ceiling cases and the prevailing meteorological conditions associated with these events, focusing on potential pre-curser information that may help improve their prediction.
NASA Technical Reports Server (NTRS)
Rui, Hualan; Vollmer, Bruce; Teng, Bill; Jasinski, Michael; Mocko, David; Loeser, Carlee; Kempler, Steven
2016-01-01
The National Climate Assessment-Land Data Assimilation System (NCA-LDAS) is an Integrated Terrestrial Water Analysis, and is one of NASAs contributions to the NCA of the United States. The NCA-LDAS has undergone extensive development, including multi-variate assimilation of remotely-sensed water states and anomalies as well as evaluation and verification studies, led by the Goddard Space Flight Centers Hydrological Sciences Laboratory (HSL). The resulting NCA-LDAS data have recently been released to the general public and include those from the Noah land-surface model (LSM) version 3.3 (Noah-3.3) and the Catchment LSM version Fortuna-2.5 (CLSM-F2.5). Standard LSM output variables including soil moistures temperatures, surface fluxes, snow cover depth, groundwater, and runoff are provided, as well as streamflow using a river routing system. The NCA-LDAS data are archived at and distributed by the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The data can be accessed via HTTP, OPeNDAP, Mirador search and download, and NASA Earth data Search. To further facilitate access and use, the NCA-LDAS data are integrated into the NASA Giovanni, for quick visualization and analysis, and into the Data Rods system, for retrieval of time series of long time periods. The temporal and spatial resolutions of the NCA-LDAS data are, respectively, daily-averages and 0.125x0.125 degree, covering North America (25N 53N; 125W 67W) and the period January 1979 to December 2015. The data files are in self-describing, machine-independent, CF-compliant netCDF-4 format.
NASA Astrophysics Data System (ADS)
Jasinski, M. F.; Arsenault, K. R.; Beaudoing, H. K.; Bolten, J. D.; Borak, J.; Kumar, S.; Peters-Lidard, C. D.; Li, B.; Liu, Y.; Mocko, D. M.; Rodell, M.
2014-12-01
An Integrated Terrestrial Water Analysis System, or NCA-LDAS, has been created to enable development, evaluation, and dissemination of terrestrial hydrologic climate indicators focusing on the continental U.S. The purpose is to provide quantifiable indicators of states and estimated trends in our nation's water stores and fluxes over a wide range of scales and locations, to support improved understanding and management of water resources and numerous related sectors such as agriculture and energy. NCA-LDAS relies on improved modeling of terrestrial hydrology through assimilation of satellite imagery, building upon the legacy of the Land Information System modeling framework (Kumar et al, 2006; Peters-Lidard et al, 2007). It currently employs the Noah or Catchment Land Surface Model, run with a number of satellite data assimilation scenarios. The domain for NCA-LDAS is the continental U.S. at 1/8 degree grid for the period 1979 to present. Satellite-based variables that are assimilated are soil moisture and snow water equivalent from principally microwave sensors such as SMMR, SSM/I and AMSR, snow covered area from multispectral sensors such as AVHRR, and MODIS, and terrestrial water storage from GRACE. Once simulated, output are evaluated in comparison to independent datasets using a variety of metrics using the Land Surface Verification Toolkit (LVT). LVT schemes within NCA-LDAS also include routines for computing standard statistics of time series such means, max, and linear trends, at various scales. The dissemination of the NCA-LDAS, including model descriptions, forcings, parameters, daily output, indicator results and LVT tools, have been made available to the public through dissemination on NASA GES-DISC.
Apollo experience report: Communications system flight evaluation and verification
NASA Technical Reports Server (NTRS)
Travis, D.; Royston, C. L., Jr.
1972-01-01
Flight tests of the synergetic operation of the spacecraft and earth based communications equipment were accomplished during Apollo missions AS-202 through Apollo 12. The primary goals of these tests were to verify that the communications system would adequately support lunar landing missions and to establish the inflight communications system performance characteristics. To attain these goals, a communications system flight verification and evaluation team was established. The concept of the team operations, the evolution of the evaluation processes, synopses of the team activities associated with each mission, and major conclusions and recommendations resulting from the performance evaluation are represented.
Independent Verification of Mars-GRAM 2010 with Mars Climate Sounder Data
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Burns, Kerry L.
2014-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission and engineering applications. Applications of Mars-GRAM include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Atmospheric influences on landing site selection and long-term mission conceptualization and development can also be addressed utilizing Mars-GRAM. Mars-GRAM's perturbation modeling capability is commonly used, in a Monte Carlo mode, to perform high-fidelity engineering end-to-end simulations for entry, descent, and landing. Mars-GRAM is an evolving software package resulting in improved accuracy and additional features. Mars-GRAM 2005 has been validated against Radio Science data, and both nadir and limb data from the Thermal Emission Spectrometer (TES). From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). Above 80 km, Mars-GRAM is based on the University of Michigan Mars Thermospheric General Circulation Model (MTGCM). The most recent release of Mars-GRAM 2010 includes an update to Fortran 90/95 and the addition of adjustment factors. These adjustment factors are applied to the input data from the MGCM and the MTGCM for the mapping year 0 user-controlled dust case. The adjustment factors are expressed as a function of height (z), latitude and areocentric solar longitude (Ls).
Assimilation of GOES Land Surface Data into a Mesoscale Models
NASA Technical Reports Server (NTRS)
Lapenta, William M.; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Dembek, Scott; Goodman, H. Michael (Technical Monitor)
2001-01-01
A technique has been developed for assimilating Geostationary Operational Environmental Satellite (GOES)-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The assimilation technique has been applied to the Oklahoma-Kansas region during the spring-summer 2000 time period when dynamic changes in vegetation cover occur. In April, central Oklahoma is characterized by large NDVI associated with winter wheat while surrounding areas are primarily rangeland with lower NDVI. In July the vegetation pattern reverses as the central wheat area changes to low NDVI due to harvesting and the surrounding rangeland is greener than it was in April. The goal of this study is to determine if assimilating satellite land surface data can improve simulation of the complex spatial distribution of surface energy and water fluxes across this region. The PSU/NCAR NM5 V3 system is used in this study. The grid configuration consists of a 36-km CONUS domain and a 12-km nest over the area of interest. Bulk verification statistics (BIAS and RMSE) of surface air temperature and dewpoint indicates that assimilation of the satellite data results reduces both the bias and RMSE for both state variables. In addition, comparison of model data with ARM/CART EBBR flux observations reveals that the assimilation technique adjusts the bowen ratio in a realistic fashion.
NASA Astrophysics Data System (ADS)
Ghent, D.; Good, E.; Bulgin, C.; Remedios, J. J.
2017-12-01
Surface temperatures (ST) over land have traditionally been measured at weather stations. There are many parts of the globe with very few stations, e.g. across much of Africa, leading to gaps in ST datasets, affecting our understanding of how ST is changing, and the impacts of extreme events. Satellites can provide global ST data but these observations represent how hot the land ST (LST; including the uppermost parts of e.g. trees, buildings) is to touch, whereas stations measure the air temperature just above the surface (T2m). Satellite LST data may only be available in cloud-free conditions and data records are frequently <10-15 years in length. Consequently, satellite LST data have not yet featured widely in climate studies. In this study, the relationship between clear-sky satellite LST and all-sky T2m is characterised in space and time using >17 years of data. The analysis uses a new monthly LST climate data record (CDR) based on the Along-Track Scanning Radiometer (ATSR) series, which has been produced within the European Space Agency GlobTemperature project. The results demonstrate the dependency of the global LST-T2m differences on location, land cover, vegetation and elevation. LSTnight ( 10 pm local solar time) is found to be closely coupled with minimum T2m (Tmin) and the two temperatures generally consistent to within ±5 °C (global median LSTnight- Tmin= 1.8 °C, interquartile range = 3.8 °C). The LSTday ( 10 am local time)-maximum T2m (Tmax) variability is higher because LST is strongly influenced by insolation and surface regime (global median LSTday-Tmax= -0.1 °C, interquartile range = 8.1 °C). Correlations for both temperature pairs are typically >0.9 outside of the tropics. A crucial aspect of this study is a comparison between the monthly global anomaly time series of LST and CRUTEM4 T2m. The time series agree remarkably well, with a correlation of 0.9 and 90% of the CDR anomalies falling within the T2m 95% confidence limits (see figure). This analysis provides independent verification of the 1995-2012 T2m anomaly time series, suggesting that LST can provide a complementary perspective on global ST change. The results presented give justification for increasing use of satellite LST data in climate and weather science, both as an independent variable, and to augment T2m data acquired at weather stations.
NASA Precision Landing Technologies Completes Initial Flight Tests on Vertical Testbed Rocket
2017-04-19
This 2-minute, 40-second video shows how over the past 5 weeks, NASA and Masten Space Systems teams have prepared for and conducted sub-orbital rocket flight tests of next-generation lander navigation technology through the CoOperative Blending of Autonomous Landing Technologies (COBALT) project. The COBALT payload was integrated onto Masten’s rocket, Xodiac. The Xodiac vehicle used the Global Positioning System (GPS) for navigation during this first campaign, which was intentional to verify and refine COBALT system performance. The joint teams conducted numerous ground verification tests, made modifications in the process, practiced and refined operations’ procedures, conducted three tether tests, and have now flown two successful free flights. This successful, collaborative campaign has provided the COBALT and Xodiac teams with the valuable performance data needed to refine the systems and prepare them for the second flight test campaign this summer when the COBALT system will navigate the Xodiac rocket to a precision landing. The technologies within COBALT provide a spacecraft with knowledge during entry, descent, and landing that enables it to precisely navigate and softly land close to surface locations that have been previously too risky to target with current capabilities. The technologies will enable future exploration destinations on Mars, the moon, Europa, and other planets and moons. The two primary navigation components within COBALT include the Langley Research Center’s Navigation Doppler Lidar, which provides ultra-precise velocity and line-of-sight range measurements, and Jet Propulsion Laboratory’s Lander Vision System (LVS), which provides navigation estimates relative to an existing surface map. The integrated system is being flight tested onboard a Masten suborbital rocket vehicle called Xodiac. The COBALT project is led by the Johnson Space Center, with funding provided through the Game Changing Development, Flight Opportunities program, and Advanced Exploration Systems programs. Based at NASA’s Armstrong Flight Research Center in Edwards, CA, the Flight Opportunities program funds technology development flight tests on commercial suborbital space providers of which Masten is a vendor. The program has previously tested the LVS on the Masten rocket and validated the technology for the Mars 2020 rover.
NASA Technical Reports Server (NTRS)
Salomonson, Vincent V.
1991-01-01
The Moderate Resolution Imaging Spectrometer (MODIS) is a key observing facility to be flown on the Earth Observing System (EOS). The facility is composed of two instruments called MODIS-N (nadir) and MODIS-T (tilt). The MODIS-N is being built under contract to NASA by the Santa Barbara Research Center. The MODIS-T is being fabricated by the Engineering Directorate at the Goddard Space Flight Center. The MODIS Science Team has defined nearly 40 biogeophysical data products for studies of the ocean and land surface and properties of the atmosphere including clouds that can be expected to be produced from the MODIS instruments shortly after the launch of EOS. The ocean, land, atmosphere, and calibration groups of the MODIS Science Team are now proceeding to plan and implement the operations and facilities involving the analysis of data from existing spaceborne, airborne, and in-situ sensors required to develop and validate the algorithms that will produce the geophysical data products. These algorithm development and validation efforts will be accomplished wherever possible within the context of existing or planned national and international experiments or programs such as those in the World Climate Research Program.
Modelling Soil Heat and Water Flow as a Coupled Process in Land Surface Models
NASA Astrophysics Data System (ADS)
García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Braud, Isabelle
2010-05-01
To improve model estimates of soil water and heat flow by land surface models (LSMs), in particular in the first few centimetres of the near-surface soil profile, we have to consider in detail all the relevant physical processes involved (see e.g. Milly, 1982). Often, thermal and iso-thermal vapour fluxes in LSMs are neglected and the simplified Richard's equation is used as a result. Vapour transfer may affect the water fluxes and heat transfer in LSMs used for hydrometeorological and climate simulations. Processes occurring in the top 50 cm soil may be relevant for water and heat flux dynamics in the deeper layers, as well as for estimates of evapotranspiration and heterotrophic respiration, or even for climate and weather predictions. Water vapour transfer, which was not incorporated in previous versions of the MOSES/JULES model (Joint UK Land Environment Simulator; Cox et al., 1999), has now been implemented. Furthermore, we also assessed the effect of the soil vertical resolution on the simulated soil moisture and temperature profiles and the effect of the processes occurring at the upper boundary, mainly in terms of infiltration rates and evapotranspiration. SiSPAT (Simple Soil Plant Atmosphere Transfer Model; Braud et al., 1995) was initially used to quantify the changes that we expect to find when we introduce vapour transfer in JULES, involving parameters such as thermal vapour conductivity and diffusivity. Also, this approach allows us to compare JULES to a more complete and complex numerical model. Water vapour flux varied with soil texture, depth and soil moisture content, but overall our results suggested that water vapour fluxes change temperature gradients in the entire soil profile and introduce an overall surface cooling effect. Increasing the resolution smoothed and reduced temperature differences between liquid (L) and liquid/vapour (LV) simulations at all depths, and introduced a temperature increase over the entire soil profile. Thermal gradients rather than soil water potential gradients seem to cause temporal and spatial (vertical) soil temperature variability. We conclude that a multi-soil layer configuration may improve soil water dynamics, heat transfer and coupling of these processes, as well as evapotranspiration estimates and land surface-atmosphere coupling. However, a compromise should be reached between numerical and process-simulation aspects. References: Braud I., A.C. Dantas-Antonino, M. Vauclin, J.L. Thony and P. Ruelle, 1995b: A Simple Soil Plant Atmo- sphere Transfer model (SiSPAT), Development and field verification, J. Hydrol, 166: 213-250 Cox, P.M., R.A. Betts, C.B. Bunton, R.L.H. Essery, P.R. Rowntree, and J. Smith (1999), The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn., 15, 183-203. Milly, P.C.D., 1982. Moisture and heat transport in hysteric inhomogeneous porous media: a matric head- based formulation and a numerical model, Water Resour. Res., 18:489-498
Fulkerson, Regina K.; Micka, John A.; DeWerd, Larry A.
2014-01-01
Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR) 192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and 192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. Results: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a measured air-kerma rate. Conclusions: The novel output verification methods described in this work will reduce uncertainties in dose delivery for treatments with these kinds of surface applicators, ultimately improving patient care. PMID:24506635
NASA Technical Reports Server (NTRS)
Burns, K. Lee; Altino, Karen
2008-01-01
The Marshall Space Flight Center Natural Environments Branch has a long history of expertise in the modeling and computation of statistical launch availabilities with respect to weather conditions. Their existing data analysis product, the Atmospheric Parametric Risk Assessment (APRA) tool, computes launch availability given an input set of vehicle hardware and/or operational weather constraints by calculating the climatological probability of exceeding the specified constraint limits, APRA has been used extensively to provide the Space Shuttle program the ability to estimate impacts that various proposed design modifications would have to overall launch availability. The model accounts for both seasonal and diurnal variability at a single geographic location and provides output probabilities for a single arbitrary launch attempt. Recently, the Shuttle program has shown interest in having additional capabilities added to the APRA model, including analysis of humidity parameters, inclusion of landing site weather to produce landing availability, and concurrent analysis of multiple sites, to assist in operational landing site selection. In addition, the Constellation program has also expressed interest in the APRA tool, and has requested several additional capabilities to address some Constellation-specific issues, both in the specification and verification of design requirements and in the development of operations concepts. The combined scope of the requested capability enhancements suggests an evolution of the model beyond a simple revision process. Development has begun for a new data analysis tool that will satisfy the requests of both programs. This new tool, Probabilities of Atmospheric Conditions and Environmental Risk (PACER), will provide greater flexibility and significantly enhanced functionality compared to the currently existing tool.
Monitoring land use/cover changes on the Romanian Black Sea Coast
NASA Astrophysics Data System (ADS)
Zoran, L. F. V.; Dida, A. I.; Zoran, M. A.
2014-10-01
Remotely sensed satellite data are critical to understanding the coastal zones' physical and social systems interaction, complementing ground based methods and providing accurate wide range, objective and comparable, at widely-varying scales, synoptically data. For some environmental agreements remote sensing may provide the only viable means of compliance verification because the phenomena are monitored occurs over large and inaccessible geographic areas. The main aim of this paper was the assessment of coastal zone land cover/use changes based on fusion technique of satellite remote sensing imagery. The evaluation of coastal zone landscapes was based upon different sub-functions which refer to landscape features such as water, soil, land-use, buildings, groundwater, biotope types. A newly proposed sub-pixel mapping algorithm was applied to a set of multispectral and multitemporal satellite data for Danube Delta, Constantza and Black Sea coastal zone areas in Romania. A land cover classification and subsequent environmental quality analysis for change detection was done based on Landsat TM , Landsat ETM, QuickBird satellite images over 1990 to 2013 period of time. Spectral signatures of different terrain features have been used to separate and classify surface units of coastal zone and sub-coastal zone area.The change in the position of the coastline in Constantza area was examined in relation with the urban expansion. A distinction was made between landfill/sedimentation processes on the one hand and dredging/erosion processes on the other. We considered the Romanian Black Sea coastal zone dynamics in connection with the spatio-temporal variation of physical and biogeochemical processes and their influences on the environmental state in the near-shore area.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Nwadike, E. V.; Sinha, S. E.
1982-01-01
The theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model are described. Model verification at two sites, a separate user's manual for each model are included. The 3-D model has two forms: free surface and rigid lid. The former allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth, estuaries and coastal regions. The latter is suited for small surface wave heights compared to depth because surface elevation was removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free surface model also provides surface height variations with time.
Multidecadal climate variability of global lands and oceans
McCabe, G.J.; Palecki, M.A.
2006-01-01
Principal components analysis (PCA) and singular value decomposition (SVD) are used to identify the primary modes of decadal and multidecadal variability in annual global Palmer Drought Severity Index (PDSI) values and sea-surface temperature (SSTs). The PDSI and SST data for 1925-2003 were detrended and smoothed (with a 10-year moving average) to isolate the decadal and multidecadal variability. The first two principal components (PCs) of the PDSI PCA explained almost 38% of the decadal and multidecadal variance in the detrended and smoothed global annual PDSI data. The first two PCs of detrended and smoothed global annual SSTs explained nearly 56% of the decadal variability in global SSTs. The PDSI PCs and the SST PCs are directly correlated in a pairwise fashion. The first PDSI and SST PCs reflect variability of the detrended and smoothed annual Pacific Decadal Oscillation (PDO), as well as detrended and smoothed annual Indian Ocean SSTs. The second set of PCs is strongly associated with the Atlantic Multidecadal Oscillation (AMO). The SVD analysis of the cross-covariance of the PDSI and SST data confirmed the close link between the PDSI and SST modes of decadal and multidecadal variation and provided a verification of the PCA results. These findings indicate that the major modes of multidecadal variations in SSTs and land-surface climate conditions are highly interrelated through a small number of spatially complex but slowly varying teleconnections. Therefore, these relations may be adaptable to providing improved baseline conditions for seasonal climate forecasting. Published in 2006 by John Wiley & Sons, Ltd.
Measuring precise sea level from a buoy using the global positioning system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocken, C.; Kelecy, T.M.; Born, G.H.
1990-11-01
High-accuracy sea surface positioning is required for sea floor geodesy, satellite altimeter verification, and the study of sea level. An experiment to study the feasibility of using the Global Positioning System (GPS) for accurate sea surface positioning was conducted. A GPS-equipped buoy (floater) was deployed off the Scripps pier at La Jolla, California during December 13-15, 1989. Two reference GPS receivers were placed on land, one within {approximately}100 m of the floater, and the other about 80 km inland at the laser ranging site on Monument Peak. The position of the floater was determined relative to the land-fixed receivers using:more » (a) kinematic GPS processing software developed at the National Geodetic Survey (NGS), and (b) the Jet Propulsion Laboratory's GIPSY (GPS Inferred Positioning SYstem) software. Sea level and ocean wave spectra were calculated from GPPS measurements. These results were compared to measurements made with a NOAA tide gauge and a Paros{trademark} pressure transducer (PPT). GPS sea level for the short 100-m baseline agrees with the PPT sea level at the 1-cm level and has an rms variation of 5 mm over a period of 4 hours. Agreement between results with the two independent GPS analyses is on the order of a few millimeters. Processing of the longer Monument Peak - floater baseline is in progress and will require orbit adjustments and tropospheric modeling to obtain results comparable to the short baseline.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. M. Dittmer
2006-10-19
The 1607-F7, 141-M Building Septic Tank waste site was a septic tank and drain field that received sanitary sewage from the former 141-M Building. Remedial action was performed in August and November 2005. The results of verification sampling demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. These results also show that residual concentrations support unrestricted future use of shallow zone soil and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River.
[Urban ecological land in Changsha City: its quantitative analysis and optimization].
Li, Xiao-Li; Zeng, Guang-Ming; Shi, Lin; Liang, Jie; Cai, Qing
2010-02-01
In this paper, a hierarchy index system suitable for catastrophe progression method was constructed to comprehensively analyze and evaluate the status of ecological land construction in Changsha City in 2007. Based on the evaluation results, the irrationalities of the distribution pattern of Changsha urban ecological land were discussed. With the support of geographic information system (GIS), the ecological corridors of the urban ecological land were constructed by using the 'least-cost' modeling, and, in combining with conflict analysis, the optimum project of the urban ecological land was put forward, forming an integrated evaluation system. The results indicated that the ecological efficiency of urban ecological land in Changsha in 2007 was at medium level, with an evaluation value being 0.9416, and the quantitative index being relatively high but the coordination index being relatively low. The analysis and verification with software Fragstats showed that the ecological efficiency of the urban ecological land after optimization was higher, with the evaluation value being 0.9618, and the SHDI, CONTAG, and other indices also enhanced.
NASA Astrophysics Data System (ADS)
Chou, S. C.; Zolino, M. M.; Gomes, J. L.; Bustamante, J. F.; Lima-e-Silva, P. P.
2012-04-01
The Eta Model is used operationally by CPTEC to produce weather forecasts over South America since 1997. The model has gone through upgrades. In order to prepare the model for operational higher resolution forecasts, the model is configured and tested over a region of complex topography located near the coast of Southeast Brazil. The Eta Model was configured, with 2-km horizontal resolution and 50 layers. The Eta-2km is a second nesting, it is driven by Eta-15km, which in its turn is driven by Era-Interim reanalyses. The model domain includes the two Brazilians cities, Rio de Janeiro and Sao Paulo, urban areas, preserved tropical forest, pasture fields, and complex terrain and coastline. Mountains can rise up to about 700m. The region suffers frequent events of floods and landslides. The objective of this work is to evaluate high resolution simulations of wind and temperature in this complex area. Verification of model runs uses observations taken from the nuclear power plant. Accurate near-surface wind direction and magnitude are needed for the plant emergency plan and winds are highly sensitive to model spatial resolution and atmospheric stability. Verification of two cases during summer shows that model has clear diurnal cycle signal for wind in that region. The area is characterized by weak winds which makes the simulation more difficult. The simulated wind magnitude is about 1.5m/s, which is close to observations of about 2m/s; however, the observed change of wind direction of the sea breeze is fast whereas it is slow in the simulations. Nighttime katabatic flow is captured by the simulations. Comparison against Eta-5km runs show that the valley circulation is better described in the 2-km resolution run. Simulated temperatures follow closely the observed diurnal cycle. Experiments improving some surface conditions such as the surface temperature and land cover show simulation error reduction and improved diurnal cycle.
To support the Nation's Homeland Security Program, this U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) project is conducted to verify the performance of commercially available products, methods, and equipment for decontamination of hard and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
T.J. Vitkus
2008-06-25
The objectives of the verification survey were to confirm that accessible surfaces of the three laboratories meet the DOE’s established criteria for residual contamination. Drain pipes and ductwork were not included within the survey scope.
This test simulated shipments of hazardous waste contained in polyethylene (poly) drums, metal drums, and corrugated boxes through routine land transportation routes and across international ports of entry in the El Paso/Ciudad Juarez trade area. RFID tags were attached to four ...
Spring-Based Helmet System Support Prototype to Address Aircrew Neck Strain
2014-06-01
Helicopter Squadron stationed at CFB Borden ALSE Personnel Flight Engineers Pilots 4.6 Discussion of Verification Results 4.6.1 Reduce the mass on the...the participant in the pilot’s posture. Figure 8. A simulation of Flight Engineers’ postures during landing and low flying maneuvres. Figure 9
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.C. Weaver
2009-02-17
Conduct verification surveys of grids at the DWI 1630 Site in Knoxville, Tennessee. The independent verification team (IVT) from ORISE, conducted verification activities in whole and partial grids, as completed by BJC. ORISE site activities included gamma surface scans and soil sampling within 33 grids; G11 through G14; H11 through H15; X14, X15, X19, and X21; J13 through J15 and J17 through J21; K7 through K9 and K13 through K15; L13 through L15; and M14 through M16
Test load verification through strain data analysis
NASA Technical Reports Server (NTRS)
Verderaime, V.; Harrington, F.
1995-01-01
A traditional binding acceptance criterion on polycrystalline structures is the experimental verification of the ultimate factor of safety. At fracture, the induced strain is inelastic and about an order-of-magnitude greater than designed for maximum expected operational limit. At this extreme strained condition, the structure may rotate and displace at the applied verification load such as to unknowingly distort the load transfer into the static test article. Test may result in erroneously accepting a submarginal design or rejecting a reliable one. A technique was developed to identify, monitor, and assess the load transmission error through two back-to-back surface-measured strain data. The technique is programmed for expediency and convenience. Though the method was developed to support affordable aerostructures, the method is also applicable for most high-performance air and surface transportation structural systems.
Bedinger, M.S.; Reed, J.E.; Wells, C.J.; Swafford, B.F.
1970-01-01
The Arkansas River Multiple-Purpose Plan will provide year-round navigation on the Arkansas River from near its mouth to Muskogee, Okla., and on the Verdigris River from Muskogee to Catoosa, Okla. The altered regimen in the Arkansas and Verdigris Rivers will affect ground-water conditions in the adjacent alluvial aquifers. In 1957 the U.S. Geological Survey and U.S. Army Corps of Engineers entered into a cooperative agreement for a comprehensive ground-water study of the lower Arkansas and Verdigris River valleys. At the request of the Corps of Engineers, the Geological Survey agreed to provide (1) basic ground-water data before, during, and after construction of the Multiple-Purpose Plan and (2) interpretation and projections of postconstruction ground-water conditions. The data collected were used by the Corps of Engineers in preliminary foundation and excavation estimates and by the Geological Survey as the basis for defining the hydrologic properties of, and the ground-water conditions in, the aquifer. The projections of postconstruction ground-water conditions were used by the Corps of Engineers in the planning, design, construction, and operation of the Multiple-Purpose Plan. Analysis and projections of ground-water conditions were made by use of electrical analog models. These models use the analogy between the flow of electricity in a resistance-capacitance circuit and the flow of a liquid in a porous and permeable medium. Verification provides a test of the validity of the analog to perform as the aquifer would, within the range of historic forces. The verification process consists of simulating the action of historic forces which have acted upon the aquifer and of duplicating the aquifer response with the analog. The areal distribution of accretion can be treated as an unknown and can be determined by analog simulation of the piezometric surface in an aquifer. Comparison of accretion with depth to piezometric surface below land surface shows that accretion decreases with decreasing depth to water level. The decrease in accretion is attributed mostly to the increase in evapotranspiration from the aquifer, and where water levels are very near the land surface, to the rejection of recharge. The maximum accretion and the decrease in accretion with the decrease in depth to water are dependent upon the climate and the thickness and lithology of the fine-grained material overlying the aquifer. Dams on the Arkansas and Verdigris Rivers will impose a direct change in water levels in the aquifers adjacent to the rivers. This change will be attenuated by the resultant change in accretion to the aquifer. The analogs of aquifers in the valleys were used to determine the change in ground-water level from preconstruction to postconstruction conditions.
NASA Astrophysics Data System (ADS)
Hildebrandt, Mario; Kiltz, Stefan; Krapyvskyy, Dmytro; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus
2011-11-01
A machine-assisted analysis of traces from crime scenes might be possible with the advent of new high-resolution non-destructive contact-less acquisition techniques for latent fingerprints. This requires reliable techniques for the automatic extraction of fingerprint features from latent and exemplar fingerprints for matching purposes using pattern recognition approaches. Therefore, we evaluate the NIST Biometric Image Software for the feature extraction and verification of contact-lessly acquired latent fingerprints to determine potential error rates. Our exemplary test setup includes 30 latent fingerprints from 5 people in two test sets that are acquired from different surfaces using a chromatic white light sensor. The first test set includes 20 fingerprints on two different surfaces. It is used to determine the feature extraction performance. The second test set includes one latent fingerprint on 10 different surfaces and an exemplar fingerprint to determine the verification performance. This utilized sensing technique does not require a physical or chemical visibility enhancement of the fingerprint residue, thus the original trace remains unaltered for further investigations. No particular feature extraction and verification techniques have been applied to such data, yet. Hence, we see the need for appropriate algorithms that are suitable to support forensic investigations.
Verification of micro-scale photogrammetry for smooth three-dimensional object measurement
NASA Astrophysics Data System (ADS)
Sims-Waterhouse, Danny; Piano, Samanta; Leach, Richard
2017-05-01
By using sub-millimetre laser speckle pattern projection we show that photogrammetry systems are able to measure smooth three-dimensional objects with surface height deviations less than 1 μm. The projection of laser speckle patterns allows correspondences on the surface of smooth spheres to be found, and as a result, verification artefacts with low surface height deviations were measured. A combination of VDI/VDE and ISO standards were also utilised to provide a complete verification method, and determine the quality parameters for the system under test. Using the proposed method applied to a photogrammetry system, a 5 mm radius sphere was measured with an expanded uncertainty of 8.5 μm for sizing errors, and 16.6 μm for form errors with a 95 % confidence interval. Sphere spacing lengths between 6 mm and 10 mm were also measured by the photogrammetry system, and were found to have expanded uncertainties of around 20 μm with a 95 % confidence interval.
Badar, Bazigha; Romshoo, Shakil A; Khan, M A
2013-08-01
Dal Lake, a cradle of Kashmiri civilization has strong linkage with socioeconomics of the state of Jammu and Kashmir. During last few decades, anthropogenic pressures in Dal Lake Catchment have caused environmental deterioration impairing, inter-alia, sustained biotic communities and water quality. The present research was an integrated impact analysis of socioeconomic and biophysical processes at the watershed level on the current status of Dal Lake using multi-sensor and multi-temporal satellite data, simulation modelling together with field data verification. Thirteen watersheds (designated as 'W1-W13') were identified and investigated for land use/land cover change detection, quantification of erosion and sediment loads and socioeconomic analysis (total population, total households, literacy rate and economic development status). All the data for the respective watersheds was integrated into the GIS environment based upon multi-criteria analysis and knowledge-based weightage system was adopted for watershed prioritization based on its factors and after carefully observing the field situation. The land use/land cover change detection revealed significant changes with a uniform trend of decreased vegetation and increased impervious surface cover. Increased erosion and sediment loadings were recorded for the watersheds corresponding to their changing land systems, with bare and agriculture lands being the major contributors. The prioritization analysis revealed that W5 > W2 > W6 > W8 > W1 ranked highest in priority and W13 > W3 > W4 > W11 > W7 under medium priority. W12 > W9 > W10 belonged to low-priority category. The integration of the biophysical and the socioeconomic environment at the watershed level using modern geospatial tools would be of vital importance for the conservation and management strategies of Dal Lake ecosystem.
U. S. GEOLOGICAL SURVEY LAND REMOTE SENSING ACTIVITIES.
Frederick, Doyle G.
1983-01-01
USGS uses all types of remotely sensed data, in combination with other sources of data, to support geologic analyses, hydrologic assessments, land cover mapping, image mapping, and applications research. Survey scientists use all types of remotely sensed data with ground verifications and digital topographic and cartographic data. A considerable amount of research is being done by Survey scientists on developing automated geographic information systems that can handle a wide variety of digital data. The Survey is also investigating the use of microprocessor computer systems for accessing, displaying, and analyzing digital data.
Land cover characterization and land surface parameterization research
Steyaert, Louis T.; Loveland, Thomas R.; Parton, William J.
1997-01-01
The understanding of land surface processes and their parameterization in atmospheric, hydrologic, and ecosystem models has been a dominant research theme over the past decade. For example, many studies have demonstrated the key role of land cover characteristics as controlling factors in determining land surface processes, such as the exchange of water, energy, carbon, and trace gases between the land surface and the lower atmosphere. The requirements for multiresolution land cover characteristics data to support coupled-systems modeling have also been well documented, including the need for data on land cover type, land use, and many seasonally variable land cover characteristics, such as albedo, leaf area index, canopy conductance, surface roughness, and net primary productivity. Recently, the developers of land data have worked more closely with the land surface process modelers in these efforts.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Nwadike, E. V.
1982-01-01
The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter.
BOREAS AFM-12 1-km AVHRR Seasonal Land Cover Classification
NASA Technical Reports Server (NTRS)
Steyaert, Lou; Hall, Forrest G.; Newcomer, Jeffrey A. (Editor); Knapp, David E. (Editor); Loveland, Thomas R.; Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-12 team's efforts focused on regional scale Surface Vegetation and Atmosphere (SVAT) modeling to improve parameterization of the heterogeneous BOREAS landscape for use in larger scale Global Circulation Models (GCMs). This regional land cover data set was developed as part of a multitemporal one-kilometer Advanced Very High Resolution Radiometer (AVHRR) land cover analysis approach that was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. This land cover classification was derived by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly Normalized Difference Vegetation Index (NDVI) image composites (April-September 1992). This regional data set was developed for use by BOREAS investigators, especially those involved in simulation modeling, remote sensing algorithm development, and aircraft flux studies. Based on regional field data verification, this multitemporal one-kilometer AVHRR land cover mapping approach was effective in characterizing the biome-level land cover structure, embedded spatially heterogeneous landscape patterns, and other types of key land cover information of interest to BOREAS modelers.The land cover mosaics in this classification include: (1) wet conifer mosaic (low, medium, and high tree stand density), (2) mixed coniferous-deciduous forest (80% coniferous, codominant, and 80% deciduous), (3) recent visible bum, vegetation regeneration, or rock outcrops-bare ground-sparsely vegetated slow regeneration bum (four classes), (4) open water and grassland marshes, and (5) general agricultural land use/ grasslands (three classes). This land cover mapping approach did not detect small subpixel-scale landscape features such as fens, bogs, and small water bodies. Field observations and comparisons with Landsat Thematic Mapper (TM) suggest a minimum effective resolution of these land cover classes in the range of three to four kilometers, in part, because of the daily to monthly compositing process. In general, potential accuracy limitations are mitigated by the use of conservative parameterization rules such as aggregation of predominant land cover classes within minimum horizontal grid cell sizes of ten kilometers. The AFM-12 one-kilometer AVHRR seasonal land cover classification data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
Wimmer, B.T.; Krapac, I.G.; Locke, R.; Iranmanesh, A.
2011-01-01
The use of carbon dioxide (CO2) for enhanced oil recovery (EOR) is being tested for oil fields in the Illinois Basin, USA. While this technology has shown promise for improving oil production, it has raised some issues about the safety of CO2 injection and storage. The Midwest Geological Sequestration Consortium (MGSC) organized a Monitoring, Verification, and Accounting (MVA) team to develop and deploy monitoring programs at three EOR sites in Illinois, Indiana, and Kentucky, USA. MVA goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. This paper focuses on the use of MVA techniques in monitoring a small CO2 leak from a supply line at an EOR facility under real-world conditions. The ability of shallow monitoring techniques to detect and quantify a CO2 leak under real-world conditions has been largely unproven. In July of 2009, a leak in the pipe supplying pressurized CO2 to an injection well was observed at an MGSC EOR site located in west-central Kentucky. Carbon dioxide was escaping from the supply pipe located approximately 1 m underground. The leak was discovered visually by site personnel and injection was halted immediately. At its largest extent, the hole created by the leak was approximately 1.9 m long by 1.7 m wide and 0.7 m deep in the land surface. This circumstance provided an excellent opportunity to evaluate the performance of several monitoring techniques including soil CO2 flux measurements, portable infrared gas analysis, thermal infrared imagery, and aerial hyperspectral imagery. Valuable experience was gained during this effort. Lessons learned included determining 1) hyperspectral imagery was not effective in detecting this relatively small, short-term CO2 leak, 2) even though injection was halted, the leak remained dynamic and presented a safety risk concern during monitoring activities and, 3) the atmospheric and soil monitoring techniques used were relatively cost-effective, easily and rapidly deployable, and required minimal manpower to set up and maintain for short-term assessments. However, characterization of CO2 distribution near the land surface resulting from a dynamic leak with widely variable concentrations and fluxes was challenging. ?? 2011 Published by Elsevier Ltd.
Loblolly pine genetics verification test for private nonindustrial landowners
Jon E. Barry; Victor L. Ford; John L. Trauger
2015-01-01
Forest industry has invested in loblolly pine (Pinus taeda L.) genetics to improve growth, branching, and form. Until recently, superior families were destined for industry lands with little of this superior genetic material available for other landowners.Seedlings of superior families are now available to non-industrial private forest (NIPF) landowners at a greater...
75 FR 4100 - Enterprise Income Verification (EIV) System-Debts Owed to PHAs and Terminations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-26
... Paperwork Reduction Act. The Department is soliciting public comments on the subject proposal. This information collection is required to identify families who no longer participate in a HUD rental assistance program due to adverse termination of tenancy and/or assistance, land owe a debit to a Public Housing...
The Environmental Technology Verification (ETV) Drinking Water Systems (DWS) Center has verified the performance of treatment technologies that may be used by communities in meeting the newly promulgated (2006) U.S. Environmental Protection Agency (USEPA) Long Term 2 Enhanced Sur...
Li, Yi; Wu, Ji; Zheng, Chao; Huang, Rong Rong; Na, Yuhong; Yang, Fan; Wang, Zengshun; Wu, Di
2013-01-01
The objective of the study was to determine the effect of landing surface on plantar kinetics during a half-squat landing. Twenty male elite paratroopers with formal parachute landing training and over 2 years of parachute jumping experience were recruited. The subjects wore parachuting boots in which pressure sensing insoles were placed. Each subject was instructed to jump off a platform with a height of 60 cm, and land on either a hard or soft surface in a half-squat posture. Outcome measures were maximal plantar pressure, time to maximal plantar pressure (T-MPP), and pressure-time integral (PTI) upon landing on 10 plantar regions. Compared to a soft surface, hard surface produced higher maximal plantar pressure in the 1st to 4th metatarsal and mid-foot regions, but lower maximal plantar pressure in the 5th metatarsal region. Shorter T- MPP was found during hard surface landing in the 1st and 2nd metatarsal and medial rear foot. Landing on a hard surface landing resulted in a lower PTI than a soft surface in the 1stphalangeal region. For Chinese paratroopers, specific foot prosthesis should be designed to protect the1st to 4thmetatarsal region for hard surface landing, and the 1stphalangeal and 5thmetatarsal region for soft surface landing. Key Points Understanding plantar kinetics during the half-squat landing used by Chinese paratroopers can assist in the design of protective footwear. Compared to landing on a soft surface, a hard surface produced higher maximal plantar pressure in the 1st to 4th metatarsal and mid-foot regions, but lower maximal plantar pressure in the 5th metatarsal region. A shorter time to maximal plantar pressure was found during a hard surface landing in the 1st and 2nd metatarsals and medial rear foot. Landing on a hard surface resulted in a lower pressure-time integral than landing on a soft surface in the 1st phalangeal region. For Chinese paratroopers, specific foot prosthesis should be designed to protect the 1st to 4th metatarsal region for a hard surface landing, and the 1st phalangeal and 5th metatarsal region for a soft surface landing. PMID:24149145
NASA Astrophysics Data System (ADS)
Ning, Jicai; Gao, Zhiqiang; Meng, Ran; Xu, Fuxiang; Gao, Meng
2018-06-01
This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzgerald, T.J.; Carlos, R.C.; Argo, P.E.
As part of the integrated verification experiment (IVE), we deployed a network of hf ionospheric sounders to detect the effects of acoustic waves generated by surface ground motion following underground nuclear tests at the Nevada Test Site. The network sampled up to four geographic locations in the ionosphere from almost directly overhead of the surface ground zero out to a horizontal range of 60 km. We present sample results for four of the IVEs: Misty Echo, Texarkana, Mineral Quarry, and Bexar.
Corrigan, Damion K; Piletsky, Sergey; McCrossen, Sean
2009-01-01
This article compares the technical performances of several different commercially available swabbing materials for the purpose of cleaning verification. A steel surface was soiled with solutions of acetaminophen, nicotinic acid, diclofenac, and benzamidine and wiped with each swabbing material. The compounds were extracted with water or ethanol (depending on polarity of analyte) and their concentration in extract was quantified spectrophotometrically. The study also investigated swab debris on the wiped surface. The swab performances were compared and the best swab material was identified.
Relationships between aerodynamic roughness and land use and land cover in Baltimore, Maryland
Nicholas, F.W.; Lewis, J.E.
1980-01-01
Urbanization changes the radiative, thermal, hydrologic, and aerodynamic properties of the Earth's surface. Knowledge of these surface characteristics, therefore, is essential to urban climate analysis. Aerodynamic or surface roughness of urban areas is not well documented, however, because of practical constraints in measuring the wind profile in the presence of large buildings. Using an empirical method designed by Lettau, and an analysis of variance of surface roughness values calculated for 324 samples averaging 0.8 hectare (ha) of land use and land cover sample in Baltimore, Md., a strong statistical relation was found between aerodynamic roughness and urban land use and land cover types. Assessment of three land use and land cover systems indicates that some of these types have significantly different surface roughness characteristics. The tests further indicate that statistically significant differences exist in estimated surface roughness values when categories (classes) from different land use and land cover classification systems are used as surrogates. A Level III extension of the U.S. Geological Survey Level II land use and land cover classification system provided the most reliable results. An evaluation of the physical association between the aerodynamic properties of land use and land cover and the surface climate by numerical simulation of the surface energy balance indicates that changes in surface roughness within the range of values typical of the Level III categories induce important changes in the surface climate.
NASA Astrophysics Data System (ADS)
Willebrand, J.; KäSe, R. H.; Stammer, D.; Hinrichsen, H.-H.; Krauss, W.
1990-03-01
Altimeter data from Geosat have been analyzed in the Gulf Stream extension area. Horizontal maps of the sea surface height anomaly relative to an annual mean for various 17-day intervals were constructed using an objective mapping procedure. The mean sea level was approximated by the dynamic topography from climatological hydrographic data. Geostrophic surface velocities derived from the composite maps (mean plus anomaly) are significantly correlated with surface drifter velocities observed during an oceanographie experiment in the spring of 1987. The drifter velocities contain much energy on scales less than 100 km which are not resolved in the altimetric maps. It is shown that the composite sea surface height also agrees well with ground verification from hydrographic data along sections in a triangle between the Azores, Newfoundland, and Bermuda, except in regions of high mean gradients.
Xian, George
2008-01-01
By using both high-resolution orthoimagery and medium-resolution Landsat satellite imagery with other geospatial information, several land surface parameters including impervious surfaces and land surface temperatures for three geographically distinct urban areas in the United States – Seattle, Washington, Tampa Bay, Florida, and Las Vegas, Nevada, are obtained. Percent impervious surface is used to quantitatively define the spatial extent and development density of urban land use. Land surface temperatures were retrieved by using a single band algorithm that processes both thermal infrared satellite data and total atmospheric water vapor content. Land surface temperatures were analyzed for different land use and land cover categories in the three regions. The heterogeneity of urban land surface and associated spatial extents were shown to influence surface thermal conditions because of the removal of vegetative cover, the introduction of non-transpiring surfaces, and the reduction in evaporation over urban impervious surfaces. Fifty years of in situ climate data were integrated to assess regional climatic conditions. The spatial structure of surface heating influenced by landscape characteristics has a profound influence on regional climate conditions, especially through urban heat island effects.
NASA Astrophysics Data System (ADS)
Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara
2016-06-01
The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.
The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; Case, Jonathan; Kozlowski, Danielle; Molthan, Andrew
2012-01-01
The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting entities, including a number of National Weather Service offices. SPoRT transitions real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One challenge that forecasters face is applying convection-allowing numerical models to predict mesoscale convective weather. In order to address this specific forecast challenge, SPoRT produces real-time mesoscale model forecasts using the Weather Research and Forecasting (WRF) model that includes unique NASA products and capabilities. Currently, the SPoRT configuration of the WRF model (SPoRT-WRF) incorporates the 4-km Land Information System (LIS) land surface data, 1-km SPoRT sea surface temperature analysis and 1-km Moderate resolution Imaging Spectroradiometer (MODIS) greenness vegetation fraction (GVF) analysis, and retrieved thermodynamic profiles from the Atmospheric Infrared Sounder (AIRS). The LIS, SST, and GVF data are all integrated into the SPoRT-WRF through adjustments to the initial and boundary conditions, and the AIRS data are assimilated into a 9-hour SPoRT WRF forecast each day at 0900 UTC. This study dissects the overall impact of the NASA datasets and the individual surface and atmospheric component datasets on daily mesoscale forecasts. A case study covering the super tornado outbreak across the Ce ntral and Southeastern United States during 25-27 April 2011 is examined. Three different forecasts are analyzed including the SPoRT-WRF (NASA surface and atmospheric data), the SPoRT WRF without AIRS (NASA surface data only), and the operational National Severe Storms Laboratory (NSSL) WRF (control with no NASA data). The forecasts are compared qualitatively by examining simulated versus observed radar reflectivity. Differences between the simulated reflectivity are further investigated using convective parameters along with model soundings to determine the impacts of the various NASA datasets. Additionally, quantitative evaluation of select meteorological parameters is performed using the Meteorological Evaluation Tools model verification package to compare forecasts to in situ surface and upper air observations.
Building an Evaluation Framework for the VIC Model in the NLDAS Testbed
NASA Astrophysics Data System (ADS)
Xia, Y.; Mocko, D. M.; Wang, S.; Pan, M.; Kumar, S.; Peters-Lidard, C. D.; Wei, H.; Ek, M. B.
2017-12-01
Since the second phase of North American Land Data Assimilation System (NLDAS-2) was operationally implemented at NCEP in August 2014, developing the third phase of NLDAS system (NLDAS-3) has been a key task for the NCEP and NASA NLDAS team. The Variable Infiltration Capacity (VIC) model is one major component of the NLDAS system. The current operational NLDAS-2 uses version 4.0.3 (VIC403), research NLDAS-2 uses version 4.0.5 (VIC405), and LIS-based (Land Information System) NLDAS uses version 4.1.2 (VIC412). The purpose of this study is to compressively evaluate three versions and document changes in model behavior towards VIC412 for NLDAS-3. To do that, we develop a relatively comprehensive framework including multiple variables and metrics to assess the performance of different versions. This framework is being incorporated into the NASA Land Verification Toolkit (LVT) for evaluation of other LSMs for NLDAS-3 development. The evaluation results show that there are large and significant improvements for VIC412 in southeastern United States when compared with VIC403 and VIC405. In the other regions, there are very limited improvements or even some degree of deteriorations. Potential reasons are due to: (1) few USGS streamflow observations for soil and hydrologic parameter calibration, (2) the lack of re-calibration of VIC412 in the NLDAS domain, and (3) changes in model physics from VIC403 to VIC412. Overall, the model version upgrade largely/significantly enhances model performance and skill score for all United States except for the Great Plains, suggesting a right direction for VIC model development. Some further efforts are needed for science understanding of land surface physical processes in GP and a re-calibration for VIC412 using reasonable reference datasets is suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruedig, Elizabeth
Public Law 105-119 directs the U.S. Department of Energy (DOE) to convey or transfer parcels of land to the Incorporated County of Los Alamos or their designees and to the Department of Interior, Bureau of Indian Affairs, in trust for the Pueblo de San Ildefonso. Los Alamos National Security is tasked to support DOE in conveyance and/or transfer of identified land parcels no later than September 2022. Under DOE Order 458.1, Radiation Protection of the Public and the Environment (O458.1, 2013) and Los Alamos National Laboratory (LANL or the Laboratory) implementing Policy 412 (P412, 2014), real property with the potentialmore » to contain residual radioactive material must meet the criteria for clearance and release to the public. This Sampling and Analysis Plan (SAP) is a second investigation of Tract A-18-2 for the purpose of verifying the previous sampling results (LANL 2017). This sample plan requires 18 projectspecific soil samples for use in radiological clearance decisions consistent with LANL Procedure ENV-ES-TP-238 (2015a) and guidance in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM, 2000). The sampling work will be conducted by LANL, and samples will be evaluated by a LANL-contracted independent lab. However, there will be federal review (verification) of all steps of the sampling process.« less
An approach for modelling snowcover ablation and snowmelt runoff in cold region environments
NASA Astrophysics Data System (ADS)
Dornes, Pablo Fernando
Reliable hydrological model simulations are the result of numerous complex interactions among hydrological inputs, landscape properties, and initial conditions. Determination of the effects of these factors is one of the main challenges in hydrological modelling. This situation becomes even more difficult in cold regions due to the ungauged nature of subarctic and arctic environments. This research work is an attempt to apply a new approach for modelling snowcover ablation and snowmelt runoff in complex subarctic environments with limited data while retaining integrity in the process representations. The modelling strategy is based on the incorporation of both detailed process understanding and inputs along with information gained from observations of basin-wide streamflow phenomenon; essentially a combination of deductive and inductive approaches. The study was conducted in the Wolf Creek Research Basin, Yukon Territory, using three models, a small-scale physically based hydrological model, a land surface scheme, and a land surface hydrological model. The spatial representation was based on previous research studies and observations, and was accomplished by incorporating landscape units, defined according to topography and vegetation, as the spatial model elements. Comparisons between distributed and aggregated modelling approaches showed that simulations incorporating distributed initial snowcover and corrected solar radiation were able to properly simulate snowcover ablation and snowmelt runoff whereas the aggregated modelling approaches were unable to represent the differential snowmelt rates and complex snowmelt runoff dynamics. Similarly, the inclusion of spatially distributed information in a land surface scheme clearly improved simulations of snowcover ablation. Application of the same modelling approach at a larger scale using the same landscape based parameterisation showed satisfactory results in simulating snowcover ablation and snowmelt runoff with minimal calibration. Verification of this approach in an arctic basin illustrated that landscape based parameters are a feasible regionalisation framework for distributed and physically based models. In summary, the proposed modelling philosophy, based on the combination of an inductive and deductive reasoning, is a suitable strategy for reliable predictions of snowcover ablation and snowmelt runoff in cold regions and complex environments.
NOAA Introduces its First-Generation Reference Evapotranspiration Product
NASA Astrophysics Data System (ADS)
Hobbins, M.; Geli, H. M.; Lewis, C.; Senay, G. B.; Verdin, J. P.
2013-12-01
NOAA is producing daily, gridded operational, long-term, reference evapotranspiration (ETo) data for the National Water Census (NWC). The NWC is a congressional mandate to provide water managers with accurate, up-to-date, scientifically defensible reporting on the national water cycle; as such, it requires a high-quality record of actual ET, which we derive as a fraction of NOAA's land-based ETo a fraction determined by remotely sensed (RS) LST and/or surface reflectance in an operational version of the Simplified Surface Energy Balance (SSEBop). This methodology permits mapping of ET on a routine basis with a high degree of consistency at multiple spatial scales. This presentation addresses the ETo input to this process. NOAA's ETo dataset is generated from the American Society of Civil Engineers Standardized Penman-Monteith equation driven by hourly, 0.125-degree (~12-km) data from the North American Land Data Assimilation System (NLDAS). Coverage is CONUS-wide from Jan 1, 1979, to within five days of the present. The ETo is verified against agro-meteorological stations in western CONUS networks, while a first-order, second-moment uncertainty analysis indicates when, where, and to what extent each driver contributes to ETo variability (and so potentially require the most attention). As the NWC's mandate requires a nationwide coverage, the ETo dataset must also be verified outside of the measure's traditional, agricultural/irrigated areas of application. In this presentation, we summarize the verification of the gridded ETo product and demonstrate the drivers of ETo variability in space and time across CONUS. Beyond its primary use as a component of ET in the NWC, we further explore potential uses of the ETo product as an input to drought models and as a stand-alone index of fast-developing agricultural drought, or 'flash drought.' NOAA's product is the first consistently modeled, daily, continent-wide ETo dataset that is both up-to-date and as temporally extensive. When fully operational, the land-based ETo surface will be provided by NOAA from its new National Water Center, while the assimilation with RS data will be conducted at USGS EROS and by cooperators.
Verification of a thermal simulation tool for moving objects on the lunar surface
NASA Astrophysics Data System (ADS)
Hager, Philipp; Reiss, Philipp
2013-04-01
The thermal environment of the Moon is a challenge for the design and successful operation of rovers and scientific instruments, especially for dynamic, mobile situations. Examples range from transport and stability of volatile samples in transport devices at the lunar poles to an analysis instrument, to astronauts exploring varied terrain. A dynamic thermal simulation tool for moving objects on the lunar surface was created and its verification for several test cases against Lunar Reconnaissance Orbiter DIVINER brightness temperature data is presented here. The Thermal Moon Simulator (TherMoS) allows the prediction of incoming heat fluxes on a mobile object on the lunar surface and subsequent object temperatures. A model for regolith temperatures based on the models presented in [1,2] was set in a MATLAB simulation context. A time-marching numerical finite-difference approach was used to calculate the temperatures for log-distributed regolith depth nodes to a depth of 2m. The lunar interior heat flux was set to 0.033 [W ? m-2], based on the early publications of [3]. The incoming heat fluxes are calculated with a ray tracing algorithm. Parallel solar rays and their diffuse reflected components lead to the solar heat flux for each surface element. Additionally each surface element emits hemispherical, diffuse infrared rays that are absorbed by the object as well as other lunar surface elements. The lunar topography is represented in a triangular mesh. The topography is either derived from Kaguya LALT data or generated artificially. In the latter case craters and boulders are placed manually or randomly in a level terrain. This approach is restricted to bowl shaped primary craters with a boulder size and spatial distribution that takes into account the region (mare or highland) and the parent crater diameter [4,5,6]. A thermal boulder model is integrated, based on work performed by [7]. This model also uses a finite-difference numerical approach to compute boulder temperatures for boulders with diameters > 1m. An orbit propagator is integrated to predict the sun angle at a given time and location on the Moon. The verification was performed for several sites on the Moon for a timeframe of approx. 1 lunar hour. In case of single craters, for example Marius A and Callipus, the overall model produces temperatures accurate within 10 %. In case of more rugged terrain such as the Apollo 15 landing site, crater Ibn Bajja close to the lunar south pole, or in case of steep slope angles, deviations can be as high as 100 % in some places. This can be explained by the different spatial resolution of Kaguya LALT data compared to DIVINER brightness temperature data. The simulation tool is well suited to predict local heat fluxes from the lunar surface for engineering and mission operations related questions, within the mentioned restrictions. [1] C.J. Cremers et al. (1971); [2] A.R. Vasavada et al. (1999); [3] M.G. Langseth et al. (1972); [4] F. Hörz et al. (1991); [5] G. D. Bart et al. (2007); [6] M. J. Cintala et al. (1981); [7] E.C. Roelof et al. (1968)
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina
2010-01-01
Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).
NASA Technical Reports Server (NTRS)
Salazar, Giovanni; Droba, Justin C.; Oliver, Brandon; Amar, Adam J.
2016-01-01
With the recent development of multi-dimensional thermal protection system (TPS) material response codes, the capability to account for surface-to-surface radiation exchange in complex geometries is critical. This paper presents recent efforts to implement such capabilities in the CHarring Ablator Response (CHAR) code developed at NASA's Johnson Space Center. This work also describes the different numerical methods implemented in the code to compute geometric view factors for radiation problems involving multiple surfaces. Verification of the code's radiation capabilities and results of a code-to-code comparison are presented. Finally, a demonstration case of a two-dimensional ablating cavity with enclosure radiation accounting for a changing geometry is shown.
NASA Astrophysics Data System (ADS)
Kulikov, D. A.; Potapov, A. A.; Rassadin, A. E.; Stepanov, A. V.
2017-10-01
In the paper, methods of verification of models for growth of solid state surface by means of atomic force microscopy are suggested. Simulation of growth of fractals with cylindrical generatrix on the solid state surface is presented. Our mathematical model of this process is based on generalization of the Kardar-Parisi-Zhang equation. Corner stones of this generalization are both conjecture of anisotropy of growth of the surface and approximation of small angles. The method of characteristics has been applied to solve the Kardar-Parisi-Zhang equation. Its solution should be considered up to the gradient catastrophe. The difficulty of nondifferentiability of fractal initial generatrix has been overcome by transition from a mathematical fractal to a physical one.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.
1982-01-01
The six-volume report: describes the theory of a three-dimensional (3-D) mathematical thermal discharge model and a related one-dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.
Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling
NASA Technical Reports Server (NTRS)
Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah
2014-01-01
Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.
Constrained structural dynamic model verification using free vehicle suspension testing methods
NASA Technical Reports Server (NTRS)
Blair, Mark A.; Vadlamudi, Nagarjuna
1988-01-01
Verification of the validity of a spacecraft's structural dynamic math model used in computing ascent (or in the case of the STS, ascent and landing) loads is mandatory. This verification process requires that tests be carried out on both the payload and the math model such that the ensuing correlation may validate the flight loads calculations. To properly achieve this goal, the tests should be performed with the payload in the launch constraint (i.e., held fixed at only the payload-booster interface DOFs). The practical achievement of this set of boundary conditions is quite difficult, especially with larger payloads, such as the 12-ton Hubble Space Telescope. The development of equations in the paper will show that by exciting the payload at its booster interface while it is suspended in the 'free-free' state, a set of transfer functions can be produced that will have minima that are directly related to the fundamental modes of the payload when it is constrained in its launch configuration.
AATSR land surface temperature product algorithm verification over a WATERMED site
NASA Astrophysics Data System (ADS)
Noyes, E. J.; Sòria, G.; Sobrino, J. A.; Remedios, J. J.; Llewellyn-Jones, D. T.; Corlett, G. K.
A new operational Land Surface Temperature (LST) product generated from data acquired by the Advanced Along-Track Scanning Radiometer (AATSR) provides the opportunity to measure LST on a global scale with a spatial resolution of 1 km2. The target accuracy of the product, which utilises nadir data from the AATSR thermal channels at 11 and 12 μm, is 2.5 K for daytime retrievals and 1.0 K at night. We present the results of an experiment where the performance of the algorithm has been assessed for one daytime and one night time overpass occurring over the WATERMED field site near Marrakech, Morocco, on 05 March 2003. Top of atmosphere (TOA) brightness temperatures (BTs) are simulated for 12 pixels from each overpass using a radiative transfer model, with the LST product and independent emissivity values and atmospheric data as inputs. We have estimated the error in the LST product over this biome for this set of conditions by applying the operational AATSR LST retrieval algorithm to the modelled BTs and comparing the results with the original AATSR LSTs input into the model. An average bias of -1.00 K (standard deviation 0.07 K) for the daytime data, and -1.74 K (standard deviation 0.02 K) for the night time data is obtained, which indicates that the algorithm is yielding an LST that is too cold under these conditions. While these results are within specification for daytime retrievals, this suggests that the target accuracy of 1.0 K at night is not being met within this biome.
Cleanup Verification Package for the 600-47 Waste Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Cutlip
This cleanup verification package documents completion of interim remedial action for the 600-47 waste site. This site consisted of several areas of surface debris and contamination near the banks of the Columbia River across from Johnson Island. Contaminated material identified in field surveys included four areas of soil, wood, nuts, bolts, and other metal debris.
Multiscale verification of water fluxes and states over Pan European river basins
NASA Astrophysics Data System (ADS)
Samaniego, Luis; Rakovec, Oldrich; Schaefer, David; Kumar, Rohini; Cuntz, Matthias; Mai, Juliane; Craven, John
2014-05-01
Developing the ability to predict the movement of water at regional scales with a spatial resolution from 1 to 5 km is one of grand challenges in land surface modelling. Coping with this grand challenge implies that land surface models (LSM) should be able to make reliable predictions across locations and/or scales other than those used for parameter estimation. Validating LSM only against integral basin response such as streamflow is a necessary but not a sufficient condition to warranty the appropriate partitioning of incoming precipitation and radiation into different water budget components. Extensive in-situ observations of state variables (e.g., soil moisture), on the contrary, are not feasible at regional scales. Remote sensing has been considered as the solution for this dilemma because they constitute a cost-effective source of information and provide a valuable insight about the spatio-temporal patterns of state variables. Their main disadvantage is their large uncertainty. The mesoscale hydrologic model (mHM 5.0 http://www.ufz.de/index.php?en=31389) is used in this study to estimate uncalibrated water fluxes and states and then to investigate which are the effects of conditioning this model with freely available multiple-scale data sets. The main characteristic of mHM is the treatment of the sub-grid variability of input variables and model parameters which clearly distinguishes this model from existing precipitation-runoff models or land surface models. It uses a Multiscale Parameter Regionalization (MPR) to account for the sub-grid variability and to avoid systematic re-calibration. Another key characteristic of mHM is that it can simultaneously estimate fluxes in nested-scales and/or in multiple basins keeping its global parameters (i.e., regionalization coefficients) unaltered across scales and basins. These key characteristics of the model would allow to assimilate disparate sources of information such as satellite data, streamflow gauging stations, and eddy covariance data at their native resolutions. To address these objectives, mHM was set up over more than 280 Pan-European river basins. This model was forced with the gridded EOBS data set (25x25 km2) obtained from the European Climate Assessment & Dataset projec. The required morphological data was derived from the FAO soil map (1:5,000,000), the SRTM DEM (500 m) and three CORINE land cover scenes (500 m). MODIS LAI (NASA) was used to estimate a dynamic LAI model for every land cover class. mHM simulations were obtained at 25 km spatial resolution for the period 1950-2012. The multi-scale verification of simulated water fluxes was carried out using observation data sets such as: latent heat flux obtained from more than 150 eddy flux stations (FLUXNET), streamflow in more than 250 gauging stations (GRDC), and the remotely sensed Earth's gravity field anomalies retrieved by the Gravity Recovery and Climate Experiment (GRACE) release 05 (Landerer and Swenson, 2012, WRR). The former are used a proxy of the total water storage anomalies in mHM. In Germany, over 1000 weakly groundwater stage stations were used to evaluate and/or condition groundwater level anomalies. mHM water storage anomalies simulated over Europe from 2003 to 2012 at monthly time step were compared with those of GRACE. Results lead to the conclusion that mHM water fluxes are robust since less than 25% of river basins exhibit Nash-Sutcliffe efficiencies (NSE) of 0.5 or less. Likewise, the soil moisture and groundwater anomalies, specially in severe drought years such as 2003, exhibit a large spatial correlation with those obtained from remotely sensed products. Comparison against observed latent heat indicates that the dynamics and magnitude of the simulated values were well captured by the model at most locations. In general, deficient model performance (NSE
Land Surface Modeling and Data Assimilation to Support Physical Precipitation Retrievals for GPM
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.; Tian. Yudong; Kumar, Sujay; Geiger, James; Choudhury, Bhaskar
2010-01-01
Objective: The objective of this proposal is to provide a routine land surface modeling and data assimilation capability for GPM in order to provide global land surface states that are necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in GPM, is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. Therefore, providing a robust capability to routinely provide these critical land states is essential to support GPM-era physical retrieval algorithms over land.
Ths test simulated through routine land transportation routes and across international ports of entry in the El Paso/Ciudad Juarez trade area. RFID tags were attached to four of each container type for a total of 12 containers which were loaded onto a standard 53-foot semi-truck...
High Resolution Land Surface Modeling with the next generation Land Data Assimilation Systems
NASA Astrophysics Data System (ADS)
Kumar, S. V.; Eylander, J.; Peters-Lidard, C.
2005-12-01
Knowledge of land surface processes is important to many real-world applications such as agricultural production, water resources management, and flood predication. The Air Force Weather Agency (AFWA) has provided the USDA and other customers global soil moisture and temperature data for the past 30 years using the agrometeorological data assimilation model (now called AGRMET), merging atmospheric data. Further, accurate initialization of land surface conditions has been shown to greatly influence and improve weather forecast model and seasonal-to-interannual climate predictions. The AFWA AGRMET model exploits real time precipitation observations and analyses, global forecast model and satellite data to generate global estimates of soil moisture, soil temperature and other land surface states at 48km spatial resolution. However, to truly address the land surface initialization and climate prediction problem, and to mitigate the errors introduced by the differences in spatial scales of models, representations of land surface conditions need to be developed at the same fine scales such as that of cloud resolving models. NASA's Goddard Space Flight Center has developed an offline land data assimilation system known as the Land Information System (LIS) capable of modeling land atmosphere interactions at spatial resolutions as fine as 1km. LIS provides a software architecture that integrates the use of the state of the art land surface models, data assimilation techniques, and high performance computing and data management tools. LIS also employs many high resolution surface parameters such as the NASA Earth Observing System (EOS)-era products. In this study we describe the development of a next generation high resolution land surface modeling and data assimilation system, combining the capabilities of LIS and AGRMET. We investigate the influence of high resolution land surface data and observations on the land surface conditions by comparing with the operational AGRMET outputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzgerald, T.J.; Carlos, R.C.; Argo, P.E.
As part of the integrated verification experiment (IVE), we deployed a network of hf ionospheric sounders to detect the effects of acoustic waves generated by surface ground motion following underground nuclear tests at the Nevada Test Site. The network sampled up to four geographic locations in the ionosphere from almost directly overhead of the surface ground zero out to a horizontal range of 60 km. We present sample results for four of the IVEs: Misty Echo, Texarkana, Mineral Quarry, and Bexar.
Assessment of MERRA-2 Land Surface Energy Flux Estimates
NASA Technical Reports Server (NTRS)
Draper, Clara; Reichle, Rolf; Koster, Randal
2017-01-01
In MERRA-2, observed precipitation is inserted in place of model-generated precipitation at the land surface. The use of observed precipitation was originally developed for MERRA-Land(a land-only replay of MERRA with model-generated precipitation replaced with observations).Previously shown that the land hydrology in MERRA-2 and MERRA-Land is better than MERRA. We test whether the improved land surface hydrology in MERRA-2 leads to the expected improvements in the land surface energy fluxes and 2 m air temperatures (T2m).
The evaluation of alternate methodologies for land cover classification in an urbanizing area
NASA Technical Reports Server (NTRS)
Smekofski, R. M.
1981-01-01
The usefulness of LANDSAT in classifying land cover and in identifying and classifying land use change was investigated using an urbanizing area as the study area. The question of what was the best technique for classification was the primary focus of the study. The many computer-assisted techniques available to analyze LANDSAT data were evaluated. Techniques of statistical training (polygons from CRT, unsupervised clustering, polygons from digitizer and binary masks) were tested with minimum distance to the mean, maximum likelihood and canonical analysis with minimum distance to the mean classifiers. The twelve output images were compared to photointerpreted samples, ground verified samples and a current land use data base. Results indicate that for a reconnaissance inventory, the unsupervised training with canonical analysis-minimum distance classifier is the most efficient. If more detailed ground truth and ground verification is available, the polygons from the digitizer training with the canonical analysis minimum distance is more accurate.
NASA Technical Reports Server (NTRS)
Ridd, M. K.; Merola, J. A.; Jaynes, R. A.
1983-01-01
Conversion of agricultural land to a variety of urban uses is a major problem along the Wasatch Front, Utah. Although LANDSAT MSS data is a relatively coarse tool for discriminating categories of change in urban-size plots, its availability prompts a thorough test of its power to detect change. The procedures being applied to a test area in Salt Lake County, Utah, where the land conversion problem is acute are presented. The identity of land uses before and after conversion was determined and digital procedures for doing so were compared. Several algorithms were compared, utilizing both raw data and preprocessed data. Verification of results involved high quality color infrared photography and field observation. Two data sets were digitally registered, specific change categories internally identified in the software, results tabulated by computer, and change maps printed at 1:24,000 scale.
Heave-pitch-roll analysis and testing of air cushion landing systems
NASA Technical Reports Server (NTRS)
Boghani, A. B.; Captain, K. M.; Wormley, D. N.
1978-01-01
The analytical tools (analysis and computer simulation) needed to explain and predict the dynamic operation of air cushion landing systems (ACLS) is described. The following tasks were performed: the development of improved analytical models for the fan and the trunk; formulation of a heave pitch roll analysis for the complete ACLS; development of a general purpose computer simulation to evaluate landing and taxi performance of an ACLS equipped aircraft; and the verification and refinement of the analysis by comparison with test data obtained through lab testing of a prototype cushion. Demonstration of simulation capabilities through typical landing and taxi simulation of an ACLS aircraft are given. Initial results show that fan dynamics have a major effect on system performance. Comparison with lab test data (zero forward speed) indicates that the analysis can predict most of the key static and dynamic parameters (pressure, deflection, acceleration, etc.) within a margin of a 10 to 25 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, T.A.; Baker, D.F.; Edwards, C.L.
1993-10-01
Surface ground motion was recorded for many of the Integrated Verification Experiments using standard 10-, 25- and 100-g accelerometers, force-balanced accelerometers and, for some events, using golf balls and 0.39-cm steel balls as surface inertial gauges (SIGs). This report contains the semi-processed acceleration, velocity, and displacement data for the accelerometers fielded and the individual observations for the SIG experiments. Most acceleration, velocity, and displacement records have had calibrations applied and have been deramped, offset corrected, and deglitched but are otherwise unfiltered or processed from their original records. Digital data for all of these records are stored at Los Alamos Nationalmore » Laboratory.« less
2013-10-01
its Verification in the Design and Testing of W-band Dual-Aspheric Lenses A. Altintas and V. Yurchenko EEE Department, Bilkent University Ankara...Theory and Techn., Vol. 55, 239, 2007 [5] ZEMAX Development Corporation, Zemax- EE , http://www.zemax.com/ [6] Pasqualini D. and Maci S., ”High-Frequency
This verification study was a special project designed to determine the efficacy of a draft standard operating procedure (SOP) developed by US EPA Region 3 for the determination of selected glycols in drinking waters that may have been impacted by active unconventional oil and ga...
Haidar Ahmad, Imad A; Blasko, Andrei
2017-08-11
The aim of this work is to identify the parameters that affect the recovery of pharmaceutical residues from the surface of stainless steel coupons. A series of factors were assessed, including drug product spike levels, spiking procedure, drug-excipient ratios, analyst-to-analyst variability, intraday variability, and cleaning procedure of the coupons. The lack of a well-defined procedure that consistently cleaned the coupon surface was identified as the major contributor to low and variable recoveries. Assessment of cleaning the surface of the coupons with clean-in-place solutions (CIP) gave high recovery (>90%) and reproducible results (Srel≤4%) regardless of the conditions that were assessed previously. The approach was successfully applied for cleaning verification of small molecules (MW <1,000 Da) as well as large biomolecules (MW up to 50,000 Da).
Advances in land modeling of KIAPS based on the Noah Land Surface Model
NASA Astrophysics Data System (ADS)
Koo, Myung-Seo; Baek, Sunghye; Seol, Kyung-Hee; Cho, Kyoungmi
2017-08-01
As of 2013, the Noah Land Surface Model (LSM) version 2.7.1 was implemented in a new global model being developed at the Korea Institute of Atmospheric Prediction Systems (KIAPS). This land surface scheme is further refined in two aspects, by adding new physical processes and by updating surface input parameters. Thus, the treatment of glacier land, sea ice, and snow cover are addressed more realistically. Inconsistencies in the amount of absorbed solar flux at ground level by the land surface and radiative processes are rectified. In addition, new parameters are available by using 1-km land cover data, which had usually not been possible at a global scale. Land surface albedo/emissivity climatology is newly created using Moderate-Resolution Imaging Spectroradiometer (MODIS) satellitebased data and adjusted parameterization. These updates have been applied to the KIAPS-developed model and generally provide a positive impact on near-surface weather forecasting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ADAMS, WADE C
At Pennsylvania Department of Environmental Protection's request, ORAU's IEAV program conducted verification surveys on the excavated surfaces of Section 3, SUs 1, 4, and 5 at the Whittaker site on March 13 and 14, 2013. The survey activities included visual inspections, gamma radiation surface scans, gamma activity measurements, and soil sampling activities. Verification activities also included the review and assessment of the licensee's project documentation and methodologies. Surface scans identified four areas of elevated direct gamma radiation distinguishable from background; one area within SUs 1 and 4 and two areas within SU5. One area within SU5 was remediated by removingmore » a golf ball size piece of slag while ORAU staff was onsite. With the exception of the golf ball size piece of slag within SU5, a review of the ESL Section 3 EXS data packages for SUs 1, 4, and 5 indicated that these locations of elevated gamma radiation were also identified by the ESL gamma scans and that ESL personnel performed additional investigations and soil sampling within these areas. The investigative results indicated that the areas met the release criteria.« less
Active alignment/contact verification system
Greenbaum, William M.
2000-01-01
A system involving an active (i.e. electrical) technique for the verification of: 1) close tolerance mechanical alignment between two component, and 2) electrical contact between mating through an elastomeric interface. For example, the two components may be an alumina carrier and a printed circuit board, two mating parts that are extremely small, high density parts and require alignment within a fraction of a mil, as well as a specified interface point of engagement between the parts. The system comprises pairs of conductive structures defined in the surfaces layers of the alumina carrier and the printed circuit board, for example. The first pair of conductive structures relate to item (1) above and permit alignment verification between mating parts. The second pair of conductive structures relate to item (2) above and permit verification of electrical contact between mating parts.
NASA Astrophysics Data System (ADS)
Barton, N. P.; Metzger, E. J.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T.; Ridout, J. A.; Zamudio, L.; Posey, P.; Reynolds, C. A.; Richman, J. G.; Phelps, M.
2017-12-01
The Naval Research Laboratory is developing an Earth System Model (NESM) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. This system consists of a global atmosphere, ocean, ice, wave, and land prediction models and the individual models include: atmosphere - NAVy Global Environmental Model (NAVGEM); ocean - HYbrid Coordinate Ocean Model (HYCOM); sea ice - Community Ice CodE (CICE); WAVEWATCH III™; and land - NAVGEM Land Surface Model (LSM). Data assimilation is currently loosely coupled between the atmosphere component using a 6-hour update cycle in the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR) and the ocean/ice components using a 24-hour update cycle in the Navy Coupled Ocean Data Assimilation (NCODA) with 3 hours of incremental updating. This presentation will describe the US Navy's coupled forecast model, the loosely coupled data assimilation, and compare results against stand-alone atmosphere and ocean/ice models. In particular, we will focus on the unique aspects of this modeling system, which includes an eddy resolving ocean model and challenges associated with different update-windows and solvers for the data assimilation in the atmosphere and ocean. Results will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled system is performing with comparable skill to the stand-alone systems.
Implementing the Mars Science Laboratory Terminal Descent Sensor Field Test Campaign
NASA Technical Reports Server (NTRS)
Montgomery, James F.; Bodie, James H.; Brown, Joseph D.; Chen, Allen; Chen, Curtis W.; Essmiller, John C.; Fisher, Charles D.; Goldberg, Hannah R.; Lee, Steven W.; Shaffer, Scott J.
2012-01-01
The Mars Science Laboratory (MSL) will deliver a 900 kg rover to the surface of Mars in August 2012. MSL will utilize a new pulse-Doppler landing radar, the Terminal Descent Sensor (TDS). The TDS employs six narrow-beam antennas to provide unprecedented slant range and velocity performance at Mars to enable soft touchdown of the MSL rover using a unique sky crane Entry, De-scent, and Landing (EDL) technique. Prior to use on MSL, the TDS was put through a rigorous verification and validation (V&V) process. A key element of this V&V was operating the TDS over a series of field tests, using flight-like profiles expected during the descent and landing of MSL over Mars-like terrain on Earth. Limits of TDS performance were characterized with additional testing meant to stress operational modes outside of the expected EDL flight profiles. The flight envelope over which the TDS must operate on Mars encompasses such a large range of altitudes and velocities that a variety of venues were neces-sary to cover the test space. These venues included an F/A-18 high performance aircraft, a Eurocopter AS350 AStar helicopter and 100-meter tall Echo Towers at the China Lake Naval Air Warfare Center. Testing was carried out over a five year period from July 2006 to June 2011. TDS performance was shown, in gen-eral, to be excellent over all venues. This paper describes the planning, design, and implementation of the field test campaign plus results and lessons learned.
NASA Technical Reports Server (NTRS)
Hirsch, Annette L.; Kala, Jatin; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Haverd, Vanessa; Mocko, David
2014-01-01
The authors use a sophisticated coupled land-atmosphere modeling system for a Southern Hemisphere subdomain centered over southeastern Australia to evaluate differences in simulation skill from two different land surface initialization approaches. The first approach uses equilibrated land surface states obtained from offline simulations of the land surface model, and the second uses land surface states obtained from reanalyses. The authors find that land surface initialization using prior offline simulations contribute to relative gains in subseasonal forecast skill. In particular, relative gains in forecast skill for temperature of 10%-20% within the first 30 days of the forecast can be attributed to the land surface initialization method using offline states. For precipitation there is no distinct preference for the land surface initialization method, with limited gains in forecast skill irrespective of the lead time. The authors evaluated the asymmetry between maximum and minimum temperatures and found that maximum temperatures had the largest gains in relative forecast skill, exceeding 20% in some regions. These results were statistically significant at the 98% confidence level at up to 60 days into the forecast period. For minimum temperature, using reanalyses to initialize the land surface contributed to relative gains in forecast skill, reaching 40% in parts of the domain that were statistically significant at the 98% confidence level. The contrasting impact of the land surface initialization method between maximum and minimum temperature was associated with different soil moisture coupling mechanisms. Therefore, land surface initialization from prior offline simulations does improve predictability for temperature, particularly maximum temperature, but with less obvious improvements for precipitation and minimum temperature over southeastern Australia.
Impact of Land Model Calibration on Coupled Land-Atmosphere Prediction
NASA Technical Reports Server (NTRS)
Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Harrison, Ken; Zhou, Shujia
2012-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry and wet land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through calibration of the Noah land surface model using the new optimization and uncertainty estimation subsystem in NASA's Land Information System (LIS-OPT/UE). The impact of the calibration on the a) spinup of the land surface used as initial conditions, and b) the simulated heat and moisture states and fluxes of the coupled WRF simulations is then assessed. Changes in ambient weather and land-atmosphere coupling are evaluated along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Results indicate that the offline calibration leads to systematic improvements in land-PBL fluxes and near-surface temperature and humidity, and in the process provide guidance on the questions of what, how, and when to calibrate land surface models for coupled model prediction.
The Urban Heat Island Impact in Consideration of Spatial Pattern of Urban Landscape and Structure
NASA Astrophysics Data System (ADS)
Kim, J.; Lee, D. K.; Jeong, W.; Sung, S.; Park, J.
2015-12-01
Preceding study has established a clear relationship between land surface temperature and area of land covers. However, only few studies have specifically examined the effects of spatial patterns of land covers and urban structure. To examine how much the local climate is affected by the spatial pattern in highly urbanized city, we investigated the correlation between land surface temperature and spatial patterns of land covers. In the analysis of correlation, we categorized urban structure to four different land uses: Apartment residential area, low rise residential area, industrial area and central business district. Through this study, we aims to examine the types of residential structure and land cover pattern for reducing urban heat island and sustainable development. Based on land surface temperature, we investigated the phenomenon of urban heat island through using the data of remote sensing. This study focused on Daegu in Korea. This city, one of the hottest city in Korea has basin form. We used high-resolution land cover data and land surface temperature by using Landsat8 satellite image to examine 100 randomly selected sample sites of 884.15km2 (1)In each land use, we quantified several landscape-levels and class-level landscape metrics for the sample study sites. (2)In addition, we measured the land surface temperature in 3 year hot summer seasons (July to September). Then, we investigated the pattern of land surface temperature for each land use through Ecognition package. (3)We deducted the Pearson correlation coefficients between land surface temperature and each landscape metrics. (4)We analyzed the variance among the four land uses. (5)Using linear regression, we determined land surface temperature model for each land use. (6)Through this analysis, we aims to examine the best pattern of land cover and artificial structure for reducing urban heat island effect in highly urbanized city. The results of linear regression showed that proportional land cover of grass, tree, water and impervious surfaces well explained the temperature in apartment residential areas. In contrast, the changes in the pattern of water, grass, tree and impervious surfaces were the best to determine the temperature in low rise residential area, central business district and industrial area.
Research on Geometric Calibration of Spaceborne Linear Array Whiskbroom Camera
Sheng, Qinghong; Wang, Qi; Xiao, Hui; Wang, Qing
2018-01-01
The geometric calibration of a spaceborne thermal-infrared camera with a high spatial resolution and wide coverage can set benchmarks for providing an accurate geographical coordinate for the retrieval of land surface temperature. The practice of using linear array whiskbroom Charge-Coupled Device (CCD) arrays to image the Earth can help get thermal-infrared images of a large breadth with high spatial resolutions. Focusing on the whiskbroom characteristics of equal time intervals and unequal angles, the present study proposes a spaceborne linear-array-scanning imaging geometric model, whilst calibrating temporal system parameters and whiskbroom angle parameters. With the help of the YG-14—China’s first satellite equipped with thermal-infrared cameras of high spatial resolution—China’s Anyang Imaging and Taiyuan Imaging are used to conduct an experiment of geometric calibration and a verification test, respectively. Results have shown that the plane positioning accuracy without ground control points (GCPs) is better than 30 pixels and the plane positioning accuracy with GCPs is better than 1 pixel. PMID:29337885
Satellite-Sensor Calibration Verification Using the Cloud-Shadow Method
NASA Technical Reports Server (NTRS)
Reinersman, P.; Carder, K. L.; Chen, F. R.
1995-01-01
An atmospheric-correction method which uses cloud-shaded pixels together with pixels in a neighboring region of similar optical properties is described. This cloud-shadow method uses the difference between the total radiance values observed at the sensor for these two regions, thus removing the nearly identical atmospheric radiance contributions to the two signals (e.g. path radiance and Fresnel-reflected skylight). What remains is largely due to solar photons backscattered from beneath the sea to dominate the residual signal. Normalization by the direct solar irradiance reaching the sea surface and correction for some second-order effects provides the remote-sensing reflectance of the ocean at the location of the neighbor region, providing a known 'ground target' spectrum for use in testing the calibration of the sensor. A similar approach may be useful for land targets if horizontal homogeneity of scene reflectance exists about the shadow. Monte Carlo calculations have been used to correct for adjacency effects and to estimate the differences in the skylight reaching the shadowed and neighbor pixels.
High-speed autoverifying technology for printed wiring boards
NASA Astrophysics Data System (ADS)
Ando, Moritoshi; Oka, Hiroshi; Okada, Hideo; Sakashita, Yorihiro; Shibutani, Nobumi
1996-10-01
We have developed an automated pattern verification technique. The output of an automated optical inspection system contains many false alarms. Verification is needed to distinguish between minor irregularities and serious defects. In the past, this verification was usually done manually, which led to unsatisfactory product quality. The goal of our new automated verification system is to detect pattern features on surface mount technology boards. In our system, we employ a new illumination method, which uses multiple colors and multiple direction illumination. Images are captured with a CCD camera. We have developed a new algorithm that uses CAD data for both pattern matching and pattern structure determination. This helps to search for patterns around a defect and to examine defect definition rules. These are processed with a high speed workstation and a hard-wired circuits. The system can verify a defect within 1.5 seconds. The verification system was tested in a factory. It verified 1,500 defective samples and detected all significant defects with only a 0.1 percent of error rate (false alarm).
Consequences of land-cover misclassification in models of impervious surface
McMahon, G.
2007-01-01
Model estimates of impervious area as a function of landcover area may be biased and imprecise because of errors in the land-cover classification. This investigation of the effects of land-cover misclassification on impervious surface models that use National Land Cover Data (NLCD) evaluates the consequences of adjusting land-cover within a watershed to reflect uncertainty assessment information. Model validation results indicate that using error-matrix information to adjust land-cover values used in impervious surface models does not substantially improve impervious surface predictions. Validation results indicate that the resolution of the landcover data (Level I and Level II) is more important in predicting impervious surface accurately than whether the land-cover data have been adjusted using information in the error matrix. Level I NLCD, adjusted for land-cover misclassification, is preferable to the other land-cover options for use in models of impervious surface. This result is tied to the lower classification error rates for the Level I NLCD. ?? 2007 American Society for Photogrammetry and Remote Sensing.
Data requirements for verification of ram glow chemistry
NASA Technical Reports Server (NTRS)
Swenson, G. R.; Mende, S. B.
1985-01-01
A set of questions is posed regarding the surface chemistry producing the ram glow on the space shuttle. The questions surround verification of the chemical cycle involved in the physical processes leading to the glow. The questions, and a matrix of measurements required for most answers, are presented. The measurements include knowledge of the flux composition to and from a ram surface as well as spectroscopic signatures from the U to visible to IR. A pallet set of experiments proposed to accomplish the measurements is discussed. An interim experiment involving an available infrared instrument to be operated from the shuttle Orbiter cabin is also be discussed.
NASA Technical Reports Server (NTRS)
Peters-Lidar, Christa D.; Tian, Yudong; Kenneth, Tian; Harrison, Kenneth; Kumar, Sujay
2011-01-01
Land surface modeling and data assimilation can provide dynamic land surface state variables necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in the Global Precipitation Measurement Mission (GPM), is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. In order to investigate the robustness of both the land surface model states and the microwave emissivity and forward radiative transfer models, we have undertaken a multi-site investigation as part of the NASA Precipitation Measurement Missions (PMM) Land Surface Characterization Working Group. Specifically, we will demonstrate the performance of the Land Information System (LIS; http://lis.gsfc.nasa.gov; Peters-Lidard et aI., 2007; Kumar et al., 2006) coupled to the Joint Center for Satellite Data Assimilation (JCSDA's) Community Radiative Transfer Model (CRTM; Weng, 2007; van Deist, 2009). The land surface is characterized by complex physical/chemical constituents and creates temporally and spatially heterogeneous surface properties in response to microwave radiation scattering. The uncertainties in surface microwave emission (both surface radiative temperature and emissivity) and very low polarization ratio are linked to difficulties in rainfall detection using low-frequency passive microwave sensors (e.g.,Kummerow et al. 2001). Therefore, addressing these issues is of utmost importance for the GPM mission. There are many approaches to parameterizing land surface emission and radiative transfer, some of which have been customized for snow (e.g., the Helsinki University of Technology or HUT radiative transfer model;) and soil moisture (e.g., the Land Surface Microwave Emission Model or LSMEM).
NASA Data for Water Resources Applications
NASA Technical Reports Server (NTRS)
Toll, David; Houser, Paul; Arsenault, Kristi; Entin, Jared
2004-01-01
Water Management Applications is one of twelve elements in the Earth Science Enterprise National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1) estimating water storage including snowpack and soil moisture, 2) modeling and predicting water fluxes such as evapotranspiration (ET), precipitation and river runoff, and 3) remote sensing of water quality, including both point source (e.g., turbidity and productivity) and non-point source (e.g., land cover conversion such as forest to agriculture yielding higher nutrient runoff). The objectives of the partnering cover three steps of: 1) Evaluation, 2) Verification and Validation, and 3) Benchmark Report. We are working with the U.S. federal agencies including the Environmental Protection Agency (EPA), the Bureau of Reclamation (USBR) and the Department of Agriculture (USDA). We are using several of their Decision Support Systems (DSS) tools. This includes the DSS support tools BASINS used by EPA, Riverware and AWARDS ET ToolBox by USBR and SWAT by USDA and EPA. Regional application sites using NASA data across the US. are currently being eliminated for the DSS tools. The current NASA data emphasized thus far are from the Land Data Assimilation Systems WAS) and MODIS satellite products. We are currently in the first two steps of evaluation and verification validation. Water Management Applications is one of twelve elements in the Earth Science Enterprise s National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1) estimating water storage including snowpack and soil moisture, 2) modeling and predicting water fluxes such as evapotranspiration (ET), precipitation and river runoff, and 3) remote sensing of water quality, including both point source (e.g., turbidity and productivity) and non-point source (e.g., land cover conversion such as forest to agriculture yielding higher nutrient runoff). The objectives of the partnering cover three steps of 1) Evaluation, 2) Verification and Validation, and 3) Benchmark Report. We are working with the U.S. federal agencies the Environmental Protection Agency (EPA), the Bureau of Reclamation (USBR) and the Department of Agriculture (USDA). We are using several of their Decision Support Systems (DSS) tools. T us includes the DSS support tools BASINS used by EPA, Riverware and AWARDS ET ToolBox by USBR and SWAT by USDA and EPA. Regional application sites using NASA data across the US. are currently being evaluated for the DSS tools. The current NASA data emphasized thus far are from the Land Data Assimilation Systems (LDAS) and MODIS satellite products. We are currently in the first two steps of evaluation and verification and validation.
Sensitivity of Land Surface Parameters on Thunderstorm Simulation through HRLDAS-WRF Coupling Mode
NASA Astrophysics Data System (ADS)
Kumar, Dinesh; Kumar, Krishan; Mohanty, U. C.; Kisore Osuri, Krishna
2016-07-01
Land surface characteristics play an important role in large scale, regional and mesoscale atmospheric process. Representation of land surface characteristics can be improved through coupling of mesoscale atmospheric models with land surface models. Mesoscale atmospheric models depend on Land Surface Models (LSM) to provide land surface variables such as fluxes of heat, moisture, and momentum for lower boundary layer evolution. Studies have shown that land surface properties such as soil moisture, soil temperature, soil roughness, vegetation cover, have considerable effect on lower boundary layer. Although, the necessity to initialize soil moisture accurately in NWP models is widely acknowledged, monitoring soil moisture at regional and global scale is a very tough task due to high spatial and temporal variability. As a result, the available observation network is unable to provide the required spatial and temporal data for the most part of the globe. Therefore, model for land surface initializations rely on updated land surface properties from LSM. The solution for NWP land-state initialization can be found by combining data assimilation techniques, satellite-derived soil data, and land surface models. Further, it requires an intermediate step to use observed rainfall, satellite derived surface insolation, and meteorological analyses to run an uncoupled (offline) integration of LSM, so that the evolution of modeled soil moisture can be forced by observed forcing conditions. Therefore, for accurate land-state initialization, high resolution land data assimilation system (HRLDAS) is used to provide the essential land surface parameters. Offline-coupling of HRLDAS-WRF has shown much improved results over Delhi, India for four thunder storm events. The evolution of land surface variables particularly soil moisture, soil temperature and surface fluxes have provided more realistic condition. Results have shown that most of domain part became wetter and warmer after assimilation of soil moisture and soil temperature at the initial condition which helped to improve the exchange fluxes at lower atmospheric level. Mixing ratio were increased along with elevated theta-e at lower level giving a signature of improvement in LDAS experiment leading to a suitable condition for convection. In the analysis, moisture convergence, mixing ratio and vertical velocities have improved significantly in terms of intensity and time lag. Surface variables like soil moisture, soil temperature, sensible heat flux and latent heat flux have progressed in a possible realistic pattern. Above discussion suggests that assimilation of soil moisture and soil temperature improves the overall simulations significantly.
Impacts of land cover transitions on surface temperature in China based on satellite observations
NASA Astrophysics Data System (ADS)
Zhang, Yuzhen; Liang, Shunlin
2018-02-01
China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short-term analysis of land cover transitions in China means our estimates should represent local temperature effects. Changes in ET and albedo explained <60% of the variation in LST change caused by land cover transitions; thus, additional factors that affect surface climate need consideration in future studies.
Trojanowicz, Karol; Wójcik, Włodzimierz
2011-01-01
The article presents a case-study on the calibration and verification of mathematical models of organic carbon removal kinetics in biofilm. The chosen Harremöes and Wanner & Reichert models were calibrated with a set of model parameters obtained both during dedicated studies conducted at pilot- and lab-scales for petrochemical wastewater conditions and from the literature. Next, the models were successfully verified through studies carried out utilizing a pilot ASFBBR type bioreactor installed in an oil-refinery wastewater treatment plant. During verification the pilot biofilm reactor worked under varying surface organic loading rates (SOL), dissolved oxygen concentrations and temperatures. The verification proved that the models can be applied in practice to petrochemical wastewater treatment engineering for e.g. biofilm bioreactor dimensioning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
This report presents the results of instrumentation measurements and observations made during construction of the North Ramp Starter Tunnel (NRST) of the Exploratory Studies Facility (ESF). The information in this report was developed as part of the Design Verification Study, Section 8.3.1.15.1.8 of the Yucca Mountain Site Characterization Plan (DOE 1988). The ESF is being constructed by the US Department of Energy (DOE) to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. The Design Verification Studies are performed to collect information during constructionmore » of the ESF that will be useful for design and construction of the potential repository. Four experiments make up the Design Verification Study: Evaluation of Mining Methods, Monitoring Drift Stability, Monitoring of Ground Support Systems, and The Air Quality and Ventilation Experiment. This report describes Sandia National Laboratories` (SNL) efforts in the first three of these experiments in the NRST.« less
NASA Astrophysics Data System (ADS)
Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin
2014-05-01
As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.
Schaffranek, Raymond W.
2004-01-01
A numerical model for simulation of surface-water integrated flow and transport in two (horizontal-space) dimensions is documented. The model solves vertically integrated forms of the equations of mass and momentum conservation and solute transport equations for heat, salt, and constituent fluxes. An equation of state for salt balance directly couples solution of the hydrodynamic and transport equations to account for the horizontal density gradient effects of salt concentrations on flow. The model can be used to simulate the hydrodynamics, transport, and water quality of well-mixed bodies of water, such as estuaries, coastal seas, harbors, lakes, rivers, and inland waterways. The finite-difference model can be applied to geographical areas bounded by any combination of closed land or open water boundaries. The simulation program accounts for sources of internal discharges (such as tributary rivers or hydraulic outfalls), tidal flats, islands, dams, and movable flow barriers or sluices. Water-quality computations can treat reactive and (or) conservative constituents simultaneously. Input requirements include bathymetric and topographic data defining land-surface elevations, time-varying water level or flow conditions at open boundaries, and hydraulic coefficients. Optional input includes the geometry of hydraulic barriers and constituent concentrations at open boundaries. Time-dependent water level, flow, and constituent-concentration data are required for model calibration and verification. Model output consists of printed reports and digital files of numerical results in forms suitable for postprocessing by graphical software programs and (or) scientific visualization packages. The model is compatible with most mainframe, workstation, mini- and micro-computer operating systems and FORTRAN compilers. This report defines the mathematical formulation and computational features of the model, explains the solution technique and related model constraints, describes the model framework, documents the type and format of inputs required, and identifies the type and format of output available.
NASA Technical Reports Server (NTRS)
1976-01-01
System specifications to be used by the mission control center (MCC) for the shuttle orbital flight test (OFT) time frame were described. The three support systems discussed are the communication interface system (CIS), the data computation complex (DCC), and the display and control system (DCS), all of which may interfere with, and share processing facilities with other applications processing supporting current MCC programs. The MCC shall provide centralized control of the space shuttle OFT from launch through orbital flight, entry, and landing until the Orbiter comes to a stop on the runway. This control shall include the functions of vehicle management in the area of hardware configuration (verification), flight planning, communication and instrumentation configuration management, trajectory, software and consumables, payloads management, flight safety, and verification of test conditions/environment.
New Versions of MISR Aerosol and Land Surface Products Available
Atmospheric Science Data Center
2018-02-14
New Versions of MISR Aerosol and Land Surface Products Available Monday, February 12, ... the release of new versions of the MISR Level 2 (L2) Aerosol Product, the MISR L2 Land Surface Product, and the Level 3 (L3) Component Global Aerosol and Land Surface Products. The new MISR L2 Aerosol Product ...
Satellite detection of oil on the marine surface
NASA Technical Reports Server (NTRS)
Wilson, M. J.; Oneill, P. E.; Estes, J. E.
1981-01-01
The ability of two widely dissimilar spaceborne imaging sensors to detect surface oil accumulations in the marine environment has been evaluated using broadly different techniques. Digital Landsat multispectral scanner (MSS) data consisting of two visible and two near infrared channels has been processed to enhance contrast between areas of known oil coverage and background clean surface water. These enhanced images have then been compared to surface verification data gathered by aerial reconnaissance during the October 15, 1975, Landsat overpass. A similar evaluation of oil slick imaging potential has been made for digitally enhanced Seasat-A synthetic aperture radar (SAR) data from July 18, 1979. Due to the premature failure of this satellite, however, no concurrent surface verification data were collected. As a substitute, oil slick configuration information has been generated for the comparison using meteorological and oceanographic data. The test site utilized in both studies was the extensive area of natural seepage located off Coal Oil Point, adjacent to the University of California, Santa Barbara.
NASA Astrophysics Data System (ADS)
Shao, Yaping; Liu, Shaofeng; Schween, Jan H.; Crewell, Susanne
2013-08-01
A model is developed for the large-eddy simulation (LES) of heterogeneous atmosphere and land-surface processes. This couples a LES model with a land-surface scheme. New developments are made to the land-surface scheme to ensure the adequate representation of atmosphere-land-surface transfers on the large-eddy scale. These include, (1) a multi-layer canopy scheme; (2) a method for flux estimates consistent with the large-eddy subgrid closure; and (3) an appropriate soil-layer configuration. The model is then applied to a heterogeneous region with 60-m horizontal resolution and the results are compared with ground-based and airborne measurements. The simulated sensible and latent heat fluxes are found to agree well with the eddy-correlation measurements. Good agreement is also found in the modelled and observed net radiation, ground heat flux, soil temperature and moisture. Based on the model results, we study the patterns of the sensible and latent heat fluxes, how such patterns come into existence, and how large eddies propagate and destroy land-surface signals in the atmosphere. Near the surface, the flux and land-use patterns are found to be closely correlated. In the lower boundary layer, small eddies bearing land-surface signals organize and develop into larger eddies, which carry the signals to considerably higher levels. As a result, the instantaneous flux patterns appear to be unrelated to the land-use patterns, but on average, the correlation between them is significant and persistent up to about 650 m. For a given land-surface type, the scatter of the fluxes amounts to several hundred W { m }^{-2}, due to (1) large-eddy randomness; (2) rapid large-eddy and surface feedback; and (3) local advection related to surface heterogeneity.
40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... than 1 year. (2) Identification of potential surface leakage pathways for CO2 in the maximum monitoring area and the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways. (3) A...
40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... than 1 year. (2) Identification of potential surface leakage pathways for CO2 in the maximum monitoring area and the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways. (3) A...
NASA Technical Reports Server (NTRS)
Blankenship, Clay B.; Crosson, William L.; Case, Jonathan L.; Hale, Robert
2010-01-01
Improve simulations of soil moisture/temperature, and consequently boundary layer states and processes, by assimilating AMSR-E soil moisture estimates into a coupled land surface-mesoscale model Provide a new land surface model as an option in the Land Information System (LIS)
The greenhouse theory of climate change - A test by an inadvertent global experiment
NASA Technical Reports Server (NTRS)
Ramanathan, V.
1988-01-01
The greenhouse theory of climate change has reached the crucial stage of verification. Surface warming as large as that predicted by models would be unprecedented during an interglacial period such as the present. The theory, its scope for verification, and the emerging complexities of the climate feedback mechanisms are discussed in this paper. The evidence for change is described and competing nonclimatic forcings are discussed.
GAO’s 2011 High-Risk Series: An Update
2011-02-17
DOD Contract Management • DOE’s Contract Management for the National Nuclear Security Administration and Office of Environmental Management • NASA ...expertise to prevent. Historically, Interior’s Bureau of Land Management ( BLM ) managed onshore federal oil and gas activities, while the Minerals Management...neither BLM nor MMS had consistently met their statutory requirements or agency goals for oil and gas production verification inspections. Without such
Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun
2017-01-01
Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507
Unexpectedly large impact of forest management and grazing on global vegetation biomass
NASA Astrophysics Data System (ADS)
Erb, Karl-Heinz; Kastner, Thomas; Plutzar, Christoph; Bais, Anna Liza S.; Carvalhais, Nuno; Fetzel, Tamara; Gingrich, Simone; Haberl, Helmut; Lauk, Christian; Niedertscheider, Maria; Pongratz, Julia; Thurner, Martin; Luyssaert, Sebastiaan
2018-01-01
Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.
Unexpectedly large impact of forest management and grazing on global vegetation biomass.
Erb, Karl-Heinz; Kastner, Thomas; Plutzar, Christoph; Bais, Anna Liza S; Carvalhais, Nuno; Fetzel, Tamara; Gingrich, Simone; Haberl, Helmut; Lauk, Christian; Niedertscheider, Maria; Pongratz, Julia; Thurner, Martin; Luyssaert, Sebastiaan
2018-01-04
Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.
Unexpectedly large impact of forest management and grazing on global vegetation biomass
Erb, K.-H.; Bais, A.L.S.; Carvalhais, N.; Fetzel, T.; Gingrich, S.; Haberl, H.; Lauk, C.; Niedertscheider, M.; Pongratz, J.; Thurner, M.; Luyssaert, S.
2017-01-01
Carbon stocks in vegetation play a key role in the climate system1–4, but their magnitude and patterns, their uncertainties, and the impact of land use on them remain poorly quantified. Based on a consistent integration of state-of-the art datasets, we show that vegetation currently stores ~450 PgC. In the hypothetical absence of land use, potential vegetation would store ~916 PgC, under current climate. This difference singles out the massive effect land use has on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects, i.e. land-use induced biomass stock changes within the same land cover, contribute 42-47% but are underappreciated in the current literature. Avoiding deforestation hence is necessary but not sufficient for climate-change mitigation. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for climate change mitigation. Efforts to raise biomass stocks are currently only verifiable in temperate forests, where potentials are limited. In contrast, large uncertainties hamper verification in the tropical forest where the largest potentials are located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement. PMID:29258288
Effect of water table dynamics on land surface hydrologic memory
NASA Astrophysics Data System (ADS)
Lo, Min-Hui; Famiglietti, James S.
2010-11-01
The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.
Effects of Topography-based Subgrid Structures on Land Surface Modeling
NASA Astrophysics Data System (ADS)
Tesfa, T. K.; Ruby, L.; Brunke, M.; Thornton, P. E.; Zeng, X.; Ghan, S. J.
2017-12-01
Topography has major control on land surface processes through its influence on atmospheric forcing, soil and vegetation properties, network topology and drainage area. Consequently, accurate climate and land surface simulations in mountainous regions cannot be achieved without considering the effects of topographic spatial heterogeneity. To test a computationally less expensive hyper-resolution land surface modeling approach, we developed topography-based landunits within a hierarchical subgrid spatial structure to improve representation of land surface processes in the ACME Land Model (ALM) with minimal increase in computational demand, while improving the ability to capture the spatial heterogeneity of atmospheric forcing and land cover influenced by topography. This study focuses on evaluation of the impacts of the new spatial structures on modeling land surface processes. As a first step, we compare ALM simulations with and without subgrid topography and driven by grid cell mean atmospheric forcing to isolate the impacts of the subgrid topography on the simulated land surface states and fluxes. Recognizing that subgrid topography also has important effects on atmospheric processes that control temperature, radiation, and precipitation, methods are being developed to downscale atmospheric forcings. Hence in the second step, the impacts of the subgrid topographic structure on land surface modeling will be evaluated by including spatial downscaling of the atmospheric forcings. Preliminary results on the atmospheric downscaling and the effects of the new spatial structures on the ALM simulations will be presented.
NASA Astrophysics Data System (ADS)
Saadatkhah, Nader; Mansor, Shattri; Khuzaimah, Zailani; Asmat, Arnis; Adnan, Noraizam; Adam, Siti Noradzah
2016-09-01
Changing the land cover/ land use has serious environmental impacts affecting the ecosystem in Malaysia. The impact of land cover changes on the environmental functions such as surface water, loss water, and soil moisture is considered in this paper on the Kelantan river basin. The study area at the east coast of the peninsular Malaysia has suffered significant land cover changes in the recent years. The current research tried to assess the impact of land cover changes in the study area focused on the surface water, loss water, and soil moisture from different land use classes and the potential impact of land cover changes on the ecosystem of Kelantan river basin. To simulate the impact of land cover changes on the environmental hydrology characteristics, a deterministic regional modeling were employed in this study based on five approaches, i.e. (1) Land cover classification based on Landsat images; (2) assessment of land cover changes during last three decades; (3) Calculation the rate of water Loss/ Infiltration; (4) Assessment of hydrological and mechanical effects of the land cover changes on the surface water; and (5) evaluation the impact of land cover changes on the ecosystem of the study area. Assessment of land cover impact on the environmental hydrology was computed with the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) based on the transient infiltration, and subsequently changes in the surface water, due to precipitation events. The results showed the direct increased in surface water from development area, agricultural area, and grassland regions compared with surface water from other land covered areas in the study area. The urban areas or lower planting density areas tend to increase for surface water during the monsoon seasons, whereas the inter flow from forested and secondary jungle areas contributes to the normal surface water.
Translation of Land Surface Model Accuracy and Uncertainty into Coupled Land-Atmosphere Prediction
NASA Technical Reports Server (NTRS)
Santanello, Joseph A.; Kumar, Sujay; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Zhou, Shuija
2012-01-01
Land-atmosphere (L-A) Interactions playa critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (US-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF Simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swart, Peter K.; Dixon, Tim
2014-09-30
A series of surface geophysical and geochemical techniques are tested in order to demonstrate and validate low cost approaches for Monitoring, Verification and Accounting (MVA) of the integrity of deep reservoirs for CO 2 storage. These techniques are (i) surface deformation by GPS; ii) surface deformation by InSAR; iii) passive source seismology via broad band seismometers; and iv) soil gas monitoring with a cavity ring down spectrometer for measurement of CO 2 concentration and carbon isotope ratio. The techniques were tested at an active EOR (Enhanced Oil Recovery) site in Texas. Each approach has demonstrated utility. Assuming Carbon Capture, Utilizationmore » and Storage (CCUS) activities become operational in the future, these techniques can be used to augment more expensive down-hole techniques.« less
Space Shuttle Orbiter Approach and Landing Test: Final Evaluation Report
NASA Technical Reports Server (NTRS)
1978-01-01
The Approach and Landing Test Program consisted of a series of steps leading to the demonstration of the capability of the Space Shuttle orbiter to safely approach and land under conditions similar to those planned for the final phases of an orbital flight. The tests were conducted with the orbiter mounted on top of a specially modified carrier aircraft. The first step provided airworthiness and performance verification of the carrier aircraft after modification. The second step consisted of three taxi tests and five flight tests with an inert unmanned orbiter. The third step consisted of three mated tests with an active manned orbiter. The fourth step consisted of five flights in which the orbiter was separated from the carrier aircraft. For the final two flights, the orbiter tail cone was replaced by dummy engines to simulate the actual orbital configuration. Landing gear braking and steering tests were accomplished during rollouts following the free flight landings. Ferry testing was integrated into the Approach and Landing Test Program to the extent possible. In addition, four ferry test flights were conducted with the orbiter mated to the carrier aircraft in the ferry configuration after the free-flight tests were completed.
Land Surface Data Assimilation
NASA Astrophysics Data System (ADS)
Houser, P. R.
2012-12-01
Information about land surface water, energy and carbon conditions is of critical importance to real-world applications such as agricultural production, water resource management, flood prediction, water supply, weather and climate forecasting, and environmental preservation. While ground-based observational networks are improving, the only practical way to observe these land surface states on continental to global scales is via satellites. Remote sensing can make spatially comprehensive measurements of various components of the terrestrial system, but it cannot provide information on the entire system (e.g. evaporation), and the observations represent only an instant in time. Land surface process models may be used to predict temporal and spatial terrestrial dynamics, but these predictions are often poor, due to model initialization, parameter and forcing, and physics errors. Therefore, an attractive prospect is to combine the strengths of land surface models and observations (and minimize the weaknesses) to provide a superior terrestrial state estimate. This is the goal of land surface data assimilation. Data Assimilation combines observations into a dynamical model, using the model's equations to provide time continuity and coupling between the estimated fields. Land surface data assimilation aims to utilize both our land surface process knowledge, as embodied in a land surface model, and information that can be gained from observations. Both model predictions and observations are imperfect and we wish to use both synergistically to obtain a more accurate result. Moreover, both contain different kinds of information, that when used together, provide an accuracy level that cannot be obtained individually. Model biases can be mitigated using a complementary calibration and parameterization process. Limited point measurements are often used to calibrate the model(s) and validate the assimilation results. This presentation will provide a brief background on land surface observation, modeling and data assimilation, followed by a discussion of various hydrologic data assimilation challenges, and finally conclude with several land surface data assimilation case studies.
NASA Astrophysics Data System (ADS)
Chou, H. K.; Ochoa-Tocachi, B. F.; Buytaert, W.
2017-12-01
Community land surface models such as JULES are increasingly used for hydrological assessment because of their state-of-the-art representation of land-surface processes. However, a major weakness of JULES and other land surface models is the limited number of land surface parameterizations that is available. Therefore, this study explores the use of data from a network of catchments under homogeneous land-use to generate parameter "libraries" to extent the land surface parameterizations of JULES. The network (called iMHEA) is part of a grassroots initiative to characterise the hydrological response of different Andean ecosystems, and collects data on streamflow, precipitation, and several weather variables at a high temporal resolution. The tropical Andes are a useful case study because of the complexity of meteorological and geographical conditions combined with extremely heterogeneous land-use that result in a wide range of hydrological responses. We then calibrated JULES for each land-use represented in the iMHEA dataset. For the individual land-use types, the results show improved simulations of streamflow when using the calibrated parameters with respect to default values. In particular, the partitioning between surface and subsurface flows can be improved. But also, on a regional scale, hydrological modelling was greatly benefitted from constraining parameters using such distributed citizen-science generated streamflow data. This study demonstrates the modelling and prediction on regional hydrology by integrating citizen science and land surface model. In the context of hydrological study, the limitation of data scarcity could be solved indeed by using this framework. Improved predictions of such impacts could be leveraged by catchment managers to guide watershed interventions, to evaluate their effectiveness, and to minimize risks.
USDA-ARS?s Scientific Manuscript database
Observations of land surface temperature (LST) are crucial for the monitoring of surface energy fluxes from satellite. Methods that require high temporal resolution LST observations (e.g., from geostationary orbit) can be difficult to apply globally because several geostationary sensors are required...
We have developed a coupled land-surface and dry deposition model for realistic treatment of surface fluxes of heat, moisture, and chemical dry deposition within a comprehensive air quality modeling system. A new land-surface model (LSM) with explicit treatment of soil moisture...
Climate and the equilibrium state of land surface hydrology parameterizations
NASA Technical Reports Server (NTRS)
Entekhabi, Dara; Eagleson, Peter S.
1991-01-01
For given climatic rates of precipitation and potential evaporation, the land surface hydrology parameterizations of atmospheric general circulation models will maintain soil-water storage conditions that balance the moisture input and output. The surface relative soil saturation for such climatic conditions serves as a measure of the land surface parameterization state under a given forcing. The equilibrium value of this variable for alternate parameterizations of land surface hydrology are determined as a function of climate and the sensitivity of the surface to shifts and changes in climatic forcing are estimated.
Multi-temporal analysis of land surface temperature in highly urbanized districts
NASA Astrophysics Data System (ADS)
Kaya, S.; Celik, B.; Sertel, E.; Bayram, B.; Seker, D. Z.
2017-12-01
Istanbul is one of the largest cities around the world with population over 15 million and it has 39 districts. Due to high immigration rate after the 1980s, parallel to the urbanization rapid population increase has occurred in some of these districts. Thus, a significant increase in land surface temperature were monitored and this subject became one of the most popular subject of different researches. Natural landscapes transformed into residential areas with impervious surfaces that causes rise in land surface temperatures which is one of the component of urban heat islands. This study focuses on determining the land use/land cover changes and land surface temperature in highly urbanized districts for last 32 years and examining the relationship between these two parameters using multi-temporal optical and thermal remotely sensed data. In this study, Landsat5 Thematic Mapper and Landsat8 OLI/TIR imagery with acquisition dates June 1984 and June 2016 were used. In order to assess the land use/cover change between 1984 and 2016, Vegetation Impervious Surface-soil (V-I-S) model is used. Each end-member spectra are extracted from ASTER spectral library. Additionally, V-I-S model, NDVI, NDBI and NDBaI indices have been derived for further investigation of land cover changes. The results of the study, presented that in the last 32 years, the amount of impervious surfaces substantially increased along with land surface temperatures.
Land Surface Precipitation and Hydrology in MERRA-2
NASA Technical Reports Server (NTRS)
Reichle, R.; Koster, R.; Draper, C.; Liu, Q.; Girotto, M.; Mahanama, S.; De Lannoy, G.; Partyka, G.
2017-01-01
The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), provides global, 1-hourly estimates of land surface conditions for 1980-present at 50-km resolution. Outside of the high latitudes, MERRA-2 uses observations-based precipitation data products to correct the precipitation falling on the land surface. This paper describes the precipitation correction method and evaluates the MERRA-2 land surface precipitation and hydrology. Compared to monthly GPCPv2.2 observations, the corrected MERRA-2 precipitation (M2CORR) is better than the precipitation generated by the atmospheric models within the cyclingMERRA-2 system and the earlier MERRA reanalysis. Compared to 3-hourlyTRMM observations, the M2CORR diurnal cycle has better amplitude but less realistic phasing than MERRA-2 model-generated precipitation. Because correcting the precipitation within the coupled atmosphere-land modeling system allows the MERRA-2 near-surface air temperature and humidity to respond to the improved precipitation forcing, MERRA-2 provides more self-consistent surface meteorological data than were available from the earlier, offline MERRA-Land reanalysis. Overall, MERRA-2 land hydrology estimates are better than those of MERRA-Land and MERRA. A comparison against GRACE satellite observations of terrestrial water storage demonstrates clear improvements in MERRA-2 over MERRA in South America and Africa but also reflects known errors in the observations used to correct the MERRA-2 precipitation. The MERRA-2 and MERRA-Land surface and root zone soil moisture skill vs. in situ measurements is slightly higher than that of ERA-Interim Land and higher than that of MERRA (significantly for surface soil moisture). Snow amounts from MERRA-2 have lower bias and correlate better against reference data than do those of MERRA-Land and MERRA, with MERRA-2 skill roughly matching that of ERA-Interim Land. Seasonal anomaly R values against naturalized stream flow measurements in the United States are, on balance, highest for MERRA-2 and ERA-Interim Land, somewhat lower for MERRA-Land, and lower still for MERRA.
NASA Technical Reports Server (NTRS)
Santanello, Joseph
2011-01-01
NASA's Land Information System (LIS; lis.gsfc.nasa.gov) is a flexible land surface modeling and data assimilation framework developed over the past decade with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. LIS features a high performance and flexible design, and operates on an ensemble of land surface models for extension over user-specified regional or global domains. The extensible interfaces of LIS allow the incorporation of new domains, land surface models (LSMs), land surface parameters, meteorological inputs, data assimilation and optimization algorithms. In addition, LIS has also been demonstrated for parameter estimation and uncertainty estimation, and has been coupled to the Weather Research and Forecasting (WRF) mesoscale model. A visiting fellowship is currently underway to implement JULES into LIS and to undertake some fundamental science on the feedbacks between the land surface and the atmosphere. An overview of the LIS system, features, and sample results will be presented in an effort to engage the community in the potential advantages of LIS-JULES for a range of applications. Ongoing efforts to develop a framework for diagnosing land-atmosphere coupling will also be presented using the suite of LSM and PBL schemes available in LIS and WRF along with observations from the U. S .. Southern Great Plains. This methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate coupling diagnostics within the community.
NASA Astrophysics Data System (ADS)
Ghilain, N.; Arboleda, A.; Gellens-Meulenberghs, F.
2009-04-01
For water and agricultural management, there is an increasing demand to monitor the soil water status and the land evapotranspiration. In the framework of the LSA-SAF project (http://landsaf.meteo.pt), we are developing an energy balance model forced by remote sensing products, i.e. radiation components and vegetation parameters, to monitor in quasi real-time the evapotranspiration rate over land (Gellens-Meulenberghs et al, 2007; Ghilain et al, 2008). The model is applied over the full MSG disk, i.e. including Europe and Africa. Meteorological forcing, as well as the soil moisture status, is provided by the forecasts of the ECMWF model. Since soil moisture is computed by a forecast model not dedicated to the monitoring of the soil water status, inadequate soil moisture input can occur, and can cause large effects on evapotranspiration rates, especially over semi-arid or arid regions. In these regions, a remotely sensed-based method for the soil moisture retrieval can therefore be preferable, to avoid too strong dependency in ECMWF model estimates. Among different strategies, remote sensing offers the advantage of monitoring large areas. Empirical methods of soil moisture assessment exist using remotely sensed derived variables either from the microwave bands or from the thermal bands. Mainly polar orbiters are used for this purpose, and little attention has been paid to the new possibilities offered by geosynchronous satellites. In this contribution, images of the SEVIRI instrument on board of MSG geosynchronous satellites are used. Dedicated operational algorithms were developed for the LSA-SAF project and now deliver images of land surface temperature (LST) every 15-minutes (Trigo et al, 2008) and vegetations indices (leaf area index, LAI; fraction of vegetation cover, FVC; fraction of absorbed photosynthetically active radiation, FAPAR) every day (Garcia-Haro et al, 2005) over Africa and Europe. One advantage of using products derived from geostationary satellites is the close monitoring of the diurnal variation of the land surface temperature. This feature reinforced the statistical strength of empirical methods. An empirical method linking land surface morning heating rates and the fraction of the vegetation cover, also known as a ‘Triangle method' (Gillies et al, 1997) is examined. This method is expected to provide an estimation of a root-zone soil moisture index. The sensitivity of the method to wind speed, soil type, vegetation type and climatic region is explored. Moreover, the impact of the uncertainty of LST and FVC on the resulting soil moisture estimates is assessed. A first impact study of using remotely sensed soil moisture index in the energy balance model is shown and its potential benefits for operational monitoring of evapotranspiration are outlined. References García-Haro, F.J., F. Camacho-de Coca, J. Meliá, B. Martínez (2005) Operational derivation of vegetation products in the framework of the LSA SAF project. Proceedings of the EUMETSAT Meteorological Satellite Conference Dubrovnik (Croatia) 19-23 Septembre. Gellens-Meulenberghs, F., Arboleda, A., Ghilain, N. (2007) Towards a continuous monitoring of evapotranspiration based on MSG data. Proceedings of the symposium on Remote Sensing for Environmental Monitoring and Change Detection. IAHS series. IUGG, Perugia, Italy, July 2007, 7 pp. Ghilain, N., Arboleda, A. and Gellens-Meulenberghs, F., (2008) Improvement of a surface energy balance model by the use of MSG-SEVIRI derived vegetation parameters. Proceedings of the 2008 EUMETSAT meteorological satellite data user's conference, Darmstadt, Germany, 8th-12th September, 7 pp. Gillies R.R., Carlson T.N., Cui J., Kustas W.P. and Humes K. (1997), Verification of the triangle method for obtaining surface soil water content and energy fluxes from remote measurements of Normalized Difference Vegetation Index (NDVI) and surface radiant temperature, International Journal of Remote Sensing, 18, pp. 3145-3166. Trigo, I.F., Monteiro I.T., Olesen F. and Kabsch E. (2008) An assessment of remotely sensed land surface temperature. Journal of Geophysical Research, 113, D17108, doi:10.1029/2008JD010035.
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Yang, Runhua; Houser, Paul R.
1998-01-01
Land surface hydrology for the Off-line Land-surface GEOS Analysis (OLGA) system and Goddard Earth Observing System (GEOS-1) Data Assimilation System (DAS) has been examined using a river routing model. The GEOS-1 DAS land-surface parameterization is very simple, using an energy balance prediction of surface temperature and prescribed soil water. OLGA uses near-surface atmospheric data from the GEOS-1 DAS to drive a more comprehensive parameterization of the land-surface physics. The two global systems are evaluated using a global river routing model. The river routing model uses climatologic surface runoff from each system to simulate the river discharge from global river basins, which can be compared to climatologic river discharge. Due to the soil hydrology, the OLGA system shows a general improvement in the simulation of river discharge compared to the GEOS-1 DAS. Snowmelt processes included in OLGA also have a positive effect on the annual cycle of river discharge and source runoff. Preliminary tests of a coupled land-atmosphere model indicate improvements to the hydrologic cycle compared to the uncoupled system. The river routing model has provided a useful tool in the evaluation of the GCM hydrologic cycle, and has helped quantify the influence of the more advanced land surface model.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employee Dave Sanborn (left) conducts a bond verification test on Thermal Protection System tiles installed on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.
Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery
NASA Astrophysics Data System (ADS)
Ma, W.; Ma, Y.; Hu, Z.; Su, Z.; Wang, J.; Ishikawa, H.
2011-05-01
Land surface heat fluxes are essential measures of the strengths of land-atmosphere interactions involving energy, heat and water. Correct parameterization of these fluxes in climate models is critical. Despite their importance, state-of-the-art observation techniques cannot provide representative areal averages of these fluxes comparable to the model grid. Alternative methods of estimation are thus required. These alternative approaches use (satellite) observables of the land surface conditions. In this study, the Surface Energy Balance System (SEBS) algorithm was evaluated in a cold and arid environment, using land surface parameters derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Field observations and estimates from SEBS were compared in terms of net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λE) over a heterogeneous land surface. As a case study, this methodology was applied to the experimental area of the Watershed Allied Telemetry Experimental Research (WATER) project, located on the mid-to-upstream sections of the Heihe River in northwest China. ASTER data acquired between 3 May and 4 June 2008, under clear-sky conditions were used to determine the surface fluxes. Ground-based measurements of land surface heat fluxes were compared with values derived from the ASTER data. The results show that the derived surface variables and the land surface heat fluxes furnished by SEBS in different months over the study area are in good agreement with the observed land surface status under the limited cases (some cases looks poor results). So SEBS can be used to estimate turbulent heat fluxes with acceptable accuracy in areas where there is partial vegetation cover in exceptive conditions. It is very important to perform calculations using ground-based observational data for parameterization in SEBS in the future. Nevertheless, the remote-sensing results can provide improved explanations of land surface fluxes over varying land coverage at greater spatial scales.
NASA Technical Reports Server (NTRS)
Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Harrison, Ken; Zhou, Shujia
2012-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (LIS-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.
Biochar for reducing GHG emissions in Norway: opportunities and barriers to implementation.
NASA Astrophysics Data System (ADS)
Rasse, Daniel; O'Toole, Adam; Joner, Erik; Borgen, Signe
2017-04-01
Norway has ratified the Paris Agreement with a target nationally determined contribution (NDC) of 40% reduction of greenhouse gas emissions by 2030, with the land sector (AFOLU) expected to contribute to this effort. Increased C sequestration in soil, as argued by the 4 per 1000 initiative, can provide C negative solutions towards reaching this goal. However, Norway has only 3% of its land surface that is cultivated, and management options are fairly limited because the major part is already under managed grasslands, which are assumed to be close to C saturation. By contrast, the country has ample forest resources, allowing Norway to report 25 Mt CO2-eq per year of net CO2 uptake by forest. In addition, the forest industry generates large amounts of unused residues, both at the processing plants but also left decaying on the forest floor. Because of the unique characteristics of the Norwegian land sector, the Norwegian Environment Agency reported as early as 2010 that biochar production for soil C storage had the largest potential for reducing GHG emissions through land-use measures. Although straw is a potential feedstock, the larger quantities of forest residues are a prime candidate for this purpose, as exemplified by our first experimental facility at a production farm, which is using wood chips as feedstock for biochar production. The highly controlled and subsidised Norwegian agriculture might offer a unique test case for implementing incentives that would support farmers for biochar-based C sequestration. However, multiple barriers remain, which mostly revolve around the complexity of finding the right implementation scheme (including price setting) in a changing landscape of competition for biomass (with e.g. bioethanol and direct combustion), methods of verification and variable co-benefits to the farmer. Here we will present some of these schemes, from on-farm biochar production to factories for biochar-compound fertilizers, and discuss barriers and opportunities towards implementation as a soil C sequestration measure.
Advanced Land Surface Processes in the Coupled WRF/CMAQ with MODIS Input
Land surface modeling (LSM) is important in WRF/CMAQ for simulating the exchange of heat, moisture, momentum, trace atmospheric chemicals, and windblown dust between the land surface and the atmosphere.? Vegetation and soil treatments are crucial in LSM for surface energy budgets...
Verification and Enhancement of VIIRS Day-Night Band (DNB) Power Outage Detection Product
NASA Technical Reports Server (NTRS)
Burke, Angela; Schultz, Lori A.; Omitaomu, Olufemi; Molthan, Andrew L.; Cole, Tony; Griffin, Robert
2017-01-01
This case study of Hurricane Matthew (October 2016) uses the NASA Short-Term Prediction Research and Transition (SPoRT) Center DNB power outage product (using GSFC VIIRS DNB preliminary Black Marble product, Roman et al.. 2017) and 2013 LandScan Global population data to look for correlations between the post-event %-of-normal radiance and the utility company-reported outage numbers (obtained from EAGLE-1).
Hayabusa: Navigation Challenges for Earth Return
NASA Technical Reports Server (NTRS)
Haw, Robert J.; Bhaskaran, S.; Strauss, W.; Sklyanskiy, E.; Graat, E. J.; Smith, J. J.; Menom, P.; Ardalan, S.; Ballard, C.; Williams, P.;
2011-01-01
Hayabusa was a JAXA sample-return mission to Itokawa navigated, in part, by JPL personnel. Hayabusa survived several near mission-ending failures at Itokawa yet returned to Earth with an asteroid regolith sample on June 13, 2010. This paper describes NASA/JPL's participation in the Hayabusa mission during the last 100 days of its mission, wherein JPL provided tracking data and orbit determination, plus verification of maneuver design and entry, descent and landing.
Wet countdown demonstration and flight readiness firing
NASA Technical Reports Server (NTRS)
1981-01-01
The prelaunch tests for the Space Transportation System 1 flight are briefly described. Testing is divided into two major sections: the wet countdown demonstration test/flight readiness firing, which includes a 20 second test firing of the orbiter's three main engines, and a mission verification test, which is centered on flight and landing operations. The functions of the countdown sequence are listed and end of mission and mission abort exercises are described.
Haidar Ahmad, Imad A; Tam, James; Li, Xue; Duffield, William; Tarara, Thomas; Blasko, Andrei
2017-02-05
The parameters affecting the recovery of pharmaceutical residues from the surface of stainless steel coupons for quantitative cleaning verification method development have been studied, including active pharmaceutical ingredient (API) level, spiking procedure, API/excipient ratio, analyst-to-analyst variability, inter-day variability, and cleaning procedure of the coupons. The lack of a well-defined procedure that consistently cleaned coupon surface was identified as the major contributor to low and variable recoveries. Assessment of acid, base, and oxidant washes, as well as the order of treatment, showed that a base-water-acid-water-oxidizer-water wash procedure resulted in consistent, accurate spiked recovery (>90%) and reproducible results (S rel ≤4%). By applying this cleaning procedure to the previously used coupons that failed the cleaning acceptance criteria, multiple analysts were able to obtain consistent recoveries from day-to-day for different APIs, and API/excipient ratios at various spike levels. We successfully applied our approach for cleaning verification of small molecules (MW<1000Da) as well as large biomolecules (MW up to 50,000Da). Method robustness was greatly influenced by the sample preparation procedure, especially for analyses using total organic carbon (TOC) determination. Copyright © 2016 Elsevier B.V. All rights reserved.
Application of the precipitation-runoff model in the Warrior coal field, Alabama
Kidd, Robert E.; Bossong, C.R.
1987-01-01
A deterministic precipitation-runoff model, the Precipitation-Runoff Modeling System, was applied in two small basins located in the Warrior coal field, Alabama. Each basin has distinct geologic, hydrologic, and land-use characteristics. Bear Creek basin (15.03 square miles) is undisturbed, is underlain almost entirely by consolidated coal-bearing rocks of Pennsylvanian age (Pottsville Formation), and is drained by an intermittent stream. Turkey Creek basin (6.08 square miles) contains a surface coal mine and is underlain by both the Pottsville Formation and unconsolidated clay, sand, and gravel deposits of Cretaceous age (Coker Formation). Aquifers in the Coker Formation sustain flow through extended rainless periods. Preliminary daily and storm calibrations were developed for each basin. Initial parameter and variable values were determined according to techniques recommended in the user's manual for the modeling system and through field reconnaissance. Parameters with meaningful sensitivity were identified and adjusted to match hydrograph shapes and to compute realistic water year budgets. When the developed calibrations were applied to data exclusive of the calibration period as a verification exercise, results were comparable to those for the calibration period. The model calibrations included preliminary parameter values for the various categories of geology and land use in each basin. The parameter values for areas underlain by the Pottsville Formation in the Bear Creek basin were transferred directly to similar areas in the Turkey Creek basin, and these parameter values were held constant throughout the model calibration. Parameter values for all geologic and land-use categories addressed in the two calibrations can probably be used in ungaged basins where similar conditions exist. The parameter transfer worked well, as a good calibration was obtained for Turkey Creek basin.
Short-Term Retrospective Land Data Assimilation Schemes
NASA Technical Reports Server (NTRS)
Houser, P. R.; Cosgrove, B. A.; Entin, J. K.; Lettenmaier, D.; ODonnell, G.; Mitchell, K.; Marshall, C.; Lohmann, D.; Schaake, J. C.; Duan, Q.;
2000-01-01
Subsurface moisture and temperature and snow/ice stores exhibit persistence on various time scales that has important implications for the extended prediction of climatic and hydrologic extremes. Hence, to improve their specification of the land surface, many numerical weather prediction (NWP) centers have incorporated complex land surface schemes in their forecast models. However, because land storages are integrated states, errors in NWP forcing accumulates in these stores, which leads to incorrect surface water and energy partitioning. This has motivated the development of Land Data Assimilation Schemes (LDAS) that can be used to constrain NWP surface storages. An LDAS is an uncoupled land surface scheme that is forced primarily by observations, and is therefore less affected by NWP forcing biases. The implementation of an LDAS also provides the opportunity to correct the model's trajectory using remotely-sensed observations of soil temperature, soil moisture, and snow using data assimilation methods. The inclusion of data assimilation in LDAS will greatly increase its predictive capacity, as well as provide high-quality land surface assimilated data.
NASA Astrophysics Data System (ADS)
Zhao, Jieliang; Huang, He; Yan, Shaoze
2017-03-01
Whether for insects or for aircrafts, landing is one of the indispensable links in the verification of airworthiness safety. The mechanisms by which insects achieve a fast and stable landing remain unclear. An intriguing example is provided by honeybees (Apis mellifera ligustica), which use the swinging motion of their abdomen to dissipate residual flying energy and to achieve a smooth, stable, and quick landing. By using a high-speed camera, we observed that touchdown is initiated by honeybees extending their front legs or antennae and then landing softly on a wall. After touchdown, they swing the rest of their bodies until all flying energy is dissipated. We suggested a simplified model with mass-spring dampers for the body of the honeybee and revealed the mechanism of flying energy transfer and dissipation in detail. Results demonstrate that body translation and abdomen swinging help honeybees dissipate residual flying energy and orchestrate smooth landings. The initial kinetic energy of flying is transformed into the kinetic energy of the abdomen's rotary movement. Then, the kinetic energy of rotary movement is converted into thermal energy during the swinging cycle. This strategy provides more insight into the mechanism of insect flying, which further inspires better design on aerial vehicle with better landing performance.
The Value of GRACE Data in Improving, Assessing and Evaluating Land Surface and Climate Models
NASA Astrophysics Data System (ADS)
Yang, Z.
2011-12-01
I will review how the Gravity Recovery and Climate Experiment (GRACE) satellite measurements have improved land surface models that are developed for weather, climate, and hydrological studies. GRACE-derived terrestrial water storage (TWS) changes have been successfully used to assess and evaluate the improved representations of land-surface hydrological processes such as groundwater-soil moisture interaction, frozen soil and infiltration, and the topographic control on runoff production, as evident in the simulations from the latest Noah-MP, the Community Land Model, and the Community Climate System Model. GRACE data sets have made it possible to estimate key terrestrial water storage components (snow mass, surface water, groundwater or water table depth), biomass, and surface water fluxes (evapotranspiration, solid precipitation, melt of snow/ice). Many of the examples will draw from my Land, Environment and Atmosphere Dynamics group's work on land surface model developments, snow mass retrieval, and multi-sensor snow data assimilation using the ensemble Karman filter and the ensemble Karman smoother. Finally, I will briefly outline some future directions in using GRACE in land surface modeling.
NASA Astrophysics Data System (ADS)
Sabajo, Clifton R.; le Maire, Guerric; June, Tania; Meijide, Ana; Roupsard, Olivier; Knohl, Alexander
2017-10-01
Indonesia is currently one of the regions with the highest transformation rate of land surface worldwide related to the expansion of oil palm plantations and other cash crops replacing forests on large scales. Land cover changes, which modify land surface properties, have a direct effect on the land surface temperature (LST), a key driver for many ecological functions. Despite the large historic land transformation in Indonesia toward oil palm and other cash crops and governmental plans for future expansion, this is the first study so far to quantify the impacts of land transformation on the LST in Indonesia. We analyze LST from the thermal band of a Landsat image and produce a high-resolution surface temperature map (30 m) for the lowlands of the Jambi province in Sumatra (Indonesia), a region which suffered large land transformation towards oil palm and other cash crops over the past decades. The comparison of LST, albedo, normalized differenced vegetation index (NDVI) and evapotranspiration (ET) between seven different land cover types (forest, urban areas, clear-cut land, young and mature oil palm plantations, acacia and rubber plantations) shows that forests have lower surface temperatures than the other land cover types, indicating a local warming effect after forest conversion. LST differences were up to 10.1 ± 2.6 °C (mean ± SD) between forest and clear-cut land. The differences in surface temperatures are explained by an evaporative cooling effect, which offsets the albedo warming effect. Our analysis of the LST trend of the past 16 years based on MODIS data shows that the average daytime surface temperature in the Jambi province increased by 1.05 °C, which followed the trend of observed land cover changes and exceeded the effects of climate warming. This study provides evidence that the expansion of oil palm plantations and other cash crops leads to changes in biophysical variables, warming the land surface and thus enhancing the increase of the air temperature because of climate change.
NASA Technical Reports Server (NTRS)
Homan, D. J.
1977-01-01
A computer program written to calculate the proximity aerodynamic force and moment coefficients of the Orbiter/Shuttle Carrier Aircraft (SCA) vehicles based on flight instrumentation is described. The ground reduced aerodynamic coefficients and instrumentation errors (GRACIE) program was developed as a tool to aid in flight test verification of the Orbiter/SCA separation aerodynamic data base. The program calculates the force and moment coefficients of each vehicle in proximity to the other, using the load measurement system data, flight instrumentation data and the vehicle mass properties. The uncertainty in each coefficient is determined, based on the quoted instrumentation accuracies. A subroutine manipulates the Orbiter/747 Carrier Separation Aerodynamic Data Book to calculate a comparable set of predicted coefficients for comparison to the calculated flight test data.
Comparison of two perturbation methods to estimate the land surface modeling uncertainty
NASA Astrophysics Data System (ADS)
Su, H.; Houser, P.; Tian, Y.; Kumar, S.; Geiger, J.; Belvedere, D.
2007-12-01
In land surface modeling, it is almost impossible to simulate the land surface processes without any error because the earth system is highly complex and the physics of the land processes has not yet been understood sufficiently. In most cases, people want to know not only the model output but also the uncertainty in the modeling, to estimate how reliable the modeling is. Ensemble perturbation is an effective way to estimate the uncertainty in land surface modeling, since land surface models are highly nonlinear which makes the analytical approach not applicable in this estimation. The ideal perturbation noise is zero mean Gaussian distribution, however, this requirement can't be satisfied if the perturbed variables in land surface model have physical boundaries because part of the perturbation noises has to be removed to feed the land surface models properly. Two different perturbation methods are employed in our study to investigate their impact on quantifying land surface modeling uncertainty base on the Land Information System (LIS) framework developed by NASA/GSFC land team. One perturbation method is the built-in algorithm named "STATIC" in LIS version 5; the other is a new perturbation algorithm which was recently developed to minimize the overall bias in the perturbation by incorporating additional information from the whole time series for the perturbed variable. The statistical properties of the perturbation noise generated by the two different algorithms are investigated thoroughly by using a large ensemble size on a NASA supercomputer and then the corresponding uncertainty estimates based on the two perturbation methods are compared. Their further impacts on data assimilation are also discussed. Finally, an optimal perturbation method is suggested.
Zhang, Yue; Li, Lin; Wang, Hongbin; Zhang, Yao; Wang, Naijia; Chen, Junpeng
2017-10-01
As an important crop growing area, Northeast China (NEC) plays a vital role in China's food security, which has been severely affected by climate change in recent years. Vegetation phenology in this region is sensitive to climate change, and currently, the relationship between the phenology of NEC and climate change remains unclear. In this study, we used a satellite-derived normalized difference vegetation index (NDVI) to obtain the temporal patterns of the land surface phenology in NEC from 2000 to 2015 and validated the results using ground phenology observations. We then explored the relationships among land surface phenology, temperature, precipitation, and sunshine hours for relevant periods. Our results showed that the NEC experienced great phenological changes in terms of spatial heterogeneity during 2000-2015. The spatial patterns of land surface phenology mainly changed with altitude and land cover type. In most regions of NEC, the start date of land surface phenology had advanced by approximately 1.0 days year -1 , and the length of land surface phenology had been prolonged by approximately 1.0 days year -1 except for the needle-leaf and cropland areas, due to the warm conditions. We found that a distinct inter-annual variation in land surface phenology related to climate variables, even if some areas presented non-significant trends. Land surface phenology was coupled with climate variables and distinct responses at different combinations of temperature, precipitation, sunshine hours, altitude, and anthropogenic influence. These findings suggest that remote sensing and our phenology extracting methods hold great potential for helping to understand how land surface phenology is sensitive to global climate change.
NASA Astrophysics Data System (ADS)
Mishra, Sanjeev Kumar; Prasad, K. Durga
2018-07-01
Understanding surface modifications at landing site during spacecraft landing on planetary surfaces is important for planetary missions from scientific as well as engineering perspectives. An attempt has been made in this work to numerically investigate the disturbance caused to the lunar surface during soft landing. The variability of eject velocity of dust, eject mass flux rate, ejecta amount etc. has been studied. The effect of lander hovering time and hovering altitude on the extent of disturbance is also evaluated. The study thus carried out will help us in understanding the surface modifications during landing thereby making it easier to plan a descent trajectory that minimizes the extent of disturbance. The information about the extent of damage will also be helpful in interpreting the data obtained from experiments carried on the lunar surface in vicinity of the lander.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damato, A; Devlin, P; Bhagwat, M
Purpose: To investigate the sensitivity and specificity of a novel verification methodology for image-guided skin HDR brachytherapy plans using a TRAK-based reasonableness test, compared to a typical manual verification methodology. Methods: Two methodologies were used to flag treatment plans necessitating additional review due to a potential discrepancy of 3 mm between planned dose and clinical target in the skin. Manual verification was used to calculate the discrepancy between the average dose to points positioned at time of planning representative of the prescribed depth and the expected prescription dose. Automatic verification was used to calculate the discrepancy between TRAK of themore » clinical plan and its expected value, which was calculated using standard plans with varying curvatures, ranging from flat to cylindrically circumferential. A plan was flagged if a discrepancy >10% was observed. Sensitivity and specificity were calculated using as a criteria for true positive that >10% of plan dwells had a distance to prescription dose >1 mm different than prescription depth (3 mm + size of applicator). All HDR image-based skin brachytherapy plans treated at our institution in 2013 were analyzed. Results: 108 surface applicator plans to treat skin of the face, scalp, limbs, feet, hands or abdomen were analyzed. Median number of catheters was 19 (range, 4 to 71) and median number of dwells was 257 (range, 20 to 1100). Sensitivity/specificity were 57%/78% for manual and 70%/89% for automatic verification. Conclusion: A check based on expected TRAK value is feasible for irregularly shaped, image-guided skin HDR brachytherapy. This test yielded higher sensitivity and specificity than a test based on the identification of representative points, and can be implemented with a dedicated calculation code or with pre-calculated lookup tables of ideally shaped, uniform surface applicators.« less
NASA Technical Reports Server (NTRS)
Roumeliotis, Chris; Grinblat, Jonathan; Reeves, Glenn
2013-01-01
Second Chance (SECC) was a bare bones version of Mars Science Laboratory's (MSL) Entry Descent & Landing (EDL) flight software that ran on Curiosity's backup computer, which could have taken over swiftly in the event of a reset of Curiosity's prime computer, in order to land her safely on Mars. Without SECC, a reset of Curiosity's prime computer would have lead to catastrophic mission failure. Even though a reset of the prime computer never occurred, SECC had the important responsibility as EDL's guardian angel, and this responsibility would not have seen such success without unparalleled systems engineering. This paper will focus on the systems engineering behind SECC: Covering a brief overview of SECC's design, the intense schedule to use SECC as a backup system, the verification and validation of the system's "Do No Harm" mandate, the system's overall functional performance, and finally, its use on the fateful day of August 5th, 2012.
Testing of CMA-2000 Microwave Landing System (MLS) airborne receiver
NASA Astrophysics Data System (ADS)
Labreche, L.; Murfin, A. J.
1989-09-01
Microwave landing system (MLS) is a precision approach and landing guidance system which provides position information and various air to ground data. Position information is provided on a wide coverage sector and is determined by an azimuth angle measurement, an elevation angle measurement, and a range measurement. MLS performance standards and testing of the MLS airborne receiver is mainly governed by Technical Standard Order TSO-C104 issued by the Federal Aviation Administration. This TSO defines detailed test procedures for use in determining the required performance under standard and stressed conditions. It also imposes disciplines on software development and testing procedures. Testing performed on the CMA-2000 MLS receiver and methods used in its validation are described. A computer automated test system has been developed to test for compliance with RTCA/DO-177 Minimum Operation Performance Standards. Extensive software verification and traceability tests designed to ensure compliance with RTCA/DO-178 are outlined.
Surface albedo influences climate by affecting the amount of solar radiation that is reflected at the Earth’s surface, and surface albedo is, in turn, affected by land cover. General Circulation Models typically use modeled or prescribed albedo to assess the influence of land co...
Landing Characteristics of a Lenticular-Shaped Reentry Vehicle
NASA Technical Reports Server (NTRS)
Blanchard, Ulysse J.
1961-01-01
An experimental investigation was made of the landing characteristics of a 1/9-scale dynamic model of a lenticular-shaped reentry vehicle having extendible tail panels for control after reentry and for landing control (flare-out). The landing tests were made by catapulting a free model onto a hard-surface runway and onto water. A "belly-landing" technique in which the vehicle was caused to skid and rock on its curved undersurface (heat shield), converting sinking speed into angular energy, was investigated on a hard-surface runway. Landings were made in calm water and in waves both with and without auxiliary landing devices. Landing motions and acceleration data were obtained over a range of landing attitudes and initial sinking speeds during hard-surface landings and for several wave conditions during water landings. A few vertical landings (parachute letdown) were made in calm water. The hard-surface landing characteristics were good. Maximum landing accelerations on a hard surface were 5g and 18 radians per sq second over a range of landing conditions. Horizontal landings on water resulted in large violent rebounds and some diving in waves. Extreme attitude changes during rebound at initial impact made the attitude of subsequent impact random. Maximum accelerations for water landings were approximately 21g and 145 radians per sq second in waves 7 feet high. Various auxiliary water-landing devices produced no practical improvement in behavior. Reduction of horizontal speed and positive control of impact attitude did improve performance in calm water. During vertical landings in calm water maximum accelerations of 15g and 110 radians per sq second were measured for a contact attitude of -45 deg and a vertical velocity of 70 feet per second.
Real Time Land-Surface Hydrologic Modeling Over Continental US
NASA Technical Reports Server (NTRS)
Houser, Paul R.
1998-01-01
The land surface component of the hydrological cycle is fundamental to the overall functioning of the atmospheric and climate processes. Spatially and temporally variable rainfall and available energy, combined with land surface heterogeneity cause complex variations in all processes related to surface hydrology. The characterization of the spatial and temporal variability of water and energy cycles are critical to improve our understanding of land surface-atmosphere interaction and the impact of land surface processes on climate extremes. Because the accurate knowledge of these processes and their variability is important for climate predictions, most Numerical Weather Prediction (NWP) centers have incorporated land surface schemes in their models. However, errors in the NWP forcing accumulate in the surface and energy stores, leading to incorrect surface water and energy partitioning and related processes. This has motivated the NWP to impose ad hoc corrections to the land surface states to prevent this drift. A proposed methodology is to develop Land Data Assimilation schemes (LDAS), which are uncoupled models forced with observations, and not affected by NWP forcing biases. The proposed research is being implemented as a real time operation using an existing Surface Vegetation Atmosphere Transfer Scheme (SVATS) model at a 40 km degree resolution across the United States to evaluate these critical science questions. The model will be forced with real time output from numerical prediction models, satellite data, and radar precipitation measurements. Model parameters will be derived from the existing GIS vegetation and soil coverages. The model results will be aggregated to various scales to assess water and energy balances and these will be validated with various in-situ observations.
Precision segmented reflector, figure verification sensor
NASA Technical Reports Server (NTRS)
Manhart, Paul K.; Macenka, Steve A.
1989-01-01
The Precision Segmented Reflector (PSR) program currently under way at the Jet Propulsion Laboratory is a test bed and technology demonstration program designed to develop and study the structural and material technologies required for lightweight, precision segmented reflectors. A Figure Verification Sensor (FVS) which is designed to monitor the active control system of the segments is described, a best fit surface is defined, and an image or wavefront quality of the assembled array of reflecting panels is assessed
2013-04-01
project was to provide the Royal Canadian Navy ( RCN ) with a set of guidelines on analysis, design, and verification processes for effective room...design, and verification processes that should be used in the development of effective room layouts for Royal Canadian Navy ( RCN ) ships. The primary...designed CSC; however, the guidelines could be applied to the design of any multiple-operator space in any RCN vessel. Results: The development of
Generation of High Resolution Land Surface Parameters in the Community Land Model
NASA Astrophysics Data System (ADS)
Ke, Y.; Coleman, A. M.; Wigmosta, M. S.; Leung, L.; Huang, M.; Li, H.
2010-12-01
The Community Land Model (CLM) is the land surface model used for the Community Atmosphere Model (CAM) and the Community Climate System Model (CCSM). It examines the physical, chemical, and biological processes across a variety of spatial and temporal scales. Currently, efforts are being made to improve the spatial resolution of the CLM, in part, to represent finer scale hydrologic characteristics. Current land surface parameters of CLM4.0, in particular plant functional types (PFT) and leaf area index (LAI), are generated from MODIS and calculated at a 0.05 degree resolution. These MODIS-derived land surface parameters have also been aggregated to coarser resolutions (e.g., 0.5, 1.0 degrees). To evaluate the response of CLM across various spatial scales, higher spatial resolution land surface parameters need to be generated. In this study we examine the use of Landsat TM/ETM+ imagery and data fusion techniques for generating land surface parameters at a 1km resolution within the Pacific Northwest United States. . Land cover types and PFTs are classified based on Landsat multi-season spectral information, DEM, National Land Cover Database (NLCD) and the USDA-NASS Crop Data Layer (CDL). For each PFT, relationships between MOD15A2 high quality LAI values, Landsat-based vegetation indices, climate variables, terrain, and laser-altimeter derived vegetation height are used to generate monthly LAI values at a 30m resolution. The high-resolution PFT and LAI data are aggregated to create a 1km model grid resolution. An evaluation and comparison of CLM land surface response at both fine and moderate scale is presented.
NASA Astrophysics Data System (ADS)
Schindewolf, Marcus; Schultze, Nico; Schönke, Daniela; Amorim, Ricardo S. S.; Schmidt, Jürgen
2014-05-01
The study area of central Mato Grosso is subjected to severe soil erosion. Continuous erosion leads to massive losses of top soil and related organic carbon. Consequently agricultural soil soils suffer a drop in soil fertility which only can be balanced by mineral fertilization. In order to control soil degradation and organic carbon losses of Mato Grosso cropland soils a process based soil loss and deposition model is used. Applying the model it will be possible to: - identify the main areas affected by soil erosion or deposition in different scales under present and future climate and socio-economic conditions - estimate the related nutrient and organic carbon losses/yields - figure out site-related causes of soil mobilization/deposition - locate sediment and sediment related nutrient and organic matter pass over points into surface water bodies - estimate the impacts of climate and land use changes on the losses of top soil, sediment bound nutrients and organic carbon. Model input parameters include digital elevation data, precipitation characteristics and standard soil properties as particle size distribution, total organic carbon (TOC) and bulk density. The effects of different types of land use and agricultural management practices are accounted for by varying site-specific parameters predominantly related to soil surface properties such as erosional resistance, hydraulic roughness and percentage ground cover. In this context the existing EROSION 3D soil parameter data base deducted from large scale rainfall simulations in Germany is verified for application in the study area, using small scale disc type rainfall simulator with an additional runoff reflux approach. Thus it's possible to enlarge virtual plot length up to at least 10 m. Experimental plots are located in Cuiabá region of central Mato Grosso in order to cover the most relevant land use variants and tillage practices in the region. Results show that derived model parameters are highly influenced by soil management. This indicates a high importance of tillage impact on resistance to erosion, mulch cover and TOC. The measured parameter ranges can generally be confirmed by the existing data base, which only need to be completed due to changed phenological stages in Mato Grosso compared to German conditions.
Assessment of Mars Exploration Rover Landing Site Predictions
NASA Astrophysics Data System (ADS)
Golombek, M. P.
2005-05-01
Comprehensive analyses of remote sensing data during the 3-year effort to select the Mars Exploration Rover landing sites at Gusev crater and Meridiani Planum correctly predicted the safe and trafficable surfaces explored by the two rovers. Gusev crater was predicted to be a relatively low relief surface that was comparably dusty, but less rocky than the Viking landing sites. Available data for Meridiani Planum indicated a very flat plain composed of basaltic sand to granules and hematite that would look completely unlike any of the existing landing sites with a dark, low albedo surface, little dust and very few rocks. Orbital thermal inertia measurements of 315 J m-2 s-0.5 K-1 at Gusev suggested surfaces dominated by duricrust to cemented soil-like materials or cohesionless sand or granules, which is consistent with observed soil characteristics and measured thermal inertias from the surface. THEMIS thermal inertias along the traverse at Gusev vary from 285 at the landing site to 330 around Bonneville rim and show systematic variations that can be related to the observed increase in rock abundance (5-30%). Meridiani has an orbital bulk inertia of ~200, similar to measured surface inertias that correspond to observed surfaces dominated by 0.2 mm sand size particles. Rock abundance derived from orbital thermal differencing techniques suggested that Meridiani Planum would have very low rock abundance, consistent with the rock free plain traversed by Opportunity. Spirit landed in an 8% orbital rock abundance pixel, consistent with the measured 7% of the surface covered by rocks >0.04 m diameter at the landing site, which is representative of the plains away from craters. The orbital albedo of the Spirit traverse varies from 0.19 to 0.30, consistent with surface measurements in and out of dust devil tracks. Opportunity is the first landing in a low albedo portion of Mars as seen from orbit, which is consistent with the dark, dust-free surface and measured albedos. The close correspondence between surface characteristics inferred from orbital remote sensing data and that found at the landing sites argues that future efforts to select safe landing sites will be successful. Linking the five landing sites to their remote sensing signatures suggests that they span most of the important, likely safe surfaces available for landing on Mars.
[A review on research of land surface water and heat fluxes].
Sun, Rui; Liu, Changming
2003-03-01
Many field experiments were done, and soil-vegetation-atmosphere transfer(SVAT) models were stablished to estimate land surface heat fluxes. In this paper, the processes of experimental research on land surface water and heat fluxes are reviewed, and three kinds of SVAT model(single layer model, two layer model and multi-layer model) are analyzed. Remote sensing data are widely used to estimate land surface heat fluxes. Based on remote sensing and energy balance equation, different models such as simplified model, single layer model, extra resistance model, crop water stress index model and two source resistance model are developed to estimate land surface heat fluxes and evapotranspiration. These models are also analyzed in this paper.
Research on the injectors remanufacturing
NASA Astrophysics Data System (ADS)
Daraba, D.; Alexandrescu, I. M.; Daraba, C.
2017-05-01
During the remanufacturing process, the injector body - after disassembling and cleaning process - should be subjected to some strict control processes, both visually and by an electronic microscope, for evidencing any defects that may occur on the sealing surface of the injector body and the atomizer. In this paper we present the path followed by an injector body in the process of remanufacturing, exemplifying the verification method of roughness and hardness of the sealing surfaces, as well as the microscopic analysis of the sealing surface areas around the inlet. These checks can indicate which path the injector body has to follow during the remanufacturing. The control methodology of the injector body, that is established on the basis of this research, helps preventing some defective injector bodies to enter into the remanufacturing process, thus reducing to a minimum the number of remanufactured injectors to be declared non-conforming after final verification process.
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John
2006-01-01
Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.
NASA Technical Reports Server (NTRS)
Tom, C.; Miller, L. D.; Christenson, J. W.
1978-01-01
A landscape model was constructed with 34 land-use, physiographic, socioeconomic, and transportation maps. A simple Markov land-use trend model was constructed from observed rates of change and nonchange from photointerpreted 1963 and 1970 airphotos. Seven multivariate land-use projection models predicting 1970 spatial land-use changes achieved accuracies from 42 to 57 percent. A final modeling strategy was designed, which combines both Markov trend and multivariate spatial projection processes. Landsat-1 image preprocessing included geometric rectification/resampling, spectral-band, and band/insolation ratioing operations. A new, systematic grid-sampled point training-set approach proved to be useful when tested on the four orginal MSS bands, ten image bands and ratios, and all 48 image and map variables (less land use). Ten variable accuracy was raised over 15 percentage points from 38.4 to 53.9 percent, with the use of the 31 ancillary variables. A land-use classification map was produced with an optimal ten-channel subset of four image bands and six ancillary map variables. Point-by-point verification of 331,776 points against a 1972/1973 U.S. Geological Survey (UGSG) land-use map prepared with airphotos and the same classification scheme showed average first-, second-, and third-order accuracies of 76.3, 58.4, and 33.0 percent, respectively.
NASA Astrophysics Data System (ADS)
Burakowski, E. A.; Tawfik, A. B.; Ouimette, A.; Lepine, L. C.; Ollinger, S. V.; Bonan, G. B.; Zarzycki, C. M.; Novick, K. A.
2016-12-01
Changes in land use, land cover, or both promote changes in surface temperature that can amplify or dampen long-term trends driven by natural and anthropogenic climate change by modifying the surface energy budget, primarily through differences in albedo, evapotranspiration, and aerodynamic roughness. Recent advances in variable resolution global models provide the tools necessary to investigate local and global impacts of land use and land cover change by embedding a high-resolution grid over areas of interest in a seamless and computationally efficient manner. Here, we used two eddy covariance tower clusters in the Eastern US (University of New Hampshire UNH and Duke Forest) to validate simulation of surface energy fluxes and properties by the uncoupled Community Land Model (PTCLM4.5) and coupled land-atmosphere Variable-Resolution Community Earth System Model (VR-CESM1.3). Surface energy fluxes and properties are generally well captured by the models for grassland sites, however forested sites tend to underestimate latent heat and overestimate sensible heat flux. Surface roughness emerged as the dominant biophysical forcing factor affecting surface temperature in the eastern United States, generally leading to warmer nighttime temperatures and cooler daytime temperatures. However, the sign and magnitude of the roughness effect on surface temperature was highly sensitive to the calculation of aerodynamic resistance to heat transfer.
Relationship Between Landcover Pattern and Surface Net Radiation in AN Coastal City
NASA Astrophysics Data System (ADS)
Zhao, X.; Liu, L.; Liu, X.; Zhao, Y.
2016-06-01
Taking Xiamen city as the study area this research first retrieved surface net radiation using meteorological data and Landsat 5 TM images of the four seasons in the year 2009. Meanwhile the 65 different landscape metrics of each analysis unit were acquired using landscape analysis method. Then the most effective landscape metrics affecting surface net radiation were determined by correlation analysis, partial correlation analysis, stepwise regression method, etc. At both class and landscape levels, this paper comprehensively analyzed the temporal and spatial variations of the surface net radiation as well as the effects of land cover pattern on it in Xiamen from a multi-seasonal perspective. The results showed that the spatial composition of land cover pattern shows significant influence on surface net radiation while the spatial allocation of land cover pattern does not. The proportions of bare land and forest land are effective and important factors which affect the changes of surface net radiation all the year round. Moreover, the proportion of forest land is more capable for explaining surface net radiation than the proportion of bare land. So the proportion of forest land is the most important and continuously effective factor which affects and explains the cross-seasonal differences of surface net radiation. This study is helpful in exploring the formation and evolution mechanism of urban heat island. It also gave theoretical hints and realistic guidance for urban planning and sustainable development.
Johnson, Grant E.; Gunaratne, K. Don Dasitha; Laskin, Julia
2014-01-01
Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces. PMID:24961913
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia
2014-06-16
Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivitymore » of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.« less
Using land-cover change as dynamic variables in surface-water and water-quality models
Karstensen, Krista A.; Warner, Kelly L.; Kuhn, Anne
2010-01-01
Land-cover data are typically used in hydrologic modeling to establish or describe land surface dynamics. This project is designed to demonstrate the use of land-cover change data in surface-water and water-quality models by incorporating land-cover as a variable condition. The project incorporates three different scenarios that vary hydrologically and geographically: 1) Agriculture in the Plains, 2) Loon habitat in New England, and 3) Forestry in the Ozarks.
A NEW LAND-SURFACE MODEL IN MM5
There has recently been a general realization that more sophisticated modeling of land-surface processes can be important for mesoscale meteorology models. Land-surface models (LSMs) have long been important components in global-scale climate models because of their more compl...
30 CFR 740.10 - Information collection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS... surface coal mining operations on Federal lands. Persons intending to conduct such operations must respond...
30 CFR 740.10 - Information collection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS... surface coal mining operations on Federal lands. Persons intending to conduct such operations must respond...
NASA Technical Reports Server (NTRS)
Oishi, Meeko; Tomlin, Claire; Degani, Asaf
2003-01-01
Human interaction with complex hybrid systems involves the user, the automation's discrete mode logic, and the underlying continuous dynamics of the physical system. Often the user-interface of such systems displays a reduced set of information about the entire system. In safety-critical systems, how can we identify user-interface designs which do not have adequate information, or which may confuse the user? Here we describe a methodology, based on hybrid system analysis, to verify that a user-interface contains information necessary to safely complete a desired procedure or task. Verification within a hybrid framework allows us to account for the continuous dynamics underlying the simple, discrete representations displayed to the user. We provide two examples: a car traveling through a yellow light at an intersection and an aircraft autopilot in a landing/go-around maneuver. The examples demonstrate the general nature of this methodology, which is applicable to hybrid systems (not fully automated) which have operational constraints we can pose in terms of safety. This methodology differs from existing work in hybrid system verification in that we directly account for the user's interactions with the system.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lau, W.; Baker, R.
2004-01-01
The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo-China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the low-level temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation. The model results will be compared to the simulation of the 6-7 May 2000 Missouri flash flood event. In addition, the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation will be examined.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Wang, Y.; Lau, W.; Baker, R. D.
2004-01-01
The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo-China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the low-level temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation. The model results will be compared to the simulation of the 6-7 May 2000 Missouri flash flood event. In addition, the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation will be examined.
NASA Astrophysics Data System (ADS)
Ashfaqur Rahman, M.; Almazroui, Mansour; Nazrul Islam, M.; O'Brien, Enda; Yousef, Ahmed Elsayed
2018-02-01
A new version of the Community Land Model (CLM) was introduced to the Saudi King Abdulaziz University Atmospheric Global Climate Model (Saudi-KAU AGCM) for better land surface component representation, and so to enhance climate simulation. CLM replaced the original land surface model (LSM) in Saudi-KAU AGCM, with the aim of simulating more accurate land surface fluxes globally, but especially over the Arabian Peninsula. To evaluate the performance of Saudi-KAU AGCM, simulations were completed with CLM and LSM for the period 1981-2010. In comparison with LSM, CLM generates surface air temperature values that are closer to National Centre for Environmental Prediction (NCEP) observations. The global annual averages of land surface air temperature are 9.51, 9.52, and 9.57 °C for NCEP, CLM, and LSM respectively, although the same atmospheric radiative and surface forcing from Saudi-KAU AGCM are provided to both LSM and CLM at every time step. The better temperature simulations when using CLM can be attributed to the more comprehensive plant functional type and hierarchical tile approach to the land cover type in CLM, along with better parameterization of upward land surface fluxes compared to LSM. At global scale, CLM exhibits smaller annual and seasonal mean biases of temperature with respect to NCEP data. Moreover, at regional scale, CLM demonstrates reasonable seasonal and annual mean temperature over the Arabian Peninsula as compared to the Climatic Research Unit (CRU) data. Finally, CLM generated better matches to single point-wise observations of surface air temperature and surface fluxes for some case studies.
Understanding Mesoscale Land-Atmosphere Interactions in Arctic Region
NASA Astrophysics Data System (ADS)
Hong, X.; Wang, S.; Nachamkin, J. E.
2017-12-01
Land-atmosphere interactions in Arctic region are examined using the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS©*) with the Noah Land Surface Model (LSM). Initial land surface variables in COAMPS are interpolated from the real-time NASA Land Information System (LIS). The model simulations are configured for three nest grids with 27-9-3 km horizontal resolutions. The simulation period is set for October 2015 with 12-h data assimilation update cycle and 24-h integration length. The results are compared with those simulated without using LSM and evaluated with observations from ONR Sea State R/V Sikuliaq cruise and the North Slope of Alaska (NSA). There are complex soil and vegetation types over the surface for simulation with LSM, compared to without LSM simulation. The results show substantial differences in surface heat fluxes between bulk surface scheme and LSM, which may have an important impact on the sea ice evolution over the Arctic region. Evaluations from station data show surface air temperature and relative humidity have smaller biases for simulation using LSM. Diurnal variation of land surface temperature, which is necessary for physical processes of land-atmosphere, is also better captured than without LSM.
Brabyn, Lars; Zawar-Reza, Peyman; Stichbury, Glen; Cary, Craig; Storey, Bryan; Laughlin, Daniel C; Katurji, Marwan
2014-04-01
The McMurdo Dry Valleys of Antarctica are the largest snow/ice-free regions on this vast continent, comprising 1% of the land mass. Due to harsh environmental conditions, the valleys are bereft of any vegetation. Land surface temperature is a key determinate of microclimate and a driver for sensible and latent heat fluxes of the surface. The Dry Valleys have been the focus of ecological studies as they arguably provide the simplest trophic structure suitable for modelling. In this paper, we employ a validation method for land surface temperatures obtained from Landsat 7 ETM + imagery and compared with in situ land surface temperature data collected from four transects totalling 45 iButtons. A single meteorological station was used to obtain a better understanding of daily and seasonal cycles in land surface temperatures. Results show a good agreement between the iButton and the Landsat 7 ETM + product for clear sky cases. We conclude that Landsat 7 ETM + derived land surface temperatures can be used at broad spatial scales for ecological and meteorological research.
Comprehensive data set of global land cover change for land surface model applications
NASA Astrophysics Data System (ADS)
Sterling, Shannon; Ducharne, AgnèS.
2008-09-01
To increase our understanding of how humans have altered the Earth's surface and to facilitate land surface modeling experiments aimed to elucidate the direct impact of land cover change on the Earth system, we create and analyze a database of global land use/cover change (LUCC). From a combination of sources including satellite imagery and other remote sensing, ecological modeling, and country surveys, we adapt and synthesize existing maps of potential land cover and layers of the major anthropogenic land covers, including a layer of wetland loss, that are then tailored for land surface modeling studies. Our map database shows that anthropogenic land cover totals to approximately 40% of the Earth's surface, consistent with literature estimates. Almost all (92%) of the natural grassland on the Earth has been converted to human use, mostly grazing land, and the natural temperate savanna with mixed C3/C4 is almost completely lost (˜90%), due mostly to conversion to cropland. Yet the resultant change in functioning, in terms of plant functional types, of the Earth system from land cover change is dominated by a loss of tree cover. Finally, we identify need for standardization of percent bare soil for global land covers and for a global map of tree plantations. Estimates of land cover change are inherently uncertain, and these uncertainties propagate into modeling studies of the impact of land cover change on the Earth system; to begin to address this problem, modelers need to document fully areas of land cover change used in their studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module provides an overview of the requirements for landfills, surface impoundments, waste piles, and land treatment units. It summarizes the differences between interim status (Part 265) and permitted (Part 264) standards for land disposal units. It defines `surface impoundment` and distinguishes surface impoundments from tanks and describes surface impoundment retrofitting and retrofitting variance procedures. It explains the connection between land disposal standards, post-closure, and groundwater monitoring.
NASA Astrophysics Data System (ADS)
Lee, J.; Zhang, Y.; Klein, S. A.
2017-12-01
The triggering of the land breeze, and hence the development of deep convection over heterogeneous land should be understood as a consequence of the complex processes involving various factors from land surface and atmosphere simultaneously. That is a sub-grid scale process that many large-scale models have difficulty incorporating it into the parameterization scheme partly due to lack of our understanding. Thus, it is imperative that we approach the problem using a high-resolution modeling framework. In this study, we use SAM-SLM (Lee and Khairoutdinov, 2015), a large-eddy simulation model coupled to a land model, to explore the cloud effect such as cold pool, the cloud shading and the soil moisture memory on the land breeze structure and the further development of cloud and precipitation over a heterogeneous land surface. The atmospheric large scale forcing and the initial sounding are taken from the new composite case study of the fair-weather, non-precipitating shallow cumuli at ARM SGP (Zhang et al., 2017). We model the land surface as a chess board pattern with alternating leaf area index (LAI). The patch contrast of the LAI is adjusted to encompass the weak to strong heterogeneity amplitude. The surface sensible- and latent heat fluxes are computed according to the given LAI representing the differential surface heating over a heterogeneous land surface. Separate from the surface forcing imposed from the originally modeled surface, the cases that transition into the moist convection can induce another layer of the surface heterogeneity from the 1) radiation shading by clouds, 2) adjusted soil moisture pattern by the rain, 3) spreading cold pool. First, we assess and quantifies the individual cloud effect on the land breeze and the moist convection under the weak wind to simplify the feedback processes. And then, the same set of experiments is repeated under sheared background wind with low level jet, a typical summer time wind pattern at ARM SGP site, to account for more realistic situations. Our goal is to assist answering the question: "Do the sub-grid scale land surface heterogeneity matter for the weather and climate modeling?" This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS- 736011.
A verification procedure for MSC/NASTRAN Finite Element Models
NASA Technical Reports Server (NTRS)
Stockwell, Alan E.
1995-01-01
Finite Element Models (FEM's) are used in the design and analysis of aircraft to mathematically describe the airframe structure for such diverse tasks as flutter analysis and actively controlled landing gear design. FEM's are used to model the entire airplane as well as airframe components. The purpose of this document is to describe recommended methods for verifying the quality of the FEM's and to specify a step-by-step procedure for implementing the methods.
NASA Astrophysics Data System (ADS)
Liu, Yongqiang; Mamtimin, Ali; He, Qing
2014-05-01
Because land surface emissivity (ɛ) has not been reliably measured, global climate model (GCM) land surface schemes conventionally set this parameter as simply assumption, for example, 1 as in the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) model, 0.96 for soil and wetland in the Global and Regional Assimilation and Prediction System (GRAPES) Common Land Model (CoLM). This is the so-called emissivity assumption. Accurate broadband emissivity data are needed as model inputs to better simulate the land surface climate. It is demonstrated in this paper that the assumption of the emissivity induces errors in modeling the surface energy budget over Taklimakan Desert where ɛ is far smaller than original value. One feasible solution to this problem is to apply the accurate broadband emissivity into land surface models. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument has routinely measured spectral emissivities in six thermal infrared bands. The empirical regression equations have been developed in this study to convert these spectral emissivities to broadband emissivity required by land surface models. In order to calibrate the regression equations, using a portable Fourier Transform infrared (FTIR) spectrometer instrument, crossing Taklimakan Desert along with highway from north to south, to measure the accurate broadband emissivity. The observed emissivity data show broadband ɛ around 0.89-0.92. To examine the impact of improved ɛ to radiative energy redistribution, simulation studies were conducted using offline CoLM. The results illustrate that large impacts of surface ɛ occur over desert, with changes up in surface skin temperature, as well as evident changes in sensible heat fluxes. Keywords: Taklimakan Desert, surface broadband emissivity, Fourier Transform infrared spectrometer, MODIS, CoLM
Advancing land surface model development with satellite-based Earth observations
NASA Astrophysics Data System (ADS)
Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo
2017-04-01
The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628
NASA Astrophysics Data System (ADS)
Jacquemin, Ingrid; Henrot, Alexandra-Jane; Beckers, Veronique; Berckmans, Julie; Debusscher, Bos; Dury, Marie; Minet, Julien; Hamdi, Rafiq; Dendoncker, Nicolas; Tychon, Bernard; Hambuckers, Alain; François, Louis
2016-04-01
The interactions between land surface and climate are complex. Climate changes can affect ecosystem structure and functions, by altering photosynthesis and productivity or inducing thermal and hydric stresses on plant species. These changes then impact socio-economic systems, through e.g., lower farming or forestry incomes. Ultimately, it can lead to permanent changes in land use structure, especially when associated with other non-climatic factors, such as urbanization pressure. These interactions and changes have feedbacks on the climate systems, in terms of changing: (1) surface properties (albedo, roughness, evapotranspiration, etc.) and (2) greenhouse gas emissions (mainly CO2, CH4, N2O). In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), we aim at improving regional climate model projections at the decennial scale over Belgium and Western Europe by combining high-resolution models of climate, land surface dynamics and socio-economic processes. The land surface dynamics (LSD) module is composed of a dynamic vegetation model (CARAIB) calculating the productivity and growth of natural and managed vegetation, and an agent-based model (CRAFTY), determining the shifts in land use and land cover. This up-scaled LSD module is made consistent with the surface scheme of the regional climate model (RCM: ALARO) to allow simulations of the RCM with a fully dynamic land surface for the recent past and the period 2000-2030. In this contribution, we analyze the results of the first simulations performed with the CARAIB dynamic vegetation model over Belgium at a resolution of 1km. This analysis is performed at the species level, using a set of 17 species for natural vegetation (trees and grasses) and 10 crops, especially designed to represent the Belgian vegetation. The CARAIB model is forced with surface atmospheric variables derived from the monthly global CRU climatology or ALARO outputs (from a 4 km resolution simulation) for the recent past and the decennial projections. Evidently, these simulations lead to a first analysis of the impact of climate change on carbon stocks (e.g., biomass, soil carbon) and fluxes (e.g., gross and net primary productivities (GPP and NPP) and net ecosystem production (NEP)). The surface scheme is based on two land use/land cover databases, ECOPLAN for the Flemish region and, for the Walloon region, the COS-Wallonia database and the Belgian agricultural statistics for agricultural land. Land use and land cover are fixed through time (reference year: 2007) in these simulations, but a first attempt of coupling between CARAIB and CRAFTY will be made to establish dynamic land use change scenarios for the next decades. A simulation with variable land use would allow an analysis of land use change impacts not only on crop yields and the land carbon budget, but also on climate relevant parameters, such as surface albedo, roughness length and evapotranspiration towards a coupling with the RCM.
The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania
NASA Astrophysics Data System (ADS)
Roşca, Cristina Florina; Harpa, Gabriela Victoria; Croitoru, Adina-Eliza; Herbel, Ioana; Imbroane, Alexandru Mircea; Burada, Doina Cristina
2017-11-01
Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986-2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.
The CEOS constellation for land surface imaging
Bailey, G.B.; Berger, Marsha; Jeanjean, H.; Gallo, K.P.
2007-01-01
A constellation of satellites that routinely and frequently images the Earth's land surface in consistently calibrated wavelengths from the visible through the microwave and in spatial detail that ranges from sub-meter to hundreds of meters would offer enormous potential benefits to society. A well-designed and effectively operated land surface imaging satellite constellation could have great positive impact not only on the quality of life for citizens of all nations, but also on mankind's very ability to sustain life as we know it on this planet long into the future. The primary objective of the Committee on Earth Observation Satellites (CEOS) Land Surface Imaging (LSI) Constellation is to define standards (or guidelines) that describe optimal future LSI Constellation capabilities, characteristics, and practices. Standards defined for a LSI Constellation will be based on a thorough understanding of user requirements, and they will address at least three fundamental areas of the systems comprising a Land Surface Imaging Constellation: the space segments, the ground segments, and relevant policies and plans. Studies conducted by the LSI Constellation Study Team also will address current and shorter-term problems and issues facing the land remote sensing community today, such as seeking ways to work more cooperatively in the operation of existing land surface imaging systems and helping to accomplish tangible benefits to society through application of land surface image data acquired by existing systems. 2007 LSI Constellation studies are designed to establish initial international agreements, develop preliminary standards for a mid-resolution land surface imaging constellation, and contribute data to a global forest assessment.
Simple Verification of the Parabolic Shape of a Rotating Liquid and a Boat on Its Surface
ERIC Educational Resources Information Center
Sabatka, Z.; Dvorak, L.
2010-01-01
This article describes a simple and inexpensive way to create and to verify the parabolic surface of a rotating liquid. The liquid is water. The second part of the article deals with the problem of a boat on the surface of a rotating liquid. (Contains 1 table, 10 figures and 5 footnotes.)
Land Capability Potential Index (LCPI) for the Lower Missouri River Valley
Jacobson, Robert B.; Chojnacki, Kimberly A.; Reuter, Joanna M.
2007-01-01
The Land Capability Potential Index (LCPI) was developed to serve as a relatively coarse-scale index to delineate broad land capability classes in the valley of the Lower Missouri River. The index integrates fundamental factors that determine suitability of land for various uses, and may provide a useful mechanism to guide land-management decisions. The LCPI was constructed from integration of hydrology, hydraulics, land-surface elevations, and soil permeability (or saturated hydraulic conductivity) datasets for an area of the Lower Missouri River, river miles 423–670. The LCPI estimates relative wetness based on intersecting water-surface elevations, interpolated from measurements or calculated from hydraulic models, with a high-resolution land-surface elevation dataset. The potential for wet areas to retain or drain water is assessed using soil-drainage classes that are estimated from saturated hydraulic conductivity of surface soils. Terrain mapping that delineates areas with convex, concave, and flat parts of the landscape provides another means to assess tendency of landscape patches to retain surface water.
Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.
Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong
2017-12-01
Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Jiafu; Phipps, S.J.; Pitman, A.J.
The CSIRO Mk3L climate system model, a reduced-resolution coupled general circulation model, has previously been described in this journal. The model is configured for millennium scale or multiple century scale simulations. This paper reports the impact of replacing the relatively simple land surface scheme that is the default parameterisation in Mk3L with a sophisticated land surface model that simulates the terrestrial energy, water and carbon balance in a physically and biologically consistent way. An evaluation of the new model s near-surface climatology highlights strengths and weaknesses, but overall the atmospheric variables, including the near-surface air temperature and precipitation, are simulatedmore » well. The impact of the more sophisticated land surface model on existing variables is relatively small, but generally positive. More significantly, the new land surface scheme allows an examination of surface carbon-related quantities including net primary productivity which adds significantly to the capacity of Mk3L. Overall, results demonstrate that this reduced-resolution climate model is a good foundation for exploring long time scale phenomena. The addition of the more sophisticated land surface model enables an exploration of important Earth System questions including land cover change and abrupt changes in terrestrial carbon storage.« less
Impacts of land cover changes on climate trends in Jiangxi province China.
Wang, Qi; Riemann, Dirk; Vogt, Steffen; Glaser, Rüdiger
2014-07-01
Land-use/land-cover (LULC) change is an important climatic force, and is also affected by climate change. In the present study, we aimed to assess the regional scale impact of LULC on climate change using Jiangxi Province, China, as a case study. To obtain reliable climate trends, we applied the standard normal homogeneity test (SNHT) to surface air temperature and precipitation data for the period 1951-1999. We also compared the temperature trends computed from Global Historical Climatology Network (GHCN) datasets and from our analysis. To examine the regional impacts of land surface types on surface air temperature and precipitation change integrating regional topography, we used the observation minus reanalysis (OMR) method. Precipitation series were found to be homogeneous. Comparison of GHCN and our analysis on adjusted temperatures indicated that the resulting climate trends varied slightly from dataset to dataset. OMR trends associated with surface vegetation types revealed a strong surface warming response to land barrenness and weak warming response to land greenness. A total of 81.1% of the surface warming over vegetation index areas (0-0.2) was attributed to surface vegetation type change and regional topography. The contribution of surface vegetation type change decreases as land cover greenness increases. The OMR precipitation trend has a weak dependence on surface vegetation type change. We suggest that LULC integrating regional topography should be considered as a force in regional climate modeling.
NASA Technical Reports Server (NTRS)
Liang, XU; Lettenmaier, Dennis P.; Wood, Eric F.; Burges, Stephen J.
1994-01-01
A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land surface. The infiltration algorithm for the upper layer is essentially the same as for the single layer VIC model, while the lower layer drainage formulation is of the form previously implemented in the Max-Planck-Institut GCM. The model partitions the area of interest (e.g., grid cell) into multiple land surface cover types; for each land cover type the fraction of roots in the upper and lower zone is specified. Evapotranspiration consists of three components: canopy evaporation, evaporation from bare soils, and transpiration, which is represented using a canopy and architectural resistance formulation. Once the latent heat flux has been computed, the surface energy balance is iterated to solve for the land surface temperature at each time step. The model was tested using long-term hydrologic and climatological data for Kings Creek, Kansas to estimate and validate the hydrological parameters, and surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment (FIFE) intensive field campaigns in the summer-fall of 1987 to validate the surface energy fluxes.
NASA Technical Reports Server (NTRS)
Wang, Yansen; Tao, W.-K.; Lau, K.-M.; Wetzel, Peter J.
2003-01-01
The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data fiom the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo- China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the lowlevel temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation.
Soil chemical and physical properties that differentiate urban land-use and cover types
R.V. Pouyat; I.D. Yesilonis; J. Russell-Anelli; N.K. Neerchal
2007-01-01
We investigated the effects of land use and cover and surface geology on soil properties in Baltimore, MD, with the objectives to: (i) measure the physical and chemical properties of surface soils (0?10 cm) by land use and cover; and (ii) ascertain whether land use and cover explain differences in these properties relative to surface geology. Mean and median values of...
This is an ESTE project summary brief. Many of the finished interior surfaces of homes and buildings are composed of materials that are prone to mold growth. These surfaces include gypsum board, wood flooring, insulation, and components of the heating and air conditioning system...
NASA Technical Reports Server (NTRS)
Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng
2004-01-01
Land surface albedo is an important parameter in describing the radiative properties of the earth s surface as it represents the amount of incoming solar radiation that is reflected from the surface. The amount and type of vegetation of the surface dramatically alters the amount of radiation that is reflected; for example, croplands that contain leafy vegetation will reflect radiation very differently than blacktop associated with urban areas. In addition, since vegetation goes through a growth, or phenological, cycle, the amount of radiation that is reflected changes over the course of a year. As a result, albedo is both temporally and spatially dependant upon global location as there is a distribution of vegetated surface types and growing conditions. Land surface albedo is critical for a wide variety of earth system research projects including but not restricted to remote sensing of atmospheric aerosol and cloud properties from space, ground-based analysis of aerosol optical properties from surface-based sun/sky radiometers, biophysically-based land surface modeling of the exchange of energy, water, momentum, and carbon for various land use categories, and surface energy balance studies. These projects require proper representation of the surface albedo s spatial, spectral, and temporal variations, however, these representations are often lacking in datasets prior to the latest generation of land surface albedo products.
NASA Astrophysics Data System (ADS)
Shukla, Shraddhanand; Arsenault, Kristi R.; Getirana, Augusto; Kumar, Sujay V.; Roningen, Jeanne; Zaitchik, Ben; McNally, Amy; Koster, Randal D.; Peters-Lidard, Christa
2017-04-01
Drought and water scarcity are among the important issues facing several regions within Africa and the Middle East. A seamless and effective monitoring and early warning system is needed by regional/national stakeholders. Such system should support a proactive drought management approach and mitigate the socio-economic losses up to the extent possible. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of the LIS models used for drought and water availability monitoring in the region. The second part will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the monitoring and forecasting products through NASA's web-services. The water deficit forecasting system thus far incorporates NOAA's Noah land surface model (LSM), version 3.3, the Variable Infiltration Capacity (VIC) model, version 4.12, NASA GMAO's Catchment LSM, and the Noah Multi-Physics (MP) LSM (the latter two incorporate prognostic water table schemes). In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. The LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. The LIS software framework integrates these forcing datasets and drives the four LSMs and HyMAP. The Land Verification Toolkit (LVT) is used for the evaluation of the LSMs, as it provides model ensemble metrics and the ability to compare against a variety of remotely sensed measurements, like different evapotranspiration (ET) and soil moisture products, and other reanalysis datasets that are available for this region. Comparison of the models' energy and hydrological budgets will be shown for this region (and sub-basin level, e.g., Blue Nile River) and time period (1981-2015), along with evaluating ET, streamflow, groundwater storage and soil moisture, using evaluation metrics (e.g., anomaly correlation, RMSE, etc.). The system uses seasonal climate forecasts from NASA's GMAO (the Goddard Earth Observing System Model, version 5) and NCEP's Climate Forecast System, version 2, and it produces forecasts of soil moisture, ET and streamflow out to 6 months in the future. Forecasts of those variables are formulated in terms of indicators to provide forecasts of drought and water availability in the region.
GIS for the Assessment of the Groundwater Recharge Potential Zone
NASA Astrophysics Data System (ADS)
Lee, C.; Yeh, H.; Chen, J.; Hsu, K.
2008-12-01
Water resources in Taiwan are unevenly distributed in spatial and temporal domains. Effectively utilizing the water resources is an imperative task due to climate change. At present, groundwater contributes 34% of the total annual water supply and is an important fresh water resource. However, over-exploitation has decreased groundwater availability and has led to land subsidence. Assessing the potential zone of groundwater recharge is extremely important for the protection of water quality and the management of groundwater systems. The Chih-Pen Creek basin in eastern Taiwan is examined in this study to assess its groundwater resources potential. Remote sensing and the Geographical Information System (GIS) are used to integrate five contributing factors: lithology, land cover/land use, lineaments, drainage, and slope. The weights of factors contributing to the groundwater recharge are derived using aerial photos, geology maps, a land use database, and field verification. The resultant map of the groundwater potential zone demonstrates that the highest recharge potential area is located towards the downstream regions in the basin because of the high infiltration rates caused by gravelly sand and agricultural land use in these regions. In contrast, the least effective recharge potential area is in upstream regions due to the low infiltration of limestone.
NASA Astrophysics Data System (ADS)
Zareie, Sajad; Khosravi, Hassan; Nasiri, Abouzar; Dastorani, Mostafa
2016-11-01
Land surface temperature (LST) is one of the key parameters in the physics of land surface processes from local to global scales, and it is one of the indicators of environmental quality. Evaluation of the surface temperature distribution and its relation to existing land use types are very important to the investigation of the urban microclimate. In arid and semi-arid regions, understanding the role of land use changes in the formation of urban heat islands is necessary for urban planning to control or reduce surface temperature. The internal factors and environmental conditions of Yazd city have important roles in the formation of special thermal conditions in Iran. In this paper, we used the temperature-emissivity separation (TES) algorithm for LST retrieving from the TIRS (Thermal Infrared Sensor) data of the Landsat Thematic Mapper (TM). The root mean square error (RMSE) and coefficient of determination (R2) were used for validation of retrieved LST values. The RMSE of 0.9 and 0.87 °C and R2 of 0.98 and 0.99 were obtained for the 1998 and 2009 images, respectively. Land use types for the city of Yazd were identified and relationships between land use types, land surface temperature and normalized difference vegetation index (NDVI) were analyzed. The Kappa coefficient and overall accuracy were calculated for accuracy assessment of land use classification. The Kappa coefficient values are 0.96 and 0.95 and the overall accuracy values are 0.97 and 0.95 for the 1998 and 2009 classified images, respectively. The results showed an increase of 1.45 °C in the average surface temperature. The results of this study showed that optical and thermal remote sensing methodologies can be used to research urban environmental parameters. Finally, it was found that special thermal conditions in Yazd were formed by land use changes. Increasing the area of asphalt roads, residential, commercial and industrial land use types and decreasing the area of the parks, green spaces and fallow lands in Yazd caused a rise in surface temperature during the 11-year period.
Deformable structure registration of bladder through surface mapping.
Xiong, Li; Viswanathan, Akila; Stewart, Alexandra J; Haker, Steven; Tempany, Clare M; Chin, Lee M; Cormack, Robert A
2006-06-01
Cumulative dose distributions in fractionated radiation therapy depict the dose to normal tissues and therefore may permit an estimation of the risk of normal tissue complications. However, calculation of these distributions is highly challenging because of interfractional changes in the geometry of patient anatomy. This work presents an algorithm for deformable structure registration of the bladder and the verification of the accuracy of the algorithm using phantom and patient data. In this algorithm, the registration process involves conformal mapping of genus zero surfaces using finite element analysis, and guided by three control landmarks. The registration produces a correspondence between fractions of the triangular meshes used to describe the bladder surface. For validation of the algorithm, two types of balloons were inflated gradually to three times their original size, and several computerized tomography (CT) scans were taken during the process. The registration algorithm yielded a local accuracy of 4 mm along the balloon surface. The algorithm was then applied to CT data of patients receiving fractionated high-dose-rate brachytherapy to the vaginal cuff, with the vaginal cylinder in situ. The patients' bladder filling status was intentionally different for each fraction. The three required control landmark points were identified for the bladder based on anatomy. Out of an Institutional Review Board (IRB) approved study of 20 patients, 3 had radiographically identifiable points near the bladder surface that were used for verification of the accuracy of the registration. The verification point as seen in each fraction was compared with its predicted location based on affine as well as deformable registration. Despite the variation in bladder shape and volume, the deformable registration was accurate to 5 mm, consistently outperforming the affine registration. We conclude that the structure registration algorithm presented works with reasonable accuracy and provides a means of calculating cumulative dose distributions.
NASA Astrophysics Data System (ADS)
Brown, R. A.
2005-08-01
This paper is adapted from a presentation at the session of the European Geophysical Society meeting in 2002 honouring Joost Businger. It documents the interaction of the non-linear planetary boundary-layer (PBL) model (UW-PBL) and satellite remote sensing of marine surface winds from verification and calibration studies for the sensor model function to the current state of verification of the model by satellite data. It is also a personal history where Joost Businger had seminal input to this research at several critical junctures. The first scatterometer in space was on SeaSat in 1978, while currently in orbit there are the QuikSCAT and ERS-2 scatterometers and the WindSat radiometer. The volume and detail of data from the scatterometers during the past decade are unprecedented, though the value of these data depends on a careful interpretation of the PBL dynamics. The model functions (algorithms) that relate surface wind to sensor signal have evolved from straight empirical correlation with simple surface-layer 10-m winds to satellite sensor model functions for surface pressure fields. A surface stress model function is also available. The validation data for the satellite model functions depended crucially on the PBL solution. The non-linear solution for the flow of fluid in the boundary layer of a rotating coordinate system was completed in 1969. The implications for traditional ways of measuring and modelling the PBL were huge and continue to this day. Unfortunately, this solution replaced an elegant one by Ekman with a stability/finite perturbation equilibrium solution. Consequently, there has been great reluctance to accept this solution. The verification of model predictions has been obtained from the satellite data.
NASA Technical Reports Server (NTRS)
Bounoua, L.; Zhang, P.; Imhoff, M.; Santanello, J.; Kumar, S.; Shepherd, M.; Quattrochi, D.; Silva, J.; Rosenzweigh, C.; Gaffin, S.;
2013-01-01
Urbanization is one of the most important and long lasting forms of land transformation. Urbanization affects the surface climate in different ways: (1) by reduction of the vegetation fraction causing subsequent reduction in photosynthesis and plant s water transpiration, (2) by alternation of surface runoff and infiltration and their impacts on soil moisture and the water table, (3) by change in the surface albedo and surface energy partitioning, and (4) by transformation of the surface roughness length and modification of surface fluxes. Land cover and land use change maps including urban areas have been developed and will be used in a suite of land surface models of different complexity to assess the impacts of urbanization on the continental US surface climate. These maps and datasets based on a full range of available satellite data and ground observations will be used to characterize distant-past (pre-urban), recent-past (2001), present (2010), and near future (2020) land cover and land use changes. The main objective of the project is to assess the impacts of these land transformation on past, current and near-future climate and the potential feedbacks from these changes on the atmospheric, hydrologic, biological, and socio-economic properties beyond the immediate metropolitan regions of cities and their near suburbs. The WRF modeling system will be used to explore the nature and the magnitude of the two-way interactions between urban lands and the atmosphere and assess the overall regional dynamic effect of urban expansion on the northeastern US weather and climate
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employees (from left) Dave Sanborn, Butch Lato, and Bill Brooks conduct a bond verification test on Thermal Protection System tiles newly installed on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.
Combining Mechanistic Approaches for Studying Eco-Hydro-Geomorphic Coupling
NASA Astrophysics Data System (ADS)
Francipane, A.; Ivanov, V.; Akutina, Y.; Noto, V.; Istanbullouglu, E.
2008-12-01
Vegetation interacts with hydrology and geomorphic form and processes of a river basin in profound ways. Despite recent advances in hydrological modeling, the dynamic coupling between these processes is yet to be adequately captured at the basin scale to elucidate key features of process interaction and their role in the organization of vegetation and landscape morphology. In this study, we present a blueprint for integrating a geomorphic component into the physically-based, spatially distributed ecohydrological model, tRIBS- VEGGIE, which reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. We present a preliminary design of the integrated modeling framework in which hillslope and channel erosion processes at the catchment scale, will be coupled with vegetation-hydrology dynamics. We evaluate the developed framework by applying the integrated model to Lucky Hills basin, a sub-catchment of the Walnut Gulch Experimental Watershed (Arizona). The evaluation is carried out by comparing sediment yields at the basin outlet, that follows a detailed verification of simulated land-surface energy partition, biomass dynamics, and soil moisture states.
Phillips, Jeff V.; Ingersoll, Todd L.
1998-01-01
Physical and hydraulic characteristics are presented for 14 river and canal reaches in Arizona for which 37 roughness coefficients have been determined. The verified roughness coefficients which ranged from 0.017 to 0.067, were computed from discharges, channel geometry, and water-surface profiles measured at each of the sites. The information given for each stream segment includes bed and bank descriptions, data tables showing hydraulic components, a plan view, cross-section plots, and color photographs that can be used as a comparison aid in determining roughness coefficients for similarly channeled streams. Relations derived from the data presented relate Manning's roughness coefficient (n) to various hydraulic components. For gravel-bed streams, verified roughness coefficients are related to median grain size of the bed material and hydraulic radius resulting in an equation that can be used to transfer results to similar dry-land channels. The equation developed for base values of n for gravel-bed channels in Arizona is significantly different from similarly derived equations for other regions of the United States and the world.
30 CFR 740.15 - Bonds on Federal lands.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS... surface coal mining, the applicant for a mining permit, if unable to obtain the written consent of the...
USDA-ARS?s Scientific Manuscript database
Partitioned land surfaces fluxes (e.g. evaporation, transpiration, photosynthesis, and ecosystem respiration) are needed as input, calibration, and validation data for numerous hydrological and land surface models. However, one of the most commonly used techniques for measuring land surface fluxes,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scribner, R.A.
Sea-launched cruise missiles (SLCMs) present some particularly striking problems for both national security and arms control. These small, dual-purpose, difficult to detect weapons present some formidable challenges for verification in any scheme that attempts to limit rather than eliminate them. Conventionally armed SLCMs offer to the navies of both superpowers important offensive and defensive capabilities. Nuclear armed, long-range, land-attack SLCMs, on the other hand, seem to pose destabilizing threats and otherwise have questionable value, despite strong US support for extensive deployment of them. If these weapons are not constrained, their deployment could circumvent gains which might be made in agreementsmore » directly reducing of strategic nuclear weapons. This paper reviews the technology and planned deployments of SLCMs, the verification schemes which have been discussed and are being investigated to try to deal with the problem, and examines the proposed need for and possible uses of SLCMs. It presents an overview of the problem technically, militarily, and politically.« less
Utility of Thermal Infrared Satellite Data For Urban Landscapes
NASA Astrophysics Data System (ADS)
Xian, G.; Crane, M.; Granneman, B.
2006-12-01
Urban landscapes are comprised of a variety of surfaces that are characterized by contrasting radiative, thermal, aerodynamic, and moisture properties. These different surfaces possess diverse physical and thermal attributes that directly influence surface energy balance and our ability to determine surface characteristics in urban areas. Reflectance properties obtained from satellite imagery have proven useful for mapping urban land use and land cover change, as well as ecosystem health. Landsat reflectance bands are commonly used in regression tree models to generate linear equations that correspond to distinct land surface materials. However, urban land cover is generally a heterogeneous mix of bare soil, vegetation, rock, and anthropogenic impervious surfaces. Surface temperature obtained from satellite thermal infrared bands provides valuable information about surface biophysical properties and radiant thermal characteristics of land cover elements, especially for urban environments. This study demonstrates the improved characterization of land cover conditions for Seattle, Washington, and Las Vegas, Nevada, that were achieved by using both the reflectance and thermal bands of Landsat Enhanced Thematic Mapper Plus (ETM+) data. Including the thermal band in the image analysis increased the accuracy of discriminating cover types in heterogeneous landscapes with extreme contrasts, especially for mixed pixels at the urban interface.
NASA Astrophysics Data System (ADS)
Sabuncu, A.; Uca Avci, Z. D.; Sunar, F.
2016-06-01
Earthquakes are the most destructive natural disasters, which result in massive loss of life, infrastructure damages and financial losses. Earthquake-induced building damage detection is a very important step after earthquakes since earthquake-induced building damage is one of the most critical threats to cities and countries in terms of the area of damage, rate of collapsed buildings, the damage grade near the epicenters and also building damage types for all constructions. Van-Ercis (Turkey) earthquake (Mw= 7.1) was occurred on October 23th, 2011; at 10:41 UTC (13:41 local time) centered at 38.75 N 43.36 E that places the epicenter about 30 kilometers northern part of the city of Van. It is recorded that, 604 people died and approximately 4000 buildings collapsed or seriously damaged by the earthquake. In this study, high-resolution satellite images of Van-Ercis, acquired by Quickbird-2 (Digital Globe Inc.) after the earthquake, were used to detect the debris areas using an object-based image classification. Two different land surfaces, having homogeneous and heterogeneous land covers, were selected as case study areas. As a first step of the object-based image processing, segmentation was applied with a convenient scale parameter and homogeneity criterion parameters. As a next step, condition based classification was used. In the final step of this preliminary study, outputs were compared with streetview/ortophotos for the verification and evaluation of the classification accuracy.
NASA Astrophysics Data System (ADS)
Souleymane, S.
2015-12-01
West Africa has been highlighted as a hot spot of land surface-atmosphere interactions. This study analyses the outputs of the project Land-Use and Climate, IDentification of Robust Impacts (LUCID) over West Africa. LUCID used seven atmosphere-land models with a common experimental design to explore the impacts of Land Use induced Land Cover Change (LULCC) that are robust and consistent across the climate models. Focusing the analysis on Sahel and Guinea, this study shows that, even though the seven climate models use the same atmospheric and land cover forcing, there are significant differences of West African Monsoon variability across the climate models. The magnitude of that variability differs significantly from model to model resulting two major "features": (1) atmosphere dynamics models; (2) how the land-surface functioning is parameterized in the Land surface Model, in particular regarding the evapotranspiration partitioning within the different land-cover types, as well as the role of leaf area index (LAI) in the flux calculations and how strongly the surface is coupled to the atmosphere. The major role that the models'sensitivity to land-cover perturbations plays in the resulting climate impacts of LULCC has been analysed in this study. The climate models show, however, significant differences in the magnitude and the seasonal partitioning of the temperature change. The LULCC induced cooling is directed by decreases in net shortwave radiation that reduced the available energy (QA) (related to changes in land-cover properties other than albedo, such as LAI and surface roughness), which decreases during most part of the year. The biophysical impacts of LULCC were compared to the impact of elevated greenhouse gases resulting changes in sea surface temperatures and sea ice extent (CO2SST). The results show that the surface cooling (related a decrease in QA) induced by the biophysical effects of LULCC are insignificant compared to surface warming (related an increase in QA), which is induced by the regional significance effect of CO2SST due to a small LULCC imposed. In contrast, the decrease of surface water balance resulting from LULCC effect is a similar sign to those resulting from CO2SST but the signal resulting of the biophysical effects of LULCC is stronger than the regional CO2SST impact.
Study on temporal and spatial variations of urban land use based on land change data
NASA Astrophysics Data System (ADS)
Jiang, Ping; Liu, Yanfang; Fan, Min; Zhang, Yang
2009-10-01
With the rapid development of urbanization, demands of urban land increase in succession, hence, to analyze temporal and spatial variations of urban land use becomes more and more important. In this paper, the principle of trend surface analysis and formula of urban land sprawl index ( ULSI) are expatiated at first, and then based on land change data of Jiayu county, the author fits quadratic trend surface by choosing urban land area as dependent variable and urbanization and GDP as independent variables from 1996 to 2006, draws isoline of trend surface and residual values; and then urban land sprawl indexes of towns are calculated on the basis of urban land area of 1996 and 2006 and distribution map of ULSI is plotted. After analyzing those results, we can conclude that there is consanguineous relationship between urban land area and urbanization, economic level etc.
Steyaert, Louis T.; Knox, R.G.
2008-01-01
Over the past 350 years, the eastern half of the United States experienced extensive land cover changes. These began with land clearing in the 1600s, continued with widespread deforestation, wetland drainage, and intensive land use by 1920, and then evolved to the present-day landscape of forest regrowth, intensive agriculture, urban expansion, and landscape fragmentation. Such changes alter biophysical properties that are key determinants of land-atmosphere interactions (water, energy, and carbon exchanges). To understand the potential implications of these land use transformations, we developed and analyzed 20-km land cover and biophysical parameter data sets for the eastern United States at 1650, 1850, 1920, and 1992 time slices. Our approach combined potential vegetation, county-level census data, soils data, resource statistics, a Landsat-derived land cover classification, and published historical information on land cover and land use. We reconstructed land use intensity maps for each time slice and characterized the land cover condition. We combined these land use data with a mutually consistent set of biophysical parameter classes, to characterize the historical diversity and distribution of land surface properties. Time series maps of land surface albedo, leaf area index, a deciduousness index, canopy height, surface roughness, and potential saturated soils in 1650, 1850, 1920, and 1992 illustrate the profound effects of land use change on biophysical properties of the land surface. Although much of the eastern forest has returned, the average biophysical parameters for recent landscapes remain markedly different from those of earlier periods. Understanding the consequences of these historical changes will require land-atmosphere interactions modeling experiments.
2009-10-01
variational data assimilation technique are profiles of temperature, water vapour and ozone , surface temperature and spectrally varying emissivity. HOW TO...that are insensitive to the land surface because of the complexity of the land surface emissivity. We have utilised the techniques described here for...state as well as surface properties. Furthermore with by utilising a variational assimilation technique and a state of the art Numerical Weather
Internal Physical Features of a Land Surface Model Employing a Tangent Linear Model
NASA Technical Reports Server (NTRS)
Yang, Runhua; Cohn, Stephen E.; daSilva, Arlindo; Joiner, Joanna; Houser, Paul R.
1997-01-01
The Earth's land surface, including its biomass, is an integral part of the Earth's weather and climate system. Land surface heterogeneity, such as the type and amount of vegetative covering., has a profound effect on local weather variability and therefore on regional variations of the global climate. Surface conditions affect local weather and climate through a number of mechanisms. First, they determine the re-distribution of the net radiative energy received at the surface, through the atmosphere, from the sun. A certain fraction of this energy increases the surface ground temperature, another warms the near-surface atmosphere, and the rest evaporates surface water, which in turn creates clouds and causes precipitation. Second, they determine how much rainfall and snowmelt can be stored in the soil and how much instead runs off into waterways. Finally, surface conditions influence the near-surface concentration and distribution of greenhouse gases such as carbon dioxide. The processes through which these mechanisms interact with the atmosphere can be modeled mathematically, to within some degree of uncertainty, on the basis of underlying physical principles. Such a land surface model provides predictive capability for surface variables including ground temperature, surface humidity, and soil moisture and temperature. This information is important for agriculture and industry, as well as for addressing fundamental scientific questions concerning global and local climate change. In this study we apply a methodology known as tangent linear modeling to help us understand more deeply, the behavior of the Mosaic land surface model, a model that has been developed over the past several years at NASA/GSFC. This methodology allows us to examine, directly and quantitatively, the dependence of prediction errors in land surface variables upon different vegetation conditions. The work also highlights the importance of accurate soil moisture information. Although surface variables are predicted imperfectly due to inherent uncertainties in the modeling process, our study suggests how satellite observations can be combined with the model, through land surface data assimilation, to improve their prediction.
Analysis of surface energy budget data over varying land-cover conditions.
USDA-ARS?s Scientific Manuscript database
The surface energy budget plays an important role in boundary-layer meteorology and quantifying these budgets over varying land surface types is important in studying land-atmosphere interactions. In late April 2007, eddy covariance towers were erected at four sites in the Little Washita Watershed i...
Estimation of effective aerodynamic roughness with altimeter measurements
NASA Technical Reports Server (NTRS)
Menenti, M.; Ritchie, J. C.
1992-01-01
A new method is presented for estimating the aerodynamic roughness length of heterogeneous land surfaces and complex landscapes using elevation measurements performed with an airborne laser altimeter and the Seasat radar altimeter. Land surface structure is characterized at increasing length scales by considering three basic landscape elements: (1) partial to complete canopies of herbaceous vegetation; (2) sparse obstacles (e.g., shrubs and trees); and (3) local relief. Measured parameters of land surface geometry are combined to obtain an effective aerodynamic roughness length which parameterizes the total atmosphere-land surface stress.
Land Surface Process and Air Quality Research and Applications at MSFC
NASA Technical Reports Server (NTRS)
Quattrochi, Dale; Khan, Maudood
2007-01-01
This viewgraph presentation provides an overview of land surface process and air quality research at MSFC including atmospheric modeling and ongoing research whose objective is to undertake a comprehensive spatiotemporal analysis of the effects of accurate land surface characterization on atmospheric modeling results, and public health applications. Land use maps as well as 10 meter air temperature, surface wind, PBL mean difference heights, NOx, ozone, and O3+NO2 plots as well as spatial growth model outputs are included. Emissions and general air quality modeling are also discussed.
A new reference evapotranspiration surface for the National Water Census community
NASA Astrophysics Data System (ADS)
Verdin, J. P.; Hobbins, M. T.; Senay, G. B.
2012-12-01
To meet its congressional mandate to provide water managers with accurate, up-to-date, scientifically defensible reporting on the national water cycle—the National Water Census—the USGS has developed a framework for ongoing estimation of actual evapotranspiration (ET) combining both land-based and remotely sensed (R/S) drivers and is transferable to observation-scarce regions. To provide ET at Census-required resolutions (~100-1000 m), we combine (i) an operational, long-term, high-quality, scientific record of reference crop ET (ETrc), (ii) R/S land-surface temperature (LST) and reflectance at finer spatial scales but coarser temporal scales, and (iii) the USDA Annual Cropland Data Layer as a geographic mask for cropped surfaces. Our presentation motivates this new ET framework and describes its ETrc input. The ETrc is generated by the Penman-Monteith equation, driven by hourly, 0.125-degree (~12-km) NLDAS data, from Jan 1, 1979, to within five days of the present. This is the first consistently modeled, daily, continent-wide ETrc dataset that is both up-to-date and as temporally extensive. The R/S component relies on this input to provide an ETrc magnitude at coarse scale relative to the imagery. Remote sensing of LST and/or surface reflectance permits inference of ET as a fraction of ETrc. One such method used by the USGS is the Simplified Surface Energy Balance (SSEB) approach, which adapted the hot and cold pixel approach of SEBAL/METRIC; an operational version (SSEBop) calculates ET-fraction for a given pixel and combines it with ETrc to estimate and map ET on a routine basis with a high degree of consistency at multiple spatial scales. Though these imagery options have limited temporal coverage due to the time between satellite overpasses (1 to 8 days for MODIS, 16 days for Landsat), ET-fraction so derived is stable on such time scales. Thus, as ETrc varies significantly across the diurnal cycle and inter-overpass periods, it is used to track conditions during these temporal gaps, to overcome issues of cloudiness and missing satellite data. This methodology demonstrates the complementary functionalities of land-based and R/S datasets and is transposable to data-poor environments using GDAS and R/S products, as demonstrated by the global gridded time series produced by USGS for the Famine Early Warning Systems Network to support crop water balance modeling in developing countries. The continent-wide ETrc will be verified against in situ weather station networks, while a first-order, second-moment uncertainty analysis will indicate in space and time which drivers require the most attention. The verification and uncertainty analyses will underline the challenges faced in achieving the same level of accuracy in the global product and highlight the need for more station data sets in diverse hydro-climatic regions and in developing countries. The operational land-based ETrc surface will be provided by NOAA from its new National Water Center, while the assimilation with R/S data will be conducted at USGS EROS and by cooperators. To meet the needs of the Census, USGS hopes to partner with those who might also be using R/S ET to estimate crop water use for administration of interstate compacts, state water rights, water supply management, and research.
NASA Astrophysics Data System (ADS)
Weigel, A. M.; Griffin, R.; Knupp, K. R.; Molthan, A.; Coleman, T.
2017-12-01
Northern Alabama is among the most tornado-prone regions in the United States. This region has a higher degree of spatial variability in both terrain and land cover than the more frequently studied North American Great Plains region due to its proximity to the southern Appalachian Mountains and Cumberland Plateau. More research is needed to understand North Alabama's high tornado frequency and how land surface heterogeneity influences tornadogenesis in the boundary layer. Several modeling and simulation studies stretching back to the 1970's have found that variations in the land surface induce tornadic-like flow near the surface, illustrating a need for further investigation. This presentation introduces research investigating the hypothesis that horizontal gradients in land surface roughness, normal to the direction of flow in the boundary layer, induce vertically oriented vorticity at the surface that can potentially aid in tornadogenesis. A novel approach was implemented to test this hypothesis using a GIS-based quadrant pattern analysis method. This method was developed to quantify spatial relationships and patterns between horizontal variations in land surface roughness and locations of tornadogenesis. Land surface roughness was modeled using the Noah land surface model parameterization scheme which, was applied to MODIS 500 m and Landsat 30 m data in order to compare the relationship between tornadogenesis locations and roughness gradients at different spatial scales. This analysis found a statistical relationship between areas of higher roughness located normal to flow surrounding tornadogenesis locations that supports the tested hypothesis. In this presentation, the innovative use of satellite remote sensing data and GIS technologies to address interactions between the land and atmosphere will be highlighted.
Estimating the extent of impervious surfaces and turf grass across large regions
Claggett, Peter; Irani, Frederick M.; Thompson, Renee L.
2013-01-01
The ability of researchers to accurately assess the extent of impervious and pervious developed surfaces, e.g., turf grass, using land-cover data derived from Landsat satellite imagery in the Chesapeake Bay watershed is limited due to the resolution of the data and systematic discrepancies between developed land-cover classes, surface mines, forests, and farmlands. Estimates of impervious surface and turf grass area in the Mid-Atlantic, United States that were based on 2006 Landsat-derived land-cover data were substantially lower than estimates based on more authoritative and independent sources. New estimates of impervious surfaces and turf grass area derived using land-cover data combined with ancillary information on roads, housing units, surface mines, and sampled estimates of road width and residential impervious area were up to 57 and 45% higher than estimates based strictly on land-cover data. These new estimates closely approximate estimates derived from authoritative and independent sources in developed counties.
Understanding land surface evapotranspiration with satellite multispectral measurements
NASA Technical Reports Server (NTRS)
Menenti, M.
1993-01-01
Quantitative use of remote multispectral measurements to study and map land surface evapotranspiration has been a challenging issue for the past 20 years. Past work is reviewed against process physics. A simple two-layer combination-type model is used which is applicable to both vegetation and bare soil. The theoretic analysis is done to show which land surface properties are implicitly defined by such evaporation models and to assess whether they are measurable as a matter of principle. Conceptual implications of the spatial correlation of land surface properties, as observed by means of remote multispectral measurements, are illustrated with results of work done in arid zones. A normalization of spatial variability of land surface evaporation is proposed by defining a location-dependent potential evaporation and surface temperature range. Examples of the application of remote based estimates of evaporation to hydrological modeling studies in Egypt and Argentina are presented.
NASA Astrophysics Data System (ADS)
Zheng, Guang; Nie, Hong; Luo, Min; Chen, Jinbao; Man, Jianfeng; Chen, Chuanzhi; Lee, Heow Pueh
2018-07-01
The purpose of this paper is to obtain the design parameter-landing response relation for designing the configuration of the landing gear in a planet lander quickly. To achieve this, parametric studies on the landing gear are carried out using the response surface method (RSM), based on a single landing gear landing model validated by experimental results. According to the design of experiment (DOE) results of the landing model, the RS (response surface)-functions of the three crucial landing responses are obtained, and the sensitivity analysis (SA) of the corresponding parameters is performed. Also, two multi-objective optimizations designs on the landing gear are carried out. The analysis results show that the RS (response surface)-model performs well for the landing response design process, with a minimum fitting accuracy of 98.99%. The most sensitive parameters for the three landing response are the design size of the buffers, struts friction and the diameter of the bending beam. Moreover, the good agreement between the simulated model and RS-model results are obtained in two optimized designs, which show that the RS-model coupled with the FE (finite element)-method is an efficient method to obtain the design configuration of the landing gear.
NASA Astrophysics Data System (ADS)
Reyes, B.; Vahmani, P.; Hogue, T. S.; Maxwell, R. M.
2013-05-01
Irrigation can significantly alter land surface properties including increases in evapotranspiration (ET) and latent heat flux and a decrease in land surface temperatures that have a wide range of effects on the hydrologic cycle. However, most irrigation in land surface modeling studies has generally been limited to large-scale cropland applications while ignoring the, relatively, much smaller use of irrigation in urban areas. Although this assumption may be valid in global studies, as we seek to apply models at higher resolutions and at more local scales, irrigation in urban areas can become a key factor in land-atmosphere interactions. Landscape irrigation can account for large portions of residential urban water use, especially in semi-arid environments (e.g. ~50% in Los Angeles, CA). Previous modeling efforts in urbanized semi-arid regions have shown that disregarding irrigation leads to inaccurate representation of the energy budget. The current research models a 49.5-km2 (19.11-mi2) domain near downtown Los Angeles in the Ballona Creek watershed at a high spatial and temporal resolution using a coupled hydrologic (ParFlow) and land surface model (CLM). Our goals are to (1) provide a sensitivity analysis for urban irrigation parameters including sensitivity to total volume and timing of irrigation, (2) assess the effects of irrigation on varying land cover types on the energy budget, and (3) evaluate if residential water use data is useful in providing estimates for irrigation in land surface modeling. Observed values of land surface parameters from remote sensing products (Land Surface Temperature and ET), water use data from the Los Angeles Department of Water and Power (LADWP), and modeling results from an irrigated version of the NOAH-Urban Canopy Model are being used for comparison and evaluation. Our analysis provides critical information on the degree to which urban irrigation should be represented in high-resolution, semi-arid urban land surface modeling of the region. This research also yields robust upper-boundary conditions for further analysis and modeling in Los Angeles.
NASA Astrophysics Data System (ADS)
Ricciuto, D. M.; Mei, R.; Mao, J.; Hoffman, F. M.; Kumar, J.
2015-12-01
Uncertainties in land parameters could have important impacts on simulated water and energy fluxes and land surface states, which will consequently affect atmospheric and biogeochemical processes. Therefore, quantification of such parameter uncertainties using a land surface model is the first step towards better understanding of predictive uncertainty in Earth system models. In this study, we applied a random-sampling, high-dimensional model representation (RS-HDMR) method to analyze the sensitivity of simulated photosynthesis, surface energy fluxes and surface hydrological components to selected land parameters in version 4.5 of the Community Land Model (CLM4.5). Because of the large computational expense of conducting ensembles of global gridded model simulations, we used the results of a previous cluster analysis to select one thousand representative land grid cells for simulation. Plant functional type (PFT)-specific uniform prior ranges for land parameters were determined using expert opinion and literature survey, and samples were generated with a quasi-Monte Carlo approach-Sobol sequence. Preliminary analysis of 1024 simulations suggested that four PFT-dependent parameters (including slope of the conductance-photosynthesis relationship, specific leaf area at canopy top, leaf C:N ratio and fraction of leaf N in RuBisco) are the dominant sensitive parameters for photosynthesis, surface energy and water fluxes across most PFTs, but with varying importance rankings. On the other hand, for surface ans sub-surface runoff, PFT-independent parameters, such as the depth-dependent decay factors for runoff, play more important roles than the previous four PFT-dependent parameters. Further analysis by conditioning the results on different seasons and years are being conducted to provide guidance on how climate variability and change might affect such sensitivity. This is the first step toward coupled simulations including biogeochemical processes, atmospheric processes or both to determine the full range of sensitivity of Earth system modeling to land-surface parameters. This can facilitate sampling strategies in measurement campaigns targeted at reduction of climate modeling uncertainties and can also provide guidance on land parameter calibration for simulation optimization.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Kirstetter, P. E.; Hong, Y.; Wen, Y.; Turk, J.; Gourley, J. J.
2015-12-01
One of primary uncertainties in satellite overland quantitative precipitation estimates (QPE) from passive sensors such as radiometers is the impact on the brightness temperatures by the surface land emissivity. The complexity of surface land emissivity is linked to its temporal variations (diurnal and seasonal) and spatial variations (subsurface vertical profiles of soil moisture, vegetation structure and surface temperature) translating into sub-pixel heterogeneity within the satellite field of view (FOV). To better extract the useful signal from hydrometeors, surface land emissivity needs to be determined and filtered from the satellite-measured brightness temperatures. Based on the dielectric properties of surface land cover constitutes, Microwave Polarization Differential index (MPDI) is expected to carry the composite effect of surface land properties on land surface emissivity, with a higher MPDI indicating a lower emissivity. This study analyses the dependence of MPDI to soil moisture, vegetation and surface skin temperature over 9 different land surface types. Such analysis is performed using the normalized difference vegetation index (NDVI) from MODIS, the near surface air temperature from the RAP model and ante-precedent precipitation accumulation from the Multi-Radar Multi-Sensor as surrogates for the vegetation, surface skin temperature and shallow layer soil moisture, respectively. This paper provides 1) evaluations of brightness temperature-based MPDI from the TRMM and GPM Microwave Imagers in both raining and non-raining conditions to test the dependence of MPDI to precipitation; 2) comparisons of MPDI categorized into instantly before, during and immediately after selected precipitation events to examine the impact of modest-to-heavy precipitation on the spatial pattern of MPDI; 3) inspections of relationship between MPDI versus rain fraction and rain rate within the satellite sensors FOV to investigate the behaviors of MPDI in varying precipitation conditions; 4) analysis of discrepancies of MPDI over 10.65, 19.35, 37 and 85.8 GHz to identify the sensitivity of MPDS to microwave wavelengths.
NASA Technical Reports Server (NTRS)
Wang, Yansen; Tao, W.-K.; Lau, K.-M.; Wetzel, Peter J.
2004-01-01
The onset of the southeast Asian monsoon during 1997 and 1998 was simulated by coupling a mesoscale atmospheric model (MM5) and a detailed, land surface model, PLACE (the Parameterization for Land-Atmosphere-Cloud Exchange). The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The control simulation with the PLACE land surface model and variable sea surface temperature captured the basic signatures of the monsoon onset processes and associated rainfall statistics. Sensitivity tests indicated that simulations were sigmficantly improved by including the PLACE land surface model. The mechanism by which the land surface processes affect the moisture transport and the convection during the onset of the southeast Asian monsoon were analyzed. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation: the southwest low-level flow over the Indo-china peninsula and the northern, cold frontal intrusion from southern China. The surface sensible and latent heat fluxes modified the low-level temperature distribution and gradient, and therefore the low-level wind due to the thermal wind effect. The more realistic forcing of the sensible and latent heat fluxes from the detailed, land surface model improved the low-level wind simulation apd associated moisture transport and convection.
NASA Technical Reports Server (NTRS)
Wang, Yansen; Tao, W.-K.; Lau, K.-M.; Wetzel, Peter J.
2004-01-01
The onset of the southeast Asian monsoon during 1997 and 1998 was simulated by coupling a mesoscale atmospheric model (MM5) and a detailed, land surface model, PLACE (the Parameterization for Land-Atmosphere-Cloud Exchange). The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The control simulation with the PLACE land surface model and variable sea surface temperature captured the basic signatures of the monsoon onset processes and associated rainfall statistics. Sensitivity tests indicated that simulations were significantly improved by including the PLACE land surface model. The mechanism by which the land surface processes affect the moisture transport and the convection during the onset of the southeast Asian monsoon were analyzed. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation: the southwest low-level flow over the Indo-China peninsula and the northern, cold frontal intrusion from southern China. The surface sensible and latent heat fluxes modified the low-level temperature distribution and merit, and therefore the low-level wind due to the thermal wind effect. The more realistic forcing of the sensible and latent heat fluxes from the detailed, land surface model improved the low-level wind simulation and associated moisture transport and convection.
Surface inspection: Research and development
NASA Technical Reports Server (NTRS)
Batchelder, J. S.
1987-01-01
Surface inspection techniques are used for process learning, quality verification, and postmortem analysis in manufacturing for a spectrum of disciplines. First, trends in surface analysis are summarized for integrated circuits, high density interconnection boards, and magnetic disks, emphasizing on-line applications as opposed to off-line or development techniques. Then, a closer look is taken at microcontamination detection from both a patterned defect and a particulate inspection point of view.
NASA Technical Reports Server (NTRS)
Strack, John E.; Pielke, Roger A.; Steyaert, Louis T.; Knox, Robert G.
2008-01-01
Land cover changes alter the near surface weather and climate. Changes in land surface properties such as albedo, roughness length, stomatal resistance, and leaf area index alter the surface energy balance, leading to differences in near surface temperatures. This study utilized a newly developed land cover data set for the eastern United States to examine the influence of historical land cover change on June temperatures and precipitation. The new data set contains representations of the land cover and associated biophysical parameters for 1650, 1850, 1920, and 1992, capturing the clearing of the forest and the expansion of agriculture over the eastern United States from 1650 to the early twentieth century and the subsequent forest regrowth. The data set also includes the inferred distribution of potentially water-saturated soils at each time slice for use in the sensitivity tests. The Regional Atmospheric Modeling System, equipped with the Land Ecosystem-Atmosphere Feedback (LEAF-2) land surface parameterization, was used to simulate the weather of June 1996 using the 1992, 1920, 1850, and 1650 land cover representations. The results suggest that changes in surface roughness and stomatal resistance have caused present-day maximum and minimum temperatures in the eastern United States to warm by about 0.3 C and 0.4 C, respectively, when compared to values in 1650. In contrast, the maximum temperatures have remained about the same, while the minimums have cooled by about 0.1 C when compared to 1920. Little change in precipitation was found.
Strack, John E.; Pielke, Roger A.; Steyaert, Louis T.; Knox, Robert G.
2008-01-01
Land cover changes alter the near surface weather and climate. Changes in land surface properties such as albedo, roughness length, stomatal resistance, and leaf area index alter the surface energy balance, leading to differences in near surface temperatures. This study utilized a newly developed land cover data set for the eastern United States to examine the influence of historical land cover change on June temperatures and precipitation. The new data set contains representations of the land cover and associated biophysical parameters for 1650, 1850, 1920, and 1992, capturing the clearing of the forest and the expansion of agriculture over the eastern United States from 1650 to the early twentieth century and the subsequent forest regrowth. The data set also includes the inferred distribution of potentially water‐saturated soils at each time slice for use in the sensitivity tests. The Regional Atmospheric Modeling System, equipped with the Land Ecosystem‐Atmosphere Feedback (LEAF‐2) land surface parameterization, was used to simulate the weather of June 1996 using the 1992, 1920, 1850, and 1650 land cover representations. The results suggest that changes in surface roughness and stomatal resistance have caused present‐day maximum and minimum temperatures in the eastern United States to warm by about 0.3°C and 0.4°C, respectively, when compared to values in 1650. In contrast, the maximum temperatures have remained about the same, while the minimums have cooled by about 0.1°C when compared to 1920. Little change in precipitation was found.
USDA-ARS?s Scientific Manuscript database
Land surface processes play an important role in West African monsoon variability and land –atmosphere coupling has been shown to be particularly important in the Sahel. In addition, the evolution of hydrological systems in this region, and particularly the increase of surface water and runoff coeff...
Environmental Verification Experiment for the Explorer Platform (EVEEP)
NASA Technical Reports Server (NTRS)
Norris, Bonnie; Lorentson, Chris
1992-01-01
Satellites and long-life spacecraft require effective contamination control measures to ensure data accuracy and maintain overall system performance margins. Satellite and spacecraft contamination can occur from either molecular or particulate matter. Some of the sources of the molecular species are as follows: mass loss from nonmetallic materials; venting of confined spacecraft or experiment volumes; exhaust effluents from attitude control systems; integration and test activities; and improper cleaning of surfaces. Some of the sources of particulates are as follows: leaks or purges which condense upon vacuum exposure; abrasion of movable surfaces; and micrometeoroid impacts. The Environmental Verification Experiment for the Explorer Platform (EVEEP) was designed to investigate the following aspects of spacecraft contamination control: materials selection; contamination modeling of existing designs; and thermal vacuum testing of a spacecraft with contamination monitors.
NASA Technical Reports Server (NTRS)
Chen, Fei; Yates, David; LeMone, Margaret
2001-01-01
To understand the effects of land-surface heterogeneity and the interactions between the land-surface and the planetary boundary layer at different scales, we develop a multiscale data set. This data set, based on the Cooperative Atmosphere-Surface Exchange Study (CASES97) observations, includes atmospheric, surface, and sub-surface observations obtained from a dense observation network covering a large region on the order of 100 km. We use this data set to drive three land-surface models (LSMs) to generate multi-scale (with three resolutions of 1, 5, and 10 kilometers) gridded surface heat flux maps for the CASES area. Upon validating these flux maps with measurements from surface station and aircraft, we utilize them to investigate several approaches for estimating the area-integrated surface heat flux for the CASES97 domain of 71x74 square kilometers, which is crucial for land surface model development/validation and area water and energy budget studies. This research is aimed at understanding the relative contribution of random turbulence versus organized mesoscale circulations to the area-integrated surface flux at the scale of 100 kilometers, and identifying the most important effective parameters for characterizing the subgrid-scale variability for large-scale atmosphere-hydrology models.
NASA Technical Reports Server (NTRS)
Stubbs, Sandy M.
1965-01-01
An experimental investigation was made to determine the landing characteristics of a 1/4-scale dynamic model of the Apollo spacecraft command module using two different active (heat shield deployed prior to landing) landing systems for impact attenuation. One landing system (configuration 1) consisted of six hydraulic struts and eight crushable honeycomb struts. The other landing system (configuration 2), consisted of four hydraulic struts and six strain straps. Tests made on water and the hard clay-gravel composite landing surfaces simulated parachute letdown (vertical) velocities of 23 ft/sec (7.0 m/s) (full scale). Landings made on the sand landing surface simulated vertical velocities of 30 ft/sec (9.1 m/s). Horizontal velocities of from 0 to 50 ft/sec (15 m/s) were simulated. Landing attitudes ranged from -30'degrees to 20 degrees, and the roll attitudes were O degrees, 90 degrees, and 180 degrees. For configuration 1, maximum normal accelerations at the vehicle center of gravity for landings on water, sand, and the hard clay-gravel composite surface were 9g, 20g, and 18g, respectively. The maximum normal center-of-gravity acceleration for configuration 2 which was landed only on the hard clay-gravel landing surface was approximately 19g. Accelerations for configuration 2 were generally equal to or lower than accelerations for configuration 1 and normal.
NASA Technical Reports Server (NTRS)
Kumar, Sujay; Santanello, Joseph; Peters-Lidard, Christa; Harrison, Ken
2011-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty module in NASA's Land Information System (LIS-OPT), whereby parameter sets are calibrated in the Noah land surface model and classified according to the land cover and soil type mapping of the observations and the full domain. The impact of the calibrated parameters on the a) spin up of land surface states used as initial conditions, and b) heat and moisture fluxes of the coupled (LIS-WRF) simulations are then assessed in terms of ambient weather, PBL budgets, and precipitation along with L-A coupling diagnostics. In addition, the sensitivity of this approach to the period of calibration (dry, wet, normal) is investigated. Finally, tradeoffs of computational tractability and scientific validity (e.g.,. relating to the representation of the spatial dependence of parameters) and the feasibility of calibrating to multiple observational datasets are also discussed.
NASA Technical Reports Server (NTRS)
Van Den Hurk, Bart; Kim, Hyungjun; Krinner, Gerhard; Seneviratne, Sonia I.; Derksen, Chris; Oki, Taikan; Douville, Herve; Colin, Jeanne; Ducharne, Agnes; Cheruy, Frederique;
2016-01-01
The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow, and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth System Models (ESMs). The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both strongly affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. However, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems).The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (LMIP, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (LFMIP, building upon the GLACE-CMIP blueprint).
van den Hurk, Bart; Kim, Hyungjun; Krinner, Gerhard; ...
2016-08-24
The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth system models (ESMs). Furthermore, the solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both stronglymore » affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. But, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems). The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (“LMIP”, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (“LFMIP”, building upon the GLACE-CMIP blueprint).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
van den Hurk, Bart; Kim, Hyungjun; Krinner, Gerhard
The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth system models (ESMs). Furthermore, the solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both stronglymore » affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. But, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems). The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (“LMIP”, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (“LFMIP”, building upon the GLACE-CMIP blueprint).« less
Detection of surface temperature from LANDSAT-7/ETM+
NASA Astrophysics Data System (ADS)
Suga, Y.; Ogawa, H.; Ohno, K.; Yamada, K.
2003-12-01
Hiroshima Institute of Technology (HIT) in Japan has established a LANDSAT-7 Ground Station in cooperation with NASDA for receiving and processing the ETM+ data on March 15 th, 2000 in Japan. The authors performed a verification study on the surface temperature derived from thermal infrared band image data of LANDSAT 7/Enhanced Thematic Mapper Plus (ETM+) for the estimation of temperatures around Hiroshima city and bay area in the western part of Japan as a test site. As to the thermal infrared band, the approximate functions for converting the spectral radiance into the surface temperature are estimated by considering both typical surface temperatures measured by the simultaneous field survey with the satellite observation and the spectral radiance observed by ETM+ band 6 (10.40-12.50μm), and then the estimation of the surface temperature distribution around the test site was examined.In this study, the authors estimated the surface temperature distribution equivalent to the land cover categories around the test site for establishing a guideline of surface temperature detection by LANDSAT7/ETM+ data. As the result of comparison of the truth data and the estimated surface temperature, the correlation coefficients of the approximate function referred to the truth data are from 0.9821 to 0.9994, and the differences are observed from +0.7 to -1.5°C in summer, from +0.4 to -0.9 *C in autumn, from -1.6 to -3.4°C in winter and from +0.5 to -0.5C in spring season respectively. It is clearly found that the estimation of surface temperature based on the approximate functions for converting the spectral radiance into the surface temperature referred to the truth data is improved over the directly estimated surface temperature obtained from satellite data. Finally, the successive seasonal change of surface temperature distribution pattern of the test site is precisely detected with the temperature legend of 0 to 80'C derived from LANDSAT-7/ETM+ band 6 image data for the thermal environment monitoring. 2003 COSPAR. Published by Elsevier Ltd.
43 CFR 1610.7-1 - Designation of areas unsuitable for surface mining.
Code of Federal Regulations, 2011 CFR
2011-10-01
... surface mining. 1610.7-1 Section 1610.7-1 Public Lands: Interior Regulations Relating to Public Lands... mining. (a)(1) The planning process is the chief process by which public land is reviewed to assess whether there are areas unsuitable for all or certain types of surface coal mining operations under...
Socially optimal drainage system and agricultural biodiversity: a case study for Finnish landscape.
Saikkonen, Liisa; Herzon, Irina; Ollikainen, Markku; Lankoski, Jussi
2014-12-15
This paper examines the socially optimal drainage choice (surface/subsurface) for agricultural crop cultivation in a landscape with different land qualities (fertilities) when private profits and nutrient runoff damages are taken into account. We also study the measurable social costs to increase biodiversity by surface drainage when the locations of the surface-drained areas in a landscape affect the provided biodiversity. We develop a general theoretical model and apply it to empirical data from Finnish agriculture. We find that for low land qualities the measurable social returns are higher to surface drainage than to subsurface drainage, and that the profitability of subsurface drainage increases along with land quality. The measurable social costs to increase biodiversity by surface drainage under low land qualities are negative. For higher land qualities, these costs depend on the land quality and on the biodiversity impacts. Biodiversity conservation plans for agricultural landscapes should focus on supporting surface drainage systems in areas where the measurable social costs to increase biodiversity are negative or lowest. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wei, Jiangfeng; Dirmeyer, Paul A.; Yang, Zong-Liang; Chen, Haishan
2017-10-01
Through a series of model simulations with an atmospheric general circulation model coupled to three different land surface models, this study investigates the impacts of land model ensembles and coupled model ensemble on precipitation simulation. It is found that coupling an ensemble of land models to an atmospheric model has a very minor impact on the improvement of precipitation climatology and variability, but a simple ensemble average of the precipitation from three individually coupled land-atmosphere models produces better results, especially for precipitation variability. The generally weak impact of land processes on precipitation should be the main reason that the land model ensembles do not improve precipitation simulation. However, if there are big biases in the land surface model or land surface data set, correcting them could improve the simulated climate, especially for well-constrained regional climate simulations.
NASA Technical Reports Server (NTRS)
Limaye, Ashutosh; Mugo, Robinson; Wanjohi, James; Farah, Hussein; Wahome, Anastasia; Flores, Africa; Irwin, Dan
2016-01-01
Various land use changes driven by urbanization, conversion of grasslands and woodlands into farmlands, intensification of agricultural practices, deforestation, land fragmentation and degradation are taking place in Africa. In Kenya, agriculture is the main driver of land use conversions. The impacts of these land use changes are observable in land cover maps, and eventually in the hydrological systems. Reduction or change of natural vegetation cover types increases the speed of surface runoff and reduces water and nutrient retention capacities. This can lead to high nutrient inputs into lakes, resulting in eutrophication, siltation and infestation of floating aquatic vegetation. To assess if changes in land use could be contributing to increased phytoplankton blooms and sediment loads into Lake Victoria, we analyzed land use land cover data from Landsat, as well as surface chlorophyll-a and total suspended matter from MODIS-Aqua sensor.
NASA Astrophysics Data System (ADS)
Hong, Seungbum
Land and atmosphere interactions have long been recognized for playing a key role in climate and weather modeling. However their quantification has been challenging due to the complex nature of the land surface amongst various other reasons. One of the difficult parts in the quantification is the effect of vegetation which are related to land surface processes such soil moisture variation and to atmospheric conditions such as radiation. This study addresses various relational investigations among vegetation properties such as Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), surface temperature (TSK), and vegetation water content (VegWC) derived from satellite sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) and EOS Advanced Microwave Scanning Radiometer (AMSR-E). The study provides general information about a physiological behavior of vegetation for various environmental conditions. Second, using a coupled mesoscale/land surface model, we examined the effects of vegetation and its relationship with soil moisture on the simulated land-atmospheric interactions through the model sensitivity tests. The Weather Research and Forecasting (WRF) model was selected for this study, and the Noah land surface model (Noah LSM) implemented in the WRF model was used for the model coupled system. This coupled model was tested through two parameterization methods for vegetation fraction using MODIS data and through model initialization of soil moisture from High Resolution Land Data Assimilation System (HRLDAS). Then, this study evaluates the model improvements for each simulation method.
NASA Astrophysics Data System (ADS)
Oishi, Yu; Ishida, Haruma; Nakajima, Takashi Y.; Nakamura, Ryosuke; Matsunaga, Tsuneo
2018-05-01
The Greenhouse Gases Observing Satellite (GOSAT) was launched in 2009 to measure global atmospheric CO2 and CH4 concentrations. GOSAT is equipped with two sensors: the Thermal And Near infrared Sensor for carbon Observations (TANSO)-Fourier transform spectrometer (FTS) and TANSO-Cloud and Aerosol Imager (CAI). The presence of clouds in the instantaneous field of view of the FTS leads to incorrect estimates of the concentrations. Thus, the FTS data suspected to have cloud contamination must be identified by a CAI cloud discrimination algorithm and rejected. Conversely, overestimating clouds reduces the amount of FTS data that can be used to estimate greenhouse gas concentrations. This is a serious problem in tropical rainforest regions, such as the Amazon, where the amount of useable FTS data is small because of cloud cover. Preparations are continuing for the launch of the GOSAT-2 in fiscal year 2018. To improve the accuracy of the estimates of greenhouse gases concentrations, we need to refine the existing CAI cloud discrimination algorithm: Cloud and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA1). A new cloud discrimination algorithm using a support vector machine (CLAUDIA3) was developed and presented in another paper. Although the use of visual inspection of clouds as a standard for judging is not practical for screening a full satellite data set, it has the advantage of allowing for locally optimized thresholds, while CLAUDIA1 and -3 use common global thresholds. Thus, the accuracy of visual inspection is better than that of these algorithms in most regions, with the exception of snow- and ice-covered surfaces, where there is not enough spectral contrast to identify cloud. In other words, visual inspection results can be used as truth data for accuracy evaluation of CLAUDIA1 and -3. For this reason visual inspection can be used for the truth metric for the cloud discrimination verification exercise. In this study, we compared CLAUDIA1-CAI and CLAUDIA3-CAI for various land cover types, and evaluated the accuracy of CLAUDIA3-CAI by comparing both CLAUDIA1-CAI and CLAUDIA3-CAI with visual inspection (400 × 400 pixels) of the same CAI images in tropical rainforests. Comparative results between CLAUDIA1-CAI and CLAUDIA3-CAI for various land cover types indicated that CLAUDIA3-CAI had a tendency to identify bright surface and optically thin clouds. However, CLAUDIA3-CAI had a tendency to misjudge the edges of clouds compared with CLAUDIA1-CAI. The accuracy of CLAUDIA3-CAI was approximately 89.5 % in tropical rainforests, which is greater than that of CLAUDIA1-CAI (85.9 %) for the test cases presented here.
Assessment and Enhancement of MERRA Land Surface Hydrology Estimates
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Koster, Randal D.; deLannoy, Gabrielle J. M.; Forman, Barton A.; Liu, Qing; Mahanama, Sarith P. P.; Toure, Ally
2012-01-01
The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-ofthe-art reanalysis that provides, in addition to atmospheric fields, global estimates of soil moisture, latent heat flux, snow, and runoff for 1979-present. This study introduces a supplemental and improved set of land surface hydrological fields ("MERRA-Land") generated by re-running a revised version of the land component of the MERRA system. Specifically, the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameter values in the rainfall interception model, changes that effectively correct for known limitations in the MERRA surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim (ERA-I) reanalysis. MERRA-Land and ERA-I root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 18 US basins) of MERRA and MERRA-Land is typically higher than that of ERA-I. With a few exceptions, the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using MERRA output for land surface hydrological studies.
NASA Astrophysics Data System (ADS)
Bunai, Tasya; Rokhmatuloh; Wibowo, Adi
2018-05-01
In this paper, two methods to retrieve the Land Surface Temperature (LST) from thermal infrared data supplied by band 10 and 11 of the Thermal Infrared Sensor (TIRS) onboard the Landsat 8 is compared. The first is mono window algorithm developed by Qin et al. and the second is split window algorithm by Rozenstein et al. The purpose of this study is to perform the spatial distribution of land surface temperature, as well as to determine more accurate algorithm for retrieving land surface temperature by calculated root mean square error (RMSE). Finally, we present comparison the spatial distribution of land surface temperature by both of algorithm, and more accurate algorithm is split window algorithm refers to the root mean square error (RMSE) is 7.69° C.
Advances in Land Data Assimilation at the NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Reichle, Rolf
2009-01-01
Research in land surface data assimilation has grown rapidly over the last decade. In this presentation we provide a brief overview of key research contributions by the NASA Goddard Space Flight Center (GSFC). The GSFC contributions to land assimilation primarily include the continued development and application of the Land Information System (US) and the ensemble Kalman filter (EnKF). In particular, we have developed a method to generate perturbation fields that are correlated in space, time, and across variables and that permit the flexible modeling of errors in land surface models and observations, along with an adaptive filtering approach that estimates observation and model error input parameters. A percentile-based scaling method that addresses soil moisture biases in model and observational estimates opened the path to the successful application of land data assimilation to satellite retrievals of surface soil moisture. Assimilation of AMSR-E surface soil moisture retrievals into the NASA Catchment model provided superior surface and root zone assimilation products (when validated against in situ measurements and compared to the model estimates or satellite observations alone). The multi-model capabilities of US were used to investigate the role of subsurface physics in the assimilation of surface soil moisture observations. Results indicate that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Building on this experience, GSFC leads the development of the Level 4 Surface and Root-Zone Soil Moisture (L4_SM) product for the planned NASA Soil-Moisture-Active-Passive (SMAP) mission. A key milestone was the design and execution of an Observing System Simulation Experiment that quantified the contribution of soil moisture retrievals to land data assimilation products as a function of retrieval and land model skill and yielded an estimate of the error budget for the SMAP L4_SM product. Terrestrial water storage observations from GRACE satellite system were also successfully assimilated into the NASA Catchment model and provided improved estimates of groundwater variability when compared to the model estimates alone. Moreover, satellite-based land surface temperature (LST) observations from the ISCCP archive were assimilated using a bias estimation module that was specifically designed for LST assimilation. As with soil moisture, LST assimilation provides modest yet statistically significant improvements when compared to the model or satellite observations alone. To achieve the improvement, however, the LST assimilation algorithm must be adapted to the specific formulation of LST in the land model. An improved method for the assimilation of snow cover observations was also developed. Finally, the coupling of LIS to the mesoscale Weather Research and Forecasting (WRF) model enabled investigations into how the sensitivity of land-atmosphere interactions to the specific choice of planetary boundary layer scheme and land surface model varies across surface moisture regimes, and how it can be quantified and evaluated against observations. The on-going development and integration of land assimilation modules into the Land Information System will enable the use of GSFC software with a variety of land models and make it accessible to the research community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Turner, David
The Land-Atmosphere Feedback Experiment (LAFE; pronounced “la-fey”) deploys several state-of-the-art scanning lidar and remote sensing systems to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site. These instruments will augment the ARM instrument suite in order to collect a data set for studying feedback processes between the land surface and the atmosphere. The novel synergy of remote-sensing systems will be applied for simultaneous measurements of land-surface fluxes and horizontal and vertical transport processes in the atmospheric convective boundary layer (CBL). The impact of spatial inhomogeneities of the soil-vegetation continuum on land-surface-atmospheremore » (LSA) feedback will be studied using the scanning capability of the instrumentation. The time period of the observations is August 2017, because large differences in surface fluxes between different fields and bare soil can be observed, e.g., pastures versus fields where the wheat has already been harvested. The remote sensing system synergy will consist of three components: 1) The SGP water vapor and temperature Raman lidar (SRL), the SGP Doppler lidar (SDL), and the National Center for Atmospheric Research (NCAR) water vapor differential absorption lidar (DIAL) (NDIAL) mainly in vertical staring modes to measure mean profiles and gradients of moisture, temperature, and horizontal wind. They will also measure profiles of higher-order turbulent moments in the water vapor and wind fields and profiles of the latent heat flux. 2) A novel scanning lidar system synergy consisting of the National Oceanic and Atmospheric Administration (NOAA) High-Resolution Doppler lidar (HRDL), the University of Hohenheim (UHOH) water-vapor differential absorption lidar (UDIAL), and the UHOH temperature Raman lidar (URL). These systems will perform coordinated range-height indicator (RHI) scans from just above the canopy level to the lower troposphere, including the interfacial layer of the CBL. The optimal azimuth is to the ENE of the SGP central facility, which takes advantage of both changes in the surface elevation and different crop types planted along that path. 3) The University of Wisconsin Space Science and Engineering Center Portable Atmospheric Research Center (SPARC) and the University of Oklahoma Collaborative Lower Atmospheric Mobile Profiling System (CLAMPS) operating two vertically pointing atmospheric emitted radiance interferometers (AERIs) and two Doppler lidar (DL) systems scanning cross track to the central RHI for determining the surface friction velocity and the horizontal variability of temperature, moisture, and wind. Thus, both the variability of surface fluxes and CBL dynamics and thermodynamics over the SGP site will be studied for the first time. The combination of these three components will enable us to estimate both the divergence of the latent heat profile and the advection of moisture. Thus, the moisture budget in the SGP domain can be studied. Furthermore, the simultaneous measurements of surface and entrainment fluxes as well as the daily cycle of the CBL thermodynamic state will provide a unique data set for characterizing LSA interaction in dependence of large-scale and local conditions such as soil moisture and the state of the vegetation. The measurements will also be applied for the development of improved parameterizations of surface fluxes and turbulence in the CBL. The latter is possible because mean profiles, gradients, higher-order moments, and fluxes are measured simultaneously. The results will be used for the verification of simulations of LSA feedback in large-eddy simulation (LES) and mesoscale models, which are planned for the SGP site. Due to the strong connection between the pre-convective state of the CBL and the formation of clouds and precipitation, this new generation of experiments will strongly contribute to the improvement of their representation in weather, climate, and earth system models.« less
NASA Astrophysics Data System (ADS)
Byrne, Michael P.; O'Gorman, Paul A.
2016-12-01
Climate models simulate a strong land-ocean contrast in the response of near-surface relative humidity to global warming: relative humidity tends to increase slightly over oceans but decrease substantially over land. Surface energy balance arguments have been used to understand the response over ocean but are difficult to apply over more complex land surfaces. Here, a conceptual box model is introduced, involving moisture transport between the land and ocean boundary layers and evapotranspiration, to investigate the decreases in land relative humidity as the climate warms. The box model is applied to idealized and full-complexity (CMIP5) general circulation model simulations, and it is found to capture many of the features of the simulated changes in land relative humidity. The box model suggests there is a strong link between fractional changes in specific humidity over land and ocean, and the greater warming over land than ocean then implies a decrease in land relative humidity. Evapotranspiration is of secondary importance for the increase in specific humidity over land, but it matters more for the decrease in relative humidity. Further analysis shows there is a strong feedback between changes in surface-air temperature and relative humidity, and this can amplify the influence on relative humidity of factors such as stomatal conductance and soil moisture.
Upscaling and Downscaling of Land Surface Fluxes with Surface Temperature
NASA Astrophysics Data System (ADS)
Kustas, W. P.; Anderson, M. C.; Hain, C.; Albertson, J. D.; Gao, F.; Yang, Y.
2015-12-01
Land surface temperature (LST) is a key surface boundary condition that is significantly correlated to surface flux partitioning between latent and sensible heat. The spatial and temporal variation in LST is driven by radiation, wind, vegetation cover and roughness as well as soil moisture status in the surface and root zone. Data from airborne and satellite-based platforms provide LST from ~10 km to sub meter resolutions. A land surface scheme called the Two-Source Energy Balance (TSEB) model has been incorporated into a multi-scale regional modeling system ALEXI (Atmosphere Land Exchange Inverse) and a disaggregation scheme (DisALEXI) using higher resolution LST. Results with this modeling system indicates that it can be applied over heterogeneous land surfaces and estimate reliable surface fluxes with minimal in situ information. Consequently, this modeling system allows for scaling energy fluxes from subfield to regional scales in regions with little ground data. In addition, the TSEB scheme has been incorporated into a large Eddy Simulation (LES) model for investigating dynamic interactions between variations in the land surface state reflected in the spatial pattern in LST and the lower atmospheric air properties affecting energy exchange. An overview of research results on scaling of fluxes and interactions with the lower atmosphere from the subfield level to regional scales using the TSEB, ALEX/DisALEX and the LES-TSEB approaches will be presented. Some unresolved issues in the use of LST at different spatial resolutions for estimating surface energy balance and upscaling fluxes, particularly evapotranspiration, will be discussed.
NASA Technical Reports Server (NTRS)
Reichle, Rolf; Koster, Randal; DeLannoy, Gabrielle; Forman, Barton; Liu, Qing; Mahanama, Sarith; Toure, Ally
2011-01-01
The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides. in addition to atmospheric fields. global estimates of soil moisture, latent heat flux. snow. and runoff for J 979-present. This study introduces a supplemental and improved set of land surface hydrological fields ('MERRA-Land') generated by replaying a revised version of the land component of the MERRA system. Specifically. the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameters in the rainfall interception model, changes that effectively correct for known limitations in the MERRA land surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim reanalysis. MERRA-Land and ERA-Interim root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 15 basins in the western US) of MERRA and MERRA-Land is typically higher than that of ERA-Interim. With a few exceptions. the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using '\\-tERRA output for land surface hydrological studies.
NASA Astrophysics Data System (ADS)
Corbari, Chiara; paleari, roberto; mantovani, federico; tarro, stefano; mancini, marco
2017-04-01
Weighting lysimeters allow a direct measurement of water loss from the soil, determining the soil water balance, and thus providing an interesting tool to validate hydrological models. Lysimeters, which world originates from the greek words "lysis" (movement) and "metron" (to measure) have been used to measure percolation of water through the soils for over 300 years. The aim of this study is twofold: 1) to perform water and energy flux measurements under different meteorological conditions, irrigation practice (surface flood, drip and groundwater capillary rise), and soil coverage (bare soil and basil crop), 2) to verify hydrological model FEST-EWB parameterization at the lysimeter scale. A weighting lysimeter has been constructed in the Hydraulic Laboratory of Politecnico di Milano. It consists of a steel box of 1.5 x 1.5 x 1 m containing reconstructed soil. The box is mounted on a scale with four load cells with a nominal weight of 6000 kg and a precision of 0,5 kg. The lysimeter is fully instrumented to measure all the main components of the hydrological cycle. Profiles of soil moisture and temperature are provided by 7 probes; ground heat flux is measured by a heat flux plate and two thermocouples; the drainage flux is measured by a tipping bucket rain gauge; the four components of radiation are provided by a net radiometer; air temperature and humidity are measured by a thermo-hygrometer. Data are collected every 10 minutes on a datalogger. A thermal camera is also installed to provide accurate maps of land surface temperature. The different instruments have been subjected to a rigorous calibration process. A low cost station is also installed based on an Arduino micro-controller measuring soil moisture and temperature, air humidity and temperature and solar radiation. The idea is to understand whether low cost instruments can be used to monitor the fundamental hydrological variables. The measured fluxes (e.g. evapotranspiration, soil moisture, land surface temperature) are then used to verify the correctness of the hydrological model FEST-EWB parameterization. A general good accuracy of 2-6 % between observed and modeled fluxes is obtained.
NASA Astrophysics Data System (ADS)
Bohn, T. J.; Vivoni, E. R.
2017-12-01
Land cover variability and change have been shown to influence the terrestrial hydrologic cycle by altering the partitioning of moisture and energy fluxes. However, the magnitude and directionality of the relationship between land cover and surface hydrology has been shown to vary substantially across regions. Here, we provide an assessment of the impacts of land cover change on hydrologic processes at seasonal (vegetation phenology) to decadal scales (land cover conversion) in the United States and Mexico. To this end, we combine time series of remotely-sensed land surface characteristics with land cover maps for different decades as input to the Variable Infiltration Capacity hydrologic model. Land surface characteristics (leaf area index, surface albedo, and canopy fraction derived from normalized difference vegetation index) were obtained from the Moderate Resolution Imaging Spectrometer (MODIS) at 8-day intervals over the period 2000-2016. Land cover maps representing conditions in 1992, 2001, and 2011 were derived by homogenizing the National Land Cover Database over the US and the INEGI Series I through V maps over Mexico. An additional map covering all of North America was derived from the most frequent land cover class observed in each pixel of the MODIS MOD12Q1 product during 2001-2013. Land surface characteristics were summarized over land cover fractions at 1/16 degree (6 km) resolution. For each land cover map, hydrologic simulations were conducted that covered the period 1980-2013, using the best-available, hourly meteorological forcings at a similar spatial resolution. Based on these simulations, we present a comparison of the contributions of land cover change and climate variability at seasonal to decadal scales on the hydrologic and energy budgets, identifying the dominant components through time and space. This work also offers a valuable dataset on land cover variability and its hydrologic response for continental-scale assessments and modeling.
Assessment of Mars Exploration Rover Landing Site Predictions
NASA Technical Reports Server (NTRS)
Golombek, M. P.; Arvidson, R. E.; Bell, J. F., III; Christensen, P. R.; Crisp, J. A.; Ehlmann, B. L.; Fergason, R. L.; Grant, J. A.; Haldemann, A. F. C.; Parker, T. J.;
2005-01-01
The Mars Exploration Rover (MER) landing sites in Gusev crater and Meridiani Planum were selected because they appeared acceptably safe for MER landing and roving and had strong indicators of liquid water. The engineering constraints critical for safe landing were addressed via comprehensive evaluation of surface and atmospheric characteristics from existing and targeted remote sensing data and models that resulted in a number of predictions of the surface characteristics of the sites, which are tested more fully herein than a preliminary assessment. Relating remote sensing signatures to surface characteristics at landing sites allows these sites to be used as ground truth for the orbital data and is essential for selecting and validating landing sites for future missions.
Determination of accurate vertical atmospheric profiles of extinction and turbulence
NASA Astrophysics Data System (ADS)
Hammel, Steve; Campbell, James; Hallenborg, Eric
2017-09-01
Our ability to generate an accurate vertical profile characterizing the atmosphere from the surface to a point above the boundary layer top is quite rudimentary. The region from a land or sea surface to an altitude of 3000 meters is dynamic and particularly important to the performance of many active optical systems. Accurate and agile instruments are necessary to provide measurements in various conditions, and models are needed to provide the framework and predictive capability necessary for system design and optimization. We introduce some of the path characterization instruments and describe the first work to calibrate and validate them. Along with a verification of measurement accuracy, the tests must also establish each instruments performance envelope. Measurement of these profiles in the field is a problem, and we will present a discussion of recent field test activity to address this issue. The Comprehensive Atmospheric Boundary Layer Extinction/Turbulence Resolution Analysis eXperiment (CABLE/TRAX) was conducted late June 2017. There were two distinct objectives for the experiment: 1) a comparison test of various scintillometers and transmissometers on a homogeneous horizontal path; 2) a vertical profile experiment. In this paper we discuss only the vertical profiling effort, and we describe the instruments that generated data for vertical profiles of absorption, scattering, and turbulence. These three profiles are the core requirements for an accurate assessment of laser beam propagation.
City landscape changes effects on land surface temperature in Bucharest metropolitan area
NASA Astrophysics Data System (ADS)
Savastru, Dan M.; Zoran, Maria A.; Savastru, Roxana S.; Dida, Adrian I.
2017-10-01
This study investigated the influences of city land cover changes and extreme climate events on land surface temperature in relationship with several biophysical variables in Bucharest metropolitan area of Romania through satellite and in-situ monitoring data. Remote sensing data from IKONOS, Landsat TM/ETM+ and time series MODIS Terra/Aqua and NOAA AVHRR sensors have been used to assess urban land cover- temperature interactions over 2000 - 2016 period. Time series Thermal InfraRed (TIR) satellite remote sensing data in synergy with meteorological data (air temperatureAT, precipitations, wind, solar radiation, etc.) were applied mainly for analyzing land surface temperature (LST) pattern and its relationship with surface landscape characteristics, assessing urban heat island (UHI), and relating urban land cover temperatures (LST). The land surface temperature, a key parameter for urban thermal characteristics analysis, was also analyzed in relation with the Normalized Difference Vegetation Index (NDVI) at city level. Results show that in the metropolitan area ratio of impervious surface in Bucharest increased significantly during investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, LST and AT possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at metropolitan scale respectively. The NDVI was significantly correlated with precipitation. The spatial average air temperatures in urban test areas rise with the expansion of the urban size.
Human-induced climate change: the impact of land-use change
NASA Astrophysics Data System (ADS)
Gries, Thomas; Redlin, Margarete; Ugarte, Juliette Espinosa
2018-02-01
For hundreds of years, human activity has modified the planet's surface through land-use practices. Policies and decisions on how land is managed and land-use changes due to replacement of forests by agricultural cropping and grazing lands affect greenhouse gas emissions. Agricultural management and agroforestry and the resulting changes to the land surface alter the global carbon cycle as well as the Earth's surface albedo, both of which in turn change the Earth's radiation balance. This makes land-use change the second anthropogenic source of climate change after fossil fuel burning. However, the scientific research community has so far not been able to identify the direction and magnitude of the global impact of land-use change. This paper examines the effects of net carbon flux from land-use change on temperature by applying Granger causality and error correction models. The results reveal a significant positive long-run equilibrium relationship between land-use change and the temperature series as well as an opposing short-term effect such that land-use change tends to lead to global warming; however, a rise in temperature causes a decline in land-use change.
NASA Astrophysics Data System (ADS)
Shin, S.; Pokhrel, Y. N.
2016-12-01
Land surface models have been used to assess water resources sustainability under changing Earth environment and increasing human water needs. Overwhelming observational records indicate that human activities have ubiquitous and pertinent effects on the hydrologic cycle; however, they have been crudely represented in large scale land surface models. In this study, we enhance an integrated continental-scale land hydrology model named Leaf-Hydro-Flood to better represent land-water management. The model is implemented at high resolution (5km grids) over the continental US. Surface water and groundwater are withdrawn based on actual practices. Newly added irrigation, water diversion, and dam operation schemes allow better simulations of stream flows, evapotranspiration, and infiltration. Results of various hydrologic fluxes and stores from two sets of simulation (one with and the other without human activities) are compared over a range of river basin and aquifer scales. The improved simulations of land hydrology have potential to build consistent modeling framework for human-water-climate interactions.
Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning
USDA-ARS?s Scientific Manuscript database
The role of land-atmosphere interactions under heterogeneous surface conditions is investigated in order to identify mechanisms responsible for altering surface heat and moisture fluxes. Twelve coupled land surface – large eddy simulation scenarios with four different length scales of surface variab...
43 CFR 3400.3-1 - Consent or conditions of surface management agency.
Code of Federal Regulations, 2011 CFR
2011-10-01
... management agency. 3400.3-1 Section 3400.3-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL MANAGEMENT... land, the surface of which is under the jurisdiction of any Federal agency other than the Department of...
43 CFR 3400.3-1 - Consent or conditions of surface management agency.
Code of Federal Regulations, 2014 CFR
2014-10-01
... management agency. 3400.3-1 Section 3400.3-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL MANAGEMENT... land, the surface of which is under the jurisdiction of any Federal agency other than the Department of...
43 CFR 3400.3-1 - Consent or conditions of surface management agency.
Code of Federal Regulations, 2012 CFR
2012-10-01
... management agency. 3400.3-1 Section 3400.3-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL MANAGEMENT... land, the surface of which is under the jurisdiction of any Federal agency other than the Department of...
Proposal for a lunar landing pod for SKITTER
NASA Technical Reports Server (NTRS)
Herman, David; Huang, Frank; Morelli, Mark; Njaka, Chima; Pope, Michael; Rice, Michael
1987-01-01
The purpose of this project is to design a lunar landing module for the SKITTER vehicle. SKITTER is a three-legged mobile lunar transport and work platform. This lunar landing module must be able to bring SKITTER, with attached crane, from a lunar orbit to the surface of the Moon. This propulsion system is entirely self-contained and removable after touchdown. SKITTER is unmanned and must be able to touch down on the lunar surface and perform assigned tasks independently of other space or lunar vehicles. The propulsion system is designed to ensure that the vehicle will make a lunar landing within the expected velocity range. A landing gear configuration is presented to safely dissipate landing forces on lunar impact and be removed from the SKITTER structure after touchdown. The overall engineering analysis was conducted to determine an economical design to land SKITTER safely on the Moon. SKITTER will perform various tasks on the surface of the Moon. The completion of this project will determine the feasibility of landing SKITTER with the attached crane safely on the lunar surface.
NASA Astrophysics Data System (ADS)
Bettanini, C.; Esposito, F.; Debei, S.; Molfese, C.; Colombatti, G.; Aboudan, A.; Brucato, J. R.; Cortecchia, F.; di Achille, G.; Guizzo, G. P.; Friso, E.; Ferri, F.; Marty, L.; Mennella, V.; Molinaro, R.; Schipani, P.; Silvestro, S.; Mugnuolo, R.; Pirrotta, S.; Marchetti, E.; International Dreams Team
2018-07-01
The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) instrument on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and its direction, but also on solar irradiance, dust opacity and atmospheric electrification; this comprehensive set of parameters would assist the quantification of risks and hazards for future manned exploration missions mainly related to the presence of airborne dust. Schiaparelli landing on Mars was in fact scheduled during the foreseen dust storm season (October 2016 in Meridiani Planum) allowing DREAMS to directly measure the characteristics of such extremely harsh environment. DREAMS instrument’s architecture was based on a modular design developing custom boards for analog and digital channel conditioning, power distribution, on board data handling and communication with the lander. The boards, connected through a common backbone, were hosted in a central electronic unit assembly and connected to the external sensors with dedicated harness. Designed with very limited mass and an optimized energy consumption, DREAMS was successfully tested to operate autonomously, relying on its own power supply, for at least two Martian days (sols) after landing on the planet. A total of three flight models were fully qualified before launch through an extensive test campaign comprising electrical and functional testing, EMC verification and mechanical and thermal vacuum cycling; furthermore following the requirements for planetary protection, contamination control activities and assay sampling were conducted before model delivery for final integration on spacecraft. During the six months cruise to Mars following the successful launch of ExoMars on 14th March 2016, periodic check outs were conducted to verify instrument health check and update mission timelines for operation. Elaboration of housekeeping data showed that the behaviour of the whole instrument was nominal during the whole cruise. Unfortunately DREAMS was not able to operate on the surface of Mars, due to the known guidance anomaly during the descent that caused Schiaparelli to crash at landing. The adverse sequence of events at 4 km altitude anyway triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. The spare models of DREAMS are currently in use at university premises for the development of autonomous units to be used in cubesat mission and in probes for stratospheric balloons launches in collaboration with Italian Space Agency.
Verification of Methods for Assessing the Sustainability of Monitored Natural Attenuation (MNA)
2013-01-01
surface CVOC chlorinated volatile organic compound DCE cis-1,2-Dichloroethylene DNAPL dense non-aqueous phase liquid DO dissolved oxygen DOC...considered detailed representations of aquifer heterogeneity, DNAPL distributions, and interfacial surface area. Thus, the upscaled SZD function considers...the effects of decreases in interfacial surface area with time as NAPL mass depletes, but not in an explicit manner. Likewise, the upscaled model is
Development and Experimental Verification of Surface Effects in a Fluidic Model
2006-01-01
FROM A HE PLASMA INSIDE A POLYSTYRENE MICROCHANNEL. 43 FIGURE 30: THE EMISSION SPECTRA FROM A MIXED HEXAFLUOROETHYLENE/HE PLASMA INSIDE THE...MICROCHANNEL 47 FIGURE 35: THE ADSORPTION OF GLUCOSE OXIDASE TO DIFFERENT POLYMER SURFACES WAS SHOWN TO HAVE A SIGNIFICANT EFFECT ON ELECTROOSMOTIC FLOW...approach involves neglecting non-ideal (convective-diffusive) effects 5 by assuming well- mixed protein in contact with an idealized surface. Coupled
NASA Astrophysics Data System (ADS)
Wang, Xueqian; Guo, Weidong; Qiu, Bo; Liu, Ye; Sun, Jianning; Ding, Aijun
2017-04-01
Anthropogenic land use has a significant impact on climate change. Located in the typical East Asian monsoon region, the land-atmosphere interaction in the lower reaches of the Yangtze River is even more complicated due to intensive human activities and different types of land use in this region. To better understand these effects on microclimate change, we compare differences in land surface temperature (Ts) for three land types around Nanjing from March to August, 2013, and then quantify the contribution of land surface factors to these differences (ΔTs) by considering the effects of surface albedo, roughness length, and evaporation. The atmospheric background contribution to ΔTs is also considered based on differences in air temperature (ΔTa). It is found that the cropland cooling effect decreases Ts by 1.76° and the urban heat island effect increases Ts by 1.25°. They have opposite impacts but are both significant in this region. Various changes in surface factors affect radiation and energy distribution and eventually modify Ts. It is the evaporative cooling effect that plays the most important role in this region and accounts for 1.40° of the crop cooling and 2.29° of the urban warming. Moreover, the background atmospheric circulation is also an indispensable part in land-atmosphere feedback induced by land use change and reinforces both these effects.
NASA Technical Reports Server (NTRS)
Fang, Hongliang; Beaudoing, Hiroko; Rodell, Matthew; Teng, BIll; Vollmer, Bruce
2008-01-01
The Global Land Data Assimilation System (GLDAS) is generating a series of land surface state (e.g., soil moisture and surface temperature) and flux (e.g., evaporation and sensible heat flux) products simulated by four land surface Models (CLM, Mosaic, Noah and VIC). These products are now accessible at the Hydrology Data and Information Services Center (HDISC), a component of NASA Goddard Earth Sciences Data and Information Services Center (GESDISC).
Code of Federal Regulations, 2011 CFR
2011-07-01
... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.1 Scope. This subchapter provides for the regulation of surface coal mining and reclamation operations on Indian lands and constitutes the Federal program for Indian lands. ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.1 Scope. This subchapter provides for the regulation of surface coal mining and reclamation operations on Indian lands and constitutes the Federal program for Indian lands. ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.1 Scope. This subchapter provides for the regulation of surface coal mining and reclamation operations on Indian lands and constitutes the Federal program for Indian lands. ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.1 Scope. This subchapter provides for the regulation of surface coal mining and reclamation operations on Indian lands and constitutes the Federal program for Indian lands. ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.1 Scope. This subchapter provides for the regulation of surface coal mining and reclamation operations on Indian lands and constitutes the Federal program for Indian lands. ...
NASA Astrophysics Data System (ADS)
Song, J.; Wang, Z.
2013-12-01
Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models Jiyun Song and Zhi-Hua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, PO Box 875306, Tempe, AZ 85287-5306 Landuse landcover changes in urban area will modify surface energy budgets, turbulent fluxes as well as dynamic and thermodynamic structures of the overlying atmospheric boundary layer (ABL). In order to study urban land-atmospheric interactions, we coupled a single column atmospheric model (SCM) to a cutting-edge single layer urban canopy model (SLUCM). Modification of surface parameters such as the fraction of vegetation and engineered pavements, thermal properties of building and pavement materials, and geometrical features of street canyon, etc. in SLUCM dictates the evolution of surface balance of energy, water and momentum. The land surface states then provide lower boundary conditions to the overlying atmosphere, which in turn modulates the modification of ABL structure as well as vertical profiles of temperature, humidity, wind speed and tracer gases. The coupled SLUCM-SCM model is tested against field measurements of surface layer fluxes as well as profiles of temperature and humidity in the mixed layer under convective conditions. After model test, SLUCM-SCM is used to simulate the effect of changing urban land surface conditions on the evolution of ABL structure and dynamics. Simulation results show that despite the prescribed atmospheric forcing, land surface states impose significant impact on the physics of the overlying vertical atmospheric layer. Overall, this numerical framework provides a useful standalone modeling tool to assess the impacts of urban land surface conditions on the local hydrometeorology through land-atmospheric interactions. It also has potentially far-reaching implications to urban ecohydrological services for cities under future expansion and climate challenges.
Europa Kinetic Ice Penetrator System for Hyper Velocity Instrument Deposition
NASA Astrophysics Data System (ADS)
Robinson, Tessa
Landing of a payload on any celestial body has only used a soft landing system. These systems use retro rockets and atmospheric components to match velocity and then overcome local gravity in order to land on the surface. This is a proposed system for depositing instrumentation on an icy surface at hypervelocity using the properties of different projectiles and ejecta properties that would negate the need for a soft landing system. This system uses two projectiles, a cylinder with inner aerodynamic surfaces and a payload section with a conical nose and aerodynamic surfaces. The cylinder lands first, creates a region of fractured ice, and directs that fractured material into a collimated ejecta stream. The payload travels through the ejecta and lands in the fractured region. The combination of the ejecta stream and the softened target material reduces the impact acceleration to within survivable levels.
Impacts of surface gold mining on land use systems in Western Ghana.
Schueler, Vivian; Kuemmerle, Tobias; Schröder, Hilmar
2011-07-01
Land use conflicts are becoming increasingly apparent from local to global scales. Surface gold mining is an extreme source of such a conflict, but mining impacts on local livelihoods often remain unclear. Our goal here was to assess land cover change due to gold surface mining in Western Ghana, one of the world's leading gold mining regions, and to study how these changes affected land use systems. We used Landsat satellite images from 1986-2002 to map land cover change and field interviews with farmers to understand the livelihood implications of mining-related land cover change. Our results showed that surface mining resulted in deforestation (58%), a substantial loss of farmland (45%) within mining concessions, and widespread spill-over effects as relocated farmers expand farmland into forests. This points to rapidly eroding livelihood foundations, suggesting that the environmental and social costs of Ghana's gold boom may be much higher than previously thought.
NASA Technical Reports Server (NTRS)
Famiglietti, J. S.; Wood, Eric F.
1993-01-01
A land surface hydrology parameterization for use in atmospheric GCM's is presented. The parameterization incorporates subgrid scale variability in topography, soils, soil moisture and precipitation. The framework of the model is the statistical distribution of a topography-soils index, which controls the local water balance fluxes, and is therefore taken to represent the large land area. Spatially variable water balance fluxes are integrated with respect to the topography-soils index to yield our large topography-soils distribution, and interval responses are weighted by the probability of occurrence of the interval. Grid square averaged land surface fluxes result. The model functions independently as a macroscale water balance model. Runoff ratio and evapotranspiration efficiency parameterizations are derived and are shown to depend on the spatial variability of the above mentioned properties and processes, as well as the dynamics of land surface-atmosphere interactions.
Land-Atmosphere Coupling in the Multi-Scale Modelling Framework
NASA Astrophysics Data System (ADS)
Kraus, P. M.; Denning, S.
2015-12-01
The Multi-Scale Modeling Framework (MMF), in which cloud-resolving models (CRMs) are embedded within general circulation model (GCM) gridcells to serve as the model's cloud parameterization, has offered a number of benefits to GCM simulations. The coupling of these cloud-resolving models directly to land surface model instances, rather than passing averaged atmospheric variables to a single instance of a land surface model, the logical next step in model development, has recently been accomplished. This new configuration offers conspicuous improvements to estimates of precipitation and canopy through-fall, but overall the model exhibits warm surface temperature biases and low productivity.This work presents modifications to a land-surface model that take advantage of the new multi-scale modeling framework, and accommodate the change in spatial scale from a typical GCM range of ~200 km to the CRM grid-scale of 4 km.A parameterization is introduced to apportion modeled surface radiation into direct-beam and diffuse components. The diffuse component is then distributed among the land-surface model instances within each GCM cell domain. This substantially reduces the number excessively low light values provided to the land-surface model when cloudy conditions are modeled in the CRM, associated with its 1-D radiation scheme. The small spatial scale of the CRM, ~4 km, as compared with the typical ~200 km GCM scale, provides much more realistic estimates of precipitation intensity, this permits the elimination of a model parameterization of canopy through-fall. However, runoff at such scales can no longer be considered as an immediate flow to the ocean. Allowing sub-surface water flow between land-surface instances within the GCM domain affords better realism and also reduces temperature and productivity biases.The MMF affords a number of opportunities to land-surface modelers, providing both the advantages of direct simulation at the 4 km scale and a much reduced conceptual gap between model resolution and parameterized processes.
Land cover change mapping using MODIS time series to improve emissions inventories
NASA Astrophysics Data System (ADS)
López-Saldaña, Gerardo; Quaife, Tristan; Clifford, Debbie
2016-04-01
MELODIES is an FP7 funded project to develop innovative and sustainable services, based upon Open Data, for users in research, government, industry and the general public in a broad range of societal and environmental benefit areas. Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A land cover product was created for 2003 to 2015 and a bayesian approach was created to identified land cover changes. We will present the results of the time series development and the first exercises when creating the land cover and land cover changes products.
Numerical Simulations for Landing Gear Noise Generation and Radiation
NASA Technical Reports Server (NTRS)
Morris, Philip J.; Long, Lyle N.
2002-01-01
Aerodynamic noise from a landing gear in a uniform flow is computed using the Ffowcs Williams -Hawkings (FW-H) equation. The time accurate flow data on the surface is obtained using a finite volume flow solver on an unstructured and. The Ffowcs Williams-Hawkings equation is solved using surface integrals over the landing gear surface and over a permeable surface away from the landing gear. Two geometric configurations are tested in order to assess the impact of two lateral struts on the sound level and directivity in the far-field. Predictions from the Ffowcs Williams-Hawkings code are compared with direct calculations by the flow solver at several observer locations inside the computational domain. The permeable Ffowcs Williams-Hawkings surface predictions match those of the flow solver in the near-field. Far-field noise calculations coincide for both integration surfaces. The increase in drag observed between the two landing gear configurations is reflected in the sound pressure level and directivity mainly in the streamwise direction.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Lee, Jae N.; Iredell, Lena
2013-01-01
The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.
Annual land cover change mapping using MODIS time series to improve emissions inventories.
NASA Astrophysics Data System (ADS)
López Saldaña, G.; Quaife, T. L.; Clifford, D.
2014-12-01
Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A prototype land cover product was created for 2006 to 2008. Several machine learning classifiers were tested as well as different sets of input features going from the BRDF parameters to spectral Albedo. We will present the results of the time series development and the first exercises when creating the prototype land cover product.
Barton, C Michael; Ullah, Isaac I; Bergin, Sean
2010-11-28
The evolution of Mediterranean landscapes during the Holocene has been increasingly governed by the complex interactions of water and human land use. Different land-use practices change the amount of water flowing across the surface and infiltrating the soil, and change water's ability to move surface sediments. Conversely, water amplifies the impacts of human land use and extends the ecological footprint of human activities far beyond the borders of towns and fields. Advances in computational modelling offer new tools to study the complex feedbacks between land use, land cover, topography and surface water. The Mediterranean Landscape Dynamics project (MedLand) is building a modelling laboratory where experiments can be carried out on the long-term impacts of agropastoral land use, and whose results can be tested against the archaeological record. These computational experiments are providing new insights into the socio-ecological consequences of human decisions at varying temporal and spatial scales.
NASA Astrophysics Data System (ADS)
Polom, Ulrich; Mueller, Christof; Krawczyk, CharLotte M.
2016-04-01
The Mw 7.1 Darfield Earthquake in September 2010 ruptured the surface along the Greendale Fault that was not known prior to the earthquake. The subsequent Mw 6.3 Christchurch earthquake in February 2011 demonstrated that concealed active faults have a significant risk potential for urban infrastructure and human life in New Zealand if they are located beneath or close to such areas. Mapping exposures and analysis of active faults incorporated into the National Seismic Hazard Model (NSHM) suggests that several thousands of these active structures are yet to be identified and have the potential to generate moderate to large magnitude earthquakes (i.e. magnitudes >5). Geological mapping suggests that active faults pass beneath, or within many urban areas in New Zealand, including Auckland, Blenheim, Christchurch, Hastings/Napier, Nelson, Rotorua, Taupo, Wellington, and Whakatane. Since no established methodology for routinely locating and assessing the earthquake hazard posed by concealed active faults is available, the principal objective of the presented study was to evaluate the usefulness of high-resolution shear wave seismic reflection profiling using a land streamer to locate buried faults in urban areas of New Zealand. During the survey carried out in the city of Whakatane in February 2015, the method was first tested over a well known surface outcrop of the Edgecumbe Fault 30 km south-west of Whakatane city. This allowed further to investigate the principle shear wave propagation characteristics in the unknown sediments, consisting mainly of effusive rock material of the Taupo volcanic zone mixed with marine transgression units. Subsequently the survey was continued within Whakatane city using night operation time slots to reduce the urban noise. In total, 11 profiles of 5.7 km length in high data quality were acquired, which clearly show concealed rupture structures of obviously different age in the shallow sediments down to 100 m depth. Subject to depth verification by drillings normal fault displacements of up to 15 m are visible in depths of 20-40 m, deeper rupture structures show displacements of up to 20 m. Furthermore, indications of strike-slip fault activities are visible. The concealed rupture structures found are not aligned along former estimated fault lineaments or main surface structures like the Whakatane river bed. Correlations exist with small topographic variations detected by LIDAR imaging and surface signatures on a historic map of 1867.
NASA Astrophysics Data System (ADS)
Wier, Timothy P.; Moser, Cameron S.; Grant, Jonathan F.; Riley, Scott C.; Robbins-Wamsley, Stephanie H.; First, Matthew R.; Drake, Lisa A.
2017-10-01
Both L-shaped ("L") and straight ("Straight") sample probes have been used to collect water samples from a main ballast line in land-based or shipboard verification testing of ballast water management systems (BWMS). A series of experiments was conducted to quantify and compare the sampling efficiencies of L and Straight sample probes. The findings from this research-that both L and Straight probes sample organisms with similar efficiencies-permit increased flexibility for positioning sample probes aboard ships.
NASA Technical Reports Server (NTRS)
Bryant, N. A.; George, A. J., Jr.; Hegdahl, R.
1977-01-01
A systematic verification of Landsat data classifications of the Portland, Oregon metropolitan area has been undertaken on the basis of census tract data. The degree of systematic misclassification due to the Bayesian classifier used to process the Landsat data was noted for the various suburban, industrialized and central business districts of the metropolitan area. The Landsat determinations of residential land use were employed to estimate the number of automobile trips generated in the region and to model air pollution hazards.
Engineering support activities for the Apollo 17 Surface Electrical Properties Experiment.
NASA Technical Reports Server (NTRS)
Cubley, H. D.
1972-01-01
Description of the engineering support activities which were required to ensure fulfillment of objectives specified for the Apollo 17 SEP (Surface Electrical Properties) Experiment. Attention is given to procedural steps involving verification of hardware acceptability to the astronauts, computer simulation of the experiment hardware, field trials, receiver antenna pattern measurements, and the qualification test program.
Verification, Validation and Accreditation using AADL
2011-05-03
component h component, c r2 socsr hhh max. height (surface relative), hsr r1 pwbsra thh max. height (absolute), ha pwb pwb t c0. Context-Specific...5512 digital oscillatorABC_9230 Warning Module PWB component component, c r2 hhh max. height (surface relative), hsr r1 pwbsra thh max. height
Code of Federal Regulations, 2011 CFR
2011-07-01
... surface coal mining operations on Federal lands in national forests. 761.13 Section 761.13 Mineral... surface coal mining operations on Federal lands in national forests. (a) If you intend to rely upon the... national forest, you must request that we obtain the Secretarial findings required by § 761.11(b). (b) You...
Code of Federal Regulations, 2013 CFR
2013-07-01
... surface coal mining operations on Federal lands in national forests. 761.13 Section 761.13 Mineral... surface coal mining operations on Federal lands in national forests. (a) If you intend to rely upon the... national forest, you must request that we obtain the Secretarial findings required by § 761.11(b). (b) You...
Code of Federal Regulations, 2014 CFR
2014-07-01
... surface coal mining operations on Federal lands in national forests. 761.13 Section 761.13 Mineral... surface coal mining operations on Federal lands in national forests. (a) If you intend to rely upon the... national forest, you must request that we obtain the Secretarial findings required by § 761.11(b). (b) You...
Code of Federal Regulations, 2012 CFR
2012-07-01
... surface coal mining operations on Federal lands in national forests. 761.13 Section 761.13 Mineral... surface coal mining operations on Federal lands in national forests. (a) If you intend to rely upon the... national forest, you must request that we obtain the Secretarial findings required by § 761.11(b). (b) You...
Code of Federal Regulations, 2010 CFR
2010-07-01
... surface coal mining operations on Federal lands in national forests. 761.13 Section 761.13 Mineral... surface coal mining operations on Federal lands in national forests. (a) If you intend to rely upon the... national forest, you must request that we obtain the Secretarial findings required by § 761.11(b). (b) You...
Reforesting unused surface mined lands by replanting with native trees
Patrick N. Angel; James A. Burger; Carl E. Zipper; Scott Eggerud
2012-01-01
More than 600,000 ha (1.5 million ac) of mostly forested land in the Appalachian region were surface mined for coal under the Surface Mining Control and Reclamation Act. Today, these lands are largely unmanaged and covered with persistent herbaceous species, such as fescue (Festuca spp.) and sericea lespedeza (Lespedeza cuneata [Dum. Cours.] G. Don,) and a mix of...
Comparative analyses of measured evapotranspiration for various land surfaces
Suat Irmak
2016-01-01
There is a significant lack of continuously measured ET data for multiple land surfaces in the same area to be able to make comparisons of water use rates of different agroecosystems. This research presentation will provide continuous evapotranspiration and other surface energy balance variables measured above multiple land use and management practices.
The impact of land-surface wetness heterogeneity on mesoscale heat fluxes
NASA Technical Reports Server (NTRS)
Chen, Fei; Avissar, Roni
1994-01-01
Vertical heat fluxes associated with mesoscale circulations generated by land-surface wetness discontinuities are often stronger than turbulent fluxes, especially in the upper part of the atmospheric planetary boundary layer. As a result, they contribute significantly to the subgrid-scale fluxes in large-scale atmospheric models. Yet they are not considered in these models. To provide some insights into the possible parameterization of these fluxes in large-scale models, a state-of-the-art mesoscale numerical model was used to investigate the relationships between mesoscale heat fluxes and atmospheric and land-surface characteristics that play a key role in the generation of mesoscale circulations. The distribution of land-surface wetness, the wavenumber and the wavelength of the land-surface discontinuities, and the large-scale wind speed have a significant impact on the mesoscale heat fluxes. Empirical functions were derived to characterize the relationships between mesoscale heat fluxes and the spatial distribution of land-surface wetness. The strongest mesoscale heat fluxes were obtained for a wavelength of forcing corresponding approximately to the local Rossby deformation radius. The mesoscale heat fluxes are weakened by large-scale background winds but remain significant even with moderate winds.
NASA Astrophysics Data System (ADS)
Quaife, T. L.; Davenport, I. J.; Lines, E.; Styles, J.; Lewis, P.; Gurney, R. J.
2012-12-01
Satellite observations offer a spatially and temporally synoptic data source for constraining models of land surface processes, but exploitation of these data for such purposes has been largely ad-hoc to date. In part this is because traditional land surface models, and hence most land surface data assimilation schemes, have tended to focus on a specific component of the land surface problem; typically either surface fluxes of water and energy or biogeochemical cycles such as carbon and nitrogen. Furthermore the assimilation of satellite data into such models tends to be restricted to a single wavelength domain, for example passive microwave, thermal or optical, depending on the problem at hand. The next generation of land surface schemes, such as the Joint UK Land Environment Simulator (JULES) and the US Community Land Model (CLM) represent a broader range of processes but at the expense of increasing overall model complexity and in some cases reducing the level of detail in specific processes to accommodate this. Typically, the level of physical detail used to represent the interaction of electromagnetic radiation with the surface is not sufficient to enable prediction of intrinsic satellite observations (reflectance, brightness temperature and so on) and consequently these are not assimilated directly into the models. A seemingly attractive alternative is to assimilate high-level products derived from satellite observations but these are often only superficially related to the corresponding variables in land surface models due to conflicting assumptions between the two. This poster describes the water and energy balance modeling components of a project funded by the European Space Agency to develop a data assimilation scheme for the land surface and observation operators to translate between models and the intrinsic observations acquired by satellite missions. The rationale behind the design of the underlying process model is to represent the physics of the water and energy balance in as parsimonious manner as possible, using a force-restore approach, but describing the physics of electromagnetic radiation scattering at the surface sufficiently well that it is possible to assimilate the intrinsic observations made by remote sensing instruments. In this manner the initial configuration of the resulting scheme will be able to make optimal use of available satellite observations at arbitrary wavelengths and geometries. Model complexity can then be built up from this point whilst ensuring consistency with satellite observations.
Monthly and seasonal variability of the land-atmosphere system
Yong-Qiang Liu
2003-01-01
The land surface and the atmosphere can interact with each other through exchanges of energy, water, and momentum. With the capacity of long memory, land surface processes can contribute to long-term variability of atmospheric processes. Great efforts have been made in the past three decades to study land-atmosphere interactions and their importance to long-term...
Validation and verification of a virtual environment for training naval submarine officers
NASA Astrophysics Data System (ADS)
Zeltzer, David L.; Pioch, Nicholas J.
1996-04-01
A prototype virtual environment (VE) has been developed for training a submarine officer of the desk (OOD) to perform in-harbor navigation on a surfaced submarine. The OOD, stationed on the conning tower of the vessel, is responsible for monitoring the progress of the boat as it negotiates a marked channel, as well as verifying the navigational suggestions of the below- deck piloting team. The VE system allows an OOD trainee to view a particular harbor and associated waterway through a head-mounted display, receive spoken reports from a simulated piloting team, give spoken commands to the helmsman, and receive verbal confirmation of command execution from the helm. The task analysis of in-harbor navigation, and the derivation of application requirements are briefly described. This is followed by a discussion of the implementation of the prototype. This implementation underwent a series of validation and verification assessment activities, including operational validation, data validation, and software verification of individual software modules as well as the integrated system. Validation and verification procedures are discussed with respect to the OOD application in particular, and with respect to VE applications in general.
Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models
NASA Technical Reports Server (NTRS)
Xu, L.
1994-01-01
A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.
Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop
NASA Technical Reports Server (NTRS)
2006-01-01
Topics covered include: NASA Applied Sciences Program; USGS Land Remote Sensing: Overview; QuickBird System Status and Product Overview; ORBIMAGE Overview; IKONOS 2004 Calibration and Validation Status; OrbView-3 Spatial Characterization; On-Orbit Modulation Transfer Function (MTF) Measurement of QuickBird; Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season; Image Quality Evaluation of QuickBird Super Resolution and Revisit of IKONOS: Civil and Commercial Application Project (CCAP); On-Orbit System MTF Measurement; QuickBird Post Launch Geopositional Characterization Update; OrbView-3 Geometric Calibration and Geopositional Accuracy; Geopositional Statistical Methods; QuickBird and OrbView-3 Geopositional Accuracy Assessment; Initial On-Orbit Spatial Resolution Characterization of OrbView-3 Panchromatic Images; Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps; Stennis Space Center Verification and Validation Capabilities; Joint Agency Commercial Imagery Evaluation (JACIE) Team; Adjacency Effects in High Resolution Imagery; Effect of Pulse Width vs. GSD on MTF Estimation; Camera and Sensor Calibration at the USGS; QuickBird Geometric Verification; Comparison of MODTRAN to Heritage-based Results in Vicarious Calibration at University of Arizona; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Estimating Sub-Pixel Proportions of Sagebrush with a Regression Tree; How Do YOU Use the National Land Cover Dataset?; The National Map Hazards Data Distribution System; Recording a Troubled World; What Does This-Have to Do with This?; When Can a Picture Save a Thousand Homes?; InSAR Studies of Alaska Volcanoes; Earth Observing-1 (EO-1) Data Products; Improving Access to the USGS Aerial Film Collections: High Resolution Scanners; Improving Access to the USGS Aerial Film Collections: Phoenix Digitizing System Product Distribution; System and Product Characterization: Issues Approach; Innovative Approaches to Analysis of Lidar Data for the National Map; Changes in Imperviousness near Military Installations; Geopositional Accuracy Evaluations of QuickBird and OrbView-3: Civil and Commercial Applications Project (CCAP); Geometric Accuracy Assessment: OrbView ORTHO Products; QuickBird Radiometric Calibration Update; OrbView-3 Radiometric Calibration; QuickBird Radiometric Characterization; NASA Radiometric Characterization; Establishing and Verifying the Traceability of Remote-Sensing Measurements to International Standards; QuickBird Applications; Airport Mapping and Perpetual Monitoring Using IKONOS; OrbView-3 Relative Accuracy Results and Impacts on Exploitation and Accuracy Improvement; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Applying High-Resolution Satellite Imagery and Remotely Sensed Data to Local Government Applications: Sioux Falls, South Dakota; Automatic Co-Registration of QuickBird Data for Change Detection Applications; Developing Coastal Surface Roughness Maps Using ASTER and QuickBird Data Sources; Automated, Near-Real Time Cloud and Cloud Shadow Detection in High Resolution VNIR Imagery; Science Applications of High Resolution Imagery at the USGS EROS Data Center; Draft Plan for Characterizing Commercial Data Products in Support of Earth Science Research; Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems; Determining Regional Arctic Tundra Carbon Exchange: A Bottom-Up Approach; Using IKONOS Imagery to Assess Impervious Surface Area, Riparian Buffers and Stream Health in the Mid-Atlantic Region; Commercial Remote Sensing Space Policy Civil Implementation Update; USGS Commercial Remote Sensing Data Contracts (CRSDC); and Commercial Remote Sensing Space Policy (CRSSP): Civil Near-Term Requirements Collection Update.
Nosrati, Kazem
2013-04-01
Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.
Tian, Xin; Li, Zengyuan; Chen, Erxue; Liu, Qinhuo; Yan, Guangjian; Wang, Jindi; Niu, Zheng; Zhao, Shaojie; Li, Xin; Pang, Yong; Su, Zhongbo; van der Tol, Christiaan; Liu, Qingwang; Wu, Chaoyang; Xiao, Qing; Yang, Le; Mu, Xihan; Bo, Yanchen; Qu, Yonghua; Zhou, Hongmin; Gao, Shuai; Chai, Linna; Huang, Huaguo; Fan, Wenjie; Li, Shihua; Bai, Junhua; Jiang, Lingmei; Zhou, Ji
2015-01-01
The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE) comprises a network of remote sensing experiments designed to enhance the dynamic analysis and modeling of remotely sensed information for complex land surfaces. Two types of experimental campaigns were established under the framework of COMPLICATE. The first was designed for continuous and elaborate experiments. The experimental strategy helps enhance our understanding of the radiative and scattering mechanisms of soil and vegetation and modeling of remotely sensed information for complex land surfaces. To validate the methodologies and models for dynamic analyses of remote sensing for complex land surfaces, the second campaign consisted of simultaneous satellite-borne, airborne, and ground-based experiments. During field campaigns, several continuous and intensive observations were obtained. Measurements were undertaken to answer key scientific issues, as follows: 1) Determine the characteristics of spatial heterogeneity and the radiative and scattering mechanisms of remote sensing on complex land surfaces. 2) Determine the mechanisms of spatial and temporal scale extensions for remote sensing on complex land surfaces. 3) Determine synergist inversion mechanisms for soil and vegetation parameters using multi-mode remote sensing on complex land surfaces. Here, we introduce the background, the objectives, the experimental designs, the observations and measurements, and the overall advances of COMPLICATE. As a result of the implementation of COMLICATE and for the next several years, we expect to contribute to quantitative remote sensing science and Earth observation techniques. PMID:26332035
Monitoring the effects of land use/landcover changes on urban heat island
NASA Astrophysics Data System (ADS)
Gee, Ong K.; Sarker, Md Latifur Rahman
2013-10-01
Urban heat island effects are well known nowadays and observed in cities throughout the World. The main reason behind the effects of urban heat island (UHI) is the transformation of land use/ land cover, and this transformation is associated with UHI through different actions: i) removal of vegetated areas, ii) land reclamation from sea/river, iii) construction of new building as well as other concrete structures, and iv) industrial and domestic activity. In rapidly developing cities, urban heat island effects increases very hastily with the transformation of vegetated/ other types of areas into urban surface because of the increasing population as well as for economical activities. In this research the effect of land use/ land cover on urban heat island was investigated in two growing cities in Asia i.e. Singapore and Johor Bahru, (Malaysia) using 10 years data (from 1997 to 2010) from Landsat TM/ETM+. Multispectral visible band along with indices such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Build Index (NDBI), and Normalized Difference Bareness Index (NDBaI) were used for the classification of major land use/land cover types using Maximum Likelihood Classifiers. On the other hand, land surface temperature (LST) was estimated from thermal image using Land Surface Temperature algorithm. Emissivity correction was applied to the LST map using the emissivity values from the major land use/ land cover types, and validation of the UHI map was carried out using in situ data. Results of this research indicate that there is a strong relationship between the land use/land cover changes and UHI. Over this 10 years period, significant percentage of non-urban surface was decreased but urban heat surface was increased because of the rapid urbanization. With the increase of UHI effect it is expected that local urban climate has been modified and some heat related health problem has been exposed, so appropriate measure should be taken in order to reduce UHI effects as soon as possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, W.
High-resolution satellite data provide detailed, quantitative descriptions of land surface characteristics over large areas so that objective scale linkage becomes feasible. With the aid of satellite data, Sellers et al. and Wood and Lakshmi examined the linearity of processes scaled up from 30 m to 15 km. If the phenomenon is scale invariant, then the aggregated value of a function or flux is equivalent to the function computed from aggregated values of controlling variables. The linear relation may be realistic for limited land areas having no large surface contrasts to cause significant horizontal exchange. However, for areas with sharp surfacemore » contrasts, horizontal exchange and different dynamics in the atmospheric boundary may induce nonlinear interactions, such as at interfaces of land-water, forest-farm land, and irrigated crops-desert steppe. The linear approach, however, represents the simplest scenario, and is useful for developing an effective scheme for incorporating subgrid land surface processes into large-scale models. Our studies focus on coupling satellite data and ground measurements with a satellite-data-driven land surface model to parameterize surface fluxes for large-scale climate models. In this case study, we used surface spectral reflectance data from satellite remote sensing to characterize spatial and temporal changes in vegetation and associated surface parameters in an area of about 350 {times} 400 km covering the southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site of the US Department of Energy`s Atmospheric Radiation Measurement (ARM) Program.« less
NASA Technical Reports Server (NTRS)
Barile, Ronald G.; Fogarty, Chris; Cantrell, Chris; Melton, Gregory S.
1994-01-01
NASA personnel at Kennedy Space Center's Material Science Laboratory have developed new environmentally sound precision cleaning and verification techniques for systems and components found at the center. This technology is required to replace existing methods traditionally employing CFC-113. The new patent-pending technique of precision cleaning verification is for large components of cryogenic fluid systems. These are stainless steel, sand cast valve bodies with internal surface areas ranging from 0.2 to 0.9 sq m. Extrapolation of this technique to components of even larger sizes (by orders of magnitude) is planned. Currently, the verification process is completely manual. In the new technique, a high velocity, low volume water stream impacts the part to be verified. This process is referred to as Breathing Air/Water Impingement and forms the basis for the Impingement Verification System (IVS). The system is unique in that a gas stream is used to accelerate the water droplets to high speeds. Water is injected into the gas stream in a small, continuous amount. The air/water mixture is then passed through a converging/diverging nozzle where the gas is accelerated to supersonic velocities. These droplets impart sufficient energy to the precision cleaned surface to place non-volatile residue (NVR) contaminants into suspension in the water. The sample water is collected and its NVR level is determined by total organic carbon (TOC) analysis at 880 C. The TOC, in ppm carbon, is used to establish the NVR level. A correlation between the present gravimetric CFC113 NVR and the IVS NVR is found from experimental sensitivity factors measured for various contaminants. The sensitivity has the units of ppm of carbon per mg/sq ft of contaminant. In this paper, the equipment is described and data are presented showing the development of the sensitivity factors from a test set including four NVRs impinged from witness plates of 0.05 to 0.75 sq m.
NASA Technical Reports Server (NTRS)
Barile, Ronald G.; Fogarty, Chris; Cantrell, Chris; Melton, Gregory S.
1995-01-01
NASA personnel at Kennedy Space Center's Material Science Laboratory have developed new environmentally sound precision cleaning and verification techniques for systems and components found at the center. This technology is required to replace existing methods traditionally employing CFC-113. The new patent-pending technique of precision cleaning verification is for large components of cryogenic fluid systems. These are stainless steel, sand cast valve bodies with internal surface areas ranging from 0.2 to 0.9 m(exp 2). Extrapolation of this technique to components of even larger sizes (by orders of magnitude) is planned. Currently, the verification process is completely manual. In the new technique, a high velocity, low volume water stream impacts the part to be verified. This process is referred to as Breathing Air/Water Impingement and forms the basis for the Impingement Verification System (IVS). The system is unique in that a gas stream is used to accelerate the water droplets to high speeds. Water is injected into the gas stream in a small, continuous amount. The air/water mixture is then passed through a converging-diverging nozzle where the gas is accelerated to supersonic velocities. These droplets impart sufficient energy to the precision cleaned surface to place non-volatile residue (NVR) contaminants into suspension in the water. The sample water is collected and its NVR level is determined by total organic carbon (TOC) analysis at 880 C. The TOC, in ppm carbon, is used to establish the NVR level. A correlation between the present gravimetric CFC-113 NVR and the IVS NVR is found from experimental sensitivity factors measured for various contaminants. The sensitivity has the units of ppm of carbon per mg-ft(exp 2) of contaminant. In this paper, the equipment is described and data are presented showing the development of the sensitivity factors from a test set including four NVR's impinged from witness plates of 0.05 to 0.75 m(exp 2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Xiong; Viswanathan, Akila; Stewart, Alexandra J.
Cumulative dose distributions in fractionated radiation therapy depict the dose to normal tissues and therefore may permit an estimation of the risk of normal tissue complications. However, calculation of these distributions is highly challenging because of interfractional changes in the geometry of patient anatomy. This work presents an algorithm for deformable structure registration of the bladder and the verification of the accuracy of the algorithm using phantom and patient data. In this algorithm, the registration process involves conformal mapping of genus zero surfaces using finite element analysis, and guided by three control landmarks. The registration produces a correspondence between fractionsmore » of the triangular meshes used to describe the bladder surface. For validation of the algorithm, two types of balloons were inflated gradually to three times their original size, and several computerized tomography (CT) scans were taken during the process. The registration algorithm yielded a local accuracy of 4 mm along the balloon surface. The algorithm was then applied to CT data of patients receiving fractionated high-dose-rate brachytherapy to the vaginal cuff, with the vaginal cylinder in situ. The patients' bladder filling status was intentionally different for each fraction. The three required control landmark points were identified for the bladder based on anatomy. Out of an Institutional Review Board (IRB) approved study of 20 patients, 3 had radiographically identifiable points near the bladder surface that were used for verification of the accuracy of the registration. The verification point as seen in each fraction was compared with its predicted location based on affine as well as deformable registration. Despite the variation in bladder shape and volume, the deformable registration was accurate to 5 mm, consistently outperforming the affine registration. We conclude that the structure registration algorithm presented works with reasonable accuracy and provides a means of calculating cumulative dose distributions.« less
Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data
NASA Technical Reports Server (NTRS)
King, Michael D.; Moody, Eric G.; Platnick, Steven; Schaaf, Crystal B.
2005-01-01
Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent production of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA's Terra and &la satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface's radiative characteristics. Cloud cover, which curtails retrievals, and the presence of ephemeral and seasonal snow limit the snow-free data to approximately half the global land surfaces on an annual equal-angle basis. This precludes the MOD43B3 albedo products from being used in some remote sensing and ground-based applications, &mate models, and global change research projects.
Hou, Ying-Yu; He, Yan-Bo; Wang, Jian-Lin; Tian, Guo-Liang
2009-10-01
Based on the time series 10-day composite NOAA Pathfinder AVHRR Land (PAL) dataset (8 km x 8 km), and by using land surface energy balance equation and "VI-Ts" (vegetation index-land surface temperature) method, a new algorithm of land surface evapotranspiration (ET) was constructed. This new algorithm did not need the support from meteorological observation data, and all of its parameters and variables were directly inversed or derived from remote sensing data. A widely accepted ET model of remote sensing, i. e., SEBS model, was chosen to validate the new algorithm. The validation test showed that both the ET and its seasonal variation trend estimated by SEBS model and our new algorithm accorded well, suggesting that the ET estimated from the new algorithm was reliable, being able to reflect the actual land surface ET. The new ET algorithm of remote sensing was practical and operational, which offered a new approach to study the spatiotemporal variation of ET in continental scale and global scale based on the long-term time series satellite remote sensing images.
Global Land Carbon Uptake from Trait Distributions
NASA Astrophysics Data System (ADS)
Butler, E. E.; Datta, A.; Flores-Moreno, H.; Fazayeli, F.; Chen, M.; Wythers, K. R.; Banerjee, A.; Atkin, O. K.; Kattge, J.; Reich, P. B.
2016-12-01
Historically, functional diversity in land surface models has been represented through a range of plant functional types (PFTs), each of which has a single value for all of its functional traits. Here we expand the diversity of the land surface by using a distribution of trait values for each PFT. The data for these trait distributions is from a sub-set of the global database of plant traits, TRY, and this analysis uses three leaf traits: mass based nitrogen and phosphorus content and specific leaf area, which influence both photosynthesis and respiration. The data are extrapolated into continuous surfaces through two methodologies. The first, a categorical method, classifies the species observed in TRY into satellite estimates of their plant functional type abundances - analogous to how traits are currently assigned to PFTs in land surface models. Second, a Bayesian spatial method which additionally estimates how the distribution of a trait changes in accord with both climate and soil covariates. These two methods produce distinct patterns of diversity which are incorporated into a land surface model to estimate how the range of trait values affects the global land carbon budget.
Simultaneous inversion of multiple land surface parameters from MODIS optical-thermal observations
NASA Astrophysics Data System (ADS)
Ma, Han; Liang, Shunlin; Xiao, Zhiqiang; Shi, Hanyu
2017-06-01
Land surface parameters from remote sensing observations are critical in monitoring and modeling of global climate change and biogeochemical cycles. Current methods for estimating land surface variables usually focus on individual parameters separately even from the same satellite observations, resulting in inconsistent products. Moreover, no efforts have been made to generate global products from integrated observations from the optical to Thermal InfraRed (TIR) spectrum. Particularly, Middle InfraRed (MIR) observations have received little attention due to the complexity of the radiometric signal, which contains both reflected and emitted radiation. In this paper, we propose a unified algorithm for simultaneously retrieving six land surface parameters - Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), land surface albedo, Land Surface Emissivity (LSE), Land Surface Temperature (LST), and Upwelling Longwave radiation (LWUP) by exploiting MODIS visible-to-TIR observations. We incorporate a unified physical radiative transfer model into a data assimilation framework. The MODIS visible-to-TIR time series datasets include the daily surface reflectance product and MIR-to-TIR surface radiance, which are atmospherically corrected from the MODIS data using the Moderate Resolution Transmittance program (MODTRAN, ver. 5.0). LAI was first estimated using a data assimilation method that combines MODIS daily reflectance data and a LAI phenology model, and then the LAI was input to the unified radiative transfer model to simulate spectral surface reflectance and surface emissivity for calculating surface broadband albedo and emissivity, and FAPAR. LST was estimated from the MIR-TIR surface radiance data and the simulated emissivity, using an iterative optimization procedure. Lastly, LWUP was estimated using the LST and surface emissivity. The retrieved six parameters were extensively validated across six representative sites with different biome types, and compared with MODIS, GLASS, and GlobAlbedo land surface products. The results demonstrate that the unified inversion algorithm can retrieve temporally complete and physically consistent land surface parameters, and provides more accurate estimates of surface albedo, LST, and LWUP than existing products, with R2 values of 0.93 and 0.62, RMSE of 0.029 and 0.037, and BIAS values of 0.016 and 0.012 for the retrieved and MODIS albedo products, respectively, compared with field albedo measurements; R2 values of 0.95 and 0.93, RMSE of 2.7 and 4.2 K, and BIAS values of -0.6 and -2.7 K for the retrieved and MODIS LST products, respectively, compared with field LST measurements; and R2 values of 0.93 and 0.94, RMSE of 18.2 and 22.8 W/m2, and BIAS values of -2.7 and -14.6 W/m2 for the retrieved and MODIS LWUP products, respectively, compared with field LWUP measurements.
Exploring new topography-based subgrid spatial structures for improving land surface modeling
Tesfa, Teklu K.; Leung, Lai-Yung Ruby
2017-02-22
Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less
Exploring new topography-based subgrid spatial structures for improving land surface modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesfa, Teklu K.; Leung, Lai-Yung Ruby
Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less
Mahmoud, Shereif H.; Alazba, A. A.
2015-01-01
The hydrological response to land cover changes induced by human activities in arid regions has attracted increased research interest in recent decades. The study reported herein assessed the spatial and quantitative changes in surface runoff resulting from land cover change in the Al-Baha region of Saudi Arabia between 1990 and 2000 using an ArcGIS-surface runoff model and predicted land cover and surface runoff depth in 2030 using Markov chain analysis. Land cover maps for 1990 and 2000 were derived from satellite images using ArcGIS 10.1. The findings reveal a 26% decrease in forest and shrubland area, 28% increase in irrigated cropland, 1.5% increase in sparsely vegetated land and 0.5% increase in bare soil between 1990 and 2000. Overall, land cover changes resulted in a significant decrease in runoff depth values in most of the region. The decrease in surface runoff depth ranged from 25-106 mm/year in a 7020-km2 area, whereas the increase in such depth reached only 10 mm/year in a 243-km2 area. A maximum increase of 73 mm/year was seen in a limited area. The surface runoff depth decreased to the greatest extent in the central region of the study area due to the huge transition in land cover classes associated with the construction of 25 rainwater harvesting dams. The land cover prediction revealed a greater than twofold increase in irrigated cropland during the 2000-2030 period, whereas forest and shrubland are anticipated to occupy just 225 km2 of land area by 2030, a significant decrease from the 747 km2 they occupied in 2000. Overall, changes in land cover are predicted to result in an annual increase in irrigated cropland and dramatic decline in forest area in the study area over the next few decades. The increase in surface runoff depth is likely to have significant implications for irrigation activities. PMID:25923712
Pairing FLUXNET sites to validate model representations of land-use/land-cover change
NASA Astrophysics Data System (ADS)
Chen, Liang; Dirmeyer, Paul A.; Guo, Zhichang; Schultz, Natalie M.
2018-01-01
Land surface energy and water fluxes play an important role in land-atmosphere interactions, especially for the climatic feedback effects driven by land-use/land-cover change (LULCC). These have long been documented in model-based studies, but the performance of land surface models in representing LULCC-induced responses has not been investigated well. In this study, measurements from proximate paired (open versus forest) flux tower sites are used to represent observed deforestation-induced changes in surface fluxes, which are compared with simulations from the Community Land Model (CLM) and the Noah Multi-Parameterization (Noah-MP) land model. Point-scale simulations suggest the CLM can represent the observed diurnal and seasonal changes in net radiation (Rnet) and ground heat flux (G), but difficulties remain in the energy partitioning between latent (LE) and sensible (H) heat flux. The CLM does not capture the observed decreased daytime LE, and overestimates the increased H during summer. These deficiencies are mainly associated with models' greater biases over forest land-cover types and the parameterization of soil evaporation. Global gridded simulations with the CLM show uncertainties in the estimation of LE and H at the grid level for regional and global simulations. Noah-MP exhibits a similar ability to simulate the surface flux changes, but with larger biases in H, G, and Rnet change during late winter and early spring, which are related to a deficiency in estimating albedo. Differences in meteorological conditions between paired sites is not a factor in these results. Attention needs to be devoted to improving the representation of surface heat flux processes in land models to increase confidence in LULCC simulations.
NASA Astrophysics Data System (ADS)
Tiemeyer, Bärbel
2017-04-01
Drained organic soils are large sources of anthropogenic greenhouse gases (GHG) in many European and Asian countries including Germany. Therefore, they urgently need to be considered and adequately be accounted for when attempting to increase the carbon sequestration in agricultural soils. Here, we describe the methodology, data and results of the German detailed Tier 3 methodology for reporting anthropogenic GHG emissions from drained organic soils developed for, and applied in, the German GHG inventory under the UNFCCC and the Kyoto Protocol. The approach is based on national data and offers the potential for tracking changes in land-use and water management associated with intensification, peatland restoration or GHG mitigation measures in case time series of relevant activity data are available. Drained organic soils were defined as soils with a mean annual water level of -0.1 m below surface or drier. The organic soil area was considered constant, neglecting a certain gradual conversion of shallow organic soils into mineral soils by subsidence, peat loss or anthropogenic disturbance. Activity data comprise high resolution maps of climate, land-use, the type of organic soil and the mean annual groundwater level. The groundwater map was derived by a boosted regressions trees model from data from > 1000 dipwells. These maps were sampled by a nested 250 m raster where each raster corner is represented by four sample points, balancing between spatial representativeness and effort to track small-scale variability and land-use changes. Carbon dioxide and methane emissions were synthesized from a unique national data set comprising more than 200 GHG balances in most land-use categories and types of organic soils. The measurements were performed with fully harmonized protocols. Non-linear response functions describe the dependency of carbon dioxide and methane fluxes on the mean annual groundwater level, stratified by land-use and organic soil type where appropriate. Resulting "applied emission factors" for each land-use category take into account both the uncertainty of the response functions and the distribution of the groundwater levels within each land-use category. No functional relationships were found for nitrous oxide emissions. Emission factors for nitrous oxide were thus calculated as the mean observed flux by land-use category. IPCC default emission factors were used for minor GHG sources such as methane emissions from ditches and the losses of dissolved organic carbon (DOC). In Germany, drained organic soils annually emit nearly 50 million tons of GHGs, equivalent to 5% of the national GHG emissions. They are the largest GHG source from German agriculture and forestry. The described methodology is applicable as well to the project scale as to other countries where similar data is available.
NASA Technical Reports Server (NTRS)
Bolle, H.-J.; Koslowsky, D.; Menenti, M.; Nerry, F.; Otterman, Joseph; Starr, D.
1998-01-01
Extensive areas in the Mediterranean region are subject to land degradation and desertification. The high variability of the coupling between the surface and the atmosphere affects the regional climate. Relevant surface characteristics, such as spectral reflectance, surface emissivity in the thermal-infrared region, and vegetation indices, serve as "primary" level indicators for the state of the surface. Their spatial, seasonal and interannual variability can be monitored from satellites. Using relationships between these primary data and combining them with prior information about the land surfaces (such as topography, dominant soil type, land use, collateral ground measurements and models), a second layer of information is built up which specifies the land surfaces as a component of the regional climate system. To this category of parameters which are directly involved in the exchange of energy, momentum and mass between the surface and the atmosphere, belong broadband albedo, thermodynamic surface temperature, vegetation types, vegetation cover density, soil top moisture, and soil heat flux. Information about these parameters finally leads to the computation of sensible and latent heat fluxes. The methodology was tested with pilot data sets. Full resolution, properly calibrated and normalized NOAA-AVHRR multi-annual primary data sets are presently compiled for the whole Mediterranean area, to study interannual variability and longer term trends.
Yongqiang Liu; L.B. Zhang; L. Hao; Ge Sun; S.-C. Liu
2016-01-01
An afforestation project was initiated in the western plain of Taiwan to convert abandoned farming lands into forests to improve the ecological and environmental conditions. This study was conducted to understand the potential impacts of this land cover change on evapotranspiration (ET) and other land surface processes and the...
NASA Astrophysics Data System (ADS)
Ji, P.; Yuan, X.
2017-12-01
Located in the northern Tibetan Plateau, Sanjiangyuan is the headwater region of the Yellow River, Yangtze River and Mekong River. Besides climate change, natural and human-induced land cover change (e.g., Graze for Grass Project) is also influencing the regional hydro-climate and hydrological extremes significantly. To quantify their impacts, a land surface model (LSM) with consideration of soil moisture-lateral surface flow interaction and quasi-three-dimensional subsurface flow, is used to conduct long-term high resolution simulations driven by China Meteorological Administration Land Data Assimilation System forcing data and different land cover scenarios. In particular, the role of surface and subsurface lateral flows is also analyzed by comparing with typical one-dimensional models. Lateral flows help to simulate soil moisture variability caused by topography at hyper-resolution (e.g., 100m), which is also essential for simulating hydrological extremes including soil moisture dryness/wetness and high/low flows. The LSM will also be coupled with a regional climate model to simulate the effect of natural and anthropogenic land cover change on regional climate, with particular focus on the land-atmosphere coupling at different resolutions with different configurations in modeling land surface hydrology.
NASA Astrophysics Data System (ADS)
Berg, Alexis
2017-04-01
In recent years, a number of studies have suggested that, as climate warms, the land surface will globally become more arid. Such results usually rely on drought or aridity diagnostics, such as the Palmer Drought Severity Index or the Aridity Index (ratio of precipitation over potential evapotranspiration, PET), applied to climate model projections of surface climate. From a global perspective, the projected widespread drying of the land surface is generally interpreted as the result of the dominant, ubiquitous warming-induced PET increase, which overwhelms the slight overall precipitation increase projected over land. However, several lines of evidence, based on (paleo)observations and climate model projections, raise questions regarding this interpretation of terrestrial climate change. In this talk, I will review elements of the literature supporting these different perspectives, and will present recent results based on CMIP5 climate model projections regarding changes in aridity over land that shed some light on this discussion. Central to the interpretation of projected land aridity changes is the understanding of projected PET trends over land and their link with changes in other variables of the terrestrial water cycle (ET, soil moisture) and surface climate in the context of the coupled land-atmosphere system.
NASA Astrophysics Data System (ADS)
Zhao, Chun; Huang, Maoyi; Fast, Jerome D.; Berg, Larry K.; Qian, Yun; Guenther, Alex; Gu, Dasa; Shrivastava, Manish; Liu, Ying; Walters, Stacy; Pfister, Gabriele; Jin, Jiming; Shilling, John E.; Warneke, Carsten
2016-05-01
Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect atmospheric chemistry and secondary aerosol formation that ultimately influences air quality and aerosol radiative forcing. These uncertainties result from many factors, including uncertainties in land surface processes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (BVOCs). In this study, the latest version of Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) is coupled within the land surface scheme CLM4 (Community Land Model version 4.0) in the Weather Research and Forecasting model with chemistry (WRF-Chem). In this implementation, MEGAN v2.1 shares a consistent vegetation map with CLM4 for estimating BVOC emissions. This is unlike MEGAN v2.0 in the public version of WRF-Chem that uses a stand-alone vegetation map that differs from what is used by land surface schemes. This improved modeling framework is used to investigate the impact of two land surface schemes, CLM4 and Noah, on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. The measurements collected during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the California Nexus of Air Quality and Climate Experiment (CalNex) conducted in June of 2010 provided an opportunity to evaluate the simulated BVOCs. Sensitivity experiments show that land surface schemes do influence the simulated BVOCs, but the impact is much smaller than that of vegetation distributions. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models in terms of simulating BVOCs, oxidant chemistry and, consequently, secondary organic aerosol formation.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Shin, D. W.; Cocke, Steven; Kang, Sung-Dae; Kim, Hae-Dong
2011-01-01
Community Land Model version 2 (CLM2) as a comprehensive land surface model and a simple land surface model (SLM) were coupled to an atmospheric climate model to investigate the role of land surface processes in the development and the persistence of the South Asian summer monsoon. Two-way air-sea interactions were not considered in order to identify the reproducibility of the monsoon evolution by the comprehensive land model, which includes more realistic vertical soil moisture structures, vegetation and 2-way atmosphere-land interactions at hourly intervals. In the monsoon development phase (May and June). comprehensive land-surface treatment improves the representation of atmospheric circulations and the resulting convergence/divergence through the improvements in differential heating patterns and surface energy fluxes. Coupling with CLM2 also improves the timing and spatial distribution of rainfall maxima, reducing the seasonal rainfall overestimation by approx.60 % (1.8 mm/d for SLM, 0.7 mm/dI for CLM2). As for the interannual variation of the simulated rainfall, correlation coefficients of the Indian seasonal rainfall with observation increased from 0.21 (SLM) to 0.45 (CLM2). However, in the mature monsoon phase (July to September), coupling with the CLM2 does not exhibit a clear improvement. In contrast to the development phase, latent heat flux is underestimated and sensible heat flux and surface temperature over India are markedly overestimated. In addition, the moisture fluxes do not correlate well with lower-level atmospheric convergence, yielding correlation coefficients and root mean square errors worse than those produced by coupling with the SLM. A more realistic representation of the surface temperature and energy fluxes is needed to achieve an improved simulation for the mature monsoon period.
30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of surface coal mining operations pursuant to section 522 of the Act and regulations of this... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as...
30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of surface coal mining operations pursuant to section 522 of the Act and regulations of this... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as...
30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of surface coal mining operations pursuant to section 522 of the Act and regulations of this... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as...
30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of surface coal mining operations pursuant to section 522 of the Act and regulations of this... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as...
30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of surface coal mining operations pursuant to section 522 of the Act and regulations of this... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as...
LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland; Regan, R. Steve; Markstrom, Steven
2015-01-01
The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.
NASA Astrophysics Data System (ADS)
Geiger, B.; Carrer, D.; Meurey, C.; Roujean, J.-L.
2006-08-01
The Satellite Application Facility for Land Surface Anal- ysis hosted by the Portuguese Meteorological Institute in Lisbon generates and distributes value added satellite products for numerical weather prediction and environ- mental applications in near-real time. Within the project consortium M´et´eo-France is responsible for the land sur- face albedo and down-welling short-wave radiation flux products. Since the beginning of the year 2005 Meteosat Second Generation data are routinely processed by the Land-SAF operational system. In general the validation studies carried out so far show a good consistency with in-situ observations or equivalent products derived from other satellites. After one year of operations a summary of the product characteristics and performances is given. Key words: Surface Albedo; Down-welling Radiation; Land-SAF.
A novel representation of groundwater dynamics in large-scale land surface modelling
NASA Astrophysics Data System (ADS)
Rahman, Mostaquimur; Rosolem, Rafael; Kollet, Stefan
2017-04-01
Land surface processes are connected to groundwater dynamics via shallow soil moisture. For example, groundwater affects evapotranspiration (by influencing the variability of soil moisture) and runoff generation mechanisms. However, contemporary Land Surface Models (LSM) generally consider isolated soil columns and free drainage lower boundary condition for simulating hydrology. This is mainly due to the fact that incorporating detailed groundwater dynamics in LSMs usually requires considerable computing resources, especially for large-scale applications (e.g., continental to global). Yet, these simplifications undermine the potential effect of groundwater dynamics on land surface mass and energy fluxes. In this study, we present a novel approach of representing high-resolution groundwater dynamics in LSMs that is computationally efficient for large-scale applications. This new parameterization is incorporated in the Joint UK Land Environment Simulator (JULES) and tested at the continental-scale.
NASA Astrophysics Data System (ADS)
Febrina, W. K.; Marjenah; Sumaryono
2018-04-01
The reforestation activities of mangrove forest carried out in various regions have not been well known as the success and influence of landscape in rehabilitation area. Utilization of existing land along the coastal Babulu Laut Village has reduced the area of mangrove forest from day to day. Due to the use of land by the community without considering the conservation aspect causes the loss of mangrove forest. This study aims to determine the final condition of the success rate of forest and land rehabilitation, land cover and the benefits of mangrove forest restoration for the surrounding people. The research method used is the preparation and orientation of research location, data input, codefication, data processing, the field verification and analysis of data. The results of the execution of the inventory mangrove in 22 research location in the Babulu Laut Village, Babulu Subdistrict, Penajam Paser Utara District of 125 ha of plant a whole is kind of Rhizophora sp, where the intensity of sampling 2% with the growing plants of 65.92 %or 2,175 stem/ha then success rate of Mangrove Forest Rehabilitation at Babulu Laut Village Babulu Subdistrict is medium level (55-75%).
NASA Technical Reports Server (NTRS)
Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng
2004-01-01
Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent observations of diffuse bihemispherical (white-sky) and direct beam directional hemispherical (black-sky ) land surface albedo included in the MOD43B3 product from MODIS instruments aboard NASA's Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal characteristics. Cloud and seasonal snow cover, however, curtail retrievals to approximately half the global land surfaces on an annual equal-angle basis, precluding MOD43B3 albedo products from direct inclusion in some research projects and production environments.
Estimated land-surface subsidence in Harris County, Texas, 1915-17 to 2001
Kasmarek, Mark C.; Gabrysch, Robert K.; Johnson, Michaela R.
2009-01-01
Land-surface subsidence, or land subsidence, in Harris County, Texas, which encompasses much of the Houston area, has been occurring for decades. Land subsidence has increased the frequency and extent of flooding, damaged buildings and transportation infrastructure, and caused adverse environmental effects. The primary cause of land subsidence in the Houston area is withdrawal of groundwater, although extraction of oil and gas also has contributed. Throughout most of the 20th century, groundwater was the primary source of municipal, agricultural, and industrial water supply for Harris County. Currently (2009) a transition to surface water as the primary source of supply, guided by a groundwater regulatory plan developed by the Harris-Galveston Subsidence District (2001), is in effect. The aquifers in Harris County contain an abundant amount of potable groundwater, but they also contain layers of clay. Groundwater withdrawals caused compaction of the clay layers, which in turn resulted in the widespread, substantial land-surface subsidence that has occurred in the Houston area.
Land use planning and surface heat island formation: A parcel-based radiation flux approach
NASA Astrophysics Data System (ADS)
Stone, Brian; Norman, John M.
This article presents a study of residential parcel design and surface heat island formation in a major metropolitan region of the southeastern United States. Through the integration of high-resolution multispectral data (10 m) with property tax records for over 100,000 single-family residential parcels in the Atlanta, Georgia, metropolitan region, the influence of the size and material composition of residential land use on an indicator of surface heat island formation is reported. In contrast to previous work on the urban heat island, this study derives a parcel-based indicator of surface warming to permit the impact of land use planning regulations governing the density and design of development on the excess surface flux of heat energy to be measured. The results of this study suggest that the contribution of individual land parcels to regional surface heat island formation could be reduced by approximately 40% through the adoption of specific land use planning policies, such as zoning and subdivision regulations, and with no modifications to the size or albedo of the residential structure.
Relationship among land surface temperature and LUCC, NDVI in typical karst area.
Deng, Yuanhong; Wang, Shijie; Bai, Xiaoyong; Tian, Yichao; Wu, Luhua; Xiao, Jianyong; Chen, Fei; Qian, Qinghuan
2018-01-12
Land surface temperature (LST) can reflect the land surface water-heat exchange process comprehensively, which is considerably significant to the study of environmental change. However, research about LST in karst mountain areas with complex topography is scarce. Therefore, we retrieved the LST in a karst mountain area from Landsat 8 data and explored its relationships with LUCC and NDVI. The results showed that LST of the study area was noticeably affected by altitude and underlying surface type. In summer, abnormal high-temperature zones were observed in the study area, perhaps due to karst rocky desertification. LSTs among different land use types significantly differed with the highest in construction land and the lowest in woodland. The spatial distributions of NDVI and LST exhibited opposite patterns. Under the spatial combination of different land use types, the LST-NDVI feature space showed an obtuse-angled triangle shape and showed a negative linear correlation after removing water body data. In summary, the LST can be retrieved well by the atmospheric correction model from Landsat 8 data. Moreover, the LST of the karst mountain area is controlled by altitude, underlying surface type and aspect. This study provides a reference for land use planning, ecological environment restoration in karst areas.
NASA Astrophysics Data System (ADS)
Wilson, John P.
2012-01-01
This article examines how the methods and data sources used to generate DEMs and calculate land surface parameters have changed over the past 25 years. The primary goal is to describe the state-of-the-art for a typical digital terrain modeling workflow that starts with data capture, continues with data preprocessing and DEM generation, and concludes with the calculation of one or more primary and secondary land surface parameters. The article first describes some of ways in which LiDAR and RADAR remote sensing technologies have transformed the sources and methods for capturing elevation data. It next discusses the need for and various methods that are currently used to preprocess DEMs along with some of the challenges that confront those who tackle these tasks. The bulk of the article describes some of the subtleties involved in calculating the primary land surface parameters that are derived directly from DEMs without additional inputs and the two sets of secondary land surface parameters that are commonly used to model solar radiation and the accompanying interactions between the land surface and the atmosphere on the one hand and water flow and related surface processes on the other. It concludes with a discussion of the various kinds of errors that are embedded in DEMs, how these may be propagated and carried forward in calculating various land surface parameters, and the consequences of this state-of-affairs for the modern terrain analyst.
NASA Astrophysics Data System (ADS)
Tian, Y.; Dickinson, R. E.; Zhou, L.; Shaikh, M.
2004-10-01
This paper uses the Community Land Model (CLM2) to investigate the improvements of a new land surface data set, created from multiple high-quality collection 4 Moderate Resolution Imaging Spectroradiometer data of leaf area index (LAI), plant functional type, and vegetation continuous fields, for modeled land surface variables. The previous land surface data in CLM2 underestimate LAI and overestimate the percent cover of grass/crop over most of the global area. For snow-covered regions with abundant solar energy the increased LAI and percent cover of tree/shrub in the new data set decreases the percent cover of surface snow and increases net radiation and thus increases ground and surface (2-m) air temperature, which reduces most of the model cold bias. For snow-free regions the increased LAI and changes in the percent cover from grass/crop to tree or shrub decrease ground and surface air temperature by converting most of the increased net radiation to latent heat flux, which decreases the model warm bias. Furthermore, the new data set greatly decreases ground evaporation and increases canopy evapotranspiration over tropical forests, especially during the wet season, owing to the higher LAI and more trees in the new data set. It makes the simulated ground evaporation and canopy evapotranspiration closer to reality and also reduces the warm biases over tropical regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harben, P.E.; Glenn, L.A.
This report presents a preliminary summary of the data recorded at three regional seismic stations from surface blasting at the Black Thunder Coal Mine in northeast Wyoming. The regional stations are part of a larger effort that includes many more seismic stations in the immediate vicinity of the mine. The overall purpose of this effort is to characterize the source function and propagation characteristics of large typical surface mine blasts. A detailed study of source and propagation features of conventional surface blasts is a prerequisite to attempts at discriminating this type of blasting activity from other sources of seismic events.more » The Black Thunder Seismic experiment is a joint verification effort to determine seismic source and path effects that result from very large, but routine ripple-fired surface mining blasts. Studies of the data collected will be for the purpose of understanding how the near-field and regional seismic waveforms from these surface mining blasts are similar to, and different from, point shot explosions and explosions at greater depth. The Black Hills Station is a Designated Seismic Station that was constructed for temporary occupancy by the Former Soviet Union seismic verification scientists in accordance with the Threshold Test Ban Treaty protocol.« less
NASA Astrophysics Data System (ADS)
Sun, Qingsong; Wang, Zhuosen; Li, Zhan; Erb, Angela; Schaaf, Crystal B.
2017-06-01
Land surface albedo is an essential variable for surface energy and climate modeling as it describes the proportion of incident solar radiant flux that is reflected from the Earth's surface. To capture the temporal variability and spatial heterogeneity of the land surface, satellite remote sensing must be used to monitor albedo accurately at a global scale. However, large data gaps caused by cloud or ephemeral snow have slowed the adoption of satellite albedo products by the climate modeling community. To address the needs of this community, we used a number of temporal and spatial gap-filling strategies to improve the spatial and temporal coverage of the global land surface MODIS BRDF, albedo and NBAR products. A rigorous evaluation of the gap-filled values shows good agreement with original high quality data (RMSE = 0.027 for the NIR band albedo, 0.020 for the red band albedo). This global snow-free and cloud-free MODIS BRDF and albedo dataset (established from 2001 to 2015) offers unique opportunities to monitor and assess the impact of the changes on the Earth's land surface.
Quantifying urban land cover change between 2001 and 2006 in the Gulf of Mexico region
Xian, George Z.; Homer, Collin G.; Bunde, Brett; Danielson, Patrick; Dewitz, Jon; Fry, Joyce; Pu, Ruiliang
2012-01-01
We estimated urbanization rates (2001–2006) in the Gulf of Mexico region using the National Land Cover Database (NLCD) 2001 and 2006 impervious surface products. An improved method was used to update the NLCD impervious surface product in 2006 and associated land cover transition between 2001 and 2006. Our estimation reveals that impervious surface increased 416 km2 with a growth rate of 5.8% between 2001 and 2006. Approximately 1110.1 km2 of non-urban lands were converted into urban land, resulting in a 3.2% increase in the region. Hay/pasture, woody wetland, and evergreen forest represented the three most common land cover classes that transitioned to urban. Among these land cover transitions, more than 50% of the urbanization occurred within 50 km of the coast. Our analysis shows that the close-to-coast land cover transition trend, especially within 10 km off the coast, potentially imposes substantial long-term impacts on regional landscape and ecological conditions.
Impact of Land Cover Characterization and Properties on Snow Albedo in Climate Models
NASA Astrophysics Data System (ADS)
Wang, L.; Bartlett, P. A.; Chan, E.; Montesano, P.
2017-12-01
The simulation of winter albedo in boreal and northern environments has been a particular challenge for land surface modellers. Assessments of output from CMIP3 and CMIP5 climate models have revealed that many simulations are characterized by overestimation of albedo in the boreal forest. Recent studies suggest that inaccurate representation of vegetation distribution, improper simulation of leaf area index, and poor treatment of canopy-snow processes are the primary causes of albedo errors. While several land cover datasets are commonly used to derive plant functional types (PFT) for use in climate models, new land cover and vegetation datasets with higher spatial resolution have become available in recent years. In this study, we compare the spatial distribution of the dominant PFTs and canopy cover fractions based on different land cover datasets, and present results from offline simulations of the latest version Canadian Land Surface Scheme (CLASS) over the northern Hemisphere land. We discuss the impact of land cover representation and surface properties on winter albedo simulations in climate models.
Damage Detection and Verification System (DDVS) for In-Situ Health Monitoring
NASA Technical Reports Server (NTRS)
Williams, Martha K.; Lewis, Mark; Szafran, J.; Shelton, C.; Ludwig, L.; Gibson, T.; Lane, J.; Trautwein, T.
2015-01-01
Project presentation for Game Changing Program Smart Book Release. Detection and Verification System (DDVS) expands the Flat Surface Damage Detection System (FSDDS) sensory panels damage detection capabilities and includes an autonomous inspection capability utilizing cameras and dynamic computer vision algorithms to verify system health. Objectives of this formulation task are to establish the concept of operations, formulate the system requirements for a potential ISS flight experiment, and develop a preliminary design of an autonomous inspection capability system that will be demonstrated as a proof-of-concept ground based damage detection and inspection system.
NASA Technical Reports Server (NTRS)
Salazar, Giovanni; Droba, Justin C.; Oliver, Brandon; Amar, Adam J.
2016-01-01
With the recent development of multi-dimensional thermal protection system (TPS) material response codes including the capabilities to account for radiative heating is a requirement. This paper presents the recent efforts to implement such capabilities in the CHarring Ablator Response (CHAR) code developed at NASA's Johnson Space Center. This work also describes the different numerical methods implemented in the code to compute view factors for radiation problems involving multiple surfaces. Furthermore, verification and validation of the code's radiation capabilities are demonstrated by comparing solutions to analytical results, to other codes, and to radiant test data.
Development of automated optical verification technologies for control systems
NASA Astrophysics Data System (ADS)
Volegov, Peter L.; Podgornov, Vladimir A.
1999-08-01
The report considers optical techniques for automated verification of object's identity designed for control system of nuclear objects. There are presented results of experimental researches and results of development of pattern recognition techniques carried out under the ISTC project number 772 with the purpose of identification of unique feature of surface structure of a controlled object and effects of its random treatment. Possibilities of industrial introduction of the developed technologies in frames of USA and Russia laboratories' lab-to-lab cooperation, including development of up-to-date systems for nuclear material control and accounting are examined.
Czuba, Christiana R.; Barton, Gary J.
2011-01-01
The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. The restoration project is focused on recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. River restoration is a complex undertaking that requires a thorough understanding of the river and floodplain landscape prior to restoration efforts. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey developed an updated one-dimensional hydraulic model of the Kootenai River in Idaho between river miles (RMs) 105.6 and 171.9 to characterize the current hydraulic conditions. A previously calibrated model of the study area, based on channel geometry data collected during 2002 and 2003, was the basis for this updated model. New high-resolution bathymetric surveys conducted in the study reach between RMs 138 and 161.4 provided additional detail of channel morphology. A light detection and ranging (LIDAR) survey was flown in the Kootenai River valley in 2005 between RMs 105.6 and 159.5 to characterize the floodplain topography. Six temporary gaging stations installed in 2006-08 between RMs 154.1 and 161.2, combined with five permanent gaging stations in the study reach, provided discharge and water-surface elevations for model calibration and verification. Measured discharges ranging from about 4,800 to 63,000 cubic feet per second (ft3/s) were simulated for calibration events, and calibrated water-surface elevations ranged from about 1,745 to 1,820 feet (ft) throughout the extent of the model. Calibration was considered acceptable when the simulated and measured water-surface elevations at gaging stations differed by less than (+/-)0.15 ft. Model verification consisted of simulating 10 additional events with measured discharges ranging from about 4,900 to 52,000 ft3/s, and comparing simulated and measured water-surface elevations at gaging stations. Average water-surface-elevation error in the verification simulations was 0.05 ft, with the error ranging from -1.17 to 0.94 ft over the range of events and gaging stations. Additional verification included a graphical comparison of measured average velocities that range from 1.0 to 6.2 feet per second to simulated velocities at four sites within the study reach for measured discharges ranging from about 7,400 to 46,600 ft3/s. The availability of high-resolution bathymetric and LIDAR data, along with the additional gaging stations in the study reach, allowed for more detail to be added to the model and a more thorough calibration, sensitivity, and verification analysis to be conducted. Model resolution and performance is most improved between RMs 140 and 160, which includes the 18.3-mile reach of the Kootenai River white sturgeon critical habitat.
Validation of landsurface processes in the AMIP models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, T J
The Atmospheric Model Intercomparison Project (AMIP) is a commonly accepted protocol for testing the performance of the world's atmospheric general circulation models (AGCMs) under common specifications of radiative forcings (in solar constant and carbon dioxide concentration) and observed ocean boundary conditions (Gates 1992, Gates et al. 1999). From the standpoint of landsurface specialists, the AMIP affords an opportunity to investigate the behaviors of a wide variety of land-surface schemes (LSS) that are coupled to their ''native'' AGCMs (Phillips et al. 1995, Phillips 1999). In principle, therefore, the AMIP permits consideration of an overarching question: ''To what extent does an AGCM'smore » performance in simulating continental climate depend on the representations of land-surface processes by the embedded LSS?'' There are, of course, some formidable obstacles to satisfactorily addressing this question. First, there is the dilemna of how to effectively validate simulation performance, given the present dearth of global land-surface data sets. Even if this data problem were to be alleviated, some inherent methodological difficulties would remain: in the context of the AMIP, it is not possible to validate a given LSS per se, since the associated land-surface climate simulation is a product of the coupled AGCM/LSS system. Moreover, aside from the intrinsic differences in LSS across the AMIP models, the varied representations of land-surface characteristics (e.g. vegetation properties, surface albedos and roughnesses, etc.) and related variations in land-surface forcings further complicate such an attribution process. Nevertheless, it may be possible to develop validation methodologies/statistics that are sufficiently penetrating to reveal ''signatures'' of particular ISS representations (e.g. ''bucket'' vs more complex parameterizations of hydrology) in the AMIP land-surface simulations.« less
Liu, Zhi-Hua; Chang, Yu; Chen, Hong-Wei; Zhou, Rui; Jing, Guo-Zhi; Zhang, Hong-Xin; Zhang, Chang-Meng
2008-03-01
By using geo-statistics and based on time-lag classification standard, a comparative study was made on the land surface dead combustible fuels in Huzhong forest area in Great Xing'an Mountains. The results indicated that the first level land surface dead combustible fuel, i. e., 1 h time-lag dead fuel, presented stronger spatial auto-correlation, with an average of 762.35 g x m(-2) and contributing to 55.54% of the total load. Its determining factors were species composition and stand age. The second and third levels land surface dead combustible fuel, i. e., 10 h and 100 h time-lag dead fuels, had a sum of 610.26 g x m(-2), and presented weaker spatial auto-correlation than 1 h time-lag dead fuel. Their determining factor was the disturbance history of forest stand. The complexity and heterogeneity of the factors determining the quality and quantity of forest land surface dead combustible fuels were the main reasons for the relatively inaccurate interpolation. However, the utilization of field survey data coupled with geo-statistics could easily and accurately interpolate the spatial pattern of forest land surface dead combustible fuel loads, and indirectly provide a practical basis for forest management.
NASA Astrophysics Data System (ADS)
de Beurs, K.; Henebry, G. M.; Owsley, B.; Sokolik, I. N.
2016-12-01
Land surface phenology metrics allow for the summarization of long image time series into a set of annual observations that describe the vegetated growing season. These metrics have been shown to respond to both large scale climatic and anthropogenic impacts. In this study we assemble a time series (2001 - 2014) of Moderate Resolution Imaging Spectroradiometer (MODIS) Nadir BRDF-Adjusted Reflectance data and land surface temperature data at 0.05º spatial resolution. We then derive land surface phenology metrics focusing on the peak of the growing season by fitting quadratic regression models using NDVI and Accumulated Growing Degree-Days (AGDD) derived from land surface temperature. We link the annual information on the peak timing, the thermal time to peak and the maximum of the growing season with five of the most important large scale climate oscillations: NAO, AO, PDO, PNA and ENSO. We demonstrate several significant correlations between the climate oscillations and the land surface phenology peak metrics for a range of different bioclimatic regions in both dryland Central Asia and the northern Polar Regions. We will then link the correlation results with trends derived by the seasonal Mann-Kendall trend detection method applied to several satellite derived vegetation and albedo datasets.
Static test induced loads verification beyond elastic limit
NASA Technical Reports Server (NTRS)
Verderaime, V.; Harrington, F.
1996-01-01
Increasing demands for reliable and least-cost high-performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total-inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.
Static test induced loads verification beyond elastic limit
NASA Technical Reports Server (NTRS)
Verderaime, V.; Harrington, F.
1996-01-01
Increasing demands for reliable and least-cost high performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large, high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.
Atmospheric verification of anthropogenic CO2 emission trends
NASA Astrophysics Data System (ADS)
Francey, Roger J.; Trudinger, Cathy M.; van der Schoot, Marcel; Law, Rachel M.; Krummel, Paul B.; Langenfelds, Ray L.; Paul Steele, L.; Allison, Colin E.; Stavert, Ann R.; Andres, Robert J.; Rödenbeck, Christian
2013-05-01
International efforts to limit global warming and ocean acidification aim to slow the growth of atmospheric CO2, guided primarily by national and industry estimates of production and consumption of fossil fuels. Atmospheric verification of emissions is vital but present global inversion methods are inadequate for this purpose. We demonstrate a clear response in atmospheric CO2 coinciding with a sharp 2010 increase in Asian emissions but show persisting slowing mean CO2 growth from 2002/03. Growth and inter-hemispheric concentration difference during the onset and recovery of the Global Financial Crisis support a previous speculation that the reported 2000-2008 emissions surge is an artefact, most simply explained by a cumulative underestimation (~ 9PgC) of 1994-2007 emissions; in this case, post-2000 emissions would track mid-range of Intergovernmental Panel on Climate Change emission scenarios. An alternative explanation requires changes in the northern terrestrial land sink that offset anthropogenic emission changes. We suggest atmospheric methods to help resolve this ambiguity.
Amanda B. Stan; Peter Z. Fule; Kathryn B. Ireland; Jamie S. Sanderlin
2014-01-01
Forests on tribal lands in the western United States have seen the return of low-intensity surface fires for several decades longer than forests on non-tribal lands. We examined the surface fire regime in a ponderosa pinedominated (Pinus ponderosa) forest on the Hualapai tribal lands in the south-western United States. Using fire-scarred trees, we inferred temporal (...
Pease, R.W.; Jenner, C.B.; Lewis, J.E.
1980-01-01
The Sun drives the atmospheric heat engine by warming the terrestrial surface which in turn warms the atmosphere above. Climate, therefore, is significantly controlled by complex interaction of energy flows near and at the terrestrial surface. When man alters this delicate energy balance by his use of the land, he may alter his climatic environment as well. Land use climatology has emerged as a discipline in which these energy interactions are studied; first, by viewing the spatial distributions of their surface manifestations, and second, by analyzing the energy exchange processes involved. Two new tools for accomplishing this study are presented: one that can interpret surface energy exchange processes from space, and another that can simulate the complex of energy transfers by a numerical simulation model. Use of a satellite-borne multispectral scanner as an imaging radiometer was made feasible by devising a gray-window model that corrects measurements made in space for the effects of the atmosphere in the optical path. The simulation model is a combination of mathematical models of energy transfer processes at or near the surface. Integration of these two analytical approaches was applied to the Washington-Baltimore area to coincide with the August 5, 1973, Skylab 3 overpass which provided data for constructing maps of the energy characteristics of the Earth's surface. The use of the two techniques provides insights into the relationship of climate to land use and land cover and in predicting alterations of climate that may result from alterations of the land surface.
USDA-ARS?s Scientific Manuscript database
The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Besides, these measurements help to integrate groundwater effects on surface energy balance within land surface models and clima...
Reforestation of surface mines on lands of VICC Land Company
Thomas F. Evans
1980-01-01
This Virginia coal company's surface mined lands show an adequate stocking of tree seedlings in terms of number per acre, but the distribution of seedlings has been affected by past reclamation practices. Natural reseeding has been an important contributor to the present seedling stock.
Impact of High Resolution Land-Use Data in Meteorology and Air Quality Modeling Systems
Accurate land use information is important in meteorology for land surface exchanges, in emission modeling for emission spatial allocation, and in air quality modeling for chemical surface fluxes. Currently, meteorology, emission, and air quality models often use outdated USGS Gl...
Magnitude and variability of land evaporation and its components at the global scale
USDA-ARS?s Scientific Manuscript database
A physics-based methodology is applied to estimate global land-surface evaporation from multi-satellite observations. GLEAM (Global Land-surface Evaporation: the Amsterdam Methodology) combines a wide range of remotely sensed observations within a Priestley and Taylor-based framework. Daily actual e...
NASA Astrophysics Data System (ADS)
Lague, M. M.; Swann, A. L. S.; Bonan, G. B.
2017-12-01
Past studies have demonstrated how changes in vegetation can impact the atmosphere; however, it is often difficult to identify the exact physical pathway through which vegetation changes drive an atmospheric response. Surface properties (such as vegetation color, or height) control surface energy fluxes, which feed back on the atmosphere on both local and global scales by modifying temperatures, cloud cover, and energy gradients. Understanding how land surface properties influence energy fluxes is crucial for improving our understanding of how vegetation change - past, present, and future - impacts the atmosphere, global climate, and people. We explore the sensitivity of the atmosphere to perturbations of three land surface properties - albedo, roughness, and evaporative resistance - using an idealized land model coupled to an Earth System Model. We derive a relationship telling us how large a change in each surface property is required to drive a local 0.1 K change in 2m air temperature. Using this idealized framework, we are able to separate the influence on the atmosphere of each individual surface property. We demonstrate that the impact of each surface property on the atmosphere is spatially variable - that is, a similar change in vegetation can have different climate impacts if made in different locations. This analysis not only improves our understanding of how the land system can influence climate, but also provides us with a set of theoretical limits on the potential climate impact of arbitrary vegetation change (natural or anthropogenic).
Circulation of spoof surface plasmon polaritons: Implementation and verification
NASA Astrophysics Data System (ADS)
Pan, Junwei; Wang, Jiafu; Qiu, Tianshuo; Pang, Yongqiang; Li, Yongfeng; Zhang, Jieqiu; Qu, Shaobo
2018-05-01
In this letter, we are dedicated to implementation and experimental verification of broadband circulator for spoof surface plasmon polaritons (SSPPs). For the ease of fabrication, a circulator operating in X band was firstly designed. The comb-like transmission lines (CL-TLs), a typical SSPP structure, are adopted as the three branches of the Y-junction. To enable broadband coupling of SSPP, a transition section is added on each end of the CL-TLs. Through such a design, the circulator can operate under the sub-wavelength SSPP mode in a broad band. The simulation results show that the insertion loss is less than 0.5dB while the isolation and return loss are higher than 20dB in 9.4-12.0GHz. A prototype was fabricated and measured. The experimental results are consistent with the simulation results and verify the broadband circulation performance in X band.
Verification of Geometric Model-Based Plant Phenotyping Methods for Studies of Xerophytic Plants.
Drapikowski, Paweł; Kazimierczak-Grygiel, Ewa; Korecki, Dominik; Wiland-Szymańska, Justyna
2016-06-27
This paper presents the results of verification of certain non-contact measurement methods of plant scanning to estimate morphological parameters such as length, width, area, volume of leaves and/or stems on the basis of computer models. The best results in reproducing the shape of scanned objects up to 50 cm in height were obtained with the structured-light DAVID Laserscanner. The optimal triangle mesh resolution for scanned surfaces was determined with the measurement error taken into account. The research suggests that measuring morphological parameters from computer models can supplement or even replace phenotyping with classic methods. Calculating precise values of area and volume makes determination of the S/V (surface/volume) ratio for cacti and other succulents possible, whereas for classic methods the result is an approximation only. In addition, the possibility of scanning and measuring plant species which differ in morphology was investigated.
Verification of Geometric Model-Based Plant Phenotyping Methods for Studies of Xerophytic Plants
Drapikowski, Paweł; Kazimierczak-Grygiel, Ewa; Korecki, Dominik; Wiland-Szymańska, Justyna
2016-01-01
This paper presents the results of verification of certain non-contact measurement methods of plant scanning to estimate morphological parameters such as length, width, area, volume of leaves and/or stems on the basis of computer models. The best results in reproducing the shape of scanned objects up to 50 cm in height were obtained with the structured-light DAVID Laserscanner. The optimal triangle mesh resolution for scanned surfaces was determined with the measurement error taken into account. The research suggests that measuring morphological parameters from computer models can supplement or even replace phenotyping with classic methods. Calculating precise values of area and volume makes determination of the S/V (surface/volume) ratio for cacti and other succulents possible, whereas for classic methods the result is an approximation only. In addition, the possibility of scanning and measuring plant species which differ in morphology was investigated. PMID:27355949
Numerical Modeling of Ablation Heat Transfer
NASA Technical Reports Server (NTRS)
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL PERMANENT... program implementation; (2) Subchapter D on surface coal mining and reclamation operations on Federal lands; (3) Subchapter E on surface coal mining and reclamation operations on Indian lands. (4...
NASA Astrophysics Data System (ADS)
Tang, G.; Bartlein, P. J.
2012-08-01
Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM) simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i) modify a DGVM for simulating land surface water balances; (ii) evaluate the modified model in simulating actual evapotranspiration (ET), soil moisture, and surface runoff at regional or watershed scales; and (iii) gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH) model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ) DGVM. To evaluate the model we ran LH using historical (1981-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981-2006 (R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficient > 0.52). The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences < 15%) with observed values for these rivers. Compared to a degree-day method for snowmelt computation, the addition of the solar radiation effect on snowmelt enabled LH to better simulate monthly stream flow in winter and early spring for rivers located at mid-to-high latitudes. In addition, LH-modeled monthly soil moisture for the state of Illinois (US) agreed well (R2 = 0.79, p < 0.01) with observed data for the years 1984-2001. Overall, this study justifies both the feasibility of incorporating satellite-based land covers into a DGVM and the reliability of LH to simulate land-surface water balances. To better estimate surface/river runoff at mid-to-high latitudes, we recommended that LPJ-DGVM considers the effects of solar radiation on snowmelt.
Global observation-based diagnosis of soil moisture control on land surface flux partition
NASA Astrophysics Data System (ADS)
Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.
2016-04-01
Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux. Higher RWRs were observed for shorter vegetation and bare soil compared to tall, deep-rooted vegetation due to differences in both aerodynamic and hydrological properties. The variation of RWR with antecedent rainfall provides information on which evaporation regime a particular region lies in climatologically. Different drying stages for a given antecedent rainfall can thus be observed depending on land cover type. For instance, our results suggest that forests in a continental climate remain unstressed during a 10 day dry spell provided the previous month saw at least 95 mm of rain. Conversely, RWR values indicate that under similar conditions regions of grass/crop cover are water-stressed.
Land subsidence and recovery in the Albuquerque Basin, New Mexico, 1993–2014
Driscoll, Jessica M.; Brandt, Justin T.
2017-08-14
The Albuquerque Bernalillo County Water Utility Authority (ABCWUA) drinking water supply was almost exclusively sourced from groundwater from within the Albuquerque Basin before 2008. In 2008, the San Juan-Chama Drinking Water Project (SJCDWP) provided surface-water resources to augment the groundwater supply, allowing for a reduction in groundwater pumping in the Albuquerque Basin. In 2013, the U.S. Geological Survey, in cooperation with the ABCWUA, began a study to measure and compare aquifer-system and land-surface elevation change before and after the SJCDWP in 2008. Three methods of data collection with different temporal and spatial resolutions were used for this study: (1) aquifer-system compaction data collected continuously at a single extensometer from 1994 to 2013; (2) land-surface elevation change from Global Positioning System (GPS) surveys of a network of monuments collected in 1994–95, 2005, and 2014; and (3) spatially distributed Interferometric Synthetic Aperture Radar (InSAR) satellite data from 1993 to 2010. Collection of extensometer data allows for direct and continuous measurement of aquifer-system compaction at the extensometer location. The GPS surveys of a network of monuments allow for periodic measurements of land-surface elevation change at monument locations. Interferograms are limited in time by lifespan of the satellite, orbital pattern, and data quality but allow for measurement of gridded land-surface elevation change over the study area. Each of these methods was employed to provide a better understanding of aquifer-system compaction and land-surface elevation change for the Albuquerque Basin.Results do not show large magnitudes of subsidence in the Albuquerque Basin. High temporal-resolution but low spatial-resolution data measurements of aquifer-system compaction at the Albuquerque extensometer show elastic aquifer-system response to recovering groundwater levels. Results from the GPS survey of the network of monuments show inconsistent land-surface elevation changes over the Albuquerque Basin, likely because of the lack of significant change and the complexity of subsurface stratigraphy in addition to the spatial and temporal heterogeneity of groundwater withdrawals over the study period. Results from the InSAR analysis show areas of land-surface elevation increase after 2008, which could be attributed to elastic recovery of the aquifer system. The spatial extent to which elastic recovery of the aquifer system has resulted in recovery of land-surface elevation is limited to the in-situ measurements at the extensometer. Examination of spatially distributed InSAR data relative to limited spatial extent of the complex heterogeneity subsurface stratigraphy may explain some of the heterogeneity of land-surface elevation changes over this study period.
Dicus, Jeremy R; Seegmiller, Jeff G
2012-05-01
Few ankle inversion studies have taken anticipation bias into account or collected data with an experimental design that mimics actual injury mechanisms. Twenty-three participants performed randomized single-leg vertical drop landings from 20 cm. Subjects were blinded to the landing surface (a flat force plate or 30° inversion wedge on the force plate). After each trial, participants reported whether they anticipated the landing surface. Participant responses were validated with EMG data. The protocol was repeated until four anticipated and four unanticipated landings onto the inversion wedge were recorded. Results revealed a significant main effect for landing condition. Normalized vertical ground reaction force (% body weights), maximum ankle inversion (degrees), inversion velocity (degrees/second), and time from contact to peak muscle activation (seconds) were significantly greater in unanticipated landings, and the time from peak muscle activation to maximum VGRF (second) was shorter. Unanticipated landings presented different muscle activation patterns than landings onto anticipated surfaces, which calls into question the usefulness of clinical studies that have not controlled for anticipation bias.
NASA Technical Reports Server (NTRS)
Santanello, Joseph A. Jr.; Peters-Lidard, Christa D.; Kennedy, Aaron; Kumar, Sujay V.
2012-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land- PBL coupling at the process-level. In this paper, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the U.S. Southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are applied to the dry/wet regimes exhibited in this region, and in the process a thorough evaluation of nine different land-PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling testbed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L-A coupling is stronger towards the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g. reanalysis products) in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and in support of hydrological anomalies.
NASA Technical Reports Server (NTRS)
Crosson, William L.; Dembek, Scott; Estes, Maurice G., Jr.; Limaye, Ashutosh S.; Lapenta, William; Quattrochi, Dale A.; Johnson, Hoyt; Khan, Maudood
2006-01-01
The specification of land use/land cover (LULC) and associated land surface parameters in meteorological models at all scales has a major influence on modeled surface energy fluxes and boundary layer states. In urban areas, accurate representation of the land surface may be even more important than in undeveloped regions due to the large heterogeneity within the urban area. Deficiencies in the characterization of the land surface related to the spatial or temporal resolution of the data, the number of LULC classes defined, the accuracy with which they are defined, or the degree of heterogeneity of the land surface properties within each class may degrade the performance of the models. In this study, an experiment was conducted to test a new high-resolution LULC data set for meteorological simulations for the Atlanta, Georgia metropolitan area using a mesoscale meteorological model and to evaluate the effects of urban heat island (UHI) mitigation strategies on modeled meteorology for 2030. Simulation results showed that use of the new LULC data set reduced a major deficiency of the land use data used previously, specifically the poor representation of urban and suburban land use. Performance of the meteorological model improved substantially, with the overall daytime cold bias reduced by over 30%. UHI mitigation strategies were projected to offset much of a predicted urban warming between 2000 and 2030. In fact, for the urban core, the cooling due to UHI mitigation strategies was slightly greater than the warming associated with urbanization over this period. For the larger metropolitan area, cooling only partially offset the projected warming trend.
NASA Technical Reports Server (NTRS)
Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kennedy, Aaron; Kumar, Sujay V.
2012-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process level. In this paper, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the U.S. southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation is applied to the dry/wet regimes exhibited in this region, and in the process, a thorough evaluation of nine different land-PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling test bed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L-A coupling is stronger toward the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g., reanalysis products) in the context of their integrated impacts on the process chain connecting the land surface to the PBL and in support of hydrological anomalies.
Regional scale hydrology with a new land surface processes model
NASA Technical Reports Server (NTRS)
Laymon, Charles; Crosson, William
1995-01-01
Through the CaPE Hydrometeorology Project, we have developed an understanding of some of the unique data quality issues involved in assimilating data of disparate types for regional-scale hydrologic modeling within a GIS framework. Among others, the issues addressed here include the development of adequate validation of the surface water budget, implementation of the STATSGO soil data set, and implementation of a remote sensing-derived landcover data set to account for surface heterogeneity. A model of land surface processes has been developed and used in studies of the sensitivity of surface fluxes and runoff to soil and landcover characterization. Results of these experiments have raised many questions about how to treat the scale-dependence of land surface-atmosphere interactions on spatial and temporal variability. In light of these questions, additional modifications are being considered for the Marshall Land Surface Processes Model. It is anticipated that these techniques can be tested and applied in conjunction with GCIP activities over regional scales.
NASA Technical Reports Server (NTRS)
Steyaert, Louis T.; Knox, Robert G.
2007-01-01
The local environment where we live within the Earth's biosphere is often taken for granted. This environment can vary depending on whether the land cover is a forest, grassland, wetland, water body, bare soil, pastureland, agricultural field, village, residential suburb, or an urban complex with concrete, asphalt, and large buildings. In general, the type and characteristics of land cover influence surface temperatures, sunlight exposure and duration, relative humidity, wind speed and direction, soil moisture amount, plant life, birds, and other wildlife in our backyards. The physical and biological properties (biophysical characteristics) of land cover help to determine our surface environment because they directly affect surface radiation, heat, and soil moisture processes, and also feedback to regional weather and climate. Depending on the spatial scale and land use intensity, land cover changes can have profound impacts on our local and regional environment. Over the past 350 years, the eastern half of the United States, an area extending from the grassland prairies of the Great Plains to the Gulf and Atlantic coasts, has experienced extensive land cover and land use changes that began with land clearing in the 1600s, led to extensive deforestation and intensive land use practices by 1920, and then evolved to the present-day landscape. Determining the consequences of such land cover changes on regional and global climate is a major research issue. Such research requires detailed historical land cover data and modeling experiments simulating historical climates. Given the need to understand the effects of historical land cover changes in the eastern United States, some questions include: - What were the most important land cover transformations and how did they alter biophysical characteristics of the land cover at key points in time since the mid-1600s? - How have land cover and land use changes over the past 350 years affected the land surface environment including surface weather, hydrologic, and climatic variability? - How do the potential effects of regional human-induced land cover change on the environment compare to similar changes that are caused by the natural variations of the Earth's climate system? To help answer these questions, we reconstructed a fractional land cover and biophysical parameter dataset for the eastern United States at 1650, 1850, 1920, and 1992 time-slices. Each land cover fraction is associated with a biophysical parameter class, a suite of parameters defining the biophysical characteristics of that kind of land cover. This new dataset is designed for use in computer models of land-atmosphere interactions, to understand and quantify the effects of historical land cover changes on the water, energy, and carbon cycles
An Airbus arrives at KSC with third MPLM
NASA Technical Reports Server (NTRS)
2001-01-01
An Airbus '''Beluga''' air cargo plane, The Super Transporter, lands at KSC's Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.
Trends in continental temperature and humidity directly linked to ocean warming.
Byrne, Michael P; O'Gorman, Paul A
2018-05-08
In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.
Relationship between landscape characteristics and surface water quality.
Chang, C L; Kuan, W H; Lui, P S; Hu, C Y
2008-12-01
The effects of landscape characteristics on surface water quality were evaluated in terms of land-use condition, soil type and slope. The case area, the Chichiawan stream in the Wulin catchment in Taiwan, is Formosan landlocked salmon's natural habitat. Due to the agriculture behavior and mankind's activities, the water and environmental quality has gradually worsened. This study applied WinVAST model to predict hydrological responses and non-point source pollution (NPSP) exports in the Wulin catchment. The land-use condition and the slope of land surface in a catchment are major effect factors for watershed responses, including flows and pollutant exports. This work discussed the possible variation of watershed responses induced by the change of land-use condition, soil type and slope, etc. The results show that hydrological responses are highly relative to the value of Curve Number (CN); Pollutant exports have large relation to the average slope of the land surface in the Wulin catchment.
NASA Astrophysics Data System (ADS)
Park, Jun; Hwang, Seung-On
2017-11-01
The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.
NASA Technical Reports Server (NTRS)
Beaudoing, Hiroko Kato; Rodell, Matthew; Ozdogan, Mutlu
2010-01-01
Agricultural land use significantly influences the surface water and energy balances. Effects of irrigation on land surface states and fluxes include repartitioning of latent and sensible heat fluxes, an increase in net radiation, and an increase in soil moisture and runoff. We are working on representing irrigation practices in continental- to global-scale land surface simulation in NASA's Global Land Data Assimilation System (GLDAS). Because agricultural practices across the nations are diverse, and complex, we are attempting to capture the first-order reality of the regional practices before achieving a global implementation. This study focuses on two issues in Southeast Asia: multiple cropping and rice paddy irrigation systems. We first characterize agricultural practices in the region (i.e., crop types, growing seasons, and irrigation) using the Global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000) dataset. Rice paddy extent is identified using remote sensing products. Whether irrigated or rainfed, flooded fields need to be represented and treated explicitly. By incorporating these properties and processes into a physically based land surface model, we are able to quantify the impacts on the simulated states and fluxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Miao; Wang, Guiling; Chen, Haishan
Assessing and quantifying the uncertainties in projected future changes of energy and water budgets over land surface are important steps toward improving our confidence in climate change projections. In our study, the contribution of land surface models to the inter-GCM variation of projected future changes in land surface energy and water fluxes are assessed based on output from 19 global climate models (GCMs) and offline Community Land Model version 4 (CLM4) simulations driven by meteorological forcing from the 19 GCMs. Similar offline simulations using CLM4 with its dynamic vegetation submodel are also conducted to investigate how dynamic vegetation feedback, amore » process that is being added to more earth system models, may amplify or moderate the intermodel variations of projected future changes. Projected changes are quantified as the difference between the 2081–2100 period from the Representative Concentration Pathway 8.5 (RCP8.5) future experiment and the 1981–2000 period from the historical simulation. Under RCP8.5, projected changes in surface water and heat fluxes show a high degree of model dependency across the globe. Although precipitation is very likely to increase in the high latitudes of the Northern Hemisphere, a high degree of model-related uncertainty exists for evapotranspiration, soil water content, and surface runoff, suggesting discrepancy among land surface models (LSMs) in simulating the surface hydrological processes and snow-related processes. Large model-related uncertainties for the surface water budget also exist in the Tropics including southeastern South America and Central Africa. Moreover, these uncertainties would be reduced in the hypothetical scenario of a single near-perfect land surface model being used across all GCMs, suggesting the potential to reduce uncertainties through the use of more consistent approaches toward land surface model development. Under such a scenario, the most significant reduction is likely to be seen in the Northern Hemisphere high latitudes. Including representation of vegetation dynamics is expected to further amplify the model-related uncertainties in projected future changes in surface water and heat fluxes as well as soil moisture content. This is especially the case in the high latitudes of the Northern Hemisphere (e.g., northwestern North America and central North Asia) where the projected vegetation changes are uncertain and in the Tropics (e.g., the Amazon and Congo Basins) where dense vegetation exists. Finally, findings from this study highlight the importance of improving land surface model parameterizations related to soil and snow processes, as well as the importance of improving the accuracy of dynamic vegetation models.« less
Yu, Miao; Wang, Guiling; Chen, Haishan
2016-03-01
Assessing and quantifying the uncertainties in projected future changes of energy and water budgets over land surface are important steps toward improving our confidence in climate change projections. In our study, the contribution of land surface models to the inter-GCM variation of projected future changes in land surface energy and water fluxes are assessed based on output from 19 global climate models (GCMs) and offline Community Land Model version 4 (CLM4) simulations driven by meteorological forcing from the 19 GCMs. Similar offline simulations using CLM4 with its dynamic vegetation submodel are also conducted to investigate how dynamic vegetation feedback, amore » process that is being added to more earth system models, may amplify or moderate the intermodel variations of projected future changes. Projected changes are quantified as the difference between the 2081–2100 period from the Representative Concentration Pathway 8.5 (RCP8.5) future experiment and the 1981–2000 period from the historical simulation. Under RCP8.5, projected changes in surface water and heat fluxes show a high degree of model dependency across the globe. Although precipitation is very likely to increase in the high latitudes of the Northern Hemisphere, a high degree of model-related uncertainty exists for evapotranspiration, soil water content, and surface runoff, suggesting discrepancy among land surface models (LSMs) in simulating the surface hydrological processes and snow-related processes. Large model-related uncertainties for the surface water budget also exist in the Tropics including southeastern South America and Central Africa. Moreover, these uncertainties would be reduced in the hypothetical scenario of a single near-perfect land surface model being used across all GCMs, suggesting the potential to reduce uncertainties through the use of more consistent approaches toward land surface model development. Under such a scenario, the most significant reduction is likely to be seen in the Northern Hemisphere high latitudes. Including representation of vegetation dynamics is expected to further amplify the model-related uncertainties in projected future changes in surface water and heat fluxes as well as soil moisture content. This is especially the case in the high latitudes of the Northern Hemisphere (e.g., northwestern North America and central North Asia) where the projected vegetation changes are uncertain and in the Tropics (e.g., the Amazon and Congo Basins) where dense vegetation exists. Finally, findings from this study highlight the importance of improving land surface model parameterizations related to soil and snow processes, as well as the importance of improving the accuracy of dynamic vegetation models.« less
Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery
NASA Astrophysics Data System (ADS)
Ma, W.; Ma, Y.; Hu, Z.; Su, B.; Wang, J.; Ishikawa, H.
2009-06-01
Surface fluxes are important boundary conditions for climatological modeling and the Asian monsoon system. Recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection Radiometer) sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A Surface Energy Balance System (SEBS) method based on ASTER data and field observations has been proposed and tested for deriving net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E) over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the WATER (Watershed Allied Telemetry Experimental Research), located at the mid-to-upstream sections of the Heihe River, northwest China. The ASTER data of 3 May and 4 June in 2008 was used in this paper for the case of mid-to-upstream sections of the Heihe River Basin. To validate the proposed methodology, the ground-measured land surface heat fluxes (net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E)) were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in different months over the study area are in good accordance with the land surface status. It is therefore concluded that the proposed methodology is successful for the retrieval of land surface heat fluxes using the ASTER data and filed observation over the study area.
NASA Astrophysics Data System (ADS)
Guo, W. D.; Sun, S. F.; Qian, Y. F.
2002-05-01
The statistical relationship between soil thermal anomaly and short-term climate change is presented based on a typical case study. Furthermore, possible physical mechanisms behind the relationship are revealed through using an off-line land surface model with a reasonable soil thermal forcing at the bottom of the soil layer. In the first experiment, the given heat flux is 5 W m(-2) at the bottom of the soil layer (in depth of 6.3 m) for 3 months, while only a positive ground temperature anomaly of 0.06degreesC can be found compared to the control run. The anomaly, however, could reach 0.65degreesC if the soil thermal conductivity was one order of magnitude larger. It could be even as large as 0.81degreesC assuming the heat flux at bottom is 10 W m(-2). Meanwhile, an increase of about 10 W m(-2) was detected both for heat flux in soil and sensible heat on land surface, which is not neglectable to the short-term climate change. The results show that considerable response in land surface energy budget could be expected when the soil thermal forcing reaches a certain spatial-temporal scale. Therefore, land surface models should not ignore the upward heat flux from the bottom of the soil layer, Moreover, integration for a longer period of time and coupled land-atmosphere model are also necessary for the better understanding of this issues.
NASA Astrophysics Data System (ADS)
Xiang, T.; Vivoni, E. R.; Gochis, D. J.; Mascaro, G.
2015-12-01
Heterogeneous land surface conditions are essential components of land-atmosphere interactions in regions of complex terrain and have the potential to affect convective precipitation formation. Yet, due to their high complexity, hydrologic processes over mountainous regions are not well understood, and are usually parameterized in simple ways within coupled land-atmosphere modeling frameworks. With the improving model physics and spatial resolution of numerical weather prediction models, there is an urgent need to understand how land surface processes affect local and regional meteorological processes. In the North American Monsoon (NAM) region, the summer rainy season is accompanied by a dramatic greening of mountain ecosystems that adds spatiotemporal variability in vegetation which is anticipated to impact the conditions leading to convection, mountain-valley circulations and mesoscale organization. In this study, we present results from a detailed analysis of a high-resolution (1 km) land surface model, Noah-MP, in a large, mountainous watershed of the NAM region - the Rio Sonora (21,264 km2) in Mexico. In addition to capturing the spatial variations in terrain and soil distributions, recently-developed features in Noah-MP allow the model to read time-varying vegetation parameters derived from remotely-sensed vegetation indices; however, this new implementation has not been fully evaluated. Therefore, we assess the simulated spatiotemporal fields of soil moisture, surface temperature and surface energy fluxes through comparisons to remote sensing products and results from coarser land surface models obtained from the North American Land Data Assimilation System. We focus attention on the impact of vegetation changes along different elevation bands on the diurnal cycle of surface energy fluxes to provide a baseline for future analyses of mountain-valley circulations using a coupled land-atmosphere modeling system. Our study also compares limited streamflow observations in the large watershed to simulations using the terrain and channel routing when Noah-MP is run within the WRF-Hydro modeling framework, with the goals of validating the rainfall-runoff partitioning and translating the spatiotemporal mountain processes into improvements in streamflow predictions.
NASA Astrophysics Data System (ADS)
Zhang, Hai; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Huang, Jingfeng; Superczynski, Stephen; Ciren, Pubu
2016-09-01
The Visible/Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been retrieving aerosol optical thickness (AOT), operationally and globally, over ocean and land since shortly after S-NPP launch in 2011. However, the current operational VIIRS AOT retrieval algorithm over land has two limitations in its assumptions for land surfaces: (1) it only retrieves AOT over the dark surfaces and (2) it assumes that the global surface reflectance ratios between VIIRS bands are constants. In this work, we develop a surface reflectance ratio database over land with a spatial resolution 0.1° × 0.1° using 2 years of VIIRS top of atmosphere reflectances. We enhance the current operational VIIRS AOT retrieval algorithm by applying the surface reflectance ratio database in the algorithm. The enhanced algorithm is able to retrieve AOT over both dark and bright surfaces. Over bright surfaces, the VIIRS AOT retrievals from the enhanced algorithm have a correlation of 0.79, mean bias of -0.008, and standard deviation (STD) of error of 0.139 when compared against the ground-based observations at the global AERONET (Aerosol Robotic Network) sites. Over dark surfaces, the VIIRS AOT retrievals using the surface reflectance ratio database improve the root-mean-square error from 0.150 to 0.123. The use of the surface reflectance ratio database also increases the data coverage of more than 20% over dark surfaces. The AOT retrievals over bright surfaces are comparable to MODIS Deep Blue AOT retrievals.
Measuring human-induced land subsidence from space
Bawden, Gerald W.; Sneed, M.; Stork, S.V.; Galloway, D.L.
2003-01-01
Satellite Interferometric Synthetic Aperture Radar (InSAR) is a revolutionary technique that allows scientists to measure and map changes on the Earth's surface as small as a few millimeters. By bouncing radar signals off the ground surface from the same point in space but at different times, the radar satellite can measure the change in distance between the satellite and ground (range change) as the land surface uplifts or subsides. Maps of relative ground-surface change (interferograms) are constructed from the InSAR data to help scientists understand how ground-water pumping, hydrocarbon production, or other human activities cause the land surface to uplift or subside. Interferograms developed by the USGS for study areas in California, Nevada, and Texas are used in this fact sheet to demonstrate some of the applications of InSAR to assess human-induced land deformation
Impacts of Climate Change and Land use Changes on Land Surface Radiation and Energy Budgets
USDA-ARS?s Scientific Manuscript database
Land surface radiation and energy budgets are critical to address a variety of scientific and application issues related to climate trends, weather predictions, hydrologic and biogeophysical modeling, and the monitoring of ecosystem health and agricultural crops. This is an introductory paper to t...