Sample records for lande factor

  1. [Dynamics of recent cultivated land in Zhejiang Province and relevant driving factors].

    PubMed

    Zhang, Hai-dong; Yu, Dong-sheng; Shi, Xue-zheng; Liu, Ying-an; Wang, Shi-hang; Zhang, Guang-xing; Liu, Yang

    2010-12-01

    Through the human-computer interactive interpretation of the 2000, 2005, and 2008 remote sensing images of Zhejiang Province with the help of RS and GIS techniques, the dynamic database of cultivated land change in the province in, 2000-2008 was established, and the driving factors of the cultivated land change were analyzed by ridge regression analysis. There was a notable cultivated land change in the province in 2000-2008. In 2000-2005 and 2005-2008, the annual cultivated land change in the province arrived -1.42% and -1.46%, respectively, and most of the cultivated land was changed into residential and industrial land. Non-agricultural population rate, real estate investment, urban green area, and orchard area were thought to be the main driving factors of the cultivated land change in Zhejiang Province, and even, in the developed areas of east China.

  2. Multiscale Spatial Assessment of Determinant Factors of Land Use Change: Study at Urban Area of Yogyakarta

    NASA Astrophysics Data System (ADS)

    Susilo, Bowo

    2017-12-01

    Studies of land use change have been undertaken by different researchers using various methods. Among those methods, modelling is widely utilized. Modelling land use change required several components remarked as model variables. Those represent any conditions or factors which considered relevant or have some degree of correlation to the changes of land use. Variables which have significant correlation to land use change are referred as determinant factors or driving forces. Those factors as well as changes of land use are distributed across space and therefore referred as spatial determinant factors. The main objective of the research was to examine land use change and its determinant factors. Area and location of land use change were analysed based on three different years of land use maps, which are 1993, 2000 and 2007. Spatial and temporal analysis were performed which emphasize to the influence of scale to both of analysis’s. Urban area of Yogyakarta was selected as study area. Study area covered three different districts (kabupaten), involving 20 sub districts and totally consists of 74 villages. Result of this study shows that during 14 years periods (1993 to 2007), there were about 1,460 hectares of land use change had been taken place. Dominant type of land use change is agricultural to residential. The uses of different spatial and temporal scale in analysis were able to reveal different factors related to land use change. In general, factors influencing the quantities of land use change in the study area were population growth and the availability of land. The use of data with different spatial resolution can reveal the presence of various factors associated with the location of the change. Locations of land use change were influenced or determined by accessibility factors.

  3. Stormwater dissolved organic matter: influence of land cover and environmental factors.

    PubMed

    McElmurry, Shawn P; Long, David T; Voice, Thomas C

    2014-01-01

    Dissolved organic matter (DOM) plays a major role in defining biological systems and it influences the fate and transport of many pollutants. Despite the importance of DOM, understanding of how environmental and anthropogenic factors influence its composition and characteristics is limited. This study focuses on DOM exported as stormwater from suburban and urban sources. Runoff was collected before entering surface waters and DOM was characterized using specific ultraviolet absorbance at 280 nm (a proxy for aromaticity), molecular weight, polydispersity and the fraction of DOM removed from solution via hydrophobic and H-bonding mechanisms. General linear models (GLMs) incorporating land cover, precipitation, solar radiation and selected aqueous chemical measurements explained variations in DOM properties. Results show (1) molecular characteristics of DOM differ as a function of land cover, (2) DOM produced by forested land is significantly different from other landscapes, particularly urban and suburban areas, and (3) DOM from land cover that contains paved surfaces and sewers is more hydrophobic than from other types of land cover. GLMs incorporating environmental factors and land cover accounted for up to 86% of the variability observed in DOM characteristics. Significant variables (p < 0.05) included solar radiation, water temperature and water conductivity.

  4. Using exploratory regression to identify optimal driving factors for cellular automaton modeling of land use change.

    PubMed

    Feng, Yongjiu; Tong, Xiaohua

    2017-09-22

    Defining transition rules is an important issue in cellular automaton (CA)-based land use modeling because these models incorporate highly correlated driving factors. Multicollinearity among correlated driving factors may produce negative effects that must be eliminated from the modeling. Using exploratory regression under pre-defined criteria, we identified all possible combinations of factors from the candidate factors affecting land use change. Three combinations that incorporate five driving factors meeting pre-defined criteria were assessed. With the selected combinations of factors, three logistic regression-based CA models were built to simulate dynamic land use change in Shanghai, China, from 2000 to 2015. For comparative purposes, a CA model with all candidate factors was also applied to simulate the land use change. Simulations using three CA models with multicollinearity eliminated performed better (with accuracy improvements about 3.6%) than the model incorporating all candidate factors. Our results showed that not all candidate factors are necessary for accurate CA modeling and the simulations were not sensitive to changes in statistically non-significant driving factors. We conclude that exploratory regression is an effective method to search for the optimal combinations of driving factors, leading to better land use change models that are devoid of multicollinearity. We suggest identification of dominant factors and elimination of multicollinearity before building land change models, making it possible to simulate more realistic outcomes.

  5. Comparison of Factorization-Based Filtering for Landing Navigation

    NASA Technical Reports Server (NTRS)

    McCabe, James S.; Brown, Aaron J.; DeMars, Kyle J.; Carson, John M., III

    2017-01-01

    This paper develops and analyzes methods for fusing inertial navigation data with external data, such as data obtained from an altimeter and a star camera. The particular filtering techniques are based upon factorized forms of the Kalman filter, specifically the UDU and Cholesky factorizations. The factorized Kalman filters are utilized to ensure numerical stability of the navigation solution. Simulations are carried out to compare the performance of the different approaches along a lunar descent trajectory using inertial and external data sources. It is found that the factorized forms improve upon conventional filtering techniques in terms of ensuring numerical stability for the investigated landing navigation scenario.

  6. The effect of foot landing position on biomechanical risk factors associated with anterior cruciate ligament injury.

    PubMed

    Tran, Andrew A; Gatewood, Corey; Harris, Alex H S; Thompson, Julie A; Dragoo, Jason L

    2016-12-01

    Identification of biomechanical risk factors associated with anterior cruciate ligament (ACL) injury can facilitate injury prevention. The purpose of this study is to investigate the effects of three foot landing positions, "toe-in", "toe-out" and "neutral", on biomechanical risk factors for ACL injury in males and females. The authors hypothesize that 1) relative to neutral, the toe-in position increases the biomechanical risk factors for ACL injury, 2) the toe-out position decreases these biomechanical risk factors, and 3) compared to males, females demonstrate greater changes in lower extremity biomechanics with changes in foot landing position. Motion capture data on ten male and ten female volunteers aged 20-30 years (26.4 ± 2.50) were collected during double-leg jump landing activities. Subjects were asked to land on force plates and target one of three pre-templated foot landing positions: 0° ("neutral"), 30° internal rotation ("toe-in"), and 30° external rotation ("toe-out") along the axis of the anatomical sagittal plane. A mixed-effects ANOVA and pairwise Tukey post-hoc comparison were used to detect differences in kinematic and kinetic variables associated with biomechanical risk factors of ACL injury between the three foot landing positions. Relative to neutral, landing in the toe-in position increased peak hip adduction, knee internal rotation angles and moments (p < 0.01), and peak knee abduction angle (p < 0.001). Landing in the toe-in position also decreased peak hip flexion angle (p < 0.001) and knee flexion angle (p = 0.023). Landing in the toe-out position decreased peak hip adduction, knee abduction, and knee internal rotation angles (all p < 0.001). Male sex was associated with a smaller increase in hip adduction moment (p = 0.043) and knee internal rotation moment (p = 0.032) with toe-in landing position compared with female sex. Toe-in landing position exacerbates biomechanical risk factors associated with

  7. Driving factors of urban land growth in Guangzhou and its implications for sustainable development

    NASA Astrophysics Data System (ADS)

    Cui, Xuezhu; Li, Shaoying; Wang, Xuetong; Xue, Xiaolong

    2018-04-01

    Since 2000, China's urban land has expanded at a dramatic speed because of the country's rapid urbanization. The country has been experiencing unbalanced development between rural and urban areas, causing serious challenges such as agricultural security and land resources waste. Effectively evaluating the driving factors of urban land growth is essential for improving efficient land use management and sustainable urban development. This study established a principal component regression model based on eight indicators to identify their influences on urban land growth in Guangzhou. The results provided a grouping analysis of the driving factors, and found that economic growth, urban population, and transportation development are the driving forces of urban land growth of Guangzhou, while the tertiary industry has an opposite effect. The findings led to further suggestions and recommendations for urban sustainable development. Hence, local governments should design relevant policies for achieving the rational development of urban land use and strategic planning on urban sustainable development.

  8. Assessment of land use factors associated with dengue cases in Malaysia using Boosted Regression Trees.

    PubMed

    Cheong, Yoon Ling; Leitão, Pedro J; Lakes, Tobia

    2014-07-01

    The transmission of dengue disease is influenced by complex interactions among vector, host and virus. Land use such as water bodies or certain agricultural practices have been identified as likely risk factors for dengue because of the provision of suitable habitats for the vector. Many studies have focused on the land use factors of dengue vector abundance in small areas but have not yet studied the relationship between land use factors and dengue cases for large regions. This study aims to clarify if land use factors other than human settlements, e.g. different types of agricultural land use, water bodies and forest are associated with reported dengue cases from 2008 to 2010 in the state of Selangor, Malaysia. From the correlative relationship, we aim to generate a prediction risk map. We used Boosted Regression Trees (BRT) to account for nonlinearities and interactions between the factors with high predictive accuracies. Our model with a cross-validated performance score (Area Under the Receiver Operator Characteristic Curve, ROC AUC) of 0.81 showed that the most important land use factors are human settlements (model importance of 39.2%), followed by water bodies (16.1%), mixed horticulture (8.7%), open land (7.5%) and neglected grassland (6.7%). A risk map after 100 model runs with a cross-validated ROC AUC mean of 0.81 (±0.001 s.d.) is presented. Our findings may be an important asset for improving surveillance and control interventions for dengue. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Spatially heterogeneous land cover/land use and climatic risk factors of tick-borne feline cytauxzoonosis.

    PubMed

    Raghavan, Ram K; Almes, Kelli; Goodin, Doug G; Harrington, John A; Stackhouse, Paul W

    2014-07-01

    Feline cytauxzoonosis is a highly fatal tick-borne disease caused by a hemoparasitic protozoan, Cytauxzoon felis. This disease is a leading cause of mortality for cats in the Midwestern United States, and no vaccine or effective treatment options exist. Prevention based on knowledge of risk factors is therefore vital. Associations of different environmental factors, including recent climate were evaluated as potential risk factors for cytauxzoonosis using Geographic Information Systems (GIS). There were 69 cases determined to be positive for cytauxzoonosis based upon positive identification of C. felis within blood film examinations, tissue impression smears, or histopathologic examination of tissues. Negative controls totaling 123 were selected from feline cases that had a history of fever, malaise, icterus, and anorexia but lack of C. felis within blood films, impression smears, or histopathologic examination of tissues. Additional criteria to rule out C. felis among controls were the presence of regenerative anemia, cytologic examination of blood marrow or lymph node aspirate, other causative agent diagnosed, or survival of 25 days or greater after testing. Potential environmental determinants were derived from publicly available sources, viz., US Department of Agriculture (soil attributes), US Geological Survey (land-cover/landscape, landscape metrics), and NASA (climate). Candidate variables were screened using univariate logistic models with a liberal p value (0.2), and associations with cytauxzoonosis were modeled using a global multivariate logistic model (p<0.05). Spatial heterogeneity among significant variables in the study region was modeled using a geographically weighted regression (GWR) approach. Total Edge Contrast Index (TECI), grassland-coverage, humidity conditions recorded during the 9(th) week prior to case arrival, and an interaction variable, "diurnal temperature range × percent mixed forest area" were significant risk factors for

  10. The Determinant Factors of Regional Development Toward Land Use Change in Deli Serdang

    NASA Astrophysics Data System (ADS)

    Lindarto, D.; Sirojuzilam; Badaruddin; Dwira

    2017-03-01

    The concept of regional development Mebidangro (Medan, Binjai, Deli Serdang, and Karo) creating neighboring region hinterland Medan city with Deli Serdang Regency especially in Tembung village, Percut Sei Tuan District. Population structure in Tembung shows occurrence condition of rural-urban change which seen from the sprawl land use change. The aim of the study is to reveal the genius locus as one of land use change factors. The study conducted with quantitative approach intended at obtaining variables which describing several factors forming land use change. Descriptive approach intended to give an idea, justification, and fact-finding with correct interpretation. Data collected through a purposive sampling of 300 respondents who have built the house between 2010 till 2014. With overlay figure/ground technique, scoring analysis, descriptive quantitative and SEM (Structural Equational Models) gained a result that place character/genius locus (p=0,007) potentially as one of the main land use change driving factors besides accessibility (p=0,039), infrastructure (p=0,005), social-economic p=0,038). Topographic (p=0,663) was inversely potentially. The implication of the findings is required intensive control in space utilization considering the rapid change in land use transformation that tend to have the negative impact of urban sprawl.

  11. Identifying relationships between baseflow geochemistry and land use with synoptic sampling and R-Mode factor analysis

    USGS Publications Warehouse

    Wayland, Karen G.; Long, David T.; Hyndman, David W.; Pijanowski, Bryan C.; Woodhams, Sarah M.; Haak, Sheridan K.

    2003-01-01

    The relationship between land use and stream chemistry is often explored through synoptic sampling rivers at baseflow condition. However, base flow chemistry is likely to vary temporally and spatially with land use. The purpose of our study is to examine the usefulness of the synoptic sampling approach for identifying the relationship between complex land use configurations and stream water quality. This study compares biogeochemical data from three synoptic sampling events representing the temporal variability of baseflow chemistry and land use using R-mode factor analysis. Separate R-mode factor analyses of the data from individual sampling events yielded only two consistent factors. Agricultural activity was associated with elevated levels of Ca2+, Mg2+, alkalinity, and frequently K+, SO42-, and NO3-. Urban areas were associated with higher concentrations of Na+, K+, and Cl-. Other retained factors were not  consistent among sampling events, and some factors were difficult to interpret in the context of biogeochemical sources and processes. When all data were combined, further associations were revealed such as an inverse relationship between the proportion of wetlands and stream nitrate concentrations. We also found that barren lands were associated with elevated sulfate levels. This research suggests that an individual sampling event is unlikely to characterize adequately the complex processes controlling interactions between land uses and stream chemistry. Combining data collected over two years during three synoptic sampling events appears to enhance our ability to understand processes linking stream chemistry and land use.  

  12. The effects of environmental and socioeconomic factors on land-use changes: a study of Alberta, Canada.

    PubMed

    Ruan, Xiaofeng; Qiu, Feng; Dyck, Miles

    2016-08-01

    Various environmental and socioeconomic issues have been attributed to land-use changes, and therefore, the underlying mechanisms merit investigation and quantification. This study assesses a comprehensive series of land-use conversions that were implemented over a recent 12-year period in the province of Alberta, Canada, where rapid economic and population growth has occurred. Spatial autocorrelation models are applied to identify the comprehensive effects of environmental and socioeconomic factors in each conversion case. The empirical results show that the impacts of key environmental and socioeconomic factors varied in intensity depending on the type of land-use conversion involved. Overall, land suitability for agricultural uses, road density, elevation, and population growth were found to be significant predictors of land-use changes. High land suitability, low elevation, and moderate road density were associated with land conversion for agricultural purposes.

  13. Approach to the land-use change and its influential factors in Loess Plateau of Dingxi Prefecture

    NASA Astrophysics Data System (ADS)

    Yu, Li; Dong, Suocheng; Hou, Xiaoli; Fan, Zhenjun

    2004-11-01

    Based on land-use datum (at scale of 100,000) of the interpretation of Landsat Thematic Mapper in 1980, 1995 and 2000, which came from environmental database of the Chinese Academy of Sciences, the authors investigated land-use change and influential factors by the combined use of geographic information systems (GIS) method, Markov model and canonical correlation analysis (CCA) statistical method. The results showed that, in the periods 1980-2000, crop land increased by 0.58 percent (4278.86 hectares), of which 92.93 percent was transformed from grassland and 7.07 percent from forestland. Urban or built-up land increased by 26.23 percent (687.45 hectares), of which 77.35 percent was transformed from cropland. Rural residential land increased by 5.17 percent (1324.37 hectares). Forestland and water land decreased in area. Grassland decreased by 0.57 percent (5706.77 hectares). Secondly, transition rate of landscape spatial pattern among the landscape elements from 1995 to 2000 was slower than that from 1980 to 1995. Land use types as cropland, grassland, woodland and rural residential land were the primary change types from 1995 to 2000. Thirdly, both natural and social economic factors influenced land use pattern. The population and per capita grain yield were positively correlated to rural residential pattern. The spatial distribution of grassland and cropland showed strong positive correlation to annual rainfall and annual air temperature, and negative association to annual per capita net income of rural residents. The poor annual per capita net income of rural residents and investment in capital construction restricted the extended area of urban build-up land. Therefore, the drought is not proportional to pattern of urban build-up land. The study verified the analysis conclusion of influential factors by redundancy degree of CCA. The integration of remote sensing data, GIS, Markov process and CCA provided a comprehensive method to analyze land use pattern and

  14. Multi-Factor Analysis for Selecting Lunar Exploration Soft Landing Area and the best Cruise Route

    NASA Astrophysics Data System (ADS)

    Mou, N.; Li, J.; Meng, Z.; Zhang, L.; Liu, W.

    2018-04-01

    Selecting the right soft landing area and planning a reasonable cruise route are the basic tasks of lunar exploration. In this paper, the Von Karman crater in the Antarctic Aitken basin on the back of the moon is used as the study area, and multi-factor analysis is used to evaluate the landing area and cruise route of lunar exploration. The evaluation system mainly includes the factors such as the density of craters, the impact area of craters, the formation of the whole area and the formation of some areas, such as the vertical structure, rock properties and the content of (FeO + TiO2), which can reflect the significance of scientific exploration factor. And the evaluation of scientific exploration is carried out on the basis of safety and feasibility. On the basis of multi-factor superposition analysis, three landing zones A, B and C are selected, and the appropriate cruising route is analyzed through scientific research factors. This study provides a scientific basis for the lunar probe landing and cruise route planning, and it provides technical support for the subsequent lunar exploration.

  15. Factors of land abandonment in mountainous Mediterranean areas: the case of Montenegrin settlements.

    PubMed

    Kerckhof, Annelies; Spalevic, Velibor; Van Eetvelde, Veerle; Nyssen, Jan

    2016-01-01

    Land use changes have been investigated in the surroundings of 14 rural Montenegrin settlements in order to get specific information about trends in land abandonment since around 1950. Permanently, seasonally and less inhabited settlements with different geographic conditions were studied. This was done by interviewing local inhabitants, which enabled a holistic approach to reveal the underlying processes of land abandonment. According to the observed patterns of land use change, the study sites can be categorized into intensified, urbanized, extensified, overgrown and forested cases. The category of extensified settlements is characterized by a highly reduced agricultural management intensity, resulting in an increase in grasslands and fruit trees at the expense of cropland. This land use change is mainly related to emigrating and aging inhabitants, having less livestock. Such extensive land use is found in both permanently inhabited and abandoned villages. Only some studied settlements became largely overgrown by bushes and forest. The steep average slope gradients and a large distance to the nearest city are explanatory factors of such land abandonment. Land use intensification takes place in low-lying areas located nearby towns.

  16. Spatial and temporal assessment of driving and conditioning factors and their impact on land use / land cover change in the Xiangxi Catchment, Three Gorges Region

    NASA Astrophysics Data System (ADS)

    Seeber, Christoph; Hartmann, Heike; Xiang, Wei; King, Lorenz

    2010-05-01

    Land use / land cover change (LUCC) is the most important human alteration of the earth's surface and is primarily studied in cases where it leads to severe environmental problems. The construction of the Three Gorges Dam on the Yangtze River in China has an extensive impact on the ecosystems and the local population. To assess its impact, the Xiangxi Catchment is taken as an example. The outlet of the Xiangxi River, a northern tributary of the Yangtze River, is located about 40 km upstream of the Three Gorges Dam. Due to the loss of fertile arable land and residential land which is mainly induced by the inundation and measures of resettlement, enormous LUCC is observed in the study area by depicting the land use / land cover by classification of LandsatTM data retrieved in 1987 and 2007. LUCC in the Xiangxi Catchment during this period can generally be characterized as decrease of cultivated land, increase of woodland and fallow land, and a shift in cropping from traditional smallholder farming to the establishment of citrus orchards, which are implemented as cash crops. Not only the inundation and the resettlement have an impact on LUCC, also the newly built and improved traffic infrastructure, growth of urban structures and land use policies in terms of environmental protection are expected to play an important role concerning LUCC. To assess the spatial and temporal impact of influencing factors, a LUCC gradient is generated based on post-classification change analysis of multispectral data. Furthermore, inter-stages between 1987 and 2007 have to be examined, to reach for a higher temporal resolution, which shall help to figure out temporal relationships between LUCC and the occurrence of driving factors. Once influence factors and and their spatial and temporal impacts are identified, a basis for predicting LUCC in the future for is provided for this area.

  17. Land cover change or land-use intensification: simulating land system change with a global-scale land change model.

    PubMed

    van Asselen, Sanneke; Verburg, Peter H

    2013-12-01

    Land-use change is both a cause and consequence of many biophysical and socioeconomic changes. The CLUMondo model provides an innovative approach for global land-use change modeling to support integrated assessments. Demands for goods and services are, in the model, supplied by a variety of land systems that are characterized by their land cover mosaic, the agricultural management intensity, and livestock. Land system changes are simulated by the model, driven by regional demand for goods and influenced by local factors that either constrain or promote land system conversion. A characteristic of the new model is the endogenous simulation of intensification of agricultural management versus expansion of arable land, and urban versus rural settlements expansion based on land availability in the neighborhood of the location. Model results for the OECD Environmental Outlook scenario show that allocation of increased agricultural production by either management intensification or area expansion varies both among and within world regions, providing useful insight into the land sparing versus land sharing debate. The land system approach allows the inclusion of different types of demand for goods and services from the land system as a driving factor of land system change. Simulation results are compared to observed changes over the 1970-2000 period and projections of other global and regional land change models. © 2013 John Wiley & Sons Ltd.

  18. Factors Influencing Farmers' Expectations to Sell Agricultural Land for Non-Agricultural Uses

    ERIC Educational Resources Information Center

    Zollinger, Brett; Krannich, Richard S.

    2002-01-01

    In this study we identify factors that influence farmers' expectations to sell some or all of their farming operation in areas where the increase in the conversion of agricultural land has been relatively rapid. Findings indicate that the following factors increase farmers' propensity to sell some or all of the agricultural operation for…

  19. Spatiotemporal patterns of evapotranspiration in response to multiple environmental factors simulated by the Community Land Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoying; Mao, Jiafu; Thornton, Peter E

    In this study, spatial and temporal patterns of evapotranspiration (ET) over the period of 1982-2008 are investigated and attributed to multiple environmental factors using the Community Land Model version 4 (CLM4). Our results show that CLM4 captures the spatial distribution and interannual variability of ET well when compared to observation-based estimates derived from the FLUXNET network of eddy covariance towers using the model tree ensembles (MTE) approach. We find that climate trends and variability dominate predicted variability in ET. Elevated atmospheric CO2 concentration also plays an important role in modulating the trend of predicted ET over most land areas, andmore » functions as the dominant factor controlling ET changes over North America, South America and Asia regions. Compared to the effect of climate change and CO2 concentration, the roles of other factors such as nitrogen deposition, land use change and aerosol deposition are less pronounced and regionally dependent. For example, the aerosol deposition contribution is the third-most important factor for trends of ET over Europe, while it has the smallest impact on ET trend over other regions. As ET is a dominant component of the terrestrial water cycle, our results suggest that environmental factors like elevated CO2, nitrogen and aerosol depositions, and land use and land cover change, in addition to climate, could have significant impact on future projections of water resources and water cycle dynamics at global and regional scales.« less

  20. Hydrologic and geologic factors affecting land subsidence near Eloy, Arizona

    USGS Publications Warehouse

    Epstein, V.J.

    1987-01-01

    At an extensometer site near Eloy, Arizona, 1.09 m of land subsidence caused by groundwater withdrawal were measured by leveling in 1965-83. The extensometer, which partially penetrates the compressible sediments, recorded 0.82 m of compaction during the same period. By use of a one-dimensional model, cumulative daily compaction values were simulated to within an average of 0.0038 m of the actual values. Land subsidence was simulated to within an average of 0.011 m using the same model in conjunction with geohydrologic data of the sediments below the extensometer. A highly compressible clay layer that is 24.38 m thick was partially penetrated by the extensometer. The simulation indicated that the layer was driving compaction and land subsidence linearly with respect to time, despite the presence of other compacting layers. Because of its thickness and compressibility, this layer can be expected to continue to compact after applied vertical stresses have stopped increasing and other layers have stopped compacting. Sensitivity analysis indicated that the compressibility of fine-grained sediments (expressed as specific storage) is one of the factors to which compact is most sensitive. Preconsolidation stress and hydraulic conductivity also affect land subsidence near Eloy, Arizona. (Author 's abstract)

  1. Spatiotemporal Patterns of Evapotranspiration in Response to Multiple Environmental Factors Simulated by the Community Land Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoying; Mao, Jiafu; Thornton, P.

    Spatiotemporal patterns of evapotranspiration (ET) over the period from 1982 to 2008 are investigated and attributed to multiple environmental factors using the Community Land Model version 4 (CLM4). Our results show that CLM4 captures the spatial distribution and interannual variability of ET well when compared to observation-based estimates. We find that climate dominates the predicted variability in ET. Elevated atmospheric CO2 concentration also plays an important role in modulating the trend of predicted ET over most land areas, and replaces climate to function as the dominant factor controlling ET changes over the North America, South America and Asia regions. Comparedmore » to the effect of climate and CO2 concentration, the roles of other factors such as nitrogen deposition, land use change and aerosol deposition are less pronounced and regionally dependent. The aerosol deposition contribution is the third most important factor for trends of ET over Europe, while it has the smallest impact over other regions. As ET is a dominant component of the terrestrial water cycle, our results suggest that environmental factors like elevated CO2, nitrogen and aerosol depositions, and land use change, in addition to climate, could have significant impact on future projections of water resources and water cycle dynamics at global and regional scales.« less

  2. The Impact of Land Use/Land Cover Changes on Land Degradation Dynamics: A Mediterranean Case Study

    NASA Astrophysics Data System (ADS)

    Bajocco, S.; De Angelis, A.; Perini, L.; Ferrara, A.; Salvati, L.

    2012-05-01

    In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.

  3. The impact of land use/land cover changes on land degradation dynamics: a Mediterranean case study.

    PubMed

    Bajocco, S; De Angelis, A; Perini, L; Ferrara, A; Salvati, L

    2012-05-01

    In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.

  4. Broad Perspectives on Mars Landing Site Selection: Geological Factors from Centimeter to Kilometer Scales

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.; Golombek, M. P.

    2001-01-01

    Selection of a landing site for the '03 and later Mars surface missions represents a balance between potential science results and landing site safety. Although safety has to be the prime consideration, it is the melding together of spacecraft hazard analysis with science analysis that provides the key to understanding the nature of the surface for determining both its safety for landing and its scientific potential. Our goal here is to discuss the geological factors that go into a determination of site safety, at scales from centimeters up to kilometers, and to understand the implications for the resulting scientific return that can be expected.

  5. Land cover characterization and land surface parameterization research

    USGS Publications Warehouse

    Steyaert, Louis T.; Loveland, Thomas R.; Parton, William J.

    1997-01-01

    The understanding of land surface processes and their parameterization in atmospheric, hydrologic, and ecosystem models has been a dominant research theme over the past decade. For example, many studies have demonstrated the key role of land cover characteristics as controlling factors in determining land surface processes, such as the exchange of water, energy, carbon, and trace gases between the land surface and the lower atmosphere. The requirements for multiresolution land cover characteristics data to support coupled-systems modeling have also been well documented, including the need for data on land cover type, land use, and many seasonally variable land cover characteristics, such as albedo, leaf area index, canopy conductance, surface roughness, and net primary productivity. Recently, the developers of land data have worked more closely with the land surface process modelers in these efforts.

  6. Paths to Change: Bio-Economic Factors, Geographical Gradients and the Land-Use Structure of Italy.

    PubMed

    Masini, Emanuela; Barbati, Anna; Bencardino, Massimiliano; Carlucci, Margherita; Corona, Piermaria; Salvati, Luca

    2018-01-01

    This study introduces a bio-economic approach to evaluate the influence of local socioeconomic contexts on complex processes of landscape transformation (urbanization, withdrawal of farming with woodland creation and loss in crop mosaics) in a sustainable development perspective. Land-use and socioeconomic indicators (including shares of agriculture, industry and services in total product, per-worker value added, productivity by economic sector, distance from central cities, latitude and elevation) at the local district scale in Italy have been considered together in an exploratory approach based on multivariate statistics. The combined use of land-use and socioeconomic indicators was preferred to more traditional approaches based on single-variable analysis and allows identifying latent factors of landscape transformation at the local scale. Our approach sheds light in the intimate relationship between regional economic structures and land-use change in districts with varying socio-environmental attributes across Italy. Urban-rural divides, coastal-inland dichotomy and the elevation gradient were relevant factors shaping urbanization-driven landscape transformations at the country scale. Indicators of economic structure (and especially industrial production and per-worker productivity of industry and services) were also documented to influence greatly entity and direction of change in the use of land. Discontinuous and dispersed urbanization has been demonstrated to be spatially-decoupled from consolidated (continuous and compact) urbanization, expanding into undeveloped rural areas progressively far away from central cities and being spatially associated with forest land.

  7. Paths to Change: Bio-Economic Factors, Geographical Gradients and the Land-Use Structure of Italy

    NASA Astrophysics Data System (ADS)

    Masini, Emanuela; Barbati, Anna; Bencardino, Massimiliano; Carlucci, Margherita; Corona, Piermaria; Salvati, Luca

    2018-01-01

    This study introduces a bio-economic approach to evaluate the influence of local socioeconomic contexts on complex processes of landscape transformation (urbanization, withdrawal of farming with woodland creation and loss in crop mosaics) in a sustainable development perspective. Land-use and socioeconomic indicators (including shares of agriculture, industry and services in total product, per-worker value added, productivity by economic sector, distance from central cities, latitude and elevation) at the local district scale in Italy have been considered together in an exploratory approach based on multivariate statistics. The combined use of land-use and socioeconomic indicators was preferred to more traditional approaches based on single-variable analysis and allows identifying latent factors of landscape transformation at the local scale. Our approach sheds light in the intimate relationship between regional economic structures and land-use change in districts with varying socio-environmental attributes across Italy. Urban-rural divides, coastal-inland dichotomy and the elevation gradient were relevant factors shaping urbanization-driven landscape transformations at the country scale. Indicators of economic structure (and especially industrial production and per-worker productivity of industry and services) were also documented to influence greatly entity and direction of change in the use of land. Discontinuous and dispersed urbanization has been demonstrated to be spatially-decoupled from consolidated (continuous and compact) urbanization, expanding into undeveloped rural areas progressively far away from central cities and being spatially associated with forest land.

  8. Nationwide analysis on the impact of socioeconomic land use factors and incidence of urothelial carcinoma.

    PubMed

    Brandt, Maximilian P; Gust, Kilian M; Mani, Jens; Vallo, Stefan; Höfner, Thomas; Borgmann, Hendrik; Tsaur, Igor; Thomas, Christian; Haferkamp, Axel; Herrmann, Eva; Bartsch, Georg

    2018-02-01

    Incidence rates for urothelial carcinoma (UC) have been reported to differ between countries within the European Union (EU). Besides occupational exposure to chemicals, other substances such as tobacco and nitrite in groundwater have been identified as risk factors for UC. We investigated if regional differences in UC incidence rates are associated with agricultural, industrial and residential land use. Newly diagnosed cases of UC between 2003 and 2010 were included. Information within 364 administrative districts of Germany from 2004 for land use factors were obtained and calculated as a proportion of the total area of the respective administrative district and as a smoothed proportion. Furthermore, information on smoking habits was included in our analysis. Kulldorff spatial clustering was used to detect different clusters. A negative binomial model was used to test the spatial association between UC incidence as a ratio of observed versus expected incidence rates, land use and smoking habits. We identified 437,847,834 person years with 171,086 cases of UC. Cluster analysis revealed areas with higher incidence of UC than others (p=0.0002). Multivariate analysis including significant pairwise interactions showed that the environmental factors were independently associated with UC (p<0.001). The RR was 1.066 (95% CI 1.052-1.080), 1.066 (95% CI 1.042-1.089) and 1.067 (95% CI 1.045-1.093) for agricultural, industrial and residential areas, respectively, and 0.996 (95% CI 0.869-0.999) for the proportion of never smokers. This study displays regional differences in incidence of UC in Germany. Additionally, results suggest that socioeconomic factors based on agricultural, industrial and residential land use may be associated with UC incidence rates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Two Empirical Models for Land-falling Hurricane Gust Factors

    NASA Technical Reports Server (NTRS)

    Merceret, Franics J.

    2008-01-01

    Gaussian and lognormal models for gust factors as a function of height and mean windspeed in land-falling hurricanes are presented. The models were empirically derived using data from 2004 hurricanes Frances and Jeanne and independently verified using data from 2005 hurricane Wilma. The data were collected from three wind towers at Kennedy Space Center and Cape Canaveral Air Force Station with instrumentation at multiple levels from 12 to 500 feet above ground level. An additional 200-foot tower was available for the verification. Mean wind speeds from 15 to 60 knots were included in the data. The models provide formulas for the mean and standard deviation of the gust factor given the mean windspeed and height above ground. These statistics may then be used to assess the probability of exceeding a specified peak wind threshold of operational significance given a specified mean wind speed.

  10. Does land use planning slow the conversion of forest and farm lands?

    Treesearch

    Jeffrey D. Kline; Ralph J. Alig

    1999-01-01

    Land use planning often is implemented to control development on forests and farmland, but its impact on land use remains untested. Previous studies evaluating such programs have relied on anecdotal evidence rather than on data describing actual land use change. A model of land use is specified as a function of socioeconomic factors, land rent, and landowners'...

  11. A Flight Evaluation of the Factors which Influence the Selection of Landing Approach Speeds

    NASA Technical Reports Server (NTRS)

    Drinkwater, Fred J., III; Cooper, George E.

    1958-01-01

    The factors which influence the selection of landing approach speeds are discussed from the pilot's point of view. Concepts were developed and data were obtained during a landing approach flight investigation of a large number of jet airplane configurations which included straight-wing, swept-wing, and delta-wing airplanes as well as several applications of boundary-layer control. Since the fundamental limitation to further reductions in approach speed on most configurations appeared to be associated with the reduction in the pilot's ability to control flight path angle and airspeed, this problem forms the basis of the report. A simplified equation is presented showing the basic parameters which govern the flight path angle and airspeed changes, and pilot control techniques are discussed in relation to this equation. Attention is given to several independent aerodynamic characteristics which do not affect the flight path angle or airspeed directly but which determine to a large extent the effort and attention required of the pilot in controlling these factors during the approach. These include stall characteristics, stability about all axes, and changes in trim due to thrust adjustments. The report considers the relationship between piloting technique and all of the factors previously mentioned. A piloting technique which was found to be highly desirable for control of high-performance airplanes is described and the pilot's attitudes toward low-speed flight which bear heavily on the selection of landing approach speeds under operational conditions are discussed.

  12. [Distribution of 137Cs and relative influencing factors on typical karst sloping land].

    PubMed

    Zhang, Xiao-Nan; Wang, Ke-Lin; Zhang, Wei; Chen, Hong-Song; He, Xun-Yang; Zhang, Xin-Bao

    2009-11-01

    Based on the field survey and the analysis of a large number of soil samples, the distribution of 137 Cs and its influencing factors were studied using 137 Cs tracer technology on typical karst sloping land. The results indicate that the distribution of 137 Cs in soil profile in karst areas show the similar characteristics as that in non-karst areas, fitted an exponential pattern in forest soils and a uniform pattern in cultivated soils. In the sinkhole points in karst areas, 137 Cs exists in deep soil layers and its specific activity vary from 1.7 to 3.3 Bq/kg in soil layers above 45cm, suggesting the existing soil around karst sinkhole is mainly formed by the accumulation of erosion materials. The 137 Cs specific activity in the soil from two rock cracks are 16.8 Bq/kg and 37.6 Bq/kg respectively, which are much higher than that in the soil around the rock, this phenomenon indicates that bare rock is an important influencing factor for 137 Cs spatial movement. With the increment of altitude, the 137 Cs area activity exhibits an irregular fluctuation and evident spatial heterogeneity. On the forest land, the 137 Cs area activities which range from 299.4 to 1 592.6 Bq/m2 are highly positively correlated with the slope gradient and positively correlated with the altitude; while on the cultivated land, the 137 Cs area activities which range from 115.8 to 1478.6 Bq/m2 are negatively correlated with the slope gradient but negatively correlated with the altitude. Topography, geomorphology and human disturbance intensity are the key factors influencing 137 Cs spatial distribution.

  13. Determination of Lande gJ - factors of La I levels using laser spectroscopic methods: Complementary investigations

    NASA Astrophysics Data System (ADS)

    Sobolewski, Ł. M.; Windholz, L.; Kwela, J.

    2017-11-01

    Laser Induced Fluorescence Spectroscopy (LIF) and Optogalvanic Spectroscopy (OG) were used for the investigation of the Zeeman hyperfine structures of 26 spectral lines of La I in the wavelength range between 569.7 and 665.4 nm. As a source of free La atoms a hollow cathode discharge lamp was used. The spectra were recorded in the presence of a magnetic field of about 800G produced by a permanent magnet for two linear polarizations of the exciting laser light. As a result of the study, we determined for the first time the Landé gJ- factors of 20 levels of La I. For several other levels the Landé gJ- factors were re-investigated and determined with higher precision.

  14. LANDING QUALITY IN ARTISTIC GYMNASTICS IS RELATED TO LANDING SYMMETRY

    PubMed Central

    Marinšek, M.

    2013-01-01

    In gymnastics every exercise finishes with a landing. The quality of landing depends on subjective (e.g. biomechanical) and objective (e.g. mechanical characteristics of landing area) factors. The aim of our research was to determine which biomechanical (temporal, kinematic and dynamic) characteristics of landing best predict the quality of landing. Twelve male gymnasts performed a stretched forward and backward salto; also with 1/2, 1/1 and 3/2 turns. Stepwise multiple regression extracted five predictors which explained 51.5% of landing quality variance. All predictors were defining asymmetries between legs (velocities, angles). To avoid asymmetric landings, gymnasts need to develop enough height; they need higher angular momentum around the transverse and longitudinal axis and they need to better control angular velocity in the longitudinal axis. PMID:24744462

  15. Eutrophication in the Yunnan Plateau lakes: the influence of lake morphology, watershed land use, and socioeconomic factors.

    PubMed

    Liu, Wenzhi; Li, Siyue; Bu, Hongmei; Zhang, Quanfa; Liu, Guihua

    2012-03-01

    Lakes play an important role in socioeconomic development and ecological balance in China, but their water quality has deteriorated considerably in recent decades. In this study, we investigated the spatial-temporal variations of eutrophication parameters (secchi depth, total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll-a, trophic level index, and trophic state index) and their relationships with lake morphology, watershed land use, and socioeconomic factors in the Yunnan Plateau lakes. Results indicated that about 77.8% of lakes were eutrophic according to trophic state index. The plateau lakes showed spatial variations in water quality and could be classified into high-nutrient and low-nutrient groups. However, because watersheds were dominated by vegetation, all eutrophication parameters except chlorophyll-a showed no significant differences between the wet and dry seasons. Lake depth, water residence time, volume, and percentage of built-up land were significantly related to several eutrophication parameters. Agricultural land use and social-economic factors had no significant correlation with all eutrophication parameters. Stepwise regression analyses demonstrated that lake depth and water residence time accounted for 73.8% to 87.6% of the spatial variation of single water quality variables, respectively. Redundancy analyses indicated that lake morphology, watershed land use, and socioeconomic factors together explained 74.3% of the spatial variation in overall water quality. The results imply that water quality degradation in the plateau lakes may be mainly due to the domestic and industrial wastewaters. This study will improve our understanding of the determinants of lake water quality and help to design efficient strategies for controlling eutrophication in the plateau region.

  16. Land-use and land-cover change in montane mainland southeast Asia.

    PubMed

    Fox, Jefferson; Vogler, John B

    2005-09-01

    This paper summarizes land-cover and land-use change at eight sites in Thailand, Yunnan (China), Vietnam, Cambodia, and Laos over the last 50 years. Project methodology included incorporating information collected from a combination of semiformal, key informant, and formal household interviews with the development of spatial databases based on aerial photographs, satellite images, topographic maps, and GPS data. Results suggest that land use (e.g. swidden cultivation) and land cover (e.g. secondary vegetation) have remained stable and the minor amount of land-use change that has occurred has been a change from swidden to monocultural cash crops. Results suggest that two forces will increasingly determine land-use systems in this region. First, national land tenure policies-the nationalization of forest lands and efforts to increase control over upland resources by central governments-will provide a push factor making it increasingly difficult for farmers to maintain their traditional swidden land-use practices. Second, market pressures-the commercialization of subsistence resources and the substitution of commercial crops for subsistence crops-will provide a pull factor encouraging farmers to engage in new and different forms of commercial agriculture. These results appear to be robust as they come from eight studies conducted over the last decade. But important questions remain in terms of what research protocols are needed, if any, when linking social science data with remotely sensed data for understanding human-environment interactions.

  17. Recent land-use and land-cover changes and its driving factors in a fire-prone area of southwestern Turkey.

    PubMed

    Viedma, Olga; Moreno, José M; Güngöroglu, Cumhur; Cosgun, Ufuk; Kavgacı, Ali

    2017-07-15

    During the last decades, contrasted trends in forest fires among countries around the Mediterranean basin have been observed. In the northern/western countries, Land Use-Land Cover (LULC) changes led to more hazardous landscapes, with consequent increases in fires. This contrasted with fire trends in southern/eastern countries. The recent incidence of large fires in some of the latter prompted the question of whether they are now following the path of their neighbors decades earlier. In this study, we investigated recent LULC changes in southwestern Turkey, focusing on those that could affect fire, and the factors driving them. To this end, LULC maps at different time steps (1975, 1990, 2000 and 2010) were obtained from Landsat images, together with relevant socioeconomic data. Generalized linear mixed models (GLMMs) were applied to assess the effects of socioeconomic and geophysical factors on the dominant LULC changes over time. Over the whole period studied, the most important LULC changes were deforestation followed by afforestation. Deforestation was positively related to high livestock density and proximity to villages and increased forest interfaces with other LULC types. We found no evidence that LULC changes were making the landscape more hazardous as there was a net decrease in fuels biomass and the landscape became more fragmented over time. However, despite the area being heavily used and relatively fragmented, large fires can occur driven by severe weather. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Review of Land Use and Land Cover Change research progress

    NASA Astrophysics Data System (ADS)

    Chang, Yue; Hou, Kang; Li, Xuxiang; Zhang, Yunwei; Chen, Pei

    2018-02-01

    Land Use and Land Cover Change (LUCC) can reflect the pattern of human land use in a region, and plays an important role in space soil and water conservation. The study on the change of land use patterns in the world is of great significance to cope with global climate change and sustainable development. This paper reviews the main research progress of LUCC at home and abroad, and suggests that land use change has been shifted from land use planning and management to land use change impact and driving factors. The development of remote sensing technology provides the basis and data for LUCC with dynamic monitoring and quantitative analysis. However, there is no uniform standard for land use classification at present, which brings a lot of inconvenience to the collection and analysis of land cover data. Globeland30 is an important milestone contribution to the study of international LUCC system. More attention should be paid to the accuracy and results contrasting test of land use classification obtained by remote sensing technology.

  19. Land factors affecting soil erosion during snow melting: a case study from Lebanon

    NASA Astrophysics Data System (ADS)

    Darwich, Talal

    2014-05-01

    Soil erosion is one of the major problems facing the mountainous agricultural lands in Lebanon. In order to assess the land factors acting on soil erosion; a study was conducted in the upper watershed of Ibrahim River in the spring months of April, May and June. Water and bed load sediments from six locations alimented by six sub-basins were sampled. Four sub-basins (1, 2, 3 and 6) were dominated by agricultural lands while lands in sub-basins 4 and 7 were occupied by grassland and bare soils. The highest quantities of suspended sediments were found in waters originating from watersheds dominated by agricultural lands, such as Location 2 (713.72 mg L-1 in April 2012). Low clay content and the combination of land occupation (orchards = 71%) and slope (20.7 degrees) caused this ecosystem disturbance. Locations 1, 2, 3 and 6 were alimented by runoff water due to the melting of the snow. For this, the concentrations of sediments decreased by 4 fold between April and May in sub-basin 1 and by 11-14 fold in sub-basins 2, 3 and 6. Globally, some 1669.4 tons of sediments were delivered in the upper river during April. Bed load sediments were separated into 4 classes according to their size. The size of the particles found in the bed load reflected to a large extent the type of soils surrounding the watershed. The range of sand in the regions surrounding locations 6 and 7 was 64% and 82%, while the average in the bed load was 80.9% and 78.25% respectively. The silt content in locations 2, 3 and 5 was well reflected in the concentrations of silt in the bed load. In bed load samples, the exchangeable potassium ranged from 70-250 mg kg-1 in sub-basins dominated by agricultural lands against 20-50 mg kg-1 in sub-basins dominated by grassland and bare rocks. Further quantitative studies need to be conducted especially during the first rains to fully estimate the water load sediments after a prolonged dry season, characterizing the east Mediterranean. Action must be taken for

  20. Inquiry, Land Snails, and Environmental Factors

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; Krantz, Patrick D.

    2005-01-01

    Land snails are common invertebrates that fascinate children. Unfortunately, they are seldom used for activities in the science classroom. Snails are inexpensive, take up little space in the classroom, and require only low maintenance, and their learning dividends can be enormous. For example, students can use them in inquiry-based activities that…

  1. Quantum confinement and magnetic field effects on the electron Landé g factor in GaAs-(Ga,Al)As double quantum wells

    NASA Astrophysics Data System (ADS)

    Perea, J. Darío; Mejía-Salazar, J. R.; Porras-Montenegro, N.

    2011-12-01

    Nowadays the spin-related phenomena have attracted great attention for the possible spintronic and optoelectronic applications. The manipulation of the Landé g factor by means of the control of the electron confinement, applied magnetic field and hydrostatic pressure offers the possibility of having a wide range of ways to control single qubit operation and to have pure spin states to guarantee that no losses occur when the electron spins transport information. In this work we have performed a theoretical study of the quantum confinement (geometrical and barrier potential confinements) and growth direction applied magnetic field effects on the conduction-electron effective Landé g factor in GaAs-(Ga,Al)As double quantum wells. Our calculations of the Landé g factor are performed by using the Ogg-McCombe effective Hamiltonian, which includes non-parabolicity and anisotropy effects for the conduction-band electrons. Our theoretical results are given as function of the central barrier widths for different values of the applied magnetic fields. We have found that in this type of heterostructure the geometrical confinement commands the behavior of the electron effective Landé g factor as compared to the effect of the applied magnetic field. Present theoretical reports are in very good agreement with previous experimental and theoretical results.

  2. Lande gJ factors for even-parity electronic levels in the holmium atom

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Werbowy, S.; Krzykowski, A.; Furmann, B.

    2018-05-01

    In this work the hyperfine structure of the Zeeman splitting for 18 even-parity levels in the holmium atom was investigated. The experimental method applied was laser induced fluorescence in a hollow cathode discharge lamp. 20 spectral lines were investigated involving odd-parity levels from the ground multiplet, for which Lande gJ factors are known with high precision, as the lower levels; this greatly facilitated the evaluation of gJ factors for the upper levels. The gJ values for the even-parity levels considered are reported for the first time. They proved to compare fairly well with the values obtained recently in a semi-empirical analysis for the even-parity level system of Ho I.

  3. Modelling crop land use change derived from influencing factors selected and ranked by farmers in North temperate agricultural regions.

    PubMed

    Mehdi, Bano; Lehner, Bernhard; Ludwig, Ralf

    2018-08-01

    To develop meaningful land use scenarios, drivers that affect changes in the landscape are required. In this study, driving factors that influence farmers to change crops on their farm were determined. A questionnaire was administered to four independent groups of farmers who identified and ranked influencing factors pertaining to their choices of crops. The farmers were located in two mid-latitude agricultural watersheds (in Germany and Canada). The ranked influencing factors were used to develop a "farmer driven" scenario to 2040 in both watersheds. Results showed that the most important influencing factors for farmers to change crops were the "economic return of the crop" and "market factors". Yet, when the drivers of crop land use change were grouped into two categories of "financial" and "indirectly-related financial" factors, the "financial" factors made up approximately half of the influencing factors. For some responses, the "indirectly-related financial" factors (i.e. "access to farm equipment", the "farm experience", and "climate") ranked higher than or just as high as the financial factors. Overall, in the four farmer groups the differences between the rankings of the influencing factors were minor, indicating that drivers may be transferable between farms if the farmers are full-time and the farming regions have comparable growing seasons, access to markets, similar technology, and government programs for farm income. In addition to the "farmer driven" scenario, a "policy driven" scenario was derived for each watershed based only on available information on the financial incentives provided to farmers (i.e. agricultural subsidies, income support, crop insurance). The influencing factors ranked by the farmers provided in-depth information that was not captured by the "policy driven" scenario and contributed to improving predictions for crop land use development. This straight-forward method to rank qualitative data provided by farmers can easily be

  4. Astronaut Risk Levels During Crew Module (CM) Land Landing

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly S.; Littell, Justin

    2007-01-01

    The NASA Engineering Safety Center (NESC) is investigating the merits of water and land landings for the crew exploration vehicle (CEV). The merits of these two options are being studied in terms of cost and risk to the astronauts, vehicle, support personnel, and general public. The objective of the present work is to determine the astronaut dynamic response index (DRI), which measures injury risks. Risks are determined for a range of vertical and horizontal landing velocities. A structural model of the crew module (CM) is developed and computational simulations are performed using a transient dynamic simulation analysis code (LS-DYNA) to determine acceleration profiles. Landing acceleration profiles are input in a human factors model that determines astronaut risk levels. Details of the modeling approach, the resulting accelerations, and astronaut risk levels are provided.

  5. Factors affecting the availability of wood energy from nonindustrial private forest lands in the Northeast.

    Treesearch

    John J. Lindsay; Alphonse H. Gilbert; Thomas W. Birch; Thomas W. Birch

    1992-01-01

    Describes factors affecting the availability of fuelwood from nonindustrial private forests (NIPF) in the Northeast. The availability of market fuelwood depends heavily on tract size. The demand for land to supply the expanding urban fringe may result in a lower supply of market wood but also in more wood being cut to satisfy the owner's need for wood. NIPF owners...

  6. Projecting Future Land Use Changes in West Africa Driven by Climate and Socioeconomic Factors: Uncertainties and Implications for Adaptation

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Land use changes constitute an important regional climate change forcing in West Africa, a region of strong land-atmosphere coupling. At the same time, climate change can be an important driver for land use, although its importance relative to the impact of socio-economic factors may vary significant from region to region. This study compares the contributions of climate change and socioeconomic development to potential future changes of agricultural land use in West Africa and examines various sources of uncertainty using a land use projection model (LandPro) that accounts for the impact of socioeconomic drivers on the demand side and the impact of climate-induced crop yield changes on the supply side. Future crop yield changes were simulated by a process-based crop model driven with future climate projections from a regional climate model, and future changes of food demand is projected using a model for policy analysis of agricultural commodities and trade. The impact of human decision-making on land use was explicitly considered through multiple "what-if" scenarios to examine the range of uncertainties in projecting future land use. Without agricultural intensification, the climate-induced decrease of crop yield together with increase of food demand are found to cause a significant increase in agricultural land use at the expense of forest and grassland by the mid-century, and the resulting land use land cover changes are found to feed back to the regional climate in a way that exacerbates the negative impact of climate on crop yield. Analysis of results from multiple decision-making scenarios suggests that human adaptation characterized by science-informed decision making to minimize land use could be very effective in many parts of the region.

  7. Global land use change, economic globalization, and the looming land scarcity.

    PubMed

    Lambin, Eric F; Meyfroidt, Patrick

    2011-03-01

    A central challenge for sustainability is how to preserve forest ecosystems and the services that they provide us while enhancing food production. This challenge for developing countries confronts the force of economic globalization, which seeks cropland that is shrinking in availability and triggers deforestation. Four mechanisms-the displacement, rebound, cascade, and remittance effects-that are amplified by economic globalization accelerate land conversion. A few developing countries have managed a land use transition over the recent decades that simultaneously increased their forest cover and agricultural production. These countries have relied on various mixes of agricultural intensification, land use zoning, forest protection, increased reliance on imported food and wood products, the creation of off-farm jobs, foreign capital investments, and remittances. Sound policies and innovations can therefore reconcile forest preservation with food production. Globalization can be harnessed to increase land use efficiency rather than leading to uncontrolled land use expansion. To do so, land systems should be understood and modeled as open systems with large flows of goods, people, and capital that connect local land use with global-scale factors.

  8. Global land use change, economic globalization, and the looming land scarcity

    PubMed Central

    Lambin, Eric F.; Meyfroidt, Patrick

    2011-01-01

    A central challenge for sustainability is how to preserve forest ecosystems and the services that they provide us while enhancing food production. This challenge for developing countries confronts the force of economic globalization, which seeks cropland that is shrinking in availability and triggers deforestation. Four mechanisms—the displacement, rebound, cascade, and remittance effects—that are amplified by economic globalization accelerate land conversion. A few developing countries have managed a land use transition over the recent decades that simultaneously increased their forest cover and agricultural production. These countries have relied on various mixes of agricultural intensification, land use zoning, forest protection, increased reliance on imported food and wood products, the creation of off-farm jobs, foreign capital investments, and remittances. Sound policies and innovations can therefore reconcile forest preservation with food production. Globalization can be harnessed to increase land use efficiency rather than leading to uncontrolled land use expansion. To do so, land systems should be understood and modeled as open systems with large flows of goods, people, and capital that connect local land use with global-scale factors. PMID:21321211

  9. Influence of land use and meteorological factors on the spatial distribution of Toxocara canis and Toxocara cati eggs in soil in urban areas.

    PubMed

    Gao, Xiang; Wang, Hongbin; Li, Jianxin; Qin, Hongyu; Xiao, Jianhua

    2017-01-15

    Soil which has been contaminated by Toxocara spp. eggs is considered as one of the main infection sources of Toxocariasis in animals and humans. The present study conducted a detailed investigation into the spatial patterns of Toxocara canis (T. canis) and Toxocara cati (T. cati) eggs in soil in urban area of northeastern Mainland China, and assessed the inter-relationships between meteorological factors, land use and the distribution of the Toxocara spp. eggs. Polymerase chain reaction (PCR) was used for the determination of T. canis and T. cati eggs contamination in soil samples. Between April 2014 and May 2015, 9420 soil samples were subjected to PCR examination and 7027 sheep (74.6%) were determined to be positive for T. canis and T. cati eggs. Subsequently, we evaluated the effect of land use, and meteorological factors on the spatial distribution of T. canis and T. cati eggs based on a maximum entropy model. Jackknife analysis revealed that the area of residential land, wood and grass land and precipitation may influence the occurrence of T. canis and T. cati eggs in soil. Our findings indicate that land use and meteorological factors may be important variables affecting transmission of Toxocariasis and should be taken into account in the development of future surveillance programmes for Toxocariasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Analytic study of orbiter landing profiles

    NASA Technical Reports Server (NTRS)

    Walker, H. J.

    1981-01-01

    A broad survey of possible orbiter landing configurations was made with specific goals of defining boundaries for the landing task. The results suggest that the center of the corridors between marginal and routine represents a more or less optimal preflare condition for regular operations. Various constraints used to define the boundaries are based largely on qualitative judgements from earlier flight experience with the X-15 and lifting body research aircraft. The results should serve as useful background for expanding and validating landing simulation programs. The analytic approach offers a particular advantage in identifying trends due to the systematic variation of factors such as vehicle weight, load factor, approach speed, and aim point. Limitations such as a constant load factor during the flare and using a fixed gear deployment time interval, can be removed by increasing the flexibility of the computer program. This analytic definition of landing profiles of the orbiter may suggest additional studies, includin more configurations or more comparisons of landing profiles within and beyond the corridor boundaries.

  11. Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China

    NASA Astrophysics Data System (ADS)

    Sun, L.; Wei, J.; Duan, D. H.; Guo, Y. M.; Yang, D. X.; Jia, C.; Mi, X. T.

    2016-05-01

    The atmospheric particulate pollution in China is getting worse. Land-Use and Land-Cover Change (LUCC) is a key factor that affects atmospheric particulate pollution. Understanding the response of particulate pollution to LUCC is necessary for environmental protection. Eight representative cities in China, Qingdao, Jinan, Zhengzhou, Xi'an, Lanzhou, Zhangye, Jiuquan, and Urumqi were selected to analyze the relationship between particulate pollution and LUCC. The MODIS (MODerate-resolution Imaging Spectroradiometer) aerosol product (MOD04) was used to estimate atmospheric particulate pollution for nearly 10 years, from 2001 to 2010. Six land-use types, water, woodland, grassland, cultivated land, urban, and unused land, were obtained from the MODIS land cover product (MOD12), where the LUCC of each category was estimated. The response of particulate pollution to LUCC was analyzed from the above mentioned two types of data. Moreover, the impacts of time-lag and urban type changes on particulate pollution were also considered. Analysis results showed that due to natural factors, or human activities such as urban sprawl or deforestation, etc., the response of particulate pollution to LUCC shows obvious differences in different areas. The correlation between particulate pollution and LUCC is lower in coastal areas but higher in inland areas. The dominant factor affecting urban air quality in LUCC changes from ocean, to woodland, to urban land, and eventually into grassland or unused land when moving from the coast to inland China.

  12. [Spatial distribution of Se in soils from different land use types and its influencing factors within the Yanghe Watershed, China].

    PubMed

    Shang, Jing-min; Luo, Wei; Wu, Guang-hong; Xu, Lan; Gao, Jia-jia; Kong, Pei-ru; Bi, Xiang; Cheng, Zhi-gang

    2015-01-01

    Based on different land use types, altitudes, soil and vegetation types etc, 171 representative topsoils (0-10 cm) were collected within the Yanghe watershed, China for determining the total concentrations, spatial distribution and influencing factors of selenium (Se). The results showed that the total selenium concentrations in soils within the watershed ranged from 0.02 to 3.24 mg x kg(-1) dry weight (dw). The geometric mean of Se in soils within the watershed was 0.30 mg x kg(-1), which was higher than those in Beijing plain (0.20 mg x kg(-1)), Hebei plain (0.19 mg x kg(-1)) and China (0.29 mg x kg(-1)). Soils which lacked Se (0.13-0.18 mg x kg(-1)) were mainly distributed in Huaian, Xuanhua, and Huailai counties. Se concentrations in most areas within the watershed were sufficient (0.18-0.45 mg x kg(-1)). In addition, Wanquan, Xinghe, Tianzhen and Yanggao counties also had some selenium-rich areas. Concentrations of Se were different under different land use types. They were of the following order: forest land > industrial and mining land > grassland > agricultural land. Agricultural land had the lowest concentrations of Se, with a mean concentration of 0.28 mg x kg(-1). We also found that parent materials and soil types had no significant effects on soil Se concentrations within the Yanghe Watershed. The results indicated that Se concentrations were positively and significantly correlated with clay contents and altitudes, but negatively and significantly with pH values. Furthermore, TOC, Fe and Al concentrations were also important factors influencing the Se concentrations in soils within the Yanghe Watershed.

  13. Spatial modeling of agricultural land use change at global scale

    NASA Astrophysics Data System (ADS)

    Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.

    2014-11-01

    Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling

  14. All-weather-landing operations bibliography

    DOT National Transportation Integrated Search

    1972-06-01

    The bibliography provides a selected coverage of several topic areas within the general subject : of all-weather landing. The period covers the recent years of 1966 through 1971. The areas are : as follows: Approach and Landing, Human-Factors, Naviga...

  15. Factors Related to Spatial Patterns of Rural Land Fragmentation in Texas

    NASA Astrophysics Data System (ADS)

    Kjelland, Michael E.; Kreuter, Urs P.; Clendenin, George A.; Wilkins, R. Neal; Wu, X. Ben; Afanador, Edith Gonzalez; Grant, William E.

    2007-08-01

    Fragmentation of family-owned farms and ranches has been identified as the greatest single threat to wildlife habitat, water supply, and the long-term viability of agriculture in Texas. However, an integrative framework for insights into the pathways of land use change has been lacking. The specific objectives of the study are to test the hypotheses that the nonagricultural value (NAV) of rural land is a reliable indicator of trends in land fragmentation and that NAV in Texas is spatially correlated with population density, and to explore the idea that recent changes in property size patterns are better represented by a categorical model than by one that reflects incremental changes. We propose that the State-and-Transition model, developed to describe the dynamics of semi-arid ecosystems, provides an appropriate conceptual framework for characterizing categorical shifts in rural property patterns. Results suggest that changes in population density are spatially correlated with NAV and farm size, and that rural property size is spatially correlated with changes in NAV. With increasing NAV, the proportion of large properties tends to decrease while the area represented by small properties tends to increase. Although a correlation exists between NAV and population density, it is the trend in NAV that appears to be a stronger predictor of land fragmentation. The empirical relationships established herein, viewed within the conceptual framework of the State-and-Transition model, can provide a useful tool for evaluating land use policies for maintaining critical ecosystem services delivered from privately owned land in private land states, such as Texas.

  16. Reframing the land-sparing/land-sharing debate for biodiversity conservation.

    PubMed

    Kremen, Claire

    2015-10-01

    Conservation biologists are devoting an increasing amount of energy to debating whether land sparing (high-yielding agriculture on a small land footprint) or land sharing (low-yielding, wildlife-friendly agriculture on a larger land footprint) will promote better outcomes for local and global biodiversity. In turn, concerns are mounting about how to feed the world, given increasing demands for food. In this review, I evaluate the land-sparing/land-sharing framework--does the framework stimulate research and policy that can reconcile agricultural land use with biodiversity conservation, or is a revised framing needed? I review (1) the ecological evidence in favor of sparing versus sharing; (2) the evidence from land-use change studies that assesses whether a relationship exists between agricultural intensification and land sparing; and (3) how that relationship may be affected by socioeconomic and political factors. To address the trade-off between biodiversity conservation and food production, I then ask which forms of agricultural intensification can best feed the world now and in the future. On the basis of my review, I suggest that the dichotomy of the land-sparing/land-sharing framework limits the realm of future possibilities to two, largely undesirable, options for conservation. Both large, protected regions and favorable surrounding matrices are needed to promote biodiversity conservation; they work synergistically and are not mutually exclusive. A "both-and" framing of large protected areas surrounded by a wildlife-friendly matrix suggests different research priorities from the "either-or" framing of sparing versus sharing. Furthermore, wildlife-friendly farming methods such as agroecology may be best adapted to provide food for the world's hungry people. © 2015 New York Academy of Sciences.

  17. Factors impacting hunter access to private lands in southeast Minnesota

    USGS Publications Warehouse

    Walberg, Eric; Cornicelli, Louis; Fulton, David C.

    2018-01-01

    White-tailed deer (Odocoileus virginianus) have important socioeconomic and ecological impacts in the United States. Hunting is considered to be important for the effective management of deer and relies on access to privately owned lands. In 2013, we surveyed nonindustrial private landowners in southeast Minnesota and created two logit models to examine factors that impact landowners’ decision to (a) allow public hunting access and (b) post private property. Parcel characteristics were found to impact landowner decisions to allow hunting access, particularly the size of the property and whether it was posted. Hunting access to small properties was more likely to be restricted to family, friends, and neighbors (83%) compared to medium (74%) or large properties (60%). Hunter concerns (e.g., liability) and knowledge about deer management was significant in both models, suggesting there are opportunities to educate landowners about the importance of allowing public hunting access and available liability protections.

  18. [Spatial-temporal pattern and obstacle factors of cultivated land ecological security in major grain producing areas of northeast China: a case study in Jilin Province].

    PubMed

    Zhao, Hong-Bo; Ma, Yan-Ji

    2014-02-01

    According to the cultivated land ecological security in major grain production areas of Northeast China, this paper selected 48 counties of Jilin Province as the research object. Based on the PSR-EES conceptual framework model, an evaluation index system of cultivated land ecological security was built. By using the improved TOPSIS, Markov chains, GIS spatial analysis and obstacle degree models, the spatial-temporal pattern of cultivated land ecological security and the obstacle factors were analyzed from 1995 to 2011 in Jilin Province. The results indicated that, the composite index of cultivated land ecological security appeared in a rising trend in Jilin Province from 1995 to 2011, and the cultivated land ecological security level changed from being sensitive to being general. There was a pattern of 'Club Convergence' in cultivated land ecological security level in each county and the spatial discrepancy tended to become larger. The 'Polarization' trend of cultivated land ecological security level was obvious. The distributions of sensitive level and critical security level with ribbon patterns tended to be dispersed, the general security level and relative security levels concentrated, and the distributions of security level scattered. The unstable trend of cultivated land ecological security level was more and more obvious. The main obstacle factors that affected the cultivated land ecological security level in Jilin Province were rural net income per capita, economic density, the proportion of environmental protection investment in GDP, degree of machinery cultivation and the comprehensive utilization rate of industrial solid wastes.

  19. Effects of endogenous factors on regional land-use carbon emissions based on the Grossman decomposition model: a case study of Zhejiang Province, China.

    PubMed

    Wu, Cifang; Li, Guan; Yue, Wenze; Lu, Rucheng; Lu, Zhangwei; You, Heyuan

    2015-02-01

    The impact of land-use change on greenhouse gas emissions has become a core issue in current studies on global change and carbon cycle. However, a comprehensive evaluation of the effects of land-use changes on carbon emissions is very necessary. This paper attempted to apply the Grossman decomposition model to estimate the scale, structural, and management effects of land-use carbon emissions based on final energy consumption by establishing the relationship between the types of land use and carbon emissions in energy consumption. It was shown that land-use carbon emissions increase from 169.5624 million tons in 2000 to 637.0984 million tons in 2010, with an annual average growth rate of 14.15%. Meanwhile, land-use carbon intensity increased from 17.59 t/ha in 2000 to 64.42 t/ha in 2010, with an average annual growth rate of 13.86%. The results indicated that rapid industrialization and urbanization in Zhejiang Province promptly increased urban land and industrial land, which consequently affected land-use extensive emissions. The structural and management effects did not mitigate land-use carbon emissions. By contrast, both factors evidently affected the growth of carbon emissions because of the rigid demands of energy-intensive land-use types and the absence of land management. Results called for the policy implications of optimizing land-use structures and strengthening land-use management.

  20. Effects of Endogenous Factors on Regional Land-Use Carbon Emissions Based on the Grossman Decomposition Model: A Case Study of Zhejiang Province, China

    NASA Astrophysics Data System (ADS)

    Wu, Cifang; Li, Guan; Yue, Wenze; Lu, Rucheng; Lu, Zhangwei; You, Heyuan

    2015-02-01

    The impact of land-use change on greenhouse gas emissions has become a core issue in current studies on global change and carbon cycle. However, a comprehensive evaluation of the effects of land-use changes on carbon emissions is very necessary. This paper attempted to apply the Grossman decomposition model to estimate the scale, structural, and management effects of land-use carbon emissions based on final energy consumption by establishing the relationship between the types of land use and carbon emissions in energy consumption. It was shown that land-use carbon emissions increase from 169.5624 million tons in 2000 to 637.0984 million tons in 2010, with an annual average growth rate of 14.15 %. Meanwhile, land-use carbon intensity increased from 17.59 t/ha in 2000 to 64.42 t/ha in 2010, with an average annual growth rate of 13.86 %. The results indicated that rapid industrialization and urbanization in Zhejiang Province promptly increased urban land and industrial land, which consequently affected land-use extensive emissions. The structural and management effects did not mitigate land-use carbon emissions. By contrast, both factors evidently affected the growth of carbon emissions because of the rigid demands of energy-intensive land-use types and the absence of land management. Results called for the policy implications of optimizing land-use structures and strengthening land-use management.

  1. Combining Sustainable Land Management Technologies to Combat Land Degradation and Improve Rural Livelihoods in Semi-arid Lands in Kenya

    NASA Astrophysics Data System (ADS)

    Mganga, K. Z.; Musimba, N. K. R.; Nyariki, D. M.

    2015-12-01

    Drylands occupy more than 80 % of Kenya's total land mass and contribute immensely to the national economy and society through agriculture, livestock production, tourism, and wild product harvesting. Dryland ecosystems are areas of high climate variability making them vulnerable to the threats of land degradation. Consequently, agropastoralists inhabiting these ecosystems develop mechanisms and technologies to cope with the impacts of climate variability. This study is aimed to; (1) determine what agropastoralists inhabiting a semi-arid ecosystem in Kenya attribute to be the causes and indicators of land degradation, (2) document sustainable land management (SLM) technologies being undertaken to combat land degradation, and (3) identify the factors that influence the choice of these SLM technologies. Vegetation change from preferred indigenous forage grass species to woody vegetation was cited as the main indicator of land degradation. Land degradation was attributed to recurrent droughts and low amounts of rainfall, overgrazing, and unsustainable harvesting of trees for fuelwood production. However, despite the challenges posed by climate variability and recurrent droughts, the local community is engaging in simple SLM technologies including grass reseeding, rainwater harvesting and soil conservation, and dryland agroforestry as a holistic approach combating land degradation and improving their rural livelihoods. The choice of these SLM technologies was mainly driven by their additional benefits to combating land degradation. In conclusion, promoting such simple SLM technologies can help reverse the land degradation trend, improve agricultural production, food security including access to food, and subsequently improve livelihoods of communities inhabiting dryland ecosystems.

  2. Combining Sustainable Land Management Technologies to Combat Land Degradation and Improve Rural Livelihoods in Semi-arid Lands in Kenya.

    PubMed

    Mganga, K Z; Musimba, N K R; Nyariki, D M

    2015-12-01

    Drylands occupy more than 80% of Kenya's total land mass and contribute immensely to the national economy and society through agriculture, livestock production, tourism, and wild product harvesting. Dryland ecosystems are areas of high climate variability making them vulnerable to the threats of land degradation. Consequently, agropastoralists inhabiting these ecosystems develop mechanisms and technologies to cope with the impacts of climate variability. This study is aimed to; (1) determine what agropastoralists inhabiting a semi-arid ecosystem in Kenya attribute to be the causes and indicators of land degradation, (2) document sustainable land management (SLM) technologies being undertaken to combat land degradation, and (3) identify the factors that influence the choice of these SLM technologies. Vegetation change from preferred indigenous forage grass species to woody vegetation was cited as the main indicator of land degradation. Land degradation was attributed to recurrent droughts and low amounts of rainfall, overgrazing, and unsustainable harvesting of trees for fuelwood production. However, despite the challenges posed by climate variability and recurrent droughts, the local community is engaging in simple SLM technologies including grass reseeding, rainwater harvesting and soil conservation, and dryland agroforestry as a holistic approach combating land degradation and improving their rural livelihoods. The choice of these SLM technologies was mainly driven by their additional benefits to combating land degradation. In conclusion, promoting such simple SLM technologies can help reverse the land degradation trend, improve agricultural production, food security including access to food, and subsequently improve livelihoods of communities inhabiting dryland ecosystems.

  3. Private lands and outdoor recreation in the United States

    Treesearch

    R. Jeff Teasley; John C. Bergstrom; H. Ken Cordell; Stanley J. Zarnoch; Paul Gentle

    1999-01-01

    Outdoor recreation on private land is influenced by myriad factors. To provide background and context on these factors, this chapter first overviews the private land situation in the United States and provides general information and discussion related to ownership and tenure, land-use patterns, legal restrictions, and economic conditions, including taxation issues....

  4. Land cover as an important factor for landslide risk assessment

    NASA Astrophysics Data System (ADS)

    Promper, C.; Glade, T.; Puissant, A.; Malet, J.-P.

    2012-04-01

    Landcover change is a crucial component of hazard and vulnerability in terms of quantification of possible future landslide risk, and the importance for spatial planners but also individuals is obvious. Damage of property, losses of agricultural land, loss of production but also damaged infrastructures and fatalities may be the result of landslide hazards. To avoid these economic damages as well as possible fatalities in the future, a method of assessing spatial but also temporal patterns of landslides is necessary. This study represents results of landcover modeling as a first step to the proposition of scenario of landslide risk for the future. The method used for future land cover analysis is the CLUE modeling framework combining past and actual observed landcover conditions. The model is based on a statistical relationship between the actual land cover and driving forces. The allocation of landcover pixel is modified by possible autonomous developments and competition between land use types. (Verburg et al. 1999) The study area is located in a district in the alpine foreland of Lower Austria: Waidhofen/Ybbs, of about 130km2. The topography is characterized by narrow valleys, flat plateau and steep slopes. The landcover is characterized by region of densely populated areas in the valley bottom along the Ybbs River, and a series of separated farm houses on the top of the plateau. Population density is about 90 persons / km2 which represent the observed population density of Austria. The initial landcover includes forest, grassland, culture, built-up areas and individual farms. Most of the observed developments are controlled by the topography (along the valleys) and the actual road network. The results of the landcover model show different scenarios of changes in the landslide prone landcover types. These maps will be implemented into hazard analysis but also into vulnerability assessment regarding elements at risk. Verburg, P.H., de Koning, G.H.J., Kok, K

  5. Land Use, Land Conservation, and Wind Energy Development Outcomes in New England

    NASA Astrophysics Data System (ADS)

    Weimar, William Cameron

    This dissertation provides three independent research inquiries. The first examines how inter-governmental policy, site-specific, and social factors lead to the success, prolonged delay, or failure of inland wind power projects in New England. The three case studies examined include the 48 megawatt Glebe Mountain Wind Farm proposal in southern Vermont, the 30 megawatt Hoosac Wind Farm in western Massachusetts, and the 24 megawatt Lempster Wind Farm in southern New Hampshire. To ascertain why the project outcomes varied, 45 semi-structured interviews were conducted with a range of stakeholders, including wind development firms, utility companies, state regulatory agencies, regional planning commissions, town officials, land conservation organizations, and opposition groups. The second study establishes a comprehensive set of thirty-seven explanatory variables to determine the amount of suitable land and the corresponding electricity generation potential within the prime wind resource areas of Western Massachusetts. The explanatory variables are incorporated into Boolean GIS suitability models which represent the two divergent positions towards wind power development in Massachusetts, and a third, balanced model. The third study determines that exurban residential development is not the only land use factor that reduces wind power development potential in Western Massachusetts. A set of Boolean GIS models for 1985 and 2009 find the onset of conservation easements on private lands having the largest impact. During this 25 year period a combination of land use conversion and land conservation has reduced the access to prime wind resource areas by 18% (11,601 hectares), an equivalent loss of 5,800--8,700 GWh/year of zero carbon electricity generation. The six main findings from this research are: (1) Visual aesthetics remain the main factor of opposition to specific projects; (2) The Not-in-my Backyard debate for wind power remains unsettled; (3) Widespread support

  6. The influence of landing mat composition on ankle injury risk during a gymnastic landing: a biomechanical quantification.

    PubMed

    Xiao, Xiaofei; Hao, Weiya; Li, Xuhong; Wan, Bingjun; Shan, Gongbing

    2017-01-01

    About 70% injury of gymnasts happened during landing - an interaction between gymnast and landing mat. The most injured joint is the ankle. The current study examined the effect of mechanical properties of landing mat on ankle loading with aims to identify means of decreasing the risk of ankle injury. Gymnastic skill - salto backward stretched with 3/2 twist was captured by two high-speed camcorders and digitized by using SIMI-Motion software. A subject-specific, 14-segment rigid-body model and a mechanical landing-mat model were built using BRG.LifeMODTM. The landings were simulated with varied landing-mat mechanical properties (i.e., stiffness, dampness and friction coefficients). Real landing performance could be accurately reproduced by the model. The simulations revealed that the ankle angle was relatively sensitive to stiffness and dampness of the landing mat, the ankle loading rate increased 26% when the stiffness was increased by 30%, and the changing of dampness had notable effect on horizontal ground reaction force and foot velocity. Further, the peak joint-reaction force and joint torque were more sensitive to friction than to stiffness and dampness of landing mat. Finally, ankle muscles would dissipate about twice energy (189%) when the friction was increased by 30%. Loads to ankles during landing would increase as the stiffness and dampness of the landing mat increase. Yet, increasing friction would cause a substantial rise of the ankle internal loads. As such, the friction should be a key factor influencing the risk of injury. Unfortunately, this key factor has rarely attracted attention in practice.

  7. Hydrogeologic factors in the selection of shallow land burial sites for the disposal of low-level radioactive waste

    USGS Publications Warehouse

    Fischer, John N.

    1986-01-01

    In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.

  8. Trading Land: A Review of Approaches to Accounting for Upstream Land Requirements of Traded Products.

    PubMed

    Schaffartzik, Anke; Haberl, Helmut; Kastner, Thomas; Wiedenhofer, Dominik; Eisenmenger, Nina; Erb, Karl-Heinz

    2015-10-01

    Land use is recognized as a pervasive driver of environmental impacts, including climate change and biodiversity loss. Global trade leads to "telecoupling" between the land use of production and the consumption of biomass-based goods and services. Telecoupling is captured by accounts of the upstream land requirements associated with traded products, also commonly referred to as land footprints. These accounts face challenges in two main areas: (1) the allocation of land to products traded and consumed and (2) the metrics to account for differences in land quality and land-use intensity. For two main families of accounting approaches (biophysical, factor-based and environmentally extended input-output analysis), this review discusses conceptual differences and compares results for land footprints. Biophysical approaches are able to capture a large number of products and different land uses, but suffer from a truncation problem. Economic approaches solve the truncation problem, but are hampered by the limited disaggregation of sectors and products. In light of the conceptual differences, the overall similarity of results generated by both types of approaches is remarkable. Diametrically opposed results for some of the world's largest producers and consumers of biomass-based products, however, make interpretation difficult. This review aims to provide clarity on some of the underlying conceptual issues of accounting for land footprints.

  9. Determinants of Urban Expansion and Agricultural Land Conversion in 25 EU Countries.

    PubMed

    Ustaoglu, Eda; Williams, Brendan

    2017-10-01

    Agricultural land conversion is resulting from ongoing complex interaction between the physical environment, policy settings and socio-economic factors. Case studies of the determinants of agricultural land conversion potentially contribute to the analysis of the main causes of land-use change. This can assist authorities and policy makers in understanding the relative importance of a wide range of factors on urban expansion and associated agricultural land-use change. This paper explores the determinants of agricultural land conversion to urban uses in the studied 25 European Union countries between 2000 and 2006. European-level as well as region-specific land-use changes are studied. The research is using the spatial data adapted from European Corine Land Cover maps of 2000 and 2006 and utilised other European sources regarding socio-economic, natural, geological, climate, and policy-related data. The differences in urbanisation processes observed in different regions in Europe emphasise the regional variations of urban conversion process of agricultural land use. This study identifies a combination of socio-economic drivers, policy-related factors, nature and location-based factors as key influences on agricultural land conversion processes in Europe. Specifically we found that the Common Agricultural Policy (CAP) subsidies were influential in curbing urbanisation and reducing agricultural land consumption.

  10. Determinants of Urban Expansion and Agricultural Land Conversion in 25 EU Countries

    NASA Astrophysics Data System (ADS)

    Ustaoglu, Eda; Williams, Brendan

    2017-10-01

    Agricultural land conversion is resulting from ongoing complex interaction between the physical environment, policy settings and socio-economic factors. Case studies of the determinants of agricultural land conversion potentially contribute to the analysis of the main causes of land-use change. This can assist authorities and policy makers in understanding the relative importance of a wide range of factors on urban expansion and associated agricultural land-use change. This paper explores the determinants of agricultural land conversion to urban uses in the studied 25 European Union countries between 2000 and 2006. European-level as well as region-specific land-use changes are studied. The research is using the spatial data adapted from European Corine Land Cover maps of 2000 and 2006 and utilised other European sources regarding socio-economic, natural, geological, climate, and policy-related data. The differences in urbanisation processes observed in different regions in Europe emphasise the regional variations of urban conversion process of agricultural land use. This study identifies a combination of socio-economic drivers, policy-related factors, nature and location-based factors as key influences on agricultural land conversion processes in Europe. Specifically we found that the Common Agricultural Policy (CAP) subsidies were influential in curbing urbanisation and reducing agricultural land consumption.

  11. Future forestland area: impacts from population growth and other factors that affect land values.

    Treesearch

    Ralph J. Alig; Andrew J. Plantinga

    2004-01-01

    Shifting patterns of land use in the United States are associated with many of today's environmental concerns. Land-use shifts occur because of relative changes in land rents, which are determined in part by financial returns in commodity markets. In recent decades, more than 3 million ac shifted annually in or out of US forest use. Cross amounts of land-use...

  12. Ecosystems and Land Use Change

    NASA Astrophysics Data System (ADS)

    DeFries, Ruth S.; Asner, Gregory P.; Houghton, Richard A.

    Land use is at the center of one of the most vexing challenges for the coming decades: to provide enough food, fiber and shelter for the world's population; raise the standard of living for the billion people currently below the poverty line; and simultaneously sustain the world's ecosystems for use by humans and other species. The intended consequence of cropland expansion, urban growth, and other land use changes is to satisfy demands from the increasing appetite of the world's population. Unintended consequences, however, can alter ecological processes and have far-reaching and long-term effects that potentially compromise the basic functioning of ecosystems. Recently, the scientific community has begun to confront such issues. Several national and international programs have been at the forefront of scientific enquiry on the causes and consequences of land use change, including: the Land Use and Land Cover Change Program of the National Aeronautics and Space Administration, the Land Use program element in the interagency U.S. Climate Change Science Program, and the International Geosphere-Biosphere's Land Use and Cover Change (LUCC) core project. The result has been significant advances in understanding the complex socioeconomic, technological, and biophysical factors that drive land use change worldwide.

  13. The Land Cover Dynamics and Conversion of Agricultural Land in Northwestern Bangladesh, 1973-2003.

    NASA Astrophysics Data System (ADS)

    Pervez, M.; Seelan, S. K.; Rundquist, B. C.

    2006-05-01

    The importance of land cover information describing the nature and extent of land resources and changes over time is increasing; this is especially true in Bangladesh, where land cover is changing rapidly. This paper presents research into the land cover dynamics of northwestern Bangladesh for the period 1973-2003 using Landsat satellite images in combination with field survey data collected in January and February 2005. Land cover maps were produced for eight different years during the study period with an average 73 percent overall classification accuracy. The classification results and post-classification change analysis showed that agriculture is the dominant land cover (occupying 74.5 percent of the study area) and is being reduced at a rate of about 3,000 ha per year. In addition, 6.7 percent of the agricultural land is vulnerable to temporary water logging annually. Despite this loss of agricultural land, irrigated agriculture increased substantially until 2000, but has since declined because of diminishing water availability and uncontrolled extraction of groundwater driven by population pressures and the extended need for food. A good agreement (r = 0.73) was found between increases in irrigated land and the depletion of the shallow groundwater table, a factor affecting widely practiced small-scale irrigation in northwestern Bangladesh. Results quantified the land cover change patterns and the stresses placed on natural resources; additionally, they demonstrated an accurate and economical means to map and analyze changes in land cover over time at a regional scale, which can assist decision makers in land and natural resources management decisions.

  14. An Impulse-Momentum Method for Calculating Landing-Gear Contact Conditions in Eccentric Landings

    NASA Technical Reports Server (NTRS)

    Yntema, Robert T; Milwitzky, Benjamin

    1952-01-01

    An impulse-momentum method for determining impact conditions for landing gears in eccentric landings is presented. The analysis is primarily concerned with the determination of contact velocities for impacts subsequent to initial touchdown in eccentric landings and with the determination of the effective mass acting on each landing gear. These parameters determine the energy-absorption requirements for the landing gear and, in conjunction with the particular characteristics of the landing gear, govern the magnitude of the ground loads. Changes in airplane angular and linear velocities and the magnitude of landing-gear vertical, drag, and side impulses resulting from a landing impact are determined by means of impulse-momentum relationships without the necessity for considering detailed force-time variations. The effective mass acting on each gear is also determined from the calculated landing-gear impulses. General equations applicable to any type of eccentric landing are written and solutions are obtained for the particular cases of an impact on one gear, a simultaneous impact on any two gears, and a symmetrical impact. In addition a solution is presented for a simplified two-degree-of-freedom system which allows rapid qualitative evaluation of the effects of certain principal parameters. The general analysis permits evaluation of the importance of such initial conditions at ground contact as vertical, horizontal, and side drift velocities, wing lift, roll and pitch angles, and rolling and pitching velocities, as well as the effects of such factors as landing gear location, airplane inertia, landing-gear length, energy-absorption efficiency, and wheel angular inertia on the severity of landing impacts. -A brief supplementary study which permits a limited evaluation of variable aerodynamic effects neglected in the analysis is presented in the appendix. Application of the analysis indicates that landing-gear impacts in eccentric landings can be appreciably more

  15. ACCOUNTING FOR BIOLOGICAL AND ANTHROPOGENIC FACTORS IN NATIONAL LAND-BASED CARBON BUDGETS

    EPA Science Inventory

    Efforts to quantify net greenhouse gas emissions at the national scale, as required by the United Nations Framework Convention on Climate Change, must include both industrial emissions and the net flux associated with the land base. In this study, data on current land use, rates ...

  16. Mars Exploration Rovers Landing Dispersion Analysis

    NASA Technical Reports Server (NTRS)

    Knocke, Philip C.; Wawrzyniak, Geoffrey G.; Kennedy, Brian M.; Desai, Prasun N.; Parker, TImothy J.; Golombek, Matthew P.; Duxbury, Thomas C.; Kass, David M.

    2004-01-01

    Landing dispersion estimates for the Mars Exploration Rover missions were key elements in the site targeting process and in the evaluation of landing risk. This paper addresses the process and results of the landing dispersion analyses performed for both Spirit and Opportunity. The several contributors to landing dispersions (navigation and atmospheric uncertainties, spacecraft modeling, winds, and margins) are discussed, as are the analysis tools used. JPL's MarsLS program, a MATLAB-based landing dispersion visualization and statistical analysis tool, was used to calculate the probability of landing within hazardous areas. By convolving this with the probability of landing within flight system limits (in-spec landing) for each hazard area, a single overall measure of landing risk was calculated for each landing ellipse. In-spec probability contours were also generated, allowing a more synoptic view of site risks, illustrating the sensitivity to changes in landing location, and quantifying the possible consequences of anomalies such as incomplete maneuvers. Data and products required to support these analyses are described, including the landing footprints calculated by NASA Langley's POST program and JPL's AEPL program, cartographically registered base maps and hazard maps, and flight system estimates of in-spec landing probabilities for each hazard terrain type. Various factors encountered during operations, including evolving navigation estimates and changing atmospheric models, are discussed and final landing points are compared with approach estimates.

  17. Relationships between physical-geographical factors and soil degradation on agricultural land.

    PubMed

    Bednář, Marek; Šarapatka, Bořivoj

    2018-07-01

    It is a well-known fact that soil degradation is dramatically increasing and currently threatens agricultural soils all around the world. The objective of this study was to reveal the possible connection between soil degradation and seven physical-geographical factors - slope steepness, altitude, elevation differences, rainfall, temperature, soil texture and solar radiation - in the form of threshold values (if these exist), where soil degradation begins and ends. The analysis involved the whole area of the Czech Republic which consists of 13,027 cadasters (78,866 km 2 ). The greatest total degradation threat occurs in areas with slope steepness >7 degrees, average annual temperature <5.9 °C, elevation differences >10.54, altitude >766 m a.s.l. Similarly, the results for water erosion, wind erosion, soil compaction, loss of organic matter, acidification and heavy metal contamination were processed. The results enable us to identify the relationships of different levels of threats which could consequently be used in various ways - for classification of threatened areas, for more effective implementation of anti-degradation measures, or purely for a better understanding of the role of physical geographical factors in soil degradation in the Czech Republic, and thus could increase the chances of reducing vulnerability to land degradation not only in the Czech Republic. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Farmers' perceptions of land degradation and their investments in land management: a case study in the Central Rift Valley of Ethiopia.

    PubMed

    Adimassu, Zenebe; Kessler, Aad; Yirga, Chilot; Stroosnijder, Leo

    2013-05-01

    To combat land degradation in the Central Rift Valley (CRV) of Ethiopia, farmers are of crucial importance. If farmers perceive land degradation as a problem, the chance that they invest in land management measures will be enhanced. This study presents farmers' perceptions of land degradation and their investments in land management, and to what extent the latter are influenced by these perceptions. Water erosion and fertility depletion are taken as main indicators of land degradation, and the results show that farmers perceive an increase in both indicators over the last decade. They are aware of it and consider it as a problem. Nevertheless, farmers' investments to control water erosion and soil fertility depletion are very limited in the CRV. Results also show that farmers' awareness of both water erosion and soil fertility decline as a problem is not significantly associated with their investments in land management. Hence, even farmers who perceive land degradation on their fields and are concerned about its increase over the last decade do not significantly invest more in water erosion and soil fertility control measures than farmers who do not perceive these phenomena. Further research is needed to assess which other factors might influence farmers' investments in land management, especially factors related to socioeconomic characteristics of farm households and plot characteristics which were not addressed by this study.

  19. Economic factors influencing land use changes in the South-Central United States

    Treesearch

    Ralph J. Alig; Fred C. White; Brian C. Murray

    1988-01-01

    Econometric models of land use change were estimated for two physiographic regions in the South-Central United States. Results are consistent-with the economic hierarchy of land use, with population and personal income being significant explanatory variables. Findings regarding the importance of relative agricultural and forestry market-based incomes in influencing...

  20. Studies of Landé gJ-factors of singly ionized lanthanum by laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Werbowy, S.; Güney, C.; Windholz, L.

    2016-08-01

    Laser-induced fluorescence spectroscopy, using a cooled hollow cathode discharge lamp as source of ions, was used to observe the Zeeman splitting of 18 lines of La II in the wavelength range 629.6-680.9 nm, in external intermediate magnetic fields up to 800 G. The recorded hyperfine-Zeeman patterns were analyzed in detail using already known accurate hyperfine structure A- and B-constants. From the recordings the Landé gJ-factors for some levels belonging to the 5d2, 5d6s, 5d6p, 4f5d, 4f6s and 4f6p configurations of La II were determined. The obtained experimental gJ-factors are compared with earlier measurements and theoretical calculations.

  1. Scenarios of land use change for agriculture: the role of Land Evaluation in improving model simulation

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Santini, M.; Dettori, G.; Muresu, P.; Spano, D.; Duce, P.

    2009-12-01

    Integrated scenarios of future climate and land use represent a useful input for impact studies about global changes. In particular, improving future land use simulations is essential for the agricultural sector, which is influenced by both biogeophysical constraints and human needs. Often land use change models are mainly based on statistical relationships between known land use distribution and biophysical or socio-economic factors, neglecting the necessary consideration of physical constraints that interact in making lands more or less capable for agriculture and suitable for supporting specific crops. In this study, a well developed land use change model (CLUE@CMCC) was suited for the Mediterranean basin case study, focusing on croplands. Several climate scenarios and future demands for croplands were combined to drive the model, while the same climate scenarios were used to more reliably allocate crops in the most suitable areas on the basis of Land Evaluation techniques. The probability for each map unit to sustain a specific crop, usually related to location characteristics, elasticity to conversion and competition among land use types, now includes specific crop-favoring location characteristics. Results, besides improving the consistency of the land use change model to allocate land for the future, can have the main feedback to suggest feasibility or reasonable thresholds to adjust land use demands during dynamic simulations.

  2. Land use/land cover and land capability data for evaluating land utilization and official land use planning in Indramayu Regency, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Ambarwulan, W.; Widiatmaka; Nahib, I.

    2018-05-01

    Land utilization in Indonesia is regulated in an official spatial land use planning (OSLUP), stipulated by government regulations. However in fact, land utilizations are often develops inconsistent with regulations. OSLUP itself is also not usually compatible with sustainable land utilizations. This study aims to evaluate current land utilizations and OSLUP in Indramayu Regency, West Java. The methodology used is the integrated analysis using land use and land cover (LU/LC) data, land capability data and spatial pattern in OSLUP. Actual LU/LC are interpreted using SPOT-6 imagery of 2014. The spatial data of land capabilities are derived from land capability classification using field data and laboratory analysis. The confrontation between these spatial data is interpreted in terms of future direction for sustainable land use planning. The results shows that Indramayu regency consists of 8 types of LU/LC. Land capability in research area range from class II to VIII. Only a small portion of the land in Indramayu has been used in accordance with land capability, but most of the land is used exceeding its land capability.

  3. Factors influencing storm-generated suspended-sediment concentrations and loads in four basins of contrasting land use, humid-tropical Puerto Rico

    Treesearch

    A. C. Gellis; NO-VALUE

    2013-01-01

    The significant characteristics controlling the variability in storm-generated suspended-sediment loads and concentrations were analyzed for four basins of differing land use (forest, pasture, cropland, and urbanizing) in humid-tropical Puerto Rico. Statistical analysis involved stepwise regression on factor scores. The explanatory variables were attributes of flow,...

  4. 14 CFR 23.529 - Hull and main float landing conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... landing. For symmetrical step, bow, and stern landings, the limit water reaction load factors are those....25 tan β times the resultant load in the corresponding symmetrical landing condition; and (2) The... at one float times the step landing load reached under § 23.527. The side load is directed inboard...

  5. 14 CFR 23.529 - Hull and main float landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... landing. For symmetrical step, bow, and stern landings, the limit water reaction load factors are those....25 tan β times the resultant load in the corresponding symmetrical landing condition; and (2) The... at one float times the step landing load reached under § 23.527. The side load is directed inboard...

  6. Incorporating JULES into NASA's Land Information System (LIS) and Investigations of Land-Atmosphere Coupling

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph

    2011-01-01

    NASA's Land Information System (LIS; lis.gsfc.nasa.gov) is a flexible land surface modeling and data assimilation framework developed over the past decade with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. LIS features a high performance and flexible design, and operates on an ensemble of land surface models for extension over user-specified regional or global domains. The extensible interfaces of LIS allow the incorporation of new domains, land surface models (LSMs), land surface parameters, meteorological inputs, data assimilation and optimization algorithms. In addition, LIS has also been demonstrated for parameter estimation and uncertainty estimation, and has been coupled to the Weather Research and Forecasting (WRF) mesoscale model. A visiting fellowship is currently underway to implement JULES into LIS and to undertake some fundamental science on the feedbacks between the land surface and the atmosphere. An overview of the LIS system, features, and sample results will be presented in an effort to engage the community in the potential advantages of LIS-JULES for a range of applications. Ongoing efforts to develop a framework for diagnosing land-atmosphere coupling will also be presented using the suite of LSM and PBL schemes available in LIS and WRF along with observations from the U. S .. Southern Great Plains. This methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate coupling diagnostics within the community.

  7. Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China

    PubMed Central

    Yin, Yuanyuan; Tang, Qiuhong; Wang, Lixin; Liu, Xingcai

    2016-01-01

    Identifying the areas at risk of ecosystem transformation and the main contributing factors to the risk is essential to assist ecological adaptation to climate change. We assessed the risk of ecosystem shifts in China using the projections of four global gridded vegetation models (GGVMs) and an aggregate metric. The results show that half of naturally vegetated land surface could be under moderate or severe risk at the end of the 21st century under the middle and high emission scenarios. The areas with high risk are the Tibetan Plateau region and an area extended northeastward from the Tibetan Plateau to northeast China. With the three major factors considered, the change in carbon stocks is the main contributing factor to the high risk of ecosystem shifts. The change in carbon fluxes is another important contributing factor under the high emission scenario. The change in water fluxes is a less dominant factor except for the Tibetan Plateau region under the high emission scenario. Although there is considerable uncertainty in the risk assessment, the geographic patterns of the risk are generally consistent across different scenarios. The results could help develop regional strategies for ecosystem conservation to cope with climate change. PMID:26867481

  8. Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China.

    PubMed

    Yin, Yuanyuan; Tang, Qiuhong; Wang, Lixin; Liu, Xingcai

    2016-02-12

    Identifying the areas at risk of ecosystem transformation and the main contributing factors to the risk is essential to assist ecological adaptation to climate change. We assessed the risk of ecosystem shifts in China using the projections of four global gridded vegetation models (GGVMs) and an aggregate metric. The results show that half of naturally vegetated land surface could be under moderate or severe risk at the end of the 21(st) century under the middle and high emission scenarios. The areas with high risk are the Tibetan Plateau region and an area extended northeastward from the Tibetan Plateau to northeast China. With the three major factors considered, the change in carbon stocks is the main contributing factor to the high risk of ecosystem shifts. The change in carbon fluxes is another important contributing factor under the high emission scenario. The change in water fluxes is a less dominant factor except for the Tibetan Plateau region under the high emission scenario. Although there is considerable uncertainty in the risk assessment, the geographic patterns of the risk are generally consistent across different scenarios. The results could help develop regional strategies for ecosystem conservation to cope with climate change.

  9. Quantifying the influences of various ecological factors on land surface temperature of urban forests.

    PubMed

    Ren, Yin; Deng, Lu-Ying; Zuo, Shu-Di; Song, Xiao-Dong; Liao, Yi-Lan; Xu, Cheng-Dong; Chen, Qi; Hua, Li-Zhong; Li, Zheng-Wei

    2016-09-01

    Identifying factors that influence the land surface temperature (LST) of urban forests can help improve simulations and predictions of spatial patterns of urban cool islands. This requires a quantitative analytical method that combines spatial statistical analysis with multi-source observational data. The purpose of this study was to reveal how human activities and ecological factors jointly influence LST in clustering regions (hot or cool spots) of urban forests. Using Xiamen City, China from 1996 to 2006 as a case study, we explored the interactions between human activities and ecological factors, as well as their influences on urban forest LST. Population density was selected as a proxy for human activity. We integrated multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) to develop a database on a unified urban scale. The driving mechanism of urban forest LST was revealed through a combination of multi-source spatial data and spatial statistical analysis of clustering regions. The results showed that the main factors contributing to urban forest LST were dominant tree species and elevation. The interactions between human activity and specific ecological factors linearly or nonlinearly increased LST in urban forests. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. In conclusion, quantitative studies based on spatial statistics and GeogDetector models should be conducted in urban areas to reveal interactions between human activities, ecological factors, and LST. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Pairing FLUXNET sites to validate model representations of land-use/land-cover change

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Dirmeyer, Paul A.; Guo, Zhichang; Schultz, Natalie M.

    2018-01-01

    Land surface energy and water fluxes play an important role in land-atmosphere interactions, especially for the climatic feedback effects driven by land-use/land-cover change (LULCC). These have long been documented in model-based studies, but the performance of land surface models in representing LULCC-induced responses has not been investigated well. In this study, measurements from proximate paired (open versus forest) flux tower sites are used to represent observed deforestation-induced changes in surface fluxes, which are compared with simulations from the Community Land Model (CLM) and the Noah Multi-Parameterization (Noah-MP) land model. Point-scale simulations suggest the CLM can represent the observed diurnal and seasonal changes in net radiation (Rnet) and ground heat flux (G), but difficulties remain in the energy partitioning between latent (LE) and sensible (H) heat flux. The CLM does not capture the observed decreased daytime LE, and overestimates the increased H during summer. These deficiencies are mainly associated with models' greater biases over forest land-cover types and the parameterization of soil evaporation. Global gridded simulations with the CLM show uncertainties in the estimation of LE and H at the grid level for regional and global simulations. Noah-MP exhibits a similar ability to simulate the surface flux changes, but with larger biases in H, G, and Rnet change during late winter and early spring, which are related to a deficiency in estimating albedo. Differences in meteorological conditions between paired sites is not a factor in these results. Attention needs to be devoted to improving the representation of surface heat flux processes in land models to increase confidence in LULCC simulations.

  11. The place character as land use change determinant in Deli Serdang

    NASA Astrophysics Data System (ADS)

    Lindarto, D.; Sirojuzilam; Badaruddin; Aulia, DN

    2018-03-01

    The Mebidangro concept of development (Medan, Binjai, Deli Serdang, Karo) in Sumatera Utara creating peri urban area in region hinterland Medan city especially in Tembung village, Percut Sei Tuan District. This peri urban area is a conjunction of several rural-urban activities that forming a friendly atmosphere. The dynamic of population structure shows occurrence the sprawl of land use change condition. In the site of the urban region showing the unique performance that built the place character. The aim of the study is to uncover the place character as one of land use change determinant factors. The study conducted with quantitative approach intended at obtaining variables which describing several factors forming land use change. Descriptive approach give an idea, justification, and fact-finding with correct interpretation. Data collected through a purposive sampling of 320 respondents who stay and built the building and land between 2010 till 2014. With overlay figure/ground technique, scoring analysis, descriptive quantitative and SEM (Structural Equational Models) gained a result that urban heritage (p=0,008) potentially as one of the main land use change driving factors besides accessibility (p=0,039), infrastructure (p=0,010), social-economic (p=0,038) in fact topographic factor (p=0,663) was inversely potentially. The implication of the findings is required intensive attention toward the form of place character (mosque, the quarter, district activity, peri urban edges city and railway) as determinant factors of land use change considering forming the identity of the rapid change in land use transformation.

  12. Land degradation causes and sustainable land management practices in southern Jordan

    NASA Astrophysics Data System (ADS)

    Khresat, Saeb

    2014-05-01

    Jordan is one of the world's most water-deficit countries with only about 4% of the total land area considered arable. As a consequence agricultural production is greatly constrained by limited natural resources. Therefore, a major challenge for the country is to promote the sustainable use of natural resources for agricultural purposes. This challenge is being made harder by the ongoing processes of degradation due to increased population pressure, which undermine any social and economic development gains. In the southern plains of Jordan, sustainability of farming practices has worsened in the past three decades, exacerbating pressure on land and increasing land degradation processes. Non-sustainable land use practices include improper ploughing, inappropriate rotations, inadequate or inexistent management of plant residues, overgrazing of natural vegetation, random urbanization, land fragmentation and over-pumping of groundwater. The root cause is the high population growth which exerts excessive pressure on the natural resources to meet increased food and income demand. The poorest farmers who are increasingly growing cereals on marginal areas. Wheat and barley are now grown with little to no rotation, with no nutrient replenishment, and at places avoiding even fallow. Small landholding sizes and topographic features of the area tend to oblige longitudinal mechanized tillage operations along the slopes. Overall, the constraints facing the deprived land users such as, poor access to technology, capital and organization are the factors that lead into unsustainable practices. The main bottlenecks and barriers that hinder mainstreaming of sustainable land management in Jordan can be grouped into three main categories: (i) Knowledge, (ii) Institutional and Governance, and (iii) Economic and Financial. In this case study, the key challenge was to create a knowledge base among local stakeholders - including planners, extension officers, NGO/community leaders, teachers

  13. The Significance of Land Cover Delineation on Soil Erosion Assessment.

    PubMed

    Efthimiou, Nikolaos; Psomiadis, Emmanouil

    2018-04-25

    The study aims to evaluate the significance of land cover delineation on soil erosion assessment. To that end, RUSLE (Revised Universal Soil Loss Equation) was implemented at the Upper Acheloos River catchment, Western Central Greece, annually and multi-annually for the period 1965-92. The model estimates soil erosion as the linear product of six factors (R, K, LS, C, and P) considering the catchment's climatic, pedological, topographic, land cover, and anthropogenic characteristics, respectively. The C factor was estimated using six alternative land use delineations of different resolution, namely the CORINE Land Cover (CLC) project (2000, 2012 versions) (1:100,000), a land use map conducted by the Greek National Agricultural Research Foundation (NAGREF) (1:20,000), a land use map conducted by the Greek Payment and Control Agency for Guidance and Guarantee Community Aid (PCAGGCA) (1:5,000), and the Landsat 8 16-day Normalized Difference Vegetation Index (NDVI) dataset (30 m/pixel) (two approximations) based on remote sensing data (satellite image acquired on 07/09/2016) (1:40,000). Since all other factors remain unchanged per each RUSLE application, the differences among the yielded results are attributed to the C factor (thus the land cover pattern) variations. Validation was made considering the convergence between simulated (modeled) and observed sediment yield. The latter was estimated based on field measurements conducted by the Greek PPC (Public Power Corporation). The model performed best at both time scales using the Landsat 8 (Eq. 13) dataset, characterized by a detailed resolution and a satisfactory categorization, allowing the identification of the most susceptible to erosion areas.

  14. Factors Influencing Farmers' Willingness to Participate in the Conversion of Cultivated Land to Wetland Program in Sanjiang National Nature Reserve, China

    NASA Astrophysics Data System (ADS)

    Zhang, Chunli; Robinson, Daniel; Wang, Jing; Liu, Jibin; Liu, Xiaohui; Tong, Lianjun

    2011-01-01

    Sanjiang National Nature Reserve (NNR) is a state-owned natural wetland in China that has suffered severe degradation due to cultivation and wetland reclamation by farmers. As a consequence, the conversion of cultivated land to wetlands (CCW) was proposed by the government of Heilongjiang province and the United Nations Development Programme/Global Environment Facility (UNDP/GEF) project team in 2007. We suggest that voluntary participation in the CCW could be an important tool for accomplishing the integrated objectives of wetland conservation and local development. The purpose of this study was to examine the main factors that influence farmers' willingness to participate in the CCW through a field investigation and a questionnaire. Based on the data from our questionnaire, which provided an effective sample of 310 households in 11 villages, the influencing factors of farmers' willingness to participate were analyzed through binary logistic regression analyses. It was concluded that age, education, the amount of cultivated land, geographical location, and the perceived benefits and risks were important factors for participation. Furthermore, suggestions for improving the wetland compensation system and providing alternative livelihoods are proposed to strengthen participation.

  15. Improving land resource evaluation using fuzzy neural network ensembles

    USGS Publications Warehouse

    Xue, Yue-Ju; HU, Y.-M.; Liu, S.-G.; YANG, J.-F.; CHEN, Q.-C.; BAO, S.-T.

    2007-01-01

    Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource experts, and the evaluation results rely heavily on experts' experiences. In order to overcome the shortcoming, we presented a fuzzy neural network ensemble method that did not require grading the evaluation factors into categorical indexes and could evaluate land resources by using the three kinds of attribute values directly. A fuzzy back propagation neural network (BPNN), a fuzzy radial basis function neural network (RBFNN), a fuzzy BPNN ensemble, and a fuzzy RBFNN ensemble were used to evaluate the land resources in Guangdong Province. The evaluation results by using the fuzzy BPNN ensemble and the fuzzy RBFNN ensemble were much better than those by using the single fuzzy BPNN and the single fuzzy RBFNN, and the error rate of the single fuzzy RBFNN or fuzzy RBFNN ensemble was lower than that of the single fuzzy BPNN or fuzzy BPNN ensemble, respectively. By using the fuzzy neural network ensembles, the validity of land resource evaluation was improved and reliance on land evaluators' experiences was considerably reduced. ?? 2007 Soil Science Society of China.

  16. Coupling Cellular Automata Land Use Change with Distributed Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Shu, L.; Duffy, C.

    2017-12-01

    There has been extensive research on LUC modeling with broad applications to simulating urban growth and changing demographic patterns across multiple scales. The importance of land conversion is a critical issue in watershed scale studies and is generally not treated in most watershed modeling approaches. In this study we apply spatially explicit hydrologic and landuse change models and the Conestoga Watershed in Lancaster County, Pennsylvania. The Penn State Integrated Hydrologic Model (PIHM) partitions the water balance in space and time over the urban catchment, the coupled Cellular Automata Land Use Change model (CALUC) dynamically simulates the evolution of land use classes based on physical measures associated with population change and land use demand factors. The CALUC model is based on iteratively applying discrete rules to each individual spatial cell. The essence the CA modeling involves calculation of the Transition Potential (TP) for conversion of a grid cell from one land use class to another. This potential includes five factors: random perturbation, suitability, accessibility, neighborhood effect, inertia effects and zonal factors. In spite of simplicity, this CALUC model has been shown to be very effective for simulating LUC leading to the emergence of complex spatial patterns. The components of TP are derived from present land use data for landuse reanalysis and for realistic future land use scenarios. For the CALUC we use early-settlement (circa 1790) initial land class values and final or present-day (2010) land classes to calibrate the model. CALUC- PIHM dynamically simulates the hydrologic response of conversion from pre-settlement to present landuse. The simulations highlight the capability and value of dynamic coupling of catchment hydrology with land use change over long time periods. Analysis of the simulation uses various metrics such as the distributed water balance, flow duration curves, etc. to show how deforestation, urbanization and

  17. Characterization factors for land use impacts on biodiversity in life cycle assessment based on direct measures of plant species richness in European farmland in the 'Temperate Broadleaf and Mixed Forest' biome.

    PubMed

    Knudsen, Marie Trydeman; Hermansen, John E; Cederberg, Christel; Herzog, Felix; Vale, Jim; Jeanneret, Philippe; Sarthou, Jean-Pierre; Friedel, Jürgen K; Balázs, Katalin; Fjellstad, Wendy; Kainz, Max; Wolfrum, Sebastian; Dennis, Peter

    2017-02-15

    Life Cycle Assessment (LCA) is a widely used tool to assess environmental sustainability of products. The LCA should optimally cover the most important environmental impact categories such as climate change, eutrophication and biodiversity. However, impacts on biodiversity are seldom included in LCAs due to methodological limitations and lack of appropriate characterization factors. When assessing organic agricultural products the omission of biodiversity in LCA is problematic, because organic systems are characterized by higher species richness at field level compared to the conventional systems. Thus, there is a need for characterization factors to estimate land use impacts on biodiversity in life cycle assessment that are able to distinguish between organic and conventional agricultural land use that can be used to supplement and validate the few currently suggested characterization factors. Based on a unique dataset derived from field recording of plant species diversity in farmland across six European countries, the present study provides new midpoint occupation Characterization Factors (CF) expressing the Potentially Disappeared Fraction (PDF) to estimate land use impacts on biodiversity in the 'Temperate Broadleaf and Mixed Forest' biome in Europe. The method is based on calculation of plant species on randomly selected test sites in the biome and enables the calculation of characterization factors that are sensitive to particular types of management. While species richness differs between countries, the calculated CFs are able to distinguish between different land use types (pastures (monocotyledons or mixed), arable land and hedges) and management practices (organic or conventional production systems) across countries. The new occupation CFs can be used to supplement or validate the few current CF's and can be applied in LCAs of agricultural products to assess land use impacts on species richness in the 'Temperate Broadleaf and Mixed Forest' biome

  18. The Trajectories and Impacts of Land Use and Land Cover Change: A Global Synthesis

    NASA Astrophysics Data System (ADS)

    Mustard, J. F.; Fisher, T. R.; Prince, S. D.; Soja, A. J.; Elmore, A. J.

    2001-12-01

    We have summarized the trajectories of land cover and land use change (LCLUC) and the resulting impacts through a synthesis of results from studies encompassing a wide range of environments. While the specific changes and impacts are in some ways unique to each environment, we have nevertheless identified some general principles that seem to apply across all regions. The LCLUC trajectory of a particular landscape under influence by human actions begins with the transition from conditions dominated by natural vegetation to a frontier state. Land use activities in a frontier state are centered primarily around resource extraction and development of infrastructure such as roads or ports. Under the proper conditions (e.g. soils, climate), the frontier state gives way to an agricultural landscape by further conversion of natural vegetation to agriculture and management of cleared land for agriculture. The maximum extent of this conversion is a function of local biophysical and socio-economic factors. For example conversion of arid lands may be limited by water availability, access to capital for development of water resources and access to markets for the products. Given the appropriate conditions (e.g. economic and social policy, generation of wealth), LCLUC evolves as large settlements and industrialization develop in concert with high land prices and agricultural intensification. In some cases (e.g., New England, Appalachia), economic conditions (e.g., better land for agriculture elsewhere) may result in reversion of agriculture to natural vegetation. The last stage in LCLUC is conversion of agriculture to residential and suburban environments (e.g., Baltimore/Washington corridor). Examination of global land cover indicates that every stage is currently present, with areas like the Eastern United States and Western Europe as examples of regions having experienced all stages, while parts of the Amazon basin, Siberia, and Africa are moving through the frontier

  19. Evaluation of ecosystem service based on scenario simulation of land use in Yunnan Province

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Liao, Xiaoli; Zhai, Tianlin

    2018-04-01

    Climate change and rapid urbanization are important factors restricting future land use. Situational analysis, as an important foundation for the optimization of land use, needs to focus on the impact of climate factors and socio-economic factors. In this paper, the Markov model and the DLS (Simulation of Land System Dynamics) model are combined for the first time, and the land use pattern in 2020 is simulated based on the data of land use in 2000 and 2010 as well as the climate, soil, topography and socio-economic factors of Yunnan Province. In his paper, we took Yunnan Province as the case study area, and selected 12 driving factors by logistic regression method, then the land use demands and layout of Yunnan Province in 2020 has been forecasted and simulated under business as usual (BAU) scenario and farmland protection (FP) scenario and the changes in ecosystem service value has been calculated. The result shows that: (1) after the regression analysis and ROC (Relative Operating Characteristics) test, the 12 factors selected in this paper have a strong ability to explain the land use change in Yunnan Province. (2) Under the two scenarios, the significant reduction of arable land area is a common feature of land use change in Yunnan Province in the future, and its main land use type will be construction land. However, under FP scenario, the current situation where construction land encroach on arable land will be improved. Compared with the change from 2000 to 2010, the trend of arable land, forest land, water area, construction land and unused land will be the same under the two scenarios, whereas the change trend of grassland was opposite. (3) From 2000 to 2020, the value of ecosystem services in Yunnan Province is on the rise, but the ecosystem service value under FP scenario is higher than that of the ecosystem services under BAU scenario. In general, land use in 2020 in Yunnan Province continues the pattern of 2010, but there are also significant spatial

  20. Land Use and Land Cover Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Daniel; Polsky, Colin; Bolstad, Paul V.

    2014-05-01

    A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.

  1. Spatial Modeling of Agricultural Land-Use Change at Global Scale

    NASA Astrophysics Data System (ADS)

    Meiyappan, Prasanth; Dalton, Michael; O'Neill, Brian C.; Jain, Atul K.

    2013-12-01

    Land use is both a source and consequence of climate change. Long-term modeling of land use is central in global scale assessments using Integrated Assessment Models (IAMs) to explore policy alternatives; especially because adaptation and mitigation of climate change requires long-term commitment. We present a land-use change modeling framework that can reproduce the past 100 years of evolution of global cropland and pastureland patterns to a reasonable accuracy. The novelty of our approach underlies in integrating knowledge from both the observed behavior and economic rationale behind land-use decisions, thereby making up for the intrinsic deficits in both the disciplines. The underlying economic rationale is profit maximization of individual landowners that implicitly reflects local-level decisions-making process at a larger scale. Observed behavior based on examining the relationships between contemporary land-use patterns and its socioeconomic and biophysical drivers, enters as an explicit factor into the economic framework. The land-use allocation is modified by autonomous developments and competition between land-use types. The framework accounts for spatial heterogeneity in the nature of driving factors across geographic regions. The model is currently configured to downscale continental-scale aggregate land-use information to region specific changes in land-use patterns (0.5-deg spatial resolution). The temporal resolution is one year. The historical validation experiment is facilitated by synthesizing gridded maps of a wide range of potential biophysical and socioeconomic driving factors for the 20th century. To our knowledge, this is the first retrospective analysis that has been successful in reproducing the historical experience at a global scale. We apply the method to gain useful insights on two questions: (1) what are the dominant socioeconomic and biophysical driving factors of contemporary cropland and pastureland patterns, across geographic

  2. A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes.

    PubMed

    El Akkari, M; Réchauchère, O; Bispo, A; Gabrielle, B; Makowski, D

    2018-06-04

    Non-food biomass production is developing rapidly to fuel the bioenergy sector and substitute dwindling fossil resources, which is likely to impact land-use patterns worldwide. Recent publications attempting to factor this effect into the climate mitigation potential of bioenergy chains have come to widely variable conclusions depending on their scope, data sources or methodology. Here, we conducted a first of its kind, systematic review of scientific literature on this topic and derived quantitative trends through a meta-analysis. We showed that second-generation biofuels and bioelectricity have a larger greenhouse gas (GHG) abatement potential than first generation biofuels, and stand the best chances (with a 80 to 90% probability range) of achieving a 50% reduction compared to fossil fuels. Conversely, directly converting forest ecosystems to produce bioenergy feedstock appeared as the worst-case scenario, systematically leading to negative GHG savings. On the other hand, converting grassland appeared to be a better option and entailed a 60% chance of halving GHG emissions compared to fossil energy sources. Since most climate mitigation scenarios assume still larger savings, it is critical to gain better insight into land-use change effects to provide a more realistic estimate of the mitigation potential associated with bioenergy.

  3. Land Reform and Social Change in Colombia.

    ERIC Educational Resources Information Center

    Hirschman, Albert O.; And Others

    This conference report focuses on three major areas of interest: (1) land reform in Colombia, (2) social change in Popayan, and (3) implications for research in agrarian structure in Colombia. A case study dealing with Colombia's sequence of moves toward land reform over the last 40 years is reviewed. The impact of political factors and social…

  4. Ecoregional differences in late-20th-century land-use and land-cover change in the U.S. northern great plains

    USGS Publications Warehouse

    Auch, Roger F.; Sayler, K. L.; Napton, D.E.; Taylor, Janis L.; Brooks, M.S.

    2011-01-01

    Land-cover and land-use change usually results from a combination of anthropogenic drivers and biophysical conditions found across multiple scales, ranging from parcel to regional levels. A group of four Level 111 ecoregions located in the U.S. northern Great Plains is used to demonstrate the similarities and differences in land change during nearly a 30-year period (1973-2000) using results from the U.S. Geological Survey's Land Cover Trends project. There were changes to major suites of land-cover; the transitions between agriculture and grassland/shrubland and the transitions among wetland, water, agriculture, and grassland/ shrubland were affected by different factors. Anthropogenic drivers affected the land-use tension (or land-use competition) between agriculture and grassland/shrubland land-covers, whereas changes between wetland and water land-covers, and their relationship to agriculture and grassland/shrubland land-covers, were mostly affected by regional weather cycles. More land-use tension between agriculture and grassland/shrubland landcovers occurred in ecoregions with greater amounts of economically marginal cropland. Land-cover change associated with weather variability occurred in ecoregions that had large concentrations of wetlands and water impoundments, such as the Missouri River reservoirs. The Northwestern Glaciated Plains ecoregion had the highest overall estimated percentage of change because it had both land-use tension between agriculture and grassland/shrubland land-covers and wetland-water changes. 

  5. Results from KamLAND-Zen

    NASA Astrophysics Data System (ADS)

    Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obara, S.; Oki, Y.; Otani, M.; Oura, T.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Tachibana, H.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Fushimi, K.; Banks, T. I.; Freedman, S. J.; Fujikawa, B. K.; O'Donnell, T.; Winslow, L. A.; Berger, B. E.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2015-07-01

    KamLAND-Zen reports on a preliminary search for neutrinoless double-beta decay with 136Xe based on 114.8 live-days after the purification of the xenon loaded liquid scintillator. In this data, the problematic 110mAg background peak identified in previous searches is reduced by more than a factor of 10. By combining the KamLAND-Zen pre- and post-purification data, we obtain a preliminary lower limit on the 0νββ decay half-life of T1/2 0 ν>2.6 ×1025 yr at 90% C.L. The search sensitivity will be enhanced with additional low background data after the purification. Prospects for further improvements with future KamLAND-Zen upgrades are also presented.

  6. Hierarchical Marginal Land Assessment for Land Use Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Shujiang; Post, Wilfred M; Wang, Dali

    2013-01-01

    Marginal land provides an alternative potential for food and bioenergy production in the face of limited land resources; however, effective assessment of marginal lands is not well addressed. Concerns over environmental risks, ecosystem services and sustainability for marginal land have been widely raised. The objective of this study was to develop a hierarchical marginal land assessment framework for land use planning and management. We first identified major land functions linking production, environment, ecosystem services and economics, and then classified land resources into four categories of marginal land using suitability and limitations associated with major management goals, including physically marginal land,more » biologically marginal land, environmental-ecological marginal land, and economically marginal land. We tested this assessment framework in south-western Michigan, USA. Our results indicated that this marginal land assessment framework can be potentially feasible on land use planning for food and bioenergy production, and balancing multiple goals of land use management. We also compared our results with marginal land assessment from the Conservation Reserve Program (CRP) and land capability classes (LCC) that are used in the US. The hierarchical assessment framework has advantages of quantitatively reflecting land functions and multiple concerns. This provides a foundation upon which focused studies can be identified in order to improve the assessment framework by quantifying high-resolution land functions associated with environment and ecosystem services as well as their criteria are needed to improve the assessment framework.« less

  7. Stormwater runoff quality in correlation to land use and land cover development in Yongin, South Korea.

    PubMed

    Paule, M A; Memon, S A; Lee, B-Y; Umer, S R; Lee, C-H

    2014-01-01

    Stormwater runoff quality is sensitive to land use and land cover (LULC) change. It is difficult to understand their relationship in predicting the pollution potential and developing watershed management practices to eliminate or reduce the pollution risk. In this study, the relationship between LULC change and stormwater runoff quality in two separate monitoring sites comprising a construction area (Site 1) and mixed land use (Site 2) was analyzed using geographic information system (GIS), event mean concentration (EMC), and correlation analysis. It was detected that bare land area increased, while other land use areas such as agriculture, commercial, forest, grassland, parking lot, residential, and road reduced. Based on the analyses performed, high maximum range and average EMCs were found in Site 2 for most of the water pollutants. Also, urban areas and increased conversion of LULC into bare land corresponded to degradation of stormwater quality. Correlation analysis between LULC and stormwater quality showed the influence of different factors such as farming practices, geographical location, and amount of precipitation, vegetation loss, and anthropogenic activities in monitoring sites. This research found that GIS application was an efficient tool for monthly monitoring, validation and statistical analysis of LULC change in the study area.

  8. Downscaling Land Surface Temperature in Complex Regions by Using Multiple Scale Factors with Adaptive Thresholds

    PubMed Central

    Yang, Yingbao; Li, Xiaolong; Pan, Xin; Zhang, Yong; Cao, Chen

    2017-01-01

    Many downscaling algorithms have been proposed to address the issue of coarse-resolution land surface temperature (LST) derived from available satellite-borne sensors. However, few studies have focused on improving LST downscaling in urban areas with several mixed surface types. In this study, LST was downscaled by a multiple linear regression model between LST and multiple scale factors in mixed areas with three or four surface types. The correlation coefficients (CCs) between LST and the scale factors were used to assess the importance of the scale factors within a moving window. CC thresholds determined which factors participated in the fitting of the regression equation. The proposed downscaling approach, which involves an adaptive selection of the scale factors, was evaluated using the LST derived from four Landsat 8 thermal imageries of Nanjing City in different seasons. Results of the visual and quantitative analyses show that the proposed approach achieves relatively satisfactory downscaling results on 11 August, with coefficient of determination and root-mean-square error of 0.87 and 1.13 °C, respectively. Relative to other approaches, our approach shows the similar accuracy and the availability in all seasons. The best (worst) availability occurred in the region of vegetation (water). Thus, the approach is an efficient and reliable LST downscaling method. Future tasks include reliable LST downscaling in challenging regions and the application of our model in middle and low spatial resolutions. PMID:28368301

  9. Flooding Hazard Maps of Different Land Uses in Subsidence Area

    NASA Astrophysics Data System (ADS)

    Lin, Yongjun; Chang, Hsiangkuan; Tan, Yihchi

    2017-04-01

    This study aims on flooding hazard maps of different land uses in the subsidence area of southern Taiwan. Those areas are low-lying due to subsidence resulting from over pumping ground water for aquaculture. As a result, the flooding due to storm surges and extreme rainfall are frequent in this area and are expected more frequently in the future. The main land uses there include: residence, fruit trees, and aquaculture. The hazard maps of the three land uses are investigated. The factors affecting hazards of different land uses are listed below. As for residence, flooding depth, duration of flooding, and rising rate of water surface level are factors affecting its degree of hazard. High flooding depth, long duration of flooding, and fast rising rate of water surface make residents harder to evacuate. As for fruit trees, flooding depth and duration of flooding affects its hazard most due to the root hypoxia. As for aquaculture, flooding depth affects its hazard most because the high flooding depth may cause the fish flush out the fishing ponds. An overland flow model is used for simulations of hydraulic parameters for factors such as flooding depth, rising rate of water surface level and duration of flooding. As above-mentioned factors, the hazard maps of different land uses can be made and high hazardous are can also be delineated in the subsidence areas.

  10. Do spatial patterns of urbanization and land consumption reflect different socioeconomic contexts in Europe?

    PubMed

    Salvati, Luca; Zambon, Ilaria; Chelli, Francesco Maria; Serra, Pere

    2018-06-01

    Land-use changes and urban sprawl have transformed European cities, with a direct impact on both metropolitan structures and socioeconomic functions. However, these processes tend to be relatively different across countries, being influenced by place-specific factors associated to socioeconomic, historical, political and cultural factors that influence decisions on the use of land. Considering 155 metropolitan areas in 6 European macro-regions, the present study investigates spatial patterns of land consumption profiling cities according to a large set of territorial variables, with the final objective to identify relevant socioeconomic dimensions characteristic of recent processes of urban growth. Investigating the socioeconomic background underlying land-use changes in metropolitan regions allows identification of place-specific factors improving the design of effective strategies containing land consumption in different European urban typologies. An exhaustive analysis of land-use changes at regional and local spatial scales contributes to find alternative policies for land-use efficiency and long-term environmental sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Trends and driving mechanism of land-use change in metropolitan areas of Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Chen, Feng-gui; Zhang, Hong-ou; Wang, Juan; Wu, Qi-tao

    2008-10-01

    Taking Pearl River Delta for an example this study focuses on the trends and the driving mechanism of land-use changes in metropolises, in order to achieve the fundamental objectives of LUCC study increasing the awareness on dynamics of global land-use and land-cover changes, and improving the ability of forecasting LUCC. By analyzing the land-use change in Pearl River Delta from 1996 to 2006, it is found that the differences among internal space are notable. By establishing time-sequence-curve with SPSS software, it is shown that trends of land-use change are very clear. With factor analysis on land-use change, the study summarizes four factors of driving mechanism, including factors of economic development level, regional industrial structure, demographic and agricultural structure adjustment, which impact land change in Pearl River Delta to a different extent.

  12. Transportation Energy Conservation Through Land Use Planning

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The interrelationships of transportation, land use and energy are covered. Two major areas were highlighted; the fundamental social, economic, energy, and cultural factors that influence planning, and opportunities for the coordination of transportation and land use. Although no specific recommendations are contained, highlight examples of effective plans and programs and questions that can form the basis for further research are described.

  13. The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania

    NASA Astrophysics Data System (ADS)

    Roşca, Cristina Florina; Harpa, Gabriela Victoria; Croitoru, Adina-Eliza; Herbel, Ioana; Imbroane, Alexandru Mircea; Burada, Doina Cristina

    2017-11-01

    Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986-2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.

  14. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Landing gear extension and retraction... Design and Construction Landing Gear § 23.729 Landing gear extension and retraction system. (a) General..., occurring during retraction at any airspeed up to 1.6 V S 1 with flaps retracted, and for any load factor up...

  15. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Landing gear extension and retraction... Design and Construction Landing Gear § 23.729 Landing gear extension and retraction system. (a) General..., occurring during retraction at any airspeed up to 1.6 V S 1 with flaps retracted, and for any load factor up...

  16. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Landing gear extension and retraction... Design and Construction Landing Gear § 23.729 Landing gear extension and retraction system. (a) General..., occurring during retraction at any airspeed up to 1.6 V S 1 with flaps retracted, and for any load factor up...

  17. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Landing gear extension and retraction... Design and Construction Landing Gear § 23.729 Landing gear extension and retraction system. (a) General..., occurring during retraction at any airspeed up to 1.6 V S 1 with flaps retracted, and for any load factor up...

  18. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Landing gear extension and retraction... Design and Construction Landing Gear § 23.729 Landing gear extension and retraction system. (a) General..., occurring during retraction at any airspeed up to 1.6 V S 1 with flaps retracted, and for any load factor up...

  19. Characterization of Phytochrome Interacting Factors from the Moss Physcomitrella patens Illustrates Conservation of Phytochrome Signaling Modules in Land Plants

    PubMed Central

    Xu, Tengfei; Paik, Inyup; Hanke, Sebastian; Keim, Sarah; Hermann, Helen-Maria; Wolf, Luise; Becker, Claude

    2017-01-01

    Across the plant kingdom, phytochrome (PHY) photoreceptors play an important role during adaptive and developmental responses to light. In Arabidopsis thaliana, light-activated PHYs accumulate in the nucleus, where they regulate downstream signaling components, such as phytochrome interacting factors (PIFs). PIFs are transcription factors that act as repressors of photomorphogenesis; their inhibition by PHYs leads to substantial changes in gene expression. The nuclear function of PHYs, however, has so far been investigated in only a few non-seed plants. Here, we identified putative target genes of PHY signaling in the moss Physcomitrella patens and found light-regulated genes that are putative orthologs of PIF-controlled genes in Arabidopsis. Phylogenetic analyses revealed that an ancestral PIF-like gene was already present in streptophyte algae, i.e., before the water-to-land transition of plants. The PIF homologs in the genome of P. patens resemble Arabidopsis PIFs in their protein domain structure, molecular properties, and physiological effects, albeit with notable differences in the motif-dependent PHY interaction. Our results suggest that P. patens PIFs are involved in PHY signaling. The PHY-PIF signaling node that relays light signals to target genes has been largely conserved during land plant evolution, with evidence of lineage-specific diversification. PMID:28123107

  20. Land use/land cover change and implications for ecosystems services in the Likangala River Catchment, Malawi

    NASA Astrophysics Data System (ADS)

    Pullanikkatil, Deepa; Palamuleni, Lobina G.; Ruhiiga, Tabukeli M.

    2016-06-01

    Likangala River catchment in Zomba District of Southern Malawi is important for water resources, agriculture and provides many ecosystem services. Provisioning ecosystem services accrued by the populations within the catchment include water, fish, medicinal plants and timber among others. In spite of its importance, the River catchment is under threat from anthropogenic activities and land use change. This paper studies land uses and land cover change in the catchment and how the changes have impacted on the ecosystem services. Landsat 5 and 8 images (1984, 1994, 2005 and 2013) were used to map land cover change and subsequent inventorying of provisioning ecosystem services. Participatory Geographic Information Systems and Focus group discussions were conducted to identify provisioning ecosystems services that communities benefit from the catchment and indicate these on the map. Post classification comparisons indicate that since 1984, there has been a decline in woodlands from 135.3 km2 in 1984 to 15.5 km2 in 2013 while urban areas increased from 9.8 km2 to 23.8 km2 in 2013. Communities indicated that provisioning ecosystems services such as forest products, wild animals and fruits and medicinal plants have been declining over the years. In addition, evidence of catchment degradation through waste disposal, illegal sand mining, deforestation and farming on marginal lands were observed. Population growth, urbanization and demand for agricultural lands have contributed to this land use and land cover change. The study suggests addressing catchment degradation through integrated method where an ecosystems approach is used. Thus, both the proximate and underlying driving factors of land-use and land cover change need to be addressed in order to sustainably reduce ecosystem degradation.

  1. Linking trajectories of land change, land degradation processes and ecosystem services.

    PubMed

    Smiraglia, D; Ceccarelli, T; Bajocco, S; Salvati, L; Perini, L

    2016-05-01

    Land Degradation (LD) is a complex phenomenon resulting in a progressive reduction in the capacity of providing ecosystem services (ES). Landscape transformations promoting an unsustainable use of land often reveal latent processes of LD. An evaluation carried out in respect to the different ecosystem services is nowadays regarded as the most appropriate approach for assessing the effects of LD. The aim of this study is to develop an evaluation framework for identifying the linkages between land changes, LD processes and ES and suggesting Sustainable Land Management (SLM) options suited to reverse (or mitigate) LD impact. A SWOT analysis was carried out with the aim to identify internal and external factors that are favorable (or unfavorable) to achieve the proposed SLM actions. The study areas are the Fortore valley and the Valpadana, in Italy. The main trajectory identified for the Fortore valley is related to land abandonment due to population aging and the progressive emigration started in the 1950s. The most relevant LD processes are soil erosion and geomorphological instability, affecting regulating services such as natural hazard and erosion control. SLM options should consider interventions to contrast geomorphological instability, the promotion of climate smart agriculture and of typical products, and an efficient water resources management. The main trajectories identified for Valpadana are related to urban expansion and farmland abandonment and, as a consequence, land take due to anthropogenic pressure and woodland expansion as the main LD process. The reduction of food production was identified as the most relevant provisioning service affected. SLM should envisage best practices finalized to water saving and soil consumption reduction: efficient irrigation solutions, climate smart agriculture and zero sealing practices. This study highlights the diagnostic value of the suggested approach where LD processes are elicited from land change trajectories

  2. The consequences of land-cover changes on soil erosion distribution in Slovakia

    NASA Astrophysics Data System (ADS)

    Cebecauer, Tomáš; Hofierka, Jaroslav

    2008-06-01

    Soil erosion is a complex process determined by mutual interaction of numerous factors. The aim of erosion research at regional scales is a general evaluation of the landscape susceptibility to soil erosion by water, taking into account the main factors influencing this process. One of the key factors influencing the susceptibility of a region to soil erosion is land cover. Natural as well as human-induced changes of landscape may result in both the diminishment and acceleration of soil erosion. Recent studies of land-cover changes indicate that during the last decade more than 4.11% of Slovak territory has changed. The objective of this study is to assess the influence of land-cover and crop rotation changes over the 1990-2000 period on the intensity and spatial pattern of soil erosion in Slovakia. The assessment is based on principles defined in the Universal Soil Loss Equation (USLE) modified for application at regional scale and the use of the CORINE land cover (CLC) databases for 1990 and 2000. The C factor for arable land has been refined using statistical data on the mean crop rotation and the acreage of particular agricultural crops in the districts of Slovakia. The L factor has been calculated using sample areas with parcels identified by LANDSAT TM data. The results indicate that the land-cover and crop rotation changes had a significant influence on soil erosion pattern predominately in the hilly and mountainous parts of Slovakia. The pattern of soil erosion changes exhibits high spatial variation with overall slightly decreased soil erosion risks. These changes are associated with ongoing land ownership changes, changing structure of crops, deforestation and afforestation.

  3. Results from KamLAND-Zen

    DOE PAGES

    Asakura, K.; Gando, A.; Gando, Y.; ...

    2015-07-15

    KamLAND-Zen reports on a preliminary search for neutrinoless double-beta decay with 136Xe based on 114.8 live-days after the purification of the xenon loaded liquid scintillator. In this data, the problematic 110mAg background peak identified in previous searches is reduced by more than a factor of 10. By combining the KamLAND-Zen pre- and post-purification data, we obtain a preliminary lower limit on the 0νββ decay half-life of T 0ν 1/2 > 2.6×10 25 yr at 90% C.L. The search sensitivity will be enhanced with additional low background data after the purification. As a result, prospects for further improvements with future KamLAND-Zenmore » upgrades are also presented.« less

  4. Suitability evaluation tool for lands (rice, corn and soybean) as mobile application

    NASA Astrophysics Data System (ADS)

    Rahim, S. E.; Supli, A. A.; Damiri, N.

    2017-09-01

    Evaluation of land suitability for special purposes e.g. for food crops is a must, a means to understand determining factors to be considered in the management of a land successfully. A framework for evaluating the land suitability for purposes in agriculture was first introduced by the Food and Agriculture Organization (FAO) in late 1970s. When using the framework manually, it is time consuming and not interesting for land users. Therefore, the authors have developed an effective tool by transforming the FAO framework into smart mobile application. This application is designed by using simple language for each factor and also by utilizing rule based system (RBS) algorithm. The factors involved are soil type, depth of soil solum, soil fertility, soil pH, drainage, risk of flood, etc. Suitability in this paper is limited to rice, corn and soybean. The application is found to be easier to understand and also could automatically determine the suitability of land. Usability testing was also conducted with 75 respondents. The results showed the usability was in "very good" classification. The program is urgently needed by the land managers, farmers, lecturers, students and government officials (planners) to help them more easily manage their land for a better future.

  5. Exploring land developer perspectives on conservation subdivision design and environmentally sustainable land development.

    PubMed

    Göçmen, Z Aslıgül

    2014-11-01

    Insight into land developers' perspectives on alternative residential developments and the barriers they experience in trying to develop them can be crucial in efforts to change environmentally damaging low-density, large-lot, and automobile-dependent residential patterns. Using a semi-structured interview instrument followed by short surveys, I examined the views of 16 developers in Waukesha County, WI, USA, a county that has experienced significant development pressures and widespread implementation of conservation subdivision design. The land developer investigation focused on conservation subdivision design familiarity and implementation, and identified a number of barriers that developers experienced in implementing the design. While the majority of the developers appeared familiar with the design and had experience developing conservation subdivisions, their motivations for developing them varied, as did their on-site conservation practices. The barriers included the lack of land use regulations supporting the design, economic factors, community opposition, and a lack of knowledge about sustainable residential development practices. Strategies to promote more environmentally sustainable residential land development patterns include providing a more supportive institutional environment, enacting different regulations and guidelines for natural resources protection, and offering education on ecologically sound development and planning practices.

  6. Exploring Land Developer Perspectives on Conservation Subdivision Design and Environmentally Sustainable Land Development

    NASA Astrophysics Data System (ADS)

    Göçmen, Z. Aslıgül

    2014-11-01

    Insight into land developers' perspectives on alternative residential developments and the barriers they experience in trying to develop them can be crucial in efforts to change environmentally damaging low-density, large-lot, and automobile-dependent residential patterns. Using a semi-structured interview instrument followed by short surveys, I examined the views of 16 developers in Waukesha County, WI, USA, a county that has experienced significant development pressures and widespread implementation of conservation subdivision design. The land developer investigation focused on conservation subdivision design familiarity and implementation, and identified a number of barriers that developers experienced in implementing the design. While the majority of the developers appeared familiar with the design and had experience developing conservation subdivisions, their motivations for developing them varied, as did their on-site conservation practices. The barriers included the lack of land use regulations supporting the design, economic factors, community opposition, and a lack of knowledge about sustainable residential development practices. Strategies to promote more environmentally sustainable residential land development patterns include providing a more supportive institutional environment, enacting different regulations and guidelines for natural resources protection, and offering education on ecologically sound development and planning practices.

  7. Lunar base launch and landing facilities conceptual design

    NASA Technical Reports Server (NTRS)

    Phillips, Paul G.; Simonds, Charles H.; Stump, William R.

    1992-01-01

    The purpose of this study was to perform a first look at the requirements for launch and landing facilities for early lunar bases and to prepared conceptual designs for some of these facilities. The emphasis of the study is on the facilities needed from the first manned landing until permanent occupancy, the Phase 2 lunar base. Factors including surface characteristics, navigation system, engine blast effects, and expected surface operations are used to develop landing pad designs, and definitions fo various other elements of the launch and landing facilities. Finally, the dependence of the use of these elements and the evolution of the facilities are established.

  8. Relations between retired agricultural land, water quality, and aquatic-community health, Minnesota River Basin

    USGS Publications Warehouse

    Christensen, Victoria G.; Lee, Kathy E.; McLees, James M.; Niemela, Scott L.

    2012-01-01

    The relative importance of agricultural land retirement on water quality and aquatic-community health was investigated in the Minnesota River Basin. Eighty-two sites, with drainage areas ranging from 4.3 to 2200 km2, were examined for nutrient concentrations, measures of aquatic-community health (e.g., fish index of biotic integrity [IBI] scores), and environmental factors (e.g., drainage area and amount of agricultural land retirement). The relation of proximity of agricultural land retirement to the stream was determined by calculating the land retirement percent in various riparian zones. Spearman's rho results indicated that IBI score was not correlated to the percentage of agricultural land retirement at the basin scale (p = 0.070); however, IBI score was correlated to retired land percentage in the 50- to 400-m riparian zones surrounding the streams (p < 0.05), indicating that riparian agricultural land retirement may have more influence on aquatic-community health than does agricultural land retirement in upland areas. Multivariate analysis of covariance and analysis of covariance models indicated that other environmental factors (such as drainage area and lacustrine and palustrine features) commonly were correlated to aquatic-community health measures, as were in-stream factors (standard deviation of water depth and substrate type). These results indicate that although agricultural land retirement is significantly related to fish communities as measured by the IBI scores, a combination of basin, riparian, and in-stream factors act together to influence IBI scores.

  9. Cost, drivers and action against land degradation through land use and cover change in Russia

    NASA Astrophysics Data System (ADS)

    Sorokin, Alexey; Strokov, Anton; Johnson, Timothy; Mirzabaev, Alisher

    2016-04-01

    The natural conditions and socio-economic factors determine the structure and the principles of land use in Russia. The increasing degradation of land resources in many parts of Russia manifested in numerous forms such as desertification, soil erosion, secondary salinization, water-logging and overgrazing. The major drivers of degradation include: climatic change, unsustainable agricultural practices, industrial and mining activities, expansion of crop production to fragile and marginal areas, inadequate maintenance of irrigation and drainage networks. Several methods for estimating Total Economic Value of land-use and land-cover change were used: 1) the cost of production per hectare (only provisional services were included); 2) the value of ecosystem services provided by Costanza et al, 1997; 3) coefficients of basic transfer and contingent approaches based on Tianhong et al, 2008 and Xie et al, 2003, who interviewed 200 ecologists to give a value of ecosystem services of different land types in China; 4) coefficients on a basic transfer and contingent approaches based on author's interview of 20 experts in Lomonosov Moscow State University. In general, the estimation of the prices for action and inaction in addressing the degradation and improvement of the land resources on a national scale (the Federal districts) with an emphasis on the period of economic reforms from 1990-2009 in Russia, where the area of arable lands decreased by 25% showed that the total land use/cover dynamic changes are about 130 mln ha, and the total annual costs of land degradation due to land-use change only, are about 189 bln USD in 2009 as compared with 2001, e.g. about 23.6 bln USD annually, or about 2% of Russia's Gross Domestic Product in 2010. The costs of action against land degradation are lower than the costs of inaction in Russia by 5-6 times over the 30 year horizon. Almost 92% of the costs of action are made up of the opportunity costs of action. The study was performed with

  10. Land Sales - Division of Mining, Land, and Water

    Science.gov Websites

    to Alaska Land Sales Public Notices Residential Land Auction #484 Agricultural Land Auction #485 Over for sale Agricultural Land Auction (#485)Open until June 7th This program allows anyone (resident or non-resident) to bid on a parcel of agricultural land. Agricultural land has covenants and conditions

  11. The Implications of Future Food Demand on Global Land Use, Land-Use Change Emissions, and Climate

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Wise, M.; Kyle, P.; Luckow, P.; Clarke, L.; Edmonds, J.; Eom, J.; Kim, S.; Moss, R.; Patel, P.

    2011-12-01

    In 2005, cropland accounted for approximately 10% of global land area. The amount of cropland needed in the future depends on a number of factors including global population, dietary preferences, and agricultural crop yields. In this paper, we explore the effect of various assumptions about global food demand and agricultural productivity between now and 2100 on global land use, land-use change emissions, and climate using the GCAM model. GCAM is a global integrated assessment model, linking submodules of the regionally disaggregated, global economy, energy system, agriculture and land-use, terrestrial carbon cycle, oceans and climate. GCAM simulates supply, demand, and prices for energy and agricultural goods from 2005 to 2100 in 5-year increments. In each time period, the model computes the allocation of land across a variety of land cover types in 151 different regions, assuming that farmers maximize profits and that food demand is relatively inelastic. For this analysis, we look at the effect of alternative socioeconomic pathways, crop yield improvement assumptions, and future meat demand scenarios on the demand for agricultural land. The three socioeconomic pathways explore worlds where global population in 2100 ranges from 6 billion people to 14 billion people. The crop yield improvement assumptions range from a world where yields do not improve beyond today's levels to a world with significantly higher crop productivity. The meat demand scenarios range from a vegetarian world to a world where meat is a dominant source of calories in the global diet. For each of these scenarios, we find that sufficient land exists to feed the global economy. However, rates of deforestation, bioenergy potential, land-use change emissions, and climate change differ across the scenarios. Under less favorable scenarios, deforestation rates, land-use change emissions, and the rate of climate change can be adversely affected.

  12. Addressing Issues for Land Change Science

    NASA Astrophysics Data System (ADS)

    Braimoh, Ademola; Huang, He Qing

    2009-09-01

    Workshop on Vulnerability and Resilience of Land Systems in Asia; Beijing, China, 15-17 June 2009; There is a growing international community of scholars who work within the interdisciplinary field of land change science, a scientific domain that seeks to understand the dynamics of the land system as a coupled human-environment system. A coupled human-environment system is one in which the social and biophysical subsystems are intertwined so that the system's condition and responses to external forcing are based on the synergy of the two subsystems. Research on land system vulnerability, defined as a function of exposure and sensitivity to natural and anthropogenic perturbations, such as climate variability and sudden changes in macroeconomic conditions and the ability to cope with the impacts of those perturbations, is a fundamental component of land change science. To address issues related to land system vulnerability, the Global Land Project (GLP; http://www.glp-beijing.org.cn/index.php and http://www.glp.hokudai.ac.jp) brought together an interdisciplinary group of researchers with backgrounds ranging from environmental to social sciences. Participants came from both developed and developing countries. The workshop sought to (1) improve knowledge of the causal processes that affect a system's vulnerability and capacity to cope with different perturbations and (2) identify factors that hinder the integration of vulnerability assessment into policies and decision making.

  13. A place of her own: women and land.

    PubMed

    Ogana, W; Seaforth, W

    1995-12-01

    This article discusses the gender issue of access to land and property by women. Women experience constraints to owning, inheriting, and using land. Laws, customs, and economics are factors that interfere with women's access to land and property. Women are forming groups and pooling their savings in order to buy land, or start an income generation project. In Kenya, women's groups have names that reflect women's situations. Under customary law, women frequently are unable to own land except through husbands or other male relatives. Widows without sons or unmarried women are denied access. In some legal systems, women are treated as minors and cannot make business transactions without a male relative's consent. Even in countries where women have the right to land ownership and property, women have little chance for ownership due to high costs and women's lack of business practices or knowledge of their rights. In a subsistence economy, land offers a place to live and to grow food. Pressure on the land in subsistence economies erodes women's ability to maintain shelters and feed their families. Women pushed onto marginal lands must struggle for survival and face eviction. Town planners ignore people's need to grow food for survival. Groups fight eviction based on protection of human rights. Community land trusts remove land from speculation. Gaining title to land may be a complicated process. Land delivery systems need to be more efficient. New ways of obtaining credit not tied to land ownership are needed. Governments need to remove constraints to land for all, particularly the disadvantaged.

  14. Land Use and Environmental Variability Impacts on the Phenology of Arid Agro-Ecosystems.

    PubMed

    Romo-Leon, Jose Raul; van Leeuwen, Willem J D; Castellanos-Villegas, Alejandro

    2016-02-01

    The overexploitation of water resources in arid environments often results in abandonment of large extensions of agricultural lands, which may (1) modify phenological trends, and (2) alter the sensitivity of specific phenophases to environmental triggers. In Mexico, current governmental policies subsidize restoration efforts, to address ecological degradation caused by abandonments; however, there is a need for new approaches to assess their effectiveness. Addressing this, we explore a method to monitor and assess (1) land surface phenology trends in arid agro-ecosystems, and (2) the effect of climatic factors and restoration treatments on the phenology of abandoned agricultural fields. We used 16-day normalized difference vegetation index composites from the moderate resolution imaging spectroradiometer from 2000 to 2009 to derive seasonal phenometrics. We then derived phenoclimatic variables and land cover thematic maps, to serve as a set of independent factors that influence vegetation phenology. We conducted a multivariate analysis of variance to analyze phenological trends among land cover types, and developed multiple linear regression models to assess influential climatic factors driving phenology per land cover analyzed. Our results suggest that the start and length of the growing season had different responses to environmental factors depending on land cover type. Our analysis also suggests possible establishment of arid adapted species (from surrounding ecosystems) in abandoned fields with longer times since abandonment. Using this approach, we were able increase our understanding on how climatic factors influence phenology on degraded arid agro-ecosystems, and how this systems evolve after disturbance.

  15. Modelling Participatory Geographic Information System for Customary Land Conflict Resolution

    NASA Astrophysics Data System (ADS)

    Gyamera, E. A.; Arko-Adjei, A.; Duncan, E. E.; Kuma, J. S. Y.

    2017-11-01

    Since land contributes to about 73 % of most countries Gross Domestic Product (GDP), attention on land rights have tremendously increased globally. Conflicts over land have therefore become part of the major problems associated with land administration. However, the conventional mechanisms for land conflict resolution do not provide satisfactory result to disputants due to various factors. This study sought to develop a Framework of using Participatory Geographic Information System (PGIS) for customary land conflict resolution. The framework was modelled using Unified Modelling Language (UML). The PGIS framework, called butterfly model, consists of three units namely, Social Unit (SU), Technical Unit (TU) and Decision Making Unit (DMU). The name butterfly model for land conflict resolution was adopted for the framework based on its features and properties. The framework has therefore been recommended to be adopted for land conflict resolution in customary areas.

  16. Ammonia emission factors from broiler litter in barns, in storage, and after land application.

    PubMed

    Moore, Philip A; Miles, Dana; Burns, Robert; Pote, Dan; Berg, Kess; Choi, In Hag

    2011-01-01

    We measured NH₃ emissions from litter in broiler houses, during storage, and after land application and conducted a mass balance of N in poultry houses. Four state-of-the-art tunnel-ventilated broiler houses in northwest Arkansas were equipped with NH₃ sensors, anemometers, and data loggers to continuously record NH₃ concentrations and ventilation for 1 yr. Gaseous fluxes of NH₃, N₂O, CH₄, and CO₂ from litter were measured. Nitrogen (N) inputs and outputs were quantified. Ammonia emissions during storage and after land application were measured. Ammonia emissions during the flock averaged approximately 15.2 kg per day-house (equivalent to 28.3 g NH₃per bird marketed). Emissions between flocks equaled 9.09 g NH₃ per bird. Hence, in-house NH₃ emissions were 37.5 g NH₃ per bird, or 14.5 g kg(-1) bird marketed (50-d-old birds). The mass balance study showed N inputs for the year to the four houses totaled 71,340 kg N, with inputs from bedding, chicks, and feed equal to 303, 602, and 70,435 kg, respectively (equivalent to 0.60, 1.19, and 139.56 g N per bird). Nitrogen outputs totaled 70,396 kg N. Annual N output from birds marketed, NH₃ emissions, litter or cake, mortality, and NO₂ emissions was 39,485, 15,571, 14,464, 635, and 241 kg N, respectively (equivalent to 78.2, 30.8, 28.7, 1.3, and 0.5 g N per bird). The percent N recovery for the N mass balance study was 98.8%. Ammonia emissions from stacked litter during a 16-d storage period were 172 g Mg(-1) litter, which is equivalent to 0.18 g NH₃ per bird. Ammonia losses from poultry litter broadcast to pastures were 34 kg N ha (equivalent to 15% of total N applied or 7.91 g NH₃ per bird). When the litter was incorporated into the pasture using a new knifing technique, NH₃ losses were virtually zero. The total NH₃ emission factor for broilers measured in this study, which includes losses in-house, during storage, and after land application, was 45.6 g NH₃ per bird marketed. by the

  17. MUSCLE STRENGTH AND QUALITATIVE JUMP-LANDING DIFFERENCES IN MALE AND FEMALE MILITARY CADETS: THE JUMP-ACL STUDY.

    PubMed

    Beutler, Ai; de la Motte, Sj; Marshall, Sw; Padua, DA; Boden, Bp

    2009-01-01

    Recent studies have focused on gender differences in movement patterns as risk factors for ACL injury. Understanding intrinsic and extrinsic factors which contribute to movement patterns is critical to ACL injury prevention efforts. Isometric lower-extremity muscular strength, anthropometrics, and jump-landing technique were analyzed for 2,753 cadets (1,046 female, 1,707 male) from the U.S. Air Force, Military and Naval Academies. Jump-landings were evaluated using the Landing Error Scoring System (LESS), a valid qualitative movement screening tool. We hypothesized that distinct anthropometric factors (Q-angle, navicular drop, bodyweight) and muscle strength would predict poor jump-landing technique in males versus females, and that female cadets would have higher scores (more errors) on a qualitative movement screen (LESS) than males. Mean LESS scores were significantly higher in female (5.34 ± 1.51) versus male (4.65 ± 1.69) cadets (P<.001). Qualitative movement scores were analyzed using factor analyses, yielding five factors, or "patterns", contributing to poor landing technique. Females were significantly more likely to have poor technique due to landing with less hip and knee flexion at initial contact (P<.001), more knee valgus with wider landing stance (P<.001), and less flexion displacement over the entire landing (P<.001). Males were more likely to have poor technique due to landing toe-out (P<.001), with heels first, and with an asymmetric foot landing (P<.001). Many of the identified factor patterns have been previously proposed to contribute to ACL injury risk. However, univariate and multivariate analyses of muscular strength and anthropometric factors did not strongly predict LESS scores for either gender, suggesting that changing an athlete's alignment, BMI, or muscle strength may not directly improve his or her movement patterns.

  18. The Potential Radiative Forcing of Global Land Use and Land Cover Change Activities

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2014-12-01

    Given the expected increase in pressure on land resources over the next century, there is a need to understand the total impacts of activities associated with land use and land cover change (LULCC). Here we quantify these impacts using the radiative forcing metric, including forcings from changes in long-lived greenhouse gases, tropospheric ozone, aerosol effects, and land surface albedo. We estimate radiative forcings from the different agents for historical LULCC and for six future projections using simulations from the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. When all forcing agents are considered together we show that 45% (+30%, -20%) of the present-day (2010) anthropogenic radiative forcing can be attributed to LULCC. Changes in the emission of non-CO2 greenhouse gases and aerosols from LULCC enhance the total LULCC radiative forcing by a factor of 2 to 3 with respect to the forcing from CO2 alone. In contrast, the non-CO2 forcings from fossil fuel burning are roughly neutral, due largely to the negative (cooling) impact of aerosols from these sources. We partition the global LULCC radiative forcing into three major sources: direct modification of land cover (e.g. deforestation), agricultural activities, and fire regime changes. Contributions from deforestation and agriculture are roughly equal in the present day, while changes to wildfire activity impose a small negative forcing globally. In 2100, deforestation activities comprise the majority of the LULCC radiative forcing for all projections except one (Representative Concentration Pathway (RCP) 4.5). This suggests that realistic scenarios of future forest area change are essential for projecting the contribution of LULCC to climate change. However, the commonly used RCP land cover change projections all include decreases in global deforestation rates over the next 85 years. To place an upper bound on the potential

  19. Effects of land use on lake nutrients: The importance of scale, hydrologic connectivity, and region

    USGS Publications Warehouse

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate

    2015-01-01

    Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales.

  20. Consequences of land use and land cover change

    USGS Publications Warehouse

    Slonecker, E. Terrence; Barnes, Christopher; Karstensen, Krista; Milheim, Lesley E.; Roig-Silva, Coral M.

    2013-01-01

    The U.S. Geological Survey (USGS) Climate and Land Use Change Mission Area is one of seven USGS mission areas that focuses on making substantial scientific "...contributions to understanding how Earth systems interact, respond to, and cause global change". Using satellite and other remotely sensed data, USGS scientists monitor patterns of land cover change over space and time at regional, national, and global scales. These data are analyzed to understand the causes and consequences of changing land cover, such as economic impacts, effects on water quality and availability, the spread of invasive species, habitats and biodiversity, carbon fluctuations, and climate variability. USGS scientists are among the leaders in the study of land cover, which is a term that generally refers to the vegetation and artificial structures that cover the land surface. Examples of land cover include forests, grasslands, wetlands, water, crops, and buildings. Land use involves human activities that take place on the land. For example, "grass" is a land cover, whereas pasture and recreational parks are land uses that produce a cover of grass.

  1. Interactions between land use change and carbon cycle feedbacks: Land Use and Carbon Cycle Feedbacks

    DOE PAGES

    Mahowald, Natalie M.; Randerson, James T.; Lindsay, Keith; ...

    2017-01-23

    We explore the role of human land use and land cover change (LULCC) in modifying the terrestrial carbon budget in simulations forced by Representative Concentration Pathway 8.5, extended to year 2300 by using the Community Earth System Model, . Overall, conversion of land (e.g., from forest to croplands via deforestation) results in a model-estimated, cumulative carbon loss of 490 Pg C between 1850 and 2300, larger than the 230 Pg C loss of carbon caused by climate change over this same interval. The LULCC carbon loss is a combination of a direct loss at the time of conversion and anmore » indirect loss from the reduction of potential terrestrial carbon sinks. Approximately 40% of the carbon loss associated with LULCC in the simulations arises from direct human modification of the land surface; the remaining 60% is an indirect consequence of the loss of potential natural carbon sinks. Because of the multicentury carbon cycle legacy of current land use decisions, a globally averaged amplification factor of 2.6 must be applied to 2015 land use carbon losses to adjust for indirect effects. This estimate is 30% higher when considering the carbon cycle evolution after 2100. Most of the terrestrial uptake of anthropogenic carbon in the model occurs from the influence of rising atmospheric CO 2 on photosynthesis in trees, and thus, model-projected carbon feedbacks are especially sensitive to deforestation.« less

  2. Interactions between land use change and carbon cycle feedbacks: Land Use and Carbon Cycle Feedbacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, Natalie M.; Randerson, James T.; Lindsay, Keith

    We explore the role of human land use and land cover change (LULCC) in modifying the terrestrial carbon budget in simulations forced by Representative Concentration Pathway 8.5, extended to year 2300 by using the Community Earth System Model, . Overall, conversion of land (e.g., from forest to croplands via deforestation) results in a model-estimated, cumulative carbon loss of 490 Pg C between 1850 and 2300, larger than the 230 Pg C loss of carbon caused by climate change over this same interval. The LULCC carbon loss is a combination of a direct loss at the time of conversion and anmore » indirect loss from the reduction of potential terrestrial carbon sinks. Approximately 40% of the carbon loss associated with LULCC in the simulations arises from direct human modification of the land surface; the remaining 60% is an indirect consequence of the loss of potential natural carbon sinks. Because of the multicentury carbon cycle legacy of current land use decisions, a globally averaged amplification factor of 2.6 must be applied to 2015 land use carbon losses to adjust for indirect effects. This estimate is 30% higher when considering the carbon cycle evolution after 2100. Most of the terrestrial uptake of anthropogenic carbon in the model occurs from the influence of rising atmospheric CO 2 on photosynthesis in trees, and thus, model-projected carbon feedbacks are especially sensitive to deforestation.« less

  3. Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping

    PubMed Central

    2012-01-01

    Background Dengue, a mosquito-borne febrile viral disease, is found in tropical and sub-tropical regions and is now extending its range to temperate regions. The spread of the dengue viruses mainly depends on vector population (Aedes aegypti and Aedes albopictus), which is influenced by changing climatic conditions and various land-use/land-cover types. Spatial display of the relationship between dengue vector density and land-cover types is required to describe a near-future viral outbreak scenario. This study is aimed at exploring how land-cover types are linked to the behavior of dengue-transmitting mosquitoes. Methods Surveys were conducted in 92 villages of Phitsanulok Province Thailand. The sampling was conducted on three separate occasions in the months of March, May and July. Dengue indices, i.e. container index (C.I.), house index (H.I.) and Breteau index (B.I.) were used to map habitats conducible to dengue vector growth. Spatial epidemiological analysis using Bivariate Pearson’s correlation was conducted to evaluate the level of interdependence between larval density and land-use types. Factor analysis using principal component analysis (PCA) with varimax rotation was performed to ascertain the variance among land-use types. Furthermore, spatial ring method was used as to visualize spatially referenced, multivariate and temporal data in single information graphic. Results Results of dengue indices showed that the settlements around gasoline stations/workshops, in the vicinity of marsh/swamp and rice paddy appeared to be favorable habitat for dengue vector propagation at highly significant and positive correlation (p = 0.001) in the month of May. Settlements around the institutional areas were highly significant and positively correlated (p = 0.01) with H.I. in the month of March. Moreover, dengue indices in the month of March showed a significant and positive correlation (p <= 0.05) with deciduous forest. The H.I. of people living around horticulture

  4. Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping.

    PubMed

    Sarfraz, Muhammad Shahzad; Tripathi, Nitin K; Tipdecho, Taravudh; Thongbu, Thawisak; Kerdthong, Pornsuk; Souris, Marc

    2012-10-09

    Dengue, a mosquito-borne febrile viral disease, is found in tropical and sub-tropical regions and is now extending its range to temperate regions. The spread of the dengue viruses mainly depends on vector population (Aedes aegypti and Aedes albopictus), which is influenced by changing climatic conditions and various land-use/land-cover types. Spatial display of the relationship between dengue vector density and land-cover types is required to describe a near-future viral outbreak scenario. This study is aimed at exploring how land-cover types are linked to the behavior of dengue-transmitting mosquitoes. Surveys were conducted in 92 villages of Phitsanulok Province Thailand. The sampling was conducted on three separate occasions in the months of March, May and July. Dengue indices, i.e. container index (C.I.), house index (H.I.) and Breteau index (B.I.) were used to map habitats conducible to dengue vector growth. Spatial epidemiological analysis using Bivariate Pearson's correlation was conducted to evaluate the level of interdependence between larval density and land-use types. Factor analysis using principal component analysis (PCA) with varimax rotation was performed to ascertain the variance among land-use types. Furthermore, spatial ring method was used as to visualize spatially referenced, multivariate and temporal data in single information graphic. Results of dengue indices showed that the settlements around gasoline stations/workshops, in the vicinity of marsh/swamp and rice paddy appeared to be favorable habitat for dengue vector propagation at highly significant and positive correlation (p = 0.001) in the month of May. Settlements around the institutional areas were highly significant and positively correlated (p = 0.01) with H.I. in the month of March. Moreover, dengue indices in the month of March showed a significant and positive correlation (p <= 0.05) with deciduous forest. The H.I. of people living around horticulture land were significantly and

  5. Correlation of Spatio-Temporal Contaminant Distribution, Land Use, and Hydrogeological Factors in the Karst Aquifers of Northern Puerto Rico

    NASA Astrophysics Data System (ADS)

    Torres Torres, N. I.; Padilla, I. Y.

    2015-12-01

    Karst aquifers are characterized by caves, springs, and sinkholes, and typified by interconnected fissures, fractures and conduits. These characteristics make these aquifers highly productive, and vulnerable to contamination. Previous studies in the northern karst aquifers of Puerto Rico have shown significant distribution of contaminants, including volatile organic compounds, phthalates and other contaminants of emerging concern, beyond demarked sources of contamination. This study develops spatial-temporal distributions of phthalate contaminants in the karst system of northern Puerto Rico and assesses statistical correlations between hydrogeologic factors and groundwater contamination with phthalates. Geographic Information Systems (GIS) tools and technologies, and statistical models are applied to attain these objectives. Results show that there is an extensive contamination with phthalates that varies with time. Contamination is present in the confined and shallow aquifers. Di-(2-ethylhexyl) phthalate (DEHP) is the most detected contaminant (20.6% of the sites). Diethyl phthalate and and dibutyl phthalate are also detected in 6.7% and 8.24% of the sites, respectively. Phthalates detected as mixtures components are significantly detected in areas of high urban and industrial development. They are also detected in areas within 5 miles of superfund sites and landfills. The results indicate that phthalate contamination is highly related to land use. Statistical models show that the hydraulic conductivity of the aquifers, sinkholes density, and time are significantly related to the presence of phthalates in groundwater. The extensive spatio-temporal contamination suggests that contaminants can persist in the environment for long periods of time, and that land use and hydrogeological factors are important factors contributing to the presence of emerging contaminants in karst systems.

  6. Muscle Strength and Qualitative Jump-Landing Differences in Male and Female Military Cadets: The Jump-ACL Study

    PubMed Central

    Beutler, Anthony I.; de la Motte, Sarah J.; Marshall, Stephen W.; Padua, Darin A.; Boden, Barry P.

    2009-01-01

    Recent studies have focused on gender differences in movement patterns as risk factors for ACL injury. Understanding intrinsic and extrinsic factors which contribute to movement patterns is critical to ACL injury prevention efforts. Isometric lower- extremity muscular strength, anthropometrics, and jump-landing technique were analyzed for 2,753 cadets (1,046 female, 1,707 male) from the U.S. Air Force, Military and Naval Academies. Jump- landings were evaluated using the Landing Error Scoring System (LESS), a valid qualitative movement screening tool. We hypothesized that distinct anthropometric factors (Q-angle, navicular drop, bodyweight) and muscle strength would predict poor jump-landing technique in males versus females, and that female cadets would have higher scores (more errors) on a qualitative movement screen (LESS) than males. Mean LESS scores were significantly higher in female (5.34 ± 1.51) versus male (4.65 ± 1.69) cadets (p < 0.001). Qualitative movement scores were analyzed using factor analyses, yielding five factors, or “patterns”, contributing to poor landing technique. Females were significantly more likely to have poor technique due to landing with less hip and knee flexion at initial contact (p < 0.001), more knee valgus with wider landing stance (p < 0. 001), and less flexion displacement over the entire landing (p < 0.001). Males were more likely to have poor technique due to landing toe-out (p < 0.001), with heels first, and with an asymmetric foot landing (p < 0.001). Many of the identified factor patterns have been previously proposed to contribute to ACL injury risk. However, univariate and multivariate analyses of muscular strength and anthropometric factors did not strongly predict LESS scores for either gender, suggesting that changing an athlete’s alignment, BMI, or muscle strength may not directly improve his or her movement patterns. Key points Important differences in male and female landing technique can be captured using

  7. Response of dissolved trace metals to land use/land cover and their source apportionment using a receptor model in a subtropic river, China.

    PubMed

    Li, Siyue; Zhang, Quanfa

    2011-06-15

    Water samples were collected for determination of dissolved trace metals in 56 sampling sites throughout the upper Han River, China. Multivariate statistical analyses including correlation analysis, stepwise multiple linear regression models, and principal component and factor analysis (PCA/FA) were employed to examine the land use influences on trace metals, and a receptor model of factor analysis-multiple linear regression (FA-MLR) was used for source identification/apportionment of anthropogenic heavy metals in the surface water of the River. Our results revealed that land use was an important factor in water metals in the snow melt flow period and land use in the riparian zone was not a better predictor of metals than land use away from the river. Urbanization in a watershed and vegetation along river networks could better explain metals, and agriculture, regardless of its relative location, however slightly explained metal variables in the upper Han River. FA-MLR analysis identified five source types of metals, and mining, fossil fuel combustion, and vehicle exhaust were the dominant pollutions in the surface waters. The results demonstrated great impacts of human activities on metal concentrations in the subtropical river of China. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. West Africa land use and land cover time series

    USGS Publications Warehouse

    Cotillon, Suzanne E.

    2017-02-16

    Started in 1999, the West Africa Land Use Dynamics project represents an effort to map land use and land cover, characterize the trends in time and space, and understand their effects on the environment across West Africa. The outcome of the West Africa Land Use Dynamics project is the production of a three-time period (1975, 2000, and 2013) land use and land cover dataset for the Sub-Saharan region of West Africa, including the Cabo Verde archipelago. The West Africa Land Use Land Cover Time Series dataset offers a unique basis for characterizing and analyzing land changes across the region, systematically and at an unprecedented level of detail.

  9. Methodology of Prioritization of Land Consolidation and Land Exchange Interventions

    NASA Astrophysics Data System (ADS)

    Len, Przemyslaw

    2017-12-01

    Land consolidation is one of the basic development activities in rural areas intended to comprehensively improve the organization of agricultural production space. Merging and exchange of parcels are aimed at transforming a fragmented and “checkerboarded” landscape containing excessively long fields into plots as large and regular as possible. Land consolidation decisions are based on detailed analyses of relevant parameters. Properly carried out land consolidation creates an opportunity to organize agricultural holdings in an appropriate way, and, at the same time, to preserve the natural environment. Consolidation provides appropriate conditions for sustainable and multi-functional rural development by limiting the harmful influence of intensive agriculture on the natural environment. It also leads to an improvement in living and working conditions for inhabitants of rural areas. The analysis conducted in this study was aimed at singling out villages in the commune of Paradyż in which consolidation of arable land was required most urgently. Factors describing the investigated villages were selected on the basis of a comprehensive analysis of the natural, social, economic and financial conditions found in those localities. The analysis was conducted using data obtained from the Land and Property Register of the District Office in Opoczno and data from the Office of the Commune of Paradyż. The study allowed us to determine which areas required land consolidation and exchange interventions, thus becoming a basis for applying for financial resources necessary to reach the aforementioned goal. A special role in empirical studies, especially comparative studies, of human activity is played by taxonomic methods, which involve linear ordering of items according to a synthetic indicator characterizing those items, which is calculated on the basis of a set of shared features. These methods are widely used in econometrics and socio-economic research to create all

  10. Assessing land-use history for reporting on cropland dynamics - A case study using the Land-Parcel Identification System in Ireland

    NASA Astrophysics Data System (ADS)

    Zimmermann, Jesko; González, Ainhoa; Jones, Michael; O'Brien, Phillip; Stout, Jane C.; Green, Stuart

    2016-04-01

    In developed countries, cropland and grassland conversions and management can be a major factor in Land Use and Land Use Change (LULUC) related Greenhouse Gas (GHG) dynamics. Depending on land use, management and factors such as soil properties land can either act as source or sink for GHGs. Currently many countries depend on national statistics combined with socio-economic modelling to assess current land use as well as inter-annual changes. This potentially introduces a bias as it neither provides information on direct land- use change trajectories nor spatially explicit information to assess the environmental context. In order to improve reporting countries are shifting towards high resolution spatial datasets. In this case study, we used the Land Parcel Identification System (LPIS), a pan-European geographical database developed to assist farmers and authorities with agricultural subsidies, to analyse cropland dynamics in Ireland. The database offer high spatial resolution and is updated annually. Generally Ireland is considered grassland dominated with 90 % of its agricultural area under permanent grassland, and only a small area dedicated to cropland. However an in-depth analysis of the LPIS for the years 2000 to 2012 showed strong underlying dynamics. While the annual area reported as cropland remained relatively constant at 3752.3 ± 542.3 km2, the area of permanent cropland was only 1251.9 km2. Reversely, the area that was reported as cropland for at least one year during the timeframe was 7373.4 km2, revealing a significantly higher area with cropland history than annual statistics would suggest. Furthermore, the analysis showed that one quarter of the land converting from or to cropland will return to the previous land use within a year. To demonstrate potential policy impact, we assessed cropland/grassland dynamics from the 2008 to 2012 commitment period using (a) annual statistics, and (b) data including land use history derived from LPIS. Under

  11. Historical trends and projections of land use for the South-Central United States.

    Treesearch

    SoEun Ahn; Andrew J. Plantinga; Ralph J. Alig

    2000-01-01

    This report presents historical trends and future projections of forest, agricultural, and urban and other land uses for the South-Central United States. A land use share model is used to investigate the relation between the areas of land in alternative uses and economic and demographic factors influencing land use decisions. Two different versions of the empirical...

  12. Influence of land use configurations on river sediment pollution.

    PubMed

    Liu, An; Duodu, Godfred O; Goonetilleke, Ashantha; Ayoko, Godwin A

    2017-10-01

    Land use is an influential factor in river sediment pollution. However, land use type alone is found to be inadequate to explain pollutant contributions to the aquatic environment since configurations within the same land use type such as land cover and development layout could also exert an important influence. Consequently, this paper discusses a research study, which consisted of an in-depth investigation into the relationship between land use type and river sediment pollution by introducing robust parameters that represent configurations within the primary land use types. Urban water pollutants, namely, nutrients, total carbon, polycyclic aromatic hydrocarbons and metals were investigated in the study. The outcomes show that higher patch density and more diverse land use development forms contribute relatively greater pollutant loads to receiving waters and consequently leading to higher sediment pollution. The study outcomes are expected to contribute essential knowledge for creating robust management strategies to minimise waterway pollution and thereby protect the health of aquatic ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mapping Forest Inventory and Analysis forest land use: timberland, reserved forest land, and other forest land

    Treesearch

    Mark D. Nelson; John Vissage

    2007-01-01

    The Forest Inventory and Analysis (FIA) program produces area estimates of forest land use within three subcategories: timberland, reserved forest land, and other forest land. Mapping these subcategories of forest land requires the ability to spatially distinguish productive from unproductive land, and reserved from nonreserved land. FIA field data were spatially...

  14. Using Field Experiences to Study the Land-Use Legacy

    ERIC Educational Resources Information Center

    Brady, Joseph K.; Brady, Jody C.

    2009-01-01

    The current rapid decline of Earth's biodiversity represents an enormous crisis for humanity. Among the factors producing declines in biodiversity, changes in land use may have the greatest effect in the near term. It is well known that land-use history produces strong, lingering effects on biodiversity. This phenomenon has become known as the…

  15. Land change variability and human-environment dynamics in the United States Great Plains

    USGS Publications Warehouse

    Drummond, M.A.; Auch, Roger F.; Karstensen, K.A.; Sayler, K. L.; Taylor, Janis L.; Loveland, Thomas R.

    2012-01-01

    Land use and land cover changes have complex linkages to climate variability and change, biophysical resources, and socioeconomic driving forces. To assess these land change dynamics and their causes in the Great Plains, we compare and contrast contemporary changes across 16 ecoregions using Landsat satellite data and statistical analysis. Large-area change analysis of agricultural regions is often hampered by change detection error and the tendency for land conversions to occur at the local-scale. To facilitate a regional-scale analysis, a statistical sampling design of randomly selected 10 km × 10 km blocks is used to efficiently identify the types and rates of land conversions for four time intervals between 1973 and 2000, stratified by relatively homogenous ecoregions. Nearly 8% of the overall Great Plains region underwent land-use and land-cover change during the study period, with a substantial amount of ecoregion variability that ranged from less than 2% to greater than 13%. Agricultural land cover declined by more than 2% overall, with variability contingent on the differential characteristics of regional human–environment systems. A large part of the Great Plains is in relatively stable land cover. However, other land systems with significant biophysical and climate limitations for agriculture have high rates of land change when pushed by economic, policy, technology, or climate forcing factors. The results indicate the regionally based potential for land cover to persist or fluctuate as land uses are adapted to spatially and temporally variable forcing factors.

  16. Effects of Land Use on Lake Nutrients: The Importance of Scale, Hydrologic Connectivity, and Region

    PubMed Central

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate

    2015-01-01

    Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales. PMID:26267813

  17. Stream fish occurrence in response to impervious cover, historic land use, and hydrogeomorphic factors

    USGS Publications Warehouse

    Wenger, Seth J.; Peterson, James T.; Freeman, Mary C.; Freeman, Byron J.; Homans, D. David

    2008-01-01

    We evaluated competing models explaining the occurrence of five stream fishes in an urbanizing watershed to determine the relative importance of (a) impervious surface and other indicators of current land use, (b) historic land use (e.g., agriculture, impoundments), and (c) hydrogeomorphic characteristics (e.g., stream size, elevation, geology). For four of five species, the best-supported models were those that included both current effective impervious cover and historic land use predictor variables, although models with only effective impervious cover were equally well supported for two of those species. For the best-supported models for three species, occurrence probability was predicted to approach zero at levels of development equivalent to about 2%–4% effective impervious cover in the surrounding region. Data were drawn from 357 fish collections made in the Etowah River basin, Georgia, USA, between 1998 and 2003 and analyzed using hierarchical logistic regression accounting for imperfect species detection. This is the first study we know of to examine the response of individual fish species to both increasing impervious cover and historic land use. Such individual species assessments will be increasingly necessary to guide policies for managing urban effects and preventing extirpations of sensitive species.

  18. Coupled hydrologic and land use change models for decision making on land and water resources in the Upper Blue Nile basin

    NASA Astrophysics Data System (ADS)

    Yalew, Seleshi; van der Zaag, Pieter; Mul, Marloes; Uhlenbrook, Stefan; Teferi, Ermias; van Griensven, Ann; van der Kwast, Johannes

    2013-04-01

    Hydrology of a basin, alongside climate change, is well documented to impact and to be impacted by land use/land cover change processes. The need to understand the impacts of hydrology on land use change and vice- versa cannot be overstated especially in basins such as the Upper Blue Nile in Ethiopia, where the vast majority of farmers depend on rain-fed agriculture. A slight fluctuation in rainy seasons or an increase or decrease in magnitude of precipitation can easily trigger drought or flooding. On the other hand, ever growing population and emerging economic development, among others, is likely to continually alter land use/land cover change, thereby affecting hydrological processes. With the intention of identifying and analyzing interactions and future scenarios of the hydrology and land use/land cover, we carried out a case study on a meso-scale catchment, in the Upper Blue Nile basin. A land use model using SITE (SImulation of Terrestrial Environments) was built for analyzing land use trends from aerial land cover photographs of 1957 and simulate until 2009 based on socio-economic as well as biophysical factors. Major land use drivers in the catchment were identified and used as input to the land use model. Separate land use maps were produced using Landsat images of 1972, 1986, 1994 and 2009 for historical calibration of the land use model. By the same token, a hydrological model for the same catchment was built using the SWAT (Soil and Water Assessment Tool) model. After calibration of the two independent models, they were loosely coupled for analyzing the changes in either of the models and impacts on the other. Among other details, the coupled model performed better in identifying limiting factors from both the hydrology as well as from the land use perspectives. For instance, the simulation of the uncoupled land use model alone (without inputs from SWAT on the water budget of each land use parcel) continually considered a land use type such as a wet

  19. Land-Grant University-Industry Relationships in Biotechnology: A Comparison with the Non-Land-Grant Research Universities.

    ERIC Educational Resources Information Center

    Curry, James; Kenney, Martin

    1990-01-01

    Presents study of industrial involvement in biotechnology research, comparing faculty surveys from land-grant colleges of agriculture and nonagricultural research universities. Agricultural biotechnologists report higher industrial involvement and more optimism about it. Industrial funding levels shown as significant factor in activities and…

  20. Does surface roughness dominate biophysical forcing of land use and land cover change in the eastern United States?

    NASA Astrophysics Data System (ADS)

    Burakowski, E. A.; Tawfik, A. B.; Ouimette, A.; Lepine, L. C.; Ollinger, S. V.; Bonan, G. B.; Zarzycki, C. M.; Novick, K. A.

    2016-12-01

    Changes in land use, land cover, or both promote changes in surface temperature that can amplify or dampen long-term trends driven by natural and anthropogenic climate change by modifying the surface energy budget, primarily through differences in albedo, evapotranspiration, and aerodynamic roughness. Recent advances in variable resolution global models provide the tools necessary to investigate local and global impacts of land use and land cover change by embedding a high-resolution grid over areas of interest in a seamless and computationally efficient manner. Here, we used two eddy covariance tower clusters in the Eastern US (University of New Hampshire UNH and Duke Forest) to validate simulation of surface energy fluxes and properties by the uncoupled Community Land Model (PTCLM4.5) and coupled land-atmosphere Variable-Resolution Community Earth System Model (VR-CESM1.3). Surface energy fluxes and properties are generally well captured by the models for grassland sites, however forested sites tend to underestimate latent heat and overestimate sensible heat flux. Surface roughness emerged as the dominant biophysical forcing factor affecting surface temperature in the eastern United States, generally leading to warmer nighttime temperatures and cooler daytime temperatures. However, the sign and magnitude of the roughness effect on surface temperature was highly sensitive to the calculation of aerodynamic resistance to heat transfer.

  1. Assessing Ecological Impacts According to Land Use Change

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Lee, D. K.; Jeong, W.; Jeong, S. G.; Jin, Y.

    2015-12-01

    Land use patterns have changed by human activities, and it has affected the structure and dynamics of ecosystems. In particular, the conversion of forests into other land use has caused environmental degradation and loss of biodiversity. The evaluation of species and their habitat can be preferentially considered to prevent or minimize the adverse effects of land use change. The objective of study is identifying the impacts of environmental conditions on forest ecosystems by comparing ecological changes with time series spatial data. Species distribution models were developed for diverse species with presence data and time-series environmental variables, which allowed comparison of the habitat suitability and connectivity. Habitat suitability and connectivity were used to estimate impacts of forest ecosystems due to land use change. Our result suggested that the size and degree of ecological impacts are were different depending on the properties of land use change. The elements and species were greatly affected by the land use change according to the results. This study suggested that a methodology for measuring the interference of land use change in species habitat and connectivity. Furthermore, it will help to conserve and manage forest by identifying priority conservation areas with influence factor and scale.

  2. Forests and competing land uses in Kenya

    NASA Astrophysics Data System (ADS)

    Allaway, James; Cox, Pamela M. J.

    1989-03-01

    Indigenous forests in Kenya, as in other developing countries, are under heavy pressure from competing agricultural land uses and from unsustainable cutting. The problem in Kenya is compounded by high population growth rates and an agriculturally based economy, which, even with efforts to control birth rates and industrialize, will persist into the next century. Both ecological and economic consequences of these pressures need to be considered in land-use decision making for land and forest management to be effective. This paper presents one way to combine ecological and economic considerations. The status of principal forest areas in Kenya is summarized and competing land uses compared on the basis of ecological functions and economic analysis. Replacement uses do not match the ecological functions of forest, although established stands of tree crops (forest plantations, fuel wood, tea) can have roughly comparable effects on soil and water resources. Indigenous forests have high, although difficult to estimate, economic benefits from tourism and protection of downstream agricultural productivity. Economic returns from competing land uses range widely, with tea having the highest and fuel wood plantations having returns comparable to some annual crops and dairying. Consideration of ecological and economic factors together suggests some trade-offs for improving land allocation decisions and several management opportunities for increasing benefits or reducing costs from particular land uses. The evaluation also suggests a general strategy for forest land management in Kenya.

  3. Spatially Explicit Landscape-Level Ecological Risks Induced by Land Use and Land Cover Change in a National Ecologically Representative Region in China.

    PubMed

    Gong, Jian; Yang, Jianxin; Tang, Wenwu

    2015-11-09

    Land use and land cover change is driven by multiple influential factors from environmental and social dimensions in a land system. Land use practices of human decision-makers modify the landscape of the land system, possibly leading to landscape fragmentation, biodiversity loss, or environmental pollution-severe environmental or ecological impacts. While landscape-level ecological risk assessment supports the evaluation of these impacts, investigations on how these ecological risks induced by land use practices change over space and time in response to alternative policy intervention remain inadequate. In this article, we conducted spatially explicit landscape ecological risk analysis in Ezhou City, China. Our study area is a national ecologically representative region experiencing drastic land use and land cover change, and is regulated by multiple policies represented by farmland protection, ecological conservation, and urban development. We employed landscape metrics to consider the influence of potential landscape-level disturbance for the evaluation of landscape ecological risks. Using spatiotemporal simulation, we designed scenarios to examine spatiotemporal patterns in landscape ecological risks in response to policy intervention. Our study demonstrated that spatially explicit landscape ecological risk analysis combined with simulation-driven scenario analysis is of particular importance for guiding the sustainable development of ecologically vulnerable land systems.

  4. Spatially Explicit Landscape-Level Ecological Risks Induced by Land Use and Land Cover Change in a National Ecologically Representative Region in China

    PubMed Central

    Gong, Jian; Yang, Jianxin; Tang, Wenwu

    2015-01-01

    Land use and land cover change is driven by multiple influential factors from environmental and social dimensions in a land system. Land use practices of human decision-makers modify the landscape of the land system, possibly leading to landscape fragmentation, biodiversity loss, or environmental pollution—severe environmental or ecological impacts. While landscape-level ecological risk assessment supports the evaluation of these impacts, investigations on how these ecological risks induced by land use practices change over space and time in response to alternative policy intervention remain inadequate. In this article, we conducted spatially explicit landscape ecological risk analysis in Ezhou City, China. Our study area is a national ecologically representative region experiencing drastic land use and land cover change, and is regulated by multiple policies represented by farmland protection, ecological conservation, and urban development. We employed landscape metrics to consider the influence of potential landscape-level disturbance for the evaluation of landscape ecological risks. Using spatiotemporal simulation, we designed scenarios to examine spatiotemporal patterns in landscape ecological risks in response to policy intervention. Our study demonstrated that spatially explicit landscape ecological risk analysis combined with simulation-driven scenario analysis is of particular importance for guiding the sustainable development of ecologically vulnerable land systems. PMID:26569270

  5. Inverse isolation of dissolved inorganic nitrogen yield for individual land-uses from mosaic land-use patterns within a watershed

    NASA Astrophysics Data System (ADS)

    Shih, Y.-T.; Lee, T.-Y.; Huang, J.-C.; Kao, S.-J.; Liu, K.-K.; Chang, F.-J.

    2015-01-01

    This study combines the observed riverine DIN (dissolved inorganic nitrogen) export and the controlling factors (land-use, population and discharge) to inversely estimate the effective DIN yield factors for individual land-use and DIN per capita loading. A total of 16 sub-catchments, with different land-use compositions on the Danshui River of Taiwan, were used in this study. Observed riverine DIN concentrations and yields varied from 20-450 μM and 400-10 000 kg N km-2 yr-1 corresponding to the increase of urbanization gradient (e.g. building and population). Meanwhile, the transport behaviors changed from hydrological enhancement to dilution with increasing urbanization as well. Our method shows that the DIN yield factors, independent of discharge, are 12.7, 63.9, and 1381.0 μM, for forest, agriculture, and building, respectively, which equals to 444.5, 2236.5, 48 335 kg N km-2 yr-1 at the given annual runoff of 2500 mm. The agriculture DIN yield only accounts for 10% of fertilizer application indicating the complicated N cascade and possible over fertilization. The DIN per capita loading (~0.49 kg N capita-1 yr-1) which is lower than the documented human N emission (1.6-5.5 kg N capita-1 yr-1) can be regarded as an effective export coefficient after treatment or retention. A conducted scenario experiment supports the observations demonstrating the capability for assessment. We therefore, can extrapolate all possible combinations of land-use, discharge, and population density for evaluation. This can provide a strong basis for watershed management and supplementary estimation for regional to global study.

  6. Meta-Analysis of Land Use / Land Cover Change Factors in the Conterminous US and Prediction of Potential Working Timberlands in the US South from FIA Inventory Plots and NLCD Cover Maps

    NASA Astrophysics Data System (ADS)

    Jeuck, James A.

    This dissertation consists of research projects related to forest land use / land cover (LULC): (1) factors predicting LULC change and (2) methodology to predict particular forest use, or "potential working timberland" (PWT), from current forms of land data. The first project resulted in a published paper, a meta-analysis of 64 econometric models from 47 studies predicting forest land use changes. The response variables, representing some form of forest land change, were organized into four groups: forest conversion to agriculture (F2A), forestland to development (F2D), forestland to non-forested (F2NF) and undeveloped (including forestland) to developed (U2D) land. Over 250 independent econometric variables were identified, from 21 F2A models, 21 F2D models, 12 F2NF models, and 10 U2D models. These variables were organized into a hierarchy of 119 independent variable groups, 15 categories, and 4 econometric drivers suitable for conducting simple vote count statistics. Vote counts were summarized at the independent variable group level and formed into ratios estimating the predictive success of each variable group. Two ratio estimates were developed based on (1) proportion of times independent variables successfully achieved statistical significance (p ≤0.10), and (2) proportion of times independent variables successfully met the original researchers'expectations. In F2D models, popular independent variables such as population, income, and urban proximity often achieved statistical significance. In F2A models, popular independent variables such as forest and agricultural rents and costs, governmental programs, and site quality often achieved statistical significance. In U2D models, successful independent variables included urban rents and costs, zoning issues concerning forestland loss, site quality, urban proximity, population, and income. F2NF models high success variables were found to be agricultural rents, site quality, population, and income. This meta

  7. Data Acquisition for Land Subsidence Control

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Balke, K.

    2009-12-01

    For controlling land subsidence caused by groundwater over-exploitation, loading of engineered structures, mining and other anthropogenic activities in this fast changing world, a large variety of different data of various scales of concerning areas are needed for scientific study and administrative operational purposes. The economical, social and environmental impacts of anthropogenic land subsidence have long been recognized by many scientific institutions and management authorities based on results of monitoring and analysis at an interdisciplinary level. The land subsidence information systems composed of the surface and subsurface monitoring nets (monitoring and development wells, GPS stations and other facilities) and local data processing centers as a system management tool in Shanghai City was started with the use of GPS technology to monitor land subsidence in 1998. After years of experiences with a set of initiatives by adopting adequate countermeasures, the particular attention given to new improved methodologies to monitor and model the process of land subsidence in a simple and timely way, this is going to be promoted in the whole Yangtze River Delta region in China, where land subsidence expands in the entire region of urban cluster. The Delta land subsidence monitoring network construction aims to establish an efficient and coordinated water resource management system. The land subsidence monitoring network records "living history" of land subsidence, produces detailed scheduled reports and environmental impact statements. For the different areas with local factors and site characteristics, parallel packages need to be designed for predicting changes, land sensitivity and uncertainty analysis, especially for the risk analysis in the rapid growth of megacities and urban areas. In such cases, the new models with new types of local data and the new ways of data acquisition provide the best information for the decision makers for their mitigating

  8. Decision analysis and risk models for land development affecting infrastructure systems.

    PubMed

    Thekdi, Shital A; Lambert, James H

    2012-07-01

    Coordination and layering of models to identify risks in complex systems such as large-scale infrastructure of energy, water, and transportation is of current interest across application domains. Such infrastructures are increasingly vulnerable to adjacent commercial and residential land development. Land development can compromise the performance of essential infrastructure systems and increase the costs of maintaining or increasing performance. A risk-informed approach to this topic would be useful to avoid surprise, regret, and the need for costly remedies. This article develops a layering and coordination of models for risk management of land development affecting infrastructure systems. The layers are: system identification, expert elicitation, predictive modeling, comparison of investment alternatives, and implications of current decisions for future options. The modeling layers share a focus on observable factors that most contribute to volatility of land development and land use. The relevant data and expert evidence include current and forecasted growth in population and employment, conservation and preservation rules, land topography and geometries, real estate assessments, market and economic conditions, and other factors. The approach integrates to a decision framework of strategic considerations based on assessing risk, cost, and opportunity in order to prioritize needs and potential remedies that mitigate impacts of land development to the infrastructure systems. The approach is demonstrated for a 5,700-mile multimodal transportation system adjacent to 60,000 tracts of potential land development. © 2011 Society for Risk Analysis.

  9. A GIS-based hedonic price model for agricultural land

    NASA Astrophysics Data System (ADS)

    Demetriou, Demetris

    2015-06-01

    Land consolidation is a very effective land management planning approach that aims towards rural/agricultural sustainable development. Land reallocation which involves land tenure restructuring is the most important, complex and time consuming component of land consolidation. Land reallocation relies on land valuation since its fundamental principle provides that after consolidation, each landowner shall be granted a property of an aggregate value that is approximately the same as the value of the property owned prior to consolidation. Therefore, land value is the crucial factor for the land reallocation process and hence for the success and acceptance of the final land consolidation plan. Land valuation is a process of assigning values to all parcels (and its contents) and it is usually carried out by an ad-hoc committee. However, the process faces some problems such as it is time consuming hence costly, outcomes may present inconsistency since it is carried out manually and empirically without employing systematic analytical tools and in particular spatial analysis tools and techniques such as statistical/mathematical. A solution to these problems can be the employment of mass appraisal land valuation methods using automated valuation models (AVM) based on international standards. In this context, this paper presents a spatial based linear hedonic price model which has been developed and tested in a case study land consolidation area in Cyprus. Results showed that the AVM is capable to produce acceptable in terms of accuracy and reliability land values and to reduce time hence cost required by around 80%.

  10. Land quality evaluation based on sustainable development for gully erosion control and land consolidation project of Yan’ an, China

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Han, Jichang; Zhang, Yang; Du, Yichun; Bai, Qingjun

    2018-01-01

    Based on the three land consolidation projects in Yan’an region, the differentiation of the soil capacity, texture, available nutrients, pH etc before and after land consolidation were analyzed, and a comprehensive evaluation of soil quality before and after consolidation was done in this study. The results show that: (1) After the gully-land consolidation, the soil capacity, nitrogen, available P, available K and conductivity are increased, while the organic matter and pH are decreased. With one-year’s cultivation, the soil capacity decreased and the organic matter increased. After the slope-land consolidation, the soil physical and chemical properties have similar trends with the gullies, but the change is more significant. (2)No matter for gully or slope, the soil quality declines where the land just get consolidated, and the slope has more significant declining. With one-year’s cultivation, the soil quality of the gully has more rapid recovery with one grade uplift. (3) The correlation coefficient method was used to give a comprehensive evaluation of the soil quality, to considerate of the changes of the coefficients of the factors and the evaluation object. The evaluation can well reflect the actual situation of the soil quality, give reference to the soil quality evaluation for consolidated land, and the results may provide basis for the performance evaluation of the Yan’an land consolidation projects.

  11. Land use/land cover change and their effects on landscape patterns in the Yanqi Basin, Xinjiang (China).

    PubMed

    Wang, Shuixian; Wang, Shengli

    2013-12-01

    Human modification of land use and land cover change (LUCC) drives the change of landscape patterns and limits the availability of products and services for human and livestock. LUCC can undermine environmental health. Thus, this study aimed to develop an understanding of LUCC in the Yanqi Basin, Xinjiang, China, an arid area experiencing dramatic water and land resource use. A time series of satellite images (1964, 1973, 1989, 1999, and 2009) were used to calculate the index of landscape patterns to study the processes involved in changes to land uses and landscape patterns and the influence of this changes on landscape patterns. The results show that land uses in the Yanqi Basin have changed dramatically since 1964 with grassland being mainly converted to cropland. Landscape fragmentation and diversity have decreased in the study area, although landscape fragmentation increased from 1964 to 1999 and then decreased by 2009. The index of landscape diversity decreased from 1.64 in 1964 to 0.71 in 2009. The heterogeneity and complexity of the landscape increased during this period. In contrast, the index of dominance decreased from 0.85 in 1964 to 0.83 in 2009. Land use change drives landscape patterns of the development of the watershed toward diversity and a fragmented structure. Population growth, economic development, and industrial policies were the dominant driving forces behind LUCC in the Yanqi Basin. Sustainable use of land resources is a significant factor in maintaining economic development and environmental protection in this arid inland river basin.

  12. Selection and Characterization of Landing Sites for Chandrayaan-2 Lander

    NASA Astrophysics Data System (ADS)

    Gopala Krishna, Barla; Amitabh, Amitabh; Srinivasan, T. P.; Karidhal, Ritu; Nagesh, G.; Manjusha, N.

    2016-07-01

    Indian Space Research Organisation has planned the second mission to moon known as Chandrayaan-2, which consists of an Orbiter, a Lander and a Rover. This will be the first soft landing mission of India on lunar surface. The Orbiter, Lander and Rover individually will carry scientific payloads that enhance the scientific objectives of Chandrayaan-2. The Lander soft lands on the lunar surface and subsequently Lander & Rover will carry on with the payload activities on the moon surface. Landing Site identification based on the scientific and engineering constrains of lander plays an important role in success of a mission. The Lander poses some constraints because of its engineering design for the selection of the landing site and on the other hand the landing site / region imparts some constrain on the Lander. The various constraints that have to be considered for the study of the landing site are Local slope, Sun illumination during mission life, Radio communication with the Earth, Global slope towards equator, Boulders size, Crater density and boulder distribution. This paper describes the characterization activities of the different landing locations which have been studied for Chandrayaan-2 Lander. The sites have been studied both in the South Polar and North Polar regions of the moon on the near side. The Engineering Constraints at the sites due to the Lander, Factors that affect mission life (i.e. illumination at the location), Factors influencing communication to earth (i.e. RF visibility) & Shadow movements have been studied at these locations and zones that are favourable for landing have been short listed. This paper gives methodology of these studies along with the results of the characteristics of all the sites and the recommendations for further action in finalizing the landing area.

  13. Remote sensing-based characterization of land management and biophysical factors in grassland

    NASA Astrophysics Data System (ADS)

    Ramspott, Matthew E.

    Land use and management are important factors influencing ecosystem functions, including the cycling of carbon (C) in plant/soil systems. Information about land use and management, needed to prioritize conservation efforts in managed grasslands of the Central Great Plains, can be obtained using remote sensing techniques, but this process is complex in grasslands because of the subtle class differences, large within-class variability, and complex seasonal changes in canopy spectral characteristics. In this study, time-series of remotely sensed data were used to derive vegetation index (VI) and image texture measures. The utility of these measures for classification of five managed grassland types was assessed using ANOVA and stepwise discriminant analysis methods. Image texture was found to improve the accuracy of classification by ˜13% over the use of VI alone. The optimal timing of data acquisition for classification with VI was found to be in April/May and in October; optimal timing for acquisition of texture was in June. Remotely sensed VI have been commonly used to model photosynthetic capacity and net primary production in ecosystems. Since VI theoretically assume canopy conditions of uniform geometry and greenness, seasonally variable management-induced changes in the grassland canopy can potentially influence the VI response and therefore the strength and stability of the model. This study examined the seasonal and inter-annual stability of the relationship between VI and photosynthetic capacity under both idealized and realized conditions. With regression analysis, the relationship between VI and field-measured estimates of photosynthetic capacity was established and evaluated. This work identified two types of management activity strongly influencing the stability of this relationship: (1) Conservation management, in which the vegetation is neither hayed nor grazed, results in accumulation of senescent canopy material and leads to lower than expected VI

  14. The Impacts of Various Environments Factors and Adaptive Management Strategies on Food Crops in the 21st Century Based on a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Lin, T. S.; Lawrence, P.; Kheshgi, H. S.

    2017-12-01

    Environmental factors - characterized by increasing levels of CO2, and changes in temperature and precipitation patterns - present potential risks to global food supply. To date, understanding of environmental factors' effects on crop production remains uncertain due to (1) uncertainties in projected trends of these factors and their spatial and temporal variability; (2) uncertainties in the physiological, genetic and molecular basis of crop adaptation to adaptive management practices (e.g. change in planting time, irrigation and N fertilization etc.) and (3) uncertainties in current land surface models to estimate the response of crop production to changes in environmental factors and management strategies. In this study we apply a process-based land surface model, the Integrated Science Assessment model (ISAM), to assess the impact of various environmental factors and management strategies on the production of row crops (corn, soybean and wheat) at regional and global scales. Results are compared to corresponding simulations performed with the crop model in the Community Land Model (CLM4.5). Each model is driven with historical atmospheric forcing data (1901-2005), and projected atmospheric forcing data under RCP 4.5 or RCP 8.5 (2006-2100) from CESM CMIP5 simulations to estimate the effects of different climate change projections on potential productivity of food crops at a global scale. For each set of atmospheric forcing data, production of each crop is simulated with and without inclusion of adaptive management practices (e.g. application of irrigation, N fertilization, change in planting time and crop cultivars etc.) to assess the effect of adaptation on projected crop production over the 21st century. In detail, three questions are addressed: (1) what is the impact of different climate change projections on global crop production; (2) what is the effect of adaptive management practices on projected crop production; and (3) how do differences in model

  15. The economic determinants of land degradation in developing countries

    PubMed Central

    Barbier, E. B.

    1997-01-01

    The following paper investigates the economic determinants of land degradation in developing countries. The main trends examined are rural households' decisions to degrade as opposed to conserve land resources, and the expansion of frontier agricultural activity that contributes to forest and marginal land conversion. These two phenomena appear often to be linked. In many developing areas, a poor rural household's decision whether to undertake long-term investment in improving existing agricultural land must be weighed against the decision to abandon this land and migrate to environmentally fragile areas. Economic factors play a critical role in determining these relationships. Poverty, imperfect capital markets and insecure land tenure may reinforce the tendency towards short-term time horizons in production decisions, and may bias land use decisions against long-term land management strategies. In periods of commodity booms and land speculation, wealthier households generally take advantage of their superior political and market power to ensure initial access to better quality resources, in order to capture a larger share of the resource rents. Poorer households are confined either to marginal environmental areas where resource rents are limited, or only have access to resources once they are degraded and rents dissipated.
    Overall trends in land degradation and deforestation are examined, followed by an overview of rural households' resource management decisions with respect to land management, frontier agricultural expansion, and migration from existing agricultural land to frontiers. Finally, the discussion focuses on the scope for policy improvements to reduce economic constraints to effective land management.

  16. Demographic factors and land-use planning in the small islands of Southern Europe

    NASA Astrophysics Data System (ADS)

    Soliani, Lamberto; Rossi, Orazio

    1992-09-01

    Since the end of the 1970s, the southern European countries have shown an exceptional reduction in fertility rate. From the highest levels among the developed nations, these countries dropped beneath the substitution rate level: in Greece there is an average of about 1.5 children per woman, and Italy (starting three to four years ago), with 1.3 children per woman, is now the country with the lowest fecundity rate in the world. Land-use planning in southern European small islands therefore requires substantial revision. In the areas where western civilization began, which are highly populated and have a long history, cultural and ethnic aspects of tradition are fundamental to environmental management and to the defense of historical heritage. They also place a strong value on sustaining tourism, the most relevant economic activity, that allows them to survive and maintain a high welfare level. For some decades they have had populations with a marked presence of young people and high emigration rates, but now they are fast becoming dominated by the elderly and must prepare for a period of fast reduction in youth of the workforce, while the peripheral areas of Asia and Africa are entering a sudden demographic growth phase. The demographic structure has also been deeply altered both by previous migrations and by random variations, as usually happens in all small communities. Social services for younger and older people have had to be adapted rapidly, reorganizing high-school management, hospital and health-care structures, in-house assistance, and so on. There is a need to rethink the job market and favor the immigration of highly specialized workers, which is a necessity for technical evolution. Sustainable development is constrained nowadays not only by the scarcity of natural resources, but also by the quality and quantity of human resources. Proper policies for population and land-use planning are highly correlated factors; they have to be considered with respect

  17. International land deals, local people's livelihood, and environment nexus (How to create win-win land deals in Ethiopia?)

    NASA Astrophysics Data System (ADS)

    Teklemariam Gebremeskel, Dereje; Witlox, Frank; Azadi, Hossein; Haile, Mitiku; Nyssen, Jan

    2013-04-01

    Following the global raise in demand for food and biofuel production, transnational companies are acquiring large scale agricultural land in developing countries such as Ethiopia. Considering land as one of the factors to be outsourced for development, the government of Ethiopia is supplying millions of hectares of land to transnational companies in the form of longterm lease. Many of the companies which engage in large scale land acquisition are of Indian, Chinese, Ethiopian diaspora, German, Malaysian, Italian, British, Dutch, Turkish, and Saudi-Arabian origin. The boom in the acquisition of farm land in the country has sparked an all-rounded debate among civil society groups, international institutions, nongovernmental organizations and independent development experts. The common reflections concerning the land deals in Ethiopia and elsewhere contain much rhetoric and hype which lack analysis of the real situation "on the ground" giving different connotations such as 'land grabbing', 'agricultural outsourcing', 'neo-colonialism', 'agrarian colonialism', and 'land underdevelopment'. However, deforestation, soil degradation, marginalization of local indigenous communities, and minimally unfair gains from investment by the host country are among the real points of concern arising out of the long term land lease contracts. Scientific evidence is lacking concerning the pragmatic impacts of large scale agricultural land acquisitions by transnational companies upon the natural environment (forest and land), local peoples' livelihood, and the contacting parties (the host country and the companies). The major objective of this study is to investigate the impacts in the context of Ethiopia, orienting to reinvent win-win land use models which constitute sustainable land use, local peoples' livelihood and the company-host country interests. To achieve this overall objective, the study employs a number of methods and methodologies constituting both qualitative and

  18. Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques.

    PubMed

    Nosrati, Kazem

    2013-04-01

    Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.

  19. Effects of land-use change on the carbon balance of terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Houghton, R. A.; Goodale, C. L.

    Most changes in land use affect the amount of carbon held in vegetation and soil, thereby, either releasing carbon dioxide (a greenhouse gas) to, or removing it from, the atmosphere. The greatest fluxes of carbon result from conversion of forests to open lands (and vice versa). Model-based estimates of the flux of carbon attributable to land-use change are highly variable, however, largely as a result of uncertainties in the areas annually affected by different types of land-use change. Uncertain rates of tropical deforestation, for example, account for more than half of the range in estimates of the global carbon flux. Three other factors account for much of the rest of the uncertainty: (1) the initial stocks of carbon in ecosystems affected by land-use change (i.e., spatial heterogeneity), (2) per hectare changes in carbon stocks in response to different types of land-use change, and (3) legacy effects; that is, the time it takes for carbon stocks to equilibrate following a change in land use. For the tropics, recent satellite-based estimates of deforestation are lower than previous estimates and yield calculated carbon emissions from land-use change that are similar to independently-derived estimates of the total net flux for the region. The similarity suggests that changes in land use account for the net flux of carbon from the tropics. For the northern mid-latitudes, the carbon sink attributed to land-use change is less than the sink obtained by other methods, suggesting either an incomplete accounting of land-use change or the importance of other factors in explaining the current carbon sink in that region.

  20. Integrating land management into Earth system models: the importance of land use transitions at sub-grid-scale

    NASA Astrophysics Data System (ADS)

    Pongratz, Julia; Wilkenskjeld, Stiig; Kloster, Silvia; Reick, Christian

    2014-05-01

    underestimates emissions substantially, for historical times by about 40%. Implementation of land management such as gross transitions is a step forward in terms of comprehensiveness of simulated processes. However, it has increased model spread in carbon fluxes, because land management processes have been considered by only a subset of recent ESMs contributing to major projects such as IPCC or the Global Carbon Project. This model spread still causes the net land use flux to be the most uncertain component in the global carbon budget. Other causes have previously been identified as differences in land use datasets, differing types of vegetation model, accounting of nutrient limitation, the inclusion of land use feedbacks (increase in atmospheric CO2 due to land use emissions causing terrestrial carbon uptake), and a confusion of whether the net land use flux in ESMs should be reported as instantaneous emissions, or also account for delayed carbon responses and regrowth. These differences explain a factor 2-6 difference between model estimates and are expected to be further affected by interactions with land management. This highlights the importance of an accurate protocol for future model intercomparisons of carbon fluxes from land cover change and land management to ensure comparison of the same processes and fluxes.

  1. Clug; Community Land Use Game. Player's Manual with Selected Readings.

    ERIC Educational Resources Information Center

    Feldt, Allan G.

    CLUG (Community Land Use Game) is designed to provide players with an understanding of several underlying factors affecting the growth of an urban region. It has been used with players from junior high to graduate school and also with non-students. It unites concepts from sociology, economics, and geography. Players invest in land, construct…

  2. Research on Land Ecological Condition Investigation and Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Lv, Chunyan; Guo, Xudong; Chen, Yuqi

    2017-04-01

    The ecological status of land reflects the relationship between land use and environmental factors. At present, land ecological situation in China is worrying. According to the second national land survey data, there are about 149 million acres of arable land located in forests and grasslands area in Northeast and Northwest of China, Within the limits of the highest flood level, at steep slope above 25 degrees; about 50 million acres of arable land has been in heavy pollution; grassland degradation is still serious. Protected natural forests accounted for only 6% of the land area, and forest quality is low. Overall, the ecological problem has been eased, but the local ecological destruction intensified, natural ecosystem in degradation. It is urgent to find out the situation of land ecology in the whole country and key regions as soon as possible. The government attaches great importance to ecological environment investigation and monitoring. Various industries and departments from different angles carry out related work, most of it about a single ecological problem, the lack of a comprehensive surveying and assessment of land ecological status of the region. This paper established the monitoring index system of land ecological condition, including Land use type area and distribution, quality of cultivated land, vegetation status and ecological service, arable land potential and risk, a total of 21 indicators. Based on the second national land use survey data, annual land use change data and high resolution remote sensing data, using the methods of sample monitoring, field investigation and statistical analysis to obtain the information of each index, this paper established the land ecological condition investigation and monitoring technology and method system. It has been improved, through the application to Beijing-Tianjin-Hebei Urban Agglomeration, the northern agro-pastoral ecological fragile zone, and 6 counties (cities).

  3. Rates and potentials of soil organic carbon sequestration in agricultural lands in Japan: an assessment using a process-based model and spatially-explicit land-use change inventories

    NASA Astrophysics Data System (ADS)

    Yagasaki, Y.; Shirato, Y.

    2013-11-01

    In order to develop a system to estimate a country-scale soil organic carbon stock change (SCSC) in agricultural lands in Japan that enables to take account effect of land-use changes, climate, different agricultural activity and nature of soils, a spatially-explicit model simulation system using Rothamsted Carbon Model (RothC) integrated with spatial and temporal inventories was developed. Future scenarios on agricultural activity and land-use change were prepared, in addition to future climate projections by global climate models, with purposely selecting rather exaggerated and contrasting set of scenarios to assess system's sensitivity as well as to better factor out direct human influence in the SCSC accounting. Simulation was run from year 1970 to 2008, and to year 2020, with historical inventories and future scenarios involving target set in agricultural policy, respectively, and subsequently until year 2100 with no temporal changes in land-use and agricultural activity but with varying climate to investigate course of SCSC. Results of the country-scale SCSC simulation have indicated that conversion of paddy fields to croplands occurred during past decades, as well as a large conversion of agricultural fields to settlements or other lands that have occurred in historical period and would continue in future, could act as main factors causing greater loss of soil organic carbon (SOC) at country-scale, with reduction organic carbon input to soils and enhancement of SOC decomposition by transition of soil environment to aerobic conditions, respectively. Scenario analysis indicated that an option to increase organic carbon input to soils with intensified rotation with suppressing conversion of agricultural lands to other land-use types could achieve reduction of CO2 emission due to SCSC in the same level as that of another option to let agricultural fields be abandoned. These results emphasize that land-use changes, especially conversion of the agricultural lands

  4. Laser induced fluorescence spectroscopy used for the investigation of Landé gJ- factors of praseodymium energy levels

    NASA Astrophysics Data System (ADS)

    Sobolewski, Ł. M.; Windholz, L.; Kwela, J.

    2017-06-01

    Laser induced fluorescence (LIF) spectroscopy was used for the investigation of structures of 52 spectral lines of Pr I in the wavelength range 561.3 - 613.9 nm. As a source of free Pr atoms a hollow cathode discharge lamp was used. We monitored selected LIF signals appearing when the laser beam excites the hollow cathode plasma. LIF spectra were recorded in the presence of a magnetic field of about 800 G produced by a permanent magnet for two linear polarizations of the exciting laser beam. We have determined for the first time Landé gJ- factors for 71 levels of neutral Pr and reinvestigated data for several other levels.

  5. Monitoring the evolving land use patterns using remote sensing

    NASA Technical Reports Server (NTRS)

    Goehring, D. R.

    1971-01-01

    The urbanization of Walnut Valley from 1953-71 prompted land use change from intensive von Thunen market-oriented patterns to extensive, disinvested, production-factor-minimized patterns. Shortrun, interim land use planning, has allowed agriculture to persist but only in the form of barley farming and grazing. Aerial photography used synoptically recorded six periods of land use change that bracketed dates before and after the freeway was announced and built. Interpretations of these changes help recognize potential conversions to urban uses which allow guidelines to be established that deal with rural-urban transition problems before they arise.

  6. Integrating global socio-economic influences into a regional land use change model for China

    NASA Astrophysics Data System (ADS)

    Xu, Xia; Gao, Qiong; Peng, Changhui; Cui, Xuefeng; Liu, Yinghui; Jiang, Li

    2014-03-01

    With rapid economic development and urbanization, land use in China has experienced huge changes in recent years; and this will probably continue in the future. Land use problems in China are urgent and need further study. Rapid land-use change and economic development make China an ideal region for integrated land use change studies, particularly the examination of multiple factors and global-regional interactions in the context of global economic integration. This paper presents an integrated modeling approach to examine the impact of global socio-economic processes on land use changes at a regional scale. We develop an integrated model system by coupling a simple global socio-economic model (GLOBFOOD) and regional spatial allocation model (CLUE). The model system is illustrated with an application to land use in China. For a given climate change, population growth, and various socio-economic situations, a global socio-economic model simulates the impact of global market and economy on land use, and quantifies changes of different land use types. The land use spatial distribution model decides the type of land use most appropriate in each spatial grid by employing a weighted suitability index, derived from expert knowledge about the ecosystem state and site conditions. A series of model simulations will be conducted and analyzed to demonstrate the ability of the integrated model to link global socioeconomic factors with regional land use changes in China. The results allow an exploration of the future dynamics of land use and landscapes in China.

  7. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome.

    PubMed

    Bowman, John L; Kohchi, Takayuki; Yamato, Katsuyuki T; Jenkins, Jerry; Shu, Shengqiang; Ishizaki, Kimitsune; Yamaoka, Shohei; Nishihama, Ryuichi; Nakamura, Yasukazu; Berger, Frédéric; Adam, Catherine; Aki, Shiori Sugamata; Althoff, Felix; Araki, Takashi; Arteaga-Vazquez, Mario A; Balasubrmanian, Sureshkumar; Barry, Kerrie; Bauer, Diane; Boehm, Christian R; Briginshaw, Liam; Caballero-Perez, Juan; Catarino, Bruno; Chen, Feng; Chiyoda, Shota; Chovatia, Mansi; Davies, Kevin M; Delmans, Mihails; Demura, Taku; Dierschke, Tom; Dolan, Liam; Dorantes-Acosta, Ana E; Eklund, D Magnus; Florent, Stevie N; Flores-Sandoval, Eduardo; Fujiyama, Asao; Fukuzawa, Hideya; Galik, Bence; Grimanelli, Daniel; Grimwood, Jane; Grossniklaus, Ueli; Hamada, Takahiro; Haseloff, Jim; Hetherington, Alexander J; Higo, Asuka; Hirakawa, Yuki; Hundley, Hope N; Ikeda, Yoko; Inoue, Keisuke; Inoue, Shin-Ichiro; Ishida, Sakiko; Jia, Qidong; Kakita, Mitsuru; Kanazawa, Takehiko; Kawai, Yosuke; Kawashima, Tomokazu; Kennedy, Megan; Kinose, Keita; Kinoshita, Toshinori; Kohara, Yuji; Koide, Eri; Komatsu, Kenji; Kopischke, Sarah; Kubo, Minoru; Kyozuka, Junko; Lagercrantz, Ulf; Lin, Shih-Shun; Lindquist, Erika; Lipzen, Anna M; Lu, Chia-Wei; De Luna, Efraín; Martienssen, Robert A; Minamino, Naoki; Mizutani, Masaharu; Mizutani, Miya; Mochizuki, Nobuyoshi; Monte, Isabel; Mosher, Rebecca; Nagasaki, Hideki; Nakagami, Hirofumi; Naramoto, Satoshi; Nishitani, Kazuhiko; Ohtani, Misato; Okamoto, Takashi; Okumura, Masaki; Phillips, Jeremy; Pollak, Bernardo; Reinders, Anke; Rövekamp, Moritz; Sano, Ryosuke; Sawa, Shinichiro; Schmid, Marc W; Shirakawa, Makoto; Solano, Roberto; Spunde, Alexander; Suetsugu, Noriyuki; Sugano, Sumio; Sugiyama, Akifumi; Sun, Rui; Suzuki, Yutaka; Takenaka, Mizuki; Takezawa, Daisuke; Tomogane, Hirokazu; Tsuzuki, Masayuki; Ueda, Takashi; Umeda, Masaaki; Ward, John M; Watanabe, Yuichiro; Yazaki, Kazufumi; Yokoyama, Ryusuke; Yoshitake, Yoshihiro; Yotsui, Izumi; Zachgo, Sabine; Schmutz, Jeremy

    2017-10-05

    The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Analysis of potential flooding in the education Jatinangor based approach morphology, land cover, and geology

    NASA Astrophysics Data System (ADS)

    Rifai, Achmad; Hadian, Sapari Dwi; Mufti, Iqbal Jabbari; Fathoni, Azmi Rizqi; Azy, Fikri Noor; Jihadi, Lutfan Harisan

    2017-07-01

    Jatinangor formerly an agricultural area dominated by rice field. Water in Jatinangor comes from a spring located in north Jatinangor or proximal region of Manglayang mountain to flow to the south and southwest Jatinangor up to Citarum River. Jatinangor plain that was once almost all the rice fields, but now become a land settlement that grew very rapidly since its founding colleges. Flow and puddle were originally be used for agricultural land, but now turned into a disaster risks for humans. The research method using qualitative methods with the weighing factor, scoring, and overlay maps. The cause of the flood is distinguished into two: the first is the natural factors such as the condition of landform, lithology, river flow patterns, and annual rainfall. The second is non-natural factors such as land cover of settlement, irrigation, and land use. The amount of flood risks using probability Gilbert White frequency, magnitude and duration of existing events then correlated with these factors. Based on the results of the study, were divided into 3 zones Jatinangor disaster-prone (high, medium, and safe). High flood zone is located in the South Jatinangor which covers an area Cikeruh Village, Sayang Village, Cipacing village, Mekargalih village, Cintamulya village, west of Jatimukti village, and South Hegarmanah village, has a dominant causative factor is the use of solid land, poor drainage, lithology lacustrine conditions with low permeability, and flat topography. Medium flood zone was located in the central and western regions covering Cibeusi village, Cileles village, south of Cilayung village, Hegarmanah village and Padjadjaran Region, has a dominant causative factor is rather dense land use, lithology breccias and Tuffaceous Sand with moderate permeability, topography is moderately steep. Safe flood zone is located in the east Jatinangor covering Jatiroke village, Cisepur village, east Hegarmanah village, has a dominant factor in the form of a rather steep

  9. Trajectory analysis of land use and land cover maps to improve spatial-temporal patterns, and impact assessment on groundwater recharge

    NASA Astrophysics Data System (ADS)

    Zomlot, Z.; Verbeiren, B.; Huysmans, M.; Batelaan, O.

    2017-11-01

    Land use/land cover (LULC) change is a consequence of human-induced global environmental change. It is also considered one of the major factors affecting groundwater recharge. Uncertainties and inconsistencies in LULC maps are one of the difficulties that LULC timeseries analysis face and which have a significant effect on hydrological impact analysis. Therefore, an accuracy assessment approach of LULC timeseries is needed for a more reliable hydrological analysis and prediction. The objective of this paper is to assess the impact of land use uncertainty and to improve the accuracy of a timeseries of CORINE (coordination of information on the environment) land cover maps by using a new approach of identifying spatial-temporal LULC change trajectories as a pre-processing tool. This ensures consistency of model input when dealing with land-use dynamics and as such improves the accuracy of land use maps and consequently groundwater recharge estimation. As a case study the impact of consistent land use changes from 1990 until 2013 on groundwater recharge for the Flanders-Brussels region is assessed. The change trajectory analysis successfully assigned a rational trajectory to 99% of all pixels. The methodology is shown to be powerful in correcting interpretation inconsistencies and overestimation errors in CORINE land cover maps. The overall kappa (cell-by-cell map comparison) improved from 0.6 to 0.8 and from 0.2 to 0.7 for forest and pasture land use classes respectively. The study shows that the inconsistencies in the land use maps introduce uncertainty in groundwater recharge estimation in a range of 10-30%. The analysis showed that during the period of 1990-2013 the LULC changes were mainly driven by urban expansion. The results show that the resolution at which the spatial analysis is performed is important; the recharge differences using original and corrected CORINE land cover maps increase considerably with increasing spatial resolution. This study indicates

  10. Adaptive management of ecosystem services across different land use regimes.

    PubMed

    Ruhl, J B

    2016-12-01

    Using adaptive management to manage desired flows of ecosystem services may seem on the surface to be a good fit, but many social, economic, environmental, legal, and political factors influence how good a fit. One strongly influential factor is the land use regime within which the profile of ecosystem services is being managed. Shaped largely by legal mandates, market forces, and social and cultural practices, different land use regimes present different opportunities for and constraints on goals for ecosystem services and pose different decision making environments. Even where all other conditions appear amenable to using adaptive management, therefore, it is essential to consider the constraining (or liberating) effects of different land use regimes when deciding whether to adopt adaptive management to achieve those goals and, if so, how to implement it. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The University as a Land Developer.

    ERIC Educational Resources Information Center

    Fink, Ira

    1983-01-01

    To assist universities in developing or redeveloping surplus campus or endowment property, these factors in the process are outlined and discussed: development decisions, working with a developer, ground leasing, unrelated taxable income issues, creating a university land management office, some recent experiences, and research and development…

  12. [Interrelations between plant communities and environmental factors of wetlands and surrounding lands in mid- and lower reaches of Tarim River].

    PubMed

    Zhao, Ruifeng; Zhou, Huarong; Qian, Yibing; Zhang, Jianjun

    2006-06-01

    A total of 16 quadrants of wetlands and surrounding lands in the mid- and lower reaches of Tarim River were surveyed, and the data about the characteristics of plant communities and environmental factors were collected and counted. By using PCA (principal component analysis) ordination and regression procedure, the distribution patterns of plant communities and the relationships between the characteristics of plant community structure and environmental factors were analyzed. The results showed that the distribution of the plant communities was closely related to soil moisture, salt, and nutrient contents. The accumulative contribution rate of soil moisture and salt contents in the first principal component accounted for 35.70%, and that of soil nutrient content in the second principal component reached 25.97%. There were 4 types of habitats for the plant community distribution, i. e., fenny--light salt--medium nutrient, moist--medium salt--medium nutrient, mesophytic--medium salt--low nutrient, and medium xerophytic-heavy salt--low nutrient. Along these habitats, swamp vegetation, meadow vegetation, riparian sparse forest, halophytic desert, and salinized shrub were distributed. In the wetlands and surrounding lands of mid- and lower reaches of Tarim River, the ecological dominance of the plant communities was markedly and unitary-linearly correlated with the compound gradient of soil moisture and salt contents. The relationships between species diversity, ecological dominance, and compound gradient of soil moisture and salt contents were significantly accorded to binary-linear regression model.

  13. Carbon dioxide emissions from forestry and peat land using land-use/land-cover changes in North Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Sulistyono, N.; Slamet, B.; Wati, R.

    2018-03-01

    Forestry and peat land including land-based is one of the critical sectors in the inventory of CO2 emissions and mitigation efforts of climate change. The present study analyzed the land-use and land-cover changes between 2006 and 2012 in North Sumatra, Indonesia with emphasis to CO2 emissions. The land-use/land-cover consists of twenty-one classes. Redd Abacus software version 1.1.7 was used to measure carbon emission source as well as the predicted 2carbon dioxide emissions from 2006-2024. Results showed that historical emission (2006-2012) in this province, significant increases in the intensive land use namely dry land agriculture (109.65%), paddy field (16.23%) and estate plantation (15.11%). On the other hand, land-cover for forest decreased significantly: secondary dry land forest (7.60%), secondary mangrove forest (9.03%), secondary swamp forest (33.98%), and the largest one in the mixed dry land agriculture (79.96%). The results indicated that North Sumatra province is still a CO2 emitter, and the most important driver of emissions mostly derived from agricultural lands that contributed 2carbon dioxide emissions by 48.8%, changing from forest areas into degraded lands (classified as barren land and shrub) shared 30.6% and estate plantation of 22.4%. Mitigation actions to reduce carbon emissions was proposed such as strengthening the forest land, rehabilitation of degraded area, development and plantation forest, forest protection and forest fire control, and reforestation and conservation activity. These mitigation actions have been simulated to reduce 15% for forestry and 18% for peat land, respectively. This data is likely to contribute to the low emission development in North Sumatra.

  14. Challenges in Global Land Use/Land Cover Change Modeling

    NASA Astrophysics Data System (ADS)

    Clarke, K. C.

    2011-12-01

    For the purposes of projecting and anticipating human-induced land use change at the global scale, much work remains in the systematic mapping and modeling of world-wide land uses and their related dynamics. In particular, research has focused on tropical deforestation, loss of prime agricultural land, loss of wild land and open space, and the spread of urbanization. Fifteen years of experience in modeling land use and land cover change at the regional and city level with the cellular automata model SLEUTH, including cross city and regional comparisons, has led to an ability to comment on the challenges and constraints that apply to global level land use change modeling. Some issues are common to other modeling domains, such as scaling, earth geometry, and model coupling. Others relate to geographical scaling of human activity, while some are issues of data fusion and international interoperability. Grid computing now offers the prospect of global land use change simulation. This presentation summarizes what barriers face global scale land use modeling, but also highlights the benefits of such modeling activity on global change research. An approach to converting land use maps and forecasts into environmental impact measurements is proposed. Using such an approach means that multitemporal mapping, often using remotely sensed sources, and forecasting can also yield results showing the overall and disaggregated status of the environment.

  15. Land Use and Land Cover Change, Urban Heat Island Phenomenon, and Health Implications: A Remote Sensing Approach

    NASA Technical Reports Server (NTRS)

    Lo, C. P.; Quattrochi, Dale A.

    2003-01-01

    Land use and land cover maps of Atlanta Metropolitan Area in Georgia were produced from Landsat MSS and TM images for 1973,1979,1983,1987,1992, and 1997, spanning a period of 25 years. Dramatic changes in land use and land cover have occurred with loss of forest and cropland to urban use. In particular, low-density urban use, which includes largely residential use, has increased by over 119% between 1973 and 1997. These land use and land cover changes have drastically altered the land surface characteristics. An analysis of Landsat images revealed an increase in surface temperature and a decline in NDVI from 1973 to 1997. These changes have forced the development of a significant urban heat island effect and an increase in ground level ozone production to such an extent, that Atlanta has violated EPA's ozone level standard in recent years. The urban heat island initiated precipitation events that were identified between 1996 and 2000 tended to occur near high-density urban areas but outside the I-285 loop that traverses around the Central Business District, i.e. not in the inner city area, but some in close proximity to the highways. The health implications were investigated by comparing the spatial patterns of volatile organic compounds (VOC) and nitrogen oxides (NOx) emissions, the two ingredients that form ozone by reacting with sunlight, with those of rates of cardiovascular and chronic lower respiratory diseases. A clear core-periphery pattern was revealed for both VOC and NOx emissions, but the spatial pattern was more random in the cases of rates of cardiovascular and chronic lower respiratory diseases. Clearly, factors other than ozone pollution were involved in explaining the rates of these diseases. Further research is therefore needed to understand the health geography and its relationship to land use and land cover change as well as urban heat island effect. This paper illustrates the usefulness of a remote sensing approach for this purpose.

  16. Sensitivity of land surface modeling to parameters: An uncertainty quantification method applied to the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ricciuto, D. M.; Mei, R.; Mao, J.; Hoffman, F. M.; Kumar, J.

    2015-12-01

    Uncertainties in land parameters could have important impacts on simulated water and energy fluxes and land surface states, which will consequently affect atmospheric and biogeochemical processes. Therefore, quantification of such parameter uncertainties using a land surface model is the first step towards better understanding of predictive uncertainty in Earth system models. In this study, we applied a random-sampling, high-dimensional model representation (RS-HDMR) method to analyze the sensitivity of simulated photosynthesis, surface energy fluxes and surface hydrological components to selected land parameters in version 4.5 of the Community Land Model (CLM4.5). Because of the large computational expense of conducting ensembles of global gridded model simulations, we used the results of a previous cluster analysis to select one thousand representative land grid cells for simulation. Plant functional type (PFT)-specific uniform prior ranges for land parameters were determined using expert opinion and literature survey, and samples were generated with a quasi-Monte Carlo approach-Sobol sequence. Preliminary analysis of 1024 simulations suggested that four PFT-dependent parameters (including slope of the conductance-photosynthesis relationship, specific leaf area at canopy top, leaf C:N ratio and fraction of leaf N in RuBisco) are the dominant sensitive parameters for photosynthesis, surface energy and water fluxes across most PFTs, but with varying importance rankings. On the other hand, for surface ans sub-surface runoff, PFT-independent parameters, such as the depth-dependent decay factors for runoff, play more important roles than the previous four PFT-dependent parameters. Further analysis by conditioning the results on different seasons and years are being conducted to provide guidance on how climate variability and change might affect such sensitivity. This is the first step toward coupled simulations including biogeochemical processes, atmospheric processes

  17. Investigation of connections among physical, social and economic factors in case of optimal Land Use System Planning in the Egri-Bükkalja Foothill Area of North Hungary

    NASA Astrophysics Data System (ADS)

    Dobos, Anna; Utasi, Zoltán; Tóth, Antal; Csabai Kitti, Edina; Laborczi, Annamária; Takács, Katalin; Hegyi, Balázs; Tamás Hegyi, Péter; Pásztor, László; Mika, János

    2016-04-01

    Nowadays, detailed knowledge of landscape elements and their capabilties, furthermore the probable tendency of climate change play important role in spatial planning of optimal land use system and solving agricultural and social challeges. During our research work, we have investigated three settlements (Cserépfalu, Egerszólát, Kerecsend) based on different landscape factors in the Egri-Bükkalja Fothill Areas of North Hungary. Our aim was to point out the landscape differences along north - south direction inside this microlandscape unit and their effects on land use system, economic developments, social challenges and their changeable tendency in the future We have investigated quantitative and qualitative connections among different landscape factors in suitable GIS environment. Based on the identified relationships thematic maps were compiled. The elaborated GIS integrates digitally processed legacy data, properly selected spatial data infrastructure elements and recently collected field data originating from our geomopholgical and pedological investigations carried out in last three years. We discribed soil features in soil profiles using methods according to FAO (2006) and Novák (2013). Soils were featured by soil type, the thickness of A horizon and the rate of soil erosion. Projected climate changes have also been considered for the region. Besides collection of the available recent OAGCM outputs and outputs by four RCM run in Hungary, an empirical approach has been also included. This is based on empirical regression relationship between relevant grid-point values of the CarpatClim data base and the temperature of the Northern Hemisphere. Land use maps were created based on the 1st, 2nd, 3rd, 4th Military Survey Maps and aerial photographs covering a relatively long period from the 18th century till nowadays. Main social and economic factors and processes were characterized using data of the Hungarian Central Statistical Office, population census and

  18. Establishing sustainable GHG inventory systems in African countries for Agriculture and Land Use, Land-use Change and Forestry (LULUCF)

    NASA Astrophysics Data System (ADS)

    Wirth, T. C.; Troxler, T.

    2015-12-01

    As signatories to the United Nations Framework Convention on Climate Change (UNFCCC), developing countries are required to produce greenhouse gas (GHG) inventories every two years. For many developing countries, including many of those in Africa, this is a significant challenge as it requires establishing a robust and sustainable GHG inventory system. In order to help support these efforts, the U.S. Environmental Protection Agency (EPA) has worked in collaboration with the UNFCCC to assist African countries in establishing sustainable GHG inventory systems and generating high-quality inventories on a regular basis. The sectors we have focused on for these GHG inventory capacity building efforts in Africa are Agriculture and Land Use, Land-use Change and Forestry (LULUCF) as these tend to represent a significant portion of their GHG emissions profile and the data requirements and methodologies are often more complex than for other sectors. To support these efforts, the U.S. EPA has provided technical assistance in understanding the methods in the IPCC Guidelines, assembling activity data and emission factors, including developing land-use maps for representing a country's land base, and implementing the calculations. EPA has also supported development of various tools such as a Template Workbook that helps the country build the institutional arrangement and strong documentation that are necessary for generating GHG inventories on a regular basis, as well as performing other procedures as identified by IPCC Good Practice Guidance such as quality assurance/quality control, key category analysis and archiving. Another tool used in these projects and helps country's implement the methods from the IPCC Guidelines for the Agriculture and LULUCF sectors is the Agriculture and Land Use (ALU) tool. This tool helps countries assemble the activity data and emission factors, including supporting the import of GIS maps, and applying the equations from the IPPC Guidelines to

  19. Human Land-Use Practices Lead to Global Long-Term Increases in Photosynthetic Capacity

    NASA Technical Reports Server (NTRS)

    Mueller, Thomas; Tucker, Compton J.; Dressler, Gunnar; Pinzon, Jorge E.; Leimgruber, Peter; Dubayah, Ralph O.; Hurtt, George C.; Boehning-Gaese, Katrin; Fagan, William F.

    2014-01-01

    Long-term trends in photosynthetic capacity measured with the satellite-derived Normalized Difference Vegetation Index (NDVI) are usually associated with climate change. Human impacts on the global land surface are typically not accounted for. Here, we provide the first global analysis quantifying the effect of the earth's human footprint on NDVI trends. Globally, more than 20% of the variability in NDVI trends was explained by anthropogenic factors such as land use, nitrogen fertilization, and irrigation. Intensely used land classes, such as villages, showed the greatest rates of increase in NDVI, more than twice than those of forests. These findings reveal that factors beyond climate influence global long-term trends in NDVI and suggest that global climate change models and analyses of primary productivity should incorporate land use effects.

  20. Soil-borne microbial functional structure across different land uses.

    PubMed

    Kuramae, Eiko E; Zhou, Jizhong Z; Kowalchuk, George A; van Veen, Johannes A

    2014-01-01

    Land use change alters the structure and composition of microbial communities. However, the links between environmental factors and microbial functions are not well understood. Here we interrogated the functional structure of soil microbial communities across different land uses. In a multivariate regression tree analysis of soil physicochemical properties and genes detected by functional microarrays, the main factor that explained the different microbial community functional structures was C : N ratio. C : N ratio showed a significant positive correlation with clay and soil pH. Fields with low C : N ratio had an overrepresentation of genes for carbon degradation, carbon fixation, metal reductase, and organic remediation categories, while fields with high C : N ratio had an overrepresentation of genes encoding dissimilatory sulfate reductase, methane oxidation, nitrification, and nitrogen fixation. The most abundant genes related to carbon degradation comprised bacterial and fungal cellulases; bacterial and fungal chitinases; fungal laccases; and bacterial, fungal, and oomycete polygalacturonases. The high number of genes related to organic remediation was probably driven by high phosphate content, while the high number of genes for nitrification was probably explained by high total nitrogen content. The functional gene diversity found in different soils did not group the sites accordingly to land management. Rather, the soil factors, C : N ratio, phosphate, and total N, were the main factors driving the differences in functional genes across the fields examined.

  1. Proximal Association of Land Management Preferences: Evidence from Family Forest Owners

    Treesearch

    Francisco X. Aguilar; Zhen Cai; Brett Butler

    2017-01-01

    Individual behavior is influenced by factors intrinsic to the decision-maker but also associated with other individuals and their ownerships with such relationship intensified by geographic proximity. The land management literature is scarce in the spatially integrated analysis of biophysical and socio-economic data. Localized land management decisions are likely...

  2. Quantitative analysis of agricultural land use change in China

    NASA Astrophysics Data System (ADS)

    Chou, Jieming; Dong, Wenjie; Wang, Shuyu; Fu, Yuqing

    This article reviews the potential impacts of climate change on land use change in China. Crop sown area is used as index to quantitatively analyze the temporal-spatial changes and the utilization of the agricultural land. A new concept is defined as potential multiple cropping index to reflect the potential sowing ability. The impacting mechanism, land use status and its surplus capacity are investigated as well. The main conclusions are as following; During 1949-2010, the agricultural land was the greatest in amount in the middle of China, followed by that in the country's eastern and western regions. The most rapid increase and decrease of agricultural land were observed in Xinjiang and North China respectively, Northwest China and South China is also changed rapid. The variation trend before 1980 differed significantly from that after 1980. Agricultural land was affected by both natural and social factors, such as regional climate and environmental changes, population growth, economic development, and implementation of policies. In this paper, the effects of temperature and urbanization on the coverage of agriculture land are evaluated, and the results show that the urbanization can greatly affects the amount of agriculture land in South China, Northeast China, Xinjiang and Southwest China. From 1980 to 2009, the extent of agricultural land use had increased as the surplus capacity had decreased. Still, large remaining potential space is available, but the future utilization of agricultural land should be carried out with scientific planning and management for the sustainable development.

  3. Earth land landing alternatives: Lunar transportation system

    NASA Technical Reports Server (NTRS)

    Meyerson, Robert

    1992-01-01

    The objectives of this study are as follows: (1) develop a landing option such that it is a viable trade option for future NASA missions; (2) provide NASA programs with solid technical support in the landing systems area; (3) develop the technical staff; and (4) advance the state of landing systems technology to apply to future NASA missions. All results are presented in viewgraph format.

  4. Integration of Multiple Data Sources to Simulate the Dynamics of Land Systems

    PubMed Central

    Deng, Xiangzheng; Su, Hongbo; Zhan, Jinyan

    2008-01-01

    In this paper we present and develop a new model, which we have called Dynamics of Land Systems (DLS). The DLS model is capable of integrating multiple data sources to simulate the dynamics of a land system. Three main modules are incorporated in DLS: a spatial regression module, to explore the relationship between land uses and influencing factors, a scenario analysis module of the land uses of a region during the simulation period and a spatial disaggregation module, to allocate land use changes from a regional level to disaggregated grid cells. A case study on Taips County in North China is incorporated in this paper to test the functionality of DLS. The simulation results under the baseline, economic priority and environmental scenarios help to understand the land system dynamics and project near future land-use trajectories of a region, in order to focus management decisions on land uses and land use planning. PMID:27879726

  5. Land change monitoring, assessment, and projection (LCMAP) revolutionizes land cover and land change research

    USGS Publications Warehouse

    Young, Steven

    2017-05-02

    When nature and humanity change Earth’s landscapes - through flood or fire, public policy, natural resources management, or economic development - the results are often dramatic and lasting.Wildfires can reshape ecosystems. Hurricanes with names like Sandy or Katrina will howl for days while altering the landscape for years. One growing season in the evolution of drought-resistant genetics can transform semiarid landscapes into farm fields.In the past, valuable land cover maps created for understanding the effects of those events - whether changes in wildlife habitat, water-quality impacts, or the role land use and land cover play in affecting weather and climate - came out at best every 5 to 7 years. Those high quality, high resolution maps were good, but users always craved more: even higher quality data, additional land cover and land change variables, more detailed legends, and most importantly, more frequent land change information.Now a bold new initiative called Land Change Monitoring, Assessment, and Projection (LCMAP) promises to fulfill that demand.Developed at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, LCMAP provides definitive, timely information on how, why, and where the planet is changing. LCMAP’s continuous monitoring process can detect changes as they happen every day that Landsat satellites acquire clear observations. The result will be to place near real-time information in the hands of land and resource managers who need to understand the effects these changes have on landscapes.

  6. [Evaluation of land resources carrying capacity of development zone based on planning environment impact assessment].

    PubMed

    Fu, Shi-Feng; Zhang, Ping; Jiang, Jin-Long

    2012-02-01

    Assessment of land resources carrying capacity is the key point of planning environment impact assessment and the main foundation to determine whether the planning could be implemented or not. With the help of the space analysis function of Geographic Information System, and selecting altitude, slope, land use type, distance from resident land, distance from main traffic roads, and distance from environmentally sensitive area as the sensitive factors, a comprehensive assessment on the ecological sensitivity and its spatial distribution in Zhangzhou Merchants Economic and Technological Development Zone, Fujian Province of East China was conducted, and the assessment results were combined with the planning land layout diagram for the ecological suitability analysis. In the Development Zone, 84.0% of resident land, 93.1% of industrial land, 86.0% of traffic land, and 76. 0% of other constructive lands in planning were located in insensitive and gently sensitive areas, and thus, the implement of the land use planning generally had little impact on the ecological environment, and the land resources in the planning area was able to meet the land use demand. The assessment of the population carrying capacity with ecological land as the limiting factor indicated that in considering the highly sensitive area and 60% of the moderately sensitive area as ecological land, the population within the Zone in the planning could reach 240000, and the available land area per capita could be 134.0 m2. Such a planned population scale is appropriate, according to the related standards of constructive land.

  7. [Limiting factors of waste land revegetation in indigenous zinc smelting areas of western Guizhou].

    PubMed

    Lin, Wen-Jie; Xiao, Tang-Fu; Ao, Zi-Qiang; Xing, Jun; Ma, Huan-Cheng; Hu, Ting-Xing

    2007-03-01

    With indigenous zinc smelting waste residue, contaminated soil and background soil as test substrates, a pot experiment was conducted to study the growth characteristics of Lolium perenne and Trifolium pretense on these substrates. The results showed that the major limiting factors of waste land revegetation in indigenous zinc smelting areas of western Guizhou were the salt-alkali stress and the lower contents of organic matter, total N, available N and total K. The heavy metals in waste residue had a high concentration, but their available forms only occupied a small proportion, with low toxicity to plant but having potential harmful risk. Contaminated soil had lower concentrations of heavy metals than waste residue, but its contained heavy metals were more in available form. The constraints of revegetation on contaminated soil were the toxicity of heavy metals and the low contents of available P and K. Mixing contaminated soil with zinc smelting waste residue could be one of the effective approaches for the substrate amendment in indigenous zinc smelting areas.

  8. Spatial Differentiation of Arable Land and Permanent Grasslands to Improve a Regional Land Management Model for Nutrient Balancing

    NASA Astrophysics Data System (ADS)

    Gómez Giménez, M.; Della Peruta, R.; de Jong, R.; Keller, A.; Schaepman, M. E.

    2015-12-01

    Agroecosystems play an important role providing economic and ecosystem services, which directly impact society. Inappropriate land use and unsustainable agricultural management with associated nutrient cycles can jeopardize important soil functions such as food production, livestock feeding and conservation of biodiversity. The objective of this study was to integrate remotely sensed land cover information into a regional Land Management Model (LMM) to improve the assessment of spatial explicit nutrient balances for agroecosystems. Remotely sensed data as well as an optimized parameter set contributed to feed the LMM providing a better spatial allocation of agricultural data aggregated at farm level. The integration of land use information in the land allocation process relied predominantly on three factors: i) spatial resolution, ii) classification accuracy and iii) parcels definition. The best-input parameter combination resulted in two different land cover classifications with overall accuracies of 98%, improving the LMM performance by 16% as compared to using non-spatially explicit input. Firstly, the use of spatial explicit information improved the spatial allocation output resulting in a pattern that better followed parcel boundaries (Figure 1). Second, the high classification accuracies ensured consistency between the datasets used. Third, the use of a suitable spatial unit to define the parcels boundaries influenced the model in terms of computational time and the amount of farmland allocated. We conclude that the combined use of remote sensing (RS) data with the LMM has the potential to provide highly accurate information of spatial explicit nutrient balances that are crucial for policy options concerning sustainable management of agricultural soils. Figure 1. Details of the spatial pattern obtained: a) Using only the farm census data, b) using also land use information. Framed in black in the left image (a), examples of artifacts that disappeared when

  9. Snowboard Jumping, Newton's Second Law and the Force on Landing

    ERIC Educational Resources Information Center

    O'Shea, Michael J.

    2004-01-01

    An application of Newton's second law to a snowboarder dropping off a vertical ledge shows that the average normal force during landing (force exerted by the ground on the snowboarder) is determined by four factors. It is shown that the flexing of the legs, the softness of the snow, the angle of the landing surface and the forward motion of the…

  10. Using Satellite Data to Evaluate Linkages Between Land Cover/Land Use and Hypertension in a National Cohort

    NASA Technical Reports Server (NTRS)

    McClure, Leslie; Crosson, Bill; Al-Hamdan, Mohammed; Estes, Maury; Estes, Sue; Quattrochi, Dale

    2009-01-01

    Coincident with global expansion of urban areas has been an increase in hypertension. It is unclear how much the urban environment contributes as a risk factor for blood pressure differences, and how much is due to a variety of environmental, lifestyle, and demographic correlates of urbanization. Objectives/Purpose: The purpose of this study is to examine the relationship between living environment (defined as urban, suburban, or rural) and hypertension in selected regions from the REasons for Geographic And Racial Differences in Stroke (REGARDS) cohort. Methods: REGARDS is a national cohort of 30,228 participants from the 48 contiguous United States. We used data from 4 metropolitan regions (Philadelphia, Atlanta, Minneapolis and Chicago) for this study (n=3928). We used Land Cover/Land Use (LCLU) information from the 30-meter National Land Cover Data. Results: Overall, 1996 (61%) of the participants were hypertensive. We characterized participants into urban, suburban or rural living environments using the LCLU data. In univariate models, we found that living environment is associated with hypertension, but that after adjustment for known hypertension risk factors, the relationship was no longer present at the 95% confidence level. Conclusions: LCLU data can be utilized to characterize the living environment, which in turn can be applied to studies of public health outcomes. Further study regarding the relationship between hypertension and living environment should focus on additional characteristics of the associated environment.

  11. Assessing and monitoring the risk of land degradation in Baragan Plain, Romania, using spectral mixture analysis and Landsat imagery.

    PubMed

    Vorovencii, Iosif

    2016-07-01

    The fall of the communist regime in Romania at the end of 1989 and the ensuing transition to the market economy brought about many changes in the use of agricultural land. These changes combined with the action of climatic factors led, in most cases, to negative effects increasing the risk of degradation of agricultural land. This study aims to assess and monitor the risk of land degradation in Baragan Plain, Romania, for the period 1988-2011 using Landsat Thematic Mapper (TM) and Spectral Mixture Analysis (SMA). Each satellite image was classified through the Decision Tree Classifier (DTC) method; then, on the basis of certain threshold values, we obtained maps of land degradation and maps showing the passage from various classes of land use/land cover (LULC) to land degradation. The results indicate that during the intermediary periods there was an ascending and descending trend in the risk of land degradation determined by the interaction of climatic factors with the social-economic ones. For the entire period, the overall trend was ascending, the risk of land degradation increasing by around 4.60 % of the studied surface. Out of the climatic factors, high temperatures and, implicitly, drought were the most significant. The social-economic factors are the result of the changes which occurred after the fall of the communist regime, the most important being the fragmentation of agricultural land and the destruction of the irrigation system.

  12. Specifications for updating USGS land use and land cover maps

    USGS Publications Warehouse

    Milazzo, Valerie A.

    1983-01-01

    To meet the increasing demands for up-to-date land use and land cover information, a primary goal of the U.S. Geological Survey's (USGS) national land use and land cover mapping program is to provide for periodic updating of maps and data in a timely and uniform manner. The technical specifications for updating existing USGS land use and land cover maps that are presented here cover both the interpretive aspects of detecting and identifying land use and land cover changes and the cartographic aspects of mapping and presenting the change data in conventional map format. They provide the map compiler with the procedures and techniques necessary to then use these change data to update existing land use and land cover maps in a manner that is both standardized and repeatable. Included are specifications for the acquisition of remotely sensed source materials, selection of compilation map bases, handling of data base corrections, editing and quality control operations, generation of map update products for USGS open file, and the reproduction and distribution of open file materials. These specifications are planned to become part of the National Mapping Division's Technical Instructions.

  13. Aligning land use with land potential

    USDA-ARS?s Scientific Manuscript database

    Current agricultural land use is dominated by an emphasis on provisioning services by applying energy-intensive inputs through relatively uniform production systems across variable landscapes. This approach to agricultural land use is not sustainable. Integrated agricultural systems (IAS) are uphe...

  14. LandSense: A Citizen Observatory and Innovation Marketplace for Land Use and Land Cover Monitoring

    NASA Astrophysics Data System (ADS)

    Moorthy, Inian; Fritz, Steffen; See, Linda; McCallum, Ian

    2017-04-01

    Currently within the EU's Earth Observation (EO) monitoring framework, there is a need for low-cost methods for acquiring high quality in-situ data to create accurate and well-validated environmental monitoring products. To help address this need, a new four year Horizon 2020 project entitled LandSense will link remote sensing data with modern participatory data collection methods that involve citizen scientists. This paper will describe the citizen science activities within the LandSense Observatory that aim to deliver concrete, measurable and quality-assured ground-based data that will complement existing satellite monitoring systems. LandSense will deploy advanced tools, services and resources to mobilize and engage citizens to collect in-situ observations (i.e. ground-based data and visual interpretations of EO imagery). Integrating these citizen-driven in-situ data collections with established authoritative and open access data sources will help reduce costs, extend GEOSS and Copernicus capacities, and support comprehensive environmental monitoring systems. Policy-relevant campaigns will be implemented in close collaboration with multiple stakeholders to ensure that citizen observations address user requirements and contribute to EU-wide environmental governance and decision-making. Campaigns for addressing local and regional Land Use and Land Cover (LULC) issues are planned for select areas in Austria, France, Germany, Spain, Slovenia and Serbia. Novel LandSense services (LandSense Campaigner, FarmLand Support, Change Detector and Quality Assurance & Control) will be deployed and tested in these areas to address critical LULC issues (i.e. urbanization, agricultural land use and forest/habitat monitoring). For example, local residents in the cities of Vienna, Tulln, and Heidelberg will help cooperatively detect and map changes in land cover and green space to address key issues of urban sprawl, land take and flooding. Such campaigns are facilitated through

  15. Simulation of land use change in the three gorges reservoir area based on CART-CA

    NASA Astrophysics Data System (ADS)

    Yuan, Min

    2018-05-01

    This study proposes a new method to simulate spatiotemporal complex multiple land uses by using classification and regression tree algorithm (CART) based CA model. In this model, we use classification and regression tree algorithm to calculate land class conversion probability, and combine neighborhood factor, random factor to extract cellular transformation rules. The overall Kappa coefficient is 0.8014 and the overall accuracy is 0.8821 in the land dynamic simulation results of the three gorges reservoir area from 2000 to 2010, and the simulation results are satisfactory.

  16. Fallow land effects on land-atmosphere interactions in California drought

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Melton, F. S.; Kueppers, L. M.

    2015-12-01

    The recent drought in California increased the area of fallow land, which is cropland not planted or irrigated per normal agricultural practice. The effects of fallow land on land-atmosphere interactions in drought years are not well studied, but theoretically should alter local energy balance and surface climate relative to normal years, which in turn could affect neighboring cropland. We examined these effects using a regional climate model (Weather Research and Forecasting model) coupled with a dynamic crop growth model (Community Land Model) that has an irrigation scheme to study the effects of fallow land in 2014, an extreme drought year in California. In our study, we used satellite-derived maps of cultivated and fallowed acreage, and defined summer fallow land in 2014 as the reduced percentage of cultivated land for each grid cell relative to the 2011 cultivated area (2011 was the most recent year following a winter with average or above average precipitation). Using a sensitivity experiment that kept large-scale climate boundary conditions constant, we found that fallow land resulted in even dryer and warmer weather that worsened the drought impact. Fallow land increased 2-meter air temperature by 0.1- 4 °C with 0-80% fallow land, mainly due to an increase in nighttime temperature. Fallow land warmed the atmosphere up to 850hpa during the day, and after sunset, the warmed atmosphere emitted downward longwave radiation that prevented the surface from rapidly cooling, and therefore resulted in warmer nights. Fallow land reduced near surface relative humidity by 5-30% and increased vapor pressure deficit by 0.5-2 kPa. These drier conditions increased the irrigation water demand in the nearby cropland: crops required 1-25% more irrigation with 10-80% fallow land within the same 10km grid cell. Our study suggests that fallow land has large impacts on land-atmosphere interactions and increases irrigation requirements in nearby cropland.

  17. The role of land use and environmental factors on microbial pollution of mountainous limestone aquifers

    NASA Astrophysics Data System (ADS)

    Allocca, V.; Celico, F.; Petrella, E.; Marzullo, G.; Naclerio, G.

    2008-07-01

    Limestone aquifers in Southern Italy are often affected by bacterial contamination produced by pasture and agriculture. The main goals of this study were (1) to analyze the role of land use and environmental factors on microbial contamination and, (2) to identify, at field scale, the most suitable indicator of fecal pollution, by comparing fecal coliforms and fecal enterococci. Analyzing surface and spring water, it was noted that both fecal indicators showed a significant decrease during the period characterized by freezing and/or freeze-thaw intervals. The data analysis shows that fecal coliforms are characterized by a significant decrease in population (3 orders of magnitude, at least) during the freezing period, while fecal enterococci are temporarily inhibited. A taxonomic classification of fecal enterococci detected in spring water samples was performed by the API 20 Strep system and by sequencing of the ribosomal 16S DNA genes. The results showed that freezing conditions did not cause any significant change on the set of enterococcal species.

  18. The Urban Intensive Land-use Evaluation in Xi’an, Based on Fuzzy Comprehensive Evaluation

    NASA Astrophysics Data System (ADS)

    Shi, Ru; Kang, Zhiyuan

    2018-01-01

    The intensive land-use is the basis of urban “stock optimization”, and scientific and reasonable evaluation is the important content of the land-intensive utilization. In this paper, through the survey of Xi’an urban land-use condition, we construct the suitable evaluation index system of Xi’an’ intensive land-use, by using Analytic Hierarchy Process (AHP) and Fuzzy Comprehensive Evaluation (FCE) of combination. And through the analysis of the influencing factors of land-intensive utilization, we provide a reference for the future development direction.

  19. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001-2013.

    PubMed

    Li, Gen; Zhang, Fangmin; Jing, Yuanshu; Liu, Yibo; Sun, Ge

    2017-10-15

    Land surface evapotranspiration (ET) is a central component of the Earth's global energy balance and water cycle. Understanding ET is important in quantifying the impacts of human influences on the hydrological cycle and thus helps improving water use efficiency and strengthening water use planning and watershed management. China has experienced tremendous land use and land cover changes (LUCC) as a result of urbanization and ecological restoration under a broad background of climate change. This study used MODIS data products to analyze how LUCC and climate change affected ET in China in the period 2001-2013. We examined the separate contribution to the estimated ET changes by combining LUCC and climate data. Results showed that the average annual ET in China decreased at a rate of -0.6mm/yr from 2001 to 2013. Areas in which ET decreased significantly were mainly distributed in the northwest China, the central of southwest China, and most regions of south central and east China. The trends of four climatic factors including air temperature, wind speed, sunshine duration, and relative humidity were determined, while the contributions of these four factors to ET were quantified by combining the ET and climate datasets. Among the four climatic factors, sunshine duration and wind speed had the greatest influence on ET. LUCC data from 2001 to 2013 showed that forests, grasslands and croplands in China mutually replaced each other. The reduction of forests had much greater effects on ET than change by other land cover types. Finally, through quantitative separation of the distinct effects of climate change and LUCC on ET, we conclude that climate change was the more significant than LULC change in influencing ET in China during the period 2001-2013. Effective water resource management and vegetation-based ecological restoration efforts in China must consider the effects of climate change on ET and water availability. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. 18 CFR 367.55 - Land and land rights.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... grading of land and rights-of-way and the damage costs associated with the construction and installation... to any structures or improvements located on the land sold. (f) The cost of buildings and other... acquisition of an interest in land the interest extends to buildings or other improvements (other than public...

  1. 18 CFR 367.55 - Land and land rights.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... grading of land and rights-of-way and the damage costs associated with the construction and installation... to any structures or improvements located on the land sold. (f) The cost of buildings and other... acquisition of an interest in land the interest extends to buildings or other improvements (other than public...

  2. 18 CFR 367.55 - Land and land rights.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... grading of land and rights-of-way and the damage costs associated with the construction and installation... to any structures or improvements located on the land sold. (f) The cost of buildings and other... acquisition of an interest in land the interest extends to buildings or other improvements (other than public...

  3. 18 CFR 367.55 - Land and land rights.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... grading of land and rights-of-way and the damage costs associated with the construction and installation... to any structures or improvements located on the land sold. (f) The cost of buildings and other... acquisition of an interest in land the interest extends to buildings or other improvements (other than public...

  4. Development of systems and techniques for landing an aircraft using onboard television

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Carr, P. C.; Winter, W. R.; Manke, J. A.

    1978-01-01

    A flight program was conducted to develop a landing technique with which a pilot could consistently and safely land a remotely piloted research vehicle (RPRV) without outside visual reference except through television. Otherwise, instrumentation was standard. Such factors as the selection of video parameters, the pilot's understanding of the television presentation, the pilot's ground cockpit environment, and the operational procedures for landing were considered. About 30 landings were necessary for a pilot to become sufficiently familiar and competent with the test aircraft to make powered approaches and landings with outside visual references only through television. When steep approaches and landings were made by remote control, the pilot's workload was extremely high. The test aircraft was used as a simulator for the F-15 RPRV, and as such was considered to be essential to the success of landing the F-15 RPRV.

  5. Impact of Land Model Calibration on Coupled Land-Atmosphere Prediction

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Harrison, Ken; Zhou, Shujia

    2012-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry and wet land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through calibration of the Noah land surface model using the new optimization and uncertainty estimation subsystem in NASA's Land Information System (LIS-OPT/UE). The impact of the calibration on the a) spinup of the land surface used as initial conditions, and b) the simulated heat and moisture states and fluxes of the coupled WRF simulations is then assessed. Changes in ambient weather and land-atmosphere coupling are evaluated along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Results indicate that the offline calibration leads to systematic improvements in land-PBL fluxes and near-surface temperature and humidity, and in the process provide guidance on the questions of what, how, and when to calibrate land surface models for coupled model prediction.

  6. Assessing the influence of land use land cover pattern, socio economic factors and air quality status to predict morbidity on the basis of logistic based regression model

    NASA Astrophysics Data System (ADS)

    Dixit, A.; Singh, V. K.

    2017-12-01

    Recent studies conducted by World Health Organisation (WHO) estimated that 92 % of the total world population are living in places where the air quality level has exceeded the WHO standard limit for air quality. This is due to the change in Land Use Land Cover (LULC) pattern, socio economic drivers and anthropogenic heat emission caused by manmade activity. Thereby, many prevalent human respiratory diseases such as lung cancer, chronic obstructive pulmonary disease and emphysema have increased in recent times. In this study, a quantitative relationship is developed between land use (built-up land, water bodies, and vegetation), socio economic drivers and air quality parameters using logistic based regression model over 7 different cities of India for the winter season of 2012 to 2016. Different LULC, socio economic, industrial emission sources, meteorological condition and air quality level from the monitoring stations are taken to estimate the influence on morbidity of each city. Results of correlation are analyzed between land use variables and monthly concentration of pollutants. These values range from 0.63 to 0.76. Similarly, the correlation value between land use variable with socio economic and morbidity ranges from 0.57 to 0.73. The performance of model is improved from 67 % to 79 % in estimating morbidity for the year 2015 and 2016 due to the better availability of observed data.The study highlights the growing importance of incorporating socio-economic drivers with air quality data for evaluating morbidity rate for each city in comparison to just change in quantitative analysis of air quality.

  7. Effect of land use land cover change on soil erosion potential in an agricultural watershed.

    PubMed

    Sharma, Arabinda; Tiwari, Kamlesh N; Bhadoria, P B S

    2011-02-01

    Universal soil loss equation (USLE) was used in conjunction with a geographic information system to determine the influence of land use and land cover change (LUCC) on soil erosion potential of a reservoir catchment during the period 1989 to 2004. Results showed that the mean soil erosion potential of the watershed was increased slightly from 12.11 t ha(-1) year(-1) in the year 1989 to 13.21 t ha(-1) year(-1) in the year 2004. Spatial analysis revealed that the disappearance of forest patches from relatively flat areas, increased in wasteland in steep slope, and intensification of cultivation practice in relatively more erosion-prone soil were the main factors contributing toward the increased soil erosion potential of the watershed during the study period. Results indicated that transition of other land use land cover (LUC) categories to cropland was the most detrimental to watershed in terms of soil loss while forest acted as the most effective barrier to soil loss. A p value of 0.5503 obtained for two-tailed paired t test between the mean erosion potential of microwatersheds in 1989 and 2004 also indicated towards a moderate change in soil erosion potential of the watershed over the studied period. This study revealed that the spatial location of LUC parcels with respect to terrain and associated soil properties should be an important consideration in soil erosion assessment process.

  8. Simulation of Regionally Ecological Land Based on a Cellular Automation Model: A Case Study of Beijing, China

    PubMed Central

    Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin

    2012-01-01

    Ecological land is like the “liver” of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem. PMID:23066410

  9. Simulation of regionally ecological land based on a cellular automation model: a case study of Beijing, China.

    PubMed

    Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin

    2012-08-01

    Ecological land is like the "liver" of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem.

  10. The landing flare: An analysis and flight-test investigation

    NASA Technical Reports Server (NTRS)

    Seckel, E.

    1975-01-01

    Results are given of an extensive investigation of conventional landing flares in general aviation type airplanes. A wide range of parameters influencing flare behavior are simulated in experimental landings in a variable-stability Navion. The most important feature of the flare is found to be the airplane's deceleration in the flare. Various effects on this are correlated in terms of the average flare load factor. Piloting technique is extensively discussed. Design criteria are presented.

  11. The ITE Land classification: Providing an environmental stratification of Great Britain.

    PubMed

    Bunce, R G; Barr, C J; Gillespie, M K; Howard, D C

    1996-01-01

    The surface of Great Britain (GB) varies continuously in land cover from one area to another. The objective of any environmentally based land classification is to produce classes that match the patterns that are present by helping to define clear boundaries. The more appropriate the analysis and data used, the better the classes will fit the natural patterns. The observation of inter-correlations between ecological factors is the basis for interpreting ecological patterns in the field, and the Institute of Terrestrial Ecology (ITE) Land Classification formalises such subjective ideas. The data inevitably comprise a large number of factors in order to describe the environment adequately. Single factors, such as altitude, would only be useful on a national basis if they were the only dominant causative agent of ecological variation.The ITE Land Classification has defined 32 environmental categories called 'land classes', initially based on a sample of 1-km squares in Great Britain but subsequently extended to all 240 000 1-km squares. The original classification was produced using multivariate analysis of 75 environmental variables. The extension to all squares in GB was performed using a combination of logistic discrimination and discriminant functions. The classes have provided a stratification for successive ecological surveys, the results of which have characterised the classes in terms of botanical, zoological and landscape features.The classification has also been applied to integrate diverse datasets including satellite imagery, soils and socio-economic information. A variety of models have used the structure of the classification, for example to show potential land use change under different economic conditions. The principal data sets relevant for planning purposes have been incorporated into a user-friendly computer package, called the 'Countryside Information System'.

  12. Linking land use changes to surface water quality variability in Lake Victoria: some insights from remote sensing

    NASA Astrophysics Data System (ADS)

    Mugo, R. M.; Limaye, A. S.; Nyaga, J. W.; Farah, H.; Wahome, A.; Flores, A.

    2016-12-01

    The water quality of inland lakes is largely influenced by land use and land cover changes within the lake's catchment. In Africa, some of the major land use changes are driven by a number of factors, which include urbanization, intensification of agricultural practices, unsustainable farm management practices, deforestation, land fragmentation and degradation. Often, the impacts of these factors are observable on changes in the land cover, and eventually in the hydrological systems. When the natural vegetation cover is reduced or changed, the surface water flow patterns, water and nutrient retention capacities are also changed. This can lead to high nutrient inputs into lakes, leading to eutrophication, siltation and infestation of floating aquatic vegetation. To assess the relationship between land use and land cover changes in part of the Lake Victoria Basin, a series of land cover maps were derived from Landsat imagery. Changes in land cover were identified through change maps and statistics. Further, the surface water chlorophyll-a concentration and turbidity were derived from MODIS-Aqua data for Lake Victoria. Chlrophyll-a and turbidity are good proxy indicators of nutrient inputs and siltation respectively. The trends in chlorophyll-a and turbidity concentrations were analyzed and compared to the land cover changes over time. Certain land cover changes related to agriculture and urban development were clearly identifiable. While these changes might not be solely responsible for variability in chlrophyll-a and turbidity concentrations in the lake, they are potentially contributing factors to this problem. This work illustrates the importance of addressing watershed degradation while seeking to solve water quality related problems.

  13. Linking Spatial Variations in Water Quality with Water and Land Management using Multivariate Techniques.

    PubMed

    Wan, Yongshan; Qian, Yun; Migliaccio, Kati White; Li, Yuncong; Conrad, Cecilia

    2014-03-01

    Most studies using multivariate techniques for pollution source evaluation are conducted in free-flowing rivers with distinct point and nonpoint sources. This study expanded on previous research to a managed "canal" system discharging into the Indian River Lagoon, Florida, where water and land management is the single most important anthropogenic factor influencing water quality. Hydrometric and land use data of four drainage basins were uniquely integrated into the analysis of 25 yr of monthly water quality data collected at seven stations to determine the impact of water and land management on the spatial variability of water quality. Cluster analysis (CA) classified seven monitoring stations into four groups (CA groups). All water quality parameters identified by discriminant analysis showed distinct spatial patterns among the four CA groups. Two-step principal component analysis/factor analysis (PCA/FA) was conducted with (i) water quality data alone and (ii) water quality data in conjunction with rainfall, flow, and land use data. The results indicated that PCA/FA of water quality data alone was unable to identify factors associated with management activities. The addition of hydrometric and land use data into PCA/FA revealed close associations of nutrients and color with land management and storm-water retention in pasture and citrus lands; total suspended solids, turbidity, and NO + NO with flow and Lake Okeechobee releases; specific conductivity with supplemental irrigation supply; and dissolved O with wetland preservation. The practical implication emphasizes the importance of basin-specific land and water management for ongoing pollutant loading reduction and ecosystem restoration programs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Biofuels on the landscape: Is "land sharing" preferable to "land sparing"?

    NASA Astrophysics Data System (ADS)

    DeLucia, E. H.; Anderson-Teixeira, K. J.; Duval, B. D.; Long, S. P.

    2012-12-01

    Widespread land use changes—and ensuing effects on biodiversity and ecosystem services—are expected as a result of expanding bioenergy production. Although almost all US production of ethanol today is from corn, it is envisaged that future ethanol production will also draw from cellulosic sources such as perennial grasses. In selecting optimal bioenergy crops, there is debate as to whether it is preferable from an environmental standpoint to cultivate bioenergy crops with high ecosystem services (a "land sharing" strategy) or to grow crops with lower ecosystem services but higher yield, thereby requiring less land to meet bioenergy demand (a "land sparing" strategy). Here, we develop a simple model to address this question. Assuming that bioenergy crops are competing with uncultivated land, our model calculates land requirements to meet a given bioenergy demand intensity based upon the yields of bioenergy crops and combines fractional land cover of each ecosystem type with its associated ecosystem services to determine whether land sharing or land sparing strategies maximize ecosystem services at the landscape level. We apply this model to a case in which climate protection through GHG regulation—an ecosystem's greenhouse gas value (GHGV)—is the ecosystem service of interest. We consider five bioenergy crops competing for land area with five unfarmed ecosystem types in the central and eastern US. Our results show that the relative advantages of land sparing and land sharing depend upon the type of ecosystem with which the bioenergy crop is competing for land; as the GHGV value of the unfarmed land increases, the preferable strategy shifts from land sharing to land sparing. This implies that, while it may be preferable to replace ecologically degraded land with high-GHGV, lower yielding bioenergy crops, average landscape GHGV will most often be maximized through high yielding bioenergy crops that leave more land for uncultivated, high-GHGV ecosystems. While

  15. Effects of spatial resolution and landscape structure on land cover characterization

    NASA Astrophysics Data System (ADS)

    Yang, Wenli

    This dissertation addressed problems in scaling, problems that are among the main challenges in remote sensing. The principal objective of the research was to investigate the effects of changing spatial scale on the representation of land cover. A second objective was to determine the relationship between such effects, characteristics of landscape structure and scaling procedures. Four research issues related to spatial scaling were examined. They included: (1) the upscaling of Normalized Difference Vegetation Index (NDVI); (2) the effects of spatial scale on indices of landscape structure; (3) the representation of land cover databases at different spatial scales; and (4) the relationships between landscape indices and land cover area estimations. The overall bias resulting from non-linearity of NDVI in relation to spatial resolution is generally insignificant as compared to other factors such as influences of aerosols and water vapor. The bias is, however, related to land surface characteristics. Significant errors may be introduced in heterogeneous areas where different land cover types exhibit strong spectral contrast. Spatially upscaled SPOT and TM NDVIs have information content comparable with the AVHRR-derived NDVI. Indices of landscape structure and spatial resolution are generally related, but the exact forms of the relationships are subject to changes in other factors including the basic patch unit constituting a landscape and the proportional area of foreground land cover under consideration. The extent of agreement between spatially aggregated coarse resolution land cover datasets and full resolution datasets changes with the properties of the original datasets, including the pixel size and class definition. There are close relationships between landscape structure and class areas estimated from spatially aggregated land cover databases. The relationships, however, do not permit extension from one area to another. Inversion calibration across different

  16. Land use dynamics in favorable and unfavorable areas of southwest Germany

    NASA Astrophysics Data System (ADS)

    Henkner, Jessica; Ahlrichs, Jan; Knopf, Thomas; Scholten, Thomas; Kühn, Peter

    2017-04-01

    Since the Neolithic Revolution and the beginning of agriculture in central Europe about 7.500 a ago human influence on the environment is increasing. Human activities created a cultural landscape during the Holocene, which led to quasi-natural relief formation. Colluvial deposits are the correlate sediments of human induced soil erosion on slopes and depict an excellent archive for land use and landscape history. The present study combines pedological, archaeological and palynological knowledge with AMS 14C and luminescence datings to build up a chronostratigraphy of colluvial deposits, thereby allowing the reconstruction of past land use and settlement dynamics in the Baar and the Black Forest (SW Germany). Compared with Black Forest the Baar is a favorable area for agricultural land use, where seven main phases of colluvial deposition could be detected. Increased colluviation, and thus land use intensity, took place during the younger Neolithic ( 3700 BCE), the early to middle Bronze Age ( 1400 BCE), the Iron Age ( 500 BCE), the Roman Empire ( 200 CE) and in three phases from the High Middle Ages onwards ( 1100 CE, 1300 CE, 1600 CE). The Black Forest low mountain range is an unfavorable area characterized by low temperatures, high precipitation and steep slopes. Nevertheless, human influence dates back to the Neolithic in the Black Forest. Minor colluvial deposition phases were detected before the Middle Ages and increased formation of colluvial deposits during the High Middle Ages ( 1100 CE) and the Modern Times (>1500 CE). This colluvial stratigraphy shows an intense land use of the Black Forest area from the Middle Ages onwards. The different land use dynamics in the Baar area compared to the Black Forest will be discussed against the paleoenvironmental conditions reconstructed from different archives. It is to analyze whether climate was the main determining factor for the settlement pattern in time and space or if there were other factors responsible. Such

  17. Land Ethics for Bureau of Land Management Employees

    Treesearch

    Duane DePaepe

    1992-01-01

    With increased public concern for public lands resource steward-ship, the Bureau of Land Management is more and more expected to make what is perceived as "right decisions." The ethical dimensions of often highly complex decision making processes have become more and more apparent. The baseline research presented here is designed to promote a land ethic...

  18. Optimal lunar soft landing trajectories using taboo evolutionary programming

    NASA Astrophysics Data System (ADS)

    Mutyalarao, M.; Raj, M. Xavier James

    A safe lunar landing is a key factor to undertake an effective lunar exploration. Lunar lander consists of four phases such as launch phase, the earth-moon transfer phase, circumlunar phase and landing phase. The landing phase can be either hard landing or soft landing. Hard landing means the vehicle lands under the influence of gravity without any deceleration measures. However, soft landing reduces the vertical velocity of the vehicle before landing. Therefore, for the safety of the astronauts as well as the vehicle lunar soft landing with an acceptable velocity is very much essential. So it is important to design the optimal lunar soft landing trajectory with minimum fuel consumption. Optimization of Lunar Soft landing is a complex optimal control problem. In this paper, an analysis related to lunar soft landing from a parking orbit around Moon has been carried out. A two-dimensional trajectory optimization problem is attempted. The problem is complex due to the presence of system constraints. To solve the time-history of control parameters, the problem is converted into two point boundary value problem by using the maximum principle of Pontrygen. Taboo Evolutionary Programming (TEP) technique is a stochastic method developed in recent years and successfully implemented in several fields of research. It combines the features of taboo search and single-point mutation evolutionary programming. Identifying the best unknown parameters of the problem under consideration is the central idea for many space trajectory optimization problems. The TEP technique is used in the present methodology for the best estimation of initial unknown parameters by minimizing objective function interms of fuel requirements. The optimal estimation subsequently results into an optimal trajectory design of a module for soft landing on the Moon from a lunar parking orbit. Numerical simulations demonstrate that the proposed approach is highly efficient and it reduces the minimum fuel

  19. Land subsidence threats and its management in the North Coast of Java

    NASA Astrophysics Data System (ADS)

    Sarah, D.; Soebowo, E.

    2018-02-01

    Cities on the north coast of Java such as Jakarta, Semarang, Pekalongan, and Surabaya are vulnerable to environmental pressures such as sea level change and land subsidence. Land subsidence can be caused by natural and anthropogenic processes. Geologically, the north coastal plain of Java consists of unconsolidated Holocene alluvial deposit. The recent alluvial deposit is prone to compaction, and further aggravated by anthropogenic forces such as groundwater extraction and land development. Understanding the complex interaction of natural and manmade factors is essential to establish mitigation strategy. Although the impacts of land subsidence are widely felt, many do not realize that land subsidence is taking place. This paper presents a brief review of the land subsidence threats in the North coast of Java and proposes a recommendation for suitable management response.

  20. Impacts of historic and projected land-cover, land-use, and land-management change on carbon and water fluxes: The Land Use Model Intercomparison Project (LUMIP)

    NASA Astrophysics Data System (ADS)

    Lawrence, D. M.; Lombardozzi, D. L.; Lawrence, P.; Hurtt, G. C.

    2017-12-01

    Human land-use activities have resulted in large changes to the Earth surface, with resulting implications for climate. In the future, land-use activities are likely to intensify to meet growing demands for food, fiber, and energy. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the broad question of impacts of land-use and land-cover change (LULCC) as well as more detailed science questions to get at process-level attribution, uncertainty, and data requirements in more depth and sophistication than possible in a multi-model context to date. LUMIP is multi-faceted and aims to advance our understanding of land-use change from several perspectives. In particular, LUMIP includes a factorial set of land-only simulations that differ from each other with respect to the specific treatment of land use or land management (e.g., irrigation active or not, crop fertilization active or not, wood harvest on or not), or in terms of prescribed climate. This factorial series of experiments serves several purposes and is designed to provide a detailed assessment of how the specification of land-cover change and land management affects the carbon, water, and energy cycle response to land-use change. The potential analyses that are possible through this set of experiments are vast. For example, comparing a control experiment with all land management active to an experiment with no irrigation allows a multi-model assessment of whether or not the increasing use of irrigation during the 20th century is likely to have significantly altered trends of regional water and energy fluxes (and therefore climate) and/or crop yield and carbon fluxes in agricultural regions. Here, we will present preliminary results from the factorial set of experiments utilizing the Community Land Model (CLM5). The analyses presented here will help guide multi-model analyses once the full set of LUMIP simulations are available.

  1. Effects of Land Use on the Predictability of Land-Atmosphere Fluxes and Moisture Transport in the North American Monsoon Region

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Mascaro, G.; White, D. D.; Vivoni, E. R.

    2014-12-01

    Southern Arizona and New Mexico receive 40-60% of their annual rainfall in the summer, as part of the North American Monsoon (NAM). Modeling studies suggest that 15-25% of this rainfall first falls on Mexican land, is transpired by vegetation, and subsequently is transported northward across the border to the US. The main source regions in Mexico include two primary landcover types in Sonora and Sinaloa: subtropical scrub and tropical deciduous forests in the foothills of the Sierra Madre Occidental; and large expanses of irrigated agriculture along the Gulf of California. The foothill ecosystems, known for their rapid greening and large transpiration rates at the onset of the monsoon, are under threat from deforestation for grazing activities. On the other hand, irrigated agriculture in both the winter and summer has shifted the seasonality of evaporative fluxes and introduced socio-economic factors into their interannual variability and predictability. In this study, we examine the differences in spatial and temporal characteristics of evapotranspiration yielded by current and pre-industrial land cover / land use. To this end, we employ the Variable Infiltration Capacity (VIC) land surface model at 1/16 degree resolution, driven by gridded meteorological observations and MODIS LAI, NDVI, and albedo products, across the NAM region (Arizona, New Mexico, and northern Mexico). We compare the magnitude and timing of land-atmosphere fluxes given by both pre-industrial and current land cover/use, as well as the land cover under several possible alternative land use scenarios. We identify the regions where the largest changes in magnitude and timing of evapotranspiration have occurred, as well as the regions and land use changes that could produce the largest changes in future evapotranspiration under different scenarios. Finally, we explore the consequences these effects have for the predictability of monsoon moisture transport.

  2. Land system change and food security: towards multi-scale land system solutions☆

    PubMed Central

    Verburg, Peter H; Mertz, Ole; Erb, Karl-Heinz; Haberl, Helmut; Wu, Wenbin

    2013-01-01

    Land system changes are central to the food security challenge. Land system science can contribute to sustainable solutions by an integrated analysis of land availability and the assessment of the tradeoffs associated with agricultural expansion and land use intensification. A land system perspective requires local studies of production systems to be contextualised in a regional and global context, while global assessments should be confronted with local realities. Understanding of land governance structures will help to support the development of land use policies and tenure systems that assist in designing more sustainable ways of intensification. Novel land systems should be designed that are adapted to the local context and framed within the global socio-ecological system. Such land systems should explicitly account for the role of land governance as a primary driver of land system change and food production. PMID:24143158

  3. Forest harvest patterns on private lands in the Cascade Mountains, Washington, USA

    USGS Publications Warehouse

    Soulard, Christopher E.; Walker, Jessica; Griffith, Glenn E.

    2017-01-01

    Forests in Washington State generate substantial economic revenue from commercial timber harvesting on private lands. To investigate the rates, causes, and spatial and temporal patterns of forest harvest on private tracts throughout the Cascade Mountains, we relied on a new generation of annual land-use/land-cover (LULC) products created from the application of the Continuous Change Detection and Classification (CCDC) algorithm to Landsat satellite imagery collected from 1985 to 2014. We calculated metrics of landscape pattern using patches of intact and harvested forest in each annual layer to identify changes throughout the time series. Patch dynamics revealed four distinct eras of logging trends that align with prevailing regulations and economic conditions. We used multiple logistic regression to determine the biophysical and anthropogenic factors that influence fine-scale selection of harvest stands in each time period. Results show that private lands forest cover became significantly reduced and more fragmented from 1985 to 2014. Variables linked to parameters of site conditions, location, climate, and vegetation greenness consistently distinguished harvest selection for each distinct era. This study demonstrates the utility of annual LULC data for investigating the underlying factors that influence land cover change.

  4. Simulating the hydrological impacts of inter-annual and seasonal variability in land use land cover change on streamflow

    NASA Astrophysics Data System (ADS)

    Taxak, A. K.; Ojha, C. S. P.

    2017-12-01

    Land use and land cover (LULC) changes within a watershed are recognised as an important factor affecting hydrological processes and water resources. LULC changes continuously not only in long term but also on the inter-annual and season level. Changes in LULC affects the interception, storage and moisture. A widely used approach in rainfall-runoff modelling through Land surface models (LSM)/ hydrological models is to keep LULC same throughout the model running period. In long term simulations where land use change take place during the run period, using a single LULC does not represent a true picture of ground conditions could result in stationarity of model responses. The present work presents a case study in which changes in LULC are incorporated by using multiple LULC layers. LULC for the study period were created using imageries from Landsat series, Sentinal, EO-1 ALI. Distributed, physically based Variable Infiltration Capacity (VIC) model was modified to allow inclusion of LULC as a time varying variable just like climate. The Narayani basin was simulated with LULC, leaf area index (LAI), albedo and climate data for 1992-2015. The results showed that the model simulation with varied parametrization approach has a large improvement over the conventional fixed parametrization approach in terms of long-term water balance. The proposed modelling approach could improve hydrological modelling for applications like land cover change studies, water budget studies etc.

  5. Human land use influences chronic wasting disease prevalence in mule deer

    USGS Publications Warehouse

    Farnsworth, Matthew L.; Wolfe, L.L.; Hobbs, N.T.; Burnham, K.P.; Williams, E.S.; Theobald, D.M.; Conner, M.M.; Miller, M.W.

    2005-01-01

    Human alteration of landscapes can affect the distribution, abundance, and behavior of wildlife. We explored the effects of human land use on the prevalence of chronic wasting disease (CWD) in mule deer (Odocoileus hemionus) populations residing in north-central Colorado. We chose best approximating models estimating CWD prevalence in relation to differences in human land use, sex, and geographic location. Prevalence was higher in developed areas and among male deer, suggesting anthropogenic influences on the occurrence of disease. We also found a relatively high degree of variation in prevalence across the three study sites, suggesting that spatial patterns in disease may be influenced by other factors operating at a broader, landscape scale. Our results suggest that multiple factors, including changes in land use, differences in exposure risk between sexes, and landscape-scaled heterogeneity, are associated with CWD prevalence in north-central Colorado.

  6. Lower extremity mechanics during landing after a volleyball block as a risk factor for anterior cruciate ligament injury.

    PubMed

    Zahradnik, David; Jandacka, Daniel; Uchytil, Jaroslav; Farana, Roman; Hamill, Joseph

    2015-02-01

    To compare lower extremity mechanics and energy absorption during two types of landing after a successful or unsuccessful block in volleyball and assess the risks of anterior cruciate ligament (ACL) injury. Cohort study. Fourteen elite male volleyball players (aged 24.5 ± 4.6 years; height 1.94 ± 0.06 m; mass 86.6 ± 7.6 kg). Subjects were required to land on force platforms using stick landing or step-back landing (with the right lower extremity stepping back away from the net) techniques after performing a standing block jump movement. Vertical ground reaction force (body weight); knee flexion (degrees); knee moments (Nm/kg); and hip, knee and ankle energy absorption (J/kg). The right lower extremity showed a greater first peak of vertical ground reaction force, a greater valgus moment, lower energy absorption by the knee, and higher energy absorption by the hip and ankle joints during step-back landing. The lower extremity may be exposed to a greater risk of ACL injury when stepping back from the net during the initial impact phase after a step-back landing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. 18 CFR 367.3890 - Account 389, Land and land rights.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 389, Land and land rights. 367.3890 Section 367.3890 Conservation of Power and Water Resources FEDERAL ENERGY... GAS ACT Service Company Property Chart of Accounts § 367.3890 Account 389, Land and land rights. This...

  8. 18 CFR 367.3890 - Account 389, Land and land rights.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Account 389, Land and land rights. 367.3890 Section 367.3890 Conservation of Power and Water Resources FEDERAL ENERGY... GAS ACT Service Company Property Chart of Accounts § 367.3890 Account 389, Land and land rights. This...

  9. Implication of Agricultural Land Use Change on Regional Climate Projection

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Agricultural land use plays an important role in land-atmosphere interaction. Agricultural activity is one of the most important processes driving human-induced land use land cover change (LULCC) in a region. In addition to future socioeconomic changes, climate-induced changes in crop yield represent another important factor shaping agricultural land use. In feedback, the resulting LULCC influences the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. Therefore, assessment of climate change impact on future agricultural land use and its feedback is of great importance in climate change study. In this study, to evaluate the feedback of projected land use changes to the regional climate in West Africa, we employed an asynchronous coupling between a regional climate model (RegCM) and a prototype land use projection model (LandPro). The LandPro model, which was developed to project the future change in agricultural land use and the resulting shift in natural vegetation in West Africa, is a spatially explicit model that can account for both climate and socioeconomic changes in projecting future land use changes. In the asynchronously coupled modeling framework, LandPro was run for every five years during the period of 2005-2050 accounting for climate-induced change in crop yield and socioeconomic changes to project the land use pattern by the mid-21st century. Climate data at 0.5˚ was derived from RegCM to drive the crop model DSSAT for each of the five-year periods to simulate crop yields, which was then provided as input data to LandPro. Subsequently, the land use land cover map required to run RegCM was updated every five years using the outputs from the LandPro simulations. Results from the coupled model simulations improve the understanding of climate change impact on future land use and the resulting feedback to regional climate.

  10. Land-based approach to evaluate sustainable land management and adaptive capacity of ecosystems/lands

    NASA Astrophysics Data System (ADS)

    Kust, German; Andreeva, Olga

    2015-04-01

    A number of new concepts and paradigms appeared during last decades, such as sustainable land management (SLM), climate change (CC) adaptation, environmental services, ecosystem health, and others. All of these initiatives still not having the common scientific platform although some agreements in terminology were reached, schemes of links and feedback loops created, and some models developed. Nevertheless, in spite of all these scientific achievements, the land related issues are still not in the focus of CC adaptation and mitigation. The last did not grow much beyond the "greenhouse gases" (GHG) concept, which makes land degradation as the "forgotten side of climate change" The possible decision to integrate concepts of climate and desertification/land degradation could be consideration of the "GHG" approach providing global solution, and "land" approach providing local solution covering other "locally manifesting" issues of global importance (biodiversity conservation, food security, disasters and risks, etc.) to serve as a central concept among those. SLM concept is a land-based approach, which includes the concepts of both ecosystem-based approach (EbA) and community-based approach (CbA). SLM can serve as in integral CC adaptation strategy, being based on the statement "the more healthy and resilient the system is, the less vulnerable and more adaptive it will be to any external changes and forces, including climate" The biggest scientific issue is the methods to evaluate the SLM and results of the SLM investments. We suggest using the approach based on the understanding of the balance or equilibrium of the land and nature components as the major sign of the sustainable system. Prom this point of view it is easier to understand the state of the ecosystem stress, size of the "health", range of adaptive capacity, drivers of degradation and SLM nature, as well as the extended land use, and the concept of environmental land management as the improved SLM approach

  11. A Land System representation for global assessments and land-use modeling.

    PubMed

    van Asselen, Sanneke; Verburg, Peter H

    2012-10-01

    Current global scale land-change models used for integrated assessments and climate modeling are based on classifications of land cover. However, land-use management intensity and livestock keeping are also important aspects of land use, and are an integrated part of land systems. This article aims to classify, map, and to characterize Land Systems (LS) at a global scale and analyze the spatial determinants of these systems. Besides proposing such a classification, the article tests if global assessments can be based on globally uniform allocation rules. Land cover, livestock, and agricultural intensity data are used to map LS using a hierarchical classification method. Logistic regressions are used to analyze variation in spatial determinants of LS. The analysis of the spatial determinants of LS indicates strong associations between LS and a range of socioeconomic and biophysical indicators of human-environment interactions. The set of identified spatial determinants of a LS differs among regions and scales, especially for (mosaic) cropland systems, grassland systems with livestock, and settlements. (Semi-)Natural LS have more similar spatial determinants across regions and scales. Using LS in global models is expected to result in a more accurate representation of land use capturing important aspects of land systems and land architecture: the variation in land cover and the link between land-use intensity and landscape composition. Because the set of most important spatial determinants of LS varies among regions and scales, land-change models that include the human drivers of land change are best parameterized at sub-global level, where similar biophysical, socioeconomic and cultural conditions prevail in the specific regions. © 2012 Blackwell Publishing Ltd.

  12. Sensing land pollution.

    NASA Technical Reports Server (NTRS)

    Bowden, L. W.

    1971-01-01

    Land pollution is described in numerous ways by various societies. Pollutants of land are material by-products of human activity and range from environmentally ineffective to positively toxic. The pollution of land by man is centuries old and correlates directly with economy, technology and population. In order to remotely sense land pollution, standards or thresholds must be established. Examples of the potential for sensing land pollution and quality are presented. The technological capabilities for remotely sensed land quality is far advanced over the judgment on how to use the sensed data. Until authoritative and directive decisions on land pollution policy are made, sensing of pollutants will be a random, local and academic affair.

  13. Polarization in the land distribution, land use and land cover change in the Amazon

    PubMed Central

    D'ANTONA, Alvaro; VANWEY, Leah; LUDEWIGS, Thomas

    2013-01-01

    The objective of this article is to present Polarization of Agrarian Structure as a single, more complete representation than models emphasizing rural exodus and consolidation of land into large agropastoral enterprises of the dynamics of changing land distribution, land use / cover, and thus the rural milieu of Amazonia. Data were collected in 2003 using social surveys on a sample of 587 lots randomly selected from among 5,086 lots on a cadastral map produced in the 1970s. Georeferencing of current property boundaries in the location of these previously demarcated lots allows us to relate sociodemographic and biophysical variables of the surveyed properties to the changes in boundaries that have occurred since the 1970s. As have other authors in other Amazonian regions, we found concentration of land ownership into larger properties. The approach we took, however, showed that changes in the distribution of land ownership is not limited to the appearance of larger properties, those with 200 ha or more; there also exists substantial division of earlier lots into properties with fewer than five hectares, many without any agropastoral use. These two trends are juxtaposed against the decline in establishments with between five and 200 ha. The variation across groups in land use / land cover and population distribution shows the necessity of developing conceptual models, whether from socioeconomic, demographic or environmental perspectives, look beyond a single group of people or properties. PMID:24639597

  14. Land

    EPA Pesticide Factsheets

    The ROE is divided into 5 themes: Air, Water, Land, Human Exposure and Health and Ecological Condition. From these themes, the report indicators address fundamental questions that the ROE attempts to answer. For Land there are 5 questions.

  15. Using Resource Economics to Anticipate Forest Land Use Change in the U.S. Mid-Atlantic Region

    Treesearch

    Peter J. Parks; Ian W. Hardie; Cheryl A. Tedder; David N. Wear

    2000-01-01

    Demands for forest, farm, and developed land are evolving in the U.S. mid-Atlantic region. The demand for land in developed uses, as well as demands for various forest and farm products are changing in response to population growth, demographic shifts, and market forces. As demand factors change so do relative land values. Land area in future forest, farm, and...

  16. Analysis of historical forest fire regime in Madrid region (1984-2010) and its relation with land-use/land-cover changes

    NASA Astrophysics Data System (ADS)

    Gómez-Nieto, Israel; Martín, María del Pilar; Salas, Francisco Javier; Gallardo, Marta

    2013-04-01

    Understanding the interaction between natural and socio-economic factors that determine fire regime is essential to make accurate projections and impact assessments. However, this requires having accurate historical, systematic, homogeneous and spatially explicit information on fire occurrence. Fire databases usually have serious limitations in this regard; therefore other sources of information, such as remote sensing, have emerged as alternatives to generate optimal fire maps on various spatial and temporal scales. Several national and international projects work in order to generate information to study the factors that determine the current fire regime and its future evolution. This work is included in the framework of the project "Forest fires under climate, social and economic Changes in Europe, the Mediterranean and other fire-affected areas of the World" (FUME http://www.fumeproject.eu), which aims to study the changes and factors related to fire regimes through time to determine the potential impacts on vegetation in Mediterranean regions and concrete steps to address future risk scenarios. We analyzed the changes in the fire regime in Madrid region (Spain) in the past three decades (1984-2010) and its relation to land use changes. We identified and mapped fires that have occurred in the region during those years using Landsat satellite images by combining digital techniques and visual analysis. The results show a clear cyclical behaviour of the fire, with years of high incidence (as 1985, 2000 and 2003, highlighted by the number of fires and the area concerned, over 2000 ha) followed by another with a clear occurrence decrease. At the same time, we analyzed the land use changes that have occurred in Madrid region between the early 80s and mid-2000s using as reference the CORINE Land-cover maps (1990, 2000 and 2006) and the Vegetation and Land Use map of the Community of Madrid, 1982. We studied the relationship between fire regimes and observed land

  17. A Meta-Analysis of Global Urban Land Expansion

    PubMed Central

    Seto, Karen C.; Fragkias, Michail; Güneralp, Burak; Reilly, Michael K.

    2011-01-01

    The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km2 from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km2 and 12,568,000 km2, with an estimate of 1,527,000 km2 more likely. PMID:21876770

  18. [Study of the microwave emissivity characteristics over different land cover types].

    PubMed

    Zhang, Yong-Pan; Jiang, Ling-Mei; Qiu, Yu-Bao; Wu, Sheng-Li; Shi, Jian-Cheng; Zhang, Li-Xin

    2010-06-01

    The microwave emissivity over land is very important for describing the characteristics of the lands, and it is also a key factor for retrieving the parameters of land and atmosphere. Different land covers have their emission behavior as a function of structure, water content, and surface roughness. In the present study the global land surface emissivities were calculated using six month (June, 2003-August, 2003, Dec, 2003-Feb, 2004) AMSR-E L2A brightness temperature, MODIS land surface temperature and the layered atmosphere temperature, and humidity and pressure profiles data retrieved from MODIS/Aqua under clear sky conditions. With the information of IGBP land cover types, "pure" pixels were used, which are defined when the fraction cover of each land type is larger than 85%. Then, the emissivity of sixteen land covers at different frequencies, polarization and their seasonal variation were analyzed respectively. The results show that the emissivity of vegetation including forests, grasslands and croplands is higher than that over bare soil, and the polarization difference of vegetation is smaller than that of bare soil. In summer, the emissivity of vegetation is relatively stable because it is in bloom, therefore the authors can use it as its emissivity in our microwave emissivity database over different land cover types. Furthermore, snow cover can heavily impact the change in land cover emissivity, especially in winter.

  19. Factors Contributing to Land-Use Change in the Hardwood Rangelands of Two Central Sierra Nevadan Counties

    Treesearch

    Sharon G. Johnson

    1997-01-01

    In many parts of California, the rate and progression of land use change in the hardwood rangeland depend upon the decisions of ranchers. As major landowners in these regions, a rancher’s decision to subdivide or sell for development are significant moves toward land use change. In many instances, a single landowner decision may effect the disposition of thousands of...

  20. Spatio-temporal Characteristics of Land Use Land Cover Change Driven by Large Scale Land Transactions in Cambodia

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Smith, J. C.; Hijmans, R. J.

    2017-12-01

    Since mid-1990s, the Cambodian government granted nearly 300 `Economic Land Concessions' (ELCs), occupying approximately 2.3 million ha to foreign and domestic organizations (primarily agribusinesses). The majority of Cambodian ELC deals have been issued in areas of both relatively low population density and low agricultural productivity, dominated by smallholder production. These regions often contain highly biodiverse areas, thereby increasing the ecological cost associated with land clearing for extractive purposes. These large-scale land transactions have also resulted in substantial and rapid changes in land-use patterns and agriculture practices by smallholder farmers. In this study, we investigated the spatio-temporal characteristics of land use change associated with large-scale land transactions across Cambodia using multi-temporal multi-reolution remote sensing data. We identified major regions of deforestation during the last two decades using Landsat archive, global forest change data (2000-2014) and georeferenced database of ELC deals. We then mapped the deforestation and land clearing within ELC boundaries as well as areas bordering or near ELCs to quantify the impact of ELCs on local communities. Using time-series from MODIS Vegetation Indices products for the study period, we also estimated the time period over which any particular ELC deal initiated its proposed activity. We found evidence of similar patterns of land use change outside the boundaries of ELC deals which may be associated with i) illegal land encroachments by ELCs and/or ii) new agricultural practices adopted by local farmers near ELC boundaries. We also detected significant time gaps between ELC deal granting dates and initiation of land clearing for ELC purposes. Interestingly, we also found that not all designated areas for ELCs were put into effect indicating the possible proliferation of speculative land deals. This study demonstrates the potential of remote sensing techniques

  1. Accounting for land use in life cycle assessment: The value of NPP as a proxy indicator to assess land use impacts on ecosystems.

    PubMed

    Taelman, Sue Ellen; Schaubroeck, Thomas; De Meester, Steven; Boone, Lieselot; Dewulf, Jo

    2016-04-15

    Terrestrial land and its resources are finite, though, for economic and socio-cultural needs of humans, these natural resources are further exploited. It highlights the need to quantify the impact humans possibly have on the environment due to occupation and transformation of land. As a starting point of this paper (1(st) objective), the land use activities, which may be mainly socio-culturally or economically oriented, are identified in addition to the natural land-based processes and stocks and funds that can be altered due to land use. To quantify the possible impact anthropogenic land use can have on the natural environment, linked to a certain product or service, life cycle assessment (LCA) is a tool commonly used. During the last decades, many indicators are developed within the LCA framework in an attempt to evaluate certain environmental impacts of land use. A second objective of this study is to briefly review these indicators and to categorize them according to whether they assess a change in the asset of natural resources for production and consumption or a disturbance of certain ecosystem processes, i.e. ecosystem health. Based on these findings, two enhanced proxy indicators are proposed (3(rd) objective). Both indicators use net primary production (NPP) loss (potential NPP in the absence of humans minus remaining NPP after land use) as a relevant proxy to primarily assess the impact of land use on ecosystem health. As there are two approaches to account for the natural and productive value of the NPP remaining after land use, namely the Human Appropriation of NPP (HANPP) and hemeroby (or naturalness) concepts, two indicators are introduced and the advantages and limitations compared to state-of-the-art NPP-based land use indicators are discussed. Exergy-based spatially differentiated characterization factors (CFs) are calculated for several types of land use (e.g., pasture land, urban land). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Land Capability Potential Index (LCPI) for the Lower Missouri River Valley

    USGS Publications Warehouse

    Jacobson, Robert B.; Chojnacki, Kimberly A.; Reuter, Joanna M.

    2007-01-01

    The Land Capability Potential Index (LCPI) was developed to serve as a relatively coarse-scale index to delineate broad land capability classes in the valley of the Lower Missouri River. The index integrates fundamental factors that determine suitability of land for various uses, and may provide a useful mechanism to guide land-management decisions. The LCPI was constructed from integration of hydrology, hydraulics, land-surface elevations, and soil permeability (or saturated hydraulic conductivity) datasets for an area of the Lower Missouri River, river miles 423–670. The LCPI estimates relative wetness based on intersecting water-surface elevations, interpolated from measurements or calculated from hydraulic models, with a high-resolution land-surface elevation dataset. The potential for wet areas to retain or drain water is assessed using soil-drainage classes that are estimated from saturated hydraulic conductivity of surface soils. Terrain mapping that delineates areas with convex, concave, and flat parts of the landscape provides another means to assess tendency of landscape patches to retain surface water.

  3. Land use allocation model considering climate change impact

    NASA Astrophysics Data System (ADS)

    Lee, D. K.; Yoon, E. J.; Song, Y. I.

    2017-12-01

    In Korea, climate change adaptation plans are being developed for each administrative district based on impact assessments constructed in various fields. This climate change impact assessments are superimposed on the actual space, which causes problems in land use allocation because the spatial distribution of individual impacts may be different each other. This implies that trade-offs between climate change impacts can occur depending on the composition of land use. Moreover, the actual space is complexly intertwined with various factors such as required area, legal regulations, and socioeconomic values, so land use allocation in consideration of climate change can be very difficult problem to solve (Liu et al. 2012; Porta et al. 2013).Optimization techniques can generate a sufficiently good alternatives for land use allocation at the strategic level if only the fitness function of relationship between impact and land use composition are derived. It has also been noted that land use optimization model is more effective than the scenario-based prediction model in achieving the objectives for problem solving (Zhang et al. 2014). Therefore in this study, we developed a quantitative tool, MOGA (Multi Objective Genetic Algorithm), which can generate a comprehensive land use allocations considering various climate change impacts, and apply it to the Gangwon-do in Korea. Genetic Algorithms (GAs) are the most popular optimization technique to address multi-objective in land use allocation. Also, it allows for immediate feedback to stake holders because it can run a number of experiments with different parameter values. And it is expected that land use decision makers and planners can formulate a detailed spatial plan or perform additional analysis based on the result of optimization model. Acknowledgments: This work was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program (Project number: 2014001310006)"

  4. Fatal Pediatric Motor Vehicle Crashes on U.S. Native American Indian Lands Compared to Adjacent Non-Indian Lands: Restraint Use and Injury by Driver, Vehicle, Roadway and Crash Characteristics.

    PubMed

    Oh, Shin Ah; Liu, Chang; Pressley, Joyce C

    2017-10-25

    There are large disparities in American Indian pediatric motor vehicle (MV) mortality with reports that several factors may contribute. The Fatality Analysis Reporting System for 2000-2014 was used to examine restraint use for occupants aged 0-19 years involved in fatal MV crashes on Indian lands ( n = 1667) and non-Indian lands in adjacent states ( n = 126,080). SAS GLIMMIX logistic regression with random effects was used to generate odds ratios (OR) with 95% confidence intervals (CI). Restraint use increased in both areas over the study period with restraint use on Indian lands being just over half that of non-Indian lands for drivers (36.8% vs. 67.8%, p < 0.0001) and for pediatric passengers (33.1% vs. 59.3%, p < 0.0001). Driver restraint was the strongest predictor of passenger restraint on both Indian and non-Indian lands exerting a stronger effect in ages 13-19 than in 0-12 year olds. Valid licensed driver was a significant predictor of restraint use in ages 0-12 years. Passengers in non-cars (SUVs, vans and pickup trucks) were less likely to be restrained. Restraint use improved over the study period in both areas, but disparities failed to narrow as restraint use remains lower and driver, vehicle and crash risk factors higher for MV mortality on Indian lands.

  5. Fatal Pediatric Motor Vehicle Crashes on U.S. Native American Indian Lands Compared to Adjacent Non-Indian Lands: Restraint Use and Injury by Driver, Vehicle, Roadway and Crash Characteristics

    PubMed Central

    Oh, Shin Ah; Liu, Chang

    2017-01-01

    There are large disparities in American Indian pediatric motor vehicle (MV) mortality with reports that several factors may contribute. The Fatality Analysis Reporting System for 2000–2014 was used to examine restraint use for occupants aged 0–19 years involved in fatal MV crashes on Indian lands (n = 1667) and non-Indian lands in adjacent states (n = 126,080). SAS GLIMMIX logistic regression with random effects was used to generate odds ratios (OR) with 95% confidence intervals (CI). Restraint use increased in both areas over the study period with restraint use on Indian lands being just over half that of non-Indian lands for drivers (36.8% vs. 67.8%, p < 0.0001) and for pediatric passengers (33.1% vs. 59.3%, p < 0.0001). Driver restraint was the strongest predictor of passenger restraint on both Indian and non-Indian lands exerting a stronger effect in ages 13–19 than in 0–12 year olds. Valid licensed driver was a significant predictor of restraint use in ages 0–12 years. Passengers in non-cars (SUVs, vans and pickup trucks) were less likely to be restrained. Restraint use improved over the study period in both areas, but disparities failed to narrow as restraint use remains lower and driver, vehicle and crash risk factors higher for MV mortality on Indian lands. PMID:29068393

  6. Comparison of multinomial logistic regression and logistic regression: which is more efficient in allocating land use?

    NASA Astrophysics Data System (ADS)

    Lin, Yingzhi; Deng, Xiangzheng; Li, Xing; Ma, Enjun

    2014-12-01

    Spatially explicit simulation of land use change is the basis for estimating the effects of land use and cover change on energy fluxes, ecology and the environment. At the pixel level, logistic regression is one of the most common approaches used in spatially explicit land use allocation models to determine the relationship between land use and its causal factors in driving land use change, and thereby to evaluate land use suitability. However, these models have a drawback in that they do not determine/allocate land use based on the direct relationship between land use change and its driving factors. Consequently, a multinomial logistic regression method was introduced to address this flaw, and thereby, judge the suitability of a type of land use in any given pixel in a case study area of the Jiangxi Province, China. A comparison of the two regression methods indicated that the proportion of correctly allocated pixels using multinomial logistic regression was 92.98%, which was 8.47% higher than that obtained using logistic regression. Paired t-test results also showed that pixels were more clearly distinguished by multinomial logistic regression than by logistic regression. In conclusion, multinomial logistic regression is a more efficient and accurate method for the spatial allocation of land use changes. The application of this method in future land use change studies may improve the accuracy of predicting the effects of land use and cover change on energy fluxes, ecology, and environment.

  7. A Generalized Deforestation and Land-Use Change Scenario Generator for Use in Climate Modelling Studies

    PubMed Central

    Tompkins, Adrian Mark; Caporaso, Luca; Biondi, Riccardo; Bell, Jean Pierre

    2015-01-01

    A new deforestation and land-use change scenario generator model (FOREST-SAGE) is presented that is designed to interface directly with dynamic vegetation models used in latest generation earth system models. The model requires a regional-scale scenario for aggregate land-use change that may be time-dependent, provided by observational studies or by regional land-use change/economic models for future projections. These land-use categories of the observations/economic model are first translated into equivalent plant function types used by the particular vegetation model, and then FOREST-SAGE disaggregates the regional-scale scenario to the local grid-scale of the earth system model using a set of risk-rules based on factors such as proximity to transport networks, distance weighted population density, forest fragmentation and presence of protected areas and logging concessions. These rules presently focus on the conversion of forest to agriculture and pasture use, but could be generalized to other land use change conversions. After introducing the model, an evaluation of its performance is shown for the land-cover changes that have occurred in the Central African Basin from 2001–2010 using retrievals from MODerate Resolution Imaging Spectroradiometer Vegetation Continuous Field data. The model is able to broadly reproduce the spatial patterns of forest cover change observed by MODIS, and the use of the local-scale risk factors enables FOREST-SAGE to improve land use change patterns considerably relative to benchmark scenarios used in the latest Coupled Model Intercomparison Project integrations. The uncertainty to the various risk factors is investigated using an ensemble of investigations, and it is shown that the model is sensitive to the population density, forest fragmentation and reforestation factors specified. PMID:26394392

  8. Land use changes and its driving forces in hilly ecological restoration area based on gis and rs of northern china

    PubMed Central

    Gao, Peng; Niu, Xiang; Wang, Bing; Zheng, Yunlong

    2015-01-01

    Land use change is one of the important aspects of the regional ecological restoration research. With remote sensing (RS) image in 2003, 2007 and 2012, using geographic information system (GIS) technologies, the land use pattern changes in Yimeng Mountain ecological restoration area in China and its driving force factors were studied. Results showed that: (1) Cultivated land constituted the largest area during 10 years, and followed by forest land and grass land; cultivated land and unused land were reduced by 28.43% and 44.32%, whereas forest land, water area and land for water facilities and others were increased. (2) During 2003–2007, forest land change showed the largest, followed by unused land and grass land; however, during 2008–2012, water area and land for water facilities change showed the largest, followed by grass land and unused land. (3) Land use degree was above the average level, it was in the developing period during 2003–2007 and in the degenerating period during 2008–2012. (4) Ecological Restoration Projects can greatly change the micro topography, increase vegetation coverage, and then induce significant changes in the land use distribution, which were the main driving force factors of the land use pattern change in the ecological restoration area. PMID:26047160

  9. Effects of land use and land cover on selected soil quality indicators in the headwater area of the Blue Nile basin of Ethiopia.

    PubMed

    Teferi, Ermias; Bewket, Woldeamlak; Simane, Belay

    2016-02-01

    Understanding changes in soil quality resulting from land use and land management changes is important to design sustainable land management plans or interventions. This study evaluated the influence of land use and land cover (LULC) on key soil quality indicators (SQIs) within a small watershed (Jedeb) in the Blue Nile Basin of Ethiopia. Factor analysis based on principal component analysis (PCA) was used to determine different SQIs. Surface (0-15 cm) soil samples with four replications were collected from five main LULC types in the watershed (i.e., natural woody vegetation, plantation forest, grassland, cultivated land, and barren land) and at two elevation classes (upland and midland), and 13 soil properties were measured for each replicate. A factorial (2 × 5) multivariate analysis of variance (MANOVA) showed that LULC and altitude together significantly affected organic matter (OM) levels. However, LULC alone significantly affected bulk density and altitude alone significantly affected bulk density, soil acidity, and silt content. Afforestation of barren land with eucalypt trees can significantly increase the soil OM in the midland part but not in the upland part. Soils under grassland had a significantly higher bulk density than did soils under natural woody vegetation indicating that de-vegetation and conversion to grassland could lead to soil compaction. Thus, the historical LULC change in the Jedeb watershed has resulted in the loss of soil OM and increased soil compaction. The study shows that a land use and management system can be monitored if it degrades or maintains or improves the soil using key soil quality indicators.

  10. A global dataset of crowdsourced land cover and land use reference data.

    PubMed

    Fritz, Steffen; See, Linda; Perger, Christoph; McCallum, Ian; Schill, Christian; Schepaschenko, Dmitry; Duerauer, Martina; Karner, Mathias; Dresel, Christopher; Laso-Bayas, Juan-Carlos; Lesiv, Myroslava; Moorthy, Inian; Salk, Carl F; Danylo, Olha; Sturn, Tobias; Albrecht, Franziska; You, Liangzhi; Kraxner, Florian; Obersteiner, Michael

    2017-06-13

    Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general.

  11. A global dataset of crowdsourced land cover and land use reference data

    PubMed Central

    Fritz, Steffen; See, Linda; Perger, Christoph; McCallum, Ian; Schill, Christian; Schepaschenko, Dmitry; Duerauer, Martina; Karner, Mathias; Dresel, Christopher; Laso-Bayas, Juan-Carlos; Lesiv, Myroslava; Moorthy, Inian; Salk, Carl F.; Danylo, Olha; Sturn, Tobias; Albrecht, Franziska; You, Liangzhi; Kraxner, Florian; Obersteiner, Michael

    2017-01-01

    Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general. PMID:28608851

  12. Land cover and topography affect the land transformation caused by wind facilities

    USGS Publications Warehouse

    Diffendorfer, Jay E.; Compton, Roger W.

    2014-01-01

    Land transformation (ha of surface disturbance/MW) associated with wind facilities shows wide variation in its reported values. In addition, no studies have attempted to explain the variation across facilities. We digitized land transformation at 39 wind facilities using high resolution aerial imagery. We then modeled the effects of turbine size, configuration, land cover, and topography on the levels of land transformation at three spatial scales. The scales included strings (turbines with intervening roads only), sites (strings with roads connecting them, buried cables and other infrastructure), and entire facilities (sites and the roads or transmission lines connecting them to existing infrastructure). An information theoretic modeling approach indicated land cover and topography were well-supported variables affecting land transformation, but not turbine size or configuration. Tilled landscapes, despite larger distances between turbines, had lower average land transformation, while facilities in forested landscapes generally had the highest land transformation. At site and string scales, flat topographies had the lowest land transformation, while facilities on mesas had the largest. The results indicate the landscape in which the facilities are placed affects the levels of land transformation associated with wind energy. This creates opportunities for optimizing wind energy production while minimizing land cover change. In addition, the results indicate forecasting the impacts of wind energy on land transformation should include the geographic variables affecting land transformation reported here.

  13. Land Cover and Topography Affect the Land Transformation Caused by Wind Facilities

    PubMed Central

    Diffendorfer, Jay E.; Compton, Roger W.

    2014-01-01

    Land transformation (ha of surface disturbance/MW) associated with wind facilities shows wide variation in its reported values. In addition, no studies have attempted to explain the variation across facilities. We digitized land transformation at 39 wind facilities using high resolution aerial imagery. We then modeled the effects of turbine size, configuration, land cover, and topography on the levels of land transformation at three spatial scales. The scales included strings (turbines with intervening roads only), sites (strings with roads connecting them, buried cables and other infrastructure), and entire facilities (sites and the roads or transmission lines connecting them to existing infrastructure). An information theoretic modeling approach indicated land cover and topography were well-supported variables affecting land transformation, but not turbine size or configuration. Tilled landscapes, despite larger distances between turbines, had lower average land transformation, while facilities in forested landscapes generally had the highest land transformation. At site and string scales, flat topographies had the lowest land transformation, while facilities on mesas had the largest. The results indicate the landscape in which the facilities are placed affects the levels of land transformation associated with wind energy. This creates opportunities for optimizing wind energy production while minimizing land cover change. In addition, the results indicate forecasting the impacts of wind energy on land transformation should include the geographic variables affecting land transformation reported here. PMID:24558449

  14. A Coupled Natural-Human Modeling of the Land Loss Probability in the Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Cai, H.; Lam, N.; Zou, L.

    2017-12-01

    The Mississippi River Delta (MRD) is one of the most environmentally threatened areas in the United States. The area has been suffering substantial land loss during the past decades. Land loss in the MRD has been a subject of intense research by many researchers from multiple disciplines, aiming at mitigating the land loss process and its potential damage. A majority of land loss projections were derived solely from the natural processes, such as sea level rise, regional subsidence, and reduced sediment flows. However, sufficient evidence has shown that land loss in the MRD also relates to human-induced factors such as land fragmentation, neighborhood effects, urbanization, energy industrialization, and marine transportation. How to incorporate both natural and human factors into the land loss modeling stays a huge challenge. Using a coupled-natural and human (CNH) approach can help uncover the complex mechanism of land loss in the MRD, and provide more accurate spatiotemporal projection of land loss patterns and probability. This study uses quantitative approaches to investigate the relationships between land loss and a wide range of socio-ecological variables in the MRD. A model of land loss probability based on selected socio-ecological variables and its neighborhood effects will be derived through variogram and regression analyses. Then, we will simulate the land loss probability and patterns under different scenarios such as sea-level rise, changes in storm frequency and strength, and changes in population to evaluate the sustainability of the MRD. The outcome of this study will be a layer of pixels with information on the probability of land-water conversion. Knowledge gained from this study will provide valuable insights into the optimal mitigation strategies of land loss prevention and restoration and help build long-term sustainability in the Mississippi River Delta.

  15. Land crabs as key drivers in tropical coastal forest recruitment

    USGS Publications Warehouse

    Lindquist, E.S.; Krauss, K.W.; Green, P.T.; O'Dowd, D. J.; Sherman, P.M.; Smith, T. J.

    2009-01-01

    Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems-mangroves, island maritime forests, and mainland coastal terrestrial forests-where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests. ?? 2009 Cambridge Philosophical Society.

  16. Classification of Land Cover and Land Use Based on Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Yang, Chun; Rottensteiner, Franz; Heipke, Christian

    2018-04-01

    Land cover describes the physical material of the earth's surface, whereas land use describes the socio-economic function of a piece of land. Land use information is typically collected in geospatial databases. As such databases become outdated quickly, an automatic update process is required. This paper presents a new approach to determine land cover and to classify land use objects based on convolutional neural networks (CNN). The input data are aerial images and derived data such as digital surface models. Firstly, we apply a CNN to determine the land cover for each pixel of the input image. We compare different CNN structures, all of them based on an encoder-decoder structure for obtaining dense class predictions. Secondly, we propose a new CNN-based methodology for the prediction of the land use label of objects from a geospatial database. In this context, we present a strategy for generating image patches of identical size from the input data, which are classified by a CNN. Again, we compare different CNN architectures. Our experiments show that an overall accuracy of up to 85.7 % and 77.4 % can be achieved for land cover and land use, respectively. The classification of land cover has a positive contribution to the classification of the land use classification.

  17. Constraints and Approach for Selecting the Mars Surveyor '01 Landing Site

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Bridges, N.; Gilmore, M.; Haldemann, A.; Parker, T.; Saunders, R.; Spencer, D.; Smith, J.; Weitz, C.

    1999-01-01

    There are many similarities between the Mars Surveyor '01 (MS '01) landing site selection process and that of Mars Pathfinder. The selection process includes two parallel activities in which engineers define and refine the capabilities of the spacecraft through design, testing and modeling and scientists define a set of landing site constraints based on the spacecraft design and landing scenario. As for Pathfinder, the safety of the site is without question the single most important factor, for the simple reason that failure to land safely yields no science and exposes the mission and program to considerable risk. The selection process must be thorough and defensible and capable of surviving multiple withering reviews similar to the Pathfinder decision. On Pathfinder, this was accomplished by attempting to understand the surface properties of sites using available remote sensing data sets and models based on them. Science objectives are factored into the selection process only after the safety of the site is validated. Finally, as for Pathfinder, the selection process is being done in an open environment with multiple opportunities for community involvement including open workshops, with education and outreach opportunities.

  18. Constraints, Approach, and Status of Mars Surveyor 2001 Landing Site Selection

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Bridges, N.; Briggs, G.; Gilmore, M.; Haldemann, A.; Parker, T.; Saunders, R.; Spencer, D.; Smith, J.; Soderblom, L.

    1999-01-01

    There are many similarities between the Mars Surveyor '01 (MS '01) landing site selection process and that of Mars Pathfinder. The selection process includes two parallel activities in which engineers define and refine the capabilities of the spacecraft through design, testing and modeling and scientists define a set of landing site constraints based on the spacecraft design and landing scenario. As for Pathfinder, the safety of the site is without question the single most important factor, for the simple reason that failure to land safely yields no science and exposes the mission and program to considerable risk. The selection process must be thorough and defensible and capable of surviving multiple withering reviews similar to the Pathfinder decision. On Pathfinder, this was accomplished by attempting to understand the surface properties of sites using available remote sensing data sets and models based on them. Science objectives are factored into the selection process only after the safety of the site is validated. Finally, as for Pathfinder, the selection process is being done in an open environment with multiple opportunities for community involvement including open workshops, with education and outreach opportunities. Additional information is contained in the original extended abstract.

  19. GIS Applications in Land Management: The Loss of High Quality Land to Development in Central Mississippi from 1987–2002

    PubMed Central

    Twumasi, Yaw A.; Merem, Edmund C.

    2005-01-01

    The socio-economic trends and history of Central Mississippi reveal a major rural influence based upon a dependence on agricultural activities as part of the economic engine driving the state’s economy. Yet, in the last several years, the amount of agricultural land in the counties continues to decline. Similar changes in other variables associated with agricultural land use and the continuity of farming in the state have also been changing. Indeed, under the pressure of urban growth, some farmers are forced to use less productive soils or have abandoned the agricultural business. Considering the gravity of the problem and the implications for sustainable development, public concern has increased in the state of Mississippi that urbanization and other factors may be eroding potential farmland. Given the effects of the current trends on the future capacity to produce food items, there are concerns that the growing incidence of farmland loss may also erode the basis for sustainable use of agricultural land, biodiversity and protection of the state’s ecological treasures. Notwithstanding the gravity of these trends, no major effort in the literature has aimed at documenting the incidence of agricultural land loss and the linkages to urbanization in the region of Central Mississippi. What changes have taken place in the size of agricultural land within the counties and what factors are responsible for it? This paper examines the issue of farmland loss in Central Mississippi with a focus at the county level between 1987 and 2002 from a temporal-spatial perspective. In terms of methodology, the paper uses a mixed scale approach based upon the existing literature. Data were drawn from the United States Census databases of Population and Agriculture. This information is analyzed with basic descriptive statistics and GIS with particular attention to the spatial trends at the county level. Results indicate that the counties under consideration have experienced

  20. Land use mapping and change detection using ERTS imagery in Montgomery County, Alabama

    NASA Technical Reports Server (NTRS)

    Wilms, R. P.

    1973-01-01

    The feasibility of using remotely sensed data from ERTS-1 for mapping land use and detecting land use change was investigated. Land use information was gathered from 1964 air photo mosaics and from 1972 ERTS data. The 1964 data provided the basis for comparison with ERTS-1 imagery. From this comparison, urban sprawl was quite evident for the city of Montgomery. A significant trend from forestland to agricultural was also discovered. The development of main traffic arteries between 1964 and 1972 was a vital factor in the development of some of the urban centers. Even though certain problems in interpreting and correlating land use data from ERTS imagery were encountered, it has been demonstrated that remotely sensed data from ERTS is useful for inventorying land use and detecting land use change.

  1. Towards monitoring land-cover and land-use changes at a global scale: the global land survey 2005

    USGS Publications Warehouse

    Gutman, G.; Byrnes, Raymond A.; Masek, J.; Covington, S.; Justice, C.; Franks, S.; Headley, Rachel

    2008-01-01

    Land cover is a critical component of the Earth system, infl uencing land-atmosphere interactions, greenhouse gas fl uxes, ecosystem health, and availability of food, fi ber, and energy for human populations. The recent Integrated Global Observations of Land (IGOL) report calls for the generation of maps documenting global land cover at resolutions between 10m and 30m at least every fi ve years (Townshend et al., in press). Moreover, despite 35 years of Landsat observations, there has not been a unifi ed global analysis of land-cover trends nor has there been a global assessment of land-cover change at Landsat-like resolution. Since the 1990s, the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) have supported development of data sets based on global Landsat observations (Tucker et al., 2004). These land survey data sets, usually referred to as GeoCover ™, provide global, orthorectifi ed, typically cloud-free Landsat imagery centered on the years 1975, 1990, and 2000, with a preference for leaf-on conditions. Collectively, these data sets provided a consistent set of observations to assess land-cover changes at a decadal scale. These data are freely available via the Internet from the USGS Center for Earth Resources Observation and Science (EROS) (see http://earthexplorer.usgs.gov or http://glovis.usgs.gov). This has resulted in unprecedented downloads of data, which are widely used in scientifi c studies of land-cover change (e.g., Boone et al., 2007; Harris et al., 2005; Hilbert, 2006; Huang et al. 2007; Jantz et al., 2005, Kim et al., 2007; Leimgruber, 2005; Masek et al., 2006). NASA and USGS are continuing to support land-cover change research through the development of GLS2005 - an additional global Landsat assessment circa 20051 . Going beyond the earlier initiatives, this data set will establish a baseline for monitoring changes on a 5-year interval and will pave the way toward continuous global land

  2. Geovisualization of land use and land cover using bivariate maps and Sankey flow diagrams

    NASA Astrophysics Data System (ADS)

    Strode, Georgianna; Mesev, Victor; Thornton, Benjamin; Jerez, Marjorie; Tricarico, Thomas; McAlear, Tyler

    2018-05-01

    The terms `land use' and `land cover' typically describe categories that convey information about the landscape. Despite the major difference of land use implying some degree of anthropogenic disturbance, the two terms are commonly used interchangeably, especially when anthropogenic disturbance is ambiguous, say managed forestland or abandoned agricultural fields. Cartographically, land use and land cover are also sometimes represented interchangeably within common legends, giving with the impression that the landscape is a seamless continuum of land use parcels spatially adjacent to land cover tracts. We believe this is misleading, and feel we need to reiterate the well-established symbiosis of land uses as amalgams of land covers; in other words land covers are subsets of land use. Our paper addresses this spatially complex, and frequently ambiguous relationship, and posits that bivariate cartographic techniques are an ideal vehicle for representing both land use and land cover simultaneously. In more specific terms, we explore the use of nested symbology as ways to represent graphically land use and land cover, where land cover are circles nested with land use squares. We also investigate bivariate legends for representing statistical covariance as a means for visualizing the combinations of land use and cover. Lastly, we apply Sankey flow diagrams to further illustrate the complex, multifaceted relationships between land use and land cover. Our work is demonstrated on data representing land use and cover data for the US state of Florida.

  3. The impact of CO2 fertilization and historical land use/land cover change on regional climate extremes

    NASA Astrophysics Data System (ADS)

    Findell, Kirsten; Berg, Alexis; Gentine, Pierre; Krasting, John; Lintner, Benjamin; Malyshev, Sergey; Santanello, Joseph; Shevliakova, Elena

    2017-04-01

    Recent research highlights the role of land surface processes in heat waves, droughts, and other extreme events. Here we use an earth system model (ESM) from the Geophysical Fluid Dynamics Laboratory (GFDL) to investigate the regional impacts of historical anthropogenic land use/land cover change (LULCC) and the vegetative response to changes in atmospheric CO2 on combined extremes of temperature and humidity. A bivariate assessment allows us to consider aridity and moist enthalpy extremes, quantities central to human experience of near-surface climate conditions. We show that according to this model, conversion of forests to cropland has contributed to much of the upper central US and central Europe experiencing extreme hot, dry summers every 2-3 years instead of every 10 years. In the tropics, historical patterns of wood harvesting, shifting cultivation and regrowth of secondary vegetation have enhanced near surface moist enthalpy, leading to extensive increases in the occurrence of humid conditions throughout the tropics year round. These critical land use processes and practices are not included in many current generation land models, yet these results identify them as critical factors in the energy and water cycles of the midlatitudes and tropics. Current work is targeted at understanding how CO2 fertilization of plant growth impacts water use efficiency and surface flux partitioning, and how these changes influence temperature and humidity extremes. We use this modeling work to explore how remote sensing can be used to determine how different forest ecosystems in different climatological regimes are responding to enhanced CO2 and a warming world.

  4. Hip abductor function and lower extremity landing kinematics: sex differences.

    PubMed

    Jacobs, Cale A; Uhl, Timothy L; Mattacola, Carl G; Shapiro, Robert; Rayens, William S

    2007-01-01

    Rapid deceleration during sporting activities, such as landing from a jump, has been identified as a common mechanism of acute knee injury. Research into the role of potential sex differences in hip abductor function with lower extremity kinematics when landing from a jump is limited. To evaluate sex differences in hip abductor function in relation to lower extremity landing kinematics. 2 x 2 mixed-model factorial design using a between-subjects factor (sex) and a repeated factor (test). University laboratory. A sample of convenience consisting of 30 healthy adults (15 women, 15 men) with no history of lower extremity surgery and no lower extremity injuries within 6 months of testing. Landing kinematics were assessed as subjects performed 3 pre-exercise landing trials that required them to hop from 2 legs and land on a single leg. Isometric peak torque (PT) of the hip abductors was measured, followed by an endurance test during which subjects maintained 50% of their PT to the limits of endurance. After a 15-minute rest period, subjects completed a 30-second bout of isometric hip abduction, from which we calculated the percentage of endurance capacity (%E). Immediately after exercise, subjects completed 3 postexercise landing trials. PT, %E, and peak joint displacement (PJD) of the hip and knee in all 3 planes of motion. Women demonstrated lower PT values (5.8 +/- 1.2% normalized to body weight and height) than did their male counterparts (7.2 +/- 1.5% normalized to body weight and height, P = .009). However, no sex differences were seen in %E. Women also demonstrated larger knee valgus PJD (7.26 degrees +/- 6.61 degrees) than did men (3.29 degrees +/- 3.54 degrees, P = .04). Women's PT was moderately correlated with hip flexion, adduction, and knee valgus PJD; however, PT did not significantly correlate with men's landing kinematics. Regardless of sex, hip flexion (P = .002) and hip adduction (P = .001) were significantly increased following the 30-second bout of

  5. Dynamic analysis of an SDOF helicopter model featuring skid landing gear and an MR damper by considering the rotor lift factor and a Bingham number

    NASA Astrophysics Data System (ADS)

    Saleh, Muftah; Sedaghati, Ramin; Bhat, Rama

    2018-06-01

    The present study addresses the performance of a skid landing gear (SLG) system of a rotorcraft impacting the ground at a vertical sink rate of up to 4.5 ms‑1. The impact attitude is assumed to be level as per chapter 527 of the Airworthiness Manual of Transport Canada Civil Aviation and part 27 of the Federal Aviation Regulations of the US Federal Aviation Administration. A single degree of freedom helicopter model is investigated under different values of rotor lift factor, L. In this study, three SLG versions are evaluated: (a) standalone conventional SLG; (b) SLG equipped with a passive viscous damper; and (c) SLG incorporated a magnetorheological energy absorber (MREA). The non-dimensional solutions of the helicopter models show that the two former SLG systems suffer adaptability issues with variations in the impact velocity and the rotor lift factor. Therefore, the alternative successful choice is to employ the MREA. Two different optimum Bingham numbers for compression and rebound strokes are defined. A new chart, called the optimum Bingham number versus rotor lift factor ‘B{i}o-L’, is introduced in this study to correlate the optimum Bingham numbers to the variation in the rotor lift factor and to provide more accessibility from the perspective of control design. The chart shows that the optimum Bingham number for the compression stroke is inversely linearly proportional to the increase in the rotor lift factor. This alleviates the impact force on the system and reduces the amount of magnetorheological yield force that would be generated. On the contrary, the optimum Bingham number for the rebound stroke is found to be directly linearly proportional to the rotor lift factor. This ensures controllable attenuation of the restoring force of the linear spring element. This idea can be exploited to generate charts for different landing attitudes and sink rates. In this article, the response of the helicopter equipped with the conventional undamped, damped

  6. Industrialization Impact on Worker Mobility and Land Use in Peri Urban Area (Case study of Semarang District, Indonesia)

    NASA Astrophysics Data System (ADS)

    Wijaya, H. B.; Kurniawati, H.; Hutama, S. T. E. W.

    2018-02-01

    In many cases, industrialization has stimulated the urbanization process massively. It tends to attract substantial number of labor migrants from nearby region to fulfill the demand of workers. The paper reports the research result of industrialization phenomena in Semarang district, Indonesia. It carried out the survey by taking 250 samples of migrant workers. The result shows that the presence of labor-intensive industries becomes the most influence factor for many migrants, rather than the driving factors from the place of origin. The attraction factor could cover regional and across the province force, as indicated that all migrant respondents come from both inside and outside of Central Java Province. Furthermore, based on the land-use distribution of the migrant settlement area, it indicates a growing land-use change, both of land cover and land functions.

  7. Competition for land

    PubMed Central

    Smith, Pete; Gregory, Peter J.; van Vuuren, Detlef; Obersteiner, Michael; Havlík, Petr; Rounsevell, Mark; Woods, Jeremy; Stehfest, Elke; Bellarby, Jessica

    2010-01-01

    A key challenge for humanity is how a future global population of 9 billion can all be fed healthily and sustainably. Here, we review how competition for land is influenced by other drivers and pressures, examine land-use change over the past 20 years and consider future changes over the next 40 years. Competition for land, in itself, is not a driver affecting food and farming in the future, but is an emergent property of other drivers and pressures. Modelling studies suggest that future policy decisions in the agriculture, forestry, energy and conservation sectors could have profound effects, with different demands for land to supply multiple ecosystem services usually intensifying competition for land in the future. In addition to policies addressing agriculture and food production, further policies addressing the primary drivers of competition for land (population growth, dietary preference, protected areas, forest policy) could have significant impacts in reducing competition for land. Technologies for increasing per-area productivity of agricultural land will also be necessary. Key uncertainties in our projections of competition for land in the future relate predominantly to uncertainties in the drivers and pressures within the scenarios, in the models and data used in the projections and in the policy interventions assumed to affect the drivers and pressures in the future. PMID:20713395

  8. Land use and household energy dynamics in Malawi

    NASA Astrophysics Data System (ADS)

    Jagger, Pamela; Perez-Heydrich, Carolina

    2016-12-01

    Interventions to mitigate household air pollution (HAP) from cooking with solid fuels often fail to take into account the role of access to freely available woodfuels in determining fuel choice and willingness to adopt clean cooking technologies, key factors in mitigating the burden of HAP. We use national-scale remote sensing data on land use land cover change, and population representative data from two waves of the Malawi Living Standards Measurement Survey to explore the relationship between land use change and the type of fuel households use, time spent collecting fuel, and expenditures on fuel, hypothesizing that land use dynamics influence household-level choice of primary cooking fuel. We find considerable heterogeneity with respect to regeneration and deforestation/degradation dynamics and evidence of spatial clustering. We find that regeneration of forests and woodlands increases the share of households that collect fuelwood, whereas deforestation and degradation lead households to purchase fuelwood. We also find that a relatively large share of land under woody savannah or degraded forest (versus fully stocked forest) increases fuel collection time. Areas with regeneration happening at broader scale experience increases in fuel expenditures. Our findings have implications for the spatial targeting of interventions designed to mitigate HAP.

  9. Research on Land Use Changes in Panjin City Basing on Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Ding, Hua; Li, Ru Ren; Shuang Sun, Li; Wang, Xin; Liu, Yu Mei

    2018-05-01

    Taking Landsat remote sensing image as the main data source, the research on land use changes in Panjin City in 2005 to 2015 is made with the support of remote sensing platform and GIS platform in this paper; the range of land use changes and change rate are analyzed through the classification of remote sensing image; the dynamic analysis on land changes is made with the help of transfer matrix of land use type; the quantitative calculation on all kinds of dynamic change features of land changes is made by utilizing mathematical model; and the analysis on driving factors of land changes of image is made at last. The research results show that, in recent ten years, the area of cultivated land in Panjin City decreased, the area of vegetation increased, and meanwhile the area of road increased drastically, the settlement place decreased than ever, and water area changed slightly.

  10. Shallow to Deep Convection Transition over a Heterogeneous Land Surface Using the Land Model Coupled Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Lee, J.; Zhang, Y.; Klein, S. A.

    2017-12-01

    The triggering of the land breeze, and hence the development of deep convection over heterogeneous land should be understood as a consequence of the complex processes involving various factors from land surface and atmosphere simultaneously. That is a sub-grid scale process that many large-scale models have difficulty incorporating it into the parameterization scheme partly due to lack of our understanding. Thus, it is imperative that we approach the problem using a high-resolution modeling framework. In this study, we use SAM-SLM (Lee and Khairoutdinov, 2015), a large-eddy simulation model coupled to a land model, to explore the cloud effect such as cold pool, the cloud shading and the soil moisture memory on the land breeze structure and the further development of cloud and precipitation over a heterogeneous land surface. The atmospheric large scale forcing and the initial sounding are taken from the new composite case study of the fair-weather, non-precipitating shallow cumuli at ARM SGP (Zhang et al., 2017). We model the land surface as a chess board pattern with alternating leaf area index (LAI). The patch contrast of the LAI is adjusted to encompass the weak to strong heterogeneity amplitude. The surface sensible- and latent heat fluxes are computed according to the given LAI representing the differential surface heating over a heterogeneous land surface. Separate from the surface forcing imposed from the originally modeled surface, the cases that transition into the moist convection can induce another layer of the surface heterogeneity from the 1) radiation shading by clouds, 2) adjusted soil moisture pattern by the rain, 3) spreading cold pool. First, we assess and quantifies the individual cloud effect on the land breeze and the moist convection under the weak wind to simplify the feedback processes. And then, the same set of experiments is repeated under sheared background wind with low level jet, a typical summer time wind pattern at ARM SGP site, to

  11. Changes in Carbon Emissions in Colombian Savannas Derived From Recent Land use and Land Cover Change

    NASA Astrophysics Data System (ADS)

    Etter, A.; Sarmiento, A.

    2007-12-01

    The global contribution of carbon emissions from land use dynamics and change to the global carbon (C) cycle is still uncertain, a major concern in global change modeling. Carbon emission from fires in the tropics is significant and represents 9% of the net primary production, and 50% of worldwide C emissions from fires are attributable to savanna fires. Such emissions may vary significantly due to differences in ecosystem types. Most savanna areas are devoted to grazing land uses making methane emissions also important in savanna ecosystems. Land use change driven by intensification of grazing and cropping has become a major factor affecting C emission dynamics from savanna regions. Colombia has some 17 MHa of mesic savannas which have been historically burned. Due to changes in market demands and improved accessibility during the last 20 years, important areas of savannas changed land use from predominantly extensive grazing to crops and intensive grazing systems. This research models and evaluates the impacts of such land use changes on the spatial and temporal burning patterns and C emissions in the Orinoco savannas of Colombia. We address the effects of land use change patterns using remote sensing data from MODIS and Landsat, ecosystem mapping products, and spatial GIS analysis. First we map the expansion of the agricultural frontier from the 1980s-2000s. We then model the changes in land use from the 1980s using a statistical modeling approach to analyze and quantify the impact of accessibility, ecosystem type and land tenure. We calculate the effects on C emissions from fire regimes and other sources of C based on patterns and extent of burned areas in the 2000s for different savanna ecosystem types and land uses. In the Llanos the fire regime exhibits a marked seasonal variability with most fire events occurring during the dry season between December-March. Our analysis shows that fire frequencies vary consistently between 0.6 and 2.8 fires.yr-1 per 2

  12. Developing tools to identify marginal lands and assess their potential for bioenergy production

    NASA Astrophysics Data System (ADS)

    Galatsidas, Spyridon; Gounaris, Nikolaos; Dimitriadis, Elias; Rettenmaier, Nils; Schmidt, Tobias; Vlachaki, Despoina

    2017-04-01

    The term "marginal land" is currently intertwined in discussions about bioenergy although its definition is neither specific nor firm. The uncertainty arising from marginal land classification and quantification is one of the major constraining factors for its potential use. The clarification of political aims, i.e. "what should be supported?" is also an important constraining factor. Many approaches have been developed to identify marginal lands, based on various definitions according to the management goals. Concerns have been frequently raised regarding the impacts of marginal land use on environment, ecosystem services and sustainability. Current tools of soil quality and land potentials assessment fail to meet the needs of marginal land identification and exploitation for biomass production, due to the lack of comprehensive analysis of interrelated land functions and their quantitative evaluation. Land marginality is determined by dynamic characteristics in many cases and may therefore constitute a transitional state, which requires reassessment in due time. Also, marginal land should not be considered simply a dormant natural resource waiting to be used, since it may already provide multiple benefits and services to society relating to wildlife, biodiversity, carbon sequestration, etc. The consequences of cultivating such lands need to be fully addressed to present a balanced view of their sustainable potential for bioenergy. This framework is the basis for the development of the SEEMLA tools, which aim at supporting the identification, assessment, management of marginal lands in Europe and the decision-making for sustainable biomass production of them using appropriate bioenergy crops. The tools comprise two applications, a web-based one (independent of spatial data) and a GIS-based application (land regionalization on the basis of spatial data), which both incorporate: - Land resource characteristics, restricting the cultivation of agricultural crops but

  13. Land Grabbing and the Commodification of Agricultural Land in Africa

    NASA Astrophysics Data System (ADS)

    D'Odorico, P.; Rulli, M. C.

    2014-12-01

    The increasing global demand for farmland products is placing unprecedented pressure on the global agricultural system. The increasing demand can be met through either the intensification or the expansion of agricultural production at the expenses of other ecosystems. The ongoing escalation of large scale land acquisitions in the developing world may contribute to both of these two processes. Investments in agriculture have become a priority for a number of governments and corporations that are trying to expand their agricultural production while securing good profits. It is unclear however to what extent these investments are driving the intensification or the expansion of agriculture. In the last decade large scale land acquisitions by external investors have increased at unprecedented rates. This global land rush was likely enhanced by recent food crises, when prices skyrocketed in response to crop failure, new bioenergy policies, and the increasing demand for agricultural products by a growing and increasingly affluent human population. Corporations recognized the potential for high return investments in agricultural land, while governments started to enhance their food security by purchasing large tracts of land in foreign countries. It has been estimated that, to date, about 35.6 million ha of cropland - more than twice the agricultural land of Germany - have been acquired by foreign investors worldwide. As an effect of these land deals the local communities lose legal access to the land and its products. Here we investigate the effect of large scale land acquisition on agricultural intensification or expansion in African countries. We discuss the extent to which these investments in agriculture may increase crop production and stress how this phenomenon can greatly affect the local communities, their food security, economic stability and the long term resilience of their livelihoods, regardless of whether the transfer of property rights is the result of an

  14. Toward a Federal Land Information System: Experiences and issues

    USGS Publications Warehouse

    Sturdevant, James A.

    1988-01-01

    From 1983 to 1987, the U.S. Geological Survey conducted research to develop a national resource data base of Federal lands under the auspices of the Federal Land Information System (FLIS) program. The program's goal was to develop the capability to provide information to national mineral-use policymakers. Prototype spatial data bases containing mineral, land status, and base cartographic data were developed for the Medford, Oreg., area, the State of Alaska, and the Silver City, N. Mex., area. Other accomplishments included (1) the preparation of a digital format for U.S. Geological Survey mineral assessment data and (2) the development of a procedure for integrating parcel-level tabular Alaska land status data into a section-level geographic information system. Overall findings indicated that both vector and raster capabilities are required for a FLIS and that nationwide data availability is a limiting factor in FLIS development. As a result of a 1986 interbureau (U.S. Geological Survey, Bureau of Land Management, and Bureau of Mines) review of the FLIS program, activities were redirected to undertake research on large-area geographic information system techniques. Land use and land cover data generalization strategies were tested, and areafiltering software was found to be the optimum type. In addition, a procedure was developed for transferring tabular land status data of surveyed areas in the contiguous 48 States to spatial data for use in geographic information systems. The U.S. Geological Survey FLIS program, as an administrative unit, ended in 1987, but FLIS-related research on large-area geographic information systems continues.

  15. Land-Cover Change in the Central Irregular Plains, 1973-2000

    USGS Publications Warehouse

    Karstensen, Krista A.

    2009-01-01

    Spearheaded by the Geographic Analysis and Monitoring Program of the U.S. Geological Survey (USGS) in collaboration with the U.S. Environmental Protection Agency (EPA) and the National Aeronautics and Space Administration (NASA), the Land Cover Trends is a research project focused on understanding the rates, trends, causes, and consequences of contemporary United States land-use and land-cover change. Using the EPA Level III ecoregions as the geographic framework, scientists process geospatial data collected between 1973 and 2000 to characterize ecosystem responses to land-use changes. The 27-year study period was divided into five temporal periods: 1973-1980, 1980-1986, 1986-1992, 1992-2000 and 1973-2000. General land-cover classes for these periods were interpreted from Landsat Multispectral Scanner, Thematic Mapper, and Enhanced Thematic Mapper Plus imagery to categorize land-cover change and evaluate using a modified Anderson Land Use Land Cover Classification System for image interpretation. The rates of land-cover change are estimated using a stratified, random sampling of 10-kilometer (km) by 10-km blocks allocated within each ecoregion. For each sample block, satellite images are used to interpret land-cover change. Additionally, historical aerial photographs from similar timeframes and other ancillary data such as census statistics and published literature are used. The sample block data are then incorporated into statistical analyses to generate an overall change matrix for the ecoregion. These change statistics are applicable for different levels of scale, including total change for the individual sample blocks and change estimates for the entire ecoregion. The results illustrate that there is no single profile of land-cover change but instead point to geographic variability that results from land uses within ecoregions continuously adapting to various factors including environmental, technological, and socioeconomic.

  16. Towards a Remote Sensing Based Assessment of Land Susceptibility to Degradation: Examining Seasonal Variation in Land Use-Land Cover for Modelling Land Degradation in a Semi-Arid Context

    NASA Astrophysics Data System (ADS)

    Mashame, Gofamodimo; Akinyemi, Felicia

    2016-06-01

    Land degradation (LD) is among the major environmental and anthropogenic problems driven by land use-land cover (LULC) and climate change worldwide. For example, poor LULC practises such as deforestation, livestock overstocking, overgrazing and arable land use intensification on steep slopes disturbs the soil structure leaving the land susceptible to water erosion, a type of physical land degradation. Land degradation related problems exist in Sub-Saharan African countries such as Botswana which is semi-arid in nature. LULC and LD linkage information is still missing in many semi-arid regions worldwide.Mapping seasonal LULC is therefore very important in understanding LULC and LD linkages. This study assesses the impact of seasonal LULC variation on LD utilizing Remote Sensing (RS) techniques for Palapye region in Central District, Botswana. LULC classes for the dry and rainy seasons were classified using LANDSAT 8 images at Level I according to the Food and Agriculture Organization (FAO) International Organization of Standardization (ISO) code 19144. Level I consists of 10 LULC classes. The seasonal variations in LULC are further related to LD susceptibility in the semi-arid context. The results suggest that about 985 km² (22%) of the study area is susceptible to LD by water, major LULC types affected include: cropland, paved/rocky material, bare land, built-up area, mining area, and water body. Land degradation by water susceptibility due to seasonal land use-land cover variations is highest in the east of the study area where there is high cropland to bare land conversion.

  17. Muscle activity response to external moment during single-leg drop landing in young basketball players: the importance of biceps femoris in reducing internal rotation of knee during landing.

    PubMed

    Fujii, Meguru; Sato, Haruhiko; Takahira, Naonobu

    2012-01-01

    Internal tibial rotation with the knee close to full extension combined with valgus collapse during drop landing generally results in non-contact anterior cruciate ligament (ACL) injury. The purpose of this study was to investigate the relationship between internal rotation of the knee and muscle activity from internal and external rotator muscles, and between the internal rotation of knee and externally applied loads on the knee during landing in collegiate basketball players. Our hypothesis was that the activity of biceps femoris muscle would be an important factor reducing internal knee rotation during landing. The subjects were 10 collegiate basketball students: 5 females and 5 males. The subjects performed a single-leg drop landing from a 25-cm height. Femoral and tibial kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the knee angular motions were determined. Ground reaction forces and muscle activation patterns (lateral hamstring and medial hamstring) were simultaneously measured and computed. Results indicated that lower peak internal tibial rotation angle at the time of landing was associated with greater lateral hamstring activity (r = -0.623, p < 0.001). When gender was considered, the statistically significant correlation remained only in females. There was no association between the peak internal tibial rotation angle and the knee internal rotation moment. Control of muscle activity in the lateral to medial hamstring would be an important factor in generating sufficient force to inhibit excessive internal rotation during landing. Strengthening the biceps femoris might mitigate the higher incidence of non-contact ACL injury in female athletes. Key pointsLower activity of the external rotator muscle of the knee, which inhibits internal rotation of the knee, may be the reason why females tend to show a large internal rotation of the knee during drop landing.Externally applied internal rotation moment of

  18. Electromagnetically induced absorption and transparency in degenerate two level systems of metastable Kr atoms and measurement of Landé g-factor

    NASA Astrophysics Data System (ADS)

    Kale, Y. B.; Tiwari, V. B.; Mishra, S. R.; Singh, S.; Rawat, H. S.

    2016-12-01

    We report electromagnetically induced absorption (EIA) and transparency (EIT) resonances of sub-natural linewidth in degenerate two level systems (DTLSs) of metastable 84Kr (84Kr*) and 83Kr (83Kr*) atoms. Using the spectrally narrow EIA signals obtained corresponding to the closed hyperfine transition 4p55s[3/2]2(F=13/2) to 4p55p[5/2]3(F‧ = 15 / 2) in 83Kr* atom, we have measured the Landé g-factor (gF) for the lower hyperfine level involved in this transition by application of small values of magnetic field of few Gauss.

  19. Global modeling of land water and energy balances. Part II: Land-characteristic contributions to spatial variability

    USGS Publications Warehouse

    Milly, P.C.D.; Shmakin, A.B.

    2002-01-01

    Land water and energy balances vary around the globe because of variations in amount and temporal distribution of water and energy supplies and because of variations in land characteristics. The former control (water and energy supplies) explains much more variance in water and energy balances than the latter (land characteristics). A largely untested hypothesis underlying most global models of land water and energy balance is the assumption that parameter values based on estimated geographic distributions of soil and vegetation characteristics improve the performance of the models relative to the use of globally constant land parameters. This hypothesis is tested here through an evaluation of the improvement in performance of one land model associated with the introduction of geographic information on land characteristics. The capability of the model to reproduce annual runoff ratios of large river basins, with and without information on the global distribution of albedo, rooting depth, and stomatal resistance, is assessed. To allow a fair comparison, the model is calibrated in both cases by adjusting globally constant scale factors for snow-free albedo, non-water-stressed bulk stomatal resistance, and critical root density (which is used to determine effective root-zone depth). The test is made in stand-alone mode, that is, using prescribed radiative and atmospheric forcing. Model performance is evaluated by comparing modeled runoff ratios with observed runoff ratios for a set of basins where precipitation biases have been shown to be minimal. The withholding of information on global variations in these parameters leads to a significant degradation of the capability of the model to simulate the annual runoff ratio. An additional set of optimization experiments, in which the parameters are examined individually, reveals that the stomatal resistance is, by far, the parameter among these three whose spatial variations add the most predictive power to the model in

  20. Evaluation of historical land cover, land use, and land-use change emissions in the GCAM integrated assessment model

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Wise, M.; Kyle, P.; Janetos, A. C.; Zhou, Y.

    2012-12-01

    Integrated Assessment Models (IAMs) are often used as science-based decision-support tools for evaluating the consequences of climate and energy policies, and their use in this framework is likely to increase in the future. However, quantitative evaluation of these models has been somewhat limited for a variety of reasons, including data availability, data quality, and the inherent challenges in projections of societal values and decision-making. In this analysis, we identify and confront methodological challenges involved in evaluating the agriculture and land use component of the Global Change Assessment Model (GCAM). GCAM is a global integrated assessment model, linking submodules of the regionally disaggregated global economy, energy system, agriculture and land-use, terrestrial carbon cycle, oceans and climate. GCAM simulates supply, demand, and prices for energy and agricultural goods from 2005 to 2100 in 5-year increments. In each time period, the model computes the allocation of land across a variety of land cover types in 151 different regions, assuming that farmers maximize profits and that food demand is relatively inelastic. GCAM then calculates both emissions from land-use practices, and long-term changes in carbon stocks in different land uses, thus providing simulation information that can be compared to observed historical data. In this work, we compare GCAM results, both in recent historic and future time periods, to historical data sets. We focus on land use, land cover, land-use change emissions, and albedo.

  1. The Face of Alaska: A Look at Land Cover and the Potential Drivers of Change

    USGS Publications Warehouse

    Jones, Benjamin M.

    2008-01-01

    The purpose of this report is to provide statewide baseline information on the status and potential drivers of land-cover change in Alaska. The information gathered for this report is based on a review and analysis of published literature and consists of prominent factors contributing to the current state of the land surface of Alaska as well as a synthesis of information about the status and trends of the factors affecting the land surface of Alaska. The land surface of Alaska is sparsely populated and the impacts from humans are far less extensive when compared to the contiguous United States. The changes in the population and the economy of Alaska have historically been driven by boom and bust cycles, primarily from mineral discoveries, logging, military expansion, and oil and gas development; however, the changes as a result of these factors have occurred in relatively small, localized areas. Many of the large-scale statewide changes taking place in the land surface however, are a result of natural or climate driven processes as opposed to direct anthropogenic activities. In recent times, reports such as this have become increasingly useful as a means of synthesizing information about the magnitude and frequency of changes imparted by natural and anthropogenic forces. Thus, it is essential to assess the current state of the land surface of Alaska and identify apparent trends in the surficial changes that are occurring in order to be prepared for the future.

  2. Application of the global Land-Potential Knowledge System (LandPKS) mobile apps to land degradation, restoration and climate change adaptation

    USDA-ARS?s Scientific Manuscript database

    Combatting land degradation, promoting restoration and adapting to climate change all require an understanding of land potential. A global Land-Potential Knowledge System (LandPKS) is being developed that will address many of these limitations using an open source approach designed to allow anyone w...

  3. Dynamics of land change in India: a fine-scale spatial analysis

    NASA Astrophysics Data System (ADS)

    Meiyappan, P.; Roy, P. S.; Sharma, Y.; Jain, A. K.; Ramachandran, R.; Joshi, P. K.

    2015-12-01

    Land is scarce in India: India occupies 2.4% of worlds land area, but supports over 1/6th of worlds human and livestock population. This high population to land ratio, combined with socioeconomic development and increasing consumption has placed tremendous pressure on India's land resources for food, feed, and fuel. In this talk, we present contemporary (1985 to 2005) spatial estimates of land change in India using national-level analysis of Landsat imageries. Further, we investigate the causes of the spatial patterns of change using two complementary lines of evidence. First, we use statistical models estimated at macro-scale to understand the spatial relationships between land change patterns and their concomitant drivers. This analysis using our newly compiled extensive socioeconomic database at village level (~630,000 units), is 100x higher in spatial resolution compared to existing datasets, and covers over 200 variables. The detailed socioeconomic data enabled the fine-scale spatial analysis with Landsat data. Second, we synthesized information from over 130 survey based case studies on land use drivers in India to complement our macro-scale analysis. The case studies are especially useful to identify unobserved variables (e.g. farmer's attitude towards risk). Ours is the most detailed analysis of contemporary land change in India, both in terms of national extent, and the use of detailed spatial information on land change, socioeconomic factors, and synthesis of case studies.

  4. Jump Landing Characteristics Predict Lower Extremity Injuries in Indoor Team Sports.

    PubMed

    van der Does, H T D; Brink, M S; Benjaminse, A; Visscher, C; Lemmink, K A P M

    2016-03-01

    The aim of this study is to investigate the predictive value of landing stability and technique to gain insight into risk factors for ankle and knee injuries in indoor team sport players. Seventy-five male and female basketball, volleyball or korfball players were screened by measuring landing stability after a single-leg jump landing and landing technique during a repeated counter movement jump by detailed 3-dimensional kinematics and kinetics. During the season 11 acute ankle injuries were reported along with 6 acute and 7 overuse knee injuries by the teams' physical therapist. Logistic regression analysis showed less landing stability in the forward and diagonal jump direction (OR 1.01-1.10, p≤0.05) in players who sustained an acute ankle injury. Furthermore landing technique with a greater ankle dorsiflexion moment increased the risk for acute ankle injury (OR 2.16, p≤0.05). A smaller knee flexion moment and greater vertical ground reaction force increased the risk of an overuse knee injury (OR 0.29 and 1.13 respectively, p≤0.05). Less one-legged landing stability and suboptimal landing technique were shown in players sustaining an acute ankle and overuse knee injury compared to healthy players. Determining both landing stability and technique may further guide injury prevention programs. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Snowboard jumping, Newton’s second law and the force on landing

    NASA Astrophysics Data System (ADS)

    O'Shea, Michael J.

    2004-07-01

    An application of Newton’s second law to a snowboarder dropping off a vertical ledge shows that the average normal force during landing (force exerted by the ground on the snowboarder) is determined by four factors. It is shown that the flexing of the legs, the softness of the snow, the angle of the landing surface and the forward motion of the snowboarder can contribute significantly to reducing the force on landing. A judicious choice of the geometry of the jump leads to a force on landing that is equal to the force that the snowboarder would feel if they were standing at the landing point independent of the height from which the snowboarder jumps. Thus we are able to explain with a relatively simple model why a snowboarder may jump from rather high ledges and land comfortably. The physics here is also applicable to jumps in other sports including skiing and mountain biking. The importance of knowing the limits of models is discussed and some of the limits of this model are pointed out.

  6. Simulating the hydrologic impacts of land cover and climate changes in a semi-arid watershed

    EPA Pesticide Factsheets

    Changes in climate and land cover are among the principal variables affecting watershed hydrology.This paper uses a cell-based model to examine the hydrologic impacts of climate and land-cover changes in thesemi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevada, USA. The cell-basedmodel is developed by considering direct runoff based on the Soil Conservation Service - Curve Number (SCSCN)method and surplus runoff based on the Thornthwaite water balance theory. After calibration and validation,the model is used to predict LVR discharge under future climate and land-cover changes. The hydrologicsimulation results reveal climate change as the dominant factor and land-cover change as a secondary factor inregulating future river discharge. The combined effects of climate and land-cover changes will slightly increaseriver discharge in summer but substantially decrease discharge in winter. This impact on water resources deservesattention in climate change adaptation planning.This dataset is associated with the following publication:Chen, H., S. Tong, H. Yang, and J. Yang. Simulating the hydrologic impacts of land cover and climate changes in a semi-arid watershed. Hydrological Sciences Journal. IAHS LIMITED, Oxford, UK, 60(10): 1739-1758, (2015).

  7. Mekong Land Cover Dasboard: Regional Land Cover Mointoring Systems

    NASA Astrophysics Data System (ADS)

    Saah, D. S.; Towashiraporn, P.; Aekakkararungroj, A.; Phongsapan, K.; Triepke, J.; Maus, P.; Tenneson, K.; Cutter, P. G.; Ganz, D.; Anderson, E.

    2016-12-01

    SERVIR-Mekong, a USAID-NASA partnership, helps decision makers in the Lower Mekong Region utilize GIS and Remote Sensing information to inform climate related activities. In 2015, SERVIR-Mekong conducted a geospatial needs assessment for the Lower Mekong countries which included individual country consultations. The team found that many countries were dependent on land cover and land use maps for land resource planning, quantifying ecosystem services, including resilience to climate change, biodiversity conservation, and other critical social issues. Many of the Lower Mekong countries have developed national scale land cover maps derived in part from remote sensing products and geospatial technologies. However, updates are infrequent and classification systems do not always meet the needs of key user groups. In addition, data products stop at political boundaries and are often not accessible making the data unusable across country boundaries and with resource management partners. Many of these countries rely on global land cover products to fill the gaps of their national efforts, compromising consistency between data and policies. These gaps in national efforts can be filled by a flexible regional land cover monitoring system that is co-developed by regional partners with the specific intention of meeting national transboundary needs, for example including consistent forest definitions in transboundary watersheds. Based on these facts, key regional stakeholders identified a need for a land cover monitoring system that will produce frequent, high quality land cover maps using a consistent regional classification scheme that is compatible with national country needs. SERVIR-Mekong is currently developing a solution that leverages recent developments in remote sensing science and technology, such as Google Earth Engine (GEE), and working together with production partners to develop a system that will use a common set of input data sources to generate high

  8. Abandoned Mine Lands

    EPA Pesticide Factsheets

    Abandoned Mine Lands are those lands, waters, and surrounding watersheds where extraction, beneficiation, or processing of ores and minerals (excluding coal) has occurred. These lands also include areas where mining or processing activity is inactive.

  9. Uncertainties in the land-use flux resulting from land-use change reconstructions and gross land transitions

    NASA Astrophysics Data System (ADS)

    Bayer, Anita D.; Lindeskog, Mats; Pugh, Thomas A. M.; Anthoni, Peter M.; Fuchs, Richard; Arneth, Almut

    2017-02-01

    Land-use and land-cover (LUC) changes are a key uncertainty when attributing changes in measured atmospheric CO2 concentration to its sinks and sources and must also be much better understood to determine the possibilities for land-based climate change mitigation, especially in the light of human demand on other land-based resources. On the spatial scale typically used in terrestrial ecosystem models (0.5 or 1°) changes in LUC over time periods of a few years or more can include bidirectional changes on the sub-grid level, such as the parallel expansion and abandonment of agricultural land (e.g. in shifting cultivation) or cropland-grassland conversion (and vice versa). These complex changes between classes within a grid cell have often been neglected in previous studies, and only net changes of land between natural vegetation cover, cropland and pastures accounted for, mainly because of a lack of reliable high-resolution historical information on gross land transitions, in combination with technical limitations within the models themselves. In the present study we applied a state-of-the-art dynamic global vegetation model with a detailed representation of croplands and carbon-nitrogen dynamics to quantify the uncertainty in terrestrial ecosystem carbon stocks and fluxes arising from the choice between net and gross representations of LUC. We used three frequently applied global, one recent global and one recent European LUC datasets, two of which resolve gross land transitions, either in Europe or in certain tropical regions. When considering only net changes, land-use-transition uncertainties (expressed as 1 standard deviation around decadal means of four models) in global carbon emissions from LUC (ELUC) are ±0.19, ±0.66 and ±0.47 Pg C a-1 in the 1980s, 1990s and 2000s, respectively, or between 14 and 39 % of mean ELUC. Carbon stocks at the end of the 20th century vary by ±11 Pg C for vegetation and ±37 Pg C for soil C due to the choice of LUC

  10. Conversion of prime agricultural land to urban land uses in Kansas City

    NASA Technical Reports Server (NTRS)

    Shaklee, R. V.

    1976-01-01

    In an expanding urban environment, agriculture and urban land uses are the two primary competitors for regional land resources. As a result of an increasing awareness of the effects which urban expansion has upon the regional environment, the conversion of prime agricultural land to urban land uses has become a point of concern to urban planners. A study was undertaken for the Kansas City Metropolitan Region, to determine the rate at which prime agricultural land has been converted to urban land uses over a five year period from 1969 to 1974. Using NASA high altitude color infrared imagery acquired over the city in October, 1969 and in May, 1974 to monitor the extent and location of urban expansion in the interim period, it was revealed that 42% of that expansion had occurred upon land classified as having prime agricultural potential. This involved a total of 10,727 acres of prime agricultural land and indicated a 7% increase over the 1969 which showed that 35% of the urban area had been developed on prime agricultural land.

  11. Impacts of land use and population density on seasonal surface water quality using a modified geographically weighted regression.

    PubMed

    Chen, Qiang; Mei, Kun; Dahlgren, Randy A; Wang, Ting; Gong, Jian; Zhang, Minghua

    2016-12-01

    As an important regulator of pollutants in overland flow and interflow, land use has become an essential research component for determining the relationships between surface water quality and pollution sources. This study investigated the use of ordinary least squares (OLS) and geographically weighted regression (GWR) models to identify the impact of land use and population density on surface water quality in the Wen-Rui Tang River watershed of eastern China. A manual variable excluding-selecting method was explored to resolve multicollinearity issues. Standard regression coefficient analysis coupled with cluster analysis was introduced to determine which variable had the greatest influence on water quality. Results showed that: (1) Impact of land use on water quality varied with spatial and seasonal scales. Both positive and negative effects for certain land-use indicators were found in different subcatchments. (2) Urban land was the dominant factor influencing N, P and chemical oxygen demand (COD) in highly urbanized regions, but the relationship was weak as the pollutants were mainly from point sources. Agricultural land was the primary factor influencing N and P in suburban and rural areas; the relationship was strong as the pollutants were mainly from agricultural surface runoff. Subcatchments located in suburban areas were identified with urban land as the primary influencing factor during the wet season while agricultural land was identified as a more prevalent influencing factor during the dry season. (3) Adjusted R 2 values in OLS models using the manual variable excluding-selecting method averaged 14.3% higher than using stepwise multiple linear regressions. However, the corresponding GWR models had adjusted R 2 ~59.2% higher than the optimal OLS models, confirming that GWR models demonstrated better prediction accuracy. Based on our findings, water resource protection policies should consider site-specific land-use conditions within each watershed to

  12. Influence of land development on stormwater runoff from a mixed land use and land cover catchment.

    PubMed

    Paule-Mercado, M A; Lee, B Y; Memon, S A; Umer, S R; Salim, I; Lee, C-H

    2017-12-01

    Mitigating for the negative impacts of stormwater runoff is becoming a concern due to increased land development. Understanding how land development influences stormwater runoff is essential for sustainably managing water resources. In recent years, aggregate low impact development-best management practices (LID-BMPs) have been implemented to reduce the negative impacts of stormwater runoff on receiving water bodies. This study used an integrated approach to determine the influence of land development and assess the ecological benefits of four aggregate LID-BMPs in stormwater runoff from a mixed land use and land cover (LULC) catchment with ongoing land development. It used data from 2011 to 2015 that monitored 41 storm events and monthly LULC, and a Personalized Computer Storm Water Management Model (PCSWMM). The four aggregate LID-BMPs are: ecological (S1), utilizing pervious covers (S2), and multi-control (S3) and (S4). These LID-BMPs were designed and distributed in the study area based on catchment characteristics, cost, and effectiveness. PCSWMM was used to simulate the monitored storm events from 2014 (calibration: R 2 and NSE>0.5; RMSE <11) and 2015 (validation: R 2 and NSE>0.5; RMSE <12). For continuous simulation and analyzing LID-BMPs scenarios, the five-year (2011 to 2015) stormwater runoff data and LULC change patterns (only 2015 for LID-BMPs) were used. Results show that the expansion of bare land and impervious cover, soil alteration, and high amount of precipitation influenced the stormwater runoff variability during different phases of land development. The four aggregate LID-BMPs reduced runoff volume (34%-61%), peak flow (6%-19%), and pollutant concentrations (53%-83%). The results of this study, in addition to supporting local LULC planning and land development activities, also could be applied to input data for empirical modeling, and designing sustainable stormwater management guidelines and monitoring strategies. Copyright © 2017 Elsevier B

  13. Public land grazing for private land conservation?

    Treesearch

    Adriana Sulak; Lynn Huntsinger; Sheila Barry; Larry Forero

    2008-01-01

    California ranchers with substantial private oak woodlands sometimes use public lands as an important component of their production cycle. Yet allowed public grazing has declined and is likely to continue to decline. This, combined with intensifying development pressure and land use change, dramatically affects the resource base for ranch operations, which in turn...

  14. What Is the Role of Land-Use Compositions and Spatial Configurations in Sediment Yield from Mountainous Watershed?

    NASA Astrophysics Data System (ADS)

    Shi, Z. H.

    2014-12-01

    There are strong ties between land use and sediment yield in watersheds. Many studies have used multivariate regression techniques to explore the response of sediment yield to land-use compositions and spatial configurations in watersheds. However, one issue with the use of conventional statistical methods to address relationships between land-use compositions and spatial configurations and sediment yield is multicollinearity. This paper examines the combined effects of land-use compositions and land-use spatial configurations of the watershed on the specific sediment yield of the Upper Du River watershed (8,973 km2) in China using the Soil and Water Assessment Tool (SWAT) and partial least-squares regression (PLSR). The land-use compositions and spatial configurations of the watershed were calculated at the sub-watershed scale. The sediment yields from sub-watershed were evaluated using SWAT model. The first-order factors were identified by calculating the variable importance for the projection (VIP). The results revealed that the land-use compositions exerted the largest effects on the specific sediment yield and explained 61.2% of the variation in the specific sediment yield. Land-use spatial configurations were also found to have a large effect on the specific sediment yield and explained 21.7% of the observed variation in the specific sediment yield. The following are the dominant first-order factors of the specific sediment yield at the sub-watershed scale: the areal percentages of agriculture and forest, patch density, value of the Shannon's diversity index, contagion. The VIP values suggested that the Shannon's diversity index and contagion are important factors for sediment delivery.

  15. Ankle-Dorsiflexion Range of Motion and Landing Biomechanics

    PubMed Central

    Fong, Chun-Man; Blackburn, J. Troy; Norcross, Marc F.; McGrath, Melanie; Padua, Darin A.

    2011-01-01

    Abstract Context: A smaller amount of ankle-dorsiflexion displacement during landing is associated with less knee-flexion displacement and greater ground reaction forces, and greater ground reaction forces are associated with greater knee-valgus displacement. Additionally, restricted dorsiflexion range of motion (ROM) is associated with greater knee-valgus displacement during landing and squatting tasks. Because large ground reaction forces and valgus displacement and limited knee-flexion displacement during landing are anterior cruciate ligament (ACL) injury risk factors, dorsiflexion ROM restrictions may be associated with a greater risk of ACL injury. However, it is unclear whether clinical measures of dorsiflexion ROM are associated with landing biomechanics. Objective: To evaluate relationships between dorsiflexion ROM and landing biomechanics. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Thirty-five healthy, physically active volunteers. Intervention(s): Passive dorsiflexion ROM was assessed under extended-knee and flexed-knee conditions. Landing biomechanics were assessed via an optical motion-capture system interfaced with a force plate. Main Outcome Measure(s): Dorsiflexion ROM was measured in degrees using goniometry. Knee-flexion and knee-valgus displacements and vertical and posterior ground reaction forces were calculated during the landing task. Simple correlations were used to evaluate relationships between dorsiflexion ROM and each biomechanical variable. Results: Significant correlations were noted between extended-knee dorsiflexion ROM and knee-flexion displacement (r  =  0.464, P  =  .029) and vertical (r  =  −0.411, P  =  .014) and posterior (r  =  −0.412, P  =  .014) ground reaction forces. All correlations for flexed-knee dorsiflexion ROM and knee-valgus displacement were nonsignificant. Conclusions: Greater dorsiflexion ROM was associated with greater knee

  16. Encouraging junior community netball players to learn correct safe landing technique.

    PubMed

    White, Peta E; Ullah, Shahid; Donaldson, Alex; Otago, Leonie; Saunders, Natalie; Romiti, Maria; Finch, Caroline F

    2012-01-01

    Behavioural factors and beliefs are important determinants of the adoption of sports injury interventions. This study aimed to understand behavioural factors associated with junior community netball players' intentions to learn correct landing technique during coach-led training sessions, proposed as a means of reducing their risk of lower limb injury. Cross-sectional survey. 287 female players from 58 junior netball teams in the 2007/2008-summer competition completed a 13-item questionnaire developed from the Theory of Planned Behaviour (TPB). This assessed players' attitudes (four items), subjective norms (four), perceived behavioural control (four) and intentions (one) around the safety behaviour of learning correct landing technique at netball training. All items were rated on a seven-point bipolar scale. Cluster-adjusted logistic regression was used to assess which TPB constructs were most associated with strong intentions. Players had positive intentions and attitudes towards learning safe landing technique and perceived positive social pressure from significant others. They also perceived themselves to have considerable control over engaging (or not) in this behaviour. Players' attitudes (p<0.001) and subjective norms (p<0.001), but not perceived behavioural control (p=0.49), were associated with strong intentions to learn correct landing technique at training. Injury prevention implementation strategies aimed at maximising junior players' participation in correct landing training programs should emphasise the benefits of learning correct landing technique (i.e. change attitudes) and involve significant others and role models whom junior players admire (i.e. capitalise on social norms) in the promotion of such programs. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Land-Breeze Forecasting

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Wheeler, Mark M.; Merceret, Francis J. (Technical Monitor)

    2002-01-01

    The nocturnal land breeze at the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) is both operationally significant and challenging to forecast. The occurrence and timing of land breezes impact low-level winds, atmospheric stability, low temperatures, and fog development. Accurate predictions of the land breeze are critical for toxic material dispersion forecasts associated with space launch missions, since wind direction and low-level stability can change noticeably with the onset of a land breeze. This report presents a seven-year observational study of land breezes over east-central Florida from 1995 to 2001. This comprehensive analysis was enabled by the high-resolution tower observations over KSC/CCAFS. Five-minute observations of winds, temperature, and moisture along with 9 15-MHz Doppler Radar Wind Profiler data were used to analyze specific land-breeze cases, while the tower data were used to construct a composite climatology. Utilities derived from this climatology were developed to assist forecasters in determining the land-breeze occurrence, timing, and movement based on predicted meteorological conditions.

  18. Coupling a three-dimensional subsurface flow model with a land surface model to simulate stream-aquifer-land interactions

    NASA Astrophysics Data System (ADS)

    Huang, M.; Bisht, G.; Zhou, T.; Chen, X.; Dai, H.; Hammond, G. E.; Riley, W. J.; Downs, J.; Liu, Y.; Zachara, J. M.

    2016-12-01

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively-parallel multi-physics reactive tranport model (PFLOTRAN). The coupled model (CLM-PFLOTRAN) is applied to a 400m×400m study domain instrumented with groundwater monitoring wells in the Hanford 300 Area along the Columbia River. CLM-PFLOTRAN simulations are performed at three different spatial resolutions over the period 2011-2015 to evaluate the impact of spatial resolution on simulated variables. To demonstrate the difference in model simulations with and without lateral subsurface flow, a vertical-only CLM-PFLOTRAN simulation is also conducted for comparison. Results show that the coupled model is skillful in simulating stream-aquifer interactions, and the land-surface energy partitioning can be strongly modulated by groundwater-river water interactions in high water years due to increased soil moisture availability caused by elevated groundwater table. In addition, spatial resolution does not seem to impact the land surface energy flux simulations, although it is a key factor for accurately estimating the mass exchange rates at the boundaries and associated biogeochemical reactions in the aquifer. The coupled model developed in this study establishes a solid foundation for understanding co-evolution of hydrology and biogeochemistry along the river corridors under historical and future hydro-climate changes.

  19. [Effects of land use type on diurnal dynamics of environment microclimate in Karst zone].

    PubMed

    Li, Sheng; Ren, Hua-Dong; Yao, Xiao-Hua; Zhang, Shou-Gong

    2009-02-01

    In June 2007, the diurnal dynamics of light intensity, air temperature, air relative humidity, soil temperature, and surface soil (0-5 cm) water content of five land use types in the typical Karst zone of Lingyun City in Guangxi Zhuang Autonomous Region were observed. The results showed that different land use types altered the composition, coverage, and height of aboveground vegetation, which in turn changed the environment microclimate to different degree. The microclimate quality was in the order of forestland > shrub land > grassland > farmland > rock land. On rock land, the light intensity, air temperature, air relative humidity, soil temperature, and soil water content were higher, and the diurnal variation of the five climatic factors was notable, with the microclimatic conditions changed towards drier and hotter. Compared with those on rock land, the light intensity on forestland, shrub land, grassland, and farmland decreased by 96.4%, 52.0%, 17.0% and 44.2%, air temperature decreased by 30.1%, 20.2%, 12.7% and 17.8%, air relative humidity increased by 129.2%, 57.2%, 18.0% and 41.2%, soil temperature decreased by 11.5%, 8%, 2.5% and 5.5%, and soil water content increased by 42.6%, 33.2%, 15.7% and 14.0%, respectively. The five climatic factors on forestland and shrub land had lesser fluctuation, with the microclimate tended to cool and wet. Light intensity, air temperature, and soil temperature correlated positively with each other, and had negative correlations with air relative humidity and soil water content. A positive correlation was observed between air temperature and soil water content.

  20. 43 CFR 3101.4 - Lands covered by application to close lands to mineral leasing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... lands to mineral leasing. 3101.4 Section 3101.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Issuance of Leases § 3101.4 Lands covered by application to close lands to mineral...

  1. 43 CFR 3101.4 - Lands covered by application to close lands to mineral leasing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... lands to mineral leasing. 3101.4 Section 3101.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Issuance of Leases § 3101.4 Lands covered by application to close lands to mineral...

  2. 43 CFR 3101.4 - Lands covered by application to close lands to mineral leasing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... lands to mineral leasing. 3101.4 Section 3101.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Issuance of Leases § 3101.4 Lands covered by application to close lands to mineral...

  3. The Land Use and Land Cover Dichotomy: A Comparison of Two Land Classification Systems in Support of Urban Earth Science Applications

    NASA Technical Reports Server (NTRS)

    McAllister, William K.

    2003-01-01

    One is likely to read the terms 'land use' and 'land cover' in the same sentence, yet these concepts have different origins and different applications. Land cover is typically analyzed by earth scientists working with remotely sensed images. Land use is typically studied by urban planners who must prescribe solutions that could prevent future problems. This apparent dichotomy has led to different classification systems for land-based data. The works of earth scientists and urban planning practitioners are beginning to come together in the field of spatial analysis and in their common use of new spatial analysis technology. In this context, the technology can stimulate a common 'language' that allows a broader sharing of ideas. The increasing amount of land use and land cover change challenges the various efforts to classify in ways that are efficient, effective, and agreeable to all groups of users. If land cover and land uses can be identified by remote methods using aerial photography and satellites, then these ways are more efficient than field surveys of the same area. New technology, such as high-resolution satellite sensors, and new methods, such as more refined algorithms for image interpretation, are providing refined data to better identify the actual cover and apparent use of land, thus effectiveness is improved. However, the closer together and the more vertical the land uses are, the more difficult the task of identification is, and the greater is the need to supplement remotely sensed data with field study (in situ). Thus, a number of land classification methods were developed in order to organize the greatly expanding volume of data on land characteristics in ways useful to different groups. This paper distinguishes two land based classification systems, one developed primarily for remotely sensed data, and the other, a more comprehensive system requiring in situ collection methods. The intent is to look at how the two systems developed and how they

  4. Urban land-use study plan for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Squillace, P.J.; Price, C.V.

    1996-01-01

    This study plan is for Urban Land-Use Studies initiated as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. There are two Urban Land-Use Study objectives: (1) Define the water quality in recharge areas of shallow aquifers underlying areas of new residential and commercial land use in large metropolitan areas, and (2) determine which natural and human factors most strongly affect the occurrence of contaminants in these shallow aquifers. To meet objective 1, each NAWQA Study Unit will install and collect water samples from at least 30 randomly located monitoring wells in a metropolitan area. To meet objective 2, aquifer characteristics and land-use information will be documented. This includes particle-size analysis of each major lithologic unit both in the unsaturated zone and in the aquifer near the water table. The percentage of organic carbon also will be determined for each lithologic unit. Geographic information system coverages will be created that document existing land use around the wells. These data will aid NAWQA personnel in relating natural and human factors to the occurrence of contaminants. Water samples for age dating also will be collected from all monitoring wells, but the samples will be stored until the occurrence of contaminants has been determined. Age-date analysis will be done only on those samples that have no detectable concentrations of anthropogenic contaminants.

  5. The study on LUCC and its human drive factors in Quanzhou City

    NASA Astrophysics Data System (ADS)

    Zhuang, JianShun; Zhong, KaiWen; Zhang, JinQian; Chen, SongLin

    2008-10-01

    Based on the 1988 and 2000 remote sensing data and the "3S" technology, we not only attempt to analyze the dynamic change form the structure of quantity and spatial change of Land Use in Quanzhou City, but also use the representatively correlation method to explain the interrelation between this change of Land Use and the social economic factors, by the CANCORR program of SPSS. Furthermore, according to the viewpoint of Humanism, we try to find out the function of the social power factors, the social culture factors which conclude natural view, axiology, dietetically custom, habitation fashion and consumed tropism .etc and the developing industries of local color on the Land Use change. From this research, the result show: 1) the structure of quantity of Land Use change remarkably from county to county, the most reducing quantity of paddy field, dry land and garden plot are separately the county of DeHua, HuiAn and NanAn. And the most driver factor is the developing industries of local color; 2) the type change of Land Use caused by the production value of extractive industry, light industry and the third industry, basic contracture investment, output of tea and fruit, convenient extent of road and income of per farmer and so on in Quanzhou City between 1988 and 2000. In a word, the dynamic change of Land Use impact by more factors we have mentioned, and it's extend is more and more multistage, especially in Quanzhou City. As we study, the dynamic change of Land Use is enslaved to human factors in Quanzhou City.

  6. Changes in land use as a possible factor in Mourning Dove population decline in Central Utah

    USGS Publications Warehouse

    Ostrand, William D.; Meyers, P.M.; Bissonette, J.A.; Conover, M.R.

    1998-01-01

    Mourning Dove (Zenaida macroura) population indices for the western United States have declined significantly since 1966. Based on data collected in 1951-1952, in Fillmore, Utah, we examined whether there had been a local decline in the dove population index since the original data were collected. We then determined whether habitat had been altered, identified which foraging habitats doves preferred, and assessed whether changes in land use could be responsible, in part, for a decline in the local population index. We found that dove population indices declined 72% and 82% from 1952-1992 and 1952-1993, respectively. The most dramatic change in habitat was an 82% decline in land devoted to dry land winter wheat production and a decline in livestock feed pens. Doves foraged primarily in harvested wheat fields, feed pens, and weedy patches. We hypothesize that a decrease in wheat availability during the spring and the consolidation of the livestock industry have contributed to a population decline of Mourning Doves in central Utah.

  7. Standards for the classification of public coal lands

    USGS Publications Warehouse

    Bass, N. Wood; Smith, Henry L.; Horn, George Henry

    1970-01-01

    In order to provide uniformity in the classification of coal lands in the public domain, certain standards have been prepared from time to time by the U.S. Geological Survey. The controlling factors are the depth, quality, and thickness of the coal beds. The first regulations were issued April 8, 1907; others followed in 1908, 1909, and 1913. Except for minor changes in 1959, the regulations of 1913, which were described in U.S. Geological Survey Bulletin 537, have been the guiding principles for coal-land classification. Changes made herein from the standards previously used are: (1) a maximum depth of 6,000 feet instead of 5,000 feet, (2) a maximum depth of 1,000 feet instead of 500 feet for coals of minimum thickness, (3) use of Btu (British thermal unit) values for as-received foal instead of air-dried, and (4) a minimum Btu value of 4,000 for as-received coal instead of 8,000 for air-dried. An additional modification is that the maximum thickness of 8 feet which was designated in the Classification Chart for Coal Lands in 1959 is changed to 6 feet. The effect of these changes will be the classification of a greater amount of the withdrawn land as coal land than was done under earlier regulations.

  8. Biology, ecology, and economics at play: land use and land cover changes in the 21st century.

    Treesearch

    Sally Duncan

    2003-01-01

    In making choices about how to manage the country’s wealth of forest land, stakeholders including U.S. taxpayers—have many choices, all of them with ripple effects that extend far beyond the immediate stands of trees. In the Pacific Northwest, as elsewhere, biophysical, ecological, and socioeconomic factors combine to influence the areas of forest cover types and their...

  9. Relationships between aerodynamic roughness and land use and land cover in Baltimore, Maryland

    USGS Publications Warehouse

    Nicholas, F.W.; Lewis, J.E.

    1980-01-01

    Urbanization changes the radiative, thermal, hydrologic, and aerodynamic properties of the Earth's surface. Knowledge of these surface characteristics, therefore, is essential to urban climate analysis. Aerodynamic or surface roughness of urban areas is not well documented, however, because of practical constraints in measuring the wind profile in the presence of large buildings. Using an empirical method designed by Lettau, and an analysis of variance of surface roughness values calculated for 324 samples averaging 0.8 hectare (ha) of land use and land cover sample in Baltimore, Md., a strong statistical relation was found between aerodynamic roughness and urban land use and land cover types. Assessment of three land use and land cover systems indicates that some of these types have significantly different surface roughness characteristics. The tests further indicate that statistically significant differences exist in estimated surface roughness values when categories (classes) from different land use and land cover classification systems are used as surrogates. A Level III extension of the U.S. Geological Survey Level II land use and land cover classification system provided the most reliable results. An evaluation of the physical association between the aerodynamic properties of land use and land cover and the surface climate by numerical simulation of the surface energy balance indicates that changes in surface roughness within the range of values typical of the Level III categories induce important changes in the surface climate.

  10. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    PubMed

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  11. The influence of the interactions between anthropogenic activities and multiple ecological factors on land surface temperatures of urban forests

    NASA Astrophysics Data System (ADS)

    Ren, Y.

    2017-12-01

    Context Land surface temperatures (LSTs) spatio-temporal distribution pattern of urban forests are influenced by many ecological factors; the identification of interaction between these factors can improve simulations and predictions of spatial patterns of urban cold islands. This quantitative research requires an integrated method that combines multiple sources data with spatial statistical analysis. Objectives The purpose of this study was to clarify urban forest LST influence interaction between anthropogenic activities and multiple ecological factors using cluster analysis of hot and cold spots and Geogdetector model. We introduced the hypothesis that anthropogenic activity interacts with certain ecological factors, and their combination influences urban forests LST. We also assumed that spatio-temporal distributions of urban forest LST should be similar to those of ecological factors and can be represented quantitatively. Methods We used Jinjiang as a representative city in China as a case study. Population density was employed to represent anthropogenic activity. We built up a multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) on a unified urban scale to support urban forest LST influence interaction research. Through a combination of spatial statistical analysis results, multi-source spatial data, and Geogdetector model, the interaction mechanisms of urban forest LST were revealed. Results Although different ecological factors have different influences on forest LST, in two periods with different hot spots and cold spots, the patch area and dominant tree species were the main factors contributing to LST clustering in urban forests. The interaction between anthropogenic activity and multiple ecological factors increased LST in urban forest stands, linearly and nonlinearly. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots

  12. Land-Price Dynamics Surrounding Large-Scale Land Development of Technopolis Gedebage, Bandung, Indonesia

    NASA Astrophysics Data System (ADS)

    Hasanawi, A.; Winarso, H.

    2018-05-01

    In spite of its potential value to governments, detailed information on how land prices vary spatially in a city is very lacking. Land price in the city, especially around the development activity, is not known. There are some considerable studies showing that investment in land development increases the land market price; however, only a few are found. One of them is about the impact of large-scale investment by Sumarecon in Gedebage Bandung, which is planning to develop “Technopolis”, as the second center of Bandung Municipality.This paper discusses the land-price dynamics around the Technopolis Gedebage Bandung, using information obtained from many sources including an interview with experienced brokers. Appraised prices were given for different types of residential plot distinguished by tenure, distance from the main road, and infrastructural provision. This research aims to explain the dynamics of the land price surrounding the large-scale land development. The dynamics of the land price are described by the median land price market growth using the Surfer DEM software. The data analysis in Technopolis Gedebage Bandung shows the relative importance of land location, infrastructural provision and tenure (land title) for dynamics of the land price. The examination of data makes it possible to test whether and where there has been a spiraling of land prices. This paper argues that the increasing recent price has been consistently greater in suburban plots than that in the inner city as a result of the massive demand of the large-scale land development project. The increasing price of land cannot be controlled; the market price is rising very quickly among other things due to the fact that Gedebage will become the technopolis area. This, however, can indirectly burden the lower-middle-class groups, such as they are displaced from their previous owned-land, and implicate on ever-decreasing income as the livelihood resources (such as farming and agriculture) are

  13. Simulating Land-Use Change using an Agent-Based Land Transaction Model

    NASA Astrophysics Data System (ADS)

    Bakker, M. M.; van Dijk, J.; Alam, S. J.

    2013-12-01

    In the densely populated cultural landscapes of Europe, the vast majority of all land is owned by private parties, be it farmers (the majority), nature organizations, property developers, or citizens. Therewith, the vast majority of all land-use change arises from land transactions between different owner types: successful farms expand at the expense of less successful farms, and meanwhile property developers, individual citizens, and nature organizations also actively purchase land. These land transactions are driven by specific properties of the land, by governmental policies, and by the (economic) motives of both buyers and sellers. Climate/global change can affect these drivers at various scales: at the local scale changes in hydrology can make certain land less or more desirable; at the global scale the agricultural markets will affect motives of farmers to buy or sell land; while at intermediate (e.g. provincial) scales property developers and nature conservationists may be encouraged or discouraged to purchase land. The cumulative result of all these transactions becomes manifest in changing land-use patterns, and consequent environmental responses. Within the project Climate Adaptation for Rural Areas an agent-based land-use model was developed that explores the future response of individual land users to climate change, within the context of wider global change (i.e. policy and market change). It simulates the exchange of land among farmers and between farmers and nature organizations and property developers, for a specific case study area in the east of the Netherlands. Results show that local impacts of climate change can result in a relative stagnation in the land market in waterlogged areas. Furthermore, the increase in dairying at the expense of arable cultivation - as has been observed in the area in the past - is slowing down as arable produce shows a favourable trend in the agricultural world market. Furthermore, budgets for nature managers are

  14. Comprehensive data set of global land cover change for land surface model applications

    NASA Astrophysics Data System (ADS)

    Sterling, Shannon; Ducharne, AgnèS.

    2008-09-01

    To increase our understanding of how humans have altered the Earth's surface and to facilitate land surface modeling experiments aimed to elucidate the direct impact of land cover change on the Earth system, we create and analyze a database of global land use/cover change (LUCC). From a combination of sources including satellite imagery and other remote sensing, ecological modeling, and country surveys, we adapt and synthesize existing maps of potential land cover and layers of the major anthropogenic land covers, including a layer of wetland loss, that are then tailored for land surface modeling studies. Our map database shows that anthropogenic land cover totals to approximately 40% of the Earth's surface, consistent with literature estimates. Almost all (92%) of the natural grassland on the Earth has been converted to human use, mostly grazing land, and the natural temperate savanna with mixed C3/C4 is almost completely lost (˜90%), due mostly to conversion to cropland. Yet the resultant change in functioning, in terms of plant functional types, of the Earth system from land cover change is dominated by a loss of tree cover. Finally, we identify need for standardization of percent bare soil for global land covers and for a global map of tree plantations. Estimates of land cover change are inherently uncertain, and these uncertainties propagate into modeling studies of the impact of land cover change on the Earth system; to begin to address this problem, modelers need to document fully areas of land cover change used in their studies.

  15. Accuracy assessment of NLCD 2006 land cover and impervious surface

    USGS Publications Warehouse

    Wickham, James D.; Stehman, Stephen V.; Gass, Leila; Dewitz, Jon; Fry, Joyce A.; Wade, Timothy G.

    2013-01-01

    Release of NLCD 2006 provides the first wall-to-wall land-cover change database for the conterminous United States from Landsat Thematic Mapper (TM) data. Accuracy assessment of NLCD 2006 focused on four primary products: 2001 land cover, 2006 land cover, land-cover change between 2001 and 2006, and impervious surface change between 2001 and 2006. The accuracy assessment was conducted by selecting a stratified random sample of pixels with the reference classification interpreted from multi-temporal high resolution digital imagery. The NLCD Level II (16 classes) overall accuracies for the 2001 and 2006 land cover were 79% and 78%, respectively, with Level II user's accuracies exceeding 80% for water, high density urban, all upland forest classes, shrubland, and cropland for both dates. Level I (8 classes) accuracies were 85% for NLCD 2001 and 84% for NLCD 2006. The high overall and user's accuracies for the individual dates translated into high user's accuracies for the 2001–2006 change reporting themes water gain and loss, forest loss, urban gain, and the no-change reporting themes for water, urban, forest, and agriculture. The main factor limiting higher accuracies for the change reporting themes appeared to be difficulty in distinguishing the context of grass. We discuss the need for more research on land-cover change accuracy assessment.

  16. "Land-Cover Conversion in Amazonia, The Role of ENV" Ironment and Substrate composition in Modifying SOI

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Chadwick, Oliver A.; Batista, Getulio T.

    2003-01-01

    LBA research from the first phase of LBA focused on three broad categories: 1) mapping land cover and quantifying rates of change, persistence of pasture, and area of recovering forest; 2) evaluating the role of environmental factors and land-use history on soil biogeochemistry; and 3) quantifying the natural and human controls on stream nutrient concentrations. The focus of the research was regional, concentrating primarily in the state of RondBnia, but also included land-cover mapping in the vicinity of Maraba, Para, and Manaus, Amazonas. Remote sensing analysis utilized Landsat Thematic Mapper (TM) and Multispectral Scanner (MS S) data to map historical patterns of land-cover change. Specific questions addressed by the remote sensing component of the research included: 1) what is the areal extent of dominant land-cover classes? 2) what are the rates of change of dominant land cover through processes of deforestation, disturbance and regeneration? and 3) what are the dynamic properties of each class that characterize temporal variability, duration, and frequency of repeat disturbance? Biogeochemical analysis focused on natural variability and impacts of land-use/land-cover changes on soil and stream biogeochemical properties at the regional scale. An emphasis was given to specific soil properties considered to be primary limiting factors regionally, including phosphorus, nitrogen, base cations and cation-exchange properties. Stream sampling emphasized the relative effects of the rates and timing of land-cover change on stream nutrients, demonstrating that vegetation conversion alone does not impact nutrients as much as subsequent land use and urbanization.

  17. Grand challenges in understanding the interplay of climate and land changes

    DOE PAGES

    Liu, Shuguang; Bond-Lamberty, Ben; Boysen, Lena R.; ...

    2017-03-28

    Half of the Earth s land surface has been altered by human activities, creating various consequences on the climate and weather systems at local to global scales, which in turn affects a myriad of land surface processes and our adaptation behaviors. We here review the status and major knowledge gaps of studying the interactions of land and atmospheric changes and present eleven grand challenge areas for scientific research and adaptation communities in the coming decade: (1) collective and separate impacts of major land changes and the interactions with non-land-change factors such as atmospheric CO2 increase, (2) carbon and other biogeochemicalmore » cycles, (3) climatically relevant biospheric emissions such as aerosols, (4) water cycle, (5) agriculture, (6) urbanization, (7) gradual acclimation of plants, communities, and ecosystems to climate and environmental changes, (8) plant migration, (9) land use projections, (10) reduction of uncertainties in models and data, and finally (11) adaptation strategies. We conclude that we need to create and maintain a close cross-disciplinary coordination between measurements and process representation in models to analyze complex multi-facet interrelated perturbations and feedbacks between land and climate changes. Along with major scientific research thrusts, land-use and land cover change mitigation and adaptation assessments should be strengthened to identify barriers that need to be overcome, evaluate and prioritize opportunities, and examine how decision making processes work in specific contexts.« less

  18. Grand challenges in understanding the interplay of climate and land changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shuguang; Bond-Lamberty, Ben; Boysen, Lena R.

    Half of the Earth s land surface has been altered by human activities, creating various consequences on the climate and weather systems at local to global scales, which in turn affects a myriad of land surface processes and our adaptation behaviors. We here review the status and major knowledge gaps of studying the interactions of land and atmospheric changes and present eleven grand challenge areas for scientific research and adaptation communities in the coming decade: (1) collective and separate impacts of major land changes and the interactions with non-land-change factors such as atmospheric CO2 increase, (2) carbon and other biogeochemicalmore » cycles, (3) climatically relevant biospheric emissions such as aerosols, (4) water cycle, (5) agriculture, (6) urbanization, (7) gradual acclimation of plants, communities, and ecosystems to climate and environmental changes, (8) plant migration, (9) land use projections, (10) reduction of uncertainties in models and data, and finally (11) adaptation strategies. We conclude that we need to create and maintain a close cross-disciplinary coordination between measurements and process representation in models to analyze complex multi-facet interrelated perturbations and feedbacks between land and climate changes. Along with major scientific research thrusts, land-use and land cover change mitigation and adaptation assessments should be strengthened to identify barriers that need to be overcome, evaluate and prioritize opportunities, and examine how decision making processes work in specific contexts.« less

  19. Orion Crew Member Injury Predictions during Land and Water Landings

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Littell, Justin D.; Fasanella, Edwin L.; Tabiei, Ala

    2008-01-01

    A review of astronaut whole body impact tolerance is discussed for land or water landings of the next generation manned space capsule named Orion. LS-DYNA simulations of Orion capsule landings are performed to produce a low, moderate, and high probability of injury. The paper evaluates finite element (FE) seat and occupant simulations for assessing injury risk for the Orion crew and compares these simulations to whole body injury models commonly referred to as the Brinkley criteria. The FE seat and crash dummy models allow for varying the occupant restraint systems, cushion materials, side constraints, flailing of limbs, and detailed seat/occupant interactions to minimize landing injuries to the crew. The FE crash test dummies used in conjunction with the Brinkley criteria provides a useful set of tools for predicting potential crew injuries during vehicle landings.

  20. Using Landsat Thematic Mapper (TM) sensor to detect change in land surface temperature in relation to land use change in Yazd, Iran

    NASA Astrophysics Data System (ADS)

    Zareie, Sajad; Khosravi, Hassan; Nasiri, Abouzar; Dastorani, Mostafa

    2016-11-01

    Land surface temperature (LST) is one of the key parameters in the physics of land surface processes from local to global scales, and it is one of the indicators of environmental quality. Evaluation of the surface temperature distribution and its relation to existing land use types are very important to the investigation of the urban microclimate. In arid and semi-arid regions, understanding the role of land use changes in the formation of urban heat islands is necessary for urban planning to control or reduce surface temperature. The internal factors and environmental conditions of Yazd city have important roles in the formation of special thermal conditions in Iran. In this paper, we used the temperature-emissivity separation (TES) algorithm for LST retrieving from the TIRS (Thermal Infrared Sensor) data of the Landsat Thematic Mapper (TM). The root mean square error (RMSE) and coefficient of determination (R2) were used for validation of retrieved LST values. The RMSE of 0.9 and 0.87 °C and R2 of 0.98 and 0.99 were obtained for the 1998 and 2009 images, respectively. Land use types for the city of Yazd were identified and relationships between land use types, land surface temperature and normalized difference vegetation index (NDVI) were analyzed. The Kappa coefficient and overall accuracy were calculated for accuracy assessment of land use classification. The Kappa coefficient values are 0.96 and 0.95 and the overall accuracy values are 0.97 and 0.95 for the 1998 and 2009 classified images, respectively. The results showed an increase of 1.45 °C in the average surface temperature. The results of this study showed that optical and thermal remote sensing methodologies can be used to research urban environmental parameters. Finally, it was found that special thermal conditions in Yazd were formed by land use changes. Increasing the area of asphalt roads, residential, commercial and industrial land use types and decreasing the area of the parks, green spaces and

  1. Women's Land Tenure Security and Household Human Capital: Evidence from Ethiopia's Land Certification.

    PubMed

    Muchomba, Felix M

    2017-10-01

    This paper examines the impact of Ethiopia's gendered land certification programs on household consumption of healthcare, food, education, and clothing. Ethiopia embarked on a land tenure reform program in 1998, after years of communism during which all land was nationalized. The reform began in Tigray region where land certificates were issued to household heads, who were primarily male. In a second phase carried out in 2003-2005, three other regions issued land certificates jointly to household heads and spouses, presenting variation in land tenure security by gender. Results using household panel data show that joint land certification to spouses was accompanied by increased household consumption of healthcare and homegrown food and decreased education expenditure, compared to household-head land certification. Joint land certification was also accompanied by increased consumption of women's and girls' clothing, and decreased men's clothing expenditures indicating results may be explained by a shift in the gender balance of power within households. Analysis on the incidence and duration of illness indicates that increased healthcare expenditures after joint land certification may be due to joint certification households seeking more effective treatment than head-only certification households for household members who fell ill or suffered injuries.

  2. Composite skid landing gear design investigation

    NASA Astrophysics Data System (ADS)

    Shrotri, Kshitij

    A Composite Skid Landing Gear Design investigation has been conducted. Limit Drop Test as per Federal Aviation Regulations (FAR) Part 27.725 and Crash test as per MIL STD 1290A (AV) were simulated using ABAQUS to evaluate performance of multiple composite fiber-matrix systems. Load factor developed during multiple landing scenarios and energy dissipated during crash were computed. Strength and stiffness based constraints were imposed. Tsai-Wu and LaRC04 physics based failure criteria were used for limit loads. Hashin's damage initiation criteria with Davila-Camanho's energy based damage evolution damage evolution law were used for crash. Initial results indicate that all single-composite skid landing gear may no be feasible due to strength concerns in the cross member bends. Hybridization of multiple composites with elasto-plastic aluminum 7075 showed proof of strength under limit loads. Laminate tailoring for load factor optimization under limit loads was done by parameterization of a single variable fiber orientation angle for multiple laminate families. Tsai-Wu failure criterion was used to impose strength contraints. A quasi-isotropic N = 4 (pi/4) 48 ply IM7/8552 laminate was shown to be the optimal solution with a load failure will be initiated as matrix cracking under compression and fiber kinking under in-plane shear and longitudinal compression. All failures under limit loads being reported in the metal-composite hybrid joint region, the joint was simulated by adhesive bonding and filament winding, separately. Simply adhesive bonding the metal and composite regions does not meet strength requirements. A filament wound metal-composite joint shows proof of strength. Filament wound bolted metal-composite joint shows proof of strength. Filament wound composite bolted to metal cross member radii is the final joining methodology. Finally, crash analysis was conducted as per requirements from MIL STD 1290A (AV). Crash at 42 ft/sec with 1 design gross weight (DGW

  3. Trend in land degradation has been the most contended issue in the Sahel. Trends documented have not been consistent across authors and science disciplines, hence little agreement has been gained on the magnitude and direction of land degradation in the Sahel. Differentiated science outputs are related to methods and data used at various scales.

    NASA Astrophysics Data System (ADS)

    Mbow, C.; Brandt, M.; Fensholt, R.; Ouedraogo, I.; Tagesson, T.

    2015-12-01

    Thematic gaps in land degradation trends in the SahelTrend in land degradation has been the most contended issue for arid and semi-arid regions. In the Sahel, depending to scale of analysis and methods and data used, the trend documented have not been consistent across authors and science disciplines. The assessment of land degradation and the quantification of its effects on land productivity have been assessed for many decades, but little agreement has been gained on the magnitude and direction in the Sahel. This lack of consistency amid science outputs can be related to many methodological underpinnings and data used for various scales of analysis. Assessing biophysical trends on the ground requires long-term ground-based data collection to evaluate and better understand the mechanisms behind land dynamics. The Sahel is seen as greening by many authors? Is that greening geographically consistent? These questions enquire the importance of scale analysis and related drivers. The questions addressed are not only factors explaining loss of tree cover but also regeneration of degraded land. The picture used is the heuristic cycle model to assess loss and damages vs gain and improvements of various land use practices. The presentation will address the following aspects - How much we know from satellite data after 40 years of remote sensing analysis over the Sahel? That section discuss agreement and divergences of evidences and differentiated interpretation of land degradation in the Sahel. - The biophysical factors that are relevant for tracking land degradation in the Sahel. Aspects such detangling human to climate factors and biophysical factors behind land dynamics will be presented - Introduce some specific cases of driver of land architecture transition under the combined influence of climate and human factor. - Based on the above we will conclude with some key recommendations on how to improve land degradation assessment in the Arid region of the Sahel.

  4. High-Resolution Land Use and Land Cover Mapping

    USGS Publications Warehouse

    ,

    1999-01-01

    As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.

  5. Political ecology of land use change in Indonesia

    NASA Astrophysics Data System (ADS)

    Novira, Nina

    2014-05-01

    Indonesia had once around 10% of the world's rain forest. Many accuse shifting cultivation and poverty to be responsible to tropical deforestation and land use change. Without denying the importance of these factors, this paper tries to see the problem from a different angel. Massive deforestation first took place when the Dutch colonials decided to develop coffee, tea and later rubber and oil palm plantation in the late 19th century. During the Independence Era, land use change can be divided into 3 periods: 1950 - 1975 period of agricultural expansion, mainly government program; 1975 - 1990 period of commercial logging concession, mainly private concession with government's endorsement; and 1990 to date period of land use change to cash crop, settlement, and business area, a more complex process involving private company, government program and endorsement, and personal action. The first two periodization shows clearly that land use change in Indonesia has a strong connection to political decision and power at certain period of time, which also influenced by international market tendencies at the given period. The last period has actually not so much difference. This paper seeks to explain land use change in Indonesia especially in the last period of 1990 to present. This period can be divided again into 3 sub-periods: later New Order Era, early Reformation Era, and the Regional Autonomy Era. The case study was conducted in Labuhan Batu Utara District of North Sumatera. Semi-structured interview was done with various actors in different levels. It is argued that government's policies and arrangements along with government's reaction to international market and politics plays a substantially important role in land use change. In the first sub-period (1990 - 1998), it is the fading power of Suharto's regime that increases farmers' courage to violate the strict prohibition of rice field conversion to other uses. Another important factor is the introduction of

  6. Landing strategies of athletes with an asymptomatic patellar tendon abnormality.

    PubMed

    Edwards, Suzi; Steele, Julie R; McGhee, Deirdre E; Beattie, Sue; Purdam, Craig; Cook, Jill L

    2010-11-01

    Risk factors associated with a clinical presentation of patellar tendinopathy are patellar tendon ultrasonographic abnormality (PTA) and excessive loading. It remains unknown whether characteristics of an athlete's landing technique contribute to this excessive patellar tendon loading. This study investigated whether asymptomatic athletes with and without PTA had different landing strategies and hypothesized that asymptomatic athletes with a PTA would create higher patellar tendon loading and a different lower-limb landing strategy compared with athletes with normal patellar tendons. Seven athletes with no previous history or clinical signs of patellar tendon injury with a PTA were matched to athletes with normal patellar tendons (controls). Participants performed five successful trials of a stop-jump task, which involved a simultaneous two-foot horizontal and then vertical landing. During each trial, the participants' ground reaction forces and lower-limb electromyographic data were recorded, the three-dimensional kinematics measured, and the peak patellar tendon force calculated by dividing the net knee joint moment by the patellar tendon moment arm. Significant between-group differences in landing technique were mostly observed during the horizontal landing phase. Participants with a PTA created similar patellar tendon loading to the controls, but with altered sequencing, by landing with significantly greater knee flexion and extending their hips while the controls flexed their hips as they landed, reflecting a different muscle recruitment order compared with the PTA group. The crucial part in the development of PTA and, in turn, patellar tendinopathy may not be the magnitude of the patellar tendon load but rather the loading patterns. This research provides clinicians with important landing assessment criteria against which to identify athletes at risk of developing patellar tendinopathy.

  7. Analysis of Summer Thunderstorms in Central Alabama Using the NASA Land Information System

    NASA Technical Reports Server (NTRS)

    James, Robert; Case, Jonathan; Molthan, Andrew; Jedloved, Gary

    2010-01-01

    Forecasters have difficulty predicting "random" afternoon thunderstorms during the summer months. Differences in soil characteristics could be a contributing factor for storms. The NASA Land Information System (LIS) may assist forecasters in predicting summer convection by identifying boundaries in land characteristics. This project identified case dates during the summer of 2009 by analyzing synoptic weather maps, radar, and satellite data to look for weak atmospheric forcing and disorganized convective development. Boundaries in land characteristics that may have lead to convective initiation in central Alabama were then identified using LIS.

  8. Soil Fertility Evaluation and Land Management of Dryland Farming at Tegallalang Sub-District, Gianyar Regency, Bali, Indonesia

    NASA Astrophysics Data System (ADS)

    Sardiana, I. K.; Susila, D.; Supadma, A. A.; Saifulloh, M.

    2017-12-01

    The landuse of Tegallalang Subdistrict is dominated by dryland farming. The practice of cultivation on agricultural dryland that ignores the carrying capacity of the environment can lead to land degradation that makes the land vulnerable to the deterioration of soil fertility. Soil fertility evaluation and land management of dryland farming in Tegallalang Sub-district, Gianyar Regency were aimed at (1) identifying the soil fertility and it’s respective limiting factors, (2) mapping the soil fertility using Geographic Information Systems (GIS) and (3) developing land management for dryland farming in Tegallalang Sub-district. This research implementing explora-tory method which followed by laboratory analysis. Soil samples were taken on each homogene-ous land units which developed by overlay of slope, soil type, and land use maps. The following soil fertility were measured, such as CEC, base saturation, P2O5, K- Total and C-Organic. The values of soil fertility were mapping using QGIS 2.18.7 and refer to land management evaluation. The results showed that the soil fertility in the research area considered high, and low level. The High soil fertility presents on land units at the flat to undulating slope with different land management systems (fertilizer, without fertilizer, soil tillage and without soil tillage). The low soil fertility includes land units that present on steep slope, and without land managements. The limiting factors of soil fertility were texture, C-Organic, CEC, P2O5, and K- total. It was recommended to applying organic fertilizer, Phonska, and dolomite on the farming area.

  9. Using 3d Bim Model for the Value-Based Land Share Calculations

    NASA Astrophysics Data System (ADS)

    Çelik Şimşek, N.; Uzun, B.

    2017-11-01

    According to the Turkish condominium ownership system, 3D physical buildings and its condominium units are registered to the condominium ownership books via 2D survey plans. Currently, 2D representations of the 3D physical objects, causes inaccurate and deficient implementations for the determination of the land shares. Condominium ownership and easement right are established with a clear indication of land shares (condominium ownership law, article no. 3). So, the land share of each condominium unit have to be determined including the value differences among the condominium units. However the main problem is that, land share has often been determined with area based over the project before construction of the building. The objective of this study is proposing a new approach in terms of value-based land share calculations of the condominium units that subject to condominium ownership. So, the current approaches and its failure that have taken into account in determining the land shares are examined. And factors that affect the values of the condominium units are determined according to the legal decisions. This study shows that 3D BIM models can provide important approaches for the valuation problems in the determination of the land shares.

  10. Modeling the effect of land use change on hydrology of a forested watershed in coastal South Carolina.

    Treesearch

    Zhaohua Dai; Devendra M. Amatya; Ge Sun; Changsheng Li; Carl C. Trettin; Harbin Li

    2009-01-01

    Since hydrology is one of main factors controlling wetland functions, hydrologic models are useful for evaluating the effects of land use change on we land ecosystems. We evaluated two process-based hydrologic models with...

  11. Model of land cover change prediction in West Java using cellular automata-Markov chain (CA-MC)

    NASA Astrophysics Data System (ADS)

    Virtriana, Riantini; Sumarto, Irawan; Deliar, Albertus; Pasaribu, Udjianna S.; Taufik, Moh.

    2015-04-01

    Land is a fundamental factor that closely related to economic growth and supports the needs of human life. Land-use activity is a major issue and challenge for country planners. The cause of change in land use type activity may be due to socio economic development or due to changes in the environment or may be due to both. In an effort to understand the phenomenon of land cover changes, can be approached through land cover change modelling. Based on the facts and data contained, West Java has a high economic activity that will have an impact on land cover change. CA-MC is a model that used to determine the statistical change probabilistic for each of land cover type from land cover data at different time periods. CA-MC is able to provide the output of land cover type that should occurred. Results from a CA-MC modelling in predicting land cover changes showed an accuracy rate of 95.42%.

  12. Study on the risk and impacts of land subsidence in Jakarta

    NASA Astrophysics Data System (ADS)

    Abidin, H. Z.; Andreas, H.; Gumilar, I.; Brinkman, J. J.

    2015-11-01

    Jakarta is the capital city of Indonesia located in the west-northern coast of Java island, within a deltaic plain and passes by 13 natural and artificial rivers. This megapolitan has a population of about 10.2 million people inhabiting an area of about 660 km2, with relatively rapid urban development. It has been reported for many years that several places in Jakarta are subsiding at different rates. The main causative factors of land subsidence in Jakarta are most probably excessive groundwater extraction, load of constructions (i.e., settlement of high compressibility soil), and natural consolidation of alluvial soil. Land subsidence in Jakarta has been studied using leveling surveys, GPS surveys, InSAR and Geometric-Historic techniques. The results obtained from leveling surveys, GPS surveys and InSAR technique over the period between 1974 and 2010 show that land subsidence in Jakarta has spatial and temporal variations with typical rates of about 3-10 cm year-1. Rapid urban development, relatively young alluvium soil, and relatively weak mitigation and adapatation initiatives, are risk increasing factors of land subsidence in Jakarta. The subsidence impacts can be seen already in the field in forms of cracking and damage of housing, buildings and infrastructure; wider expansion of (riverine and coastal) flooding areas, malfunction of drainage system, changes in river canal and drain flow systems and increased inland sea water intrusion. These impacts can be categorized into infrastructural, environmental, economic and social impacts. The risk and impacts of land subsidence in Jakarta and their related aspects are discussed in this paper.

  13. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model

    NASA Astrophysics Data System (ADS)

    Verburg, Peter H.; Soepboer, Welmoed; Veldkamp, A.; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S. A.

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  14. Modeling the spatial dynamics of regional land use: the CLUE-S model.

    PubMed

    Verburg, Peter H; Soepboer, Welmoed; Veldkamp, A; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S A

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  15. Global land-water nexus: Agricultural land and freshwater use embodied in worldwide supply chains.

    PubMed

    Chen, B; Han, M Y; Peng, K; Zhou, S L; Shao, L; Wu, X F; Wei, W D; Liu, S Y; Li, Z; Li, J S; Chen, G Q

    2018-02-01

    As agricultural land and freshwater inextricably interrelate and interact with each other, the conventional water and land policy in "silos" should give way to nexus thinking when formulating the land and water management strategies. This study constructs a systems multi-regional input-output (MRIO) model to expound global land-water nexus by simultaneously tracking agricultural land and freshwater use flows along the global supply chains. Furthermore, land productivity and irrigation water requirements of 160 crops in different regions are investigated to reflect the land-water linkage. Results show that developed economies (e.g., USA and Japan) and major large developing economies (e.g., mainland China and India) are the overriding drivers of agricultural land and freshwater use globally. In general, significant net transfers of these two resources are identified from resource-rich and less-developed economies to resource-poor and more-developed economies. For some crops, blue water productivity is inversely related to land productivity, indicating that irrigation water consumption is sometimes at odds with land use. The results could stimulus international cooperation for sustainable land and freshwater management targeting on original suppliers and final consumers along the global supply chains. Moreover, crop-specific land-water linkage could provide insights for trade-off decisions on minimizing the environmental impacts on local land and water resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Economic effects of western Federal land-use restrictions on U.S. coal markets

    USGS Publications Warehouse

    Watson, William Downing; Medlin, A.L.; Krohn, K.K.; Brookshire, D.S.; Bernknopf, R.L.

    1991-01-01

    Current regulations on land use in the Western United States affect access to surface minable coal resources. This U.S. Geological Survey study analyzes the long-term effects of Federal land-use restrictions on the national cost of meeting future coal demands. The analysis covers 45 years. The U.S. Bureau of Land Management has determined the environmental, aesthetic, and economic values of western Federal coal lands and has set aside certain areas from surface coal mining to protect other valued land uses, including agricultural, environmental, and aesthetic uses. Although there are benefits to preserving natural areas and to developing areas for other land uses, these restrictions produce long-term national and regional costs that have not been estimated previously. The Dynamic Coal Allocation Model integrates coal supply (coal resource tonnage and coal quality by mining cost for 60 coal supply regions) with coal demand (in 243 regions) for the entire United States. The model makes it possible to evaluate the regional economic impacts of coal supply restrictions wherever they might occur in the national coal market. The main factors that the economic methodology considers are (1) coal mining costs, (2) coal transportation costs, (3) coal flue gas desulfurization costs, (4) coal demand, (5) regulations to control sulfur dioxide discharges, and (6) specific reductions in coal availability occurring as a result of land-use restrictions. The modeling system combines these economic factors with coal deposit quantity and quality information--which is derived from the U.S. Geological Survey's National Coal Resources Data System and the U.S. Department of Energy's Demonstrated Reserve Base--to determine a balance between supply and demand so that coal is delivered at minimum cost.

  17. Agricultural chemicals in groundwater of the midwestern United States: Relations to land use

    USGS Publications Warehouse

    Kolpin, D.W.

    1997-01-01

    To determine the relations between land use and concentrations of selected agricultural chemicals (nitrate, atrazine residue [atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) + deethylatrazinc (2-amino-4-chloro-6-isopropylamino-s-triazine) + deisopropylatrazine (2-amino-4-chloro-6-ethylamino-s-triazine)], and alachlor residue [alachlor, [2-chloro-2′,6′-diethyl-N-(methoxymethyl) acetanilide] + alachlor ethanesulfonic acid (alachlor-ESA; 2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid)] in groundwater, detailed land use information based on accurate measurements from aerial photographs for the 1991 growing season was obtained within a 2-km radius surrounding 100 wells completed in near-surface unconsolidated aquifers in the midwestern USA. The most significant land use factors to the agricultural chemicals examined were: nitrate (amount of irrigated crop production, positive relation), atrazine residue (amount of irrigated crop production, positive relation), and alachlor residue (amount of highly erodible land, inverse relation). The investigation of smaller buffer sizes (size of circular area around sampled wells) proved insightful for this study. Additional land use factors having significant relations to all three agricultural chemicals were identified using these smaller buffer radii. The most significant correlations (correlation maxima) generally occurred at ≤500-m for nitrate and ≥1000-m for atrazine residue and alachlor residue. An attempt to improve the statistical relations to land use by taking hydrologic considerations into account (removing land outside the estimated most probable recharge area from the statistical analysis) was not as successful as anticipated. Only 45% of the nitrate, 32% of the atrazine residue, and 20% of the alachlor residue correlations were improved by a consideration of the estimated most probable recharge area.

  18. OPAL Land Condition Model

    DTIC Science & Technology

    2014-08-01

    ER D C/ CE RL S R- 14 -7 Optimal Allocation of Land for Training and Non-training Uses OPAL Land Condition Model Co ns tr uc tio n En...Optimal Allocation of Land for Training and Non-training Uses ERDC/CERL SR-14-7 August 2014 OPAL Land Condition Model Daniel Koch, Scott Tweddale...programmer information supporting the Op- timal Programming of Army Lands ( OPAL ) model, which was designed for use by trainers, Integrated Training

  19. A spatially-explicit data driven approach to assess the effect of agricultural land occupation on species groups

    NASA Astrophysics Data System (ADS)

    Elshout, P.; van Zelm, R.; Karuppiah, R.; Laurenzi, I.; Huijbregts, M.

    2013-12-01

    Change of vegetation cover and increased land use intensity can directly affect the natural habitat and the wildlife it houses. The actual impact of agricultural land use is region specific as crops are grown under various climatic conditions and ways of cultivation and refining. Furthermore, growing a specific crop in a tropical region may require clearance of rainforest while the same crop may replace natural grasslands in temperate regions. Within life cycle impact assessment (LCIA), methods to address impacts of land use on a global scale are still in need of development. We aim to extend existing methods to improve the robustness of LCIA by allowing spatial differentiation of agricultural land use impacts. The goal of this study is to develop characterization factors for the direct impact of land use on biodiversity, which results from the replacement of natural habitat with farmland. The characterization factor expresses the change in species richness under crop cultivation compared to the species richness in the natural situation over a certain area. A second goal was to identify the differences in impacts caused by cultivation of different crop types, sensitivity of different taxonomic groups, and differences in natural land cover. Empirical data on species richness were collected from literature for both natural reference situations and agricultural land use situations. Reference situations were selected on an ecoregion or biome basis. We calculated characterization factors for four crop groups (oil palm, low crops, cereals, and perennial grasses), four species groups (arthropods, birds, mammals, vascular plants), and six biomes.

  20. Comparison of Land Skin Temperature from a Land Model, Remote Sensing, and In-situ Measurement

    NASA Technical Reports Server (NTRS)

    Wang, Aihui; Barlage, Michael; Zeng, Xubin; Draper, Clara Sophie

    2014-01-01

    Land skin temperature (Ts) is an important parameter in the energy exchange between the land surface and atmosphere. Here hourly Ts from the Community Land Model Version 4.0, MODIS satellite observations, and in-situ observations in 2003 were compared. Compared with the in-situ observations over four semi-arid stations, both MODIS and modeled Ts show negative biases, but MODIS shows an overall better performance. Global distribution of differences between MODIS and modeled Ts shows diurnal, seasonal, and spatial variations. Over sparsely vegetated areas, the model Ts is generally lower than the MODIS observed Ts during the daytime, while the situation is opposite at nighttime. The revision of roughness length for heat and the constraint of minimum friction velocity from Zeng et al. [2012] bring the modeled Ts closer to MODIS during the day, and have little effect on Ts at night. Five factors contributing to the Ts differences between the model and MODIS are identified, including the difficulty in properly accounting for cloud cover information at the appropriate temporal and spatial resolutions, and uncertainties in surface energy balance computation, atmospheric forcing data, surface emissivity, and MODIS Ts data. These findings have implications for the cross-evaluation of modeled and remotely sensed Ts, as well as the data assimilation of Ts observations into Earth system models.

  1. Mapping Deforestation and Land Use in Amazon Rainforest Using SAR-C Imagery

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Soares, Joao Vianei; Alves, Diogenes Salas

    1996-01-01

    Land use changes and deforestation in tropical rainforests are among the major factors affecting the overall function of the global environment. To routinely assess the spatial extend and temporal dynamics of these changes has become an important challenge in several scientific disciplines such as climate and environmental studies. In this paper, the feasibility of using polarimetric spaceborne SAR data in mapping land cover types in the Amazon is studied.

  2. Biofuels, land, and water: a systems approach to sustainability.

    PubMed

    Gopalakrishnan, Gayathri; Negri, M Cristina; Wang, Michael; Wu, May; Snyder, Seth W; Lafreniere, Lorraine

    2009-08-01

    There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.

  3. Land cover mapping of North and Central America—Global Land Cover 2000

    USGS Publications Warehouse

    Latifovic, Rasim; Zhu, Zhi-Liang

    2004-01-01

    The Land Cover Map of North and Central America for the year 2000 (GLC 2000-NCA), prepared by NRCan/CCRS and USGS/EROS Data Centre (EDC) as a regional component of the Global Land Cover 2000 project, is the subject of this paper. A new mapping approach for transforming satellite observations acquired by the SPOT4/VGTETATION (VGT) sensor into land cover information is outlined. The procedure includes: (1) conversion of daily data into 10-day composite; (2) post-seasonal correction and refinement of apparent surface reflectance in 10-day composite images; and (3) extraction of land cover information from the composite images. The pre-processing and mosaicking techniques developed and used in this study proved to be very effective in removing cloud contamination, BRDF effects, and noise in Short Wave Infra-Red (SWIR). The GLC 2000-NCA land cover map is provided as a regional product with 28 land cover classes based on modified Federal Geographic Data Committee/Vegetation Classification Standard (FGDC NVCS) classification system, and as part of a global product with 22 land cover classes based on Land Cover Classification System (LCCS) of the Food and Agriculture Organisation. The map was compared on both areal and per-pixel bases over North and Central America to the International Geosphere–Biosphere Programme (IGBP) global land cover classification, the University of Maryland global land cover classification (UMd) and the Moderate Resolution Imaging Spectroradiometer (MODIS) Global land cover classification produced by Boston University (BU). There was good agreement (79%) on the spatial distribution and areal extent of forest between GLC 2000-NCA and the other maps, however, GLC 2000-NCA provides additional information on the spatial distribution of forest types. The GLC 2000-NCA map was produced at the continental level incorporating specific needs of the region.

  4. How Scientists Differentiate Between Land Cover Types

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Before scientists can transform raw satellite image data into land cover maps, they must decide on what categories of land cover they would like to use. Categories are simply the types of landscape that the scientists are trying to map and can vary greatly from map to map. For flood maps, there may be only two categories-dry land and wet land-while a standard global land cover map may have seventeen categories including closed shrub lands, savannas, evergreen needle leaf forest, urban areas, and ice/snow. The only requirement for any land cover category is that it have a distinct spectral signature that a satellite can record. As can be seen through a prism, many different colors (wavelengths) make up the spectra of sunlight. When sunlight strikes objects, certain wavelengths are absorbed and others are reflected or emitted. The unique way in which a given type of land cover reflects and absorbs light is known as its spectral signature. Anyone who has flown over the midwestern United States has seen evidence of this phenomenon. From an airplane window, the ground appears as a patchwork of different colors formed by the fields of crops planted there. The varying pigments of the leaves, the amount of foliage per square foot, the age of the plants, and many other factors create this tapestry. Most imaging satellites are sensitive to specific wavelengths of light, including infrared wavelengths that cannot be seen with the naked eye. Passive satellite remote sensors-such as those flown on Landsat 5, Landsat 7, and Terra-have a number of light detectors (photoreceptors) on board that measure the energy reflected or emitted by the Earth. One light detector records only the blue part of the spectrum coming off the Earth. Another observes all the yellow-green light and still another picks up on all the near-infrared light. The detectors scan the Earth's surface as the satellite travels in a circular orbit very nearly from pole-to-pole. To differentiate between types of

  5. Influence of land use and land cover on the spatial variability of dissolved organic matter in multiple aquatic environments.

    PubMed

    Singh, Shatrughan; Dash, Padmanava; Silwal, Saurav; Feng, Gary; Adeli, Ardeshir; Moorhead, Robert J

    2017-06-01

    Water quality of lakes, estuaries, and coastal areas serves as an indicator of the overall health of aquatic ecosystems as well as the health of the terrestrial ecosystem that drains to the water body. Land use and land cover plays not only a significant role in controlling the quantity of the exported dissolved organic matter (DOM) but also influences the quality of DOM via various biogeochemical and biodegradation processes. We examined the characteristics and spatial distribution of DOM in five major lakes, in an estuary, and in the coastal waters of the Mississippi, USA, and investigated the influence of the land use and land cover of their watersheds on the DOM composition. We employed absorption and fluorescence spectroscopy including excitation-emission matrix (EEM) combined with parallel factor (PARAFAC) analysis modeling techniques to determine optical properties of DOM and its characteristics in this study. We developed a site-specific PARAFAC model to evaluate DOM characteristics resulting in five diverse DOM compositions that included two terrestrial humic-like (C1 and C3), two microbial humic-like (C2 and C5), and one protein-like (C4) DOM. Our results showed elevated fluorescence levels of microbial humic-like or protein-like DOM in the lakes and coastal waters, while the estuarine waters showed relatively high fluorescence levels of terrestrial humic-like DOM. The results also showed that percent forest and wetland coverage explained 68 and 82% variability, respectively, in terrestrial humic-like DOM exports, while 87% variability in microbially derived humiclike DOM was explained by percent agricultural lands. Strong correlations between microbial humic-like DOM and fluorescence-derived DOM indices such as biological index (BIX) and fluorescence index (FI) indicated autochthonous characteristics in the lakes, while the estuary showed largely allochthonous DOM of terrestrial origin. We also observed higher concentrations of total dissolved

  6. Land Use for Edible Protein of Animal Origin—A Review

    PubMed Central

    Flachowsky, Gerhard; Meyer, Ulrich; Südekum, Karl-Heinz

    2017-01-01

    Simple Summary The growing world population has led to a higher demand for more and better quality food. In the future, there will be increasingly strong competition for arable land and other non-renewable resources. Proteins of animal origin are very valuable sources of essential nutrients, but their production consumes resources and causes emissions. The aim of this study was to calculate exemplarily the land use for production of edible animal protein from different animal species and categories in consideration of important influencing factors. Large differences were found with the highest amounts per kilogram of body weight produced by broiler chickens and the lowest yields in edible protein and the highest land need observed for beef cattle. Abstract The present period is characterized by a growing world population and a higher demand for more and better quality food, as well as other products for an improved standard of living. In the future, there will be increasingly strong competition for arable land and non-renewable resources such as fossil carbon-sources, water, and some minerals, as well as between food, feed, fuel, fiber, flowers, and fun (6 F’s). Proteins of animal origin like milk, meat, fish, eggs and, probably, insects are very valuable sources of essential amino acids, minerals and vitamins, but their production consumes some non-renewable resources including arable land and causes considerable emissions. Therefore, this study´s objective was to calculate some examples of the land use (arable land and grassland) for production of edible animal protein taking into consideration important animal species/categories, levels of plant and animal yields, the latter estimated with and without co-products from agriculture, and the food/biofuel industry in animal feeding. There are large differences between animal species/categories and their potential to produce edible protein depending on many influencing variables. The highest amounts per kilogram

  7. Ecologization of water-land property matters on the territory of the Tom lower course

    NASA Astrophysics Data System (ADS)

    Popov, V. K.; Kozina, M. V.; Levak, Yu Yu; Shvagrukova, E. V.

    2016-03-01

    In the present paper the water-land property complex is considered as a strategic resource of the city development. The formulated question is expounded through the example of water-land property complex usage on the territory of the Tom lower course for land-use planning and developing the systems of water recourses management and land tenure. Consequences of liquid radioactive waste (LRW) landfilling are investigated in terms of arable farming. Also, forming a water budget of the soils spread on the area of the Tomsk underground water supply cone of depression and its role in the development of agricultural industry are studied. The main aspect of the analysis is the incorporation of social, economic, and ecological requirements for the system of life-supporting branches of municipal economy and social services. As far as the system of land tax payments plays an important role in land property complex management, the common issues and tendencies are specified in the paper. These problems are concerned with the inadequate incorporation of an ecological constituent in the methods of cadastral valuation of lands, as well as the situation of the narrow area of its results usage in the Russian Federation. Natural factors (hydrological, territorial, geological (geomorphologic) territory conditions) are combined by the authors into a special group. These factors should be reflected in the results of cadastral valuation. Also, in order to protect the interests of water consumers, it is offered to establish the Water Consumers Association based on the international experience of such countries as Spain and Uzbekistan.

  8. Factors associated with succession of abandoned agricultural lands along the Lower Missouri River, U.S.A

    USGS Publications Warehouse

    Thogmartin, W.E.; Gallagher, M.; Young, N.; Rohweder, J.J.; Knutson, M.G.

    2009-01-01

    The 1993 flood of the Missouri River led to the abandonment of agriculture on considerable land in the floodplain. This abandonment led to a restoration opportunity for the U.S. Federal Government, purchasing those lands being sold by farmers. Restoration of this floodplain is complicated, however, by an imperfect understanding of its past environmental and vegetative conditions. We examined environmental conditions associated with the current placement of young forests and wet prairies as a guide to the potential successional trajectory for abandoned agricultural land subject to flooding. We used Bayesian mixed-effects logistic regression to examine the effects of flood frequency, soil drainage, distance from the main channel, and elevation on whether a site was in wet prairie or in forest. Study site was included as a random effect, controlling for site-specific differences not measured in our study. We found, after controlling for the effect of site, that early-successional forest sites were closer to the river and at a lower elevation but occurred on drier soils than wet prairie. In a regulated river such as the lower Missouri River, wet prairie sites are relatively isolated from the main channel compared to early-successional forest, despite occurring on relatively moister soils. The modeled results from this study may be used to predict the potential successional fate of the acquired agricultural lands, and along with information on wildlife assemblages associated with wet prairie and forest can be used to predict potential benefit of these acquisitions to wildlife conservation. ?? 2009 Society for Ecological Restoration International.

  9. Studying the Impacts of Environmental Factors and Agricultural Management on Methane Emissions from Rice Paddies Using a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Lin, T. S.; Gahlot, S.; Shu, S.; Jain, A. K.; Kheshgi, H. S.

    2017-12-01

    Continued growth in population is projected to drive increased future demand for rice and the methane emissions associated with its production. However, observational studies of methane emissions from rice have reported seemingly conflicting results and do not all support this projection. In this study we couple an ecophysiological process-based rice paddy module and a methane emission module with a land surface model, Integrated Science Assessment Model (ISAM), to study the impacts of various environmental factors and agricultural management practices on rice production and methane emissions from rice fields. This coupled modeling framework accounts for dynamic rice growth processes with adaptation of photosynthesis, rice-specific phenology, biomass accumulation, leaf area development and structures responses to water, temperature, light and nutrient stresses. The coupled model is calibrated and validated with observations from various rice cultivation fields. We find that the differing results of observational studies can be caused by the interactions of environmental factors, including climate, atmospheric CO2 concentration, and N deposition, and agricultural management practices, such as irrigation and N fertilizer applications, with rice production at spatial and temporal scales.

  10. Professional Education Programme for Land Management and Land Administration in Cambodia

    ERIC Educational Resources Information Center

    Setha, Vung; Mund, Jan-Peter

    2008-01-01

    Land management and land administration are defined as a system of planning, management and administration methods and techniques that aims to integrate ecological with social, economic and legal principles in the management of land for urban and rural development purposes. The main objective is to meet changing and developing human needs, while…

  11. Exploring dust emission responses to land cover change using an ecological land classification

    NASA Astrophysics Data System (ADS)

    Galloza, Magda S.; Webb, Nicholas P.; Bleiweiss, Max P.; Winters, Craig; Herrick, Jeffrey E.; Ayers, Eldon

    2018-06-01

    Despite efforts to quantify the impacts of land cover change on wind erosion, assessment uncertainty remains large. We address this uncertainty by evaluating the application of ecological site concepts and state-and-transition models (STMs) for detecting and quantitatively describing the impacts of land cover change on wind erosion. We apply a dust emission model over a rangeland study area in the northern Chihuahuan Desert, New Mexico, USA, and evaluate spatiotemporal patterns of modelled horizontal sediment mass flux and dust emission in the context of ecological sites and their vegetation states; representing a diversity of land cover types. Our results demonstrate how the impacts of land cover change on dust emission can be quantified, compared across land cover classes, and interpreted in the context of an ecological model that encapsulates land management intensity and change. Results also reveal the importance of established weaknesses in the dust model soil characterisation and drag partition scheme, which appeared generally insensitive to the impacts of land cover change. New models that address these weaknesses, coupled with ecological site concepts and field measurements across land cover types, could significantly reduce assessment uncertainties and provide opportunities for identifying land management options.

  12. Land availability and land value assessment for solar ponds in the United States

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The land availability and land values for solar ponds in the United States as they concern the residential, commercial, and institutional land use categories were investigated. Solar ponds were identified as efficient and economical means for collecting and storing direct and diffuse solar energy. Innovative methodologies were applied to arrive at regional projections regarding the amount of land that might potentially be available for retrofit or future solar pond applications. Regional land values were also documented and analyzed.

  13. Land Treatment Digital Library

    USGS Publications Warehouse

    Pilliod, David S.

    2009-01-01

    Across the country, public land managers make hundreds of decisions each year that influence landscapes and ecosystems within the lands they manage. Many of these decisions involve vegetation manipulations known as land treatments. Land treatments include activities such as removal or alteration of plant biomass, seeding burned areas, and herbicide applications. Data on these land treatments are usually stored at local offices, and gathering information across large spatial areas can be difficult. There is a need to centralize and store treatment data for Federal agencies involved in land treatments because these data are useful to land managers for policy and management and to scientists for developing sampling designs and studies. The Land Treatment Digital Library (LTDL) was created by the U.S. Geological Survey (USGS) to catalog information about land treatments on Federal lands in the western United States for all interested parties. The flexible framework of the library allows for the storage of a wide variety of data in different formats. The LTDL currently stores previously established land treatments or what often are called legacy data. The project was developed and has been refined based on feedback from partner agencies and stakeholders, with opportunity for the library holdings to expand as new information becomes available. The library contains data in text, tabular, spatial, and image formats. Specific examples include project plans and implementation reports, monitoring data, spatial data files from geographic information systems, digitized paper maps, and digital images of land treatments. The data are entered by USGS employees and are accessible through a searchable web site. The LTDL can be used to respond to information requests, conduct analyses and other forms of information syntheses, produce maps, and generate reports for DOI managers and scientists and other authorized users.

  14. Modeling Land Use/Cover Changes in an African Rural Landscape

    NASA Astrophysics Data System (ADS)

    Kamusoko, C.; Aniya, M.

    2006-12-01

    Land use/cover changes are analyzed in the Bindura district of Zimbabwe, Africa through the integration of data from a time series of Landsat imagery (1973, 1989 and 2000), a household survey and GIS coverages. We employed a hybrid supervised/unsupervised classification approach to generate land use/cover maps from which landscape metrics were calculated. Population and other household variables were derived from a sample of surveyed villages, while road accessibility and slope were obtained from topographic maps and digital elevation model, respectively. Markov-cellular automata modeling approach that incorporates Markov chain analysis, cellular automata and multi-criteria evaluation (MCE) / multi-objective allocation (MOLA) procedures was used to simulate land use/cover changes. A GIS-based MCE technique computed transition potential maps, whereas transition areas were derived from the 1973-2000 land use/cover maps using the Markov chain analysis. A 5 x 5 cellular automata filter was used to develop a spatially explicit contiguity- weighting factor to change the cells based on its previous state and those of its neighbors, while MOLA resolved land use/cover class allocation conflicts. The kappa index of agreement was used for model validation. Observed trends in land use/cover changes indicate that deforestation and the encroachment of cultivation in woodland areas is a continuous trend in the study area. This suggests that economic activities driven by agricultural expansion were the main causes of landscape fragmentation, leading to landscape degradation. Rigorous calibration of transition potential maps done by a MCE algorithm and Markovian transition probabilities produced accurate inputs for the simulation of land use/cover changes. Overall standard kappa index of agreement ranged from 0.73 to 0.83, which is sufficient for simulating land use/cover changes in the study area. Land use/cover simulations under the 1989 and 2000 scenario indicated further

  15. Agriculture land suitability analysis evaluation based multi criteria and GIS approach

    NASA Astrophysics Data System (ADS)

    Bedawi Ahmed, Goma; Shariff, Abdul Rashid M.; Balasundram, Siva Kumar; Abdullah, Ahmad Fikri bin

    2016-06-01

    Land suitability evaluation (LSE) is a valuable tool for land use planning in major countries of the world as well as in Malaysia. However, previous LSE studies have been conducted with the use of biophysical and ecological datasets for the design of equally important socio-economic variables. Therefore, this research has been conducted at the sub national level to estimate suitable agricultural land for rubber crops in Seremban, Malaysia by application of physical variables in combination with widely employed biophysical and ecological variables. The objective of this study has been to provide an up-to date GIS-based agricultural land suitability evaluation (ALSE) for determining suitable agricultural land for Rubber crops in Malaysia. Biophysical and ecological factors were assumed to influence agricultural land use were assembled and the weights of their respective contributions to land suitability for agricultural uses were assessed using an analytic hierarchical process. The result of this study found Senawang, Mambau, Sandakan and Rantau as the most suitable areas for cultivating Rubber; whereas, Nilai and Labu are moderately suitable for growing rubber. Lenggeng, Mantin and Pantai are not suitable for growing rubber as the study foresaw potential environmental degradation of these locations from agricultural intensification. While this study could be useful in assessing the potential agricultural yields and potential environmental degradation in the study area, it could also help to estimate the potential conversion of agricultural land to non-agricultural uses.

  16. An equilibrium analysis of the land use structure in the Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    van Aken, H. M.; van Veldhoven, A. K.; Veth, C.; de Ruijter, W. P. M.; van Leeuwen, P. J.; Drijfhout, S. S.; Whittle, C. P.; Rouault, M.

    2014-06-01

    Global land use structure is changing rapidly due to unceasing population growth and accelerated urbanization, which leads to fierce competition between the rigid demand for built-up area and the protection of cultivated land, forest, and grassland. It has been a great challenge to realize the sustainable development of land resources. Based on a computable general equilibrium model of land use change with a social accounting matrix dataset, this study implemented an equilibrium analysis of the land use structure in the Yunnan Province during the period of 2008-2020 under three scenarios, the baseline scenario, low TFP (total factor productivity) scenario, and high TFP scenario. The results indicated that under all three scenarios, area of cultivated land declined significantly along with a remarkable expansion of built-up area, while areas of forest, grassland, and unused land increased slightly. The growth rate of TFP had first negative and then positive effects on the expansion of built-up area and decline of cultivated land as it increased. Moreover, the simulated changes of both cultivated land and built-up area were the biggest under the low TFP scenario, and far exceeded the limit in the Overall Plan for Land Utilization in the Yunnan Province in 2020. The scenario-based simulation results are of important reference value for policy-makers in making land use decisions, balancing the fierce competition between the protection of cultivated land and the increasing demand for built-up area, and guaranteeing food security, ecological security, and the sustainable development of land resources.

  17. An equilibrium analysis of the land use structure in the Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Luo, Jiao; Zhan, Jinyan; Lin, Yingzhi; Zhao, Chunhong

    2014-09-01

    Global land use structure is changing rapidly due to unceasing population growth and accelerated urbanization, which leads to fierce competition between the rigid demand for built-up area and the protection of cultivated land, forest, and grassland. It has been a great challenge to realize the sustainable development of land resources. Based on a computable general equilibrium model of land use change with a social accounting matrix dataset, this study implemented an equilibrium analysis of the land use structure in the Yunnan Province during the period of 2008-2020 under three scenarios, the baseline scenario, low TFP (total factor productivity) scenario, and high TFP scenario. The results indicated that under all three scenarios, area of cultivated land declined significantly along with a remarkable expansion of built-up area, while areas of forest, grassland, and unused land increased slightly. The growth rate of TFP had first negative and then positive effects on the expansion of built-up area and decline of cultivated land as it increased. Moreover, the simulated changes of both cultivated land and built-up area were the biggest under the low TFP scenario, and far exceeded the limit in the Overall Plan for Land Utilization in the Yunnan Province in 2020. The scenario-based simulation results are of important reference value for policy-makers in making land use decisions, balancing the fierce competition between the protection of cultivated land and the increasing demand for built-up area, and guaranteeing food security, ecological security, and the sustainable development of land resources.

  18. Constraints, Approach and Present Status for Selecting the Mars Surveyor 2001 Landing Site

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Anderson, F.; Bridges, N.; Briggs, G.; Gilmore, M.; Gulick, V.; Haldemann, A.; Parker, T.; Saunders, R.; Spencer, D.; hide

    1999-01-01

    There are many similarities between the Mars Surveyor '01 (MS '01) landing site selection process and that of Mars Pathfinder. The selection process includes two parallel activities in which engineers define and refine the capabilities of the spacecraft through design, testing and modeling and scientists define a set of landing site constraints based on the spacecraft design and landing scenario. As for Pathfinder, the safety of the site is without question the single most important factor, for the simple reason that failure to land safely yields no science and exposes the mission and program to considerable risk. The selection process must be thorough, defensible and capable of surviving multiple withering reviews similar to the Pathfinder decision. On Pathfinder, this was accomplished by attempting to understand the surface properties of sites using available remote sensing data sets and models based on them. Science objectives are factored into the selection process only after the safety of the site is validated. Finally, as for Pathfinder, the selection process is being done in an open environment with multiple opportunities for community involvement including open workshops, with education and outreach opportunities.

  19. Implications of land-use change on forest carbon stocks in the eastern United States

    NASA Astrophysics Data System (ADS)

    Puhlick, Joshua; Woodall, Christopher; Weiskittel, Aaron

    2017-02-01

    Given the substantial role that forests play in removing CO2 from the atmosphere, there has been a growing need to evaluate the carbon (C) implications of various forest management and land-use decisions. Although assessment of land-use change is central to national-level greenhouse gas monitoring guidelines, it is rarely incorporated into forest stand-level evaluations of C dynamics and trajectories. To better inform the assessment of forest stand C dynamics in the context of potential land-use change, we used a region-wide repeated forest inventory (n = 71 444 plots) across the eastern United States to assess forest land-use conversion and associated changes in forest C stocks. Specifically, the probability of forest area reduction between 2002-2006 and 2007-2012 on these plots was related to key driving factors such as proportion of the landscape in forest land use, distance to roads, and initial forest C. Additional factors influencing the actual reduction in forest area were then used to assess the risk of forest land-use conversion to agriculture, settlement, and water. Plots in forests along the Great Plains had the highest periodic (approximately 5 years) probability of land-use change (0.160 ± 0.075; mean ± SD) with forest conversion to agricultural uses accounting for 70.5% of the observed land-use change. Aboveground forest C stock change for plots with a reduction in forest area was -4.2 ± 17.7 Mg ha-1 (mean ± SD). The finding that poorly stocked stands and/or those with small diameter trees had the highest probability of conversion to non-forest land uses suggests that forest management strategies can maintain the US terrestrial C sink not only in terms of increased net forest growth but also retention of forest area to avoid conversion. This study highlights the importance of considering land-use change in planning and policy decisions that seek to maintain or enhance regional C sinks.

  20. Effects of Land Cover / Land Use, Soil Texture, and Vegetation on the Water Balance of Lake Chad Basin

    NASA Astrophysics Data System (ADS)

    Babamaaji, R. A.; Lee, J.

    2013-12-01

    , bare soil and open water surfaces. The result of this study also shows that runoff is high in the clay, clay loam and sandy-clay loam due to the lack of infiltration process in clay soil from capping or crusting or sealing of the soil pores, therefore this situation will aid runoff. The application of the WetSpass model shows that precipitation, soil texture and land use / land cover are three controlling factors affecting the water balance in the LCB. Key words: Groundwater recharge, surface runoff, evapotranspiration, water balance, meteorological, draught, Landuse changes, climate changes, WetSpass, GIS.

  1. Land Use.

    EPA Science Inventory

    Land use in the Narragansett Bay Watershed (NBW) is subject to conversion, and these changes influence the Watershed’s hydrologic functions. Changes of natural habitat such as wetlands and forests to urban lands have impacted how water is delivered to rivers and lakes, to g...

  2. Biodiversity and Land uses at a regional scale: Is agriculture the biggest threat for reptile assemblages?

    NASA Astrophysics Data System (ADS)

    Ribeiro, Raquel; Santos, Xavier; Sillero, Neftali; Carretero, Miguel A.; Llorente, Gustavo A.

    2009-03-01

    The human exploitation of land resources (land use) has been considered the major factor responsible for changes in biodiversity within terrestrial ecosystems given that it affects directly the distribution of the fauna. Reptiles are known to be particularly sensitive to habitat change due to their ecological constraints. Here, the impact of land use on reptile diversity was analysed, choosing Catalonia (NE Iberia) as a case study. This region provides a suitable scenario for such a biogeographical study since it harbours: 1) a rich reptile fauna; 2) a highly diverse environment showing strong variation in those variables usually shaping reptile distributions; and 3) good species distribution data. Potential species richness was calculated, using ecological modelling techniques (Ecological Niche Factor Analysis - ENFA). The subtraction of the observed from the potential species richness was the dependent variable in a backwards multiple linear regression, using land use variables. Agriculture was the land use with the strongest relation with the non-fulfilment of the potential species richness, indicating a trend towards a deficit of biodiversity. Deciduous forest was the only land use negatively related with the subtracted species richness. Results indicate a clear relationship between land use and biodiversity at a mesoscale. This finding represents an important baseline for conservation guidelines within the habitat change framework because it has been achieved at the same spatial scale of chorological studies and management policies.

  3. Land use and land cover digital data

    USGS Publications Warehouse

    Fegeas, Robin G.; Claire, Robert W.; Guptill, Stephen C.; Anderson, K. Eric; Hallam, Cheryl A.

    1983-01-01

    The discipline of cartography is undergoing a number of profound changesthat center on the emerging influence ofdigital manipulation and analysis ofdata for the preparation of cartographic materials and for use in geographic information systems. Operational requirements have led to the development by the USGS National Mapping Division of several documents that establish in-house digital cartographic standards. In an effort to fulfill lead agency requirements for promulgation of Federal standards in the earth sciences, the documents have been edited and assembled with explanatory text into a USGS Circular. This Circular describes some of the pertinent issues relative to digital cartographic data standards, documents the digital cartographic data standards currently in use within the USGS, and details the efforts of the USGS related to the definition of national digital cartographic data standards. It consists of several chapters; the first is a general overview, and each succeeding chapter is made up from documents that establish in-house standards for one of the various types of digital cartographic data currently produced. This chapter 895-E, describes the Geographic Information Retrieval and Analysis System that is used in conjunction with the USGS land use and land cover classification system to encode, edit, manipuate, and analyze land use and land cover digital data.

  4. [Review of influence of landing impact on human body (correction of boby) and its medical evaluation].

    PubMed

    Guo, Yao-yu; Tan, Cheng; Liu, Bing-kun; Jiang, Shi-zhong

    2002-12-01

    Landing impact is the dynamic factor that manned spaceship will inevitably meet after the mission has been completed, and impact force may cause damages to human tissues [correction of tissuses] and organs, even death. This paper described the characteristics of pathological and dynamic response of human body to landing impact, and discussed various related factors such as impact angle, fetters, design of cushion, harness and terrain condition. Medical evaluation of +Gx, +Gz, +/- Gy impacts were summarized.

  5. Expedition 9 Landing

    NASA Image and Video Library

    2004-10-24

    An inflatable medical tent stands in the foreground of the Expedition 9 landing site, while an incoming Russian Search and Rescue helicopter lands. The Soyuz capsule, which carried Expedition 9 Flight Engineer Michael Fincke, Commander Gennady Padalka and Russian Space Forces cosmonaut Yuri Shargin landed approximately 85 kilometers northeast of Arkalyk in northern Kazakhstan, Sunday, October 24, 2004. Photo Credit: (NASA/Bill Ingalls)

  6. STS_135_Landing

    NASA Image and Video Library

    2011-07-21

    JSC2011-E-068007 (21 July 2011) --- Green paint marks the location where Atlantis' nose landing gear came to a stop on the runway after the space shuttle landed at the Kennedy Space Center in Florida on July 21, 2011. The landing completed STS-135, the final mission of the NASA Space Shuttle Program. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  7. Wildfire seasonality and land use: when do wildfires prefer to burn?

    PubMed

    Bajocco, Sofia; Pezzatti, Gianni Boris; Mazzoleni, Stefano; Ricotta, Carlo

    2010-05-01

    Because of the increasing anthropogenic fire activity, understanding the role of land-use in shaping wildfire regimes has become a major concern. In the last decade, an increasing number of studies have been carried out on the relationship between land-use and wildfire patterns, in order to identify land-use types where fire behaves selectively, showing a marked preference (or avoidance) in terms of fire incidence. By contrast, the temporal aspects of the relationship between landuse types and wildfire occurrence have received far less attention. The aim of this paper is, thus, to analyze the temporal patterns of fire occurrence in Sardinia (Italy) during the period 2000-2006 to identify land-use types where wildfires occur earlier or later than expected from a random null model. The study highlighted a close relationship between the timing of fire occurrence and land-cover that is primarily governed by two complementary processes: climatic factors that act indirectly on the timing of wildfires determining the spatial distribution of land-use types, and human population and human pressure that directly influence fire ignition. From a practical viewpoint, understanding the temporal trends of wildfires within the different land-use classes can be an effective decision-support tool for fire agencies in managing fire risk and for producing provisional models of fire behavior under changing climatic scenarios and evolving landscapes.

  8. Landing gear noise attenuation

    NASA Technical Reports Server (NTRS)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Abeysinghe, Amal (Inventor); Kwan, Hwa-Wan (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  9. High Resolution Land Surface Modeling with the next generation Land Data Assimilation Systems

    NASA Astrophysics Data System (ADS)

    Kumar, S. V.; Eylander, J.; Peters-Lidard, C.

    2005-12-01

    Knowledge of land surface processes is important to many real-world applications such as agricultural production, water resources management, and flood predication. The Air Force Weather Agency (AFWA) has provided the USDA and other customers global soil moisture and temperature data for the past 30 years using the agrometeorological data assimilation model (now called AGRMET), merging atmospheric data. Further, accurate initialization of land surface conditions has been shown to greatly influence and improve weather forecast model and seasonal-to-interannual climate predictions. The AFWA AGRMET model exploits real time precipitation observations and analyses, global forecast model and satellite data to generate global estimates of soil moisture, soil temperature and other land surface states at 48km spatial resolution. However, to truly address the land surface initialization and climate prediction problem, and to mitigate the errors introduced by the differences in spatial scales of models, representations of land surface conditions need to be developed at the same fine scales such as that of cloud resolving models. NASA's Goddard Space Flight Center has developed an offline land data assimilation system known as the Land Information System (LIS) capable of modeling land atmosphere interactions at spatial resolutions as fine as 1km. LIS provides a software architecture that integrates the use of the state of the art land surface models, data assimilation techniques, and high performance computing and data management tools. LIS also employs many high resolution surface parameters such as the NASA Earth Observing System (EOS)-era products. In this study we describe the development of a next generation high resolution land surface modeling and data assimilation system, combining the capabilities of LIS and AGRMET. We investigate the influence of high resolution land surface data and observations on the land surface conditions by comparing with the operational AGRMET

  10. Land use and land tenure in Mongolia: A brief history and current issues

    Treesearch

    Maria E. Fernandez-Gimenez

    2006-01-01

    This essay argues that an awareness of the historical relationships among land use, land tenure, and the political economy of Mongolia is essential to understanding current pastoral land use patterns and policies in Mongolia. Although pastoral land use patterns have altered over time in response to the changing political economy, mobility and flexibility remain...

  11. Modelling land use/cover changes with markov-cellular automata in Komering Watershed, South Sumatera

    NASA Astrophysics Data System (ADS)

    Kusratmoko, E.; Albertus, S. D. Y.; Supriatna

    2017-01-01

    This research has a purpose to study and develop a model that can representing and simulating spatial distribution pattern of land use change in Komering watershed. The Komering watershed is one of nine sub Musi river basin and is located in the southern part of Sumatra island that has an area of 8060,62 km2. Land use change simulations, achieved through Markov-cellular automata (CA) methodologies. Slope, elevation, distance from road, distance from river, distance from capital sub-district, distance from settlement area area were driving factors that used in this research. Land use prediction result in 2030 also shows decrease of forest acreage up to -3.37%, agricultural land decreased up to -2.13%, and open land decreased up to -0.13%. On the other hand settlement area increased up to 0.07%, and plantation land increased up to 5.56%. Based on the predictive result, land use unconformity percentage to RTRW in Komering watershed is 18.62 % and land use conformity is 58.27%. Based on the results of the scenario, where forest in protected areas and agriculture land are maintained, shows increase the land use conformity amounted to 60.41 % and reduce unconformity that occur in Komering watershed to 17.23 %.

  12. Land Change Trends in the Great Plains: Linkages to Climate Variability and Socioeconomic Drivers

    NASA Astrophysics Data System (ADS)

    Drummond, M. A.

    2009-12-01

    Land use and land cover change have complex linkages to climate variability and change, socioeconomic driving forces, and land management challenges. To assess these land change dynamics and their driving forces in the Great Plains, we compare and contrast contemporary land conversion across seventeen ecoregions using Landsat remote sensing data and statistical analysis. Large area change analysis in agricultural regions is often hampered by the potential for substantial change detection error and the tendency for land conversions to occur in relatively small patches at the local level. To facilitate a regional scale analysis, a statistical sampling design of randomly selected 10-km by 10-km blocks is used in order to efficiently identify the types and rates of land conversions for four time periods between 1972 and 2000, stratified by relatively homogenous ecoregions. Results show a range of rates and processes of land change that vary by ecoregion contingent on the prevailing interactions between socioeconomic and environmental factors such as climate variability, water availability, and land quality. Ecoregions have differential climate and biophysical advantages for agricultural production and other land use change. Human actions further strengthen or dampen the characteristics of change through farm policy, technological advances, economic opportunities, population and demographic shifts, and surface and groundwater irrigation.

  13. Understanding Decreases in Land Relative Humidity with Global Warming: Conceptual Model and GCM Simulations

    NASA Astrophysics Data System (ADS)

    Byrne, Michael P.; O'Gorman, Paul A.

    2016-12-01

    Climate models simulate a strong land-ocean contrast in the response of near-surface relative humidity to global warming: relative humidity tends to increase slightly over oceans but decrease substantially over land. Surface energy balance arguments have been used to understand the response over ocean but are difficult to apply over more complex land surfaces. Here, a conceptual box model is introduced, involving moisture transport between the land and ocean boundary layers and evapotranspiration, to investigate the decreases in land relative humidity as the climate warms. The box model is applied to idealized and full-complexity (CMIP5) general circulation model simulations, and it is found to capture many of the features of the simulated changes in land relative humidity. The box model suggests there is a strong link between fractional changes in specific humidity over land and ocean, and the greater warming over land than ocean then implies a decrease in land relative humidity. Evapotranspiration is of secondary importance for the increase in specific humidity over land, but it matters more for the decrease in relative humidity. Further analysis shows there is a strong feedback between changes in surface-air temperature and relative humidity, and this can amplify the influence on relative humidity of factors such as stomatal conductance and soil moisture.

  14. Sustainability of integrated land and water resources management in the face of climate and land use changes

    NASA Astrophysics Data System (ADS)

    Setegn, Shimelis

    2017-04-01

    Sustainable development integrates economic development, social development, and environmental protection. Land and Water resources are under severe pressure from increasing populations, fast development, deforestation, intensification of agriculture and the degrading environment in many part of the world. The demand for adequate and safe supplies of water is becoming crucial especially in the overpopulated urban centers of the Caribbean islands. Moreover, population growth coupled with environmental degradation and possible adverse impacts of land use and climate change are major factors limiting freshwater resource availability. The main objective of this study is to develop a hydrological model and analyze the spatiotemporal variability of hydrological processes in the Caribbean islands of Puerto Rico and Jamaica. Physically based eco-hydrological model was developed and calibrated in the Rio Grande Manati and Wag water watershed. Spatial distribution of annual hydrological processes, water balance components for wet and dry years, and annual hydrological water balance of the watershed are discussed. The impact of land use and climate change are addressed in the watersheds. Appropriate nature based adaptation strategies were evaluated. The study will present a good understanding of advantages and disadvantages of nature-based solutions for adapting climate change, hydro-meteorological risks and other extreme hydrological events.

  15. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    NASA Technical Reports Server (NTRS)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  16. Factors affecting oxidative peat decomposition due to land use in tropical peat swamp forests in Indonesia.

    PubMed

    Itoh, Masayuki; Okimoto, Yosuke; Hirano, Takashi; Kusin, Kitso

    2017-12-31

    The increasing frequency of fire due to drainage of tropical peatland has become a major environmental problem in Southeast Asia. To clarify the effects of changes in land use on carbon dioxide emissions, we measured oxidative peat decomposition (PD) at different stages of disturbance at three sites in Central Kalimantan, Indonesia: an undrained peat swamp forest (UF), a heavily drained peat swamp forest (DF), and a drained and burned ex-forest (DB). PD exhibited seasonality, being less in the wet season and greater in the dry season. From February 2014 to December 2015, mean PD (±SE) were 1.90±0.19, 2.30±0.33, and 1.97±0.25μmolm -2 s -1 at UF, DF, and DB, respectively. The groundwater level (GWL) was a major controlling factor of PD at all sites. At UF and DF, PD and GWL showed significant quadratic relationships. At DB, PD and GWL showed significant positive and negative relationships during the dry and wet seasons, respectively. Using these relationships, we estimated annual PD from GWL data for 2014 and 2015 as 698 and 745gCm -2 yr -1 at UF (mean GWL: -0.23 and -0.39m), 775 and 825gCm -2 yr -1 at DF (-0.55 and -0.59m), and 646 and 748gCm -2 yr -1 at DB (-0.22 and -0.62m), respectively. The annual PD was significantly higher in DF than in UF or DB, in both years. Despite the very dry conditions, the annual PD values at these sites were much lower than those reported for tropical peat at plantations (e.g., oil palm, rubber, and acacia). The differences in the relationship between PD and GWL indicate that separate estimations are required for each type of land. Moreover, our results suggest that PD can be enhanced by drainage both in forests and at burned sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Theorizing Land Cover and Land Use Change: The Peasant Economy of Colonization in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Caldas, Marcellus; Walker, Robert; Arima, Eugenio; Perz, Stephen; Aldrich, Stephen; Simmons, Cynthia

    2007-01-01

    This paper addresses deforestation processes in the Amazon basin. It deploys a methodology combining remote sensing and survey-based fieldwork to examine, with regression analysis, the impact household structure and economic circumstances on deforestation decisions made by colonist farmers in the forest frontiers of Brazil. Unlike most previous regression-based studies, the methodology implemented analyzes behavior at the level of the individual property. The regressions correct for endogenous relationships between key variables, and spatial autocorrelation, as necessary. Variables used in the analysis are specified, in part, by a theoretical development integrating the Chayanovian concept of the peasant household with spatial considerations stemming from von Thuenen. The results from the empirical model indicate that demographic characteristics of households, as well as market factors, affect deforestation in the Amazon. Thus, statistical results from studies that do not include household-scale information may be subject to error. From a policy perspective, the results suggest that environmental policies in the Amazon based on market incentives to small farmers may not be as effective as hoped, given the importance of household factors in catalyzing the demand for land. The paper concludes by noting that household decisions regarding land use and deforestation are not independent of broader social circumstances, and that a full understanding of Amazonian deforestation will require insight into why poor families find it necessary to settle the frontier in the first place.

  18. Definition of management zones for enhancing cultivated land conservation using combined spatial data.

    PubMed

    Li, Yan; Shi, Zhou; Wu, Hao-Xiang; Li, Feng; Li, Hong-Yi

    2013-10-01

    The loss of cultivated land has increasingly become an issue of regional and national concern in China. Definition of management zones is an important measure to protect limited cultivated land resource. In this study, combined spatial data were applied to define management zones in Fuyang city, China. The yield of cultivated land was first calculated and evaluated and the spatial distribution pattern mapped; the limiting factors affecting the yield were then explored; and their maps of the spatial variability were presented using geostatistics analysis. Data were jointly analyzed for management zone definition using a combination of principal component analysis with a fuzzy clustering method, two cluster validity functions were used to determine the optimal number of cluster. Finally one-way variance analysis was performed on 3,620 soil sampling points to assess how well the defined management zones reflected the soil properties and productivity level. It was shown that there existed great potential for increasing grain production, and the amount of cultivated land played a key role in maintaining security in grain production. Organic matter, total nitrogen, available phosphorus, elevation, thickness of the plow layer, and probability of irrigation guarantee were the main limiting factors affecting the yield. The optimal number of management zones was three, and there existed significantly statistical differences between the crop yield and field parameters in each defined management zone. Management zone I presented the highest potential crop yield, fertility level, and best agricultural production condition, whereas management zone III lowest. The study showed that the procedures used may be effective in automatically defining management zones; by the development of different management zones, different strategies of cultivated land management and practice in each zone could be determined, which is of great importance to enhance cultivated land conservation

  19. Translation of Land Surface Model Accuracy and Uncertainty into Coupled Land-Atmosphere Prediction

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A.; Kumar, Sujay; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Zhou, Shuija

    2012-01-01

    Land-atmosphere (L-A) Interactions playa critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (US-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF Simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.

  20. Dynamics of aeolian desertification and its driving forces in the Horqin Sandy Land, Northern China.

    PubMed

    Duan, Han-chen; Wang, Tao; Xue, Xian; Liu, Shu-lin; Guo, Jian

    2014-10-01

    Aeolian desertification is one of the most serious environmental and socioeconomic problems in arid, semi-arid, and dry subhumid zones. Understanding desertification processes and causes is important to provide reasonable and effective control measures for preventing desertification. With satellite remote sensing images as data source to assess the temporal and spatial dynamics of desertification from 1975 to 2010 in the Horqin Sandy Land, dynamic changes of aeolian desertification were detected using the human-machine interactive interpretation method. The driving factors of local desertification were analyzed based on natural and socioeconomic data. The results show that aeolian desertified land in the study area covered 30,199 km(2) in 2010, accounting for 24.1% of the study area. The total area of aeolian desertified land obviously expanded from 30,884 km(2) in 1975 to 32,071 km(2) in 1990, and gradually decreased to 30,199 km(2) in 2010; aeolian desertified land represented an increasing trend firstly and then decreased. During the past 35 years, the gravity centers of desertified lands that are classified as extremely severe and severe generally migrated to the northeast, whereas those that are moderate and slight migrated to the northwest. The migration distance of severely desertified land was the largest, which indicated the southern desertified lands were improved during the last few decades. In addition, the climatic variation in the past 35 years has been favorable to desertification in the Horqin Sandy Land. Aeolian desertified land rapidly expanded from 1975 to 1990 under the combined effects of climate changes and unreasonable human activities. After the 1990s, the main driving factors responsible for the decrease in desertification were positive human activities, such as the series of antidesertification and ecological restoration projects.

  1. Climatic factors related to land-use planning in the Puget Sound basin, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.; Richardson, Donald

    1973-01-01

    The purpose of this study is to review available data related to the climate of the Puget Sound basin and to present selected climatic information along with an evaluation of its significance and general adequacy for planning purposes. This is part of continuing efforts aimed at imporving the accessibility and usefulness of environmental and other data needed for land-use planning, resource development, and environmental protection. 

  2. Greenhouse gas emission from the total process of swine manure composting and land application of compost

    NASA Astrophysics Data System (ADS)

    Zhong, Jia; Wei, Yuansong; Wan, Hefeng; Wu, Yulong; Zheng, Jiaxi; Han, Shenghui; Zheng, Bofu

    2013-12-01

    Greenhouse gas (GHG) emissions from animal manure management are of great concern in China. However, there are still great uncertainties about China's GHG inventory due to the GHG emission factors partly used default values from the Intergovernmental Panel of Climate Change (IPCC) guidelines. The purpose of this study was to use a case study in Beijing to determine the regional GHG emission factors based on the combination of swine manure composting and land application of the compost with both on-site examination and a life cycle assessment (LCA). The results showed that the total GHG emission factor was 240 kgCO2eq tDS-1 (dry solids), including the direct GHG emission factor of 115 kgCO2eq tDS-1 for swine manure composting and 48 kgCO2eq tDS-1 for land application of the compost. Among the total GHG emissions of 5.06 kgCH4 tDS-1 and 0.13 kgN2O tDS-1, the swine manure composting contributed approximately 89% to CH4 emissions while land application accounted for 92% of N2O emission. Meanwhile, the GHG emission profile from the full process in Beijing in 2015 and 2020 was predicted by the scenario analysis. The composting and land application is a cost-effective way for animal manure management in China considering GHG emissions.

  3. Land Use Change and Land Degradation in Southeastern Mediterranean Spain

    NASA Astrophysics Data System (ADS)

    Symeonakis, Elias; Calvo-Cases, Adolfo; Arnau-Rosalen, Eva

    2007-07-01

    The magnitude of the environmental and social consequences of soil erosion and land degradation in semiarid areas of the Mediterranean region has long been recognized and studied. This paper investigates the interrelationship between land use/cover (LULC) changes and land degradation using remotely sensed and ancillary data for southeastern Spain. The area of study, the Xaló River catchment situated in the north of the Alicante Province, has been subjected to a number of LULC changes during the second half of the 20th century such as agricultural abandonment, forest fires, and tourist development. Aerial photographs dating back to 1956 were used for the delineation of historic LULC types; Landsat ETM+ data were used for the analysis and mapping of current conditions. Two important indicators of land degradation, namely, susceptibility to surface runoff and soil erosion, were estimated for the two dates using easily parametrizable models. The comparison of 1956 to 2000 conditions shows an overall “recuperating” trend over the catchment and increased susceptibility to soil erosion only in 3% of the catchment area. The results also identify potential degradation hot-spots where mitigation measures should be taken to prevent further degradation. The readily implemented methodology, based on modest data requirements demonstrated by this study, is a useful tool for catchment to regional scale land use change and land degradation studies and strategic planning for environmental management.

  4. Land use change and land degradation in southeastern Mediterranean Spain.

    PubMed

    Symeonakis, Elias; Calvo-Cases, Adolfo; Arnau-Rosalen, Eva

    2007-07-01

    The magnitude of the environmental and social consequences of soil erosion and land degradation in semiarid areas of the Mediterranean region has long been recognized and studied. This paper investigates the interrelationship between land use/cover (LULC) changes and land degradation using remotely sensed and ancillary data for southeastern Spain. The area of study, the Xaló River catchment situated in the north of the Alicante Province, has been subjected to a number of LULC changes during the second half of the 20th century such as agricultural abandonment, forest fires, and tourist development. Aerial photographs dating back to 1956 were used for the delineation of historic LULC types; Landsat ETM+ data were used for the analysis and mapping of current conditions. Two important indicators of land degradation, namely, susceptibility to surface runoff and soil erosion, were estimated for the two dates using easily parametrizable models. The comparison of 1956 to 2000 conditions shows an overall "recuperating" trend over the catchment and increased susceptibility to soil erosion only in 3% of the catchment area. The results also identify potential degradation hot-spots where mitigation measures should be taken to prevent further degradation. The readily implemented methodology, based on modest data requirements demonstrated by this study, is a useful tool for catchment to regional scale land use change and land degradation studies and strategic planning for environmental management.

  5. Spatial-temporal variation of marginal land suitable for energy plants from 1990 to 2010 in China

    NASA Astrophysics Data System (ADS)

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Zhuang, Dafang; Huang, Yaohuan

    2014-07-01

    Energy plants are the main source of bioenergy which will play an increasingly important role in future energy supplies. With limited cultivated land resources in China, the development of energy plants may primarily rely on the marginal land. In this study, based on the land use data from 1990 to 2010(every 5 years is a period) and other auxiliary data, the distribution of marginal land suitable for energy plants was determined using multi-factors integrated assessment method. The variation of land use type and spatial distribution of marginal land suitable for energy plants of different decades were analyzed. The results indicate that the total amount of marginal land suitable for energy plants decreased from 136.501 million ha to 114.225 million ha from 1990 to 2010. The reduced land use types are primarily shrub land, sparse forest land, moderate dense grassland and sparse grassland, and large variation areas are located in Guangxi, Tibet, Heilongjiang, Xinjiang and Inner Mongolia. The results of this study will provide more effective data reference and decision making support for the long-term planning of bioenergy resources.

  6. Harvested area gaps in China between 1981 and 2010: effects of climatic and land management factors

    NASA Astrophysics Data System (ADS)

    Yu, Qiangyi; van Vliet, Jasper; Verburg, Peter H.; You, Liangzhi; Yang, Peng; Wu, Wenbin

    2018-04-01

    Previous analyses have shown that cropland in China is intensifying, leading to an increase in crop production. However, these output measures leave the potential for further intensification largely unassessed. This study uses the harvested area gap (HAG), which expresses the amount of harvested area that can be gained if all existing cropland is harvested as frequently as possible, according to their potential limit for multi-cropping. Specifically, we calculate the HAG and changes in the HAG in China between 1981 and 2010. We further assess how climatic and land management factors affect these changes. We find that in China the HAG decreases between the 1980s and the 1990s, and subsequently increases between the 1990s and the 2000s, resulting in a small net increase for the entire study period. The initial decrease in the HAG is the result of an increase in the average multi-cropping index throughout the country, which is larger than the increase in the potential multi-cropping index as a result of the changed climatic factors. The subsequent increase in the HAG is the result of a decrease in average multi-cropping index throughout the country, in combination with a stagnant potential. Despite the overall increase in harvested area in China, many regions, e.g. Northeast and Lower Yangtze, are characterized by an increased HAG, indicating their potential for further increasing the multi-cropping index. The study demonstrates the application of the HAG as a method to identify areas where the harvested area can increase to increase crop production, which is currently underexplored in scientific literature.

  7. Land Treatment Digital Library

    USGS Publications Warehouse

    Pilliod, David S.; Welty, Justin L.

    2013-01-01

    The Land Treatment Digital Library (LTDL) was created by the U.S. Geological Survey to catalog legacy land treatment information on Bureau of Land Management lands in the western United States. The LTDL can be used by federal managers and scientists for compiling information for data-calls, producing maps, generating reports, and conducting analyses at varying spatial and temporal scales. The LTDL currently houses thousands of treatments from BLM lands across 10 states. Users can browse a map to find information on individual treatments, perform more complex queries to identify a set of treatments, and view graphs of treatment summary statistics.

  8. Ecological perspectives of land use history: The Arid Lands Ecology (ALE) Reserve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinds, N R; Rogers, L E

    The objective of this study was to gather information on the land use history of the Arid Land Ecology (ALE) Reserve so that current ecological research could be placed within a historical perspective. The data were gathered in the early 1980s by interviewing former users of the land and from previously published research (where available). Interviews with former land users of the ALE Reserve in Benton County, Washington, revealed that major land uses from 1880 to 1940 were homesteading, grazing, oil/gas production, and road building. Land use practices associated with grazing and homesteading have left the greatest impact on themore » landscape. Disturbed sites where succession is characterized by non-native species, plots where sagebrush was railed away, and sheep trails are major indications today of past land uses. Recent estimates of annual bunchgrass production do ALE do not support the widespread belief that bunchgrass were more productive during the homesteading era, though the invasion of cheatgrass (Bromus tectorum), Jim Hill mustard (Sisymbrium altissium), and other European alien plant species has altered pre-settlement succession patterns. 15 refs., 6 figs., 1 tab.« less

  9. Design and landing dynamic analysis of reusable landing leg for a near-space manned capsule

    NASA Astrophysics Data System (ADS)

    Yue, Shuai; Nie, Hong; Zhang, Ming; Wei, Xiaohui; Gan, Shengyong

    2018-06-01

    To improve the landing performance of a near-space manned capsule under various landing conditions, a novel landing system is designed that employs double chamber and single chamber dampers in the primary and auxiliary struts, respectively. A dynamic model of the landing system is established, and the damper parameters are determined by employing the design method. A single-leg drop test with different initial pitch angles is then conducted to compare and validate the simulation model. Based on the validated simulation model, seven critical landing conditions regarding nine crucial landing responses are found by combining the radial basis function (RBF) surrogate model and adaptive simulated annealing (ASA) optimization method. Subsequently, the adaptability of the landing system under critical landing conditions is analyzed. The results show that the simulation effectively results match the test results, which validates the accuracy of the dynamic model. In addition, all of the crucial responses under their corresponding critical landing conditions satisfy the design specifications, demonstrating the feasibility of the landing system.

  10. Photosynthesis sensitivity to climate change in land surface models

    NASA Astrophysics Data System (ADS)

    Manrique-Sunen, Andrea; Black, Emily; Verhoef, Anne; Balsamo, Gianpaolo

    2016-04-01

    Accurate representation of vegetation processes within land surface models is key to reproducing surface carbon, water and energy fluxes. Photosynthesis determines the amount of CO2 fixated by plants as well as the water lost in transpiration through the stomata. Photosynthesis is calculated in land surface models using empirical equations based on plant physiological research. It is assumed that CO2 assimilation is either CO2 -limited, radiation -limited ; and in some models export-limited (the speed at which the products of photosynthesis are used by the plant) . Increased levels of atmospheric CO2 concentration tend to enhance photosynthetic activity, but the effectiveness of this fertilization effect is regulated by environmental conditions and the limiting factor in the photosynthesis reaction. The photosynthesis schemes at the 'leaf level' used by land surface models JULES and CTESSEL have been evaluated against field photosynthesis observations. Also, the response of photosynthesis to radiation, atmospheric CO2 and temperature has been analysed for each model, as this is key to understanding the vegetation response that climate models using these schemes are able to reproduce. Particular emphasis is put on the limiting factor as conditions vary. It is found that while at present day CO2 concentrations export-limitation is only relevant at low temperatures, as CO2 levels rise it becomes an increasingly important restriction on photosynthesis.

  11. Site Selection for Mars Surveyor Landing Sites: Some Key Factors for 2001 and Relation to Long-Term Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Head, James W.

    1999-01-01

    The Site Selection Process: Site selection as a process can be subdivided into several main elements and these can be represented as the corners of a tetrahedron. Successful site selection outcome requires the interactions between these elements or corners, and should also take into account several other external factors or considerations. In principle, elements should be defined in approximately the following order: (1) major scientific and programmatic goals and objectives: What are the major questions that are being asked, goals that should be achieved, and objectives that must be accomplished. Do programmatic goals (e.g., sample return) differ from mission goals (e.g., precursor to sample return)? It is most helpful if these questions can be placed in the context of site characterization and hypothesis testing (e.g., Was Mars warm and wet in the Noachian? Land at a Noachian-aged site that shows evidence of surface water and characterize it specifically to address this question). Goals and objectives, then, help define important engineering factors such as type of payload, landing regions of interest (highlands, lowlands, smooth, rough, etc.), mobility, mission duration, etc. Goals and objectives then lead to: (2) spacecraft design and engineering landing site constraints: the spacecraft is designed to optimize the areas that will meet the goals and objectives, but this in turn introduces constraints that must be met in the selection of a landing site. Scientific and programmatic goals and objectives also help to define (3), the specific lander scientific payload requirements and capabilities. For example, what observations and experiments are required to address the major questions? How do we characterize the site in reference to the specific questions? Is mobility required and if so, how much? Which experiments are on the spacecraft, which on the rover? The results of these deliberations should lead to a surface exploration strategy, in which the goals and

  12. Integration of strategic inventory and monitoring programs for the forest lands, wood lands, range lands and agricultural lands of the United States

    Treesearch

    Raymond L. Czaplewski

    1999-01-01

    The United States Department of Agriculture uses the Forest Inventory and Analysis (FIA) program to monitor the nation's forests and wood lands, and the National Resources Inventory (NRI) program to monitor the nation's agricultural and range lands. Although their measurement methods and sampling frames are very different, both programs are developing annual...

  13. Land development under regulation: comparison between the east and the west sides of the Cascade Range in Oregon, Washington, and California.

    Treesearch

    Seong-Hoo Cho; JunJie Wu; Ralph J. Alig

    2005-01-01

    We compare how socioeconomic factors, physical landscape, profit uncertainty, and local land use policies have affected land development on the east and west sides of the Cascade Range in Oregon, Washington, and California. It is found that the west side has more actively planned and regulated land use than the east side. Consequently, the more intense land use...

  14. Land use and land cover mapping: City of Palm Bay, Florida

    NASA Technical Reports Server (NTRS)

    Barile, D. D.; Pierce, R.

    1977-01-01

    Two different computer systems were compared for use in making land use and land cover maps. The Honeywell 635 with the LANDSAT signature development program (LSDP) produced a map depicting general patterns, but themes were difficult to classify as specific land use. Urban areas were unclassified. The General Electric Image 100 produced a map depicting eight land cover categories classifying 68 percent of the total area. Ground truth, LSDP, and Image 100 maps were all made to the same scale for comparison. LSDP agreed with the ground truth 60 percent and 64 percent within the two test areas compared and Image 100 was in agreement 70 percent and 80 percent.

  15. Methodology for Assessing the Size and Liquidation of the Outer Patchwork of Land

    NASA Astrophysics Data System (ADS)

    Len, Przemyslaw; Oleniacz, Grzegorz; Skrzypczak, Izabela; Mika, Monika

    2017-12-01

    A patchwork of land ownership is one of the factors that exert a negative influence on both the organization and the level of agricultural production. Excessive land fragmentation decreases the intensity of agricultural practices and increases production costs, thus leading to a continuous reduction in income. In many areas of Poland, over the years, fields have been divided into smaller and smaller parcels, which, along with the mass migration of people to towns and abroad, resulted in a faulty land ownership structure. Nowadays, it is recommended that measures be taken to eliminate both internal and external patchworks of farmland. Two such agricultural land management measures are land consolidation and land exchange. Rural areas in Poland require profound structural changes related to agricultural production, the size of agricultural holdings, the distribution of farmland in an agricultural holding, as well as demographic, spatial and institutional structure. Land consolidation and land exchange not only result in improved living and working conditions for farmers, but also contribute to enhancing the environmental and cultural assets of a village. The study allowed conducted using checkerboard matrix tables which allow one to determine the share of farmland owned by local and out-of-village non-residents. Research based on data from the estate cadastre. The research used information on the number of land owners, the number of parcels of land, the area of these parcels. The study computed the distance between 34 villages located in Slawno municipality, Opoczno County, Lodz voivodeship. An approach like this allows one to establish a program of exchange of land between these two groups of owners and to eliminate the problematic patchwork of land ownership through land exchange and consolidation.

  16. A factor analysis of landscape pattern and structure metrics

    Treesearch

    Kurt H. Riitters; R.V. O' Neill; C.T. Hunsaker; James D. Wickham; D.H. Yankee; S.P. Timmins; K.B. Jones; B.L. Jackson

    1995-01-01

    Fifty-five metrics of landscape pattern and structure were calculated for 85 maps of land use and land cover. A multivariate factor analysis was used to identify the common axes (or dimensions) of pattern and structure which were measured by a reduced set of 26 metrics. The first six factors explained about 87% of the variation in the 26 landscape metrics. These...

  17. Land Cover Characterization Program

    USGS Publications Warehouse

    ,

    1997-01-01

    (2) identify sources, develop procedures, and organize partners to deliver data and information to meet user requirements. The LCCP builds on the heritage and success of previous USGS land use and land cover programs and projects. It will be compatible with current concepts of government operations, the changing needs of the land use and land cover data users, and the technological tools with which the data are applied.

  18. Law on Land, 8 January 1988.

    PubMed

    1989-01-01

    This document contains major provisions of Viet Nam's January 1988 Law relating to land use. The provisions hold that the land is owned by all of the people and is under state management. The state assigns land for stable, longterm use or for specific periods. Land-users are encouraged to invest in the land and their legitimate interests in the land are protected. Land-users must pay a land-use tax. The provisions also give conditions governing the use and transfer of land. The law further lays out a system of land management which relies on the drafting and planning of projects by the Council of Ministers for the entire country and similar work by local people's committees. Provisions are also made for a system of land use which sets the obligations of users of agricultural and of forest land. Land-use measures are provided for a family-based economy and for production by individual peasants. Regulations also are given for the use of garden land. Finally, additional obligations and interests of land users are set forth.

  19. Land-Use Change Impact on Soil Sustainability in a Climate and Vegetation Transition Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reitsma, Kurt D.; Dunn, Barry H.; Mishra, U.

    A growing world population and climate change are expected to influence future agricultural productivity and land use. This study determined the impact of land-use change on soil sustainability and discussed the factors contributing to these changes. South Dakota was selected as a model system because corn ( Zea mays L.) grain prices tripled between 2006 and 2012 and it is located in a climate and grassland/cropland transition zone. High resolution imagery was used to visually determine land uses (cropland, grassland, nonagricultural, habitat, and water) at 14,400 points in 2006 and 2012. At each point, land-use change and the USDA landmore » capability class (LCC) were determined. Over the 6-yr study period, 6.87% of the grasslands (730,000 ha) were converted to cropland, with 93% occurring on lands generally considered suitable for crop production (LCC ≤ IV) if appropriate practices are followed. Converted grasslands, however, had higher LCC values than existing croplands and lower LCC values than remaining grasslands. In addition, 4.2% of the croplands (250,000 ha) were converted to grasslands, and statewide, 20,000 ha of croplands were converted to grasslands in areas limited by excess water (LCC V). The conversion of grasslands could not be linked to one specific factor and may be related to: (i) a desire to increase financial returns, (ii) changes in the land ownership structure, (iii) technology improvements, (iv) governmental policies, (v) climate change, and (vi) an aging workforce. Here, research and outreach programs that balance the goods and services of different land uses are needed to maintain sustainable agroecosystems.« less

  20. Land-Use Change Impact on Soil Sustainability in a Climate and Vegetation Transition Zone

    DOE PAGES

    Reitsma, Kurt D.; Dunn, Barry H.; Mishra, U.; ...

    2015-09-11

    A growing world population and climate change are expected to influence future agricultural productivity and land use. This study determined the impact of land-use change on soil sustainability and discussed the factors contributing to these changes. South Dakota was selected as a model system because corn ( Zea mays L.) grain prices tripled between 2006 and 2012 and it is located in a climate and grassland/cropland transition zone. High resolution imagery was used to visually determine land uses (cropland, grassland, nonagricultural, habitat, and water) at 14,400 points in 2006 and 2012. At each point, land-use change and the USDA landmore » capability class (LCC) were determined. Over the 6-yr study period, 6.87% of the grasslands (730,000 ha) were converted to cropland, with 93% occurring on lands generally considered suitable for crop production (LCC ≤ IV) if appropriate practices are followed. Converted grasslands, however, had higher LCC values than existing croplands and lower LCC values than remaining grasslands. In addition, 4.2% of the croplands (250,000 ha) were converted to grasslands, and statewide, 20,000 ha of croplands were converted to grasslands in areas limited by excess water (LCC V). The conversion of grasslands could not be linked to one specific factor and may be related to: (i) a desire to increase financial returns, (ii) changes in the land ownership structure, (iii) technology improvements, (iv) governmental policies, (v) climate change, and (vi) an aging workforce. Here, research and outreach programs that balance the goods and services of different land uses are needed to maintain sustainable agroecosystems.« less

  1. Analysis of the geomorphology surrounding the Chang'e-3 landing site

    NASA Astrophysics Data System (ADS)

    Li, Chun-Lai; Mu, Ling-Li; Zou, Xiao-Duan; Liu, Jian-Jun; Ren, Xin; Zeng, Xing-Guo; Yang, Yi-Man; Zhang, Zhou-Bin; Liu, Yu-Xuan; Zuo, Wei; Li, Han

    2014-12-01

    Chang'e-3 (CE-3) landed on the Mare Imbrium basin in the east part of Sinus Iridum (19.51°W, 44.12°N), which was China's first soft landing on the Moon and it started collecting data on the lunar surface environment. To better understand the environment of this region, this paper utilizes the available high-resolution topography data, image data and geological data to carry out a detailed analysis and research on the area surrounding the landing site (Sinus Iridum and 45 km×70 km of the landing area) as well as on the topography, landform, geology and lunar dust of the area surrounding the landing site. A general topographic analysis of the surrounding area is based on a digital elevation model and digital elevation model data acquired by Chang'e-2 that have high resolution; the geology analysis is based on lunar geological data published by USGS; the study on topographic factors and distribution of craters and rocks in the surrounding area covering 4 km×4 km or even smaller is based on images from the CE-3 landing camera and images from the topographic camera; an analysis is done of the effect of the CE-3 engine plume on the lunar surface by comparing images before and after the landing using data from the landing camera. A comprehensive analysis of the results shows that the landing site and its surrounding area are identified as typical lunar mare with flat topography. They are suitable for maneuvers by the rover, and are rich in geological phenomena and scientific targets, making it an ideal site for exploration.

  2. A synoptic approach for analyzing erosion as a guide to land-use planning

    USGS Publications Warehouse

    Brown, William M.; Hines, Walter G.; Rickert, David A.; Beach, Gary L.

    1979-01-01

    A synoptic approach has been devised to delineate the relationships that exist' between physiographic factors, land-use activities, and resultant erosional problems. The approach involves the development of an erosional-depositional province map and a numerical impact matrix for rating the potential for erosional problems. The province map is prepared by collating data on the natural terrain factors that exert the dominant controls on erosion and deposition in each basin. In addition, existing erosional and depositional features are identified and mapped from color-infrared, high-altitude aerial imagery. The axes of the impact matrix are composed of weighting values for the terrain factors used in developing the map and by a second set of values for the prevalent land-use activities. The body of the matrix is composed of composite erosional-impact ratings resulting from the product of the factor sets. Together the province map and problem matrix serve as practical tools for estimating the erosional impact of human activities on different types of terrain. The approach has been applied to the Molalla River basin, Oregon, and has proven useful for the recognition of problem areas. The same approach is currently being used by the State of Oregon (in the 208 assessment of nonpoint-source pollution under Public Law 92-500) to evaluate the impact of land-management practices on stream quality.

  3. Ammonia emissions factors from broiler litter in barns, in storage, and after land application

    USDA-ARS?s Scientific Manuscript database

    Ammonia (NH3) emissions from poultry litter can cause high levels of NH3 in poultry rearing facilities, as well as atmospheric pollution. The objectives of this study were to: (1) measure NH3 emissions from litter in broiler houses, during storage and following land application, and (2) conduct a m...

  4. Integrated modelling of anthropogenic land-use and land-cover change on the global scale

    NASA Astrophysics Data System (ADS)

    Schaldach, R.; Koch, J.; Alcamo, J.

    2009-04-01

    In many cases land-use activities go hand in hand with substantial modifications of the physical and biological cover of the Earth's surface, resulting in direct effects on energy and matter fluxes between terrestrial ecosystems and the atmosphere. For instance, the conversion of forest to cropland is changing climate relevant surface parameters (e.g. albedo) as well as evapotranspiration processes and carbon flows. In turn, human land-use decisions are also influenced by environmental processes. Changing temperature and precipitation patterns for example are important determinants for location and intensity of agriculture. Due to these close linkages, processes of land-use and related land-cover change should be considered as important components in the construction of Earth System models. A major challenge in modelling land-use change on the global scale is the integration of socio-economic aspects and human decision making with environmental processes. One of the few global approaches that integrates functional components to represent both anthropogenic and environmental aspects of land-use change, is the LandSHIFT model. It simulates the spatial and temporal dynamics of the human land-use activities settlement, cultivation of food crops and grazing management, which compete for the available land resources. The rational of the model is to regionalize the demands for area intensive commodities (e.g. crop production) and services (e.g. space for housing) from the country-level to a global grid with the spatial resolution of 5 arc-minutes. The modelled land-use decisions within the agricultural sector are influenced by changing climate and the resulting effects on biomass productivity. Currently, this causal chain is modelled by integrating results from the process-based vegetation model LPJmL model for changing crop yields and net primary productivity of grazing land. Model output of LandSHIFT is a time series of grid maps with land-use/land-cover information

  5. Bayesian spatial modelling and the significance of agricultural land use to scrub typhus infection in Taiwan.

    PubMed

    Wardrop, Nicola A; Kuo, Chi-Chien; Wang, Hsi-Chieh; Clements, Archie C A; Lee, Pei-Fen; Atkinson, Peter M

    2013-11-01

    Scrub typhus is transmitted by the larval stage of trombiculid mites. Environmental factors, including land cover and land use, are known to influence breeding and survival of trombiculid mites and, thus, also the spatial heterogeneity of scrub typhus risk. Here, a spatially autoregressive modelling framework was applied to scrub typhus incidence data from Taiwan, covering the period 2003 to 2011, to provide increased understanding of the spatial pattern of scrub typhus risk and the environmental and socioeconomic factors contributing to this pattern. A clear spatial pattern in scrub typhus incidence was observed within Taiwan, and incidence was found to be significantly correlated with several land cover classes, temperature, elevation, normalized difference vegetation index, rainfall, population density, average income and the proportion of the population that work in agriculture. The final multivariate regression model included statistically significant correlations between scrub typhus incidence and average income (negatively correlated), the proportion of land that contained mosaics of cropland and vegetation (positively correlated) and elevation (positively correlated). These results highlight the importance of land cover on scrub typhus incidence: mosaics of cropland and vegetation represent a transitional land cover type which can provide favourable habitats for rodents and, therefore, trombiculid mites. In Taiwan, these transitional land cover areas tend to occur in less populated and mountainous areas, following the frontier establishment and subsequent partial abandonment of agricultural cultivation, due to demographic and socioeconomic changes. Future land use policy decision-making should ensure that potential public health outcomes, such as modified risk of scrub typhus, are considered.

  6. Generation of High Resolution Land Surface Parameters in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Coleman, A. M.; Wigmosta, M. S.; Leung, L.; Huang, M.; Li, H.

    2010-12-01

    The Community Land Model (CLM) is the land surface model used for the Community Atmosphere Model (CAM) and the Community Climate System Model (CCSM). It examines the physical, chemical, and biological processes across a variety of spatial and temporal scales. Currently, efforts are being made to improve the spatial resolution of the CLM, in part, to represent finer scale hydrologic characteristics. Current land surface parameters of CLM4.0, in particular plant functional types (PFT) and leaf area index (LAI), are generated from MODIS and calculated at a 0.05 degree resolution. These MODIS-derived land surface parameters have also been aggregated to coarser resolutions (e.g., 0.5, 1.0 degrees). To evaluate the response of CLM across various spatial scales, higher spatial resolution land surface parameters need to be generated. In this study we examine the use of Landsat TM/ETM+ imagery and data fusion techniques for generating land surface parameters at a 1km resolution within the Pacific Northwest United States. . Land cover types and PFTs are classified based on Landsat multi-season spectral information, DEM, National Land Cover Database (NLCD) and the USDA-NASS Crop Data Layer (CDL). For each PFT, relationships between MOD15A2 high quality LAI values, Landsat-based vegetation indices, climate variables, terrain, and laser-altimeter derived vegetation height are used to generate monthly LAI values at a 30m resolution. The high-resolution PFT and LAI data are aggregated to create a 1km model grid resolution. An evaluation and comparison of CLM land surface response at both fine and moderate scale is presented.

  7. Monitoring land use/land cover changes using CORINE land cover data: a case study of Silivri coastal zone in Metropolitan Istanbul.

    PubMed

    Yilmaz, Rüya

    2010-06-01

    The objective of the present study was to assess changes in land use/land cover patterns in the coastal town of Silivri, a part of greater Istanbul administratively. In the assessment, remotely sensed data, in the form of satellite images, and geographic information systems were used. Types of land use/land cover were designated as the percentage of the total area studied. Results calculated from the satellite data for land cover classification were compared successfully with the database Coordination of Information on the Environment (CORINE). This served as a reference to appraise the reliability of the study presented here. The CORINE Program was established by the European Commission to create a harmonized Geographical Information System on the state of the environment in the European Community. Unplanned urbanization is causing land use changes mainly in developing countries such as Turkey. This situation in Turkey is frequently observed in the city of Istanbul. There are only a few studies of land use-land cover changes which provide an integrated assessment of the biophysical and societal causes and consequences of environmental degradation in Istanbul. The research area comprised greater Silivri Town which is situated by the coast of Marmara Sea, and it is located approximately 60 km west of Istanbul. The city of Istanbul is one of the largest metropolises in Europe with ca. 15 million inhabitants. Additionally, greater Silivri is located near the terminal point of the state highway connecting Istanbul with Europe. Measuring of changes occurring in land use would help control future planning of settlements; hence, it is of importance for the Greater Silivri and Silivri Town. Following our evaluations, coastal zone of Silivri was classified into the land use groups of artificial surfaces agricultural areas and forests and seminatural areas with 47.1%, 12.66%, and 22.62%, respectively.

  8. [Spatial pattern of land surface dead combustible fuel load in Huzhong forest area in Great Xing'an Mountains].

    PubMed

    Liu, Zhi-Hua; Chang, Yu; Chen, Hong-Wei; Zhou, Rui; Jing, Guo-Zhi; Zhang, Hong-Xin; Zhang, Chang-Meng

    2008-03-01

    By using geo-statistics and based on time-lag classification standard, a comparative study was made on the land surface dead combustible fuels in Huzhong forest area in Great Xing'an Mountains. The results indicated that the first level land surface dead combustible fuel, i. e., 1 h time-lag dead fuel, presented stronger spatial auto-correlation, with an average of 762.35 g x m(-2) and contributing to 55.54% of the total load. Its determining factors were species composition and stand age. The second and third levels land surface dead combustible fuel, i. e., 10 h and 100 h time-lag dead fuels, had a sum of 610.26 g x m(-2), and presented weaker spatial auto-correlation than 1 h time-lag dead fuel. Their determining factor was the disturbance history of forest stand. The complexity and heterogeneity of the factors determining the quality and quantity of forest land surface dead combustible fuels were the main reasons for the relatively inaccurate interpolation. However, the utilization of field survey data coupled with geo-statistics could easily and accurately interpolate the spatial pattern of forest land surface dead combustible fuel loads, and indirectly provide a practical basis for forest management.

  9. Urban land teleconnections and sustainability

    PubMed Central

    Seto, Karen C.; Reenberg, Anette; Boone, Christopher G.; Fragkias, Michail; Haase, Dagmar; Langanke, Tobias; Marcotullio, Peter; Munroe, Darla K.; Olah, Branislav; Simon, David

    2012-01-01

    This paper introduces urban land teleconnections as a conceptual framework that explicitly links land changes to underlying urbanization dynamics. We illustrate how three key themes that are currently addressed separately in the urban sustainability and land change literatures can lead to incorrect conclusions and misleading results when they are not examined jointly: the traditional system of land classification that is based on discrete categories and reinforces the false idea of a rural–urban dichotomy; the spatial quantification of land change that is based on place-based relationships, ignoring the connections between distant places, especially between urban functions and rural land uses; and the implicit assumptions about path dependency and sequential land changes that underlie current conceptualizations of land transitions. We then examine several environmental “grand challenges” and discuss how urban land teleconnections could help research communities frame scientific inquiries. Finally, we point to existing analytical approaches that can be used to advance development and application of the concept. PMID:22550174

  10. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Ning, Jicai; Gao, Zhiqiang; Meng, Ran; Xu, Fuxiang; Gao, Meng

    2018-06-01

    This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.

  11. Quantifying the contribution of land use change to surface temperature in the lower reaches of the Yangtze River

    NASA Astrophysics Data System (ADS)

    Wang, Xueqian; Guo, Weidong; Qiu, Bo; Liu, Ye; Sun, Jianning; Ding, Aijun

    2017-04-01

    Anthropogenic land use has a significant impact on climate change. Located in the typical East Asian monsoon region, the land-atmosphere interaction in the lower reaches of the Yangtze River is even more complicated due to intensive human activities and different types of land use in this region. To better understand these effects on microclimate change, we compare differences in land surface temperature (Ts) for three land types around Nanjing from March to August, 2013, and then quantify the contribution of land surface factors to these differences (ΔTs) by considering the effects of surface albedo, roughness length, and evaporation. The atmospheric background contribution to ΔTs is also considered based on differences in air temperature (ΔTa). It is found that the cropland cooling effect decreases Ts by 1.76° and the urban heat island effect increases Ts by 1.25°. They have opposite impacts but are both significant in this region. Various changes in surface factors affect radiation and energy distribution and eventually modify Ts. It is the evaporative cooling effect that plays the most important role in this region and accounts for 1.40° of the crop cooling and 2.29° of the urban warming. Moreover, the background atmospheric circulation is also an indispensable part in land-atmosphere feedback induced by land use change and reinforces both these effects.

  12. Land scarcity in Northern Namibia

    NASA Astrophysics Data System (ADS)

    Bloemertz, Lena; Dobler, Gregor; Graefe, Olivier; Kuhn, Nikolaus J.; Nghitevelekwa, Romie; Prudat, Brice; Weidmann, Laura

    2015-04-01

    Land access is a major topic in the Namibian population, which can also be seen in political discourses. In North-Central Namibia, the ongoing Communal Land Reform aims at improving tenure security and thereby also hopes to promote sustainable investment in land. Within this context, it is often argued that population growth is leading to an increased scarcity of land. However, this argument falls short of actual issues determining land scarcity in Namibia. In a context, where a large part of the population is still seen as depending on agricultural production, land scarcity has to be measured by different means to assess physical scarcity (population density, farm density, proportion of cultivated areas, or yield per person) as well as the perception of these different scarcities. This paper aims to discuss the different notions of land scarcity and argues that by focusing only on the physical realities of increasing pressure on land because of population growth, important other aspects are neglected. In order to scrutinize those measures, the study will further look at the distribution of different land uses, changing land use practices as connected to changing labour availability and mobility. Special attention will thereby be given to the difference between land scarcity and fertile soil scarcity and their relation to labour availability.

  13. Land use planning

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The organization, objectives, and accomplishments of the panel on Land Use Planning are reported. Technology developments, and projected developments are discussed along with anticipated information requirements. The issues for users, recommended remote sensing programs, and space systems are presented. It was found that remote sensing systems are useful in future land use planning. It is recommended that a change detection system for monitoring land use and critical environmental areas be developed by 1979.

  14. Land Capability Potential Index (LCPI) and geodatabase for the Lower Missouri River Valley

    USGS Publications Warehouse

    Chojnacki, Kimberly A.; Struckhoff, Matthew A.; Jacobson, Robert B.

    2012-01-01

    The Land Capacity Potential Index (LCPI) is a coarse-scale index intended to delineate broad land-capability classes in the Lower Missouri River valley bottom from the Gavins Point Dam near Yankton, South Dakota to the mouth of the Missouri River near St. Louis, Missouri (river miles 811–0). The LCPI provides a systematic index of wetness potential and soil moisture-retention potential of the valley-bottom lands by combining the interactions among water-surface elevations, land-surface elevations, and the inherent moisture-retention capability of soils. A nine-class wetness index was generated by intersecting a digital elevation model for the valley bottom with sloping water-surface elevation planes derived from eight modeled discharges. The flow-recurrence index was then intersected with eight soil-drainage classes assigned to soils units in the digital Soil Survey Geographic (SSURGO) Database (Soil Survey Staff, 2010) to create a 72-class index of potential flow-recurrence and moisture-retention capability of Missouri River valley-bottom lands. The LCPI integrates the fundamental abiotic factors that determine long-term suitability of land for various uses, particularly those relating to vegetative communities and their associated values. Therefore, the LCPI provides a mechanism allowing planners, land managers, landowners, and other stakeholders to assess land-use capability based on the physical properties of the land, in order to guide future land-management decisions. This report documents data compilation for the LCPI in a revised and expanded, 72-class version for the Lower Missouri River valley bottom, and inclusion of additional soil attributes to allow users flexibility in exploring land capabilities.

  15. Present and future of desertification in Spain: Implementation of a surveillance system to prevent land degradation.

    PubMed

    Martínez-Valderrama, Jaime; Ibáñez, Javier; Del Barrio, Gabriel; Sanjuán, Maria E; Alcalá, Francisco J; Martínez-Vicente, Silvio; Ruiz, Alberto; Puigdefábregas, Juan

    2016-09-01

    Mitigation strategies are crucial for desertification given that once degradation starts, other solutions are extremely expensive or unworkable. Prevention is key to handle this problem and solutions should be based on spotting and deactivating the stressors of the system. Following this topic, the Spanish Plan of Action to Combat Desertification (SPACD) created the basis for implementing two innovative approaches to evaluate the threat of land degradation in the country. This paper presents tools for preventing desertification in the form of a geomatic approach to enable the periodic assessments of the status and trends of land condition. Also System Dynamics modelling has been used to integrate bio-physical and socio-economic aspects of desertification to explain and analyse degradation in the main hot spots detected in Spain. The 2dRUE procedure was implemented to map the land-condition status by comparing potential land productivity according to water availability, the limiting factor in arid lands, with plant-biomass data. This assessment showed that 20% of the territory is degraded and an additional 1% is actively degrading. System Dynamics modelling was applied to study the five desertification landscapes identified by the SPACD. The risk analysis, implemented on these models, concluded that 'Herbaceous crops affected by soil erosion' is the landscape most at risk, while the Plackett-Burman sensitivity analysis used to rank the factors highlighted the supremacy of climatic factors above socioeconomic drivers. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Incorporating Land-Use Mapping Uncertainty in Remote Sensing Based Calibration of Land-Use Change Models

    NASA Astrophysics Data System (ADS)

    Cockx, K.; Van de Voorde, T.; Canters, F.; Poelmans, L.; Uljee, I.; Engelen, G.; de Jong, K.; Karssenberg, D.; van der Kwast, J.

    2013-05-01

    Building urban growth models typically involves a process of historic calibration based on historic time series of land-use maps, usually obtained from satellite imagery. Both the remote sensing data analysis to infer land use and the subsequent modelling of land-use change are subject to uncertainties, which may have an impact on the accuracy of future land-use predictions. Our research aims to quantify and reduce these uncertainties by means of a particle filter data assimilation approach that incorporates uncertainty in land-use mapping and land-use model parameter assessment into the calibration process. This paper focuses on part of this work, more in particular the modelling of uncertainties associated with the impervious surface cover estimation and urban land-use classification adopted in the land-use mapping approach. Both stages are submitted to a Monte Carlo simulation to assess their relative contribution to and their combined impact on the uncertainty in the derived land-use maps. The approach was applied on the central part of the Flanders region (Belgium), using a time-series of Landsat/SPOT-HRV data covering the years 1987, 1996, 2005 and 2012. Although the most likely land-use map obtained from the simulation is very similar to the original classification, it is shown that the errors related to the impervious surface sub-pixel fraction estimation have a strong impact on the land-use map's uncertainty. Hence, incorporating uncertainty in the land-use change model calibration through particle filter data assimilation is proposed to address the uncertainty observed in the derived land-use maps and to reduce uncertainty in future land-use predictions.

  17. Public perceptions of land management in the Great Basin

    Treesearch

    Susan Wilmot; Mark Brunson

    2008-01-01

    The Great Basin is undergoing significant landscape change due to an array of natural and anthropogenic factors. Land management strategies intended to address these problems will require landscape-scale solutions that can reduce, reverse, or mitigate ecosystem degradation while remaining economically feasible and socially acceptable. The latter criterion may be...

  18. Linking Land Surface Phenology and Growth Limiting Factor Shifts over the Past 30 Years

    NASA Astrophysics Data System (ADS)

    Garonna, I.; Schenkel, D.; de Jong, R.; Schaepman, M. E.

    2015-12-01

    The study of global vegetation dynamics contributes to a better understanding of global change drivers and how these affect ecosystems and ecological diversity. Land-surface phenology (LSP) is a key response and feedback of vegetation to the climate system, and hence a parameter that needs to be accurately represented in terrestrial biosphere models [1]. However, the effects of climatic changes on LSP depend on the relative importance of climatic constraints in specific regions - which are not well understood at global scale. In this study, we analyzed a Phenology Reanalysis dataset [2] to evaluate shifts in three climatic drivers of phenology at global scale and over the last 30 years (1982-2012): incoming radiation, evaporative demand and minimum temperature. As a first step, we compared LAI as modeled from these three factors (LAIre) to remotely sensed observations of LSP (LAI3g, [3]) over the same time period. As a second step, we examined temporal trends in the climatic constraints at Start- and End- of the Growing Season. There was good agreement between phenology metrics as derived form LAI3g and LAIre over the last 30 years - thus providing confidence in the climatic constraints underlying the modeled data. Our analysis reveals inter-annual variation in the relative importance of the three climatic factors in limiting vegetation growth at Start- and End- of the Growing Season over the last 30 years. High northern latitudes, as well as northern Europe and central Asia, appear to have undergone significant changes in dominance between the three controls. We also find that evaporative demand has become increasingly limiting for growth in many parts of the world, in particular in South America and eastern Asia. [1] Richardson, A.D. et al. Global Change Biology 18, 566-584 (2012). [2] Stöckli, R. et al. J. Geophys. Res 116, G03020 (2011). [3] Zhu, Z. et al. Remote Sensing 5, 927-948 (2013).

  19. U.S. landowner behavior, land use and land cover changes, and climate change mitigation.

    Treesearch

    Ralph J. Alig

    2003-01-01

    Landowner behavior is a major determinant of land use and land cover changes. an important consideration for policy analysts concerned with global change. Study of landowner behavior aids in designing more effective incentives for inducing land use and land cover changes to help mitigate climate change by reducing net greenhouse gas emissions. Afforestation,...

  20. LandingNav: a precision autonomous landing sensor for robotic platforms on planetary bodies

    NASA Astrophysics Data System (ADS)

    Katake, Anup; Bruccoleri, Chrisitian; Singla, Puneet; Junkins, John L.

    2010-01-01

    Increased interest in the exploration of extra terrestrial planetary bodies calls for an increase in the number of spacecraft landing on remote planetary surfaces. Currently, imaging and radar based surveys are used to determine regions of interest and a safe landing zone. The purpose of this paper is to introduce LandingNav, a sensor system solution for autonomous landing on planetary bodies that enables landing on unknown terrain. LandingNav is based on a novel multiple field of view imaging system that leverages the integration of different state of the art technologies for feature detection, tracking, and 3D dense stereo map creation. In this paper we present the test flight results of the LandingNav system prototype. Sources of errors due to hardware limitations and processing algorithms were identified and will be discussed. This paper also shows that addressing the issues identified during the post-flight test data analysis will reduce the error down to 1-2%, thus providing for a high precision 3D range map sensor system.

  1. Land preparation techniques and vegetation type commonly determine soil conditions in a typical hilly watershed, Loess Plateau of China.

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Wei, Wei; Chen, Liding; Feng, Tianjiao; Qin, Wei

    2017-04-01

    Soil is a key component of the earth, it plays important role in regulating the chemical, hydrological and biological cycles. Land preparation techniques (e.g., leveled ditches, leveled benches, adversely graded tableland and fish-scale pits) is one of the most effective ecological engineering practices to reduce water erosion. Land preparation greatly affects soil physicochemical properties, soil moisture variation, runoff and sediment prevention. This study investigated the influence of different land preparation techniques on soil conditions, runoff and erosion during vegetation restoration, which remained poorly understand to date. Soil samples were collected from depths of 0-10 cm, 10-20 cm, 20-40 cm, 40-60 cm, 60-80 cm and 80-100 cm, in the typical hilly watershed of Dingxi City, Loess Plateau. Soil bulk density (BD), soil organic matter (SOM) and total nitrogen (TN) were determined for different land preparations and vegetation type (Caragana korshinskii, Platycladus orientalis, Pinus tabulaeformis and Prunus armeniaca) combinations. Fractal theory was used to analyze the soil particle size distribution (PSD). Redundancy analyses were conducted to distinguish the relationships between soil conditions and the factors influencing them (land preparation and vegetation). The analysis of runoff coefficient and erosion rates were calculated considering the monitoring time. The results indicated that: 1) the effect of land preparation on soil properties and PSD varies with soil depth. For each land preparation category, SOM and TN values showed a significant difference between the top soil layer and the underlying soil depth. 2) The 20 cm soil layer was a boundary that distinguished the explanatory factors, with land preparation and vegetation type as the controlling factors in the 0-20 cm and 20-100 cm soil layers, respectively. Land preparation and vegetation significantly affected soil properties in the surface soil layer, while land preparation (41.6%) was the

  2. Land use/land cover change geo-informative Tupu of Nujiang River in Northwest Yunnan Province

    NASA Astrophysics Data System (ADS)

    Wang, Jin-liang; Yang, Yue-yuan; Huang, You-ju; Fu, Lei; Rao, Qing

    2008-10-01

    Land Use/Land Cover Change (LUCC) is the core components of global change researches. It is significant for understanding regional ecological environment and LUCC mechanism of large scale to develop the study of LUCC of regional level. Nujiang River is the upper reaches of a big river in the South Asia--Salween River. Nujiang River is a typical mountainous river which is 3200 kilometer long and its basin area is 32.5 × 105 square kilometer. It locates in the core of "Three Parallel Rivers" World Natural Heritage. It is one of international biodiversity conservation center of the world, the ecological fragile zone and key ecological construction area, as well as a remote undeveloped area with high diversity ethnic. With the rapidly development of society and economy, the land use and land cover changed in a great degree. The function of ecosystem has being degraded in some areas which will not only impact on the ecological construction of local area, but also on the ecological safety of lower reaches -- Salween River. Therefore it is necessary to carry out the research of LUCC of Nujiang River. Based on the theory and methods of geo-information Tupu, the "Spatial Pattern" and "Change Process" of land use of middle reach in Nujiang River from 1974 to 2004 had been studied in quantification and integration, so as to provide a case study in local area and mesoscale in time. Supported by the remote sensing and GIS technology, LUCC Tupu of 1974-2004 had been built and the characteristics of LUCC have been analyzed quantificationally. The results showed that the built-up land (Included in this category are cities, towns, villages, strip developments along highways, transportation, power, and communications facilities, and areas such as those occupied by mills, shopping centers, industrial and commercial complexes, and institutions that may, in some instances, be isolated from urban areas), agriculture land, shrubbery land, meadow & grassland, difficultly/unused land

  3. Land-sharing versus land-sparing logging: reconciling timber extraction with biodiversity conservation.

    PubMed

    Edwards, David P; Gilroy, James J; Woodcock, Paul; Edwards, Felicity A; Larsen, Trond H; Andrews, David J R; Derhé, Mia A; Docherty, Teegan D S; Hsu, Wayne W; Mitchell, Simon L; Ota, Takahiro; Williams, Leah J; Laurance, William F; Hamer, Keith C; Wilcove, David S

    2014-01-01

    Selective logging is a major driver of rainforest degradation across the tropics. Two competing logging strategies are proposed to meet timber demands with the least impact on biodiversity: land sharing, which combines timber extraction with biodiversity protection across the concession; and land sparing, in which higher intensity logging is combined with the protection of intact primary forest reserves. We evaluate these strategies by comparing the abundances and species richness of birds, dung beetles and ants in Borneo, using a protocol that allows us to control for both timber yield and net profit across strategies. Within each taxonomic group, more species had higher abundances with land-sparing than land-sharing logging, and this translated into significantly higher species richness within land-sparing concessions. Our results are similar when focusing only on species found in primary forest and restricted in range to Sundaland, and they are independent of the scale of sampling. For each taxonomic group, land-sparing logging was the most promising strategy for maximizing the biological value of logging operations. © 2013 John Wiley & Sons Ltd.

  4. An Inventory of Ohio's Land Use/Land Cover as Seen by Landsat

    NASA Technical Reports Server (NTRS)

    Schaal, Gary M.

    1977-01-01

    LANDSAT 2 (Land Satellite) was launched at Vandenburg, AFB, California on January 22, 1975. The satellite orbits the earth at an altitude of about 920 km (570 miles) and scans the earth's surface in a continuous track 185 km (115 miles) wide. LANDSAT 2 passes over the same spot every 18 days transmitting scanned data to receiving stations scattered around the globe. LANDSAT's continuously-scanning sensors provide useful information about the earth, one of the most important categories being land use. The statistics contained in the appendices of this report represent acreage and percentage of seven types of land cover in Ohio as seen by LANDSAT. The inventory represents a trial effort at determining the Sate's land cover by a method which is inexpensive, reliable, accurate and rapid. Given a successful method, the inventory and periodic updates could provide information to land use decision-makers and, over a period of time, would reveal patterns of land use change. Technical aspects of the project (process, methodology, and verification) are discussed in Schaal (1977) and Schmidt (1976).

  5. Pastoralism, land degradation and Carbon redistribution in rangelands

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Ali, Seid Mohammed

    2017-04-01

    Pastoralism is rarely viewed as a major future form of land use, because of well-documented cases of rangeland degradation, attributed to irrational overstocking, and the subsequent losses of ecosystem services. However, pastoralists were actually encouraged to settle and adopt such strategies, copied from rangelands with higher and more reliable rainfall. This curtailed mobility resulted in a shift from opportunistic and extensive land use to more intensive and settled forms of use, and promoted degradation of vegetation and soils and the ecosystem services they provided. However, pastoralists traditionally employed several techniques to manage rangeland resources. These practices, such as the use of seasonal grassland reserves and livestock mobility, influence vegetation composition, coverage and abundance in rangelands and preserved ecosystem services relevant for pastoralists. The traditional practices also offer tools for soil and vegetation protection and restoration, thereby contributing to the mitigation of climate change. However, various internal and external factors have curtailed traditional management practices and livestock mobility, breaking the co-evolved balance of vegetation, wildlife and land use, thus exposing rangeland to continued livestock pressure, which often leads to degradation. Rather than abandoning pastoralism as consequence of 20th century land degradation, the revitalisation of traditional practices and indigenous knowledge can be vital to secure sustainable livelihoods for millions of pastoralists and to maintain rangeland ecosystem services.

  6. 1st Manned Lunar Landing and 1st Robotic Mars Landing Commemorative Release: Viking 1 Landing Site in Chryse Planitia - Infrared Image

    NASA Image and Video Library

    2002-07-22

    This NASA Mars Odyssey image of NASA Viking 1 landing site was taken to commemorate the anniversaries of NASA Apollo 11 landing on the Moon and Viking 1 landing on Mars -- July 20, 1969 and July 20, 1976, respectively.

  7. The land-cover cascade: relationships coupling land and water

    Treesearch

    C.L. Burcher; H.M. Valett; E.F. Benfield

    2007-01-01

    We introduce the land-cover cascade (LCC) as a conceptual framework to quantify the transfer of land-cover-disturbance effects to stream biota. We hypothesize that disturbance is propagated through multivariate systems through key variables that transform a disturbance and pass a reorganized disturbance effect to the next hierarchical level where the process repeats...

  8. An econometric analysis of changes in arable land utilization using multinomial logit model in Pinggu district, Beijing, China.

    PubMed

    Xu, Yueqing; McNamara, Paul; Wu, Yanfang; Dong, Yue

    2013-10-15

    Arable land in China has been decreasing as a result of rapid population growth and economic development as well as urban expansion, especially in developed regions around cities where quality farmland quickly disappears. This paper analyzed changes in arable land utilization during 1993-2008 in the Pinggu district, Beijing, China, developed a multinomial logit (MNL) model to determine spatial driving factors influencing arable land-use change, and simulated arable land transition probabilities. Land-use maps, as well as social-economic and geographical data were used in the study. The results indicated that arable land decreased significantly between 1993 and 2008. Lost arable land shifted into orchard, forestland, settlement, and transportation land. Significant differences existed for arable land transitions among different landform areas. Slope, elevation, population density, urbanization rate, distance to settlements, and distance to roadways were strong drivers influencing arable land transition to other uses. The MNL model was proved effective for predicting transition probabilities in land use from arable land to other land-use types, thus can be used for scenario analysis to develop land-use policies and land-management measures in this metropolitan area. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Study on temporal and spatial variations of urban land use based on land change data

    NASA Astrophysics Data System (ADS)

    Jiang, Ping; Liu, Yanfang; Fan, Min; Zhang, Yang

    2009-10-01

    With the rapid development of urbanization, demands of urban land increase in succession, hence, to analyze temporal and spatial variations of urban land use becomes more and more important. In this paper, the principle of trend surface analysis and formula of urban land sprawl index ( ULSI) are expatiated at first, and then based on land change data of Jiayu county, the author fits quadratic trend surface by choosing urban land area as dependent variable and urbanization and GDP as independent variables from 1996 to 2006, draws isoline of trend surface and residual values; and then urban land sprawl indexes of towns are calculated on the basis of urban land area of 1996 and 2006 and distribution map of ULSI is plotted. After analyzing those results, we can conclude that there is consanguineous relationship between urban land area and urbanization, economic level etc.

  10. Systems Analysis of Amphibious Landing Craft: Comparisons of Revised Designs of Advanced Landing Craft.

    DTIC Science & Technology

    AALC(AMPHIBIOUS ASSAULT LANDING CRAFT), AMPHIBIOUS ASSAULT LANDING CRAFT, DEBARKING, GAMUT MODEL, GENERAL PURPOSE SIMULATION SYSTEM, GPSS(GENERAL PURPOSE SIMULATION SYSTEM), IBM 360 COMPUTERS, LANDING CRAFT MIXES.

  11. Long-lasting effects of land use history on soil fungal communities in second-growth tropical rain forests.

    PubMed

    Bachelot, Benedicte; Uriarte, María; Zimmerman, Jess K; Thompson, Jill; Leff, Jonathan W; Asiaii, Ava; Koshner, Jenny; McGuire, Krista

    2016-09-01

    Our understanding of the long-lasting effects of human land use on soil fungal communities in tropical forests is limited. Yet, over 70% of all remaining tropical forests are growing in former agricultural or logged areas. We investigated the relationship among land use history, biotic and abiotic factors, and soil fungal community composition and diversity in a second-growth tropical forest in Puerto Rico. We coupled high-throughput DNA sequencing with tree community and environmental data to determine whether land use history had an effect on soil fungal community descriptors. We also investigated the biotic and abiotic factors that underlie such differences and asked whether the relative importance of biotic (tree diversity, basal tree area, and litterfall biomass) and abiotic (soil type, pH, iron, and total carbon, water flow, and canopy openness) factors in structuring soil fungal communities differed according to land use history. We demonstrated long-lasting effects of land use history on soil fungal communities. At our research site, most of the explained variation in soil fungal composition (R 2  = 18.6%), richness (R 2  = 11.4%), and evenness (R 2  = 10%) was associated with edaphic factors. Areas previously subject to both logging and farming had a soil fungal community with lower beta diversity and greater evenness of fungal operational taxonomic units (OTUs) than areas subject to light logging. Yet, fungal richness was similar between the two areas of historical land use. Together, these results suggest that fungal communities in disturbed areas are more homogeneous and diverse than in areas subject to light logging. Edaphic factors were the most strongly correlated with soil fungal composition, especially in areas subject to light logging, where soils are more heterogenous. High functional tree diversity in areas subject to both logging and farming led to stronger correlations between biotic factors and fungal composition than in areas subject

  12. Completion of the National Land Cover Database (NLCD) 1992-2001 Land Cover Change Retrofit Product

    EPA Science Inventory

    The Multi-Resolution Land Characteristics Consortium has supported the development of two national digital land cover products: the National Land Cover Dataset (NLCD) 1992 and National Land Cover Database (NLCD) 2001. Substantial differences in imagery, legends, and methods betwe...

  13. Advances in land modeling of KIAPS based on the Noah Land Surface Model

    NASA Astrophysics Data System (ADS)

    Koo, Myung-Seo; Baek, Sunghye; Seol, Kyung-Hee; Cho, Kyoungmi

    2017-08-01

    As of 2013, the Noah Land Surface Model (LSM) version 2.7.1 was implemented in a new global model being developed at the Korea Institute of Atmospheric Prediction Systems (KIAPS). This land surface scheme is further refined in two aspects, by adding new physical processes and by updating surface input parameters. Thus, the treatment of glacier land, sea ice, and snow cover are addressed more realistically. Inconsistencies in the amount of absorbed solar flux at ground level by the land surface and radiative processes are rectified. In addition, new parameters are available by using 1-km land cover data, which had usually not been possible at a global scale. Land surface albedo/emissivity climatology is newly created using Moderate-Resolution Imaging Spectroradiometer (MODIS) satellitebased data and adjusted parameterization. These updates have been applied to the KIAPS-developed model and generally provide a positive impact on near-surface weather forecasting.

  14. Agriculture: Land Use

    EPA Pesticide Factsheets

    Land Use and agriculture. Information about land use restrictions and incentive programs.Agricultural operations sometimes involve activities regulated by laws designed to protect water supplies, threatened or endangered plants and animals, or wetlands.

  15. Theorizing Land Cover and Land Use Changes: The Case of Tropical Deforestation

    NASA Technical Reports Server (NTRS)

    Walker, Robert

    2004-01-01

    This article addresses land-cover and land-use dynamics from the perspective of regional science and economic geography. It first provides an account of the so-called spatially explicit model, which has emerged in recent years as a key empirical approach to the issue. The article uses this discussion as a springboard to evaluate the potential utility of von Thuenen to the discourse on land-cover and land-use change. After identifying shortcomings of current theoretical approaches to land use in mainly urban models, the article filters a discussion of deforestation through the lens of bid-rent and assesses its effectiveness in helping us comprehend the destruction of tropical forest in the Amazon basin. The article considers the adjustments that would have to be made to existing theory to make it more useful to the empirical issues.

  16. Spatial-temporal variation of marginal land suitable for energy plants from 1990 to 2010 in China

    PubMed Central

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Zhuang, Dafang; Huang, Yaohuan

    2014-01-01

    Energy plants are the main source of bioenergy which will play an increasingly important role in future energy supplies. With limited cultivated land resources in China, the development of energy plants may primarily rely on the marginal land. In this study, based on the land use data from 1990 to 2010(every 5 years is a period) and other auxiliary data, the distribution of marginal land suitable for energy plants was determined using multi-factors integrated assessment method. The variation of land use type and spatial distribution of marginal land suitable for energy plants of different decades were analyzed. The results indicate that the total amount of marginal land suitable for energy plants decreased from 136.501 million ha to 114.225 million ha from 1990 to 2010. The reduced land use types are primarily shrub land, sparse forest land, moderate dense grassland and sparse grassland, and large variation areas are located in Guangxi, Tibet, Heilongjiang, Xinjiang and Inner Mongolia. The results of this study will provide more effective data reference and decision making support for the long-term planning of bioenergy resources. PMID:25056520

  17. Spatial and temporal predictions of agricultural land prices using DSM techniques.

    NASA Astrophysics Data System (ADS)

    Carré, F.; Grandgirard, D.; Diafas, I.; Reuter, H. I.; Julien, V.; Lemercier, B.

    2009-04-01

    Agricultural land prices highly impacts land accessibility to farmers and by consequence the evolution of agricultural landscapes (crop changes, land conversion to urban infrastructures…) which can turn to irreversible soil degradation. The economic value of agricultural land has been studied spatially, in every one of the 374 French Agricultural Counties, and temporally- from 1995 to 2007, by using data of the SAFER Institute. To this aim, agricultural land price was considered as a digital soil property. The spatial and temporal predictions were done using Digital Soil Mapping techniques combined with tools mainly used for studying temporal financial behaviors. For making both predictions, a first classification of the Agricultural Counties was done for the 1995-2006 periods (2007 was excluded and served as the date of prediction) using a fuzzy k-means clustering. The Agricultural Counties were then aggregated according to land price at the different times. The clustering allows for characterizing the counties by their memberships to each class centroid. The memberships were used for the spatial prediction, whereas the centroids were used for the temporal prediction. For the spatial prediction, from the 374 Agricultural counties, three fourths were used for modeling and one fourth for validating. Random sampling was done by class to ensure that all classes are represented by at least one county in the modeling and validation datasets. The prediction was done for each class by testing the relationships between the memberships and the following factors: (i) soil variable (organic matter from the French BDAT database), (ii) soil covariates (land use classes from CORINE LANDCOVER, bioclimatic zones from the WorldClim Database, landform attributes and landform classes from the SRTM, major roads and hydrographic densities from EUROSTAT, average field sizes estimated by automatic classification of remote sensed images) and (iii) socio-economic factors (population

  18. National climate assessment technical report on the impacts of climate and land use and land cover change

    USGS Publications Warehouse

    Loveland, Thomas; Mahmood, Rezaul; Patel-Weynand, Toral; Karstensen, Krista; Beckendorf, Kari; Bliss, Norman; Carleton, Andrew

    2012-01-01

    This technical report responds to the recognition by the U.S. Global Change Research Program (USGCRP) and the National Climate Assessment (NCA) of the importance of understanding how land use and land cover (LULC) affects weather and climate variability and change and how that variability and change affects LULC. Current published, peer-reviewed, scientific literature and supporting data from both existing and original sources forms the basis for this report's assessment of the current state of knowledge regarding land change and climate interactions. The synthesis presented herein documents how current and future land change may alter environment processes and in turn, how those conditions may affect both land cover and land use by specifically investigating, * The primary contemporary trends in land use and land cover, * The land-use and land-cover sectors and regions which are most affected by weather and climate variability,* How land-use practices are adapting to climate change, * How land-use and land-cover patterns and conditions are affecting weather and climate, and * The key elements of an ongoing Land Resources assessment. These findings present information that can be used to better assess land change and climate interactions in order to better assess land management and adaptation strategies for future environmental change and to assist in the development of a framework for an ongoing national assessment.

  19. Land-Use Symposium Proceedings: Privately Owned Rural Lands and Land-Use Planning (7th, Albuquerque, New Mexico, October 15-16, 1975).

    ERIC Educational Resources Information Center

    Austin, Keith, Comp.; And Others

    This report includes 14 speeches by State and Local representatives relative to the control of land use and land use planning. The speeches are: (1) "The Status of Privately Owned Rural Land in New Mexico" (a statement regarding the confusing status of current statistics); (2) "Keynote Address" (emphasis on local control); (3)…

  20. A multi-model framework for simulating wildlife population response to land-use and climate change

    USGS Publications Warehouse

    McRae, B.H.; Schumaker, N.H.; McKane, R.B.; Busing, R.T.; Solomon, A.M.; Burdick, C.A.

    2008-01-01

    Reliable assessments of how human activities will affect wildlife populations are essential for making scientifically defensible resource management decisions. A principle challenge of predicting effects of proposed management, development, or conservation actions is the need to incorporate multiple biotic and abiotic factors, including land-use and climate change, that interact to affect wildlife habitat and populations through time. Here we demonstrate how models of land-use, climate change, and other dynamic factors can be integrated into a coherent framework for predicting wildlife population trends. Our framework starts with land-use and climate change models developed for a region of interest. Vegetation changes through time under alternative future scenarios are predicted using an individual-based plant community model. These predictions are combined with spatially explicit animal habitat models to map changes in the distribution and quality of wildlife habitat expected under the various scenarios. Animal population responses to habitat changes and other factors are then projected using a flexible, individual-based animal population model. As an example application, we simulated animal population trends under three future land-use scenarios and four climate change scenarios in the Cascade Range of western Oregon. We chose two birds with contrasting habitat preferences for our simulations: winter wrens (Troglodytes troglodytes), which are most abundant in mature conifer forests, and song sparrows (Melospiza melodia), which prefer more open, shrubby habitats. We used climate and land-use predictions from previously published studies, as well as previously published predictions of vegetation responses using FORCLIM, an individual-based forest dynamics simulator. Vegetation predictions were integrated with other factors in PATCH, a spatially explicit, individual-based animal population simulator. Through incorporating effects of landscape history and limited

  1. Survey of Land-Grant Colleges and Universities. Bulletin, 1930, No. 9. Volume I. [Preface - Part VI

    ERIC Educational Resources Information Center

    Office of Education, United States Department of the Interior, 1930

    1930-01-01

    At the request of the Association of Land-Grant Colleges and Universities, the Office of Education undertook a survey of the 69 land-grant colleges and universities, including 17 institutions for Negroes. For more than a half century, these institutions have grown in importance as vital factors in the agricultural, industrial, and educational…

  2. Survey of Land-Grant Colleges and Universities. Bulletin, 1930, No. 9. Volume I. [Part VII - Index

    ERIC Educational Resources Information Center

    Office of Education, United States Department of the Interior, 1930

    1930-01-01

    At the request of the Association of Land-Grant Colleges and Universities, the Office of Education undertook a survey of the 69 land-grant colleges and universities, including 17 institutions for Negroes. For more than a half century, these institutions have grown in importance as vital factors in the agricultural, industrial, and educational…

  3. The use of the Space Shuttle for land remote sensing

    NASA Technical Reports Server (NTRS)

    Thome, P. G.

    1982-01-01

    The use of the Space Shuttle for land remote sensing will grow significantly during the 1980's. The main use will be for general land cover and geological mapping purposes by worldwide users employing specialized sensors such as: high resolution film systems, synthetic aperture radars, and multispectral visible/IR electronic linear array scanners. Because these type sensors have low Space Shuttle load factors, the user's preference will be for shared flights. With this strong preference and given the present prognosis for Space Shuttle flight frequency as a function of orbit inclination, the strongest demand will be for 57 deg orbits. However, significant use will be made of lower inclination orbits. Compared with freeflying satellites, Space Shuttle mission investment requirements will be significantly lower. The use of the Space Shuttle for testing R and D land remote sensors will replace the free-flying satellites for most test programs.

  4. Water limited agriculture in Africa: Climate change sensitivity of large scale land investments

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.

    2015-12-01

    The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.

  5. Columbia (STS-50) Landing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    As the orbiter Columbia (STS-50) rolled down Runway 33 of Kennedy Space Center's (KSC) Shuttle Landing Facility, its distinctively colored drag chute deployed to slow down the spaceship. This landing marked OV-102's first end-of-mission landing at KSC and the tenth in the program, and the second shuttle landing with the drag chute. Edwards Air Force Base, CA, was the designated prime for the landing of Mission STS-50, but poor weather necessitated the switch to KSC after a one-day extension of the historic flight. STS-50 was the longest in Shuttle program historyo date, lasting 13 days, 19 hours, 30 minutes and 4 seconds. A crew of seven and the USML-1 were aboard.

  6. Remote sensing of land use/cover changes and its effect on wind erosion potential in southern Iran

    PubMed Central

    Sameni, Abdolmajid; Fallah Shamsi, Seyed Rashid; Bartholomeus, Harm

    2016-01-01

    Wind erosion is a complex process influenced by different factors. Most of these factors are stable over time, but land use/cover and land management practices are changing gradually. Therefore, this research investigates the impact of changing land use/cover and land management on wind erosion potential in southern Iran. We used remote sensing data (Landsat ETM+ and Landsat 8 imagery of 2004 and 2013) for land use/cover mapping and employed the Iran Research Institute of Forest and Rangeland (IRIFR) method to estimate changes in wind erosion potential. For an optimal mapping, the performance of different classification algorithms and input layers was tested. The amount of changes in wind erosion and land use/cover were quantified using cross-tabulation between the two years. To discriminate land use/cover related to wind erosion, the best results were obtained by combining the original spectral bands with synthetic bands and using Maximum Likelihood classification algorithm (Kappa Coefficient of 0.8 and 0.9 for Landsat ETM+ and Landsat 8, respectively). The IRIFR modelling results indicate that the wind erosion potential has increased over the last decade. The areas with a very high sediment yield potential have increased, whereas the areas with a low, medium, and high sediment yield potential decreased. The area with a very low sediment yield potential have remained constant. When comparing the change in erosion potential with land use/cover change, it is evident that soil erosion potential has increased mostly in accordance with the increase of the area of agricultural practices. The conversion of rangeland to agricultural land was a major land-use change which lead to more agricultural practices and associated soil loss. Moreover, results indicate an increase in sandification in the study area which is also a clear evidence of increasing in soil erosion. PMID:27547511

  7. Land use, population dynamics, and land-cover change in Eastern Puerto Rico

    Treesearch

    W.A. Gould; S. Martinuzzi; I.K. Páres-Ramos

    2012-01-01

    We assessed current and historic land use and land cover in the Luquillo Mountains and surrounding area in eastern Puerto Rico, including four small subwatersheds that are study watersheds of the U.S. Geological Survey’s Water, Energy, and Biogeochemical Budgets (WEBB) program. This region occupies an area of 1,616 square kilometers, about 18 percent of the total land...

  8. 76 FR 36573 - Public Land Order No. 7770; Extension of Public Land Order No. 6884; Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLAK-963000-L1410000-FQ0000; AA-5964, AA-3060, AA-5934] Public Land Order No. 7770; Extension of Public Land Order No. 6884; Alaska AGENCY: Bureau of Land Management, Interior. ACTION: Public Land Order. SUMMARY: This order extends the duration...

  9. Analysis of spatiotemporal variability of C-factor derived from remote sensing data

    NASA Astrophysics Data System (ADS)

    Pechanec, Vilém; Mráz, Alexander; Benc, Antonín; Cudlín, Pavel

    2018-01-01

    Soil erosion is an important phenomenon that contributes to the degradation of agricultural land. Even though it is a natural process, human activities can significantly increase its impact on land degradation and present serious limitation on sustainable agricultural land use. Nowadays, the risk of soil erosion is assessed either qualitatively by expert assessment or quantitatively using model-based approach. One of the primary factors affecting the soil erosion assessment is a cover-management factor, C-factor. In the Czech Republic, several models are used to assess the C-factor on a long-term basis based on data collected using traditional tabular methods. This paper presents work to investigate the estimation of both long-term and short-term cover-management factors using remote sensing data. The results demonstrate a successful development of C-factor maps for each month of 2014, growing season average, and annual average for the Czech Republic. C-factor values calculated from remote sensing data confirmed expected trend in their temporal variability for selected crops. The results presented in this paper can be used for enhancing existing methods for estimating C-factor, planning future agricultural activities, and designing technical remediations and improvement activities of land use in the Czech Republic, which are also financially supported by the European Union funds.

  10. Impact of land cover and land use change on runoff characteristics.

    PubMed

    Sajikumar, N; Remya, R S

    2015-09-15

    Change in Land Cover and Land Use (LCLU) influences the runoff characteristics of a drainage basin to a large extent, which in turn, affects the surface and groundwater availability of the area, and hence leads to further change in LCLU. This forms a vicious circle. Hence it becomes essential to assess the effect of change in LCLU on the runoff characteristics of a region in general and of small watershed levels (sub-basin levels) in particular. Such an analysis can effectively be carried out by using watershed simulation models with integrated GIS frame work. SWAT (Soil and Water Analysis Tool) model, being one of the versatile watershed simulation models, is found to be suitable for this purpose as many GIS integration modules are available for this model (e.g. ArcSWAT, MWSWAT). Watershed simulation using SWAT requires the land use and land cover data, soil data and many other features. With the availability of repository of satellite imageries, both from Indian and foreign sources, it becomes possible to use the concurrent local land use and land cover data, thereby enabling more accurate modelling of small watersheds. Such availability will also enable us to assess the effect of LCLU on runoff characteristics and their reverse impact. The current study assesses the effect of land use and land cover on the runoff characteristics of two watersheds in Kerala, India. It also assesses how the change in land use and land cover in the last few decades affected the runoff characteristics of these watersheds. It is seen that the reduction in the forest area amounts to 60% and 32% in the analysed watersheds. However, the changes in the surface runoff for these watersheds are not comparable with the changes in the forest area but are within 20%. Similarly the maximum (peak) value of runoff has increased by an amount of 15% only. The lesser (aforementioned) effect than expected might be due to the fact that forest has been converted to agricultural purpose with major

  11. GIS-based evaluation and spatial distribution characteristics of land degradation in Bijiang watershed.

    PubMed

    Zhao, Xiaoqing; Dai, Jinhua; Wang, Jianping

    2013-01-01

    Land degradation is one of the significant issues the human beings are confronted with, which has become a bottleneck of restricting the sustainable development of the regional society and economy. In order to ascertain the root causes contributed to the land degradation and characteristics of land degradation, Bijiang watershed, the most important Lead-Zinc mine area of Lanping county of Yunnan Province, was selected as the study area. One evaluation index system for land degradation that consists of 5 single factors(water-soil erosion intensity, geological disaster risk, cultivation intensity of arable land, pollution of heavy metals in soil and biodiversity deterioration) was established and 13 indicators were chosen, and the entropy method was adopted to assign weights to each single factor. By using the tools of Geographic Information System (GIS), the land degradation degree was evaluated and one spatial distribution map for land degradation was accomplished. In this study, the land of the whole watershed was divided into 4 types, including extremely-severe degradation area, severely-degraded area, moderately-degraded area and slightly-degraded area, and some solutions for ecological restoration and rehabilitation were also put forward in this study. The study results indicated that: (1) Water-soil erosion intension and pollution of heavy metals in soil have made greater contribution to the comprehensive land degradation in Bijiang watershed; (2) There is an apparent difference regarding land degradation degree in Bijiang watershed. The moderately-degraded area accounts for the most part in the region, which covers 79.66% of the whole watershed. The severely-degraded area accounts for 15.98% and the slightly-degraded regions and extremely severe degradation area accounts for 1.08% and 3.28% respectively; (3) There is an evident regularity of spatial distribution in land degradation in Bijiang watershed. The moderately-degraded areas mainly distribute in the

  12. 76 FR 23334 - Public Land Order No. 7763; Partial Revocation of Public Land Order No. 3708; Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ...] Public Land Order No. 7763; Partial Revocation of Public Land Order No. 3708; Alaska AGENCY: Bureau of Land Management, Interior. ACTION: Public Land Order. SUMMARY: This order revokes a Public Land Order... all forms of appropriation under the public land laws, including the mining laws, for the protection...

  13. Landing Techniques in Beach Volleyball

    PubMed Central

    Tilp, Markus; Rindler, Michael

    2013-01-01

    The aims of the present study were to establish a detailed and representative record of landing techniques (two-, left-, and right-footed landings) in professional beach volleyball and compare the data with those of indoor volleyball. Beach volleyball data was retrieved from videos taken at FIVB World Tour tournaments. Landing techniques were compared in the different beach and indoor volleyball skills serve, set, attack, and block with regard to sex, playing technique, and court position. Significant differences were observed between men and women in landings following block actions (χ2(2) = 18.19, p < 0.01) but not following serve, set, and attack actions. Following blocking, men landed more often on one foot than women. Further differences in landings following serve and attack with regard to playing technique and position were mainly observed in men. The comparison with landing techniques in indoor volleyball revealed overall differences both in men (χ2(2) = 161.4, p < 0.01) and women (χ2(2) = 84.91, p < 0.01). Beach volleyball players land more often on both feet than indoor volleyball players. Besides the softer surface in beach volleyball, and therefore resulting lower loads, these results might be another reason for fewer injuries and overuse conditions compared to indoor volleyball. Key Points About 1/3 of all jumping actions in beach volleyball result in a landing on one foot. Especially following block situations men land on one foot more often than women. Landing techniques are related to different techniques and positions. Landings on one foot are less common in beach volleyball than indoor volleyball. This could be a reason for fewer injuries and overuse conditions. PMID:24149150

  14. Characterizing human-environment interactions in the Galapagos Islands: A case study of land use/land cover dynamics in Isabela Island

    NASA Astrophysics Data System (ADS)

    McCleary, Amy L.

    landowners. The results reveal that agricultural abandonment is widespread throughout Isabela, and many abandoned fields are invaded by introduced plants, such as guava. Biophysical and geographic factors, such as topography and distance to roads, do not significantly explain patterns of agricultural land abandonment or associated land cover transitions at the pixel level. However, rural-urban migration, declines in the profitability of agriculture, and small labor pools appear to influence agricultural abandonment.

  15. Land cover trends dataset, 1973-2000

    USGS Publications Warehouse

    Soulard, Christopher E.; Acevedo, William; Auch, Roger F.; Sohl, Terry L.; Drummond, Mark A.; Sleeter, Benjamin M.; Sorenson, Daniel G.; Kambly, Steven; Wilson, Tamara S.; Taylor, Janis L.; Sayler, Kristi L.; Stier, Michael P.; Barnes, Christopher A.; Methven, Steven C.; Loveland, Thomas R.; Headley, Rachel; Brooks, Mark S.

    2014-01-01

    The U.S. Geological Survey Land Cover Trends Project is releasing a 1973–2000 time-series land-use/land-cover dataset for the conterminous United States. The dataset contains 5 dates of land-use/land-cover data for 2,688 sample blocks randomly selected within 84 ecological regions. The nominal dates of the land-use/land-cover maps are 1973, 1980, 1986, 1992, and 2000. The land-use/land-cover maps were classified manually from Landsat Multispectral Scanner, Thematic Mapper, and Enhanced Thematic Mapper Plus imagery using a modified Anderson Level I classification scheme. The resulting land-use/land-cover data has a 60-meter resolution and the projection is set to Albers Equal-Area Conic, North American Datum of 1983. The files are labeled using a standard file naming convention that contains the number of the ecoregion, sample block, and Landsat year. The downloadable files are organized by ecoregion, and are available in the ERDAS IMAGINETM (.img) raster file format.

  16. Urban and regional land use analysis: CARETS and Census Cities experiment package. [mapping land use climatology from MSS imagery

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The arrival of the so-called energy crisis makes the portion of this experiment dealing with land use climatology of more immediate significance than before, since in addition to helping to understand the processes of climatic change associated with urbanization, the knowledge obtained may be useful in assigning an energy balance impact factor to proposed changes in land use in and around cities. Thermal maps derived from S-192 data are to be used as a measure of the energy being radiated into space from the mosaic of different surfaces in and around the city. While presenting excellent spatial sampling potential for a metropolitan area tests site, the Skylab data permit a very poor temporal sampling opportunity, owing to the large number of factors beyond the investigator's control that determine when data will be taken over a given test site. The strategy is to augment the thermal maps derived from S-192 with a modeling technique which enables the simulation of a number of components of the surface energy balance, calculated at regular time intervals throughout the day or year. Preliminary tests on the performance of the model are still underway, using airborne MSS data from NASA aircraft flights. Results look extremely promising.

  17. Hydrogeological controls of groundwater - land surface interactions

    NASA Astrophysics Data System (ADS)

    Bresciani, Etienne; Batelaan, Okke; Goderniaux, Pascal

    2017-04-01

    Interaction of groundwater with the land surface impacts a wide range of climatic, hydrologic, ecologic and geomorphologic processes. Many site-specific studies have successfully focused on measuring and modelling groundwater-surface water interaction, but upscaling or estimation at catchment or regional scale appears to be challenging. The factors controlling the interaction at regional scale are still poorly understood. In this contribution, a new 2-D (cross-sectional) analytical groundwater flow solution is used to derive a dimensionless criterion that expresses the conditions under which the groundwater outcrops at the land surface (Bresciani et al., 2016). The criterion gives insights into the functional relationships between geology, topography, climate and the locations of groundwater discharge along river systems. This sheds light on the debate about the topographic control of groundwater flow and groundwater-surface water interaction, as effectively the topography only influences the interaction when the groundwater table reaches the land surface. The criterion provides a practical tool to predict locations of groundwater discharge if a limited number of geomorphological and hydrogeological parameters (recharge, hydraulic conductivity and depth to impervious base) are known, and conversely it can provide regional estimates of the ratio of recharge over hydraulic conductivity if locations of groundwater discharge are known. A case study with known groundwater discharge locations located in South-West Brittany, France shows the feasibility of regional estimates of the ratio of recharge over hydraulic conductivity. Bresciani, E., Goderniaux, P. and Batelaan, O., 2016, Hydrogeological controls of water table-land surface interactions. Geophysical Research Letters 43(18): 9653-9661. http://dx.doi.org/10.1002/2016GL070618

  18. Land Surface Data Assimilation

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2012-12-01

    Information about land surface water, energy and carbon conditions is of critical importance to real-world applications such as agricultural production, water resource management, flood prediction, water supply, weather and climate forecasting, and environmental preservation. While ground-based observational networks are improving, the only practical way to observe these land surface states on continental to global scales is via satellites. Remote sensing can make spatially comprehensive measurements of various components of the terrestrial system, but it cannot provide information on the entire system (e.g. evaporation), and the observations represent only an instant in time. Land surface process models may be used to predict temporal and spatial terrestrial dynamics, but these predictions are often poor, due to model initialization, parameter and forcing, and physics errors. Therefore, an attractive prospect is to combine the strengths of land surface models and observations (and minimize the weaknesses) to provide a superior terrestrial state estimate. This is the goal of land surface data assimilation. Data Assimilation combines observations into a dynamical model, using the model's equations to provide time continuity and coupling between the estimated fields. Land surface data assimilation aims to utilize both our land surface process knowledge, as embodied in a land surface model, and information that can be gained from observations. Both model predictions and observations are imperfect and we wish to use both synergistically to obtain a more accurate result. Moreover, both contain different kinds of information, that when used together, provide an accuracy level that cannot be obtained individually. Model biases can be mitigated using a complementary calibration and parameterization process. Limited point measurements are often used to calibrate the model(s) and validate the assimilation results. This presentation will provide a brief background on land

  19. Determinants of land take at the regional scale: a study concerning Sardinia (Italy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoppi, Corrado, E-mail: zoppi@unica.it; Lai, Sabrina, E-mail: sabrinalai@unica.it

    In its “Roadmap to a Resource Efficient Europe” (Communication COM(2011) 571 of 20 September 2011), the European Commission (EC) established an ambitious goal for the European Union (EU), that of achieving no land take by 2050; towards this aim, a key milestone for the year 2020 was set, by stating that European policies in the programming period 2014–2020 ought to consider both their direct and their indirect impacts on land use in the EU. Within this framework, this paper builds upon the findings of a previous paper (Zoppi and Lai, 2014), in which we estimated the magnitude of land takemore » over a short period of time (2003–2008) in Sardinia, an Italian NUTS2 region, and we assessed whether and how land take is related to a set of variables that are regarded as important determinants in the literature, such as parcel size, accessibility, and proximity to main cities and towns, to the coastline, or to protected areas. In this paper we study the land-taking process taking Sardinia as a case study, in two larger time periods, 1960–1990 and 1990–2008. We assess if, and to what extent, these factors reveal similar, or different, effects in the two periods, and try to identify consistencies concerning the determinants of land take. - Highlights: • Population density and parcel size significantly affect the magnitude of land take. • The presence of nature conservation areas hinders land taking processes. • Extensive urbanization might effectively preserve non-artificial land. • Balanced accessibility of settlements and nature conservation regional policies can effectively contrast land take. • Size of non-artificial land parcels that become artificial is negatively and significantly connected to land take.« less

  20. The role of land use changes in the distribution of shallow landslides.

    PubMed

    Persichillo, Maria Giuseppina; Bordoni, Massimiliano; Meisina, Claudia

    2017-01-01

    The role of land use dynamics on shallow landslide susceptibility remains an unresolved problem. Thus, this work aims to assess the influence of land use changes on shallow landslide susceptibility. Three shallow landslide-prone areas that are representative of peculiar land use settings in the Oltrepò Pavese (North Apennines) are analysed: the Rio Frate, Versa and Alta Val Tidone catchments. These areas were affected by widespread land abandonment and modifications in agricultural practices from 1954 to 2012 and relevant shallow landslide phenomena in 2009, 2013 and 2014. A multi-temporal land use change analysis allows us to evaluate the degree of transformation in the three investigated areas and the influence of these changes on the susceptibility to shallow landslides. The results show that the three catchments were characterised by pronounced land abandonment and important changes in agricultural practices. In particular, abandoned cultivated lands that gradually recovered through natural grasses, shrubs and woods were identified as the land use change classes that were most prone to shallow landslides. Additionally, the negative qualities of the agricultural maintenance practices increased the surface water runoff and consequently intensified erosion processes and instability phenomena. Although the land use was identified as the most important predisposing factor in all the study areas, some cases existed in which the predisposition of certain areas to shallow landslides was influenced by the combined effect of land use changes and the geological conditions, as highlighted by the high susceptibility of slopes that are characterised by adverse local geological (thick soils derived from clayey-marly bedrocks) and geomorphological (slope angle higher than 25°) conditions. Thus, the achieved results are particularly useful to understand the best land conservation strategies to be adopted to reduce instability phenomena and the consequent economic losses in

  1. A stochastic Forest Fire Model for future land cover scenarios assessment

    NASA Astrophysics Data System (ADS)

    D'Andrea, M.; Fiorucci, P.; Holmes, T. P.

    2010-10-01

    Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM) produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary - each cell either contains a tree or it is empty - and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM), addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.

  2. NASA Land Cover and Land Use Change (LCLUC): an interdisciplinary research program.

    PubMed

    Justice, Chris; Gutman, Garik; Vadrevu, Krishna Prasad

    2015-01-15

    Understanding Land Cover/Land Use Change (LCLUC) in diverse regions of the world and at varied spatial scales is one of the important challenges in global change research. In this article, we provide a brief overview of the NASA LCLUC program, its focus areas, and the importance of satellite remote sensing observations in LCLUC research including future directions. The LCLUC Program was designed to be a cross-cutting theme within NASA's Earth Science program. The program aims to develop and use remote sensing technologies to improve understanding of human interactions with the environment. Since 1997, the NASA LCLUC program has supported nearly 280 research projects on diverse topics such as forest loss and carbon, urban expansion, land abandonment, wetland loss, agricultural land use change and land use change in mountain systems. The NASA LCLUC program emphasizes studies where land-use changes are rapid or where there are significant regional or global LCLUC implications. Over a period of years, the LCLUC program has contributed to large regional science programs such as Land Biosphere-Atmosphere (LBA), the Northern Eurasia Earth Science Partnership Initiative (NEESPI), and the Monsoon Area Integrated Regional Study (MAIRS). The primary emphasis of the program will remain on using remote sensing datasets for LCLUC research. The program will continue to emphasize integration of physical and social sciences to address regional to global scale issues of LCLUC for the benefit of society. Copyright © 2014. Published by Elsevier Ltd.

  3. Planetary entry, descent, and landing technologies

    NASA Astrophysics Data System (ADS)

    Pichkhadze, K.; Vorontsov, V.; Polyakov, A.; Ivankov, A.; Taalas, P.; Pellinen, R.; Harri, A.-M.; Linkin, V.

    2003-04-01

    Martian meteorological lander (MML) is intended for landing on the Martian surface in order to monitor the atmosphere at landing point for one Martian year. MMLs shall become the basic elements of a global network of meteorological mini-landers, observing the dynamics of changes of the atmospheric parameters on the Red Planet. The MML main scientific tasks are as follows: (1) Study of vertical structure of the Martian atmosphere throughout the MML descent; (2) On-surface meteorological observations for one Martian year. One of the essential factors influencing the lander's design is its entry, descent, and landing (EDL) sequence. During Phase A of the MML development, five different options for the lander's design were carefully analyzed. All of these options ensure the accomplishment of the above-mentioned scientific tasks with high effectiveness. CONCEPT A (conventional approach): Two lander options (with a parachute system + airbag and an inflatable airbrake + airbag) were analyzed. They are similar in terms of fulfilling braking phases and completely analogous in landing by means of airbags. CONCEPT B (innovative approach): Three lander options were analyzed. The distinguishing feature is the presence of inflatable braking units (IBU) in their configurations. SELECTED OPTION (innovative approach): Incorporating a unique design approach and modern technologies, the selected option of the lander represents a combination of the options analyzed in the framework of Concept B study. Currently, the selected lander option undergoes systems testing (Phase D1). Several MMLs can be delivered to Mars in frameworks of various missions as primary or piggybacking payload: (1) USA-led "Mars Scout" (2007); (2) France-led "NetLander" (2007/2009); (3) Russia-led "Mars-Deimos-Phobos sample return" (2007); (4) Independent mission (currently under preliminary study); etc.

  4. Land and World Order.

    ERIC Educational Resources Information Center

    Mische, Patricia, Ed.; And Others

    1982-01-01

    The papers in this publication discuss the land and how what happens to the land affects us. The publication is one in a series of monographs that examine the linkages between local and global concerns and explore alternative world futures. Examples of topics discussed in the papers follow. The paper "Land and World Order" examines…

  5. Modeling the temporal dynamics of intertidal benthic infauna biomass with environmental factors: Impact assessment of land reclamation.

    PubMed

    Yang, Ye; Chui, Ting Fong May; Shen, Ping Ping; Yang, Yang; Gu, Ji Dong

    2018-03-15

    Anthropogenic activities such as land reclamation are threatening tidal marshes worldwide. This study's hypothesis is that land reclamation in a semi-enclosed bay alters the seasonal dynamics of intertidal benthic infauna, which is a key component in the tidal marsh ecosystem. Mai Po Tidal Marsh, Deep Bay, Pearl River Estuary, China was used as a case study to evaluate the hypothesis. Ecological models that simulate benthic biomass dynamics with governing environmental factors were developed, and various scenario experiments were conducted to evaluate the impact of reclamations. Environmental variables, selected from the areas of hydrodynamics, meteorology, and water quality based on correlation analysis, were used to generate Bayesian regression models for biomass prediction. The best-performing model, which considered average water age (i.e., a hydrodynamic indicator of estuarine circulation) in the previous month, salinity variation (i.e., standard deviation of salinity), and the total sunny period in the current month, captured well both seasonal and yearly trends in the benthic infauna observations from 2002 to 2008. This model was then used to simulate biomass dynamics with varying inputs of water age and salinity variation from coastal numerical models of different reclamation scenarios. The simulation results suggest that the reclamation in 2007 decreased the spatial and annual average benthic infauna biomass in the tidal marsh by 20%, which agreed with the 28% biomass decrease recorded by field survey. The range of biomass seasonal variation also decreased significantly from 2.1 to 230.5g/m 2 (without any reclamation) to 1.2 to 131.1g/m 2 (after the 2007 reclamation), which further demonstrates the substantial ecological impact of reclamation. The ecological model developed in this study could simulate seasonal biomass dynamics and evaluate the ecological impact of reclamation projects. It can therefore be applied to evaluate the ecological impact of

  6. A higher order conditional random field model for simultaneous classification of land cover and land use

    NASA Astrophysics Data System (ADS)

    Albert, Lena; Rottensteiner, Franz; Heipke, Christian

    2017-08-01

    We propose a new approach for the simultaneous classification of land cover and land use considering spatial as well as semantic context. We apply a Conditional Random Fields (CRF) consisting of a land cover and a land use layer. In the land cover layer of the CRF, the nodes represent super-pixels; in the land use layer, the nodes correspond to objects from a geospatial database. Intra-layer edges of the CRF model spatial dependencies between neighbouring image sites. All spatially overlapping sites in both layers are connected by inter-layer edges, which leads to higher order cliques modelling the semantic relation between all land cover and land use sites in the clique. A generic formulation of the higher order potential is proposed. In order to enable efficient inference in the two-layer higher order CRF, we propose an iterative inference procedure in which the two classification tasks mutually influence each other. We integrate contextual relations between land cover and land use in the classification process by using contextual features describing the complex dependencies of all nodes in a higher order clique. These features are incorporated in a discriminative classifier, which approximates the higher order potentials during the inference procedure. The approach is designed for input data based on aerial images. Experiments are carried out on two test sites to evaluate the performance of the proposed method. The experiments show that the classification results are improved compared to the results of a non-contextual classifier. For land cover classification, the result is much more homogeneous and the delineation of land cover segments is improved. For the land use classification, an improvement is mainly achieved for land use objects showing non-typical characteristics or similarities to other land use classes. Furthermore, we have shown that the size of the super-pixels has an influence on the level of detail of the classification result, but also on the

  7. Analysis of Landing-Gear Behavior

    NASA Technical Reports Server (NTRS)

    Milwitzky, Benjamin; Cook, Francis E

    1953-01-01

    This report presents a theoretical study of the behavior of the conventional type of oleo-pneumatic landing gear during the process of landing impact. The basic analysis is presented in a general form and treats the motions of the landing gear prior to and subsequent to the beginning of shock-strut deflection. The applicability of the analysis to actual landing gears has been investigated for the particular case of a vertical landing gear in the absence of drag loads by comparing calculated results with experimental drop-test data for impacts with and without tire bottoming. The calculated behavior of the landing gear was found to be in good agreement with the drop-test data.

  8. LSRA landing with tire test

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A space shuttle landing gear system is visible between the two main landing gear components on this NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA). The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program, conducted at NASA's Dryden Flight Research Center, Edwards, California, provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.

  9. Measuring Land Change in Coastal Zone around a Rapidly Urbanized Bay.

    PubMed

    Huang, Faming; Huang, Boqiang; Huang, Jinliang; Li, Shenghui

    2018-05-23

    Urban development is a major cause for eco-degradation in many coastal regions. Understanding urbanization dynamics and underlying driving factors is crucial for urban planning and management. Land-use dynamic degree indices and intensity analysis were used to measure land changes occurred in 1990, 2002, 2009, and 2017 in the coastal zone around Quanzhou bay, which is a rapidly urbanized bay in Southeast China. The comprehensive land-use dynamic degree and interval level intensity analysis both revealed that land change was accelerating across the three time intervals in a three-kilometer-wide zone along the coastal line (zone A), while land change was fastest during the second time interval 2002⁻2009 in a separate terrestrial area within coastal zone (zone B). Driven by urbanization, built-up gains and cropland losses were active for all time intervals in both zones. Mudflat losses were active except in the first time interval in zone A due to the intensive sea reclamation. The gain of mangrove was active while the loss of mangrove is dormant for all three intervals in zone A. Transition level analysis further revealed the similarities and differences in processes within patterns of land changes for both zones. The transition from cropland to built-up was systematically targeted and stationary while the transition from woodland to built-up was systematically avoiding transition in both zones. Built-up tended to target aquaculture for the second and third time intervals in zone A but avoid Aquaculture for all intervals in zone B. Land change in zone A was more significant than that in zone B during the second and third time intervals at three-level intensity. The application of intensity analysis can enhance our understanding of the patterns and processes in land changes and suitable land development plans in the Quanzhou bay area. This type of investigation is useful to provide information for developing sound land use policy to achieve urban sustainability in

  10. Land-cover change research at the U.S. Geological Survey-assessing our nation's dynamic land surface

    USGS Publications Warehouse

    Wilson, Tamara S.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed an unprecedented, 27-year assessment of land-use and land-cover change for the conterminous United States. For the period 1973 to 2000, scientists generated estimates of change in major types of land use and land cover, such as development, mining, agriculture, forest, grasslands, and wetlands. To help provide the insight that our Nation will need to make land-use decisions in coming decades, the historical trends data is now being used by the USGS to help model potential future land use/land cover under different scenarios, including climate, environmental, economic, population, public policy, and technological change.

  11. Assessment and prediction of land ecological environment quality change based on remote sensing-a case study of the Dongting lake area in China

    NASA Astrophysics Data System (ADS)

    Hu, Wenmin; Wang, Zhongcheng; Li, Chunhua; Zhao, Jin; Li, Yi

    2018-02-01

    Multi-source remote sensing data is rarely used for the comprehensive assessment of land ecologic environment quality. In this study, a digital environmental model was proposed with the inversion algorithm of land and environmental factors based on the multi-source remote sensing data, and a comprehensive index (Ecoindex) was applied to reconstruct and predict the land environment quality of the Dongting Lake Area to assess the effect of human activities on the environment. The main finding was that with the decrease of Grade I and Grade II quality had a decreasing tendency in the lake area, mostly in suburbs and wetlands. Atmospheric water vapour, land use intensity, surface temperature, vegetation coverage, and soil water content were the main driving factors. The cause of degradation was the interference of multi-factor combinations, which led to positive and negative environmental agglomeration effects. Positive agglomeration, such as increased rainfall and vegetation coverage and reduced land use intensity, could increase environmental quality, while negative agglomeration resulted in the opposite. Therefore, reasonable ecological restoration measures should be beneficial to limit the negative effects and decreasing tendency, improve the land ecological environment quality and provide references for macroscopic planning by the government.

  12. Geology and land use

    USGS Publications Warehouse

    Brown, R.D.

    1990-01-01

    The geologic limitations for building sites of some areas can be overcome, in part, by skilled engineering and expensive construction practices. But the costs can be prohibitively high, and the solutions are not always completely effective. In "earthquake country," history has shown that costs are highest and risk factors most uncertain in a few easily recognized settings: unstable hill sloped, land at the edge of rapidly eroding sea cliffs, lowlands underlain by saturated estuarine mud of ill, and areas near faults capable of producing magnitude 7 or greater earthquakes. Safety immediately after an earthquake is also a concern in these places, for extreme damage and ground distortion may impede or prevent timely access by emergency equipment. 

  13. A needs analysis method for land-use planning of illegal dumping sites: a case study in Aomori-Iwate, Japan.

    PubMed

    Ishii, Kazuei; Furuichi, Toru; Nagao, Yukari

    2013-02-01

    Land use at contaminated sites, following remediation, is often needed for regional redevelopment. However, there exist few methods of developing economically and socially feasible land-use plans based on regional needs because of the wide variety of land-use requirements. This study proposes a new needs analysis method for the conceptual land-use planning of contaminated sites and illustrates this method with a case study of an illegal dumping site for hazardous waste. In this method, planning factors consisting of the land-use attributes and related facilities are extracted from the potential needs of the residents through a preliminary questionnaire. Using the extracted attributes of land use and the related facilities, land-use cases are designed for selection-based conjoint analysis. A second questionnaire for respondents to the first one who indicated an interest in participating in the second questionnaire is conducted for the conjoint analysis to determine the utility function and marginal cost of each attribute in order to prioritize the planning factors to develop a quantitative and economically and socially feasible land-use plan. Based on the results, site-specific land-use alternatives are developed and evaluated by the utility function obtained from the conjoint analysis. In this case study of an illegal dumping site for hazardous waste, the uses preferred as part of a conceptual land-use plan following remediation of the site were (1) agricultural land and a biogas plant designed to recover energy from biomass or (2) a park with a welfare facility and an athletic field. Our needs analysis method with conjoint analysis is applicable to the development of conceptual land-use planning for similar sites following remediation, particularly when added value is considered. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. An integrated GIS-based interval-probabilistic programming model for land-use planning management under uncertainty--a case study at Suzhou, China.

    PubMed

    Lu, Shasha; Zhou, Min; Guan, Xingliang; Tao, Lizao

    2015-03-01

    A large number of mathematical models have been developed for supporting optimization of land-use allocation; however, few of them simultaneously consider land suitability (e.g., physical features and spatial information) and various uncertainties existing in many factors (e.g., land availabilities, land demands, land-use patterns, and ecological requirements). This paper incorporates geographic information system (GIS) technology into interval-probabilistic programming (IPP) for land-use planning management (IPP-LUPM). GIS is utilized to assemble data for the aggregated land-use alternatives, and IPP is developed for tackling uncertainties presented as discrete intervals and probability distribution. Based on GIS, the suitability maps of different land users are provided by the outcomes of land suitability assessment and spatial analysis. The maximum area of every type of land use obtained from the suitability maps, as well as various objectives/constraints (i.e., land supply, land demand of socioeconomic development, future development strategies, and environmental capacity), is used as input data for the optimization of land-use areas with IPP-LUPM model. The proposed model not only considers the outcomes of land suitability evaluation (i.e., topography, ground conditions, hydrology, and spatial location) but also involves economic factors, food security, and eco-environmental constraints, which can effectively reflect various interrelations among different aspects in a land-use planning management system. The case study results at Suzhou, China, demonstrate that the model can help to examine the reliability of satisfying (or risk of violating) system constraints under uncertainty. Moreover, it may identify the quantitative relationship between land suitability and system benefits. Willingness to arrange the land areas based on the condition of highly suitable land will not only reduce the potential conflicts on the environmental system but also lead to a lower

  15. The impact of land ownership, firefighting, and reserve status on fire probability in California

    NASA Astrophysics Data System (ADS)

    Starrs, Carlin Frances; Butsic, Van; Stephens, Connor; Stewart, William

    2018-03-01

    The extent of wildfires in the western United States is increasing, but how land ownership, firefighting, and reserve status influence fire probability is unclear. California serves as a unique natural experiment to estimate the impact of these factors, as ownership is split equally between federal and non-federal landowners; there is a relatively large proportion of reserved lands where extractive uses are prohibited and fire suppression is limited; and land ownership and firefighting responsibility are purposefully not always aligned. Panel Poisson regression techniques and pre-regression matching were used to model changes in annual fire probability from 1950-2015 on reserve and non-reserve lands on federal and non-federal ownerships across four vegetation types: forests, rangelands, shrublands, and forests without commercial species. Fire probability was found to have increased over time across all 32 categories. A marginal effects analysis showed that federal ownership and firefighting was associated with increased fire probability, and that the difference in fire probability on federal versus non-federal lands is increasing over time. Ownership, firefighting, and reserve status, played roughly equal roles in determining fire probability, and were found to have much greater influence than average maximum temperature (°C) during summer months (June, July, August), average annual precipitation (cm), and average annual topsoil moisture content by volume, demonstrating the critical role these factors play in western fire regimes and the importance of including them in future analysis focused on understanding and predicting wildfire in the Western United States.

  16. Terrain stiffness and ankle biomechanics during simulated half-squat parachute landing.

    PubMed

    Niu, Wenxin; Fan, Yubo

    2013-12-01

    A hard surface is potentially one of the risk factors for ankle injuries during parachute landing, but this has never been experimentally validated. This study was designed to evaluate the effects of terrain stiffness on ankle biomechanics during half-squat parachute landing (HSPL). Eight male and eight female healthy participants landed on three surfaces with standard HSPL technique. The three surfaces were cushioned mats with different thicknesses (0 mm, 4 mm, and 8 mm). The effects of terrain hardness and gender and their interaction with ground reaction forces, ankle kinematics, and electromyograms of selected lower-extremity muscles were statistically analyzed with multivariate analysis of variance. The effects of terrain stiffness and the interaction between factors on all variables were not statistically significant. The effects of gender were not statistically significant on most variables. The peak angular velocity of the ankle dorsiflexion was significantly lower in men (mean 1345 degree x s(-1)) than in women (mean 1965 degree x s(-1)). A spongy surface even eliminated the differences between men compared to women in the activity of their tibialis anterior during simulated HSPL. Terrain stiffness, in the ranges tested, did not appear to influence ankle biomechanics among individuals performing HSPL. Additional studies are required to know whether this finding is applicable to realistic parachuting.

  17. The Land-Grant Tradition

    ERIC Educational Resources Information Center

    National Association of State Universities and Land-Grant Colleges, 2008

    2008-01-01

    This document provides an overview and history of the land-grant system, as well as copies of the original and amended legislation affecting the land-grant colleges. Land-grant colleges or universities have been designated by their state legislatures or Congress to receive the benefits of the Morrill Acts of 1862, 1890 and 1994. The original…

  18. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  19. Built-up Land Expansion in Urban China

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Chen, Zhigang; Huang, Xianjin

    2017-04-01

    Since the implementation of the reform and opening-up, rapid expansion of built-up land has caused a rapid reduction of arable land. The Ministry of Land and Resources of the People' s Republic of China has strengthened the management of built-up land through the basic arable land protection and the quota allocation of built-up land to control the urban sprawl. In addition, the general land use planning and the annual land use plan have been used to further ensure the effectiveness of land use management and control. However, the trend of built-up land expansion has not been effectively restrained. The built-up land expansion increased from 31.92 × 106 hm2 in 2005 to 38.89 × 106 hm2 in 2012. The rapid expansion of built-up land has been the major feature of land use changes in China and has led to built-up land vacancy and inefficient land use. This paper used a Data Envelopment Analysis (DEA) model to analyze the changes in built-up land efficiency in 336 cities in China from 2005 to 2012 during the implementation of National General Land Use Plan (2006-2020) (NGLUP). The results showed that the built-up land input-output efficiency of most cities declined, and more than half of the cities had excessive inputs of built-up land. Even in the most developed region of China, the built-up land efficiency was relatively low. The paper argues that the NGLUP failed to control the expansion of built-up land and to promote intensive land use. The allocation of built-up land designated by the Plan was not reasonable, and economic development has greatly relied on land inputs, which need to be improved. The paper finally suggests that the built-up land indices should be appropriately directed toward economically underdeveloped regions in central and western China, and the establishment of a withdrawal mechanism for inefficient land would better promote the efficient allocation of built-up land.

  20. Do the Brazilian sardine commercial landings respond to local ocean circulation?

    PubMed

    Gouveia, Mainara B; Gherardi, Douglas F M; Lentini, Carlos A D; Dias, Daniela F; Campos, Paula C

    2017-01-01

    It has been reported that sea surface temperature (SST) anomalies, flow intensity and mesoscale ocean processes, all affect sardine production, both in eastern and western boundary current systems. Here we tested the hypothesis whether extreme high and low commercial landings of the Brazilian sardine fisheries in the South Brazil Bight (SBB) are sensitive to different oceanic conditions. An ocean model (ROMS) and an individual based model (Ichthyop) were used to assess the relationship between oceanic conditions during the spawning season and commercial landings of the Brazilian sardine one year later. Model output was compared with remote sensing and analysis data showing good consistency. Simulations indicate that mortality of eggs and larvae by low temperature prior to maximum and minimum landings are significantly higher than mortality caused by offshore advection. However, when periods of maximum and minimum sardine landings are compared with respect to these causes of mortality no significant differences were detected. Results indicate that mortality caused by prevailing oceanic conditions at early life stages alone can not be invoked to explain the observed extreme commercial landings of the Brazilian sardine. Likely influencing factors include starvation and predation interacting with the strategy of spawning "at the right place and at the right time".