Science.gov

Sample records for lander mission measurement

  1. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    NASA Technical Reports Server (NTRS)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-01-01

    , together with quantitative information on material mineralogy, chemistry, and physical properties (rock textures; soil grain size and shape distributions; degree and nature of soil induration; soil magnetic properties). The calibration targets provide radiometric and mineralogical control surfaces. The magnets allow observations of magnetic phases. Patch plates are imaged to determine adhesive and abrasive properties of soils. Coordinated mission planning is crucial for optimizing the measurement synergy among the packages included on the lander. This planning has already begun through generation of multi-sol detailed operations activities. One focus has been to develop a scenario to use the arm to dig a soil trench to a depth of tens of centimeters. The activity will be monitored through use of Pancam and RAC to ensure nominal operations and to acquire data to determine subsurface physical properties (e.g., angle of repose of trench walls). Pancam and Mini-TES observations would also provide constraints on mineralogy and texture for the walls and bottom of the trench during excavation. If desired, soils excavated at depth could be deposited on the surface and Mossbauer and APXS measurements could be acquired for these materials. Soil samples from various depths would be delivered to MECA for characterization of aqueous geochemistry and physical properties of soil grains, particularly size, shape, and hardness. These physical properties would be determined by optical and atomic force microscopy. When completed, detailed information of soil properties as a function of depth would be obtained. These various data sets would constrain our understanding of whether or not there are systematic variations in soil characteristics as a function of depth. These variations might be related, for example, to evaporative moisture losses and formation of salt deposits, thereby indicating water transport processes occurred fairly recently. Many other value-added measurement scenarios are

  2. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    NASA Technical Reports Server (NTRS)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-01-01

    , together with quantitative information on material mineralogy, chemistry, and physical properties (rock textures; soil grain size and shape distributions; degree and nature of soil induration; soil magnetic properties). The calibration targets provide radiometric and mineralogical control surfaces. The magnets allow observations of magnetic phases. Patch plates are imaged to determine adhesive and abrasive properties of soils. Coordinated mission planning is crucial for optimizing the measurement synergy among the packages included on the lander. This planning has already begun through generation of multi-sol detailed operations activities. One focus has been to develop a scenario to use the arm to dig a soil trench to a depth of tens of centimeters. The activity will be monitored through use of Pancam and RAC to ensure nominal operations and to acquire data to determine subsurface physical properties (e.g., angle of repose of trench walls). Pancam and Mini-TES observations would also provide constraints on mineralogy and texture for the walls and bottom of the trench during excavation. If desired, soils excavated at depth could be deposited on the surface and Mossbauer and APXS measurements could be acquired for these materials. Soil samples from various depths would be delivered to MECA for characterization of aqueous geochemistry and physical properties of soil grains, particularly size, shape, and hardness. These physical properties would be determined by optical and atomic force microscopy. When completed, detailed information of soil properties as a function of depth would be obtained. These various data sets would constrain our understanding of whether or not there are systematic variations in soil characteristics as a function of depth. These variations might be related, for example, to evaporative moisture losses and formation of salt deposits, thereby indicating water transport processes occurred fairly recently. Many other value-added measurement scenarios are

  3. Viking 75 project: Viking lander system primary mission performance report

    NASA Technical Reports Server (NTRS)

    Cooley, C. G.

    1977-01-01

    Viking Lander hardware performance during launch, interplanetary cruise, Mars orbit insertion, preseparation, separation through landing, and the primary landed mission, with primary emphasis on Lander engineering and science hardware operations, the as-flown mission are described with respect to Lander system performance and anomalies during the various mission phases. The extended mission and predicted Lander performance is discussed along with a summary of Viking goals, mission plans, and description of the Lander, and its subsystem definitions.

  4. Low-Radiation Europa Lander Mission Concept

    NASA Astrophysics Data System (ADS)

    Strange, N. J.; Hand, K. P.; Casani, J. R.; Eisen, H. J.; Elliott, J. O.

    2011-12-01

    The Jet Propulsion Laboratory, California Institute of Technology, conducted a mission design study focused on delivering a redundant two-lander mission to the surface of Europa. A mission focused on surface science permits a short lifetime for the prime mission (7 days) and thus enables a low total radiation dose mission to Europa. Lowering the radiation dose retires much of the risk and cost threats associated with Europa missions. Here we describe the science investigations and accompanying payload studied as part of this effort. The science payload allocation for each lander is approximately 40 kilograms. The goal of this mission is to explore Europa to investigate its habitability. Our study of life on Earth has revealed three critical components that comprise a habitable environment and our current understanding of Europa indicates that it may harbor all three. These "keystones" for habitability are liquid water, a suite of essential elements, and chemical or radiation energy to power life. Europa, with its global liquid water ocean, likely in contact with a rocky seafloor, may be habitable today and it may have been habitable for much of the history of the solar system. Europa is thus the premier target in our search for evidence of both past and contemporary habitability. The discovery and exploration of a world that hosts extant, i.e., living, life permits investigations that could revolutionize our understanding of chemistry, biology, the origin of life, and the broader context of whether or not we are alone in the Universe. This mission provides the first steps toward that goal.

  5. Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Lay, Norman; Hine, Butler; Zornetzer, Steven

    2004-01-01

    Concepts are being investigated for exploratory missions to Mars based on Bioinspired Engineering of Exploration Systems (BEES), which is a guiding principle of this effort to develop biomorphic explorers. The novelty lies in the use of a robust telecom architecture for mission data return, utilizing multiple local relays (including the lander itself as a local relay and the explorers in the dual role of a local relay) to enable ranges 10 to 1,000 km and downlink of color imagery. As illustrated in Figure 1, multiple microflyers that can be both surface or aerially launched are envisioned in shepherding, metamorphic, and imaging roles. These microflyers imbibe key bio-inspired principles in their flight control, navigation, and visual search operations. Honey-bee inspired algorithms utilizing visual cues to perform autonomous navigation operations such as terrain following will be utilized. The instrument suite will consist of a panoramic imager and polarization imager specifically optimized to detect ice and water. For microflyers, particularly at small sizes, bio-inspired solutions appear to offer better alternate solutions than conventional engineered approaches. This investigation addresses a wide range of interrelated issues, including desired scientific data, sizes, rates, and communication ranges that can be accomplished in alternative mission scenarios. The mission illustrated in Figure 1 offers the most robust telecom architecture and the longest range for exploration with two landers being available as main local relays in addition to an ephemeral aerial probe local relay. The shepherding or metamorphic plane are in their dual role as local relays and image data collection/storage nodes. Appropriate placement of the landing site for the scout lander with respect to the main mission lander can allow coverage of extremely large ranges and enable exhaustive survey of the area of interest. In particular, this mission could help with the path planning and risk

  6. Moon Express: Lander Capabilities and Initial Payload and Mission

    NASA Astrophysics Data System (ADS)

    Spudis, P.; Richards, R.; Burns, J. O.

    2013-12-01

    Moon Express Inc. is developing a common lander design to support the commercial delivery of a wide variety of possible payloads to the lunar surface. Significant recent progress has been made on lander design and configuration and a straw man mission concept has been designed to return significant new scientific and resource utilization data from the first mission. The Moon Express lander is derived from designs tested at NASA Ames Research Center over the past decade. The MX-1 version is designed to deliver 26 kg of payload to the lunar surface, with no global restrictions on landing site. The MX-2 lander can carry a payload of 400 kg and can deliver an upper stage (designed for missions that require Earth-return, such as sample retrieval) or a robotic rover. The Moon Express lander is powered by a specially designed engine capable of being operated in either monoprop or biprop mode. The concept for the first mission is a visit to a regional pyroclastic deposit on the lunar near side. We have focused on the Rima Bode dark mantle deposits (east of crater Copernicus, around 13 N, 4 W). These deposits are mature, having been exposed to solar wind for at least 3 Ga, and have high Ti content, suggesting high concentrations of implanted hydrogen. Smooth areas near the vent suggest that the ash beds are several tens of meters thick. The projected payload includes an imaging system to document the geological setting of the landing area, an APX instrument to provide major element composition of the regolith and a neutron spectrometer to measure the bulk hydrogen composition of the regolith at the landing site. Additionally, inclusion of a next generation laser retroreflector would markedly improve measurements of lunar librations and thus, constrain the dimensions of both the liquid and solid inner cores of the Moon, as well as provide tests of General Relativity. Conops are simple, with measurements of the surface composition commencing immediately upon landing. APX

  7. Jovian Tour Design for Orbiter and Lander Missions to Europa

    NASA Technical Reports Server (NTRS)

    Campagnola, Stefano; Buffington, Brent B.; Petropoulos, Anastassios E.

    2013-01-01

    Europa is one of the most interesting targets for solar system exploration, as its ocean of liquid water could harbor life. Following the recommendation of the Planetary Decadal Survey, NASA commissioned a study for a flyby mission, an orbiter mission, and a lander mission. This paper presents the moon tours for the lander and orbiter concepts. The total delta v and radiation dose would be reduced by exploiting multi-body dynamics and avoiding phasing loops in the Ganymede-to- Europa transfer. Tour 11-O3, 12-L1 and 12-L4 are presented in details and their performaces compared to other tours from previous Europa mission studies.

  8. Conductivity and Dielectric Characteristics of Planetary Surfaces Measured with Mutual Impedance Probes: From Huygens and Rosetta Lander to Netlanders and Future Missions

    NASA Astrophysics Data System (ADS)

    Hamelin, M.; Grard, R.; Laakso, H.; Ney, R.; Schmidt, W.; Simoes, F.; Trautner, R.

    2004-04-01

    Both conductivity and dielectric constant measurements can contribute to the identification of sub-surface materials. They are of great interest in the case of water and ice possibly embedded in other materials due to the high variability with frequency of the dielectric constant of water ice, the high contrast between rocks and liquid water and also the high conductivity generally observed in wet terrains. A first instrument, Permittivity, Waves and Altimetry (PWA-HASI), on the HUYGENS probe should measure the complex permittivity of Titan after landing in January 2005. It consists of a particular mode of the Mutual Impedance (MI) probe designed mainly for atmospheric conductivity measurements. The success of the measurement depends strongly on the configuration of the probe after an uncontrolled landing and in any case the data analysis will be complex as the electrodes are very close to the probe body. A second instrument, the Permittivity Probe (PP-SESAME), on the Rosetta Lander is ready to be launched towards the GuerassimoChuryumov comet in February 2004. In this case safe landing is a major requirement of the mission. The electrode array, using the lander feet and two other hosting deployable parts, is less influenced by the lander body than in the HUYGENS case. However the perturbing influence of neighbouring sensors has to be suppressed by active methods and such a system is better but again complex. In the Netlander project to the surface of Mars, actually in pause after its phase B study, the opportunity to use long GPR electric antennas deployed on the ground as permittivity sensors has been studied and will be implemented in the design with minor modifications. Our goal is to design the future generation of permittivity probes not considered as `add on's but fully optimised for their task, making simpler the analysis and providing also the possibility to calibrate the former space pioneer instruments on selected earth targets. In addition, these future

  9. Orbiter, Flyby and Lander Mission Concepts for Investigating Europa's Habitability

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.

    2012-04-01

    . Each of the three mission options would address this goal in different and complementary ways, and each has high science value of its own, independent of the others. Each mission concept traces geophysical, compositional, and/or geological investigations that are best addressed by that specific platform. Investigations best addressed through near-continuous global data sets that are obtained under relatively uniform conditions could be undertaken by the orbiter; investigations that are more focused on characterization of local regions could be accomplished by a spacecraft making multiple flybys from Jupiter orbit; and measurements that are most effective from the surface could be addressed by a lander. Although there is overlap in the science objectives of these three mission concepts, each stands alone as a viable Europa mission concept.

  10. Jovian tour design for orbiter and lander missions to Europa

    NASA Astrophysics Data System (ADS)

    Campagnola, Stefano; Buffington, Brent B.; Petropoulos, Anastassios E.

    2014-07-01

    Europa is one of the most interesting targets for solar system exploration, as its ocean of liquid water could harbor life. Following the recommendation of the Planetary Decadal Survey, NASA commissioned a study for a multiple flyby only mission, an orbiter mission, and a lander mission. This paper presents the moon tours for the lander and orbiter concepts. The total Δv and radiation dose would be reduced when compared to previous designs by exploiting multi-body dynamics and avoiding multi-revolution transfers in the Ganymede-to-Europa transfer. Tours 11-O3, 12-L1 and 12-L4 and their performances compared to other tours from previous Europa mission studies are presented in detail.

  11. The NetLander geophysical network on the surface of Mars: General mission description and technical design status

    NASA Astrophysics Data System (ADS)

    Marsal, O.; Venet, M.; Counil, J.-L.; Ferri, F.; Harri, A.-M.; Spohn, T.; Block, J.

    2002-07-01

    Simultaneous measurements collected by a network of landers spread over the surface of Mars will provide a unique leap forward in our knowledge of Mars. This is the objective of the NetLander (for Network Lander) project developed by CNES (French Space Agency), FMI (Finnish Meteorological Institute), IfP (Institute für Planetologie - Münster) in cooperation with a number of institutes in Europe and in the United States. The NetLander mission will deploy four identical landers on the surface of Mars. Each lander includes a scientific payload with instrumentation aimed at studying the interior of Mars, the atmosphere, the sub-surface, as well as the ionospheric structure and geodesy. The European NetLander mission will be launched in 2007 with the orbiter developed by CNES in the framework of the French Mars exploration program. After a cruise phase lasting several months, the NetLander probes will be separated from the orbiter and targeted to their landing sites. NetLander has successfully completed the phase A study. Its Entry, Descent and Landing System uses a front-shield, parachutes and air-bags. On the surface of Mars, NetLander will use solar arrays and batteries for its power supply. Particular attention is paid to the definition of this power supply system, which should provide enough energy throughout the mission, with a duration objective of one Martian year. Telecommunications will be possible via data relay satellites in orbit around Mars.

  12. Future Plans for MetNet Lander Mars Missions

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.; Schmidt, W.; Guerrero, H.; Vázquez, L.

    2012-04-01

    simplifies the integration into the transfer vehicle where besides the deployment mechanism only a power cable is needed to fully charge the batteries before separation. A bi-directional data link would be of advantage allowing besides a full system checkout also the last-minute adjustments of operational parameters once the most likely landing area is defined. The initial landing sites are selected in a latitude range of +/- 30 degrees and at low altitudes, thereby allowing the use of only solar panels as energy source and avoiding the political problems of including radioactive generators into the Lander. For high-latitude missions radioactive heaters will be necessary to make the systems survive the Martian winter. The MNL will be separated from the transfer vehicle either during the Mars-approaching trajectory or from the Martian orbit. The point of separation relative to the Martian orientation and the initial deployment angle define the final landing site, which additionally is influenced by atmospheric parameters during the descent phase. The behavior of the MNL's during its flight across the different layers of the Martian atmosphere is monitored by 3-axis accelerometers and 3-axis gyroscopes. This information is transmitted to the transfer vehicle via dedicated beacon antennas already during the descent phase. For the precursor missions this results in an initial velocity of 6080 m/s, a relative entry angle of -15° and a landing velocity of about 50 m/s. Later units will go also to higher latitudes and altitudes, using optimized payloads and power systems. The core payload contains the meteorological sensors for temperature, pressure and humidity measurements, a 4-lense panoramic camera and a 3-axis accelerometer for descent control. For the precursor missions this is extended to include also a 3-axis gyroscope device. Additionally a Solar Incident Sensor with a wide range of dedicated wavelength filters, an optical dust sensor, a 3-axis magnetometer and a

  13. Planetary protection implementation on future Mars lander missions

    NASA Technical Reports Server (NTRS)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  14. Planetary protection implementation on future Mars lander missions

    NASA Astrophysics Data System (ADS)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  15. Small Lunar Lander - A Near Term Precursor Mission

    NASA Astrophysics Data System (ADS)

    Soppa, Uwe; Kyr, Peter; Bolz, Joerg; Bischof, Bernd

    In preparation of the Ministerial Conference in November 2008, the European Space Agency is currently developing a roadmap leading to the capability to sustain long term planetary exploration missions and manned missions to Moon and Mars. Embedded in the cornerstone missions of today's European planetary exploration program, which are marked by the two robotic Exo-Mars and Mars Sample Return missions, ESA has defined a Small Lunar Landing Mission serving as a precursor mission allowing to validate key enabling technologies for planetary exploration, while providing a scientific platform to Lunar exploration at the same time. In reply for the call for missions fitting into the mission time frame ranging from 2014 through 2016, EADS Astrium has proposed a Lunar Lander which can be launched by a Soyuz Fregat, combined with a programmatic planning with the goal being ready to fly within the given time. In the meantime, a European lunar exploration program has gained momentum such that the goals of the proposed mission have been expanded towards the preparation of technologies required for the logistics of lunar exploration including transportation to the Moon and back, building and supporting large scale outposts up to permanently manned bases. These key functions are the capability of autonomous, soft and precision landing, the Rendez-Vous in lunar orbit, plus the provision of surface mobility for science and logistic operations. The paper will first present the concept of the proposed Lunar Landing mission, describe the technical design and programmatic planning, and put it into context of the Mars Sample Return mission. The spacecraft shall be launched into the GTO by a Soyuz Fregat from the Kourou Space Center, and travel to the Moon from there on direct, 5 days transfer trajectory. The spacecraft is a single stage lander with the capability to autonomously perform all operations from launcher separation down to the lunar surface. A lunar rover shall provide

  16. Telecommunications Relay Support of the Mars Phoenix Lander Mission

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Erickson, James K.; Gladden, Roy E.; Guinn, Joseph R.; Ilott, Peter A.; Jai, Benhan; Johnston, Martin D.; Kornfeld, Richard P.; Martin-Mur, Tomas J.; McSmith, Gaylon W.; Thomas, Reid C.; Varghese, Phil; Signori, Gina; Schmitz, Peter

    2010-01-01

    The Phoenix Lander, first of NASA's Mars Scout missions, arrived at the Red Planet on May 25, 2008. From the moment the lander separated from its interplanetary cruise stage shortly before entry, the spacecraft could no longer communicate directly with Earth, and was instead entirely dependent on UHF relay communications via an international network of orbiting Mars spacecraft, including NASA's 2001 Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft, as well as ESA's Mars Express (MEX) spacecraft. All three orbiters captured critical event telemetry and/or tracking data during Phoenix Entry, Descent and Landing. During the Phoenix surface mission, ODY and MRO provided command and telemetry services, far surpassing the original data return requirements. The availability of MEX as a backup relay asset enhanced the robustness of the surface relay plan. In addition to telecommunications services, Doppler tracking observables acquired on the UHF link yielded an accurate position for the Phoenix landing site.

  17. Mars 101: Linking Educational Content to Mission Purpose on the Phoenix Mars Lander Mission Web Site

    NASA Astrophysics Data System (ADS)

    Schmidt, L. J.; Smith, P. H.; Lombardi, D.

    2006-12-01

    The Phoenix Mars Lander, scheduled to launch in August 2007, is the first mission in NASA's Scout Program. Phoenix has been specifically designed to measure volatiles (especially water) in the northern arctic plains of Mars, where the Mars Odyssey detected evidence of ice-rich soil near the surface. A fundamental part of the mission's goal-driven education and public outreach program is the Phoenix Mars Lander 2007 web site. Content for the site was designed not only to further the casual user's understanding of the Phoenix mission and its objectives, but also to meet the needs of the more science-attentive user who desires in-depth information. To this end, the web site's "Mars 101" module includes five distinct themes, all of which are directly connected to the mission's purpose: Mars Intro includes basic facts about Mars and how the planet differs from Earth; Polar Regions discusses the history of polar exploration on Earth and the similarities between these regions on Mars and Earth; Climate covers the effects that Earth's polar regions have on climate and how these same effects may occur on Mars; Water on Mars introduces the reader to the idea of liquid water and water ice on Mars; and Biology includes a discussion of the requirements of life and life in the universe to facilitate reader understanding of what Phoenix might find. Each of the five themes is described in simple language accompanied by relevant images and graphics, with hypertext links connecting the science-attentive user to more in-depth content. By presenting the "Mars 101" content in a manner that relates each subheading to a specific component of the mission's purpose, the Phoenix web site nurtures understanding of the mission and its relevance to NASA's Mars Exploration goals by the general lay public as well as the science-attentive user.

  18. Design of A Lander For The Bepicolombo Mission

    NASA Astrophysics Data System (ADS)

    Pansart, O.; Anselmi, A.

    The BepiColombo ESA mission will deploy two orbiters (Mercury Planetary Orbiter and Mercury Magnetospheric Orbiter, the latter provided by ISAS, Japan) and the Mercury Surface Element (MSE), the first lander on the surface of Mercury. The main purpose of MSE is to investigate the physical and chemical properties of a spot on the Mercury surface. Alcatel Space Industries has been designing the MSE and its associated propulsion module in the frame of a Definition Study led by Alenia Spazio, under ESA contract. The MSE mission starts at separation from the orbital composite spacecraft. During the descent and landing phase, a high-thrust bipropellant engine decelerates the MSE, and an airbag system is deployed to ensure a safe landing after a short free-fall phase. The MSE then starts its scientific mission on the Mercury surface. The paper addresses the following topics: Mission overview - Descent and Landing phase - MSE surface mission phase - System preliminary design and performances. The presented MSE baseline was studied as part of the industrial Definition Study. The mission itself is currently going through a redefinition phase which affects the whole ESA Scientific Program, and which may lead to a revised version by the May-June 2002 time frame.

  19. Navigation Strategy for the Mars 2001 Lander Mission

    NASA Technical Reports Server (NTRS)

    Mase, Robert A.; Spencer, David A.; Smith, John C.; Braun, Robert D.

    2000-01-01

    The Mars Surveyor Program (MSP) is an ongoing series of missions designed to robotically study, map and search for signs of life on the planet Mars. The MSP 2001 project will advance the effort by sending an orbiter, a lander and a rover to the red planet in the 2001 opportunity. Each vehicle will carry a science payload that will Investigate the Martian environment on both a global and on a local scale. Although this mission will not directly search for signs of life, or cache samples to be returned to Earth, it will demonstrate certain enabling technologies that will be utilized by the future Mars Sample Return missions. One technology that is needed for the Sample Return mission is the capability to place a vehicle on the surface within several kilometers of the targeted landing site. The MSP'01 Lander will take the first major step towards this type of precision landing at Mars. Significant reduction of the landed footprint will be achieved through two technology advances. The first, and most dramatic, is hypersonic aeromaneuvering; the second is improved approach navigation. As a result, the guided entry will produce in a footprint that is only tens of kilometers, which is an order of magnitude improvement over the Pathfinder and Mars Polar Lander ballistic entries. This reduction will significantly enhance scientific return by enabling the potential selection of otherwise unreachable landing sites with unique geologic interest and public appeal. A landed footprint reduction from hundreds to tens of kilometers is also a milestone on the path towards human exploration of Mars, where the desire is to place multiple vehicles within several hundred meters of the planned landing site. Hypersonic aeromaneuvering is an extension of the atmospheric flight goals of the previous landed missions, Pathfinder and Mars Polar Lander (MPL), that utilizes aerodynamic lift and an autonomous guidance algorithm while in the upper atmosphere. The onboard guidance algorithm will

  20. Micro-Mars: a low cost mission to planet Mars with scientific orbiter and lander applications

    NASA Astrophysics Data System (ADS)

    Kerstein, L.; Bischof, B.; Renken, H.; Hoffmann, H.; Apel, U.

    2003-11-01

    The proposed Micro-Mars Mission can contribute substantially to the international Mars exploration programme within the framework of a future low cost mission. The concept consists of an orbiter integrating a total scientific payload of 30 kg including a lightweight lander of 15 kg. The spacecraft will be launched as piggyback payload by an Ariane 5 ASAP with a total launch mass of 360 kg. It will use a bipropellant propulsion system with 210 kg of fuel and four thrusters of 22 N, and four of 10 N for orbit and attitude control. Further attitude actuation shall be performed by three reaction wheels and a gyropackage, a star sensor and a sun sensor for attitude sensing. Communication will be performed in S- and X-Band to earth and in UHF between orbiter and lander. From a highly elliptical orbit with a periapsis below 200 km, four instruments will perform high-resolution remote sensing observations and the payload consists of a camera system, a magnetometer, a dosimeter, and an ultrastable osciallator for radio science. The light-weight micro lander is a challenging technological experiment by itself. It is equiped with a suite of scientific instruments which will supplement the orbiter measurements and concentrate on the environment (temperature cycle, atmosphere, magnetosphere and radiation).

  1. Navigation Challenges of the Mars Phoenix Lander Mission

    NASA Technical Reports Server (NTRS)

    Portock, Brian M.; Kruizinga, Gerhard; Bonfiglio, Eugene; Raofi, Behzad; Ryne, Mark

    2008-01-01

    The Mars Phoenix Lander mission was launched on August 4th, 2007. To land safely at the desired landing location on the Mars surface, the spacecraft trajectory had to be controlled to a set of stringent atmospheric entry and landing conditions. The landing location needed to be controlled to an elliptical area with dimensions of 100km by 20km. The two corresponding critical components of the atmospheric entry conditions are the entry flight path angle (target: -13.0 deg +/-0.21 deg) and the entry time (within +/-30 seconds). The purpose of this paper is to describe the navigation strategies used to overcome the challenges posed during spacecraft operations, which included an attitude control thruster calibration campaign, a trajectory control strategy, and a trajectory reconstruction strategy. Overcoming the navigation challenges resulted in final Mars atmospheric entry conditions just 0.007 deg off in entry flight path angle and 14.9 sec early in entry time. These entry dispersions in addition to the entry, descent, and landing trajectory dispersion through the atmosphere, lead to a final landing location just 7 km away from the desired landing target.

  2. Impact and Crashworthiness Characteristics of Venera Type Landers for Future Venus Missions

    NASA Technical Reports Server (NTRS)

    Schroeder, Kevin; Bayandor, Javid; Samareh, Jamshid

    2016-01-01

    In this paper an in-depth investigation of the structural design of the Venera 9-14 landers is explored. A complete reverse engineering of the Venera lander was required. The lander was broken down into its fundamental components and analyzed. This provided in-sights into the hidden features of the design. A trade study was performed to find the sensitivity of the lander's overall mass to the variation of several key parameters. For the lander's legs, the location, length, configuration, and number are all parameterized. The size of the impact ring, the radius of the drag plate, and other design features are also parameterized, and all of these features were correlated to the change of mass of the lander. A multi-fidelity design tool used for further investigation of the parameterized lander was developed. As a design was passed down from one level to the next, the fidelity, complexity, accuracy, and run time of the model increased. The low-fidelity model was a highly nonlinear analytical model developed to rapidly predict the mass of each design. The medium and high fidelity models utilized an explicit finite element framework to investigate the performance of various landers upon impact with the surface under a range of landing conditions. This methodology allowed for a large variety of designs to be investigated by the analytical model, which identified designs with the optimum structural mass to payload ratio. As promising designs emerged, investigations in the following higher fidelity models were focused on establishing their reliability and crashworthiness. The developed design tool efficiently modelled and tested the best concepts for any scenario based on critical Venusian mission requirements and constraints. Through this program, the strengths and weaknesses inherent in the Venera-Type landers were thoroughly investigated. Key features identified for the design of robust landers will be used as foundations for the development of the next generation of

  3. Viking lander imaging investigation during extended and continuation automatic missions. Volume 2: Lander 2 picture catalog of experiment data record

    NASA Technical Reports Server (NTRS)

    Jones, K. L.; Henshaw, M.; Mcmenomy, C.; Robles, A.; Scribner, P. C.; Wall, S. D.; Wilson, J. W.

    1981-01-01

    Images returned by the two Viking landers during the extended and continuation automatic phases of the Viking Mission are presented. Information describing the conditions under which the images were acquired is included with skyline drawings showing the images positioned in the field of view of the cameras. Subsets of the images are listed in a variety of sequences to aid in locating images of interest. The format and organization of the digital magnetic tape storage of the images are described. A brief description of the mission and the camera system is also included.

  4. Viking lander imaging investigation during extended and continuation automatic missions. Volume 1: Lander 1 picture catalog of experiment data record

    NASA Technical Reports Server (NTRS)

    Jones, K. L.; Henshaw, M.; Mcmenomy, C.; Robles, A.; Scribner, P. C.; Wall, S. D.; Wilson, J. W.

    1981-01-01

    All images returned by Viking Lander 1 during the extended and continuation automatic phases of the Viking Mission are presented. Listings of supplemental information which describe the conditions under which the images were acquired are included together with skyline drawings which show where the images are positioned in the field of view of the cameras. Subsets of the images are listed in a variety of sequences to aid in locating images of interest. The format and organization of the digital magnetic tape storage of the images are described as well as the mission and the camera system.

  5. Preface: The Chang'e-3 lander and rover mission to the Moon

    NASA Astrophysics Data System (ADS)

    Ip, Wing-Huen; Yan, Jun; Li, Chun-Lai; Ouyang, Zi-Yuan

    2014-12-01

    The Chang'e-3 (CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.

  6. UHF Relay Antenna Measurements on Phoenix Mars Lander Mockup

    NASA Technical Reports Server (NTRS)

    Ilott, Peter; Harrel, Jefferson; Arnold, Bradford; Bliznyuk, Natalia; Nielsen, Rick; Dawson, David; McGee, Jodi

    2006-01-01

    The Phoenix Lander, a NASA Discovery mission which lands on Mars in the spring of 2008, will rely entirely on UHF relay links between it and Mars orbiting assets, (Odyssey and Mars Reconnaissance Orbiter (MRO)), to communicate with the Earth. As with the Mars Exploration Rover (MER) relay system, non directional antennas will be used to provide roughly emispherical coverage of the Martian sky. Phoenix lander deck object pattern interference and obscuration are significant, and needed to be quantified to answer system level design and operations questions. This paper describes the measurement campaign carried out at the SPAWAR (Space and Naval Warfare Research) Systems Center San Diego (SSC-SD) hemispherical antenna range, using a Phoenix deck mockup and engineering model antennas. One goal of the measurements was to evaluate two analysis tools, the time domain CST, and the moment method WIPL-D software packages. These would subsequently be used to provide pattern analysis for configurations that would be difficult and expensive to model and test on Earth.

  7. Surface Lander Missions to Mars: Support via Analysis of the NASA Ames Mars General Circulation Model

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Bridger, Alison F.C.; Haberle, Robert M.

    1997-01-01

    We have characterized the near-surface martian wind environment as calculated with a set of numerical simulations carried out with the NASA Ames Mars General Circulation Model (Mars GCM). These wind environments are intended to offer future spacecraft missions to the martian surface a data base from which to choose those locations which meet the mission's criteria for minimal near surface winds to enable a successful landing. We also became involved in the development and testing of the wind sensor which is currently onboard the Mars-bound Pathfinder lander. We began this effort with a comparison of Mars GCM produced winds with those measured by the Viking landers during their descent through the martian atmosphere and their surface wind measurements during the 3+ martian year lifetime of the mission. Unexpected technical difficulties in implementing the sophisticated Planetary Boundary Layer (PBL) scheme of Haberle et al. (1993) within the Mars GCM precluded our carrying out this investigation with the desired improvement to the model's treatment of the PBL. Thus, our results from this effort are not as conclusive as we had anticipated. As it turns out, similar difficulties have been experienced by other Mars modelling groups in attempting to implement very similar PBL routines into their GCMs (Mars General Circulation Model Intercomparison Workshop, held at Oxford University, United Kingdom, July 22-24, 1996; organized by J. Murphy, J. Hollingsworth, M. Joshi). These problems, which arise due to the nature of the time stepping in each of the models, are near to being resolved at the present. The model discussions which follow herein are based upon results using the existing, less sophisticated PBL routine. We fully anticipate implementing the tools we have developed in the present effort to investigate GCM results with the new PBL scheme implemented, and thereafter producing the technical document detailing results from the analysis tools developed during this

  8. Radon fluxes measured with the MANOP bottom lander

    NASA Astrophysics Data System (ADS)

    Berelson, W. M.; Buchholtz, M. R.; Hammond, D. E.; Santschi, P. H.

    1987-07-01

    At five Pacific Ocean sites, radon fluxes were determined from water samples collected by the MANOP Lander, from measurements of 222Rn and 226Ra concentrations in Lander-collected box core sediments, and from measurements of excess radon in the water column. At MANOP sites H and M, fluxes (all in atoms m -2 s -1) determined with Lander water samples (2200 and 1540 ± 480) agree within the measurement uncertainty with water column standing crop measurements (2220 ± 450, 2040 ± 470). At MANOP site C, the diffusive flux calculated from measurements of 226Ra in box core sediments (550 ± 20), the integrated deficiency of 222Rn in the sediments (720 ± 90), and the water column standing crop (500 ± 160) are in agreement, but all are about twice as large as the single Lander water measurement of the radon flux (330). At MANOP site S radon fluxes from measurements of Lander water (3000 ± 260) are in agreement with the predicted diffusive flux from site S sediments (2880), and both fluxes are close to the lower end of the range of water column standing crop measurements (3000-5170). In San Clemente Basin, California, the Lander water flux measurements at four different sites vary by a factor of 3 due to variability in the sediment radium distribution, but the average (1030 ± 190) is close to the water column standing crop value (780 ± 230). Because there is excellent agreement between the fluxes measured with Lander water samples and the predicted diffusive fluxes in most cases, diffusion must be the primary process controlling benthic exchange of radon at the sites studied. The agreement between the Lander water flux estimates and the water column standing crop estimates indicates that the MANOP Lander functions as an accurate benthic flux chamber in water depths ranging from 1900 to 4900 m. In San Clemente Basin, surficial sediments are enriched in manganese and radium, due to manganese cycling near the sediment-water interface. Molecular diffusion of radon from

  9. Source and event selection for radio-planetary frame-tie measurements using the Phobos Landers

    NASA Technical Reports Server (NTRS)

    Linfield, R.; Ulvestad, J.

    1988-01-01

    The Soviet Phobos Lander mission will place two spacecraft on the Martian moon Phobos in 1989. Measurements of the range from Earth-based stations to the landers will allow an accurate determination of the ephemerides of Phobos and Mars. Delta Very Long Base Interferometry (VLBI) between the landers and compact radio sources nearby on the sky will be used to obtain precise estimates of the angular offset between the radio and planetary reference frames. The accuracy of this frame-tie estimate is expected to be in the vicinity of 10 mrad, depending on how well several error sources can be controlled (calibrated or reduced). Many candidate radio sources for VLBI measurements were identified, but additional work is necessary to select those sources which have characteristics appropriate to the present application. Strategies for performing the source selection are described.

  10. Learning to Live on a Mars Day: Fatigue Countermeasures during the Phoenix Mars Lander Mission

    PubMed Central

    Barger, Laura K.; Sullivan, Jason P.; Vincent, Andrea S.; Fiedler, Edna R.; McKenna, Laurence M.; Flynn-Evans, Erin E.; Gilliland, Kirby; Sipes, Walter E.; Smith, Peter H.; Brainard, George C.; Lockley, Steven W.

    2012-01-01

    Study Objectives: To interact with the robotic Phoenix Mars Lander (PML) spacecraft, mission personnel were required to work on a Mars day (24.65 h) for 78 days. This alien schedule presents a challenge to Earth-bound circadian physiology and a potential risk to workplace performance and safety. We evaluated the acceptability, feasibility, and effectiveness of a fatigue management program to facilitate synchronization with the Mars day and alleviate circadian misalignment, sleep loss, and fatigue. Design: Operational field study. Setting: PML Science Operations Center. Participants: Scientific and technical personnel supporting PML mission. Interventions: Sleep and fatigue education was offered to all support personnel. A subset (n = 19) were offered a short-wavelength (blue) light panel to aid alertness and mitigate/reduce circadian desynchrony. They were assessed using a daily sleep/work diary, continuous wrist actigraphy, and regular performance tests. Subjects also completed 48-h urine collections biweekly for assessment of the circadian 6-sulphatoxymelatonin rhythm. Measurements and Results: Most participants (87%) exhibited a circadian period consistent with adaptation to a Mars day. When synchronized, main sleep duration was 5.98 ± 0.94 h, but fell to 4.91 ± 1.22 h when misaligned (P < 0.001). Self-reported levels of fatigue and sleepiness also significantly increased when work was scheduled at an inappropriate circadian phase (P < 0.001). Prolonged wakefulness (≥ 21 h) was associated with a decline in performance and alertness (P < 0.03 and P < 0.0001, respectively). Conclusions: The ability of the participants to adapt successfully to the Mars day suggests that future missions should utilize a similar circadian rhythm and fatigue management program to reduce the risk of sleepiness-related errors that jeopardize personnel safety and health during critical missions. Citation: Barger LK; Sullivan JP; Vincent AS; Fiedler ER; McKenna LM; Flynn-Evans EE

  11. System-level Analysis of Food Moisture Content Requirements for the Mars Dual Lander Transit Mission

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Perchonok, Michele H.

    2004-01-01

    In order to ensure that adequate water resources are available during a mission, any net water loss from the habitat must be balanced with an equivalent amount of required makeup water. Makeup water may come from a variety of sources, including water in shipped tanks, water stored in prepackaged food, product water from fuel cells, and in-situ water resources. This paper specifically addresses the issue of storing required makeup water in prepackaged food versus storing the water in shipped tanks for the Mars Dual Lander Transit Mission, one of the Advanced Life Support Reference Missions. In this paper, water mass balances have been performed for the Dual Lander Transit Mission, to determine the necessary requirement of makeup water under nominal operation (i.e. no consideration of contingency needs), on a daily basis. Contingency issues are briefly discussed with respect to impacts on makeup water storage (shipped tanks versus storage in prepackaged food). The Dual Lander Transit Mission was selected for study because it has been considered by the Johnson Space Center Exploration Office in enough detail to define a reasonable set of scenario options for nominal system operation and contingencies. This study also illustrates the concept that there are multiple, reasonable life support system scenarios for any one particular mission. Thus, the need for a particular commodity can depend upon many variables in the system. In this study, we examine the need for makeup water as it depends upon the configuration of the rest of the life support system.

  12. Micro-Mars: A low-cost mission to planet Mars with scientific orbiter and lander applications

    NASA Astrophysics Data System (ADS)

    Kerstein, L.; Bischof, B.; Renken, H.; Hoffmann, H.; Apel, U.

    2006-10-01

    The proposed Micro-Mars mission can contribute substantially to the international Mars exploration programme within the framework of a future low-cost mission. The concept consists of an orbiter integrating a total scientific payload of 30 kg including a light-weight lander of 15 kg. The spacecraft will be launched as piggyback payload by an Ariane 5 ASAP with a total launch mass of 360 kg. It will use a bipropellant propulsion system with 210 kg of fuel and four thrusters of 22 N, and four of 10 N for orbit and attitude control. Further attitude actuation shall be performed by three reaction wheels and a gyropackage, a star sensor and a sun sensor for attitude sensing. Communication will be performed in S- and X-Band to Earth and in UHF between orbiter and lander. From a highly elliptical orbit with a periapsis below 200 km, four instruments will perform high-resolution remote sensing observations and the payload consists of a camera system, a magnetometer, a dosimeter, and an ultrastable oscillator for radio science. The light-weight micro lander is a challenging technological experiment by itself. It is equipped with a suite of scientific instruments which will supplement the orbiter measurements and concentrate on the environment (temperature cycle, atmosphere, magnetosphere, and radiation).

  13. A lander mission to probe subglacial water on Saturn's moon Enceladus for life

    NASA Astrophysics Data System (ADS)

    Konstantinidis, Konstantinos; Flores Martinez, Claudio L.; Dachwald, Bernd; Ohndorf, Andreas; Dykta, Paul; Bowitz, Pascal; Rudolph, Martin; Digel, Ilya; Kowalski, Julia; Voigt, Konstantin; Förstner, Roger

    2015-01-01

    The plumes discovered by the Cassini mission emanating from the south pole of Saturn's moon Enceladus and the unique chemistry found in them have fueled speculations that Enceladus may harbor life. The presumed aquiferous fractures from which the plumes emanate would make a prime target in the search for extraterrestrial life and would be more easily accessible than the moon's subglacial ocean. A lander mission that is equipped with a subsurface maneuverable ice melting probe will be most suitable to assess the existence of life on Enceladus. A lander would have to land at a safe distance away from a plume source and melt its way to the inner wall of the fracture to analyze the plume subsurface liquids before potential biosignatures are degraded or destroyed by exposure to the vacuum of space. A possible approach for the in situ detection of biosignatures in such samples can be based on the hypothesis of universal evolutionary convergence, meaning that the independent and repeated emergence of life and certain adaptive traits is wide-spread throughout the cosmos. We thus present a hypothetical evolutionary trajectory leading towards the emergence of methanogenic chemoautotrophic microorganisms as the baseline for putative biological complexity on Enceladus. To detect their presence, several instruments are proposed that may be taken aboard a future subglacial melting probe. The "Enceladus Explorer" (EnEx) project funded by the German Space Administration (DLR), aims to develop a terrestrial navigation system for a subglacial research probe and eventually test it under realistic conditions in Antarctica using the EnEx-IceMole, a novel maneuverable subsurface ice melting probe for clean sampling and in situ analysis of ice and subglacial liquids. As part of the EnEx project, an initial concept study is foreseen for a lander mission to Enceladus to deploy the IceMole near one of the active water plumes on the moon's South-Polar Terrain, where it will search for

  14. Instrument study of the Lunar Dust eXplorer (LDX) for a lunar lander mission

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Srama, Ralf; Henkel, Hartmut; Sternovsky, Zoltan; Kempf, Sascha; Wu, Yiyong; Grün, Eberhard

    2014-11-01

    One of the highest-priority issues for a future human or robotic lunar exploration is the lunar dust. This problem should be studied in depth in order to develop an environment model for a future lunar exploration. A future ESA lunar lander mission requires the measurement of dust transport phenomena above the lunar surface. Here, we describe an instrument design concept to measure slow and fast moving charged lunar dust which is based on the principle of charge induction. LDX has a low mass and measures the speed and trajectory of individual dust particles with sizes below one micrometer. Furthermore, LDX has an impact ionization target to monitor the interplanetary dust background. The sensor consists of three planes of segmented grid electrodes and each electrode is connected to an individual charge sensitive amplifier. Numerical signals were computed using the Coulomb software package. The LDX sensitive area is approximately 400 cm2. Our simulations reveal trajectory uncertainties of better than 2° with an absolute position accuracy of better than 2 mm.

  15. Mobile Asteroid Surface Scout (MASCOT) - An asteroid lander package for the Hayabusa-2 mission

    NASA Astrophysics Data System (ADS)

    Lange, Caroline; Richter, Lutz; Dietze, Claudia; Ho, Tra-Mi; Lange, Michael; Sproewitz, Tom; Wagenbach, Susanne; Kroemer, Olaf; Witte, Lars; Braukhane, Andy

    2010-05-01

    The Hayabusa-2 mission is currently being studied by JAXA/JSPEC as a sample return mission to the C-type near-Earth asteroid 1999JU3. Hayabusa-2, with launch planned for 2014, would be the immediate successor to the currently flying Hayabusa mission. Originally in the context of the proposed ESA Cosmic Vision M-class mission Marco Polo, but then following an invitation by JAXA/JSPEC, the Institute of Space Systems of the German Aerospace Center (DLR) led a proposal for a separate lander package 'Mascot' (Mobile Asteroid Surface Scout) to be carried on the mission. A feasibility study was subsequently carried out that, upon consultation with the planetary science community, assessed different concepts for the lander that converged to a package with 3 kg of P/L, for a total mass of 10-15 kg. Presently, 'Mascot' enters the preliminary design phase while an Announcement of Opportunity for its payload complement is being prepared. The presentation will outline the current baseline design, with special consideration of how the highly demanding constraints that are being imposed on the system due to the general mission scenario, the asteroid environment and the tight budgetary limitations are being fulfilled in such a rather modest design, still offering an excellent science potential.

  16. Viking Lander imaging investigation: Picture catalog of primary mission experiment data record

    NASA Technical Reports Server (NTRS)

    Tucker, R. B.

    1978-01-01

    All the images returned by the two Viking Landers during the primary phase of the Viking Mission are presented. Listings of supplemental information which described the conditions under which the images were acquired are included together with skyline drawings which show where the images are positioned in the field of view of the cameras. Subsets of the images are listed in a variety of sequences to aid in locating images of interest. The format and organization of the digital magnetic tape storage of the images are described. The mission and the camera system are briefly described.

  17. Feasibility of a Dragon-Derived Mars Lander for Scientific and Human-Precursor Missions

    NASA Technical Reports Server (NTRS)

    Karcz, John S.; Davis, Sanford S.; Allen, Gary A.; Glass, Brian J.; Gonzales, Andrew; Heldmann, Jennifer Lynne; Lemke, Lawrence G.; McKay, Chris; Stoker, Carol R.; Wooster, Paul Douglass; Zarchi, Kerry A.

    2013-01-01

    A minimally-modified SpaceX Dragon capsule launched on a Falcon Heavy rocket presents the possibility of a new low-cost, high-capacity Mars lander for robotic missions. We have been evaluating such a "Red Dragon" platform as an option for the Icebreaker Discovery Program mission concept. Dragon is currently in service ferrying cargo to and from the International Space Station, and a crew transport version is in development. The upcoming version, unlike other Earth-return vehicles, exhibits most of the capabilities necessary to land on Mars. In particular, it has a set of high-thrust, throttleable, storable bi-propellant "SuperDraco" engines integrated directly into the capsule that are intended for launch abort and powered landings on Earth. These thrusters provide the possibility of a parachute-free, fully-propulsive deceleration at Mars from supersonic speeds to the surface, a descent approach which would also scale well to larger future human landers. We will discuss the motivations for exploring a Red Dragon lander, the current results of our analysis of its feasibility and capabilities, and the implications of the platform for the Icebreaker mission concept. In particular, we will examine entry, descent, and landing (EDL) in detail. We will also describe the modifications to Dragon necessary for interplanetary cruise, EDL, and operations on the Martian surface. Our analysis to date indicates that a Red Dragon lander is feasible and that it would be capable of delivering more than 1000 kg of payload to sites at elevations three kilometers below the Mars Orbiter Laser Altimeter (MOLA) reference, which includes sites throughout most of the northern plains and Hellas.

  18. Beagle 2: a proposed exobiology lander for ESA's 2003 Mars Express mission.

    PubMed

    Sims, M R; Pillinger, C T; Wright, I P; Dowson, J; Whitehead, S; Wells, A; Spragg, J E; Fraser, G; Richter, L; Hamacher, H; Johnstone, A; Meredith, N P; de la Nougerede, C; Hancock, B; Turner, R; Peskett, S; Brack, A; Hobbs, J; Newns, M; Senior, A; Humphries, M; Keller, H U; Thomas, N; Lingard, J S; Ng, T C

    1999-01-01

    The aim of the proposed Beagle 2 small lander for ESA's 2003 Mars Express mission is to search for organic material on and below the surface of Mars and to study the inorganic chemistry and mineralogy of the landing site. The lander will have a total mass of 60kg including entry, descent, and landing system. Experiments will be deployed on the surface using a robotic arm. It will use a mechanical mole and grinder to obtain samples from below the surface, under rocks, and inside rocks. Sample analysis by a mass spectrometer will include isotopic analysis. An optical microscope, an X-ray spectrometer and a Mossbauer spectrometer will conduct in-situ rock studies.

  19. Beagle 2: a proposed exobiology lander for ESA's 2003 Mars express mission

    NASA Astrophysics Data System (ADS)

    Sims, M. R.; Pillinger, C. T.; Wright, I. P.; Dowson, J.; Whitehead, S.; Wells, A.; Spragg, J. E.; Fraser, G.; Richter, L.; Hamacher, H.; Johnstone, A.; Meredith, N. P.; de La Nougerede, C.; Hancock, B.; Turner, R.; Peskett, S.; Brack, A.; Hobbs, J.; Newns, M.; Senior, A.; Humphries, M.; Keller, H. U.; Thomas, N.; Lingard, J. S.; Underwood, J. C.; Sale, N. M.; Neal, M. F.; Klingelhofer, G.; Ng, T. C.

    1999-01-01

    The aim of the proposed Beagle 2 small lander for ESA's 2003 Mars Express mission is to search for organic material on and below the surface of Mars and to study the inorganic chemistry and mineralogy of the landing site. The lander will have a total mass of 60kg including entry, descent, and landing system. Experiments will be deployed on the surface using a robotic arm. It will use a mechanical mole and grinder to obtain samples from below the surface, under rocks, and inside rocks. Sample analysis by a mass spectrometer will include isotopic analysis. An optical microscope, an X- ray spectrometer and a Mossbauer spectrometer will conduct in-situ rock studies.

  20. Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission

    NASA Technical Reports Server (NTRS)

    Cupples, Michael

    2007-01-01

    Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.

  1. A simulation of the Four-way lunar Lander-Orbiter tracking mode for the Chang'E-5 mission

    NASA Astrophysics Data System (ADS)

    Li, Fei; Ye, Mao; Yan, Jianguo; Hao, Weifeng; Barriot, Jean-Pierre

    2016-06-01

    The Chang'E-5 mission is the third phase of the Chinese Lunar Exploration Program and will collect and return lunar samples. After sampling, the Orbiter and the ascent vehicle will rendezvous and dock, and both spacecraft will require high precision orbit navigation. In this paper, we present a novel tracking mode-Four-way lunar Lander-Orbiter tracking that possibly can be employed during the Chang'E-5 mission. The mathematical formulas for the Four-way lunar Lander-Orbiter tracking mode are given and implemented in our newly-designed lunar spacecraft orbit determination and gravity field recovery software, the LUnar Gravity REcovery and Analysis Software/System (LUGREAS). The simulated observables permit analysis of the potential contribution Four-way lunar Lander-Orbiter tracking could make to precision orbit determination for the Orbiter. Our results show that the Four-way lunar Lander-Orbiter Range Rate has better geometric constraint on the orbit, and is more sensitive than the traditional two-way range rate that only tracks data between the Earth station and lunar Orbiter. After combining the Four-way lunar Lander-Orbiter Range Rate data with the traditional two-way range rate data and considering the Lander position error and lunar gravity field error, the accuracy of precision orbit determination for the Orbiter in the simulation was improved significantly, with the biggest improvement being one order of magnitude, and the Lander position could be constrained to sub-meter level. This new tracking mode could provide a reference for the Chang'E-5 mission and have enormous potential for the positioning of future lunar farside Lander due to its relay characteristic.

  2. LAPIS - LAnder Package Impacting a Seismometer - A Proposal for a Semi-Hard Lander Mission to the Moon

    NASA Astrophysics Data System (ADS)

    Lange, C.

    2009-04-01

    With an increased interest on the moon within the last years, at least with several missions in orbit or under development (SELENE/Japan, Chang'e/China, Chandrayaan/India and others), there is a strong demand within the German science community to participate in this initiative, building-up a national competence regarding lunar exploration. For this purpose, a Phase-0 analysis for a small lunar semi-hard landing scenario has been performed at DLR to foster future lunar exploration missions. This study's scope was to work out a more detailed insight into the design drivers and challenges and their impact on mass and cost budgets for such a mission. LAPIS has been dedicated to the investigation of the seismic activities of the moon, additionally to some other geophysical in-situ measurements at the lunar surface. In fact, the current status of the knowledge and understanding of lunar seismic activities leads to a range of open questions which have not been answered so far by the various Apollo missions in the past and could now possibly be answered by the studied LAPIS mission. Among these are the properties of the lunar core, the origin of deep and shallow moonquakes and the occurrence of micro-meteoroids. Therefore, as proposed first for LAPIS on the LEO mission, a payload of a short period micro-seismometer, based on European and American predevelopments, has been suggested. A staged mission scenario will be described, using a 2-module spacecraft with a propulsion part and a landing part, the so called LAPIS-PROP and LAPIS-LAND. In this scenario, the LAPIS-PROP module will do the cruise, until the spacecraft reaches an altitude of 100 m above the moon, after which the landing module will separate and continue to the actual semi-hard landing, which is based on deformable structures. Further technical details, e.g. considering the subsystem technologies, have been addressed within the performed study. These especially critical and uniquely challenging issues, such

  3. Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions

    NASA Technical Reports Server (NTRS)

    Albee, Arden; Battel, Steven; Brace, Richard; Burdick, Garry; Casani, John; Lavell, Jeffrey; Leising, Charles; MacPherson, Duncan; Burr, Peter; Dipprey, Duane

    2000-01-01

    NASA's Mars Surveyor Program (MSP) began in 1994 with plans to send spacecraft to Mars every 26 months. Mars Global Surveyor (MGS), a global mapping mission, was launched in 1996 and is currently orbiting Mars. Mars Surveyor '98 consisted of Mars Climate Orbiter (MCO) and Mars Polar Lander (MPL). Lockheed Martin Astronautics (LMA) was the prime contractor for Mars Surveyor '98. The Jet Propulsion Laboratory (JPL), California Institute of Technology, manages the Mars Surveyor Program for NASA's Office of Space Science. MPL was developed under very tight funding constraints. The combined development cost of MPL and MCO, including the cost of the two launch vehicles, was approximately the same as the development cost of the Mars Pathfinder mission, including the cost of its single launch vehicle. The MPL project accepted the challenge to develop effective implementation methodologies consistent with programmatic requirements.

  4. NEXT Lunar Lander Mission - Overview and Challenges of the Lunar Rover Design

    NASA Astrophysics Data System (ADS)

    Allouis, Elie

    Looking ahead at the 2015-2018 timeframe, the European Space Agency (ESA) has recently started the investigation of the Next Exploration Science and Technology missions (NEXT) to demonstrate a number of key technologies for future programmes such as the Mars Sample Return (MSR). This paper provides the first insights into the mobile rover concept investigated as part of the NEXT Lunar Lander Study. Operating at the South Pole of the Moon, the rover will face a very challenging environment. Subjected to 200-hours long cold lunar nights at -200C for an initial mission duration of 1 year, and a total traverse of 20km, the design and operation of the rover requires careful attention. Its design is initially based on the knowledge developed for the ESA ExoMars mission, but the major differences in the environment and operation of the rover, means that most of the systems need a thorough assessment of their capabilities under Lunar condition and, where required, the development of new solutions. From the locomotion system designed to cope with uncertain lunar terrain, the thermal system dealing with gradients of hundreds of degrees, to the navigation through dark shadows, this paper illustrates some of the challenges future missions will face when targeting location such as the south pole on the Moon, but it will also provide details of the enabling technologies leading to the Mars Sample Return Mission and beyond.

  5. Lunar Lander project: A study on future manned missions to the Moon

    NASA Technical Reports Server (NTRS)

    1966-01-01

    This project is based on designing a small lunar probe which will conduct research relating to future manned missions to the moon. The basic design calls for two experiments to be run. The first of these experiments is an enclosed environment section which will be exposed to solar radiation while on the moon. The purpose of this experiment is to determine the effect of radiation on an enclosed environment and how different shielding materials can be used to moderate this effect. The eight compartments will have the following covering materials: glass, polarized glass, plexiglass, polyurethane, and boron impregnated versions of the polyurethane and plexiglass. The enclosed atmosphere will be sampled by a mass spectrometer to determine elemental breakdown of its primary constituents. This is needed so that an accurate atmospheric processing system can be designed for a manned mission. The second experiment is a seismic study of the moon. A small penetrating probe will be shot into the lunar surface and data will be collected onboard the lander by an electronic seismograph which will store the data in the data storage unit for retrieval and transmission once every twenty-three hours. The project is designed to last ten years with possible extended life for an additional nine years at which point power requirements prevent proper functioning of the various systems.

  6. Interest and design of magnetic properties measurements on planetary and asteroid landers

    NASA Astrophysics Data System (ADS)

    Rochette, P.; Gattacceca, J.; Eisenlohr, P.

    2003-04-01

    Intrinsic magnetic properties, like susceptibility X, provide a precise determination of the iron phases with a penetration depth not available with other chemical and mineralogical sensing tools, thus allowing to unravel space weathering effects. Systematic studies of meteorites (see PS10.01 abstract of Rochette et al.) demonstrate that X measurements on asteroid surface could be a very efficient way to assign a meteorite class to a given asteroid. Another application could be the characterisation of the higly magnetic martian regolith. On the other hand natural remanent magnetization (NRM) measurements are crucial to interpret magnetic field anomalies such as those found on Mars and Moon, and likely to be found on Mercury. NRM gives also access to past magnetic fields and extinct planetary dynamo. Rugged, light and low consumption systems already exist for such measurements on earth and we will present a scheme to integrate both magnetic susceptibility (using a LC oscillator) and NRM (using a 3 axis fluxgate) on a lander to offer a versatile instrument package for every mission involving a lander. For the LC oscillator calibration of the geometric factor will be presented on a set of pebble of variable uneven shape and size. The fluxgate can be used both for making local magnetic anomaly maps, thus investigating subsurface structures, and for evaluating NRM of individual boulders.

  7. Mobile Payload Element (MPE): Concept study for a sample fetching rover for the ESA Lunar Lander Mission

    NASA Astrophysics Data System (ADS)

    Haarmann, R.; Jaumann, R.; Claasen, F.; Apfelbeck, M.; Klinkner, S.; Richter, L.; Schwendner, J.; Wolf, M.; Hofmann, P.

    2012-12-01

    In late 2010, the DLR Space Administration invited the German industry to submit a proposal for a study about a Mobile Payload Element (MPE), which could be a German national contribution to the ESA Lunar Lander Mission. Several spots in the south polar region of the moon come into consideration as landing site for this mission. All possible spots provide sustained periods of solar illumination, interrupted by darkness periods of several 10 h. The MPE is outlined to be a small, autonomous, innovative vehicle in the 10 kg class for scouting and sampling the environment in the vicinity of the lunar landing site. The novel capabilities of the MPE will be to acquire samples of lunar regolith from surface, subsurface as well as shadowed locations, define their geological context and bring them back to the lander. This will enable access to samples that are not contaminated by the lander descent propulsion system plumes to increase the chances of detecting any indigenous lunar volatiles contained within the samples. Kayser-Threde, as prime industrial contractor for Phase 0/A, has assembled for this study a team of German partners with relevant industrial and institutional competence in space robotics and lunar science. The primary scientific objective of the MPE is to acquire clearly documented samples and to bring them to the lander for analysis with the onboard Lunar Dust Analysis Package (L-DAP) and Lunar Volatile Resources Analysis Package (L-VRAP). Due to the unstable nature of volatiles, which are of particular scientific interest, the MPE design needs to provide a safe storage and transportation of the samples to the lander. The proposed MPE rover concept has a four-wheeled chassis configuration with active suspension, being a compromise between innovation and mass efficiency. The suspension chosen allows a compact stowage of the MPE on the lander as well as precise alignment of the solar generators and instruments. Since therefore no further complex mechanics are

  8. Science Program of Lunar Landers of "Luna-Glob" and "Luna-Resource" Missions

    NASA Astrophysics Data System (ADS)

    Mitrofanov, I. G.; Zelenyi, L. M.; Tret'yakov, V. I.; Dolgopolov, V. P.

    2011-03-01

    Program of scientific investigations is presented for two Russian polar landers: Luna Resource and Luna Glob. This program has to address two tasks: studies of composition of lunar polar regolith and studies of lunar exosphere at both poles.

  9. Europa Habitability and Extant Life Exploration with Combined Flyby-Lander-Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Blanc, M.; Jones, G.; Prieto-Ballesteros, O.; Mimoun, D.; Masters, A.; Kempf, S.; Iess, L.; Martins, Z.; Lorenz, R.; Lasue, J.; Andre, N.; Bills, B. G.; Choblet, G.; Collins, G.; Cremonese, G.; Garnier, P.; Hand, K.; Hartogh, P.; Khurana, K. K.; Stephan, K.; Tosi, F.; Vance, S. D.; van Hoolst, T.; Westall, F.; Wolwerk, M.; Cooper, J. F.; Sittler, E. C.; Brinckerhoff, W.; Hurford, T.; Europa Initiative

    2016-10-01

    The optimal configuration for investigation of habitability and any extant life at Europa would be a combined constellation of flyby, lander, and orbiter spacecraft. The Europa Initiative is designing a small orbiter as part of this constellation.

  10. Characterisation of sites of astrobiology interest for Mars landers and sample return missions

    NASA Astrophysics Data System (ADS)

    Wills, D. E. S.; Monaghan, E. P.; Foing, B. H.

    2009-04-01

    Introduction: The aim of this work is to nominate and assess candidate landing sites for missions of astrobiological interest to Mars. We report in particular on science and technical criteria and our data analysis for sites suitable for an ExoMars-class mission. This includes information from previous missions (such as Mars Express, MGS, Odyssey, MRO and MER rovers) on mineralogical composition, geomorphology, evidence from past water history from imaging and spectroscopic data, and existence of in-situ prior information from landers and rovers (concerning evidences for volatiles, organics and habitability conditions). Science Goals and Objectives: Firstly, we look for morphological evidence of hydrological activity, including sedimentary deposits (deltas, valley networks), areas of ancient hydrothermal activity (spring deposits). Secondly, we look for mineralogical evidence of hydrological activity, such as phyllosilicates (formed by alteration due to water, indicate prolonged exposure to standing water), hydrated sulphates (formed by alteration due to water, not necessarily standing water), other water-containing minerals. Thirdly, we prioritise Noachian terrain (during this epoch, ~3.5 billion years ago, the Martian climate may have been warmer, and liquid water may have been stable on the surface). Finally, we look for sites where the potential for preservation of biosignatures is high (exposed bedrock, subsurface regions, spring sinters). Engineering Constraints: We consider the engineering constraints placed on the ExoMars misson. These include latitude (sufficient insolation for power), landing altitude (sufficient atmosphere for EDL), horizontal winds, shear, and wind turbulence (airbag free fall), radar altimeter reflectivity (for descent and landing control), obstacles and rock distribution (airbag landing), slopes (airbag landing), rover egress, and rover locomotion. The Priority Sites: Out of a short-list of ten proposed locations, we select two top

  11. The method of landing sites selection for Russian lunar lander missions

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Igor; Djachkova, Maya; Litvak, Maxim; Sanin, Anton

    2016-04-01

    Russian space agency is planning to launch two lunar landers in the upcoming years - Luna-Glob (2018) and Luna-Resurs (2021). Instruments installed on board the landers are designed to study volatiles and water ice, lunar exosphere, dust particles and regolith composition. As primary scientific interest is concentrated in the south polar region, the landing sites for both landers will be selected there. Since rugged terrain, conditions of solar illumination at high altitudes and necessity of direct radio communication with the Earth, it is essential to select an optimal landing site for each lander. We present the method of landing sites selection, which is based on geographical information systems (GIS) technologies to perform analysis, based on the criteria of surface suitability for landing, such as slopes, illumination conditions and Earth visibility. In addition, the estimations of hydrogen concentration in regolith based on LEND/LRO data were used to evaluate landing site candidates on possible water ice presence. The method gave us 6 canditates to land. Four of them are located in the impact craters: Simpelius D, Simpelius E, Boguslawsky C, Boussingault, and the other two are located to the north of Schomberger crater and to the north-west of Boguslawsky C crater and associated with probable basin-related materials. The main parameters of these sites will be presented with possible prioritization based on both technical requirements and scientific interest.

  12. NASA's Robotic Lander Takes Flight

    NASA Video Gallery

    On Monday, June 13, the robotic lander mission team was poised and ready when the lander prototype in the adjacent building lifted itself off the ground and rose unrestrained higher and higher. App...

  13. A Lunar L2-Farside Exploration and Science Mission Concept with the ORion Multi-Purpose Crew Vehicle and a Teleoperated Lander/Rover

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.; Kring, David; Norris, Scott; Hopkins, Josh; Lazio, Joseph; Kasper, Justin

    2012-01-01

    A novel concept is presented in this paper for a human mission to the lunar L2 (Lagrange) point that would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations. In an L2 halo orbit above the lunar farside, the astronauts would travel 15% farther from Earth than did the Apollo astronauts and spend almost three times longer in deep space. Such missions would validate the Orion MPCV's life support systems, would demonstrate the high-speed re-entry capability needed for return from deep space, and would measure astronauts' radiation dose from cosmic rays and solar flares to verify that Orion would provide sufficient protection, as it is designed to do. On this proposed mission, the astronauts would teleoperate landers and rovers on the unexplored lunar farside, which would obtain samples from the geologically interesting farside and deploy a low radio frequency telescope. Sampling the South Pole-Aitkin basin (one of the oldest impact basins in the solar system) is a key science objective of the 2011 Planetary Science Decadal Survey. Observations of the Universe's first stars/galaxies at low radio frequencies are a priority of the 2010 Astronomy & Astrophysics Decadal Survey. Such telerobotic oversight would also demonstrate capability for human and robotic cooperation on future, more complex deep space missions.

  14. Viking Lander reliability program

    NASA Technical Reports Server (NTRS)

    Pilny, M. J.

    1978-01-01

    The Viking Lander reliability program is reviewed with attention given to the development of the reliability program requirements, reliability program management, documents evaluation, failure modes evaluation, production variation control, failure reporting and correction, and the parts program. Lander hardware failures which have occurred during the mission are listed.

  15. Evaluation of Viking Lander barometric pressure sensor. [performance related to Viking mission environments

    NASA Technical Reports Server (NTRS)

    Mitchell, M.

    1977-01-01

    Variable reluctance type pressure sensors were evaluated to determine their performance characteristics related to Viking Mission environment levels. Static calibrations were performed throughout the evaluation over the full range of the sensors using two point contact manometer standards. From the beginning of the evaluation to the end of the evaluation, the zero shift in the two sensors was within 0.5 percent, and the sensitivity shift was 0.05 percent. The maximum thermal zero coefficient exhibited by the sensors was 0.032 percent over the temperature range of -28.89 C to 71.11 C. The evaluation results indicated that the sensors are capable of making high accuracy pressure measurements while being exposed to the conditions mentioned.

  16. Reconciling the Differences between the Measurements of CO2 Isotopes by the Phoenix and MSL Landers

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Mahaffy, P. R.; Atreya, S.; Pavlov, A. A.; Trainer, M.; Webster, C. R.; Wong, M.

    2014-01-01

    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars. There have been several different measurements by landers and Earth based systems performed in recent years that have not been in agreement. In particular, measurements of the isotopic composition of martian atmospheric CO2 by the Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) are in stark disagreement. This work attempts to use measurements of mass 45 and mass 46 of martian atmospheric CO2 by the SAM and TEGA instruments to search for agreement as a first step towards reaching a consensus measurement that might be supported by data from both instruments.

  17. Geomorphic and geologic settings of the Phoenix Lander mission landing site

    NASA Astrophysics Data System (ADS)

    Heet, T. L.; Arvidson, R. E.; Cull, S. C.; Mellon, M. T.; Seelos, K. D.

    2009-11-01

    The Phoenix Lander touched down on the northern distal flank of the shield volcano Alba Patera in a ˜150 km wide valley underlain by the Scandia region unit. The geomorphology and geology of the landing site is dominated by the ˜0.6 Ga, 11.5 km wide, bowl-shaped impact crater, Heimdal, and its areally extensive ejecta deposits. The Lander is located ˜20 km to the west of the crater and is sitting on a plains surface underlain by partially eroded Heimdal ejecta deposits. Heimdal was produced by a hypervelocity impact into fine-grained, ice-rich material and is inferred to have produced high velocity winds and a ground-hugging ejecta emplacement mode that destroyed or buried preexisting surfaces and rock fields out to ˜10 crater radii. Patterned ground is ubiquitous, with complex polygon patterns and rock rubble piles located on older plains (˜3.3 Ga) to the west of the ejecta deposits. Crater size frequency distributions are complex and represent equilibria between crater production and destruction processes (e.g., aeolian infill, cryoturbation, relaxation of icy substrate). Rock abundances increase near craters for the older plains and rocks with their dark shadows explain the reason for the few percent lower albedo for these plains as opposed to the Heimdal ejecta deposits. Many rocks at the landing site have been reworked by cryoturbation and moved to polygon troughs. The evidence for cryoturbation and the lack of aeolian features imply that the soils sampled by Phoenix are locally derived and mixed with a subordinate amount of windblown dust.

  18. Lunar lander conceptual design

    NASA Technical Reports Server (NTRS)

    Lee, Joo Ahn; Carini, John; Choi, Andrew; Dillman, Robert; Griffin, Sean J.; Hanneman, Susan; Mamplata, Caesar; Stanton, Edward

    1989-01-01

    A conceptual design is presented of a Lunar Lander, which can be the primary vehicle to transport the equipment necessary to establish a surface lunar base, the crew that will man the base, and the raw materials which the Lunar Station will process. A Lunar Lander will be needed to operate in the regime between the lunar surface and low lunar orbit (LLO), up to 200 km. This lander is intended for the establishment and operation of a manned surface base on the moon and for the support of the Lunar Space Station. The lander will be able to fulfill the requirements of 3 basic missions: A mission dedicated to delivering maximum payload for setting up the initial lunar base; Multiple missions between LLO and lunar surface dedicated to crew rotation; and Multiple missions dedicated to cargo shipments within the regime of lunar surface and LLO. A complete set of structural specifications is given.

  19. Three Dimensional Rover/Lander/Orbiter Mission-Planning (3D-ROMPS) System: A Modern Approach to Mission Planning

    NASA Technical Reports Server (NTRS)

    Scharfe, Nathan D.

    2005-01-01

    NASA's current mission planning system is based on point design, two-dimensional display, spread sheets, and report technology. This technology does not enable engineers to analyze the results of parametric studies of missions plans. This technology will not support the increased observational complexity and data volume of missions like Cassini, Mars Reconnaissance Orbiter (MRO), Mars Science Laboratory (MSL), and Mars Sample Return (MSR). The goal of the 3D-ROMPS task has been to establish a set of operational mission planning and analysis tools in the Image Processing Laboratory (IPL) Mission Support Area (MSA) that will respond to engineering requirements for planning future Solar System Exploration (SSE) missions using a three-dimensional display.

  20. Performance of the mission critical Electrical Support System (ESS) which handled communications and data transfer between the Rosetta Orbiter and its Lander Philae while en route to and at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, Susan; Rusznyak, Peter; Balaz, Jan; Schmidt, Walter; Fantinati, Cinzia; Kuechemann, Oliver; Geurts, Koen

    2016-08-01

    The Electrical Support System (ESS), which was designed and built in Ireland, handled commands transmitted from the Rosetta spacecraft to the Command and Data Management System (CDMS) aboard its Lander Philae during a ten year Cruise Phase to comet 67P/Churyumov-Gerasimenko as well as at the comet itself. The busy Cruise Phase included three Earth flybys, a fly-by of Mars and visits to two asteroids, Steins and Lutetia. Data originating at the individual Lander experiments measured while en-route to and at the comet were also handled by the ESS which received and reformatted them prior to their transmission by Rosetta to Earth. Since the success of the Lander depended on the acquisition of scientific data, the ESS was defined by the European Space Agency to be Mission Critical Hardware. The electronic design of the ESS and its method of handling communications between the spacecraft and Philae are herein presented. The nominal performance of the ESS during the Cruise Phase and in the course of subsequent surface campaigns is described and the successful fulfilment of the brief of this subsystem to retrieve unique scientific data measured by the instruments of the Philae Lander demonstrated.

  1. Viking lander spacecraft battery

    NASA Technical Reports Server (NTRS)

    Newell, D. R.

    1976-01-01

    The Viking Lander was the first spacecraft to fly a sterilized nickel-cadmium battery on a mission to explore the surface of a planet. The significant results of the battery development program from its inception through the design, manufacture, and test of the flight batteries which were flown on the two Lander spacecraft are documented. The flight performance during the early phase of the mission is also presented.

  2. Envisaged plasma and magnetic field measurements onboard the Rosetta Lander Philae on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Apathy, Istvan; Hilchenbach, Martin; Remizov, Anatoly; Auster, Hans-Ulrich; Berghofer, Gerhard

    Comets are the thinnest cheaters in our solar system. While the comet nucleus extents only up to a few kilometers, the coma can span several hundred million kilometers. ESA's corner stone mission Rosetta will orbit comet 67P/Churyumov-Gerasimenko and deliver the cometary lander Philae onto the comet surface in Novemebr 2014. The instrument ROMAP (Rosetta Lander Magnetometer and Plasma Monitor) onboard Philae consists of a fluxgate magnetometer and a plasma ion and electron sensor. ROMAP will measure for the first time the magnetic field, electron and ion distribution on a cometary surface.
The envisaged science will focuss on the space plasma and magnetic field in the vicinity and on the comet nucleus. We will present the instrument parameters and observation timeline. We will discuss the potential science envisaged from November 2014 onward such as the potential remanent magnetisation of the comet nucleus and what it would mean for the nucleus formation process as well as the envisaged unique solar wind plasma observations on a cometary surface including the transition from day to night side.

  3. Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Tropical rainfall affects the lives and economics of a majority of the Earth's population. Tropical rain systems, such as hurricanes, typhoons, and monsoons, are crucial to sustaining the livelihoods of those living in the tropics. Excess rainfall can cause floods and great property and crop damage, whereas too little rainfall can cause drought and crop failure. The latent heat release during the process of precipitation is a major source of energy that drives the atmospheric circulation. This latent heat can intensify weather systems, affecting weather thousands of kilometers away, thus making tropical rainfall an important indicator of atmospheric circulation and short-term climate change. Tropical forests and the underlying soils are major sources of many of the atmosphere's trace constituents. Together, the forests and the atmosphere act as a water-energy regulating system. Most of the rainfall is returned to the atmosphere through evaporation and transpiration, and the atmospheric trace constituents take part in the recycling process. Hence, the hydrological cycle provides a direct link between tropical rainfall and the global cycles of carbon, nitrogen, and sulfur, all important trace materials for the Earth's system. Because rainfall is such an important component in the interactions between the ocean, atmosphere, land, and the biosphere, accurate measurements of rainfall are crucial to understanding the workings of the Earth-atmosphere system. The large spatial and temporal variability of rainfall systems, however, poses a major challenge to estimating global rainfall. So far, there has been a lack of rain gauge networks, especially over the oceans, which points to satellite measurement as the only means by which global observation of rainfall can be made. The Tropical Rainfall Measuring Mission (TRMM), jointly sponsored by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of

  4. Viking Lander Model

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Viking Project found a place in history when it became the first mission to land a spacecraft successfully on the surface of another planet and return both imaging and non-imaging data over an extended time period. Two identical spacecraft, each consisting of a lander and an orbiter, were built. Each orbiter-lander pair flew together and entered Mars orbit; the landers then separated and descended to the planet's surface.

    The Viking 1 Lander touched down on the western slope of Chryse Planitia (the Plains of Gold) on July 20, 1976, while the Viking 2 lander settled down at Utopia Planitia on September 3, 1976.

    Besides taking photographs and collecting other science data on the Martian surface, the two landers conducted three biology experiments designed to look for possible signs of life. These experiments discovered unexpected and enigmatic chemical activity in the Martian soil, but provided no clear evidence for the presence of living microorganisms in soil near the landing sites. According to scientists, Mars is self-sterilizing. They believe the combination of solar ultraviolet radiation that saturates the surface, the extreme dryness of the soil and the oxidizing nature of the soil chemistry prevent the formation of living organisms in the Martian soil.

    The Viking mission was planned to continue for 90 days after landing. Each orbiter and lander operated far beyond its design lifetime. Viking Orbiter 1 functioned until July 25, 1978, while Viking Orbiter 2 continued for four years and 1,489 orbits of Mars, concluding its mission August 7, 1980. Because of the variations in available sunlight, both landers were powered by radioisotope thermoelectric generators -- devices that create electricity from heat given off by the natural decay of plutonium. That power source allowed long-term science investigations that otherwise would not have been possible. The last data from Viking Lander 2 arrived at Earth on April 11, 1980. Viking Lander

  5. Deployment of a lander on the binary asteroid (175706) 1996 FG3, potential target of the european MarcoPolo-R sample return mission

    NASA Astrophysics Data System (ADS)

    Tardivel, Simon; Michel, Patrick; Scheeres, Daniel J.

    2013-08-01

    The idea of deploying a lander on the secondary body of the binary primitive asteroid (175706) 1996 FG3 is investigated. 1996 FG3 is the backup target of the European sample return space mission MarcoPolo-R under assessment study at the European Space Agency in the framework of the M3 Medium-Class mission competition. The launch will take place in 2022-2024, depending on its selection at the end of 2013. A lander is indicated as an optional payload, depending on mass availability on the spacecraft. Obviously, the possible complexity of a lander deployment is also an important parameter to take into account. Here we demonstrate that, considering worst case scenarios and low requirements on the spacecraft GNC and deployment mechanism, the operations are easy to implement and safe for the main spacecraft. The concept of operations is to deploy a light lander from the L2 Lagrange point of the binary system, on a ballistic trajectory that will impact the secondary asteroid. The fundamental principles of this strategy are briefly presented and a detailed model of 1996 FG3 is considered, to which the strategy is applied. We show that the deployment is successful in 99.94% of cases.

  6. Measuring the permittivity of the surface of the Churyumov-Gerasimenko nucleus: the PP-SESAME experiment on board the Philae/ROSETTA lander

    NASA Astrophysics Data System (ADS)

    Lethuillier, A.; Le Gall, A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, G.

    2014-04-01

    The Permittivity Probe (PP-SESAME) on-board the Philae Lander of the ROSETTA mission will determine the complex permittivity of the surface of the Churyumov-Gerasimenko nucleus and monitor its variations with time. Doing so, it will provide unique insight into the composition and activity of the comet. In this paper, we present the method we have developed to analyze PP-SESAME active measurements. This method will be tested in May 2014 with a replica of the instrument in the giant ice cave system of Dachstein, in Austria.

  7. Altair Lunar Lander Consumables Management

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Button, Robert; Linne, Diane

    2009-01-01

    The Altair lunar lander is scheduled to return humans to the moon in the year 2020. Keeping the crew of 4 and the vehicle functioning at their best while minimizing lander mass requires careful budgeting and management of consumables and cooperation with other constellation elements. Consumables discussed here include fluids, gasses, and energy. This paper presents the lander's missions and constraints as they relate to consumables and the design solutions that have been employed in recent Altair conceptual designs.

  8. Testing general relativity with Landers on the Martian satellite Phobos

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Borderies, N. J.; Campbell, J. K.; Dunne, J. A.; Ellis, J.

    1989-01-01

    A planned experiment to obtain range and Doppler data with the Phobos 2 Lander on the surface of the Martian satellite Phobos is described. With the successful insertion on January 29, 1989 of Phobos 2 into Mars orbit, it is anticipated that the Lander will be placed on the surface of Phobos in April 1989. Depending on the longevity of the Lander, range and Doppler data for a period of from one to several years are expected. Because these data are of value in performing solar-system tests of general relativity, the current accuracy of the relevant relativity tests using Deep Space Network data from the Mariner-9 orbiter of Mars in 1971 and from the Viking Landers in 1976-1982 is reviewed. The expected improvement from data anticipated during the Phobos 2 Lander Mission is also discussed; most important will be an improved sensitivity to any time variation in the gravitational 'constant' as measured in atomic units.

  9. Instrument study of the Lunar Dust eXplorer (LDX) for a lunar lander mission II: Laboratory model calibration

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Strack, Heiko; Bugiel, Sebastian; Wu, Yiyong; Srama, Ralf

    2015-10-01

    A dust trajectory detector placed on the lunar surface is exposed to extend people's knowledge on the dust environment above the lunar surface. The new design of Lunar Dust eXplorer (LDX) is well suited for lunar or asteroid landers with a broad range of particle charges (0.1-10 fC), speeds (few m s-1 to few km s-1) and sizes (0.1-10 μ m). The calibration of dust trajectory detector is important for the detector development. We do present experimental results to characterize the accuracy of the newly developed LDX laboratory model. Micron sized iron particles were accelerated to speed between 0.5 and 20 km s-1 with primary charges larger than 1 fC. The achieved accuracies of the detector are ± 5 % and ± 7 % for particle charge and speed, respectively. Dust trajectories can be determined with measurement accuracy better than ± 2°. A dust sensor of this type is suited for the exploration of the surface of small bodies without an atmosphere like the Earth's moon or asteroids in future, and the minisatellites are also suitable carriers for the study of interplanetary dust and manned debris on low Earth orbits.

  10. Robotic Lunar Landers for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2012-01-01

    The MSFC/APL Robotic Lunar Landing Project (RLLDP) team has developed lander concepts encompassing a range of mission types and payloads for science, exploration, and technology demonstration missions: (1) Developed experience and expertise in lander systems, (2) incorporated lessons learned from previous efforts to improve the fidelity of mission concepts, analysis tools, and test beds Mature small and medium lander designs concepts have been developed: (1) Share largely a common design architecture. (2) Flexible for a large number of mission and payload options. High risk development areas have been successfully addressed Landers could be selected for a mission with much of the concept formulation phase work already complete

  11. Planning and implementation of the on-comet operations of the instrument SD2 onboard the lander Philae of Rosetta mission

    NASA Astrophysics Data System (ADS)

    Di Lizia, P.; Bernelli-Zazzera, F.; Ercoli-Finzi, A.; Mottola, S.; Fantinati, C.; Remetean, E.; Dolives, B.

    2016-08-01

    The lander Philae of the Rosetta mission landed on the surface of the comet 67 P/Churyumov-Gerasimenko on November 12, 2014. Among the specific subsystems and instruments carried on Philae, the sampling, drilling and distribution (SD2) subsystem had the role of providing in-situ operations devoted to soil drilling, sample collection, and their distribution to three scientific instruments. After landing, a first sequence of scientific activities was carried out, relying mainly on the energy stored in the lander primary battery. Due to the limited duration and the communication delay, these activities had to be carried out automatically, with a limited possibility of developing and uploading commands from the ground. Philae's landing was not nominal and SD2 was operated in unexpected conditions: the lander was not anchored to the soil and leant on the comet surface shakily. Nevertheless, one sampling procedure was attempted. This paper provides an overview of SD2 operation planning and on-comet operations, and analyses SD2 achievements during the first science sequence of Philae's on-comet operations.

  12. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    NASA Astrophysics Data System (ADS)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space

  13. Carbon and Oxygen Stable Isotope Measurements of Martian Atmospheric CO2 by the Phoenix Lander

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.; Boynton, W. V.; Hoffman, J. H.; Ming, D. W.; Hamara, D.

    2010-01-01

    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars [1]. The isotopic composition of the martian atmosphere has been measured using a number of different methods (Table 1), however a precise value (<1%) has yet to be achieved. Given the elevated Delta(sup 13)C values measured in carbonates in martian meteorites [2-4] it has been proposed that the martian atmosphere was enriched in 13C [8]. This was supported by measurements of trapped CO2 gas in EETA 79001[2] which showed elevated Delta(sup 13)C values (Table 1). More recently, Earth-based spectroscopic measurements of the martian atmosphere have measured the martian CO2 to be depleted in C-13 relative to CO2 in the terrestrial atmosphere[ 7, 9-11]. The Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander [12] included a magnetic-sector mass spectrometer (EGA) [13] which had the goal of measuring the isotopic composition of martian atmospheric CO2 to within 0.5%. The mass spectrometer is a miniature instrument intended to measure both the martian atmosphere as well as gases evolved from heating martian soils.

  14. A lunar L2-Farside exploration and science mission concept with the Orion Multi-Purpose Crew Vehicle and a teleoperated lander/rover

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Kring, David A.; Hopkins, Joshua B.; Norris, Scott; Lazio, T. Joseph W.; Kasper, Justin

    2013-07-01

    A novel concept is presented in this paper for a human mission to the lunar L2 (Lagrange) point that would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations. In an L2 halo orbit above the lunar farside, the astronauts aboard the Orion Crew Vehicle would travel 15% farther from Earth than did the Apollo astronauts and spend almost three times longer in deep space. Such a mission would serve as a first step beyond low Earth orbit and prove out operational spaceflight capabilities such as life support, communication, high speed re-entry, and radiation protection prior to more difficult human exploration missions. On this proposed mission, the crew would teleoperate landers/rovers on the unexplored lunar farside, which would obtain samples from the geologically interesting farside and deploy a low radio frequency telescope. Sampling the South Pole-Aitken basin, one of the oldest impact basins in the solar system, is a key science objective of the 2011 Planetary Science Decadal Survey. Observations at low radio frequencies to track the effects of the Universe's first stars/galaxies on the intergalactic medium are a priority of the 2010 Astronomy and Astrophysics Decadal Survey. Such telerobotic oversight would also demonstrate capability for human and robotic cooperation on future, more complex deep space missions such as exploring Mars.

  15. Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements

    USGS Publications Warehouse

    Bock, Y.; Agnew, D.C.; Fang, P.; Genrich, J.F.; Hager, B.H.; Herring, T.A.; Hudnut, K.W.; King, R.W.; Larsen, S.; Minster, J.-B.; Stark, K.; Wdowinski, S.; Wyatt, F.K.

    1993-01-01

    The measurement of crustal motions in technically active regions is being performed increasingly by the satellite-based Global Positioning System (GPS)1,2, which offers considerable advantages over conventional geodetic techniques3,4. Continuously operating GPS arrays with ground-based receivers spaced tens of kilometres apart have been established in central Japan5,6 and southern California to monitor the spatial and temporal details of crustal deformation. Here we report the first measurements for a major earthquake by a continuously operating GPS network, the Permanent GPS Geodetic Array (PGGA)7,9 in southern California. The Landers (magnitude Mw of 7.3) and Big Bear (Mw 6.2) earthquakes of 28 June 1992 were monitored by daily observations. Ten weeks of measurements, centred on the earthquake events, indicate significant coseismic motion at all PGGA sites, significant post-seismic motion at one site for two weeks after the earthquakes, and no significant preseismic motion. These measurements demonstrate the potential of GPS monitoring for precise detection of precursory and aftershock seismic deformation in the near and far field.

  16. Planetary Seismology : Lander- and Wind-Induced Seismic Signals

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph

    2016-10-01

    Seismic measurements are of interest for future geophysical exploration of ocean worlds such as Europa or Titan, as well as Venus, Mars and the Moon. Even when a seismometer is deployed away from a lander (as in the case of Apollo) lander-generated disturbances are apparent. Such signatures may be usefully diagnostic of lander operations (at least for outreach), and may serve as seismic excitation for near-field propagation studies. The introduction of these 'spurious' events may also influence the performance of event detection and data compression algorithms.Examples of signatures in the Viking 2 seismometer record of lander mechanism operations are presented. The coherence of Viking seismometer noise levels and wind forcing is well-established : some detailed examples are examined. Wind noise is likely to be significant on future Mars missions such as InSight, as well as on Titan and Venus.

  17. The Global Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Jackson, Gail

    2014-05-01

    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA

  18. The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment

    NASA Astrophysics Data System (ADS)

    Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman

    2017-02-01

    The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper ( >3 m depth) placement of the heat flow probe.

  19. Luna-25 lander: science of the first lunar day

    NASA Astrophysics Data System (ADS)

    Malakhov, Alexey; Mitrofanov, Igor; Tretyakov, Vladislav; Litvak, Maxim; Prokhorov, Vasily; Kozyrev, Alexander; Mokrousov, Maxim; Vostrukhin, Andrey

    2015-04-01

    Luna-25 lander is a Roscosmos mission to investigate the southern lunar pole to launch in 2018. The mission aims at testing the landing capability of the spacecraft as well as conducting a number of science experiments. The instrument suite consists of 10 scientific experiments to study both, the landing site and the moon as a whole. These include measurements of soil composition and volatiles in the vicinity of the lander, environmental conditions such as temperature variations, plasma and dust exosphere of Moon, measurements of Moon inner structure through seismic, radio and laser ranging sensors. Luna-25 will also provide a number of images of the lander surroundings and samples collected in its robotic arm. We present the details of the investigations program for the first lunar day for the entire instruments suite.

  20. Southern California Permanent GPS Geodetic Array: Continuous measurements of regional crustal deformation between the 1992 Landers and 1994 Northridge earthquakes

    USGS Publications Warehouse

    Bock, Y.; Wdowinski, S.; Fang, P.; Zhang, Jiahua; Williams, S.; Johnson, H.; Behr, J.; Genrich, J.; Dean, J.; Van Domselaar, M.; Agnew, D.; Wyatt, F.; Stark, K.; Oral, B.; Hudnut, K.; King, R.; Herring, T.; Dinardo, S.; Young, W.; Jackson, D.; Gurtner, W.

    1997-01-01

    The southern California Permanent GPS Geodetic Array (PGGA) was established in 1990 across the Pacific-North America plate boundary to continuously monitor crustal deformation. We describe the development of the array and the time series of daily positions estimated for its first 10 sites in the 19-month period between the June 28, 1992 (Mw=7.3), Landers and January 17, 1994 (Mw=6.7), Northridge earthquakes. We compare displacement rates at four site locations with those reported by Feigl et al. [1993], which were derived from an independent set of Global Positioning System (GPS) and very long baseline interferometry (VLBI) measurements collected over nearly a decade prior to the Landers earthquake. The velocity differences for three sites 65-100 km from the earthquake's epicenter are of order of 3-5 mm/yr and are systematically coupled with the corresponding directions of coseismic displacement. The fourth site, 300 km from the epicenter, shows no significant velocity difference. These observations suggest large-scale postseismic deformation with a relaxation time of at least 800 days. The statistical significance of our observations is complicated by our incomplete knowledge of the noise properties of the two data sets; two possible noise models fit the PGGA data equally well as described in the companion paper by Zhang et al. [this issue]; the pre-Landers data are too sparse and heterogeneous to derive a reliable noise model. Under a fractal white noise model for the PGGA data we find that the velocity differences for all three sites are statistically different at the 99% significance level. A white noise plus flicker noise model results in significance levels of only 94%, 43%, and 88%. Additional investigations of the pre-Landers data, and analysis of longer spans of PGGA data, could have an important effect on the significance of these results and will be addressed in future work. Copyright 1997 by the American Geophysical Union.

  1. Phoenix Lander Work Area

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows NASA's Phoenix Mars Lander Robotic Arm work area with an overlay. The pink area is available for digging, the green area is reserved for placing the Thermal and Electrical Conductivity Probe (TECP) instrument. Soil can be dumped in the violet area.

    Images were displayed using NASA Ames 'Viz' visualization software.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Planetary Landers and Entry Probes

    NASA Astrophysics Data System (ADS)

    Ball, Andrew J.; Garry, James R. C.; Lorenz, Ralph D.; Kerzhanovich, Viktor V.

    2007-05-01

    Preface; Acknowledgements; Part I. Engineering Issues Specific to Entry Probes, Landers or Penetrators: 1. Mission goals and system engineering; 2. Accommodation, launch, cruise and arrival from orbit or interplanetary trajectory; 3. Entering atmospheres; 4. Descent through an atmosphere; 5. Descent to an airless body; 6. Planetary balloons, aircraft, submarines and cryobots; 7. Arrival at a surface; 8. Thermal control of landers and entry probes; 9. Power systems; 10. Communication and tracking of entry probes; 11. Radiation environment; 12. Surface activities: arms, drills, moles and mobility; 13. Structures; 14. Contamination of spacecraft and planets; Part II. Previous Atmosphere/Surface Vehicles and Their Payloads: 15. Destructive impact probes; 16. Atmospheric entry probes; 17. Pod landers; 18. Legged landers; 19. Payload delivery penetrators; 20. Small body surface missions; Part III. 'Case Studies': 21. Surveyor landers; 22. Galileo probe; 23. Huygens; 24. Mars Pathfinder and Sojourner; 25. Deep Space 2 Mars microprobes; 26. Rosetta lander Philae; 27. Mars exploration rovers: Spirit and Opportunity; Appendix: Some key parameters for bodies in the Solar System; List of acronyms; Bibliography; References; Index.

  3. Planetary Landers and Entry Probes

    NASA Astrophysics Data System (ADS)

    Ball, Andrew; Garry, James; Lorenz, Ralph; Kerzhanovich, Viktor

    2010-02-01

    Preface; Acknowledgements; Part I. Engineering Issues Specific to Entry Probes, Landers or Penetrators: 1. Mission goals and system engineering; 2. Accommodation, launch, cruise and arrival from orbit or interplanetary trajectory; 3. Entering atmospheres; 4. Descent through an atmosphere; 5. Descent to an airless body; 6. Planetary balloons, aircraft, submarines and cryobots; 7. Arrival at a surface; 8. Thermal control of landers and entry probes; 9. Power systems; 10. Communication and tracking of entry probes; 11. Radiation environment; 12. Surface activities: arms, drills, moles and mobility; 13. Structures; 14. Contamination of spacecraft and planets; Part II. Previous Atmosphere/Surface Vehicles and Their Payloads: 15. Destructive impact probes; 16. Atmospheric entry probes; 17. Pod landers; 18. Legged landers; 19. Payload delivery penetrators; 20. Small body surface missions; Part III. 'Case Studies': 21. Surveyor landers; 22. Galileo probe; 23. Huygens; 24. Mars Pathfinder and Sojourner; 25. Deep Space 2 Mars microprobes; 26. Rosetta lander Philae; 27. Mars exploration rovers: Spirit and Opportunity; Appendix: Some key parameters for bodies in the Solar System; List of acronyms; Bibliography; References; Index.

  4. Global Precipitation Measurement Mission: Architecture and Mission Concept

    NASA Technical Reports Server (NTRS)

    Bundas, David

    2005-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.

  5. Extended duration lunar lander

    NASA Technical Reports Server (NTRS)

    Babic, Nikola; Carter, Matt; Cosper, Donna; Garza, David; Gonzalez, Eloy; Goodine, David; Hirst, Edward; Li, Ray; Lindsey, Martin; Ng, Tony

    1993-01-01

    Selenium Technologies has been conducting preliminary design work on a manned lunar lander for use in NASA's First Lunar Outpost (FLO) program. The resulting lander is designed to carry a crew of four astronauts to a prepositioned habitat on the lunar surface, remain on the lunar surface for up to 45 days while the crew is living in the habitat, then return the crew to earth via direct reentry and land recovery. Should the need arise, the crew can manually guide the lander to a safe lunar landing site, and live in the lander for up to ten days on the surface. Also, an abort to earth is available during any segment of the mission. The main propulsion system consists of a cluster of four modified Pratt and Whitney RL10 rocket engines that use liquid methane (LCH4) and liquid oxygen (LOX). Four engines are used to provide redundancy and a satisfactory engine out capability. Differences between the new propulsion system and the original system include slightly smaller engine size and lower thrust per engine, although specific impulse remains the same despite the smaller size. Concerns over nozzle ground clearance and engine reliability, as well as more information from Pratt and Whitney, brought about this change. The power system consists of a combination of regenerative fuel cells and solar arrays. While the lander is in flight to or from the moon, or during the lunar night, fuel cells provide all electrical power. During the lunar day, solar arrays are deployed to provide electrical power for the lander as well as electrolyzers, which separate some water back into hydrogen and oxygen for later use by the fuel cells. Total storage requirements for oxygen, hydrogen, and water are 61 kg, 551 kg, and 360 kg, respectively. The lander is a stage-and-a-half design with descent propellant, cargo, and landing gear contained in the descent stage, and the main propulsion system, ascent propellant, and crew module contained in the ascent stage. The primary structure for both

  6. Extended duration lunar lander

    NASA Astrophysics Data System (ADS)

    Babic, Nikola; Carter, Matt; Cosper, Donna; Garza, David; Gonzalez, Eloy; Goodine, David; Hirst, Edward; Li, Ray; Lindsey, Martin; Ng, Tony

    1993-05-01

    Selenium Technologies has been conducting preliminary design work on a manned lunar lander for use in NASA's First Lunar Outpost (FLO) program. The resulting lander is designed to carry a crew of four astronauts to a prepositioned habitat on the lunar surface, remain on the lunar surface for up to 45 days while the crew is living in the habitat, then return the crew to earth via direct reentry and land recovery. Should the need arise, the crew can manually guide the lander to a safe lunar landing site, and live in the lander for up to ten days on the surface. Also, an abort to earth is available during any segment of the mission. The main propulsion system consists of a cluster of four modified Pratt and Whitney RL10 rocket engines that use liquid methane (LCH4) and liquid oxygen (LOX). Four engines are used to provide redundancy and a satisfactory engine out capability. Differences between the new propulsion system and the original system include slightly smaller engine size and lower thrust per engine, although specific impulse remains the same despite the smaller size. Concerns over nozzle ground clearance and engine reliability, as well as more information from Pratt and Whitney, brought about this change. The power system consists of a combination of regenerative fuel cells and solar arrays. While the lander is in flight to or from the moon, or during the lunar night, fuel cells provide all electrical power. During the lunar day, solar arrays are deployed to provide electrical power for the lander as well as electrolyzers, which separate some water back into hydrogen and oxygen for later use by the fuel cells. Total storage requirements for oxygen, hydrogen, and water are 61 kg, 551 kg, and 360 kg, respectively. The lander is a stage-and-a-half design with descent propellant, cargo, and landing gear contained in the descent stage, and the main propulsion system, ascent propellant, and crew module contained in the ascent stage. The primary structure for both

  7. Exploring Triton with Multiple Landers

    NASA Astrophysics Data System (ADS)

    Balint, T. S.

    In our pathway for Outer Planetary Exploration several mission concepts were considered, based on the proposed Jupiter Icy Moons Orbiter (JIMO) mission architecture. This paper describes a JIMO follow-on mission concept to Neptune's largest moon. Triton is a target of interest for outer solar system studies. It has a highly inclined retrograde orbit, suggesting that it may have been a Kuiper Belt object, captured by Neptune. Given this assumption, its composition, which may include organic materials, would be of significant scientific interest. The present concept considers a surface mission architecture with two landers, each powered by a standard multi-mission radioisotope thermoelectric generator (MMRTG). The landers would operate on the surface for several years providing science data, thus expanding our understanding of the environment, the dynamic surface and atmospheric processes, and some of the seasonal variations. A JIMO class orbiter would provide telecommunication link between the landers and Earth, and would be instrumented to observe both Triton and Neptune. In this paper all key aspects of the mission architecture are addressed, including the science instruments, the main subsystems, trade options for the power system, and a conceptual design for the landers.

  8. Space Interferometry Mission: Measuring the Universe

    NASA Technical Reports Server (NTRS)

    Marr, James; Dallas, Saterios; Laskin, Robert; Unwin, Stephen; Yu, Jeffrey

    1991-01-01

    The Space Interferometry Mission (SIM) will be the NASA Origins Program's first space based long baseline interferometric observatory. SIM will use a 10 m Michelson stellar interferometer to provide 4 microarcsecond precision absolute position measurements of stars down to 20th magnitude over its 5 yr. mission lifetime. SIM will also provide technology demonstrations of synthesis imaging and interferometric nulling. This paper describes the what, why and how of the SIM mission, including an overall mission and system description, science objectives, general description of how SIM makes its measurements, description of the design concepts now under consideration, operations concept, and supporting technology program.

  9. The Phoenix Mars Lander Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bonitz, Robert; Shiraishi, Lori; Robinson, Matthew; Carsten, Joseph; Volpe, Richard; Trebi-Ollennu, Ashitey; Arvidson, Raymond E.; Chu, P. C.; Wilson, J. J.; Davis, K. R.

    2009-01-01

    The Phoenix Mars Lander Robotic Arm (RA) has operated for over 150 sols since the Lander touched down on the north polar region of Mars on May 25, 2008. During its mission it has dug numerous trenches in the Martian regolith, acquired samples of Martian dry and icy soil, and delivered them to the Thermal Evolved Gas Analyzer (TEGA) and the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The RA inserted the Thermal and Electrical Conductivity Probe (TECP) into the Martian regolith and positioned it at various heights above the surface for relative humidity measurements. The RA was used to point the Robotic Arm Camera to take images of the surface, trenches, samples within the scoop, and other objects of scientific interest within its workspace. Data from the RA sensors during trenching, scraping, and trench cave-in experiments have been used to infer mechanical properties of the Martian soil. This paper describes the design and operations of the RA as a critical component of the Phoenix Mars Lander necessary to achieve the scientific goals of the mission.

  10. Measurements of the composition of aerosol component of Venusian atmosphere with Vega 1 lander, preliminary data

    NASA Technical Reports Server (NTRS)

    Surkov, Y. A.; Ivanova, V. F.; Pudov, A. N.; Volkov, V. P.; Sheretov, E. P.; Kolotilin, B. I.; Safonov, M. P.; Thomas, R.; Lespagnol, J.; Hauser, A.

    1986-01-01

    Preliminary investigation of mass spectra of gaseous products of pyrolyzed Venusian cloud particles collected and analyzed by the complex device of mass-spectrometer and collector pyrolyzer on board Vega 1 lander revealed the presence of heavy particles in the upper cloud layer. Based on 64 amu peak (SO2+), an estimate of the lower limit of the sulfuric acid aerosol content at the 62 to 54 km heights of approximately 2.0 mg/cu m is obtained. A chlorine line (35 and 37 amu) is also present in the mass spectrum with a lower limit of the chlorine concentration of approximately 0.3 mg/ cu m.

  11. Robotic Lander Development Project

    NASA Video Gallery

    The Robotic Lander Development Project at the Marshall Center is testing a prototype lander that will aid in the design and development of a new generation of small, smart, versatile robotic lander...

  12. Underneath the Phoenix Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Robotic Arm Camera on NASA's Phoenix Mars Lander took this image on Oct. 18, 2008, during the 142nd Martian day, or sol, since landing. The flat patch in the center of the image has the informal name 'Holy Cow,' based on researchers' reaction when they saw the initial image of it only a few days after the May 25, 2008 landing. Researchers first saw this flat patch in an image taken by the Robotic Arm Camera on May 30, the fifth Martian day of the mission.

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Viking Lander 2 Anniversary

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This portion of a daytime IR image covers the Viking 2 landing site (shown with the X). The second landing on Mars took place September 3, 1976 in Utopia Planitia. The exact location of Lander 2 is not as well established as Lander 1 because there were no clearly identifiable features in the lander images as there were for the site of Lander 1. The Utopia landing site region contains pedestal craters, shallow swales and gentle ridges. The crater Goldstone was named in honor of the Tracking Station in the desert of California. The two Viking Landers operated for over 6 years (nearly four martian years) after landing. This one band IR (band 9 at 12.6 microns) image shows bright and dark textures, which are primarily due to differences in the abundance of rocks on the surface. The relatively cool (dark) regions during the day are rocky or indurated materials, fine sand and dust are warmer (bright). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. The dark rings around several of the craters are due to the presence of rocky (cool) material ejected from the crater. These rocks are well below the resolution of any existing Mars camera, but THEMIS can detect the temperature variations they produce. Daytime temperature variations are produced by a combination of topographic (solar heating) and thermophysical (thermal inertia and albedo) effects. Due to topographic heating the surface morphologies seen in THEMIS daytime IR images are similar to those seen in previous imagery and MOLA topography.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected

  14. Rosetta: Comet-Chaser, Comet-Lander, and Comet-Hopper All In One Mission! (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Chmielewski, Artur B.

    2015-09-01

    Mission to Catch a Comet! Comets have inspired awe and wonder since the dawn of history. Many scientists today believe that comets crashed into Earth in its formative period spewing organic molecules that were crucial to the growth of life. Comets may have formed about the same time as the giant planets of our solar system (Jupiter, Saturn, Uranus, and Neptune) - about 4.6 billion years ago. Some scientists think that comets and planets were both made from the same clumps of dust and ice that spewed from our Sun's birth; others think that these roving time capsules are even older than that, and that they may contain grains of interstellar stuff that is even older than our solar system.

  15. On the possibility of lunar core phase detection using new seismometers for soft-landers in future lunar missions

    NASA Astrophysics Data System (ADS)

    Yamada, Ryuhei; Garcia, Raphael F.; Lognonné, Philippe; Kobayashi, Naoki; Takeuchi, Nozomu; Nébut, Tanguy; Shiraishi, Hiroaki; Calvet, Marie; Ganepain-Beyneix, J.

    2013-06-01

    Information on the lunar central core; size, current state and composition; are key parameters to understand the origin and evolution of the Moon. Recent studies have indicated that possible seismic energies of core-reflected phases can be identified from past Apollo seismic data, and core sizes are determined, but we have still uncertainties to establish the lunar core parameters. We, therefore, plan to detect seismic phases that pass through the interior of the core and/or those reflected from the core-mantle boundary to ensure the parameters using new seismometers for future lunar soft-landing missions such as SELENE-2 and Farside Explorer projects. As the new seismometers, we can apply two types of sensors already developed; they are the Very Broad Band (VBB) seismometer and Short Period (SP) seismometer. We first demonstrate through waveform simulations that the new seismometers are able to record the lunar seismic events with S/N much better than Apollo seismometers. Then, expected detection numbers of core-phases on the entire lunar surface for the two types of seismometers are evaluated for two models of seismic moment distributions of deep moonquakes using the recent interior model (VPREMOON). The evaluation indicates that the VBB has performance to detect reflected S phases (ScS) from the core-mantle boundary mainly on the lunar near-side, and the P phases (PKP) passing through the interior of the core on some areas of the lunar far-side. Then, the SP can also detect PKP phases as first arrival seismic phase on limited regions on the lunar far-side. If appropriate positions of the seismic stations are selected, core-phases can be detected, allowing us to constrain the origin and evolution of the Moon with future lunar soft-landing missions.

  16. MSL/SAM Measurements of Non Condensable Volatiles, Comparison with Viking Lander, and Implications for Seasonal Cycle

    NASA Astrophysics Data System (ADS)

    Atreya, Sushil; Squyres, Steve; Mahaffy, Paul; Leshin, Laurie; Franz, Heather; Trainer, Melissa; Wong, Michael; McKay, Christopher; Navarro-Gonzalez, Rafael; ScienceTeam, MarsScienceLab

    2013-04-01

    The first measurements of the composition of the Martian atmosphere above Gale Crater by the Sample Analysis at Mars (SAM) instrument on Curiosity Rover revealed that although the volume mixing ratios (vmr) of the gases are generally similar to those measured by the Viking Lander 2 (VL2) thirty five years ago [2], they are notably different for N2 and 40Ar [1]. SAM finds a vmr of 1.9% each for N2 and Ar, so that N2 is 30% lower while Ar is 21% greater than the corresponding VL2 values, resulting in a 40% lower N2/Ar ratio compared to the VL2 result. The Ar/N ratio is used to assess the degree of mixing between the Martian atmosphere and the internal gas component of Mars meteorites due to the shock of impact ejection [e.g. 3]. The above differences in N2 and 40Ar seem to result either from different instrument characteristics or time variable atmospheric phenomena or both. The VL2 data were taken during northern summer (48°N, Ls=135°), whereas the SAM measurements correspond to the beginning of spring season (4.5°S, Ls=182-190°). Previous observations by Mars Odyssey Gamma Ray Spectrometer over three years have shown that the Ar mixing ratio increased by a factor of 6 over the south polar region in the winter [4]. However, the data are controversial for the equatorial region, ranging from no seasonal change [4] to as much as a 35% change [5]. No significant change was seen between the equator (SAM) and the midlatitude northern summer (VL2), however [4]. Thus the difference between the SAM and VL2 Ar does not appear to be related to different seasons. On the other hand, the vmr's of non-condensable volatiles (NCV), N2, Ar and CO, at any latitude are expected to vary seasonally due to the annual, global CO2 cycle. Diurnal changes are not expected, considering the long lifetimes of NCV's that exceed the martian year [6]. In addition to Ar, seasonal changes have been recorded in CO from ground-based [7] and MRO/CRISM observations [8], but show a much smaller

  17. Phoenix Lander on Mars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander monitors the atmosphere overhead and reaches out to the soil below in this artist's depiction of the spacecraft fully deployed on the surface of Mars.

    Phoenix has been assembled and tested for launch in August 2007 from Cape Canaveral Air Force Station, Fla., and for landing in May or June 2008 on an arctic plain of far-northern Mars. The mission responds to evidence returned from NASA's Mars Odyssey orbiter in 2002 indicating that most high-latitude areas on Mars have frozen water mixed with soil within arm's reach of the surface.

    Phoenix will use a robotic arm to dig down to the expected icy layer. It will analyze scooped-up samples of the soil and ice for factors that will help scientists evaluate whether the subsurface environment at the site ever was, or may still be, a favorable habitat for microbial life. The instruments on Phoenix will also gather information to advance understanding about the history of the water in the icy layer. A weather station on the lander will conduct the first study Martian arctic weather from ground level.

    The vertical green line in this illustration shows how the weather station on Phoenix will use a laser beam from a lidar instrument to monitor dust and clouds in the atmosphere. The dark 'wings' to either side of the lander's main body are solar panels for providing electric power.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems, Denver. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen (Denmark), the Max Planck Institute (Germany) and the Finnish Meteorological institute. JPL is a division of the California Institute of Technology in Pasadena.

  18. Viking Lander Atlas of Mars

    NASA Technical Reports Server (NTRS)

    Liebes, S., Jr.

    1982-01-01

    Half size reproductions are presented of the extensive set of systematic map products generated for the two Mars Viking landing sites from stereo pairs of images radioed back to Earth. The maps span from the immediate foreground to the remote limits of ranging capability, several hundred meters from the spacecraft. The maps are of two kinds - elevation contour and vertical profile. Background and explanatory material important for understanding and utilizing the map collection included covers the Viking Mission, lander locations, lander cameras, the stereo mapping system and input images to this system.

  19. Tropical Rainfall Measurement Mission (TRMM) Operation Summary

    NASA Technical Reports Server (NTRS)

    Nio, Tomomi; Saito, Susumu; Stocker, Erich; Pawloski, James H.; Murayama, Yoshifumi; Ohata, Takeshi

    2015-01-01

    The Tropical Rainfall Measurement Mission (TRMM) is a joint U.S. and Japan mission to observe tropical rainfall, which was launched by H-II No. 6 from Tanegashima in Japan at 6:27 JST on November 28, 1997. After the two-month commissioning of TRMM satellite and instruments, the original nominal mission lifetime was three years. In fact, the operations has continued for approximately 17.5 years. This paper provides a summary of the long term operations of TRMM.

  20. Global Precipitation Measurement (GPM) Mission Development Status

    NASA Technical Reports Server (NTRS)

    Azarbarzin, Ardeshir Art

    2011-01-01

    Mission Objective: (1) Improve scientific understanding of the global water cycle and fresh water availability (2) Improve the accuracy of precipitation forecasts (3) Provide frequent and complete sampling of the Earth s precipitation Mission Description (Class B, Category I): (1) Constellation of spacecraft provide global precipitation measurement coverage (2) NASA/JAXA Core spacecraft: Provides a microwave radiometer (GMI) and dual-frequency precipitation radar (DPR) to cross-calibrate entire constellation (3) 65 deg inclination, 400 km altitude (4) Launch July 2013 on HII-A (5) 3 year mission (5 year propellant) (6) Partner constellation spacecraft.

  1. MEP (Mars Environment Package): toward a package for studying environmental conditions at the surface of Mars from future lander/rover missions.

    PubMed

    Chassefière, E; Bertaux, J-L; Berthelier, J-J; Cabane, M; Ciarletti, V; Durry, G; Forget, F; Hamelin, M; Leblanc, F; Menvielle, M; Gerasimov, M; Korablev, O; Linkin, S; Managadze, G; Jambon, A; Manhès, G; Lognonné, Ph; Agrinier, P; Cartigny, P; Giardini, D; Pike, T; Kofman, W; Herique, A; Coll, P; Person, A; Costard, F; Sarda, Ph; Paillou, Ph; Chaussidon, M; Marty, B; Robert, F; Maurice, S; Blanc, M; d'Uston, C; Sabroux, J-Ch; Pineau, J-F; Rochette, P

    2004-01-01

    In view to prepare Mars human exploration, it is necessary to promote and lead, at the international level, a highly interdisciplinary program, involving specialists of geochemistry, geophysics, atmospheric science, space weather, and biology. The goal of this program will be to elaborate concepts of individual instruments, then of integrated instrumental packages, able to collect exhaustive data sets of environmental parameters from future landers and rovers of Mars, and to favour the conditions of their implementation. Such a program is one of the most urgent need for preparing human exploration, in order to develop mitigation strategies aimed at ensuring the safety of human explorers, and minimizing risk for surface operations. A few main areas of investigation may be listed: particle and radiation environment, chemical composition of atmosphere, meteorology, chemical composition of dust, surface and subsurface material, water in the subsurface, physical properties of the soil, search for an hypothesized microbial activity, characterization of radio-electric properties of the Martian ionosphere. Scientists at the origin of the present paper, already involved at a high degree of responsibility in several Mars missions, and actively preparing in situ instrumentation for future landed platforms (Netlander--now cancelled, MSL-09), express their readiness to participate in both ESA/AURORA and NASA programs of Mars human exploration. They think that the formation of a Mars Environment working group at ESA, in the course of the AURORA definition phase, could act positively in favour of the program, by increasing its scientific cross-section and making it still more focused on human exploration.

  2. MEP (Mars Environment Package): toward a package for studying environmental conditions at the surface of Mars from future lander/rover missions

    NASA Astrophysics Data System (ADS)

    Chassefière, E.; Bertaux, J.-L.; Berthelier, J.-J.; Cabane, M.; Ciarletti, V.; Durry, G.; Forget, F.; Hamelin, M.; Leblanc, F.; Menvielle, M.; Gerasimov, M.; Korablev, O.; Linkin, S.; Managadze, G.; Jambon, A.; Manhès, G.; Lognonné, Ph.; Agrinier, P.; Cartigny, P.; Giardini, D.; Pike, T.; Kofman, W.; Herique, A.; Coll, P.; Person, A.; Costard, F.; Sarda, Ph.; Paillou, Ph.; Chaussidon, M.; Marty, B.; Robert, F.; Maurice, S.; Blanc, M.; d'Uston, C.; Sabroux, J.-Ch.; Pineau, J.-F.; Rochette, P.

    2004-01-01

    In view to prepare Mars human exploration, it is necessary to promote and lead, at the international level, a highly interdisciplinary program, involving specialists of geochemistry, geophysics, atmospheric science, space weather, and biology. The goal of this program will be to elaborate concepts of individual instruments, then of integrated instrumental packages, able to collect exhaustive data sets of environmental parameters from future landers and rovers of Mars, and to favour the conditions of their implementation. Such a program is one of the most urgent need for preparing human exploration, in order to develop mitigation strategies aimed at ensuring the safety of human explorers, and minimizing risk for surface operations. A few main areas of investigation may be listed: particle and radiation environment, chemical composition of atmosphere, meteorology, chemical composition of dust, surface and subsurface material, water in the subsurface, physical properties of the soil, search for an hypothesized microbial activity, characterization of radio-electric properties of the Martian ionosphere. Scientists at the origin of the present paper, already involved at a high degree of responsibility in several Mars missions, and actively preparing in situ instrumentation for future landed platforms (Netlander—now cancelled, MSL-09), express their readiness to participate in both ESA/AURORA and NASA programs of Mars human exploration. They think that the formation of a Mars Environment working group at ESA, in the course of the AURORA definition phase, could act positively in favour of the program, by increasing its scientific cross-section and making it still more focused on human exploration.

  3. Active Collision Avoidance for Planetary Landers

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Hannan, Mike; Srinivasan, Karthik

    2014-01-01

    Present day robotic missions to other planets require precise, a priori knowledge of the terrain to pre-determine a landing spot that is safe. Landing sites can be miles from the mission objective, or, mission objectives may be tailored to suit landing sites. Future robotic exploration missions should be capable of autonomously identifying a safe landing target within a specified target area selected by mission requirements. Such autonomous landing sites must (1) 'see' the surface, (2) identify a target, and (3) land the vehicle. Recent advances in radar technology have resulted in small, lightweight, low power radars that are used for collision avoidance and cruise control systems in automobiles. Such radar systems can be adapted for use as active hazard avoidance systems for planetary landers. The focus of this CIF proposal is to leverage earlier work on collision avoidance systems for MSFC's Mighty Eagle lander and evaluate the use of automotive radar systems for collision avoidance in planetary landers.

  4. Robotic Lunar Lander Development Status

    NASA Technical Reports Server (NTRS)

    Ballard, Benjamin; Cohen, Barbara A.; McGee, Timothy; Reed, Cheryl

    2012-01-01

    NASA Marshall Space Flight Center and John Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.

  5. Resource Prospector Lander: Architecture and Trade Studies

    NASA Technical Reports Server (NTRS)

    Moore, Josh; Calvert, Derek; Frady, Greg; Chavers, Greg; Wayne, Andrew; Hull, Patrick; Lowery, Eric; Farmer, Jeff; Trinh, Huu; Rojdev, Kristina; Piatek, Irene; Ess, Kim; Vitalpur, Sharada; Dunn, Kevin

    2014-01-01

    NASA's Resource Prospector (RP) is a multi-center and multi-institution collaborative project to investigate the polar regions of the Moon in search of volatiles. The mission is rated Class D and is approximately 10 days. The RP vehicle comprises three elements: the Lander, the Rover, and the Payload. The Payload is housed on the Rover and the Rover is on top of the Lander. The focus of this paper is on the Lander element for the RP vehicle. The design of the Lander was requirements driven and focused on a low-cost approach. To arrive at the final configuration, several trade studies were conducted. Of those trade studies, there were six primary trade studies that were instrumental in determining the final design. This paper will discuss each of these trades in further detail and show how these trades led to the final architecture of the RP Lander.

  6. Robotic Lunar Landers for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Chavers, D. G.; Cohen, B. A.; Bassler, J. A.; Hammond, M. S.; Harris, D. W.; Hill, L. A.; Eng, D.; Ballard, B. W.; Kubota, S. D.; Morse, B. J.; Mulac, B. D.; Holloway, T. A.; Reed, C. L. B.

    2010-01-01

    NASA Marshall Space Flight Center (MSFC) and The Johns Hopkins University Applied Physics Laboratory (APL) have been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. This paper describes some of the lunar lander concepts derived from these studies conducted by the MSFC/APL Robotic Lunar Lander Development Project team. In addition, the results to date of the lunar lander development risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing and combined GN&C and avionics testing will be addressed. The most visible elements of the risk reduction program are two autonomous lander flight test vehicles: a compressed air system with limited flight durations and a second version using hydrogen peroxide propellant to achieve significantly longer flight times and the ability to more fully exercise flight sensors and algorithms.

  7. Lunar Polar Coring Lander

    NASA Technical Reports Server (NTRS)

    Angell, David; Bealmear, David; Benarroche, Patrice; Henry, Alan; Hudson, Raymond; Rivellini, Tommaso; Tolmachoff, Alex

    1990-01-01

    Plans to build a lunar base are presently being studied with a number of considerations. One of the most important considerations is qualifying the presence of water on the Moon. The existence of water on the Moon implies that future lunar settlements may be able to use this resource to produce things such as drinking water and rocket fuel. Due to the very high cost of transporting these materials to the Moon, in situ production could save billions of dollars in operating costs of the lunar base. Scientists have suggested that the polar regions of the Moon may contain some amounts of water ice in the regolith. Six possible mission scenarios are suggested which would allow lunar polar soil samples to be collected for analysis. The options presented are: remote sensing satellite, two unmanned robotic lunar coring missions (one is a sample return and one is a data return only), two combined manned and robotic polar coring missions, and one fully manned core retrieval mission. One of the combined manned and robotic missions has been singled out for detailed analysis. This mission proposes sending at least three unmanned robotic landers to the lunar pole to take core samples as deep as 15 meters. Upon successful completion of the coring operations, a manned mission would be sent to retrieve the samples and perform extensive experiments of the polar region. Man's first step in returning to the Moon is recommended to investigate the issue of lunar polar water. The potential benefits of lunar water more than warrant sending either astronauts, robots or both to the Moon before any permanent facility is constructed.

  8. Robotic Lunar Landers for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Hill, L. A.; Bassler, J. A.; Chavers, D. G.; Hammond, M. S.; Harris, D. W.; Kirby, K. W.; Morse, B. J.; Mulac, B. D.; Reed, C. L. B.

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory has been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. In 2005, the Robotic Lunar Exploration Program Mission #2 (RLEP-2) was selected as a Exploration Systems Mission Directorate precursor robotic lunar lander mission to demonstrate precision landing and definitively determine if there was water ice at the lunar poles; however, this project was canceled. Since 2008, the team has been supporting NASA s Science Mission Directorate designing small lunar robotic landers for diverse science missions. The primary emphasis has been to establish anchor nodes of the International Lunar Network (ILN), a network of lunar science stations envisioned to be emplaced by multiple nations. This network would consist of multiple landers carrying instruments to address the geophysical characteristics and evolution of the moon. Additional mission studies have been conducted to support other objectives of the lunar science community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects. This paper describes the current status of the robotic lunar mission studies that have been conducted by the MSFC/APL Robotic Lunar Lander Development team, including the ILN Anchor Nodes mission. In addition, the results to date of the lunar lander development risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing and combined GN&C and avionics testing will be addressed. The most visible elements of the risk reduction program are two autonomous lander test articles: a compressed air system with limited flight durations and a second version using hydrogen peroxide propellant to achieve significantly longer flight times and the ability to

  9. Robotic Lander Prototype

    NASA Video Gallery

    NASA engineers successfully integrated and completed system testing on a new robotic lander recently at Teledyne Brown Engineering’s facility in Huntsville in support of the Robotic Lunar Lander ...

  10. Robotic Lunar Landers for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Bassler, J. A.; Hammond, M. S.; Harris, D. W.; Hill, L. A.; Kirby, K. W.; Morse, B. J.; Mulac, B. D.; Reed, C. L. B.

    2010-01-01

    The Moon provides an important window into the early history of the Earth, containing information about planetary composition, magmatic evolution, surface bombardment, and exposure to the space environment. Robotic lunar landers to achieve science goals and to provide precursor technology development and site characterization are an important part of program balance within NASA s Science Mission Directorate (SMD) and Exploration Systems Mission Directorate (ESMD). A Robotic Lunar Lan-der mission complements SMD's initiatives to build a robust lunar science community through R&A lines and increases international participation in NASA's robotic exploration of the Moon.

  11. NetLander thermal control

    NASA Astrophysics Data System (ADS)

    Romberg, O.; Bodendieck, F.; Block, J.; Nadalini, R.; Schneider, N.

    2003-11-01

    The first mission to establish a network of stations on the surface of Mars will be the NetLander mission, which is planned for the near future. Four identical surface modules are equipped with science payloads dedicated to study the atmosphere and geosphere of Mars at four different landing locations spread over the two hemispheres. The mission duration will be one Martian year. The surface modules and their sensitive electronics compartments have to withstand a wide range of hostile conditions on Mars. Further constraints are given during flight, where heat can be exchanged only across small interfaces. The purpose of the NetLander thermal control system is to maintain the electronics and battery temperatures within a narrow band. Contrasting demands of reduced heat leaks and effective dump of surplus heat require new technologies and advanced design concepts to be satisfied under strict mass limits imposed. Recently the first thermal test model with the original thermal equipment has been completed and tested. The model includes a high performance insulation combined with an innovative Loop Heat Pipe system integrated into a one-to-one lander-structure. The paper describes the design and development activities as well as the ground test campaign performed in simulated Martian environment.

  12. Measuring the Permittivity of the Nucleus of a Comet: the PP-SESAME Experiment on Board the Philae/ROSETTA Lander

    NASA Astrophysics Data System (ADS)

    Lethuillier, A.; Le Gall, A. A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.; Seidensticker, K. J.; Fischer, H. H.

    2015-12-01

    The Permittivity Probe (SESAME-PP) on-board the Philae Lander of the ROSETTA mission was designed to constrain the complex permittivity of the first 2 m of the nucleus of comet 67P/Churyumov-Gerasimenko and to monitor its variations with time. Doing so, it is meant to provide a unique insight into the composition of the comet, and in particular, into its water content. PP-SESAME acquired data on November 13, 2015, both during Philae descent to the comet and at the surface of the nucleus. The PP-SESAME instrument is derived from the quadrupole array technique. A sinusoidal electrical current is sent into the ground through a transmitting dipole, and the induced electrical voltage on a receiving dipole is measured. The complex permittivity of the material is inferred from the mutual impedance derived from the measurements. In practice, the influence of both the electronic circuit of the instrument and the conducting elements in its close environment must be accounted for in order to best estimate both the dielectric constant and electrical conductivity of the ground. For that purpose, we have developed a method called the "capacity-influence matrix method". A replica of the instrument was recently built in LATMOS (France) in order to validate this method. In this paper, we will present the tests conducted with the replica in a controlled environment and their comparison to numerical simulations. We will also show simulations relevant to the PP-SESAME experiment on the nucleus of comet 67P/Churyumov-Gerasimenko. These simulations were run for realistic scenarios of the Philae's attitude and environment at its final landing site. We discuss their implications in terms of surface electrical and compositional properties.

  13. Entry System Design Considerations for Mars Landers

    NASA Technical Reports Server (NTRS)

    Lockwood, Mary Kae; Powell, Richard W.; Graves, Claude A.; Carman, Gilbert L.

    2001-01-01

    The objective for the next generation or Mars landers is to enable a safe landing at specific locations of scientific interest. The 1st generation entry, descent and landing systems, ex. Viking and Pathfinder, provided successful landing on Mars but by design were limited to large scale, 100s of km, landing sites with minimal local hazards. The 2 nd generation landers, or smart landers, will provide scientists with access to previously unachievable landing sites by providing precision landing to less than 10 km of a target landing site, with the ability to perform local hazard avoidance, and provide hazard tolerance. This 2nd generation EDL system can be utilized for a range of robotic missions with vehicles sized for science payloads from the small 25-70 kg, Viking, Pathfinder, Mars Polar Lander and Mars Exploration Rover-class, to the large robotic Mars Sample Return, 300 kg plus, science payloads. The 2nd generation system can also be extended to a 3nd generation EDL system with pinpoint landing, 10's of meters of landing accuracy, for more capable robotic or human missions. This paper will describe the design considerations for 2nd generation landers. These landers are currently being developed by a consortium of NASA centers, government agencies, industry and academic institutions. The extension of this system and additional considerations required for a 3nd generation human mission to Mars will be described.

  14. Mars Relay Lander and Orbiter Overflight Profile Estimation

    NASA Technical Reports Server (NTRS)

    Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Peterson, Corey L.

    2012-01-01

    This software allows science and mission operations to view graphs of geometric overflights of satellites and landers within the Mars (or other planetary) networks. It improves on the MaROS Web interface within any modern Web browser, in that it adds new capabilities to the MaROS suite. The profile for an overflight is an important element for selecting communication/ overflight opportunities between the landers and orbiters within the Mars network. Unfortunately, determining these estimates is very computationally expensive and difficult to compute by hand. This software allows the user to select different overflights (via the existing MaROS Web interface) and specify the smoothness of the estimation. Estimates for the geometric relationship between a lander and an orbiter are determined based upon the orbital conditions of the orbiter at the moment the orbiter rises above the horizon from the perspective of the lander. It utilizes 2-body orbital equations to propagate the trajectory through the duration of the view period, and returns profiles that represent the range between the two vehicles, and the elevation and azimuth angles of the orbiter as measured from the lander s position. The algorithms assume a 2-body relationship with an ideal, spherical planetary body, so therefore can see errors less than 2% at polar landing sites on Mars. These algorithms are being implemented to provide rough estimates rapidly for the geometry of a geometric view period where more complete data is unavailable, such as for planning purposes. While other software for this task exists, each at the time of this reporting has been contained within a much more complicated package. This tool allows science and mission operations to view the estimates with a few clicks of the mouse.

  15. The Philae Lander: Science planning and operations

    NASA Astrophysics Data System (ADS)

    Moussi, Aurélie; Fronton, Jean-François; Gaudon, Philippe; Delmas, Cédric; Lafaille, Vivian; Jurado, Eric; Durand, Joelle; Hallouard, Dominique; Mangeret, Maryse; Charpentier, Antoine; Ulamec, Stephan; Fantinati, Cinzia; Geurts, Koen; Salatti, Mario; Bibring, Jean-Pierre; Boehnhardt, Hermann

    2016-08-01

    Rosetta is an ambitious mission launched in March 2004 to study comet 67P/Churyumov-Gerasimenko. It is composed of a space probe (Rosetta) and the Philae Lander. The mission is a series of premieres: among others, first probe to escort a comet, first time a landing site is selected with short turnaround time, first time a lander has landed on a comet nucleus. In November 2014, once stabilized on the comet, Philae has performed its "First Science Sequence". Philae's aim was to perform detailed and innovative in-situ experiments on the comet's surface to characterize the nucleus by performing mechanical, chemical and physical investigations on the comet surface. The main contribution to the Rosetta lander by the French space agency (CNES) is the Science Operation and Navigation Center (SONC) located in Toulouse. Among its tasks is the scheduling of the scientific activities of the 10 lander experiments and then to provide it to the Lander Control Center (LCC) located in DLR Cologne. The teams in charge of the Philae activity scheduling had to cope with considerable constraints in term of energy, data management, asynchronous processes and co-activities or exclusions between instruments. Moreover the comet itself, its environment and the landing conditions remained unknown until separation time. The landing site was selected once the operational sequence was already designed. This paper will explain the specific context of the Rosetta lander mission and all the constraints that the lander activity scheduling had to face to fulfill the scientific objectives specified for Philae. A specific tool was developed by CNES and used to design the complete sequence of activities on the comet with respect to all constraints. The baseline scenario for the lander operation will also be detailed as well as the sequence performed on the comet to highlight the difficulties and challenges that the operational team faced.

  16. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; Deweese, Keith; Vess, Missie; Welter, Gary; O'Donnell, James R., Jr.

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation and Control (GNC) analysis team encountered four main on orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo-induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GNC engineers identified and tracked down the root causes. Flight data and GNC on board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  17. Dust Storm Moving Near Phoenix Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This series of images show the movement of several dust storms near NASA's Phoenix Mars Lander. These images were taken by the lander's Surface Stereo Imager (SSI) on the 137th Martian day, or sol, of the mission (Oct. 13, 2008).

    These images were taken about 50 seconds apart, showing the formation and movement of dust storms for nearly an hour. Phoenix scientists are still figuring out the exact distances these dust storms occurred from the lander, but they estimate them to be about 1 to 2 kilometers (.6 or 1.2 miles) away.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. A First Look at Carbon and Oxygen Stable Isotope Measurements of Martian Atmospheric C02 by the Phoenix Lander

    NASA Technical Reports Server (NTRS)

    Niles, P.B.; Ming, D.W.; Boynton, W.V.; Hamara, D.; Hoffman, J.H.

    2009-01-01

    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars. The isotopic composition of the martian atmosphere has been measured using a number of different methods (Table 1), however a precise value (<1%) has yet to be achieved. Given the elevated 13C values measured in carbonates in martian meteorites it has been supposed that the martian atmosphere was enriched in delta(sup 13)C. This was supported by measurements of trapped CO2 gas in EETA 79001[2] which showed elevated delta(sup 13)C values (Table 1). More recently, Earth-based spectroscopic measurements of the martian atmosphere have measured the martian CO2 to be depleted in delta(sup 13)C relative to CO2 in the terrestrial atmosphere. The spectroscopic measurements performed by Krasnopolsky et al. were reported with approx.2% uncertainties which are much smaller than the Viking measurements, but still remain very large in comparison to the magnitude of carbon and oxygen isotope fractionations under martian surface conditions. The Thermal Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander included a magnetic sector mass spectrometer (EGA) which had the goal of measuring the isotopic composition of martian atmospheric CO2 to within 0.5%. The mass spectrometer is a miniature magnetic sector instrument intended to measure both the martian atmosphere as well as gases evolved from heating martian soils. Ions produced in the ion source are drawn out by a high voltage and focused by a magnetic field onto a set of collector slits. Four specific trajectories are selected to cover the mass ranges, 0.7 - 4, 7 - 35, 14 - 70, and 28 - 140 Da. Using four channels reduces the magnitude of the mass scan and provides simultaneous coverage of the mass ranges. Channel electron multiplier (CEM

  19. Descent Assisted Split Habitat Lunar Lander Concept

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Goodliff, Kandyce; Cornelius, David M.

    2008-01-01

    The Descent Assisted Split Habitat (DASH) lunar lander concept utilizes a disposable braking stage for descent and a minimally sized pressurized volume for crew transport to and from the lunar surface. The lander can also be configured to perform autonomous cargo missions. Although a braking-stage approach represents a significantly different operational concept compared with a traditional two-stage lander, the DASH lander offers many important benefits. These benefits include improved crew egress/ingress and large-cargo unloading; excellent surface visibility during landing; elimination of the need for deep-throttling descent engines; potentially reduced plume-surface interactions and lower vertical touchdown velocity; and reduced lander gross mass through efficient mass staging and volume segmentation. This paper documents the conceptual study on various aspects of the design, including development of sortie and outpost lander configurations and a mission concept of operations; the initial descent trajectory design; the initial spacecraft sizing estimates and subsystem design; and the identification of technology needs

  20. Robotic Lunar Landers For Science And Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Bassler, J. A.; Morse, B. J.; Reed, C. L. B.

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. In 2005, the Robotic Lunar Exploration Program Mission #2 (RLEP-2) was selected as an ESMD precursor robotic lander mission to demonstrate precision landing and determine if there was water ice at the lunar poles; however, this project was canceled. Since 2008, the team has been supporting SMD designing small lunar robotic landers for science missions, primarily to establish anchor nodes of the International Lunar Network (ILN), a network of lunar geophysical nodes. Additional mission studies have been conducted to support other objectives of the lunar science community. This paper describes the current status of the MSFC/APL robotic lunar mission studies and risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing, combined GN&C and avionics testing, and two autonomous lander test articles.

  1. Lunar lander ground support system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This year's project, like the previous Aerospace Group's project, involves a lunar transportation system. The basic time line will be the years 2010-2030 and will be referred to as a second generation system, as lunar bases would be present. The project design completed this year is referred to as the Lunar Lander Ground Support System (LLGSS). The area chosen for analysis encompasses a great number of vehicles and personnel. The design of certain elements of the overall lunar mission are complete projects in themselves. For this reason the project chosen for the Senior Aerospace Design is the design of specific servicing vehicles and additions or modifications to existing vehicles for the area of concern involving servicing and maintenance of the lunar lander while on the surface.

  2. Lunar lander ground support system

    NASA Astrophysics Data System (ADS)

    This year's project, like the previous Aerospace Group's project, involves a lunar transportation system. The basic time line will be the years 2010-2030 and will be referred to as a second generation system, as lunar bases would be present. The project design completed this year is referred to as the Lunar Lander Ground Support System (LLGSS). The area chosen for analysis encompasses a great number of vehicles and personnel. The design of certain elements of the overall lunar mission are complete projects in themselves. For this reason the project chosen for the Senior Aerospace Design is the design of specific servicing vehicles and additions or modifications to existing vehicles for the area of concern involving servicing and maintenance of the lunar lander while on the surface.

  3. The ROSETTA Lander anchoring system

    NASA Astrophysics Data System (ADS)

    Thiel, Markus; Stöcker, Jakob; Rohe, Christian; Kömle, Norbert I.; Kargl, Günter; Hillenmaier, Olaf; Lell, Peter

    2003-09-01

    A major goal of the ESA cornerstone mission ROSETTA is to land a package of scientific instruments known as the ROSETTA Lander on the nucleus of a comet. Due to the low gravity a highly reliable fixation of the ROSETTA Lander to the target comet 67P/Churyumov-Gerasimenko (3rd) is essential. For that purpose a redundant Anchoring System, consisting of two pyrotechnically actuated Anchoring Harpoons and a redundant Control Electronics has been developed, built and qualified at the Max-Planck-Institut für extraterrestrische Physik (MPE), Garching. The pyrotechnical gas generator has been developed jointly by Pyroglobe GmbH and MPE, the procurement of the control electronics has been sub-contracted to Magson GmbH, Berlin. A study to obtain a suitable lubrication method for the commutator of a brushed DC motor has been conducted at the European Space Tribology Laboratory (ESTL; S. D. Lewis et al., 2003).

  4. ROSETTA lander Philae: Touch-down reconstruction

    NASA Astrophysics Data System (ADS)

    Roll, Reinhard; Witte, Lars

    2016-06-01

    The landing of the ROSETTA-mission lander Philae on November 12th 2014 on Comet 67 P/Churyumov-Gerasimenko was planned as a descent with passive landing and anchoring by harpoons at touch-down. Actually the lander was not fixed at touch-down to the ground due to failing harpoons. The lander internal damper was actuated at touch-down for 42.6 mm with a speed of 0.08 m/s while the lander touch-down speed was 1 m/s. The kinetic energy before touch-down was 50 J, 45 J were dissipated by the lander internal damper and by ground penetration at touch-down, and 5 J kinetic energy are left after touch-down (0.325 m/s speed). Most kinetic energy was dissipated by ground penetration (41 J) while only 4 J are dissipated by the lander internal damper. Based on these data, a value for a constant compressive soil-strength of between 1.55 kPa and 1.8 kPa is calculated. This paper focuses on the reconstruction of the touch-down at Agilkia over a period of around 20 s from first ground contact to lift-off again. After rebound Philae left a strange pattern on ground documented by the OSIRIS Narrow Angle Camera (NAC). The analysis shows, that the touch-down was not just a simple damped reflection on the surface. Instead the lander had repeated contacts with the surface over a period of about 20 s±10 s. This paper discusses scenarios for the reconstruction of the landing sequence based on the data available and on computer simulations. Simulations are performed with a dedicated mechanical multi-body model of the lander, which was validated previously in numerous ground tests. The SIMPACK simulation software was used, including the option to set forces at the feet to the ground. The outgoing velocity vector is mostly influenced by the timing of the ground contact of the different feet. It turns out that ground friction during damping has strong impact on the lander outgoing velocity, on its rotation, and on its nutation. After the end of damping, the attitude of the lander can be

  5. Dust adhesion on Viking lander camera window

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    Studies of dust impingement on a duplicate Viking Lander camera window indicated the possibility of window obscuration after several days of exposure even at low dust concentration levels. As a result the following corrective measures were recommended: (1) The clearance between the housing surface and the camera post should be eliminated by using an appropriately designed plastic skirt: (2) The three horizontal ledges below the window inside the cavity act as bases for pile-up of dust that slides down the window surface; they should be replaced by a single inclined plane down which the dust will slide and fall out on the ground: (3) Adhered dust on the window surface can be removed by high pressure CO2 jets directed down against the window; the amount of CO2 gas needed for the entire mission can be carried in a 3 1/2-inch diameter sphere equipped with a remotely programable valve. These measures were incorporated in the design of the lander camera system. The continued high quality of photographs transmitted from the Viking spacecraft several months after landing attests to their effectiveness.

  6. Planetary seismology—Expectations for lander and wind noise with application to Venus

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2012-03-01

    The amplitudes of seismic signals on a planetary surface are discussed in the context of observable physical quantities - displacement, velocity and acceleration - in order to assess the number of events that a sensor with a given detection threshold may capture in a given period. Spacecraft engineers are generally unfamiliar with expected quantities or the language used to describe them, and seismologists are rarely presented with the challenges of accommodation of instrumentation on spacecraft. This paper attempts to bridge this gap, so that the feasibility of attaining seismology objectives on future missions - and in particular, a long-lived Venus lander - can be rationally assessed. For seismometers on planetary landers, the background noise due to wind or lander systems is likely to be a stronger limitation on the effective detection threshold than is the instrument sensitivity itself, and terrestrial data on vehicle noise is assessed in this context. We apply these considerations to investigate scenarios for a long-lived Venus lander mission, which may require a mechanical cooler powered by a Stirling generator. We also consider wind noise: the case for decoupling of a seismometer from a lander is strong on bodies with atmospheres, as is the case for shielding the instrument from wind loads. However, since the atmosphere acts on the elastic ground as well as directly on instruments, the case for deep burial is not strong, but it is important that windspeed and pressure be documented by adequate meteorology measurements.

  7. Development of the Viking Mars lander thermal control subsystem design

    NASA Technical Reports Server (NTRS)

    Morey, T. F.; Gorman, D. N.

    1974-01-01

    Two Viking spacecraft, each consisting of a lander capsule coupled to an orbiter, will be launched toward Mars during the summer of 1975. About a year later, the orbiters will go into orbit around Mars and the landers will descend to the surface for 90-day landed missions. The lander must withstand a wide variety of environmental and operational conditions during all phases of the mission, including prelaunch sterilization. On the surface of Mars, the lander internal temperatures must be controlled under widely varying thermal environments and atmospheric conditions. The lander thermal design is based on the maximum use of passive techniques and is integrated into the overall vehicle design and operation. The solutions to the unusual combinations of design problems and a summary of the results of full scale model testing under simulated mission conditions are presented.

  8. The Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Kummerow, Christian D.; Meneghini, Robert; Hou, Arthur; Adler, Robert F.; Huffman, George; Barkstrom, Bruce; Wielicki, Bruce; Goodman, Steven J.; Christian, Hugh; Einaudi, Franco (Technical Monitor)

    1999-01-01

    Recognizing the importance of rain in the tropics and the accompanying latent heat release, NASA for the U.S. and NASDA for Japan have partnered in the design, construction and flight of an Earth Probe satellite to measure tropical rainfall and calculate the associated heating. Primary mission goals are: 1) the understanding of crucial links in climate variability by the hydrological cycle, 2) improvement in the large-scale models of weather and climate, and 3) improvement in understanding cloud ensembles and their impacts on larger scale circulations. The linkage with the tropical oceans and landmasses are also emphasized. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in November 1997 with fuel enough to obtain a four to five year data set of rainfall over the global tropics from 37 deg N to 37 deg S. This paper reports progress from launch date through the spring of 1999. The data system and its products and their access is described, as are the algorithms used to obtain the data. Some exciting early results from TRMM are described. Some important algorithm improvements are shown. These will be used in the first total data reprocessing, scheduled to be complete in early 2000. The reader is given information on how to access and use the data.

  9. Aqueous history of Mars as inferred from landed mission measurements of rocks, soils, and water ice

    NASA Astrophysics Data System (ADS)

    Arvidson, Raymond E.

    2016-09-01

    The missions that have operated on the surface of Mars acquired data that complement observations acquired from orbit and provide information that would not have been acquired without surface measurements. Data from the Viking Landers demonstrated that soils have basaltic compositions, containing minor amounts of salts and one or more strong oxidants. Pathfinder with its rover confirmed that the distal portion of Ares Vallis is the site of flood-deposited boulders. Spirit found evidence for hydrothermal deposits surrounding the Home Plate volcanoclastic feature. Opportunity discovered that the hematite signature on Meridiani Planum as seen from orbit is due to hematitic concretions concentrated on the surface as winds eroded sulfate-rich sandstones that dominate the Burns formation. The sandstones originated as playa muds that were subsequently reworked by wind and rising groundwater. Opportunity also found evidence on the rim of the Noachian Endurance Crater for smectites, with extensive leaching along fractures. Curiosity acquired data at the base of Mount Sharp in Gale Crater that allows reconstruction of a sustained fluvial-deltaic-lacustrine system prograding into the crater. Smectites and low concentrations of chlorinated hydrocarbons have been identified in the lacustrine deposits. Phoenix, landing above the Arctic Circle, found icy soils, along with low concentrations of perchlorate salt. Perchlorate is considered to be a strong candidate for the oxidant found by the Viking Landers. It is also a freezing point depressant and may play a role in allowing brines to exist at and beneath the surface in more modern periods of time on Mars.

  10. Martian Meteorological Lander

    NASA Astrophysics Data System (ADS)

    Vorontsov, V.; Pichkhadze, K.; Polyakov, A.

    2002-01-01

    much more reliable in comparison with MML of first and second options because their functional diagram is realized by operation of 3-4 (instead of 8-10 for MML of first and second concepts) executive devices. A distinctive moment for MML of last three concepts , namely for variants 3 and 5, is the final stage of landing stipulated by penetration of forebody into the soil. Such a profile of landing was taken into account during the development of one of the landing vehicles for the "MARS-96" SC. This will permit to implement simple technical decisions for putting the meteorological complex into operation and to carry out its further operations on the surface. After comparative analysis of 5 concepts for the more detailed development concepts with parachute system and with IBU and penetration unit have been chosen as most prospective. However, finally, on the next step the new modification of the lander (hybrid version of third and fifth option with inflatable braking device and penetrating unit) has been proposed and chosen for the next step of development. The several small stations should be transported to Mars in frameworks of Scout Mars mission, or Phobos Sample Return mission as piggyback payload.

  11. Land Measurement from Future Landsat Missions

    NASA Astrophysics Data System (ADS)

    Irons, J. R.; Masek, J. G.; Ochs, W. R.; Gao, F.

    2005-12-01

    The current strategy for implementing a successor mission to Landsat 7 involves the integration of Landsat sensors onto satellites under development for the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Unlike the data from other sensors planned for NPOESS satellites, Landsat data are not yet incorporated into algorithms for the generation of environmental data records. Placing the Landsat program into the NPOESS system creates the opportunity for defining and implementing environmental data records which fuse high resolution Landsat data with coarser resolution observations from the other sensors to create a suite of useful land measurement products. For example, a prototype product has been developed merging Landsat 7 Enhanced Thematic Mapper-Plus (ETM+) data with Moderate-Resolution Imaging Spectroradiometer (MODIS) data to create synthetic "daily" high resolution land reflectance images. This product is regarded as a preliminary step in creating annual, global land cover and land cover change maps meeting the needs of the Climate Change Science Program (CCSP) and other national and international environmental monitoring programs. The strategy for continuing the Landsat mission, the prototype land reflectance product, and the potential for using Landsat data to operationally produce a suite of land cover / land use change data records will be discussed.

  12. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; DeWeese, Keith; Vess, Melissa; O'Donnell, James R., Jr.; Welter, Gary

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation, and Control (GN&C) analysis team encountered four main on-orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GN&C engineers identified the anomalies and tracked down the root causes. Flight data and GN&C on-board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  13. Northeast View From Pathfinder Lander

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This panorama of the region to the northeast of the lander was constructed to support the Sojourner Rover Team's plans to conduct an 'autonomous traverse' to explore the terrain away from the lander after science objectives in the lander vicinity had been met. The large, relatively bright surface in the foreground, about 10 meters (33 feet) from the spacecraft, in this scene is 'Baker's Bench.' The large, elongated rock left of center in the middle distance is 'Zaphod.'

    This view was produced by combining 8 individual 'Superpan' scenes from the left and right eyes of the IMP camera. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  14. Phoenix Lander on Mars (Stereo)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander monitors the atmosphere overhead and reaches out to the soil below in this stereo illustration of the spacecraft fully deployed on the surface of Mars. The image appears three-dimensional when viewed through red-green stereo glasses.

    Phoenix has been assembled and tested for launch in August 2007 from Cape Canaveral Air Force Station, Fla., and for landing in May or June 2008 on an arctic plain of far-northern Mars. The mission responds to evidence returned from NASA's Mars Odyssey orbiter in 2002 indicating that most high-latitude areas on Mars have frozen water mixed with soil within arm's reach of the surface.

    Phoenix will use a robotic arm to dig down to the expected icy layer. It will analyze scooped-up samples of the soil and ice for factors that will help scientists evaluate whether the subsurface environment at the site ever was, or may still be, a favorable habitat for microbial life. The instruments on Phoenix will also gather information to advance understanding about the history of the water in the icy layer. A weather station on the lander will conduct the first study Martian arctic weather from ground level.

    The vertical green line in this illustration shows how the weather station on Phoenix will use a laser beam from a lidar instrument to monitor dust and clouds in the atmosphere. The dark 'wings' to either side of the lander's main body are solar panels for providing electric power.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems, Denver. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen (Denmark), the Max Planck Institute (Germany) and the Finnish Meteorological institute. JPL is a division of the California

  15. TRMM (Tropical Rainfall Measuring Mission): A satellite mission to measure tropical rainfall

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne (Editor)

    1988-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is presented. TRMM is a satellite program being studied jointly by the United States and Japan which would carry out the systematic study of tropical rainfall required for major strides in weather and climate research. The scientific justification for TRMM is discussed. The implementation process for the scientific community, NASA management, and the other decision-makers and advisory personnel who are expected to evaluate the priority of the project is outlined.

  16. Flow field measurements around a Mars lander model using hot film anemometers under simulated Mars surface conditions

    NASA Technical Reports Server (NTRS)

    Greene, G. C.; Keafer, L. S., Jr.; Marple, C. G.; Foughner, J. T., Jr.

    1972-01-01

    Results are presented from a wind-tunnel investigation of the flow field around a 0.45-scale model of a Mars lander. The tests were conducted in air at values of Reynolds number equivalent to those anticipated on Mars. The effects of Reynolds number equivalent to those anticipated on Mars. The effects of Reynolds number, model orientation with respect to the airstream, and the position of a dish-type antenna on the flow field were determined. An appendix is included which describes the calibration and operational characteristics of hot-film anemometers under simulated Mars surface conditions.

  17. NASA's Robotic Lunar Lander Development Project

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2012-01-01

    Since early 2005, NASA's Robotic Lunar Lander Development (RLLD) office at NASA MSFC, in partnership with the Applied Physics Laboratory (APL), has developed mission concepts and preformed risk-reduction activities to address planetary science and exploration objectives uniquely met with landed missions. The RLLD team developed several concepts for lunar human-exploration precursor missions to demonstrate precision landing and in-situ resource utilization, a multi-node lunar geophysical network mission, either as a stand-alone mission, or as part of the International Lunar Network (ILN), a Lunar Polar Volatiles Explorer and a Mercury lander mission for the Planetary Science decadal survey, and an asteroid rendezvous and landing mission for the Exploration Precursor Robotics Mission (xPRM) office. The RLLD team has conducted an extensive number of risk-reduction activities in areas common to all lander concepts, including thruster testing, propulsion thermal control demonstration, composite deck design and fabrication, and landing leg stability and vibration. In parallel, the team has developed two robotic lander testbeds providing closed-loop, autonomous hover and descent activities for integration and testing of flight-like components and algorithms. A compressed-air test article had its first flight in September 2009 and completed over 150 successful flights. This small test article (107 kg dry/146 kg wet) uses a central throttleable thruster to offset gravity, plus 3 descent thrusters (37lbf ea) and 6 attitude-control thrusters (12lbf ea) to emulate the flight system with pulsed operation over approximately 10s of flight time. The test article uses carbon composite honeycomb decks, custom avionics (COTS components assembled in-house), and custom flight and ground software. A larger (206 kg dry/322 kg wet), hydrogen peroxide-propelled vehicle began flight tests in spring 2011 and fly over 30 successful flights to a maximum altitude of 30m. The monoprop testbed

  18. Selection and Characterization of Landing Sites for Chandrayaan-2 Lander

    NASA Astrophysics Data System (ADS)

    Gopala Krishna, Barla; Amitabh, Amitabh; Srinivasan, T. P.; Karidhal, Ritu; Nagesh, G.; Manjusha, N.

    2016-07-01

    Indian Space Research Organisation has planned the second mission to moon known as Chandrayaan-2, which consists of an Orbiter, a Lander and a Rover. This will be the first soft landing mission of India on lunar surface. The Orbiter, Lander and Rover individually will carry scientific payloads that enhance the scientific objectives of Chandrayaan-2. The Lander soft lands on the lunar surface and subsequently Lander & Rover will carry on with the payload activities on the moon surface. Landing Site identification based on the scientific and engineering constrains of lander plays an important role in success of a mission. The Lander poses some constraints because of its engineering design for the selection of the landing site and on the other hand the landing site / region imparts some constrain on the Lander. The various constraints that have to be considered for the study of the landing site are Local slope, Sun illumination during mission life, Radio communication with the Earth, Global slope towards equator, Boulders size, Crater density and boulder distribution. This paper describes the characterization activities of the different landing locations which have been studied for Chandrayaan-2 Lander. The sites have been studied both in the South Polar and North Polar regions of the moon on the near side. The Engineering Constraints at the sites due to the Lander, Factors that affect mission life (i.e. illumination at the location), Factors influencing communication to earth (i.e. RF visibility) & Shadow movements have been studied at these locations and zones that are favourable for landing have been short listed. This paper gives methodology of these studies along with the results of the characteristics of all the sites and the recommendations for further action in finalizing the landing area.

  19. Artemis: Common lunar lander project status

    NASA Technical Reports Server (NTRS)

    Bailey, Stephen

    1992-01-01

    Information is given in viewgraph form on the Artemis Common Lunar Lander project status. The plans are to start the Space Exploration Initiative (SEI) with lunar robotic missions that can demonstrate the NASA cultural change and provide a catalyst for human exploration of the moon and Mars. The Artemis Common Lunar Lander Concept developed by the Johnson Space Center (JSC) has been accepted as the centerpiece of this lunar robotic exploration program. Topics covered include the anticipated program structure, a concept overview, lander value as a function of payload mass, the approach of the JSC in-house study, an example launch vehicle packaging concept, and the use of the Delta 2 launch vehicle.

  20. ROSETTA lander Philae - soil strength analysis

    NASA Astrophysics Data System (ADS)

    Roll, Reinhard; Witte, Lars; Arnold, Walter

    2016-12-01

    The landing of Philae, the lander of ESA's ROSETTA-mission, on November 12th 2014 on Comet 67P/Churyumov-Gerasimenko, was planned as a descent with passive landing activating a damper system and anchoring by harpoons at touch-down. The lander was not fixed to the ground at touch-down due to failing harpoons. The lander damper, however, was actuated for a length of 42.6 mm with a maximal speed of 0.08 m/s, while the lander speed was 1 m/s. Based on the damper data and a detailed mechanical model of Philae, an estimate can be made for the forces acting and the energy dissipated at touch-down inside the lander and the energy dissipated by ground penetration. The forces acting at ground penetration provide constraints on the mechanical strength of the soil. Two different soil models are investigated. Assuming constant compressive strength σ, one obtains σ ≈ 2 kPa. Assuming an increasing σs strength with penetration depth with results in σs = 3 kPa/m fits the damper data best.

  1. The Philae/Rosetta Lander at Comet 67P/Churyumov-Gerasimenko - First Result, on overview

    NASA Astrophysics Data System (ADS)

    Bibring, J. P.; Boehnhardt, H.

    2014-12-01

    The Philae lander onboard ESA Rosetta mission is planned to land November 11, 2014 on comet 67P/Churyumov-Gerasimenko. Before and during landing, descent, touch-down, then the days and weeks thereafter, campaigns of scientific measurements will be performed, involving the 10 instruments onboard, i.e. APXS, CIVA, CONSERT, COSAC, MUPUS, PTOLEMY, ROLIS, ROMAP, SD2 and SESAME. An overview of these activities will be provided and the first results from the Philae instruments presented and discussed.

  2. NASA's Robotic Lunar Lander Development Program

    NASA Technical Reports Server (NTRS)

    Ballard, Benjamin W.; Reed, Cheryl L. B.; Artis, David; Cole, Tim; Eng, Doug S.; Kubota, Sanae; Lafferty, Paul; McGee, Timothy; Morese, Brian J.; Chavers, Gregory; Moore, Joshua; Bassler, Julie A.; Cohen, D. Barbara; Farmer, Jeffrey; Freestone, Todd; Hammond, Monica S.; Hannan, Mike C.; Hill, Lawrence D.; Harris, Danny W.; Holloway, Todd A.; Lowery, John E.; Mulac, Brian D.; Stemple, Cindy

    2012-01-01

    NASA Marshall Space Flight Center and the Johns Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.

  3. Planetary cubesats - mission architectures

    NASA Astrophysics Data System (ADS)

    Bousquet, Pierre W.; Ulamec, Stephan; Jaumann, Ralf; Vane, Gregg; Baker, John; Clark, Pamela; Komarek, Tomas; Lebreton, Jean-Pierre; Yano, Hajime

    2016-07-01

    Miniaturisation of technologies over the last decade has made cubesats a valid solution for deep space missions. For example, a spectacular set 13 cubesats will be delivered in 2018 to a high lunar orbit within the frame of SLS' first flight, referred to as Exploration Mission-1 (EM-1). Each of them will perform autonomously valuable scientific or technological investigations. Other situations are encountered, such as the auxiliary landers / rovers and autonomous camera that will be carried in 2018 to asteroid 1993 JU3 by JAXA's Hayabusas 2 probe, and will provide complementary scientific return to their mothership. In this case, cubesats depend on a larger spacecraft for deployment and other resources, such as telecommunication relay or propulsion. For both situations, we will describe in this paper how cubesats can be used as remote observatories (such as NEO detection missions), as technology demonstrators, and how they can perform or contribute to all steps in the Deep Space exploration sequence: Measurements during Deep Space cruise, Body Fly-bies, Body Orbiters, Atmospheric probes (Jupiter probe, Venus atmospheric probes, ..), Static Landers, Mobile landers (such as balloons, wheeled rovers, small body rovers, drones, penetrators, floating devices, …), Sample Return. We will elaborate on mission architectures for the most promising concepts where cubesat size devices offer an advantage in terms of affordability, feasibility, and increase of scientific return.

  4. Digibaro pressure instrument onboard the Phoenix Lander

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.; Polkko, J.; Kahanpää, H. H.; Schmidt, W.; Genzer, M. M.; Haukka, H.; Savijarv1, H.; Kauhanen, J.

    2009-04-01

    The Phoenix Lander landed successfully on the Martian northern polar region. The mission is part of the National Aeronautics and Space Administration's (NASA's) Scout program. Pressure observations onboard the Phoenix lander were performed by an FMI (Finnish Meteorological Institute) instrument, based on a silicon diaphragm sensor head manufactured by Vaisala Inc., combined with MDA data processing electronics. The pressure instrument performed successfully throughout the Phoenix mission. The pressure instrument had 3 pressure sensor heads. One of these was the primary sensor head and the other two were used for monitoring the condition of the primary sensor head during the mission. During the mission the primary sensor was read with a sampling interval of 2 s and the other two were read less frequently as a check of instrument health. The pressure sensor system had a real-time data-processing and calibration algorithm that allowed the removal of temperature dependent calibration effects. In the same manner as the temperature sensor, a total of 256 data records (8.53 min) were buffered and they could either be stored at full resolution, or processed to provide mean, standard deviation, maximum and minimum values for storage on the Phoenix Lander's Meteorological (MET) unit.The time constant was approximately 3s due to locational constraints and dust filtering requirements. Using algorithms compensating for the time constant effect the temporal resolution was good enough to detect pressure drops associated with the passage of nearby dust devils.

  5. Automatic Hazard Detection for Landers

    NASA Technical Reports Server (NTRS)

    Huertas, Andres; Cheng, Yang; Matthies, Larry H.

    2008-01-01

    Unmanned planetary landers to date have landed 'blind'; that is, without the benefit of onboard landing hazard detection and avoidance systems. This constrains landing site selection to very benign terrain,which in turn constrains the scientific agenda of missions. The state of the art Entry, Descent, and Landing (EDL) technology can land a spacecraft on Mars somewhere within a 20-100km landing ellipse.Landing ellipses are very likely to contain hazards such as craters, discontinuities, steep slopes, and large rocks, than can cause mission-fatal damage. We briefly review sensor options for landing hazard detection and identify a perception approach based on stereo vision and shadow analysis that addresses the broadest set of missions. Our approach fuses stereo vision and monocular shadow-based rock detection to maximize spacecraft safety. We summarize performance models for slope estimation and rock detection within this approach and validate those models experimentally. Instantiating our model of rock detection reliability for Mars predicts that this approach can reduce the probability of failed landing by at least a factor of 4 in any given terrain. We also describe a rock detector/mapper applied to large-high-resolution images from the Mars Reconnaissance Orbiter (MRO) for landing site characterization and selection for Mars missions.

  6. Phoenix Mars Lander in Testing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's next Mars-bound spacecraft, the Phoenix Mars Lander, was partway through assembly and testing at Lockheed Martin Space Systems, Denver, in September 2006, progressing toward an August 2007 launch from Florida. In this photograph, spacecraft specialists work on the lander after its fan-like circular solar arrays have been spread open for testing. The arrays will be in this configuration when the spacecraft is active on the surface of Mars.

    Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. It will dig into the surface, test scooped-up samples for carbon-bearing compounds and serve as NASA's first exploration of a potential modern habitat on Mars.

    mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  7. NASA's Robotic Lander Takes Flight

    NASA Video Gallery

    On Wednesday, June 8, the lander prototype managed by the Robotic Lunar Lander Development Project at NASA's Marshall Space Flight Center in Huntsville, Ala., hovered autonomously for 15 seconds at...

  8. A mobile planetary lander utilizing elastic loop suspension

    NASA Technical Reports Server (NTRS)

    Trautwein, W.

    1976-01-01

    Efforts to increase the cost effectiveness of future lunar and planetary rover missions have led to the mobile lander concept, which replaces the landing legs of a soft-lander craft with a compact mobility system of sufficient strength to withstand the landing impact. The results of a mobile lander conceptual design effort based on existing NASA-Viking '75 hardware are presented. The elastic loop concept, developed as a post-Apollo rover technology, is found to meet stringent stowage, traction, power and weight requirements.

  9. Experiments on asteroids using hard landers

    NASA Technical Reports Server (NTRS)

    Turkevich, A.; Economou, T.

    1978-01-01

    Hard lander missions to asteroids are examined using the Westphal penetrator study as a basis. Imagery and chemical information are considered to be the most significant science to be obtained. The latter, particularly a detailed chemical analysis performed on an uncontaminated sample, may answer questions about the relationships of asteroids to meteorites and the place of asteroids in theories of the formation of the solar system.

  10. Precipitation Measurements from Space: The Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2007-01-01

    Water is fundamental to the life on Earth and its phase transition between the gaseous, liquid, and solid states dominates the behavior of the weather/climate/ecological system. Precipitation, which converts atmospheric water vapor into rain and snow, is central to the global water cycle. It regulates the global energy balance through interactions with clouds and water vapor (the primary greenhouse gas), and also shapes global winds and dynamic transport through latent heat release. Surface precipitation affects soil moisture, ocean salinity, and land hydrology, thus linking fast atmospheric processes to the slower components of the climate system. Precipitation is also the primary source of freshwater in the world, which is facing an emerging freshwater crisis in many regions. Accurate and timely knowledge of global precipitation is essential for understanding the behavior of the global water cycle, improving freshwater management, and advancing predictive capabilities of high-impact weather events such as hurricanes, floods, droughts, and landslides. With limited rainfall networks on land and the impracticality of making extensive rainfall measurements over oceans, a comprehensive description of the space and time variability of global precipitation can only be achieved from the vantage point of space. This presentation will examine current capabilities in space-borne rainfall measurements, highlight scientific and practical benefits derived from these observations to date, and provide an overview of the multi-national Global Precipitation Measurement (GPM) Mission scheduled to bc launched in the early next decade.

  11. Thermal Considerations for Designing the Next Lunar Lander

    NASA Astrophysics Data System (ADS)

    Garrison, Matthew B.; Nguyen, Daniel H.

    2007-01-01

    The Vision for Space Exploration calls for NASA to develop a lunar lander that is capable of delivering humans anywhere on the moon's surface at any time. This presents a significant challenge for thermal engineers, as the lander must be able to survive both the freezing 14-day long lunar night as well as the harsh lunar noon. These problems and potential solutions are presented for each stage of the proposed mission that will return American astronauts to the moon.

  12. Mars Atmosphere Argon Density Measurement on MER Mission

    NASA Astrophysics Data System (ADS)

    Economou, T. E.

    2008-11-01

    Using the Alpha Particle X-ray Spectrometer (APXS) on board Spirit and Opportunity rovers on MER mission, we were able to measure the argon density variation in the martian atmosphere as a function of seasonal changes.

  13. Mars pathfinder lander deployment mechanisms

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.

    1996-01-01

    The Mars Pathfinder Lander employs numerous mechanisms, as well as autonomous mechanical functions, during its Entry, Descent and Landing (EDL) Sequence. This is the first US lander of its kind, since it is unguided and airbag-protected for hard landing using airbags, instead of retro rockets, to soft land. The arrival condition, location, and orientation of the Lander will only be known by the computer on the Lander. The Lander will then autonomously perform the appropriate sequence to retract the airbags, right itself, and open, such that the Lander is nearly level with no airbag material covering the solar cells. This function uses two different types of mechanisms - the Airbag Retraction Actuators and the Lander Petal Actuators - which are designed for the high torque, low temperature, dirty environment and for limited life application. The development of these actuators involved investigating low temperature lubrication, Electrical Discharge Machining (EDM) to cut gears, and gear design for limited life use.

  14. Development of Mini-Landers for Very Small Lunar Surface Payloads

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.

    2013-01-01

    Over the last 5 years, NASA has invested in development and risk-reduction activities for a new generation of planetary landers capable of carrying instruments and technology demonstrations to the lunar surface and other airless bodies. The Robotic Lunar Lander Development Project (RLLDP) is jointly implemented by NASA Marshall Space Flight Center (MSFC) and the Johns Hopkins University Applied Physics Laboratory (APL). The RLLDP team has produced mission architecture designs for multiple airless body missions to meet both science and human precursor mission needs. The mission architecture concept studies encompass small, medium, and large landers, with payloads from a few kilograms to over 1000 kg, to the Moon and other airless bodies. The payload and concept of operations for the U.S. contribution to the ILN was guided by an independent Science Definition Team, which required each node to operate for 6 years continuously, including through lunar eclipse periods, and to carry a seismometer, heatflow probe, retroreflector, and electromagnetic sounding instrument. Some configuration trades using penetrators, hard landers, and soft landers are discussed in [1, 2]; the preferred concept became soft-landing propulsive landers discussed in [3]. The landers were sized primairly according to their power systems: an ASRG lander configuration is estimated at 155 kg dry mass, which includes a payload suite estimated at 23 kg including payload accommodation and deployment; a solar array-battery (SAB) lander configuration is somewhat larger at 265 kg of dry mass including a 19 kg payload suite with payload accommodation

  15. The development of Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    Kozu, Toshiaki; Kojima, Masahiro; Oikawa, Koki; Okamoto, Ken'ichi; Keating, Thomas; Cline, Helmut P.

    1992-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint-program between the U.S. and Japan. The objective of this international cooperative program is to carry out the systematic study of tropical rainfall required for major strides in weather and climate research. In this paper, launch operation, mission operation and data processing as well as the system design and development status of the TRMM satellite are presented.

  16. NASA Propulsion Concept Studies and Risk Reduction Activities for Resource Prospector Lander

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Williams, Hunter; Burnside, Chris

    2015-01-01

    The Resource Prospector mission is to investigate the Moon's polar regions in search of volatiles. The government-version lander concept for the mission is composed of a braking stage and a liquid-propulsion lander stage. A propulsion trade study concluded with a solid rocket motor for the braking stage while using the 4th-stage Peacekeeper (PK) propulsion components for the lander stage. The mechanical design of the liquid propulsion system was conducted in concert with the lander structure design. A propulsion cold-flow test article was fabricated and integrated into a lander development structure, and a series of cold flow tests were conducted to characterize the fluid transient behavior and to collect data for validating analytical models. In parallel, RS-34 PK thrusters to be used on the lander stage were hot-fire tested in vacuum conditions as part of risk reduction activities.

  17. The Global Precipitation Measurement (GPM) Mission: An Overview

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2006-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission that uses advanced precipitation radar with a constellation of passive microwave radiometers to improve the accuracy, sampling, and coverage of global precipitation measurements. It is a science mission with integrated applications goals focusing on (1) advancing the knowledge of the global watedenergy cycle variability and freshwater availability and (2) improving weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The GPM Mission is currently a partnership between NASA and the Japanese Aerospace Exploration Agency (JAXA), with opportunities for additional domestic and international partners in satellite constellation buildup and ground validation activities. The GPM Core satellite, which carries a JAXA-provided dual-frequency precipitation radar and a NASAprovided microwave radiometers with high-frequency capabilities for light rain and frozen precipitation measurements, is expected to be launched in the 2010 timeframe. The GPM Core will serve as a precipitation physics laboratory and a calibration system for improved precipitation measurements by a heterogeneous constellation of dedicated and operational microwave radiometers. NASA also plans to provide a "wild card" constellation member with a copy of the radiometer carried on the GPM Core to be placed in an orbit that maximizes the coverage and sampling of the constellation. An overview of the GPM mission concept, instrument capabilities, ground validation plans, and the expected scientific and societal benefits will be presented.

  18. Radio science experiments - The Viking Mars Orbiter and Lander.

    NASA Technical Reports Server (NTRS)

    Michael, W. H., Jr.; Cain, D. L.; Fjeldbo, G.; Levy, G. S.; Davies, J. G.; Grossi, M. D.; Shapiro, I. I.; Tyler, G. L.

    1972-01-01

    The objective of the radio science investigations is to extract the maximum scientific information from the data provided by the radio and radar systems on the Viking Orbiters and Landers. Unique features of the Viking missions include tracking of the landers on the surface of Mars, dual-frequency S- and X-band tracking data from the orbiters, lander-to-orbiter communications system data, and lander radar data, all of which provide sources of information for a number of scientific investigations. Post-flight analyses will provide both new and improved scientific information on physical and surface properties of Mars, on atmospheric and ionospheric properties of Mars, and on solar system properties.

  19. Summary Report of Mission Acceleration Measurements for STS-95

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Hrovat, Kenneth

    2000-01-01

    John H. Glenn's historic return to space was a primary focus of the STS-95 mission. The Hubble Space Telescope (HST) Orbital Systems Test (HOST). an STS-95 payload, was an in-flight demonstration of HST components to be installed during the next HST servicing mission. One of the components under evaluation was the cryocooler for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Based on concerns about vibrations from the operation of the NICMOS cryocooler affecting the overall HST line-of-sight requirements, the Space Acceleration Measurement System for Free-Flyers (SAMS-FF) was employed to measure the vibratory environment of the STS-95 mission, including any effects introduced by the NICMOS cryocooler. The STS-95 mission represents the first STS mission supported by SAMS-FF. Utilizing a Control and Data Acquisition Unit (CDU) and two triaxial sensor heads (TSH) mounted on the HOST support structure in Discovery's cargo bay, the SAMS-FF and the HOST project were able to make vibratory measurements both on-board the vibration-isolated NICMOS cryocooler and off-board the cryocooler mounting plate. By comparing the SAMS-FF measured vibrations on-board and off-board the NICMOS cryocooler, HST engineers could assess the cryocooler g-jitter effects on the HST line-of-sight requirements. The acceleration records from both SAMS-FF accelerometers were analyzed and significant features of the microgravity environment are detailed in this report.

  20. In Situ Atmospheric Pressure Measurements in the Martian Southern Polar Region: Mars Volatiles and Climate Surveyor Meteorology Package on the Mars Polar Lander

    NASA Technical Reports Server (NTRS)

    Harri, A.-M.; Polkko, J.; Siili, T.; Crisp, D.

    1998-01-01

    Pressure observations are crucial for the success of the Mars Volatiles and Climate Surveyor (MVACS) Meteorology (MET) package onboard the Mars Polar Lander (MPL), due for launch early next year. The spacecraft is expected to land in December 1999 (L(sub s) = 256 degrees) at a high southern latitude (74 degrees - 78 degrees S). The nominal period of operation is 90 sols but may last up to 210 sols. The MVACS/MET experiment will provide the first in situ observations of atmospheric pressure, temperature, wind, and humidity in the southern hemisphere of Mars and in the polar regions. The martian atmosphere goes through a large-scale atmospheric pressure cycle due to the annual condensation/sublimation of the atmospheric CO2. Pressure also exhibits short period variations associated with dust storms, tides, and other atmospheric events. A series of pressure measurements can hence provide us with information on the large-scale state and dynamics of the atmosphere, including the CO2 and dust cycles as well as local weather phenomena. The measurements can also shed light on the shorter time scale phenomena (e.g., passage of dust devils) and hence be important in contributing to our understanding of mixing and transport of heat, dust, and water vapor.

  1. Global precipitation measurement (GPM) mission core spacecraft systems engineering challenges

    NASA Astrophysics Data System (ADS)

    Bundas, David J.; O'Neill, Deborah; Rhee, Michael; Feild, Thomas; Meadows, Gary; Patterson, Peter

    2006-09-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  2. Mars Polar Lander: The Search Begins

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Science Systems. This model is illuminated in the same way that sunlight would illuminate the real lander at 2 p.m. local time in December 1999--in other words, the model is illuminated exactly the way it would be if it occurred in the MOC image shown above (left). This figure shows what the Mars Polar Lander would look like if viewed from above by cameras of different resolutions from 1 centimeter (0.4 inch) per pixel in the upper left to 1.5 meters (5 feet) per pixel in the lower right. The 1.5 meters per pixel view is the best resolution that can be achieved by MOC. Note that at MOC resolution, the lander is just a few pixels across.

    The problem of recognizing the lander in MOC images is obvious--all that might be seen is a pattern of a few bright and dark gray pixels. This means that it will be extremely difficult to identify the lander by looking at the relatively noisy MOC images that can be acquired at the landing site--like those shown in the top picture.

    How, then, is the MGS MOC team looking for the lander? Primarily, they are looking for associations of features that, together, would suggest whether or not the Mars landing was successful. For example, the parachute that was used to slow the lander from supersonic speeds to just under 300 km/hr (187 mph) was to have been jettisoned, along with part of the aeroshell that protected the lander from the extreme heat of entry, about 40 seconds before landing. The parachute and aeroshell are likely to be within a kilometer (6 tenths of a mile) of the lander. The parachute and aeroshell are nearly white, so they should stand out well against the red martian soil. The parachute, if lying on the ground in a fully open, flat position, would measure about 6 meters (20 feet)--thus it would cover three or four pixels (at most) in a MOC image. If the parachute can be found, the search for the lander can be narrowed to a small, nearby zone. If, as another example, the landing rockets kicked up a lot of dust and

  3. Using Engineering Cameras on Mars Landers and Rovers to Retrieve Atmospheric Dust Loading

    NASA Astrophysics Data System (ADS)

    Wolfe, C. A.; Lemmon, M. T.

    2014-12-01

    Dust in the Martian atmosphere influences energy deposition, dynamics, and the viability of solar powered exploration vehicles. The Viking, Pathfinder, Spirit, Opportunity, Phoenix, and Curiosity landers and rovers each included the ability to image the Sun with a science camera that included a neutral density filter. Direct images of the Sun provide the ability to measure extinction by dust and ice in the atmosphere. These observations have been used to characterize dust storms, to provide ground truth sites for orbiter-based global measurements of dust loading, and to help monitor solar panel performance. In the cost-constrained environment of Mars exploration, future missions may omit such cameras, as the solar-powered InSight mission has. We seek to provide a robust capability of determining atmospheric opacity from sky images taken with cameras that have not been designed for solar imaging, such as lander and rover engineering cameras. Operational use requires the ability to retrieve optical depth on a timescale useful to mission planning, and with an accuracy and precision sufficient to support both mission planning and validating orbital measurements. We will present a simulation-based assessment of imaging strategies and their error budgets, as well as a validation based on archival engineering camera data.

  4. A Discovery-Class Lunette Mission Concept for a Lunar Geophysical Network

    NASA Technical Reports Server (NTRS)

    Elliott, John; Alkalai, Leon

    2010-01-01

    The Lunette mission concept for a network of small, inexpensive lunar landers has evolved over the last three years as the focus of space exploration activities in the US has changed. Originating in a concept for multiple landers launched as a secondary payload capable of regional science and site survey activities, Lunette has recently been developed into a Discovery-class mission concept that offers global lunar coverage enabling network science on a much broader scale. A particular mission concept has been refined by the Lunette team that would result in a low-cost global lunar geophysical network, comprised of two landers widely spaced on the near side of the moon. Each of the two identical landers would carry a suite of instruments that would make continuous measurements of seismic activity, heat flow, and the electromagnetic environment during the full lunar day/night cycle. Each lander would also deploy a next-generation laser retroreflector capable of improving on distance measurement accuracy by an order of magnitude over those emplaced by the previous Apollo and Lunokhod missions. This paper presents a comprehensive overview of the Lunette geophysical network mission concept, including mission and flight system design, as well as the key requirements and constraints that guided them.

  5. Triton Explorer - Neptune Orbiter Mission Study

    NASA Astrophysics Data System (ADS)

    Balint, T. S.; Shirley, J. H.

    2005-12-01

    Triton is larger than the planet Pluto, and its highly inclined, retrograde orbit suggests that it may be a captured object that initially formed somewhere else in the solar system. Its composition (and its inventory of organic materials) is thus of considerable interest. Triton possesses an appreciable atmosphere, and its circulation, like that of Mars, is one of seasonal condensation flow between the southern and northern hemispheres. Although the surface pressure is only ~ 16 microbar, winds of 5-15 m / sec flow toward the equator from the sunlit hemisphere. Voyager 2 detected a number of plumes extending from the surface to approximately 8 km elevation within the atmosphere. Triton exhibits a variety of puzzling surface features; among these are structural features that suggest extensive faulting in the past, together with ice volcanism, and dark streaks that may be associated with the plumes. The Solar System Exploration Decadal Survey (NRC, 2003) lists a Neptune Orbiter / Triton Explorer as a "Deferred High-Priority Flight Mission" that may be considered for the second decade of this century. Likely science objectives for a Triton Lander mission would include a more complete characterization of the composition and circulation of the atmosphere; investigation of the physical processes responsible for plume formation; surface composition measurements; and geophysical monitoring, including seismological measurements that could potentially constrain the physics of plume eruptions. We describe here a conceptual dual-Lander mission to explore Triton's surface. Each of the two Landers would be powered by a standard multi-mission radioisotope thermoelectric generator (MMRTG). These Landers could operate on the surface of Triton for several years. A companion Neptune Orbiter would provide telecommunication links between the Landers and the Earth, and would be instrumented to observe both Triton and Neptune. Although a Jupiter Icy Moons Orbiter (JIMO) follow-on mission

  6. Rosetta Lander - Philae: Operations on 67P and attempts for Long Term Science

    NASA Astrophysics Data System (ADS)

    Ulamec, Stephan; Biele, Jens; Cozzoni, Barbara; Delmas, Cedric; Fantinati, Cinzia; Geurts, Koen; Jansen, Sven; Jurado, Eric; Küchemann, Oliver; Lommatsch, Valentina; Maibaum, Michael; O'Rourke, Laurence

    2016-04-01

    Philae is a comet Lander, part of Rosetta which is a Cornerstone Mission of the ESA Horizon 2000 programme. Philae successfully landed on comet 67P/Churyumov-Gerasimenko on November 12th, 2014 and performed a First Scientific Sequence, based on the energy stored in it's on board batteries. All ten instruments of the Philae payload have been operated at least once. Due to the fact that the final landing site (after several bounces) was poorly illuminated, Philae went into hibernation on November 15th, and the teams hoped for a wake-up at closer heliocentric distances. Signals from the Lander were indeed received on June 13th when 67P was at a distance of about 1.4 AU from the Sun. Housekeeping values showed that Philae had already been active earlier, but no RF contact with the mothership could be established. Seven more times, signals from Philae were received, the last ones on July 9th, 2015. Unfortunately, no reliable or predictable links could be achieved. The paper will give an overview of the activities with Philae after its hibernation, interpretation of the received housekeeping data and the various strategies to attempt more contacts and long term science measurements. Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta's Philae Lander is provided by a consortium led by DLR, MPS, CNES and ASI with additional contributions from Hungary, UK, Finland, Ireland and Austria.

  7. Cold Pressor Response in High Landers Versus Low Landers

    PubMed Central

    Ghildiyal, Archana; Goyal, Manish; Verma, Dileep; Singh, Shraddha; Tiwari, Sunita

    2014-01-01

    Background: Native high landers face two main environmental challenges i.e. hypobaric hypoxia and low ambient temperatures. Both factors contribute to increased sympathetic stimulation and increased blood pressure. Despite these challenges, subjects living at high altitude have lower systolic and diastolic pressures as compared to subjects living in plains. Present study investigated cold pressor test (CPT) which is a potential predictor of future hypertension in high landers and low landers Materials and Methods: Vascular reactivity in terms of changes in systolic and diastolic blood pressure and heart rate in response to cold pressor test has been compared in high lander (n=45) and low lander (n=46) population. Results: Systolic and diastolic blood pressure changes and heart rate changes with cold pressor test are lower in high landers as compared to low landers. Females in both the groups in general exhibited greater cold pressor response than males. Conclusion: Hypo-reactive cold pressor test is due to higher parasympathetic tone and lower sympathetic tone. Decreased cold pressor response in high landers reflects another adaptive modulation of sympatho-vagal activity that enables them to stay in hypobaric atmosphere and lower temperatures without undue autonomic stress. PMID:25478333

  8. Enabling technologies for Chinese Mars lander guidance system

    NASA Astrophysics Data System (ADS)

    Jiang, Xiuqiang; Li, Shuang

    2017-04-01

    Chinese first Mars exploration activity, orbiting landing and roaming collaborative mission, has been programmed and started. As a key technology, Mars lander guidance system is intended to serve atmospheric entry, descent and landing (EDL) phases. This paper is to report the formation process of enabling technology road map for Chinese Mars lander guidance system. First, two scenarios of the first-stage of the Chinese Mars exploration project are disclosed in detail. Second, mission challenges and engineering needs of EDL guidance, navigation, and control (GNC) are presented systematically for Chinese Mars exploration program. Third, some useful related technologies developed in China's current aerospace projects are pertinently summarized, especially on entry guidance, parachute descent, autonomous hazard avoidance and safe landing. Finally, an enabling technology road map of Chinese Mars lander guidance is given through technological inheriting and improving.

  9. Robotic Lander Prototype Completes Initial Tests

    NASA Video Gallery

    NASA's Robotic Lunar Lander Development Project at Marshall Space Flight Center in Huntsville, Ala., completed an initial series of integrated tests on a new lander prototype. The prototype lander ...

  10. Hopper concepts for small body landers

    NASA Astrophysics Data System (ADS)

    Ulamec, S.; Kucherenko, V.; Biele, J.; Bogatchev, A.; Makurin, A.; Matrossov, S.

    2011-02-01

    The investigation of small bodies, comets and asteroids, can contribute substantially to our understanding of the formation and history of the Solar System. In situ observations by landers play an important role in this field.Due to the low gravity of comets and asteroids, mobility of surface elements can be achieved by hopping devices, providing relatively low delta-v.The first such hopper was part of the Soviet Phobos 2 Mission in the 1980s.The current paper presents the results of a study for a small (˜10 kg) hopper device, optimized for a mission to a relatively small asteroid. The hopper may, e.g. be considered as part of the Japanese Hayabusa 2 mission, to be launched in the 2014/15 timeframe.Concepts for the actuation of the hopper, dynamics and mechanical aspects are discussed in further detail.

  11. Aerobot measurements successfully obtained during Solo Spirit Balloon Mission

    NASA Astrophysics Data System (ADS)

    Avidson, Raymond E.; Bowman, Judd D.; Guinness, Edward A.; Johnson, Sarah S.; Slavney, S. H.; Stein, Thomas C.; Bachelder, Aaron D.; Cameron, Jonathan M.; Cutts, James A.; Ivlev, Robert V.; Kahn, Ralph A.

    Robotic balloons, also known as aerobots, have become candidates for collecting atmospheric data and detailed surface observations of Venus, Mars, and Titan. A mission to Venus over a decade ago used two of them. Their inclusion last year in attempts by a balloonist to circumnavigate the Earth aptly demonstrated their utility for remote sensing and in situ observations of planetary atmospheres.To simulate aspects of an aerobot mission, a small payload to measure local atmospheric conditions and balloon position and velocity was included on Solo Spirit “Round the World” flights during January and August of last year. These missions, flown in Roziere balloons, were attempts by Steve Fossett to become the first person to circumnavigate the globe in a balloon without stopping. Neither attempt was successful, but the aerobot came through with flying colors.

  12. Science potential from a Europa lander.

    PubMed

    Pappalardo, R T; Vance, S; Bagenal, F; Bills, B G; Blaney, D L; Blankenship, D D; Brinckerhoff, W B; Connerney, J E P; Hand, K P; Hoehler, T M; Leisner, J S; Kurth, W S; McGrath, M A; Mellon, M T; Moore, J M; Patterson, G W; Prockter, L M; Senske, D A; Schmidt, B E; Shock, E L; Smith, D E; Soderlund, K M

    2013-08-01

    The prospect of a future soft landing on the surface of Europa is enticing, as it would create science opportunities that could not be achieved through flyby or orbital remote sensing, with direct relevance to Europa's potential habitability. Here, we summarize the science of a Europa lander concept, as developed by our NASA-commissioned Science Definition Team. The science concept concentrates on observations that can best be achieved by in situ examination of Europa from its surface. We discuss the suggested science objectives and investigations for a Europa lander mission, along with a model planning payload of instruments that could address these objectives. The highest priority is active sampling of Europa's non-ice material from at least two different depths (0.5-2 cm and 5-10 cm) to understand its detailed composition and chemistry and the specific nature of salts, any organic materials, and other contaminants. A secondary focus is geophysical prospecting of Europa, through seismology and magnetometry, to probe the satellite's ice shell and ocean. Finally, the surface geology can be characterized in situ at a human scale. A Europa lander could take advantage of the complex radiation environment of the satellite, landing where modeling suggests that radiation is about an order of magnitude less intense than in other regions. However, to choose a landing site that is safe and would yield the maximum science return, thorough reconnaissance of Europa would be required prior to selecting a scientifically optimized landing site.

  13. Rock Moved by Mars Lander Arm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location.

    'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team.

    The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape.

    The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been.

    This image was taken at about 12:30 p.m., local solar time on Mars. The view is to the north northeast of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  14. Neutral Gas and Ion Measurements by the CONTOUR Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Niemann, Hasso B. (Technical Monitor)

    2002-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Comet Nucleus Tour (CONTOUR) Mission will measure the chemical and isotopic composition of neutral and ion species in the coma of comet Encke and the subsequent targets of this mission. Currently the second target of this mission is comet Schwassmann-Wachmann 3. This neutral gas and ion data together with complementary data from the dust analyzer and the imaging spectrometer is designed to allow a broad characterization of the molecular and elemental composition of each cometary nucleus. These experiments enable the study of the of the likely variations in chemical conditions present in different regions of the early solar nebula where the comets formed. With these experiments we will also test ideas about cometary contributions of organics, water, and other volatiles to the inner planets. The CONTOUR NGIMS data set from multiple comets is expected to provide an important extension of to the only other detailed in situ data set from a close flyby of a nucleus, that from Halley. CONTOUR will extend this measurement of an Oort cloud comet to the class of short period comets thought to originate in the Kuiper belt. This data will complement the detailed measurements to be carried out at a single nucleus by the Rosetta Mission.

  15. MarsLab: A HEDS Lander Concept

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; McKay, C.; Connolly, J.

    2000-01-01

    Recognizing that the human exploration of Mars will be a science-focused enterprise, the Human Exploration and Development of Space (HEDS) program set out three years ago to develop a mix of science and technology Lander payloads as a first step toward a human mission. With three experiments ready for flight and four more in development, the HEDS Mars program has the capability to stage missions with considerable impact. This presentation describes one such mission design by no means unique. Ambitious in scope, it encompasses elements of all seven HEDS payloads in a configuration with a uniquely HEDS character. Pragmatically, a subset of these elements could be selected for existing small Lander platforms. Bristling with scientific experiments, technology demonstrations, and outreach elements, MarsLab represents a prototype of a manned science station or scientific outpost. A cartoon overview of MarsLab defines its major elements, explained more fully in the sections that follow. The concept is endorsed by PI's of the various HEDS payloads, details of which are presented elsewhere at this workshop.

  16. In Brief: Ice at Mars lander site

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-07-01

    Eight dice-sized bits of ice vanished within 4 days from a trench dug on Mars by the robotic arm on NASA's Phoenix lander, confirming what scientists suspected the material was. ``It must be ice,'' said mission principal investigator Peter Smith of the University of Arizona, Tucson. ``These little clumps completely disappearing over the course of a few days: that is perfect evidence that it's ice. There had been some question whether the bright material was salt. Salt can't do that,'' he said.

  17. Lunar lander stage requirements based on the Civil Needs Data Base

    NASA Technical Reports Server (NTRS)

    Mulqueen, John A.

    1992-01-01

    This paper examines the lunar lander stages that will be necessary for the future exploration and development of the Moon. Lunar lander stage sizing is discussed based on the projected lunar payloads listed in the Civil Needs Data Base. Factors that will influence the lander stage design are identified and discussed. Some of these factors are (1) lunar orbiting and lunar surface lander bases; (2) implications of direct landing trajectories and landing from a parking orbit; (3) implications of landing site and parking orbit; (4) implications of landing site and parking orbit selection; (5) the use of expendable and reusable lander stages; and (6) the descent/ascent trajectories. Data relating the lunar lander stage design requirements to each of the above factors and others are presented in parametric form. These data will provide useful design data that will be applicable to future mission model modifications and design studies.

  18. Two Stage Battery System for the ROSETTA Lander

    NASA Astrophysics Data System (ADS)

    Debus, André

    2002-01-01

    The ROSETTA mission, lead by ESA, will be launched by Ariane V from Kourou in January 2003 and after a long trip, the spacecraft will reach the comet Wirtanen 46P in 2011. The mission includes a lander, built under the leadership of DLR, on which CNES has a large participation and is concerned by providing a part of the payload and some lander systems. Among these, CNES delivers a specific battery system in order to comply with the mission environment and the mission scenario, avoiding particularly the use of radio-isotopic heaters and radio-isotopic electrical generators usually used for such missions far from the Sun. The battery system includes : - a pack of primary batteries of lithium/thionyl chloride cells, this kind of generator - a secondary stage, including rechargeable lithium-ion cells, used as redundancy for the - a specific electronic system dedicated to the battery handling and to secondary battery - a mechanical and thermal (insulation, and heating devices) structures permitting the The complete battery system has been designed, built and qualified in order to comply with the trip and mission requirements, keeping within low mass and low volume limits. This battery system is presently integrated into the Rosetta Lander flight model and will leave the Earth at the beginning of next year. Such a development and experience could be re-used in the frame of cometary and planetary missions.

  19. The ROSETTA PHILAE Lander damping mechanism as probe for the Comet soil strength.

    NASA Astrophysics Data System (ADS)

    Roll, R.

    2015-10-01

    The ROSETTA Lander is equipped with an one axis damping mechanism to dissipate kinetic energy during the touch down. This damping is necessary to avoid damages to the Lander by a hard landing shock and more important to avoid re-bouncing from ground with high velocity. The damping mechanism works best for perpendicular impact, which means the velocity vector is parallel to the damper axis and all three feet touch the ground at the same time. That is usually not the case. Part of the impact energy can be transferred into rotational energy at ground contact if the impact is not perpendicular. This energy will lift up the Lander from the ground if the harpoons and the hold down thruster fail, as happen in mission. The damping mechanism itself is an electrical generator, driven by a spindle inside a telescopic tube. This tube was extended in mission for landing by 200mm. A maximum damping length of 140mm would be usually required to compensate a landing velocity of 1m/s, if the impact happens perpendicular on hard ground. After landing the potentiometer of the telescopic tube reading shows a total damping length of only 42,5mm. The damping mechanism and the overall mechanical behavior of the Lander at touch down are well tested and characterized and transferred to a multi-body computer model. The incoming and outgoing flightpath of PHILAE allow via computer-simulation the reconstruction of the touch down. It turns out, that the outgoing flight direction is dominated by the local ground slope and that the damping length is strongly dependent on the soil strength. Damping of soft comet ground must be included to fit the damping length measured. Scenario variations of the various feet contact with different local surface features (stone or regolith) and of different soil models finally lead to a restricted range for the soil strength at the touch down area.

  20. Low Cost Approach to Mars Pathfinder and Small Landers

    NASA Technical Reports Server (NTRS)

    Spear, Anthony J.

    1994-01-01

    NASA'sMars Surveyor Program will launch several small orbiters to Mars, each carrying subsets fo the Mars Observer instruments, starting as early as '96, to achieve the Mars Observer Mission objectives. Small landers will follow, as early as '98, accomplishing surface investigations as determined by the NASA AO process.

  1. ARIM-1: The Atmospheric Refractive Index Measurements Sounding Rocket Mission

    NASA Technical Reports Server (NTRS)

    Ruiz, B. Ian (Editor)

    1995-01-01

    A conceptual design study of the ARIM-1 sounding rocket mission, whose goal is to study atmospheric turbulence in the tropopause region of the atmosphere, is presented. The study was conducted by an interdisciplinary team of students at the University of Alaska Fairbanks who were enrolled in a Space Systems Engineering course. The implementation of the ARIM-1 mission will be carried out by students participating in the Alaska Student Rocket Program (ASRP), with a projected launch date of August 1997. The ARIM-1 vehicle is a single stage sounding rocket with a 3:1 ogive nose cone, a payload diameter of 8 in., a motor diameter of 7.6 in., and an overall height of 17.0 ft including the four fins. Emphasis is placed on standardization of payload support systems. The thermosonde payload will measure the atmospheric turbulence by direct measurement of the temperature difference over a distance of one meter using two 3.45-micron 'hot-wire' probes. The recovery system consists of a 6 ft. diameter ribless guide surface drogue chute and a 33 ft. diameter main cross parachute designed to recover a payload of 31 pounds and slow its descent rate to 5 m/s through an altitude of 15 km. This document discusses the science objectives, mission analysis, payload mechanical configuration and structural design, recovery system, payload electronics, ground station, testing plans, and mission implementation.

  2. The MetNet vehicle: a lander to deploy environmental stations for local and global investigations of Mars

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti; Pichkadze, Konstantin; Zeleny, Lev; Vazquez, Luis; Schmidt, Walter; Alexashkin, Sergey; Korablev, Oleg; Guerrero, Hector; Heilimo, Jyri; Uspensky, Mikhail; Finchenko, Valery; Linkin, Vyacheslav; Arruego, Ignacio; Genzer, Maria; Lipatov, Alexander; Polkko, Jouni; Paton, Mark; Savijärvi, Hannu; Haukka, Harri; Siili, Tero; Khovanskov, Vladimir; Ostesko, Boris; Poroshin, Andrey; Diaz-Michelena, Marina; Siikonen, Timo; Palin, Matti; Vorontsov, Viktor; Polyakov, Alexander; Valero, Francisco; Kemppinen, Osku; Leinonen, Jussi; Romero, Pilar

    2017-02-01

    Investigations of global and related local phenomena on Mars such as atmospheric circulation patterns, boundary layer phenomena, water, dust and climatological cycles and investigations of the planetary interior would benefit from simultaneous, distributed in situ measurements. Practically, such an observation network would require low-mass landers, with a high packing density, so a large number of landers could be delivered to Mars with the minimum number of launchers.The Mars Network Lander (MetNet Lander; MNL), a small semi-hard lander/penetrator design with a payload mass fraction of approximately 17 %, has been developed, tested and prototyped. The MNL features an innovative Entry, Descent and Landing System (EDLS) that is based on inflatable structures. The EDLS is capable of decelerating the lander from interplanetary transfer trajectories down to a surface impact speed of 50-70 m s-1 with a deceleration of < 500 g for < 20 ms. The total mass of the prototype design is ≈ 24 kg, with ≈ 4 kg of mass available for the payload.The EDLS is designed to orient the penetrator for a vertical impact. As the payload bay will be embedded in the surface materials, the bay's temperature excursions will be much less than if it were fully exposed on the Martian surface, allowing a reduction in the amount of thermal insulation and savings on mass.The MNL is well suited for delivering meteorological and atmospheric instruments to the Martian surface. The payload concept also enables the use of other environmental instruments. The small size and low mass of a MNL makes it ideally suited for piggy-backing on larger spacecraft. MNLs are designed primarily for use as surface networks but could also be used as pathfinders for high-value landed missions.

  3. Program control on the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Pennington, Dorothy J.; Majerowicw, Walter

    1994-01-01

    The Tropical Rainfall Measuring Mission (TRMM), an integral part of NASA's Mission to Planet Earth, is the first satellite dedicated to measuring tropical rainfall. TRMM will contribute to an understanding of the mechanisms through which tropical rainfall influences global circulation and climate. Goddard Space Flight Center's (GSFC) Flight Projects Directorate is responsible for establishing a Project Office for the TRMM to manage, coordinate, and integrate the various organizations involved in the development and operation of this complex satellite. The TRMM observatory, the largest ever developed and built inhouse at GSFC, includes state-of-the-art hardware. It will carry five scientific instruments designed to determine the rate of rainfall and the total rainfall occurring between the north and south latitudes of 35 deg. As a secondary science objective, TRMM will also measure the Earth's radiant energy budget and lightning.

  4. ATMOS: Long term atmospheric measurements for mission to planet Earth

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A long-term, space-based measurement program, together with continued balloon and aircraft-borne investigations, is essential to monitor the predicted effects in the atmosphere, to determine to what extent the concentration measurements agree with current models of stratospheric chemistry, and to determine the condition of the ozone layer. The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment is currently making comprehensive, global measurements of Earth's atmosphere as part of the Atmospheric Laboratory for Applications and Science (ATLAS) program on the Space Shuttle. Part of NASA's Mission to Planet Earth, ATLAS is a continuing series of missions to study Earth and the Sun and provide a more fundamental understanding of the solar influences on Earth's atmosphere. The ATMOS program, instruments, and science results are presented.

  5. Rosetta Lander - Philae: First Landing and Operations on a Comet

    NASA Astrophysics Data System (ADS)

    Ulamec, Stephan; Biele, Jens; Delmas, Cedric; Fantinati, Cinzia; Gaudon, Philippe; Geurts, Koen; Jurado, Eric; Lommatsch, Valentina; Maibaum, Michael; Moussi-Soffys, Aurélie; Salatti, Mario

    2015-04-01

    Philae is a comet Lander, part of Rosetta which is a Cornerstone Mission of the ESA Horizon 2000 programme. In August 2014 Rosetta did rendezvous with comet 67P/Churyumov-Gerasimenko (CG) after a 10 year cruise. Both its nucleus and coma have been studied allowing the selection of a landing site for Philae. Philae was separated from the Rosetta main spacecraft on November 12, 2014 and touched the comet surface after seven hours of descent. After several bounces it came to rest and continued to send scientific data to Earth. All ten instruments of its payload have been operated at least once. Due to the fact that the Lander could not be anchored, the originally planned first scientific sequence had to be modified. Philae went into hibernation on November 15th, after its primary battery ran out of energy. Re-activation of the Lander is expected in spring/summer 2015 when CG is closer to the sun and the solar generator of Philae will provide more power. The paper will give an overview of separation, descent and landing, the search for the final landing spot as well as Lander operations after separation. Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta's Philae lander is provided by a consortium led by DLR, MPS, CNES and ASI with additional contributions from Hungary, UK, Finland, Ireland and Austria.

  6. Phoenix Lander on Mars with Surrounding Terrain, Polar Projection

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view is a polar projection that combines more than 500 exposures taken by the Surface Stereo Imager camera on NASA's Mars Phoenix Lander and projects them as if looking down from above.

    The black circle on the spacecraft is where the camera itself is mounted on the lander, out of view in images taken by the camera. North is toward the top of the image. The lander's meteorology mast extends above the southwest horzon and is topped by the telltale wind gauge.

    The ground surface around the lander has polygonal patterning similar to patterns in permafrost areas on Earth. The landing site is at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars.

    This view in approximately true color comprises more than 100 different Stereo Surface Imager pointings, with images taken through three different filters at each pointing. The images were taken throughout the period from the 13th Martian day, or sol, after landing to the 47th sol (June 5 through July 12, 2008). The lander's Robotic Arm is cut off in this mosaic view because component images were taken when the arm was out of the frame.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. In-Situ Propellant Supplied Lunar Lander Concept

    NASA Astrophysics Data System (ADS)

    Donahue, Benjamin; Maulsby, Curtis

    2008-01-01

    Future NASA and commercial Lunar missions will require innovative spacecraft configurations incorporating reliable, sustainable propulsion, propellant storage, power and crew life support technologies that can evolve into long duration, partially autonomous systems that can be used to emplace and sustain the massive supplies required for a permanently occupied lunar base. Ambitious surface science missions will require efficient Lunar transfer systems to provide the consumables, science equipment, energy generation systems, habitation systems and crew provisions necessary for lengthy tours on the surface. Lunar lander descent and ascent stages become significantly more efficient when they can be refueled on the Lunar surface and operated numerous times. Landers enabled by Lunar In-Situ Propellant Production (ISPP) facilities will greatly ease constraints on spacecraft mass and payload delivery capability, and may operate much more affordably (in the long term) then landers that are dependant on Earth supplied propellants. In this paper, a Lander concept that leverages ISPP is described and its performance is quantified. Landers, operating as sortie vehicles from Low Lunar Orbit, with efficiencies facilitated by ISPP will enable economical utilization and enhancements that will provide increasingly valuable science yields from Lunar Bases.

  8. The Global Precipitation Measurement Mission: NASA Status and Early Results

    NASA Astrophysics Data System (ADS)

    Skofronick-Jackson, Gail; Huffman, G.; Petersen, W.; Kidd, Chris

    The Global Precipitation Measurement (GPM) mission’s Core satellite, launched 27 February 2014, is well-designed to estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth’s water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. GPM is a joint NASA-JAXA mission. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)’s highly successful rain-sensing package. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65 (°) non-Sun-synchronous orbit serving as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory carries a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR provides measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements places greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM mission science objectives and instrument

  9. Remote Raman System for Planetary Landers: Data Reduction and Analysis

    NASA Technical Reports Server (NTRS)

    Horton, K. A.; Domergue-Schmidt, N.; Sharma, S. K.; Deb, P.; Lucey, P. G.

    2000-01-01

    Raman spectroscopy is typically envisioned as an in situ analysis technique. Raman spectra measured remotely (10s of meters) from a planetary lander can be calibrated to spectral radiance and the Raman scattering efficiency can be determined.

  10. The ExoMars 2016 mission

    NASA Astrophysics Data System (ADS)

    Svedhem, Håkan; Vago, Jorge; de Groot, Rolf

    2015-11-01

    The ExoMars programme is a joint activity by the European Space Agency (ESA) and ROSCOSMOS, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, Schiaparelli, and the Exomars 2018 mission which carries a lander and a rover.The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector for search of subsurface hydrogen. ESA is providing the TGO spacecraft and the Schiaparelli Lander demonstrator and two of the TGO instruments and ROSCOSMOS is providing the launcher and the other two TGO instruments.After the arrival of the ExoMars 2018 mission at the surface of Mars, the TGO will handle the communication between the Earth and the Rover and lander through its UHF communication system. The 2016 mission will be launched by a Russian Proton rocket from Baikonur in January 2016 and will arrive at Mars in October the same year. This presentation will cover a description of the 2016 mission, including the spacecraft, its payload and science and the related plans for scientific operations and measurements.

  11. Attitude reconstruction of ROSETTA's Lander PHILAE using two-point magnetic field observations by ROMAP and RPC-MAG

    NASA Astrophysics Data System (ADS)

    Heinisch, Philip; Auster, Hans-Ulrich; Richter, Ingo; Hercik, David; Jurado, Eric; Garmier, Romain; Güttler, Carsten; Glassmeier, Karl-Heinz

    2016-08-01

    As part of the European Space Agency's ROSETTA Mission the Lander PHILAE touched down on comet 67P/Churyumov-Gerasimenko on November 12, 2014. The magnetic field has been measured onboard the orbiter and the lander. The orbiter's tri-axial fluxgate magnetometer RPC-MAG is one of five sensors of the ROSETTA Plasma Consortium. The lander is also equipped with a tri-axial fluxgate magnetometer as part of the ROSETTA Lander Magnetometer and Plasma-Monitor package (ROMAP). This unique setup makes a two point measurement between the two spacecrafts in a relatively small distance of less than 50 km possible. Both magnetometers were switched on during the entire descent, the initial touchdown, the bouncing between the touchdowns and after the final touchdown. We describe a method for attitude determination by correlating magnetic low-frequency waves, which was tested under different conditions and finally used to reconstruct PHILAE's attitude during descent and after landing. In these cases the attitude could be determined with an accuracy of better than ± 5 °. These results were essential not only for PHILAE operations planning but also for the analysis of the obtained scientific data, because nominal sources for this information, like solar panel currents and camera pictures could not provide sufficient information due to the unexpected landing position.

  12. NASA's Global Precipitation Measurement (GPM) Mission for Science and Society

    NASA Astrophysics Data System (ADS)

    Jackson, Gail

    2016-04-01

    Water is fundamental to life on Earth. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The Global Precipitation Measurement (GPM) Mission, launched February 27, 2014, is an international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. The joint NASA-JAXA GPM Core Observatory serves as the cornerstone and anchor to unite the constellation radiometers. The GPM Core Observatory carries a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. As a science mission with integrated application goals, GPM is designed to (1) advance precipitation measurement capability from space through combined use of active and passive microwave sensors, (2) advance the knowledge of the global water/energy cycle and freshwater availability through better description of the space-time variability of global precipitation, and (3) improve weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of instantaneous precipitation rates and time-integrated rainfall accumulation. Since launch, the instruments have been collecting outstanding precipitation data. New scientific insights resulting from GPM data, an overview of the GPM mission concept and science activities in the United States

  13. Measuring the permittivity of the surface of the Churyumov-Gerasimenko nucleus: the PP-SESAME experiment on board the Philae/ROSETTA lander

    NASA Astrophysics Data System (ADS)

    Lethuillier, A.; Le Gall, A. A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.

    2014-12-01

    Within Philae, the lander of the Rosetta spacecraft, the Permittivity Probe (PP) experiment as part of the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME) package was designed to measure the low frequency (Hz-kHz) electrical properties of the close subsurface of the nucleus.At frequencies below 10 kHz, the electrical signature of the matter is especially sensitive to the presence of water ice and its temperature. PP-SESAME will thus allow to determine the water ice content in the near-surface and to monitor its diurnal and orbital variations thus providing essential insight on the activity and evolution of the cometary nucleus.The PP-SESAME instrument is derived from the quadrupole array technique. A sinusoidal electrical current is sent into the ground through a first dipole, and the induced electrical voltage is measured with a second dipole. The complex permittivity of the material is inferred from the mutual impedance derived from the measurements. In practice, the influence of both the electronic circuit of the instrument and the conducting elements in its close environment must be accounted for in order to best estimate the dielectric constant and electric conductivity of the ground. To do this we have developed a method called the "capacity-influence matrix method".A replica of the instrument was recently built in LATMOS (France) and was tested in the frame of a field campaign in the giant ice cave system of Dachstein, Austria. In the caves, the ground is covered with a thick layer of ice, which temperature is rather constant throughout the year. This measurement campaign allowed us to test the "capacity influence matrix method" in a natural icy environment.The first measurements of the PP-SESAME/Philae experiment should be available in mid-November. In this paper we will present the "capacity-influence matrix method", the measurements and results from the Austrian field campaign and the preliminary analysis of the PP-SESAME/Philae data.

  14. Global Precipitation Measurement (GPM) Mission Applications: Activities, Challenges, and Vision

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Hou, Arthur

    2012-01-01

    Global Precipitation Measurement (GPM) is an international satellite mission to provide nextgeneration observations of rain and snow worldwide every three hours. NASA and the Japan Aerospace Exploration Agency (JAXA) will launch a "Core" satellite carrying advanced instruments that will set a new standard for precipitation measurements from space. The data they provide will be used to unify precipitation measurements made by an international network of partner satellites to quantify when, where, and how much it rains or snows around the world. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information to directly benefit society. Building upon the successful legacy of the Tropical Rainfall Measuring Mission (TRMM), GPM's next-generation global precipitation data will lead to scientific advances and societal benefits within a range of hydrologic fields including natural hazards, ecology, public health and water resources. This talk will highlight some examples from TRMM's IS-year history within these applications areas as well as discuss some existing challenges and present a look forward for GPM's contribution to applications in hydrology.

  15. Command and data management system (CDMS) of the Philae lander

    NASA Astrophysics Data System (ADS)

    Balázs, A.; Baksa, A.; Bitterlich, H.; Hernyes, I.; Küchemann, O.; Pálos, Z.; Rustenbach, J.; Schmidt, W.; Spányi, P.; Sulyán, J.; Szalai, S.; Várhalmi, L.

    2016-08-01

    The paper covers the principal requirements, design concepts and implementation of the hardware and software for the central on-board computer (CDMS) of the Philae lander in the context of the ESA Rosetta space mission, including some technical details. The focus is on the implementation of fault tolerance, autonomous operation and operational flexibility by means of specific linked data structures and code execution mechanisms that can be interpreted as a kind of object oriented model for mission sequencing.

  16. NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.; Bassler, Julie A.; Ballard, Benjamin; Chavers, Greg; Eng, Doug S.; Hammond, Monica S.; Hill, Larry A.; Harris, Danny W.; Hollaway, Todd A.; Kubota, Sanae; Morse, Brian J.; Mulac, Brian D.; Reed, Cheryl L.

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA's robotic lunar lander flight projects. Additional mission studies have been conducted to support other objectives of the lunar science and exploration community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects.

  17. Development of an Audio Microphone for the Mars Surveyor 98 Lander

    NASA Astrophysics Data System (ADS)

    Delory, G. T.; Luhmann, J. G.; Curtis, D. W.; Friedman, L. D.; Primbsch, J. H.; Mozer, F. S.

    1998-01-01

    In December 1999, the next Mars Surveyor Lander will bring the first microphone to the surface of Mars. The Mars Microphone represents a joint effort between the Planetary Society and the University of California at Berkeley Space Sciences Laboratory and is riding on the lander as part of the LIDAR instrument package provided by the Russian Academy of Sciences in Moscow. The inclusion of a microphone on the Mars Surveyor Lander represents a unique opportunity to sample for the first time the acoustic environment on the surface, including both natural and lander-generated sounds. Sounds produced by martian meteorology are among the signals to be recorded, including wind and impacts of sand particles on the instrument. Photographs from the Viking orbiters as well as Pathfinder images show evidence of small tornado-like vortices that may be acoustically detected, along with noise generated by static discharges possible during sandstorms. Lander-generated sounds that will be measured include the motion and digging of the lander arm as it gathers soil samples for analysis. Along with these scientific objectives, the Mars Microphone represents a powerful tool for public outreach by providing sound samples on the Internet recorded during the mission. The addition of audio capability to the lander brings us one step closer to a true virtual presence on the Mars surface by complementing the visual capabilities of the Mars Surveyor cameras. The Mars Microphone is contained in a 5 x 5 x 1 cm box, weighs less than 50 g, and uses 0.1 W of power during its most active times. The microphone used is a standard hearing-aid electret. The sound sampling and processing system relies on an RSC-164 speech processor chip, which performs 8-bit A/ D sampling and sound compression. An onboard flight program enables several modes for the instrument, including varying sample ranges of 5 kHz and 20 kHz, and a selectable gain setting with 64x dynamic range. The device automatically triggers on

  18. Scientific preparations for lunar exploration with the European Lunar Lander

    NASA Astrophysics Data System (ADS)

    Carpenter, J. D.; Fisackerly, R.; De Rosa, D.; Houdou, B.

    2012-12-01

    Recent Lunar missions and new scientific results in multiple disciplines have shown that working and operating in the complex lunar environment and exploiting the Moon as a platform for scientific research and further exploration poses major challenges. Underlying these challenges are fundamental scientific unknowns regarding the Moon's surface, its environment, the effects of this environment and the availability of potential resources. The European Lunar Lander is a mission proposed by the European Space Agency to prepare for future exploration. The mission provides an opportunity to address some of these key unknowns and provide information of importance for future exploration activities. Areas of particular interest for investigation on the Lunar Lander include the integrated plasma, dust, charge and radiation environment and its effects, the properties of lunar dust and its physical effects on systems and physiological effects on humans, the availability, distribution and potential application of in situ resources for future exploration. A model payload has then been derived, taking these objectives to account and considering potential payloads proposed through a request for information, and the mission's boundary conditions. While exploration preparation has driven the definition there is a significant synergy with investigations associated with fundamental scientific questions. This paper discusses the scientific objectives for the ESA Lunar Lander Mission, which emphasise human exploration preparatory science and introduces the model scientific payload considered as part of the on-going mission studies, in advance of a formal instrument selection.

  19. Battery and Fuel Cell Development Goals for the Lunar Surface and Lander

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    2008-01-01

    NASA is planning a return to the moon and requires advances in energy storage technology for its planned lunar lander and lunar outpost. This presentation describes NASA s overall mission goals and technical goals for batteries and fuel cells to support the mission. Goals are given for secondary batteries for the lander s ascent stage and suits for extravehicular activity on the lunar surface, and for fuel cells for the lander s descent stage and regenerative fuel cells for outpost power. An overall approach to meeting these goals is also presented.

  20. Life Sciences Investigations for ESA's First Lunar Lander

    NASA Astrophysics Data System (ADS)

    Carpenter, J. D.; Angerer, O.; Durante, M.; Linnarson, D.; Pike, W. T.

    2010-12-01

    Preparing for future human exploration of the Moon and beyond is an interdisciplinary exercise, requiring new technologies and the pooling of knowledge and expertise from many scientific areas. The European Space Agency is working to develop a Lunar Lander, as a precursor to future human exploration activities. The mission will demonstrate new technologies and perform important preparatory investigations. In the biological sciences the two major areas requiring investigation in advance of human exploration are radiation and its effects on human physiology and the potential toxicity of lunar dust. This paper summarises the issues associated with these areas and the investigations planned for the Lunar Lander to address them.

  1. Plasma instruments on the Rosetta Lander

    NASA Astrophysics Data System (ADS)

    Apathy, I.; Auster, H. U.; Berghofer, G.; Remizov, A.; Rosenbauer, H.; Romap Team

    2003-04-01

    The scientific objectives, design, and capabilities of the ROSETTA Lander experiment ROMAP are presented. Main scientific goals of ROMAP are (1) long term measurements on the surface to study the cometary activity as function of the distance from the Sun and (2) magnetic measurements during the descent phase of the Lander to investigate the structure of a possible remnant magnetization of the nucleus. The Rosetta Lander experiment ROMAP consists as magnetometer, electrostatic analyser, faraday cup and two pressure sensors. Electrostatic analyser and faraday cup are able to determine the major solar wind parameters like density, speed, temperature, and flow direction by measuring ions up to 8.000keV and electrons up to 4.200keV. The Magnetometer is able to determine the magnetic field vector up to 32Hz with 10pT resolution. The pressure measurement will be done with a combined Penning and Minipirani sensor in a range between 10-8 to 10 mbar. The paper demonstrates the high integration level of sensors and electronics. That is the basic for a combined field/plasma measurement instrument with less than 1 Watt power consumption and 1 kg mass.

  2. The Chang'e 3 Mission Overview

    NASA Astrophysics Data System (ADS)

    Li, Chunlai; Liu, Jianjun; Ren, Xin; Zuo, Wei; Tan, Xu; Wen, Weibin; Li, Han; Mu, Lingli; Su, Yan; Zhang, Hongbo; Yan, Jun; Ouyang, Ziyuan

    2015-07-01

    The Chang'e 3 (CE-3) mission was implemented as the first lander/rover mission of the Chinese Lunar Exploration Program (CLEP). After its successful launch at 01:30 local time on December 2, 2013, CE-3 was inserted into an eccentric polar lunar orbit on December 6, and landed to the east of a 430 m crater in northwestern Mare Imbrium (19.51°W, 44.12°N) at 21:11 on December 14, 2013. The Yutu rover separated from the lander at 04:35, December 15, and traversed for a total of 0.114 km. Acquisition of science data began during the descent of the lander and will continue for 12 months during the nominal mission. The CE-3 lander and rover each carry four science instruments. Instruments on the lander are: Landing Camera (LCAM), Terrain Camera (TCAM), Extreme Ultraviolet Camera (EUVC), and Moon-based Ultraviolet Telescope (MUVT). The four instruments on the rover are: Panoramic Camera (PCAM), VIS-NIR Imaging Spectrometer (VNIS), Active Particle induced X-ray Spectrometer (APXS), and Lunar Penetrating Radar (LPR). The science objectives of the CE-3 mission include: (1) investigation of the morphological features and geological structures of and near the landing area; (2) integrated in-situ analysis of mineral and chemical composition of and near the landing area; and (3) exploration of the terrestrial-lunar space environment and lunar-based astronomical observations. This paper describes the CE-3 objectives and measurements that address the science objectives outlined by the Comprehensive Demonstration Report of Phase II of CLEP. The CE-3 team has archived the initial science data, and we describe data accessibility by the science community.

  3. Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite to unify precipitation measurements from the constellation of sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder

  4. Hard Substrate, Possibly Ice, Uncovered Under the Mars Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Robotic Arm Camera on NASA's Phoenix Mars Lander captured this image underneath the lander on the fifth Martian day, or sol, of the mission. Descent thrusters on the bottom of the lander are visible at the top of the image.

    This view from the north side of the lander toward the southern leg shows smooth surfaces cleared from overlying soil by the rocket exhaust during landing. One exposed edge of the underlying material was seen in Sol 4 images, but the newer image reveals a greater extent of it. The abundance of excavated smooth and level surfaces adds evidence to a hypothesis that the underlying material is an ice table covered by a thin blanket of soil.

    The bright-looking surface material in the center, where the image is partly overexposed, may not be inherently brighter than the foreground material in shadow.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. An overview of NASA's ASCENDS Mission's Lidar Measurement Requirements

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Browell, E. V.; Menzies, R. T.; Lin, B.; Spiers, G. D.; Ismail, S.

    2014-12-01

    The objectives of NASA's ASCENDS mission are to improve the knowledge of global CO2 sources and sinks by precisely measuring the tropospheric column abundance of atmospheric CO2 and O2. The mission will use a continuously operating nadir-pointed integrated path differential absorption (IPDA) lidar in a polar orbit. The lidar offers a number of important new capabilities and will measure atmospheric CO2 globally over a wide range of challenging conditions, including at night, at high latitudes, through hazy and thin cloud conditions, and to cloud tops. The laser source enables a measurement of range, so that the absorption path length to the scattering surface will be always accurately known. The lidar approach also measures consistently in a nadir-zenith path and the narrow laser linewidth allows weighting the measurement to the lower troposphere. Using these measurements with atmospheric and flux models will allow improved estimates of CO2 fluxes and hence better understanding of the processes that exchange CO2 between the surface and atmosphere. The ASCENDS formulation team has developed a preliminary set of requirements for the lidar measurements. These were developed based on experience gained from the numerous ASCENDS airborne campaigns that have used different candidate lidar measurement techniques. They also take into account the complexity of making precise measurement of atmospheric gas columns when viewing the Earth from space. Some of the complicating factors are the widely varying reflectance and topographic heights of the Earth's land and ocean surfaces, the variety of cloud types, and the degree of cloud and aerosol absorption and scattering in the atmosphere. The requirements address the precision and bias in the measured column mixing ratio, the dynamic range of the expected surface reflected signal, the along-track sampling resolution, measurements made through thin clouds, measurements to forested and slope surfaces, range precision, measurements

  6. Connecting the Dots: Lander, Heat Shield, Parachute

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This enhanced-color image from Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) camera shows the Phoenix landing area viewed from orbit. The spacecraft appears more blue than it would in reality. From top to bottom are the Phoenix lander with its solar panels deployed on the Martian surface, the heat shield and bounce mark the heat shield made on the Martian surface, and the top of the Phoenix parachute attached to the bottom of the back shell.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Ground truth observations for TRMM. [Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Thiele, Otto W.

    1989-01-01

    Plans to obtain ground truth data for the validation of the Tropical Rainfall Measuring Mission (TRMM) are examined. The experimental rainfall measuring techniques considered for the program are discussed, including optical and Doppler rain gages, satellite beacon attenuation, underwater hydrophones, profilers, microwave attenuation, multiple frequency/polarization radar, and scanning and airborne Doppler radar. The TRMM validation program is considered, noting observations to compare averaged TRMM rainfall data with similar ground truth data and to compare the rainfall and height distribution data from TRMM with instantaneous ground truth data.

  8. Morpheus Lander Hot Fire Test

    NASA Video Gallery

    This video shows a successful "hot fire" test of the Morpheus lander on February 27, 2012, at the VTB Flight Complex at NASA's Johnson Space Center. The engine burns for an extended period of time ...

  9. Mars 2001 Orbiter, Lander and Rover

    NASA Astrophysics Data System (ADS)

    Saunders, R. S.

    1999-09-01

    The Mars 2001 mission is well equipped to analyze the surface of Mars. The mission: 1) completes MO objectives with gamma ray spectrometer elemental mapping, 2) explores a new region of the Martian surface, and 3) is the first in the combined Mars strategy of the Human Exploration and Development of Space (HEDS) and Space Science Enterprises of NASA. The mission demonstrates technologies and collects environmental data that provide the basis for permanent outposts or a decision to send humans to Mars. Potential sites include ancient crust and ancient aqueous environments. The orbiter carries the gamma ray spectrometer, a thermal emission spectrometer (THEMIS) and imager that will map the mineral abundance at selected sites and a radiation experiment, Marie, to assess radiation hazards. The lander carries a suite of Space Science and HEDS instruments including a robotic arm with camera. The arm will deploy a Moessbauer spectrometer to determine the state of iron in the soil. The arm will deploy the rover and dig up to 0.5 m to deliver soil to MECA, the soil and dust characterization experiments. The Mars In Situ Propellant Precursor Experiment (MIP) will assess in situ propellant production technology and produce oxygen from the Martian atmosphere. The landed Marie radiation experiment will assess radiation hazards on the surface. The lander carries a panoramic camera bore-sighted with a thermal emission spectrometer (PanCam/MiniTES) to allow comparison between mineralogical data and elemental data. The descent imaging system (MARDI) will image from parachute deployment to the surface. The rover is Sojourner class, with an upgraded Alpha Proton X-ray Spectrometer (APXS) experiment carefully calibrated on Earth and on Mars. The instruments will be operated in an integrated mode to provide maximum capability to explore and characterize a new region on Mars. MSP-01 is a NASA/JPL Mission.

  10. Morpheus Lander Testing Campaign

    NASA Technical Reports Server (NTRS)

    Hart, Jeremy J.; Mitchell, Jennifer D.

    2011-01-01

    NASA s Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing designed to serve as a testbed for advanced spacecraft technologies. The Morpheus vehicle has successfully performed a set of integrated vehicle test flights including hot-fire and tether tests, ultimately culminating in an un-tethered "free-flight" This development and testing campaign was conducted on-site at the Johnson Space Center (JSC), less than one year after project start. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper documents the integrated testing campaign, including descriptions of test types (hot-fire, tether, and free-flight), test objectives, and the infrastructure of JSC testing facilities. A major focus of the paper will be the fast pace of the project, rapid prototyping, frequent testing, and lessons learned from this departure from the traditional engineering development process at NASA s Johnson Space Center.

  11. Rosetta Lander - Philae: preparations for landing on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Ulamec, S.; Biele, J.; Jurado, E.; Gaudon, P.; Geurts, K.

    2013-12-01

    Rosetta is a Cornerstone Mission of the ESA Horizon 2000 programme. It is going to rendezvous with comet 67P/Churyumov-Gerasimenko after a ten year cruise and will study both its nucleus and coma with an orbiting spacecraft as well as with a Lander, Philae, that has been designed to land softly on the comet nucleus. Aboard Philae, a payload consisting of ten scientific instruments will perform in-situ studies of the cometary material. Philae will be separated from the mother spacecraft from a dedicated delivery trajectory. It then descends, ballistically, to the surface of the comet, stabilized with an internal flywheel. At touch-down anchoring harpoons will be fired and a damping mechanism within the landing gear will provide the lander from re-bouncing. Currently the characteristics of the nucleus of the comet are hardly known. Mapping with the orbiter cameras (shape, slopes, surface roughness) and essential measurements like gravity field, state of rotation or outgassing parameters can only be performed after arrival of the main spacecraft, between May and October 2014. These data will be used for selecting a landing site and defining the detailed landing strategy. Landing is foreseen for November 2014 at a heliocentric distance of 3 AU. The paper describes the Rosetta Lander system and its payload, but emphasizes on the preparations for landing, the landing site selection process and the planned operational timeline.

  12. Progress of the Dust Accumulation and Removal Technology Experiment (DART) for the Mars 2001 Lander

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Landis, Geoffrey A.; Wilt, David; Krasowski, Michael; Greer, Lawrence; Baraona, Cosmo; Scheiman, David

    2005-01-01

    Dust deposition could be a significant problem for photovoltaic array operation for long duration missions on the surface of Mars. Measurements made by Pathfinder showed 0.3 percent loss of solar array performance per day due to dust obscuration. We have designed an experiment package, "DART", which is part of the Mars ISPP Precursor (MIP) package, to fly on the Mars-2001 Surveyor Lander. This mission, to launch in April 2001, will arrive on Mars in January 2002. The DART experiment is designed to quantify dust deposition from the Mars atmosphere, measure the properties of settled dust, measure the effect of dust deposition on array performance, and test several methods of clearing dust from solar cells.

  13. Lunar Lander Structural Design Studies at NASA Langley

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Antol, Jeffrey; Watson, Judith J.; Flick, John J.; Saucillo, Rudolph J.; Mazanek, Daniel D.; North, David D.

    2007-01-01

    The National Aeronautics and Space Administration is currently developing mission architectures, vehicle concepts and flight hardware to support the planned human return to the Moon. During Phase II of the 2006 Lunar Lander Preparatory Study, a team from the Langley Research Center was tasked with developing and refining two proposed Lander concepts. The Descent-Assisted, Split Habitat Lander concept uses a disposable braking stage to perform the lunar orbit insertion maneuver and most of the descent from lunar orbit to the surface. The second concept, the Cargo Star Horizontal Lander, carries ascent loads along its longitudinal axis, and is then rotated in flight so that its main engines (mounted perpendicular to the vehicle longitudinal axis) are correctly oriented for lunar orbit insertion and a horizontal landing. Both Landers have separate crew transport volumes and habitats for surface operations, and allow placement of large cargo elements very close to the lunar surface. As part of this study, lightweight, efficient structural configurations for these spacecraft were proposed and evaluated. Vehicle structural configurations were first developed, and preliminary structural sizing was then performed using finite element-based methods. Results of selected structural design and trade studies performed during this activity are presented and discussed.

  14. Experimental Enhanced Upper Stage (XEUS): An affordable large lander system

    NASA Astrophysics Data System (ADS)

    Scotkin, J.; Masten, D.; Powers, J.; O'Konek, N.; Kutter, B.; Stopnitzky, B.

    The Experimental Enhanced Upper Stage (XEUS) offers a path to reduce costs and development time to sustainable activity beyond LEO by equipping existing large cryogenic propulsion stages with MSS VTVL propulsion and GNC to create a large, multi-thrust axis lander. Conventional lander designs have been driven by the assumption that a single, highly reliable, and efficient propulsion system should conduct the entire descent, approach, and landing. Compromises in structural, propulsion, and operational efficiency result from this assumption. System reliability and safety also suffer. The result is often an iterative series of optimizations, making every subsystem mission-unique and expensive. The XEUS multi-thrust axis lander concept uniquely addresses the programmatic and technical challenges of large-mass planetary landing by taking advantage of proven technologies and decoupling the deorbit and descent propulsion system from the landing propulsion system. Precise control of distributed, multi-thrust axis landing propulsion units mounted on the horizontal axis of a Centaur stage will ultimately enable the affordable deployment of large planetary rovers, uncrewed base infrastructure and manned planetary expeditions. The XEUS lander has been designed to offer a significantly improved mass fraction and mass to surface capability over conventional lander designs, while reducing airlock/payload to surface distances and distributing plume effects by using multiple gimbaled landing thrusters. In utilizing a proven cryogenic propulsion stage, XEUS reduces development costs required for development of new cryogenic propulsion stages and fairings and builds upon the strong heritage of successful Centaur and MSS RLV flights.

  15. Radioscience and seismic measurements for the INSIGHT mission about interior of Mars.

    NASA Astrophysics Data System (ADS)

    Dehant, Véronique; Asmar, Sami; Folkner, William; Lognonné, Philippe; Banerdt, Bruce; Smrekar, Suzanne; Rivoldini, Attilio; Christensen, Ulrich; Giardini, Domenico; Pike, Tom; Clinton, John; Garcia, Raphael; Johnson, Catherine; Kobayashi, Naoki; Knapmeyer-Endrun, Brigitte; Mimoun, David; Mocquet, Antoine; Panning, Mark; Tromp, Jeroen; Weber, Renee

    2015-04-01

    We shall use the X-band radio link of the future 2016 InSIGHT (Interior exploration using Seismic Investigations, Geodesy, and Heat Transport) lander on the surface of Mars with the objective to better determine the rotation and interior structure of Mars. This X-band radio link consists in two-way Doppler measurements from a direct radio-link between the Martian lander and deep space tracking stations on the Earth. On the basis of these measurements, it will be possible to monitor the lander position relative to the Earth and in turn to improve the determination of the Mars' orientation and rotation parameters (MOP), i.e. the rotation rate variations (or Length of Days LOD), the precession rate and the nutations of the rotation axis. As these MOP parameters are related to the interior of the planet, we further discuss the expected improvement in our knowledge of Mars' interior in synergy with the seismic data, which include the tidal data. We will show in particular how to determine the state, size, and composition of the Martian core. These parameters are very important for understanding the evolution of Mars.

  16. Global Precipitation Measurement (GPM) Mission: NASA Precipitation Processing System (PPS)

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2008-01-01

    NASA is contributing the precipitation measurement data system PPS to support the GPM mission. PPS will distribute all GPM data products including NASA s GMI data products freely and quickly. PPS is implementing no system mechanisms for restricting access to GPM data. PPS is implementing no system mechanisms for charging for GPM data products. PPS will provide a number of geographical and parameter subsetting features available to its users. The first implementation of PPS (called PPS--) will assume processing of TRMM data effective 1 June 2008. TRMM realtime data will be available via PPS- to all users requesting access

  17. Gas Pressure Measurements on Space Shuttle Mission-39.

    DTIC Science & Technology

    2007-11-02

    AIR FORCE BASE, MA 01731-3010 D2 fC QUPC BP TD 1 GAS PRESSURE MEASUREMENTS ON SPACE SHUTTLE MISSION-39 William F. Denig Rodney A. Viereck 9 April 1996...DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time...VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1 . AGENCY USE ONLY (Leave

  18. Analysis of TRMM Microphysical Measurements: Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    SPEC Incorporated participated in three of the four TRMM field campaigns (TEFLUN-A, TEFLUN-B and KWAJEX), installing and operating a cloud particle imager (CPI) and a high volume precipitation spectrometer (HVPS) on the SPEC Learjet in TEFLUN-A, the University of North Dakota Citation in TEFLUN-B and KWAJEX, and a CPI on the NASA DC-8 in KWAJEX. This report presents and discusses new software tools and algorithms that were developed to analyze microphysical data collected during these field campaigns, as well as scientific interpretations of the data themselves. Software algorithms were developed to improve the analysis of microphysical measurements collected by the TRMM aircraft during the field campaigns. Particular attention was paid to developing and/or improving algorithms used to compute particle size distributions and ice water content. Software was also developed in support of production of the TRMM Common Microphysical Product (CMP) data files. CMP data files for TEFLUN-A field campaign were produced and submitted to the DAAC. Typical microphysical properties of convective and stratiform regions from TEFLUN-A and KWAJEX clouds were produced. In general, it was found that in the upper cloud region near -20 to -25 C, stratiform clouds contain very high (greater than 1 per cubic centimeter) concentrations of small ice particles, which are suspected to be a residual from homogeneous freezing and sedimentation of small drops in a convective updraft. In the upper cloud region near -20 to -25 C, convective clouds contain aggregates, which are not found lower in the cloud. Stratiform clouds contain aggregates at all levels, with the majority in the lowest levels. Convective cloud regions contain much higher LWC and drop concentrations than stratiform regions at all levels, and higher LWC in the middle and upper regions. Stratiform clouds contain higher IWC than convective clouds only at the lowest level. Irregular shaped ice particles are found in very high

  19. New Method for Astrometric Measurements in Space Mission, JASMINE.

    NASA Astrophysics Data System (ADS)

    Yano, T.; Gouda, N.; Yamada, Y.

    2006-08-01

    We present a new method for measuring positions of stars in the Milky Way Galaxy by astrometric satellite, JASMINE, which is in progress at the National Astronomical Observatory of Japan. JASMINE is the acronym of the Japan Astrometry Satellite Mission for Infrared (z-band : 0.9 micron) Exploration, and is planned to be launched around 2015 The main objective of JASMINE is to study the fundamental structure and evolution of the bulge components of the Milky Way Galaxy. In order to accomplish these objectives, JASMINE will measure trigonometric parallaxes, positions and proper motions of about a few million stars during the observational program, with the precision of 10 microarcsec at z =14mag. The telescope of JASMINE has just one field of view, which is different from other astrometric satellites like Hipparcos and GAIA, that have two fields of view with large angle. These satellites, Hipparcos and GAIA, scan along the great circle with the spin axis perpendicular to both two fields of view to estimate the relative positions of stars on the great circle. They scan many different great circles to observe all the sky. On the other hand, JASMINE will take overlapping fields of view without any gaps to survey an area of about 20deg*10deg. Accordingly survey area covers the region of about 20deg*10deg in the bulge component. JASMINE will continue the above procedure for observing the area during the mission life. As a consequence, JASMINE will observe the restricted regions around the Galactic bulge and sweep repeatedly. The mission life is planned to be 5 years.

  20. New method for astrometric measurements in Space Mission, JASMINE

    NASA Astrophysics Data System (ADS)

    Yano, T.; Gouda, N.; Yamada, Y.

    We present a new method for measuring positions of stars in the Milky Way Galaxy by astrometric satellite, JASMINE, which is in progress at the National Astronomical Observatory of Japan. JASMINE is the acronym of the Japan Astrometry Satellite Mission for Infrared (z-band : 0.9 micron) Exploration, and is planned to be launched around 2015 The main objective of JASMINE is to study the fundamental structure and evolution of the bulge components of the Milky Way Galaxy. In order to accomplish these objectives, JASMINE will measure trigonometric parallaxes, positions and proper motions of about a few million stars during the observational program, with the precision of 10 microarcsec at z =14mag. The telescope of JASMINE has just one field of view, which is different from other astrometric satellites like Hipparcos and GAIA, that have two fields of view with large angle. These satellites, Hipparcos and GAIA, scan along the great circle with the spin axis perpendicular to both two fields of view to estimate the relative positions of stars on the great circle. They scan many different great circles to observe all the sky. On the other hand, JASMINE will take overlapping fields of view without any gaps to survey an area of about 20deg×10deg. Accordingly survey area covers the region of about 20deg×10deg in the bulge component. JASMINE will continue the above procedure for observing the area during the mission life. As a consequence, JASMINE will observe the restricted regions around the Galactic bulge and sweep repeatedly. The mission life is planned to be 5 years.

  1. SRAG Measurements Performed During the Orion EFT-1 Mission

    NASA Technical Reports Server (NTRS)

    Gaza, Ramona

    2015-01-01

    The Exploration Flight Test 1 (EFT-1) was the first flight of the Orion Multi-Purpose Crew Vehicle (MPCV). The flight was launched on December 5, 2014, by a Delta IV Heavy rocket and lasted 4.5 hours. The EFT-1 trajectory involved one low altitude orbit and one high altitude orbit with an apogee of almost 6000 km. As a result of this particular flight profile, the Orion MPCV passed through intense regions of trapped protons and electron belts. In support of the radiation measurements aboard the EFT-1, the Space Radiation Analysis Group (SRAG) provided a Battery-operated Independent Radiation Detector (BIRD) based on Timepix radiation monitoring technology similar to that employed by the ISS Radiation Environmental Monitors (REM). In addition, SRAG provided a suite of optically and thermally stimulated luminescence detectors, with 2 Radiation Area Monitor (RAM) units collocated with the BIRD instrument for comparison purposes, and 6 RAM units distributed at different shielding configurations within the Orion MPCV. A summary of the EFT-1 Radiation Area Monitors (RAM) mission dose results obtained from measurements performed in the Space Radiation Dosimetry Laboratory at the NASA Johnson Space Center will be presented. Each RAM included LiF:Mg,Ti (TLD-100), (6)LiF:Mg,Ti (TLD-600), (7)LiF:Mg,Ti (TLD-700), Al2O3:C (Luxel trademark), and CaF2:Tm (TLD-300). The RAM mission dose values will be compared with the BIRD instrument total mission dose. In addition, a similar comparison will be shown for the ISS environment by comparing the ISS RAM data with data from the six Timepix-based REM units deployed on ISS as part of the NASA REM Technology Demonstration.

  2. Development of a prototype fluid volume measurement system. [for urine volume measurement on space missions

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Sabin, C. M.; Meckel, P. T.

    1974-01-01

    The research is reported in applying the axial fluid temperature differential flowmeter to a urine volume measurement system for space missions. The fluid volume measurement system is described along with the prototype equipment package. Flowmeter calibration, electronic signal processing, and typical void volume measurements are also described.

  3. The Tropical Rainfall Measuring Mission (TRMM) Progress Report

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Meneghini, Robert; Kummerow, Christian D.; Meneghini, Robert; Hou, Arthur; Adler, Robert F.; Huffman, George; Barkstrom, Bruce; Wielicki, Bruce; Goodman, Steve

    1999-01-01

    Recognizing the importance of rain in the tropics and the accompanying latent heat release, NASA for the U.S. and NASDA for Japan have partnered in the design, construction and flight of an Earth Probe satellite to measure tropical rainfall and calculate the associated heating. Primary mission goals are 1) the understanding of crucial links in climate variability by the hydrological cycle, 2) improvement in the large-scale models of weather and climate 3) Improvement in understanding cloud ensembles and their impacts on larger scale circulations. The linkage with the tropical oceans and landmasses are also emphasized. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in November 1997 with fuel enough to obtain a four to five year data set of rainfall over the global tropics from 37'N to 37'S. This paper reports progress from launch date through the spring of 1999. The data system and its products and their access is described, as are the algorithms used to obtain the data. Some exciting early results from TRMM are described. Some important algorithm improvements are shown. These will be used in the first total data reprocessing, scheduled to be complete in early 2000. The reader is given information on how to access and use the data.

  4. Multibody Modeling and Simulation for the Mars Phoenix Lander Entry, Descent and Landing

    NASA Technical Reports Server (NTRS)

    Queen, Eric M.; Prince, Jill L.; Desai, Prasun N.

    2008-01-01

    A multi-body flight simulation for the Phoenix Mars Lander has been developed that includes high fidelity six degree-of-freedom rigid-body models for the parachute and lander system. The simulation provides attitude and rate history predictions of all bodies throughout the flight, as well as loads on each of the connecting lines. In so doing, a realistic behavior of the descending parachute/lander system dynamics can be simulated that allows assessment of the Phoenix descent performance and identification of potential sensitivities for landing. This simulation provides a complete end-to-end capability of modeling the entire entry, descent, and landing sequence for the mission. Time histories of the parachute and lander aerodynamic angles are presented. The response of the lander system to various wind models and wind shears is shown to be acceptable. Monte Carlo simulation results are also presented.

  5. Overview of the Altair Lunar Lander Thermal Control System Design

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA's Constellation Program has been developed to successfully return humans to the Lunar surface by 2020. The Constellation Program includes several different project offices including Altair, which is the next generation Lunar Lander. The planned Altair missions are very different than the Lunar missions accomplished during the Apollo era. These differences have resulted in a significantly different thermal control system architecture. The current paper will summarize the Altair mission architecture and the various operational phases. In addition, the derived thermal requirements will be presented. The paper will conclude with a brief description of the thermal control system designed to meet these unique and challenging thermal requirements.

  6. Lunar lander ground support system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The design of the Lunar Lander Ground Support System (LLGSS) is examined. The basic design time line is around 2010 to 2030 and is referred to as a second generation system, as lunar bases and equipment would have been present. Present plans for lunar colonization call for a phased return of personnel and materials to the moons's surface. During settlement of lunar bases, the lunar lander is stationary in a very hostile environment and would have to be in a state of readiness for use in case of an emergency. Cargo and personnel would have to be removed from the lander and transported to a safe environment at the lunar base. An integrated system is required to perform these functions. These needs are addressed which center around the design of a lunar lander servicing system. The servicing system could perform several servicing functions to the lander in addition to cargo servicing. The following were considered: (1) reliquify hydrogen boiloff; (2) supply power; and (3) remove or add heat as necessary. The final design incorporates both original designs and existing vehicles and equipment on the surface of the moon at the time considered. The importance of commonality is foremost in the design of any lunar machinery.

  7. Successes with the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Huffman, George; Stocker, Erich; Petersen, Walter

    2016-01-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Status and successes in terms of spacecraft, instruments, retrieval products, validation, and impacts for science and society will be presented. Precipitation, microwave, satellite

  8. Phoenix Mars Lander with Solar Arrays Open

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's next Mars-bound spacecraft, the Phoenix Mars Lander, was partway through assembly and testing at Lockheed Martin Space Systems, Denver, in September 2006, progressing toward an August 2007 launch from Florida. In this photograph, spacecraft specialists work on the lander after its fan-like circular solar arrays have been spread open for testing. The arrays will be in this configuration when the spacecraft is active on the surface of Mars.

    Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. It will dig into the surface, test scooped-up samples for carbon-bearing compounds and serve as NASA's first exploration of a potential modern habitat on Mars.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  9. The Philae Science Mission - A Preview

    NASA Astrophysics Data System (ADS)

    Boehnhardt, H.; Bibring, J.-P.

    2014-04-01

    The PHILAE Science Mission is based on measurements from 10 scientific instruments, i.e. the α-particle and X-ray spectrometer APXS, the visible camera and near-infrared spectrometer CIVA, the radio sounding experiment CONSERT, the molecule mass spectrometer and gas chromatograph COSAC, the accelerometer and thermal probe MUPUS, the light elements and isotope mass spectrometer and gas chromatograph PTOLEMY, the down-looking camera ROLIS, the magnetometer and plasma package ROMAP, the drill system SD2, and the acoustic and electric probe and dust impact sensor SESAME. The measurements are performed during 4 mission phase, i.e. during the pre-landing phase (PDCS) while the lander is still attached to the ROSETTA orbiter, during the separation, descent and landing phase (SDL), during the First Science Sequence (FSS) within about 3 days after landing and during a Long-Term Science phase (LTS) which follows the FSS immediately or after a short hibernation period depending on the landing site and the related power situation of the lander. The PDCS and SDL phase only a subset of the lander instruments will be active with scientific measurements, i.e. CIVA, CONSERT, PTOLEMY, ROMAP and SESAME during PDCS and CIVA, CONSERT, ROLIS, and ROMAP during SDL. The FSS and LTS phases will utilize all 10 PHILAE instruments for science. The presentations provides an overview of the PHILAE observations during the various mission phases, outlines the expected results and comments on the impact of the landing sites for the PHILAE science.

  10. Progress of the Mars Array Technology Experiment (MATE) on the 2001 Lander

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Baraona, Cosmo; Wilt, Dave; Jenkins, Phil; Krasowski, Michael; Greer, Lawrence; Lekki, John; Spina, Daniel; Landis, Geoff

    2005-01-01

    NASA is planning missions to Mars every two years until 2010, these missions will rely on solar power. Sunlight on the surface of Mars is altered by airborne dust and fluctuates from day to day. The MATE flight experiment was designed to evaluate solar cell performance and will fly on the Mars 2001 surveyor Lander as part of the Mars In-Situ Propellant Production Precursor (MIP) package. MATE will measure several solar cell technologies and characterize the Martian environment's solar power. This will be done by measuring full IV curvers on solar cells, direct and global insolation, temperature, and spectral content. The lander is scheduled to launch in April 2001 and arrive on Mars in January of 2002. The site location has not been identified but will be near the equator, is a powered landing, and is baselined for 90 sols. The intent of this paper is to provide a brief overview of the MATE experiment and progress to date. The MATE Development Unit (DU) hardware has been built and has completed testing, work is beginning in the Qualification Unit which will start testing later this year, Flight Hardware is to be delivered next spring.

  11. Imaging experiment: The Viking Lander

    USGS Publications Warehouse

    Mutch, T.A.; Binder, A.B.; Huck, F.O.; Levinthal, E.C.; Morris, E.C.; Sagan, C.; Young, A.T.

    1972-01-01

    The Viking Lander Imaging System will consist of two identical facsimile cameras. Each camera has a high-resolution mode with an instantaneous field of view of 0.04??, and survey and color modes with instantaneous fields of view of 0.12??. Cameras are positioned one meter apart to provide stereoscopic coverage of the near-field. The Imaging Experiment will provide important information about the morphology, composition, and origin of the Martian surface and atmospheric features. In addition, lander pictures will provide supporting information for other experiments in biology, organic chemistry, meteorology, and physical properties. ?? 1972.

  12. Effects of surface clutter on rain measurements from the tropical rainfall measuring mission satellite

    NASA Astrophysics Data System (ADS)

    Manabe, Takeshi; Ihara, Toshio; Okamoto, Ken'ich

    The effects of sea-surface clutter on rain measurements with a satellite-borne rain radar are quantitatively evaluated for clutter interferences through antenna sidelobes and pulse-compression range sidelobes. Calculations are made for a dual-frequency radar operating at 13.8 and 24.15 GHz proposed for the Tropical Rainfall Measuring Mission satellite.

  13. Spaceship Discovery's Crew and Cargo Lander Module Designs for Human Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Benton, Mark G.

    2008-01-01

    The Spaceship Discovery design was first presented at STAIF 2006. This conceptual design space vehicle architecture for human solar system exploration includes two types of Mars exploration lander modules: A piloted crew lander, designated Lander Module 2 (LM2), and an autonomous cargo lander, designated Lander Module 3 (LM3). The LM2 and LM3 designs were first presented at AIAA Space 2007. The LM2 and LM3 concepts have recently been extensively redesigned. The specific objective of this paper is to present these revised designs. The LM2 and LM3 landers are based on a common design that can be configured to carry either crew or cargo. They utilize a combination of aerodynamic reentry, parachutes, and propulsive braking to decelerate from orbital velocity to a soft landing. The LM2 crew lander provides two-way transportation for a nominal three-person crew between Mars orbit and the surface, and provides life support for a 30-day contingency mission. It contains an ascent section to return the crew to orbit after completion of surface operations. The LM3 cargo lander provides one-way, autonomous transportation of cargo from Mars orbit to the surface and can be configured to carry a mix of consumables and equipment, or equipment only. Lander service life and endurance is based on the Spaceship Discovery conjunction-class Design Reference Mission 2. The LM3 is designed to extend the surface stay for three crew members in an LM2 crew lander such that two sets of crew and cargo landers enable human exploration of the surface for the bulk of the 454 day wait time at Mars, in two shifts of three crew members each. Design requirements, mission profiles, mass properties, performance data, and configuration layouts are presented for the LM2 crew and LM3 cargo landers. These lander designs are a proposed solution to the problem of safely transporting a human crew from Mars orbit to the surface, sustaining them for extended periods of time on the surface, and returning them

  14. Investigation of Mars Rotational Dynamics Using Earth-based Radio Tracking of Mars Landers

    NASA Technical Reports Server (NTRS)

    Edwards, C. D., Jr.; Folkner, W. M.; Kahn, R. D.; Preston, R. A.

    1993-01-01

    The development of space geodetic techniques over the past two decades has made it possible to measure the rotational dynamics of the Earth at the milliarcsecond level, improving our geophysical models of the Earth 's interior and the interactions between the solid Earth and its atmosphere. We have found that the rotational dynamics of Mars can be determined to nearly the same level of accuracy by acquiring Earth-based two-way radio tracking observations of three or more landers globally distributed on the surface of Mars. Our results indicate that the precession and long-term obliquity changes of the Mars pole direction can be determined to an angular accuracy corresponding to about 15 cm/yr at the planet's surface. In addition, periodic nutations of the pole and seasonal variations in the spin rate of the planet can be determined to 10 cm or less. Measuring the rotation of Mars at this accuracy would greatly improve the determination of the planet' s moment of inertia and would resolve the size of a planetary fluid core, providing a valuable constraint on Mars interior models. Detecting seasonal variations in the spin rate of Mars would provide global constraints on atmospheric angular momentum changes due to sublimation of the Mars CO2 polar ice caps. Finally, observation of quasisecular changes in Mars obliquity would have significant implications for understanding long-term climatic change. The key to achieving these accuracies is a globally distributed network of Mars landers with stable, phase-coherent radio transponders. By simultaneously acquiring coherent two-way carrier phase observations between a single Earth tracking station and multiple Mars landers, Earth media errors are essentially eliminated, providing an extremely sensitive measure of changes in the differential path lengths between the Earth tracking station and the Mars landers due to Mars rotation. Time variability of the instrumental phase delay through the radio transponder may represent

  15. Robotic Lander Completes Multiple Outdoor Flight

    NASA Video Gallery

    NASA’s Robotic Lander Development Project in Huntsville, Ala., has successfully completed seven autonomous outdoor flight tests of a lander prototype, dubbed Mighty Eagle. On Oct. 14, Mighty Eagl...

  16. Development of a Compact, Deep-Penetrating Heat Flow Instrument for Lunar Landers: In-Situ Thermal Conductivity System

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.

  17. Phoenix Lander on Mars with Surrounding Terrain, Vertical Projection

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view is a vertical projection that combines more than 500 exposures taken by the Surface Stereo Imager camera on NASA's Mars Phoenix Lander and projects them as if looking down from above.

    The black circle on the spacecraft is where the camera itself is mounted on the lander, out of view in images taken by the camera. North is toward the top of the image. The height of the lander's meteorology mast, extending toward the southwest, appears exaggerated because that mast is taller than the camera mast.

    This view in approximately true color covers an area about 30 meters by 30 meters (about 100 feet by 100 feet). The landing site is at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars.

    The ground surface around the lander has polygonal patterning similar to patterns in permafrost areas on Earth.

    This view comprises more than 100 different Stereo Surface Imager pointings, with images taken through three different filters at each pointing. The images were taken throughout the period from the 13th Martian day, or sol, after landing to the 47th sol (June 5 through July 12, 2008). The lander's Robotic Arm is cut off in this mosaic view because component images were taken when the arm was out of the frame.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Mars MetNet Mission Pressure and Humidity Devices

    NASA Astrophysics Data System (ADS)

    Haukka, H.; Harri, A.-M.; Schmidt, W.; Genzer, M.; Polkko, J.; Kemppinen, O.; Leinonen, J.

    2012-09-01

    A new kind of planetary exploration mission for Mars is being developed in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission [1] is based on a new semi-hard landing vehicle called MetNet Lander (MNL). MetBaro and MetHumi are part of the scientific payload of the MNL. Main scientific goal of both devices is to measure the meteorological phenomena (pressure and humidity) of the Martian atmosphere and complement the previous Mars mission atmospheric measurements (Viking and Phoenix) for better understanding of the Martian atmospheric conditions.

  19. Scientific Objectives and operational Scheme of the Planetary Underground Tool (Pluto) Experiment on the Beagle 2 Mars Lander

    NASA Astrophysics Data System (ADS)

    Richter, L.; Gromov, V.; Kochan, H.; Kosacki, K.; Tokano, T.

    2003-04-01

    The payload of the Beagle 2 lander of ESA's Mars Express mission includes a regolith-penetrating, tethered "Mole" intended for acquisition of several subsurface soil samples from depths between about 10 cm and approximately 1.5 m. These samples will then be analysed by the Gas Analysis Package (GAP) instrument on the lander, primarily with regard to isotopic composition and organic molecules. In addition, a share of each sample can be deposited onto the lander structure to be investigated with instruments mounted on the lander's PAW instrument carrier, such as the Mössbauer and X-ray fluorescence spectrometers and the optical microscope. After giving a brief overview of the experiment design, this paper focuses on the various science objectives addressed by the Beagle 2 Mole system, also referred to as the PLanetary Underground TOol (PLUTO). Apart from its capability to make subsurface regolith samples available to lander-based experiments for the first time on a Mars landing mission, PLUTO will be capable of performing scientific measurements of its own which utilize the Mole's soil penetration process and its temporary residence within the regolith: while it penetrates into the Martian soil by way of soil displacement through the action of an internal hammering mechanism, the Mole will allow mechanical properties of the regolith to be inferred and additionally, a temperature sensor mounted on the Mole will support investigations of soil thermophysical properties and measurements of the subsurface temperature profile. Using a Mole soil penetration theory calibrated by ground-based experiments, regolith bulk density, cohesion, and internal friction angle can be constrained as a function of depth using the Mole penetration path (and retrieval path) vs. time which is measured by a sensor indicating the amount of tether extracted by the PLUTO Mole. The obtained depth profiles of these quantities should provide insight into the depositional history and stratigraphy of

  20. Charge measurements for an asteroid sample return mission

    NASA Astrophysics Data System (ADS)

    Macfaden, A.; Aplin, K. L.; Bowles, N. E.

    2013-09-01

    Photoelectric charging of asteroid regolith material influences particle motion and escape. Differing spacecraft and asteroid charges may also affect sample return on missions such as Marco Polo-R. To study this, bespoke 2D particle-in-cell code simulating the behaviour of photoelectrons trapped near a photoemitting surface (photosheath) has been written and implemented. The spacecraft- photosheath system reaches equilibrium in 1 ms, which is rapid compared to the descent timescale. Equilibria reached in simulations are therefore assumed representative of the dynamic spacecraft environment. Predicted potentials at different heightsand with different solar zenith angle are presented, so that an instrument to measure the potential difference across the spacecraft can be defined. The distorting effect of the spacecraft significantly modifies the potential difference and displacement currents during the terminal descent, by introducing an equipotential body, creating a shadow, and photoemitting itself. By considering the distortion from different parts of the spacecraft, optimal locations for a set of electrodes to measure the potential difference are suggested. Potential differences of about 100 mV are expected to be generated across the electrodes, which should be representative of the electrical environment. The results demonstrate that a simple set of electrodes can measure the asteroid's surface electric field during sample collection.

  1. Analysis of organic molecules and isotopes from a Mars lander

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.; Atreya, S. K.; Brinckerhoff, W. B.; Cabane, M.; Coll, P.; Harpold, D. N.; Niemann, H. B.; Owen, T.; Raulin, F.; Israel, G.

    2003-04-01

    A key objective for several of the next set of lander missions to Mars will be a search for the location and nature of organic molecules and other disequilibrium compounds that may reveal the nature of present or ancient biotic or prebiotic processes on Mars. Ongoing development and definition of instrumentation that can carry out this analysis will be described. For example, an instrument suite presently under development to be proposed for inclusion on the 2009 Mars Science Laboratory consists of an advanced gas chromatograph mass spectrometer (GCMS) together with a laser desorption time-of-flight mass spectrometer (LD-tof-MS). This measurement suite is designated SAM (for Sample Analysis at Mars). SAM is designed to carry out analysis of both atmospheric gases and volatiles released from solid phase soils, rock samples, and ices. Volatile organic molecules and their pyrolysis products are analyzed by the GCMS and refractory organics by both the pyrolysis and the LD-tof-MS. The LD-tof-MS also provides abundances for a range of major and trace elements in collected samples. Additional measurement objectives include higher precision measurements than have been obtained to date of abundances and isotope ratios of the noble gases, nitrogen, and a range of light elements. SAM can also contribute to the identification of various minerals through evolved gas analysis of stable thermal decomposition products such as H2O, CO2, and oxides of nitrogen and sulfur.

  2. Space acceleration measurement system description and operations on the First Spacelab Life Sciences Mission

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; Finley, Brian D.

    1991-01-01

    The Space Acceleration Measurement System (SAMS) project and flight units are briefly described. The SAMS operations during the STS-40 mission are summarized, and a preliminary look at some of the acceleration data from that mission are provided. The background and rationale for the SAMS project is described to better illustrate its goals. The functions and capabilities of each SAMS flight unit are first explained, then the STS-40 mission, the SAMS's function for that mission, and the preparation of the SAMS are described. Observations about the SAMS operations during the first SAMS mission are then discussed. Some sample data are presented illustrating several aspects of the mission's microgravity environment.

  3. Beagle 2: the exobiological lander of Mars Express

    NASA Astrophysics Data System (ADS)

    Pullan, D.; Sims, M. R.; Wright, I. P.; Pillinger, C. T.; Trautner, R.

    2004-08-01

    In late 2003, the Beagle 2 lander component of the Mars Express mission is planned to touch down in the Isidis Planitia region of Mars (265.0°W, 11.6°N). Once safely deployed on the surface, Beagle 2 will conduct an intensive and exhaustive programme of surface operations for about 180 sols (equivalent to about 6 months on Earth). The principal objective is the detection of extinct and/or extant life, or at least to establish if the conditions at the landing site were ever suitable for life to have evolved in the planet's history. To achieve this goal, a systematic set of experiments using a complemetary suite of instruments will perform in situ geochemical, mineralogical and petrological analysis of selected rocks and soils. Studies of the martian environment will also be conducted via chemical analysis of the atmosphere, local geomorphological assessment of the landing site and measurement/monitoring of dynamic environmental processes, including transient events such as "dust devils". Further studies, unique to Beagle 2, include analysis of the subsurface regime using a ground penetration tool and the first attempt at in situ isotopic dating of rocks on another planet. The complete experiment package weights less than 9 kg and requires less than 40 W of power. With a probe mass limit of 69 kg, imposed by mission constraints, and a landed mass of 33 kg, Beagle 2 thus aims to fly the highest mass ratio of payload-to-support systems of any mission to Mars. This is achievable only by adopting an integrated design approach and employing minimal or zero redundancy.

  4. Measurements of dust on Mars to be obtained from upcoming missions

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.

    1991-01-01

    Measurements of dust on the Mars surface and in its atmosphere will be made from several upcoming missions. The best defined missions are Mars Observer, the Soviet Mars 94 mission, and the Mars Environment Survey (MESUR) mission. A discussion is presented of what measurements pertaining to airborne or surface dust will be made and what properties can be inferred from them. The payloads for the latter two missions are not yet determined. In all cases, only that information which pertains to dust is included; each mission contains additional instruments that provide no information on this topic. Following the discussion of individual instruments is a summary of the types of measurements and observations that will be made from the ensemble collection of instruments and missions, and a brief discussion of the types of measurements of dust which will not be made.

  5. Chemistry Lab for Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The science payload of NASA's Phoenix Mars Lander includes a multi-tool instrument named the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The instrument's wet chemistry laboratory, prominent in this photograph, will measure a range of chemical properties of Martian soil samples, such as the presence of dissolved salts and the level of acidity or alkalinity. Other tools that are parts of the instrument are microscopes that will examine samples' mineral grains and a probe that will check the soil's thermal and electrical properties.

  6. The Planning of Lander Science Observations after ROSETTA Deep Space Hibernation

    NASA Astrophysics Data System (ADS)

    Barthelemy, Maud; Ulamec, Stephan; Gaudon, Philippe; Biele, Jens; Pätz, Brigitte; Ashman, Mike

    2014-05-01

    After 10 years of its interplanetary journey, Rosetta has woken up from hibernation to meet Churyumov-Gerasimenko comet in the second term of 2014. The Rosetta spacecraft is composed of an Orbiter and a Lander part. The spacecraft will deliver the Lander, named Philae, to land on the surface of the comet in November 2014. During the Cruise Phase, the Lander, attached to the Orbiter, participated in several commissioning and payload checkout observations. In April 2014, after almost 3 years of hibernation, the Lander and the Orbiter will enter a commissioning phase to check the health of all instruments. Then, from May to November, Prelanding science activities can be planned, although the priority will go to those observations that help to select the landing site. The Lander project has, in much the same way as the Orbiter, its own ground segment: the Rosetta Lander Ground Segment (RLGS). The RLGS is composed of the Science Operations and Navigation Center - SONC - at CNES in Toulouse and the Lander Control Center - LCC - at DLR in Cologne. There are 10 instruments on board of Philae trying to conduct science observations during the life of the Lander. As the comet travels closer to the sun the temperature will eventually become too hot for Philae. The Orbiter, however, is planned to operate for much longer, until end of 2015, passing perihelion. Each of the 10 instruments is represented by a principal investigator. The Lander project also has Lead Scientists, who make sure that the science objectives of the Lander are fulfilled and are on hand to solve any eventual conflicts in this regard. To plan their observations, the Lander team listed their science objectives and ranked them. From these objectives, Specific On-Comet Operation Plan (SOCOP) documents are written by LCC describing the proposed observations. Then, at SONC, the MOST (Mission Operation Scheduling Tool) is used to generate a science experiment plan. This plan is confirmed by the PIs and the Lead

  7. Tropical Rainfall Measuring Mission (TRMM) project. I - Introduction

    NASA Technical Reports Server (NTRS)

    Theon, John S.; Fugono, Nobuyoshi

    1990-01-01

    Results of a 1-year USA-Japan study of the feasibility of the joint TRMM project are briefly reviewed. The TRMM mission will fly four precipitation sensors, a single-frequency radar, two types of microwave radiometers, and a visible and infrared radiometer. The scientific background of the mission and its organizational and engineering aspects are summarized.

  8. A Wind Tunnel Study on the Mars Pathfinder (MPF) Lander Descent Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Soriano, J. Francisco; Coquilla, Rachael V.; Wilson, Gregory R.; Seiff, Alvin; Rivell, Tomas

    2001-01-01

    The primary focus of this study was to determine the accuracy of the Mars Pathfinder lander local pressure readings in accordance with the actual ambient atmospheric pressures of Mars during parachute descent. In order to obtain good measurements, the plane of the lander pressure sensor opening should ideally be situated so that it is parallel to the freestream. However, due to two unfavorable conditions, the sensor was positioned in locations where correction factors are required. One of these disadvantages is due to the fact that the parachute attachment point rotated the lander's center of gravity forcing the location of the pressure sensor opening to be off tangent to the freestream. The second and most troublesome factor was that the lander descends with slight oscillations that could vary the amplitude of the sensor readings. In order to accurately map the correction factors required at each sensor position, an experiment simulating the lander descent was conducted in the Martian Surface Wind Tunnel at NASA Ames Research Center. Using a 115 scale model at Earth ambient pressures, the test settings provided the necessary Reynolds number conditions in which the actual lander was possibly subjected to during the descent. In the analysis and results of this experiment, the readings from the lander sensor were converted to the form of pressure coefficients. With a contour map of pressure coefficients at each lander oscillatory position, this report will provide a guideline to determine the correction factors required for the Mars Pathfinder lander descent pressure sensor readings.

  9. Geomorphic Map of Region Around Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This map shows shows a color-coded interpretation of geomorphic units categories based on surface textures and contours in the region where NASA's Phoenix Mars Lander has studied an arctic Martian plain. It covers an area about 65 kilometers by 65 kilometers (40 miles by 40 miles).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Color Image of Phoenix Lander on Mars Surface

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an enhanced-color image from Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) camera. It shows the Phoenix lander with its solar panels deployed on the Mars surface. The spacecraft appears more blue than it would in reality.

    The blue/green and red filters on the HiRISE camera were used to make this picture.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Non-Cooled Power System for Venus Lander

    NASA Technical Reports Server (NTRS)

    Salazar, Denise; Landis, Geoffrey A.; Colozza, Anthony J.

    2014-01-01

    The Planetary Science Decadal Survey of 2013-2022 stated that the exploration of Venus is of significant interest. Studying the seismic activity of the planet is of particular importance because the findings can be compared to the seismic activity of Earth. Further, the geological and atmospheric properties of Venus will shed light into the past and future of Earth. This paper presents a radioisotope power system (RPS) design for a small low-power Venus lander. The feasibility of the new power system is then compared to that of primary batteries. A requirement for the power source system is to avoid moving parts in order to not interfere with the primary objective of the mission - to collect data about the seismic activity of Venus using a seismometer. The target mission duration of the lander is 117 days, a significant leap from Venera 13, the longest-lived lander on the surface of Venus, which survived for 2 hours. One major assumption for this mission design is that the power source system will not provide cooling to the other components of the lander. This assumption is based on high-temperature electronics technology that will enable the electronics and components of the lander to operate at Venus surface temperature. For the proposed RPS, a customized General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHSRTG) is designed and analyzed. The GPHS-RTG is chosen primarily because it has no moving parts and it is capable of operating for long duration missions on the order of years. This power system is modeled as a spherical structure for a fundamental thermal analysis. The total mass and electrical output of the system are calculated to be 24 kilograms and 26 Watts, respectively. An alternative design for a battery-based power system uses Sodium Sulfur batteries. To deliver a similar electrical output for 117 days, the battery mass is calculated to be 234 kilograms. Reducing mission duration or power required will reduce the required battery mass

  12. Chandrayaan-2: India's First Soft-landing Mission to Moon

    NASA Astrophysics Data System (ADS)

    Mylswamy, Annadurai; Krishnan, A.; Alex, T. K.; Rama Murali, G. K.

    2012-07-01

    latitude location is preferred from scientific interest. Multiple communication links involving Rover-Lander-Earth, Orbiter-Earth and Rover-Orbiter will be implemented. Scientific Payloads:, The scientific payloads on orbiter include a Terrain Mapping Camera (TMC-2), an Imaging Infra-Red Spectrometer (IIRS), a Dual Band (L&S-Band) Synthetic Aperture Radar (SAR), a Collimated Large Area Soft x-ray Spectrometer (CLASS), and a Chandra's Atmospheric Composition Explorer(ChACE-2). TMC with two cameras will provide 3D imaging and DEM, while the IIRS will cover the 0.8-5 micron region at high spectral resolution using a grating spectrograph coupled to an active cooler based MCT array detector. It will provide information on mineral composition and detect OH and H2O and also measure thermal emission from the lunar surface. CLASS is an improved version of C1XS flown on Chandrayaan-1 and will employ swept charge detector (SCD) for detection of X-rays from lunar surface during solar flares.ChACE-2 is a modified version of ChACE-1, one of the instruments on Moon Impact Probe (MIP) that provided hints for the presence of water molecule in lunar exosphere. The Synthetic Aperture Radar will include both L (1.25 GHz) and S (2.5 GHz) bands with selectable resolution of up to a few meters. A radiating patch arrangement is designed for the integrated L-band and S-band antenna. There will be two payloads on the Rover: an Alpha Particle induced X-ray Spectrometer (APXS) and a Laser Induced Breakdown Spectroscopy (LIBS) for studies of chemical composition and volatiles present in lunar surface material near the landing site. The Lander Craft will have suite of instruments to study both physical and chemical properties of the landing site. It will have direct communication link to Earth Stations. The Lander will also act as the relay for communication with the Rover. The design and development of the various mission elements as well as of the scientific payloads are currently in progress both in

  13. In-situ Subsurface Science Addressed By The "mole" On The Beagle 2 Mars Lander

    NASA Astrophysics Data System (ADS)

    Richter, L.; Gromov, V. V.; Möhlmann, D.; Kochan, H.; Tokano, T.

    The payload of the Beagle 2 lander of ESA's Mars Express mission includes a regolith- penetrating, tethered "Mole" intended for acquisition of several subsurface soil sam- ples from depths between about 30 cm and some 1E1.5 m. These samples will then be analysed by the Gas Analysis Package instrument on the lander, primarily with re- gard to isotopic composition and to organic molecules. However, after giving a brief overview of the Mole experiment, this paper focuses on additional in-situ science con- ducted by the Beagle 2 Mole system, also referred to as the PLanetary Underground TOol (PLUTO): while it penetrates into the Martian regolith by way of soil displace- ment through the action of an internal hammering mechanism, the Mole will allow mechanical properties of the regolith to be studied as a function of depth - being a first on a Mars mission - and additionally, a temperature sensor mounted on the outside of the Mole will support investigations of soil thermophysical properties and measure- ments of the subsurface temperature profile, again as a first-time achievement. Using a Mole soil penetration theory calibrated by ground-based experiments, regolith bulk density, cohesion, and internal friction angle can be constrained as a function of depth using the Mole penetration path (and retrieval path) vs. time which is measured by a winch rotation sensor indicating the amount of tether extracted by the Mole. The obtained depth profiles of these quantities should provide insight into the depositional history and stratigraphy of the regolith at the site. Measurements of the regolith tem- perature will be conducted by the Mole both as a function of depth during soil in- trusion, and as a function of time for constant depth, as the Mole can be left in the subsurface for periods of days or weeks before it is retrieved, especially during the later part of the Beagle 2 landed mission. Subsurface temperature measurements will support calibrations of Mars regolith

  14. In-situ subsurface science addressed by the Mole on the Beagle 2 Mars lander

    NASA Astrophysics Data System (ADS)

    Richter, L.; Gromov, V.; Kochan, H.; Möhlmann, D.; Tokano, T.

    The payload of the Beagle 2 lander of ESA's Mars Express mission includes a regolithpenetrating, tethered "Mole" intended for acquisition of several subsurface soil sam ples from depths between about 30 cm and some 1E1.5 m. These samples will then be analysed by the Gas Analysis Package instrument on the lander, primarily with regard to isotopic composition and to organic molecules. However, after giving a brief overview of the Mole experiment, this paper focuses on additional in-situ science conducted by the Beagle 2 Mole system, also referred to as the PLanetary Underground TOol (PLUTO): while it penetrates into the Martian regolith by way of soil displacement through the action of an internal hammering mechanism, the Mole will allow mechanical properties of the regolith to be studied as a function of depth - being a first on a Mars mission - and additionally, a temperature sensor mounted on the outside of the Mole will support investigations of soil thermophysical properties and measurements of the subsurface temperature profile, again as a first-time achievement. Using a Mole soil penetration theory calibrated by ground-based experiments, regolith bulk density, cohesion, and internal friction angle can be constrained as a function of depth using the Mole penetration path (and retrieval path) vs. time which is measured by a winch rotation sensor indicating the amount of tether extracted by the Mole. The obtained depth profiles of these quantities should provide insight into the depositional history and stratigraphy of the regolith at the site. Measurements of the regolith temperature will be conducted by the Mole both as a function of depth during soil intrusion, and as a function of time for constant depth, as the Mole can be left in the subsurface for periods of days or weeks before it is retrieved, especially during the later part of the Beagle 2 landed mission. Subsurface temperature measurements will support calibrations of Mars regolith thermophysical

  15. Viking Lander Mosaics of Mars

    NASA Technical Reports Server (NTRS)

    Morris, E. C.

    1985-01-01

    The Viking Lander 1 and 2 cameras acquired many high-resolution pictures of the Chryse Planitia and Utopia Planitia landing sites. Based on computer-processed data of a selected number of these pictures, eight high-resolution mosaics were published by the U.S. Geological Survey as part of the Atlas of Mars, Miscellaneous Investigation Series. The mosaics are composites of the best picture elements (pixels) of all the Lander pictures used. Each complete mosaic extends 342.5 deg in azimuth, from approximately 5 deg above the horizon to 60 deg below, and incorporates approximately 15 million pixels. Each mosaic is shown in a set of five sheets. One sheet contains the full panorama from one camera taken in either morning or evening. The other four sheets show sectors of the panorama at an enlarged scale; when joined together they make a panorama approximately 2' X 9'.

  16. Summary Report of Mission Acceleration Measurements for STS-89

    NASA Technical Reports Server (NTRS)

    Hrovat, Kenneth; McPherson, Kevin

    1999-01-01

    Support of microgravity research on the 89th flight of the Space Transportation System (STS-89) and a continued effort to characterize the acceleration environment of the Space Shuttle Orbiter and the Mir Space Station form the basis for this report. For the STS-89 mission, the Space Shuttle Endeavour was equipped with a Space Acceleration Measurement System (SAMS) unit, which collected more than a week's worth of data. During docked operations with Mir, a second SAMS unit collected approximately a day's worth of data yielding the only set of acceleration measurements recorded simultaneously on the two spacecraft. Based on the data acquired by these SAMS units, this report serves to characterize a number of acceleration events and quantify their impact on the local nature of the accelerations experienced at the Mechanics of Granular Materials (MGM) experiment location. Crew activity was shown to nearly double the median root-mean-square (RMS) acceleration level calculated below 10 Hz, while the Enhanced Orbiter Refrigerator/Freezer operating at about 22 Hz was a strong acceleration source in the vicinity of the MGM location. The MGM science requirement that the acceleration not exceed plus or minus 1 mg was violated numerous times during their experiment runs; however, no correlation with sample instability has been found to this point. Synchronization between the SAMS data from Endeavour and from Mir was shown to be close much of the time, but caution with respect to exact timing should be exercised when comparing these data. When orbiting as a separate vehicle prior to docking, Endeavour had prominent structural modes above 3 Hz, while Mir exhibited a cluster of modes around 1 Hz. When mated, a transition to common modes was apparent in the two SAMS data sets. This report is not a comprehensive analysis of the acceleration data, so those interested in further details should contact the Principal Investigator Microgravity Services team at the National Aeronautics

  17. Sesame - An Experiment of the Rosetta Lander Philae: Objectives and General Design

    NASA Astrophysics Data System (ADS)

    Seidensticker, K. J.; Möhlmann, D.; Apathy, I.; Schmidt, W.; Thiel, K.; Arnold, W.; Fischer, H.-H.; Kretschmer, M.; Madlener, D.; Péter, A.; Trautner, R.; Schieke, S.

    2007-02-01

    SESAME is an instrument complex built in international co-operation and carried by the Rosetta lander Philae intended to land on comet 67P/Churyumov-Gerasimenko in 2014. The main goals of this instrument suite are to measure mechanical and electrical properties of the cometary surface and the shallow subsurface as well as of the particles emitted from the cometary surface. Most of the sensors are mounted within the six soles of the landing gear feet in order to provide good contact with or proximity to the cometary surface. The measuring principles, instrument designs, technical layout, operational concepts and the results from the first in-flight measurements are described. We conclude with comments on the consequences of the last minute change of the target comet and how to improve and to preserve the knowledge during the long-duration Rosetta mission.

  18. Preliminary design of a universal Martian lander

    NASA Astrophysics Data System (ADS)

    Norman, Timothy L.; Gaskin, David E.; Adkins, Sean; Gunawan, Mary; Johnson, Raquel; Macdonnell, David; Parlock, Andrew; Sarick, John; Bodwell, Charles; Hashimoto, Kouichi

    In the next 25 years, mankind will be undertaking yet another giant leap forward in the exploration of the solar system: a manned mission to Mars. This journey will provide important information on the composition and history of both Mars and the Solar System. A manned mission will also provide the opportunity to study how humans can adapt to long term space flight conditions and the Martian environment. As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The UML's design will provide a 'universal' platform, consisting of four modules for living and laboratory experiments and a liquid-fuel propelled Manned Ascent Return Vehicle (MARV). The distinguishing feature of the UML is the 'universal' design of the modules which can be connected to form a network of laboratories and living quarters for future missions thereby reducing development and production costs. The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules will be assembled to form a Martian base where scientific experiments will be performed. The mission will also incorporate hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psychological effects of living on Mars. In situ fuel production for the MARV will be produced from gases in the Martian atmosphere. Following surface operations, the eight member crew will use the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  19. Preliminary design of a universal Martian lander

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Gaskin, David E.; Adkins, Sean; Gunawan, Mary; Johnson, Raquel; Macdonnell, David; Parlock, Andrew; Sarick, John; Bodwell, Charles; Hashimoto, Kouichi

    1993-01-01

    In the next 25 years, mankind will be undertaking yet another giant leap forward in the exploration of the solar system: a manned mission to Mars. This journey will provide important information on the composition and history of both Mars and the Solar System. A manned mission will also provide the opportunity to study how humans can adapt to long term space flight conditions and the Martian environment. As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The UML's design will provide a 'universal' platform, consisting of four modules for living and laboratory experiments and a liquid-fuel propelled Manned Ascent Return Vehicle (MARV). The distinguishing feature of the UML is the 'universal' design of the modules which can be connected to form a network of laboratories and living quarters for future missions thereby reducing development and production costs. The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules will be assembled to form a Martian base where scientific experiments will be performed. The mission will also incorporate hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psychological effects of living on Mars. In situ fuel production for the MARV will be produced from gases in the Martian atmosphere. Following surface operations, the eight member crew will use the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  20. Europa Surface Radiation Environment for Lander Assessment

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Sturner, Steven J.

    2006-01-01

    The Jovian magnetospheric particle environment at Europa's surface is critical to assessment of landed astrobiological experiments in three respects: (1) the landing site must be chosen for the best prospects for detectable organic or inorganic signs of Life, e.g. regions of freshly emergent flows from the subsurface; (2) lander systems must reach the surface through the Jovian magnetospheric environment and operate long enough on the surface to return useful data; (3) lander instrumentation must be capable of detecting signs of life in the context of the local environmental radiation and associated chemistry. The Galileo, Voyager, and Pioneer missions have provided a wealth of data on energetic particle intensities throughout the Jovian magnetosphere including from many flybys of Europa. cumulative radiation dosages for spacecraft enroute to Europa can be well characterized, but knowledge of the surface radiation environment is very limited. Energetic electrons should primarily impact the trailing hemisphere with decreasing intensity towards the center of the leading hemisphere and are the most significant radiation component down to meter depths in the surface regolith due to secondary interactions. Observed surface distribution for sulfates is suggestive of electron irradiation but may have alternative interpretations. Having much-larger magnetic gyroradii than electrons, energetic protons and heavier ions irradiate more of the global surface. The particular orientations of electron, proton, and ion gyromotion would project into corresponding directional (e.g., east-west) anisotropies of particle flu into the surface. Particular topographic features at the landing site may therefore offer shielding from part of the incident radiation.

  1. Lunar transit telescope lander design

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1991-01-01

    The Program Development group at NASA's Marshall Space Flight Center has been involved in studying the feasibility of placing a 16 meter telescope on the lunar surface to scan the skies using visible/ Ultraviolet/ Infrared light frequencies. The precursor telescope is now called the TRANSIT LUNAR TELESCOPE (LTT). The Program Development Group at Marshall Space Flight Center has been given the task of developing the basic concepts and providing a feasibility study on building such a telescope. The telescope should be simple with minimum weight and volume to fit into one of the available launch vehicles. The preliminary launch date is set for 2005. A study was done to determine the launch vehicle to be used to deliver the telescope to the lunar surface. The TITAN IV/Centaur system was chosen. The engineering challenge was to design the largest possible telescope to fit into the TITAN IV/Centaur launch system. The telescope will be comprised of the primary, secondary and tertiary mirrors and their supporting system in addition to the lander that will land the telescope on the lunar surface and will also serve as the telescope's base. The lunar lander should be designed integrally with the telescope in order to minimize its weight, thus allowing more weight for the telescope and its support components. The objective of this study were to design a lander that meets all the constraints of the launching system. The basic constraints of the TITAN IV/Centaur system are given.

  2. Lunar transit telescope lander design

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1992-01-01

    The Program Development group at NASA's Marshall Space Flight Center has been involved in studying the feasibility of placing a 16 meter telescope on the lunar surface to scan the skies using visible/ Ultraviolet/ Infrared light frequencies. The precursor telescope is now called the TRANSIT LUNAR TELESCOPE (LTT). The Program Development Group at Marshall Space Flight Center has been given the task of developing the basic concepts and providing a feasibility study on building such a telescope. The telescope should be simple with minimum weight and volume to fit into one of the available launch vehicles. The preliminary launch date is set for 2005. A study was done to determine the launch vehicle to be used to deliver the telescope to the lunar surface. The TITAN IV/Centaur system was chosen. The engineering challenge was to design the largest possible telescope to fit into the TITAN IV/Centaur launch system. The telescope will be comprised of the primary, secondary and tertiary mirrors and their supporting system in addition to the lander that will land the telescope on the lunar surface and will also serve as the telescope's base. The lunar lander should be designed integrally with the telescope in order to minimize its weight, thus allowing more weight for the telescope and its support components. The objective of this study were to design a lander that meets all the constraints of the launching system. The basic constraints of the TITAN IV/Centaur system are given.

  3. Space-Frame Lunar Lander

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2010-01-01

    The space-frame lunar lander was originally intended to (1) land on rough lunar terrain, (2) deform itself to conform to the terrain so as to be able to remain there in a stable position and orientation, and (3) if required, further deform itself to perform various functions. In principle, the space-frame lunar lander could be used in the same way on Earth, as might be required, for example, to place meteorological sensors or a radio-communication relay station on an otherwise inaccessible mountain peak. the space-frame lunar lander would include a truss-like structure consisting mostly of a tetrahedral mesh of nodes connected by variable-length struts, the lengths of which would be altered in coordination to impart the desired overall size and shape to the structure. Thrusters (that is, small rocket engines), propellant tanks, a control system, and instrumentation would be mounted in and on the structure (see figure). Once it had landed and deformed itself to the terrain through coordinated variations in the lengths of the struts, the structure could be further deformed into another space-frame structure

  4. Rosetta Lander - Philae on Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Biele, J.; Ulamec, S.; Cozzoni, B.; Fantinati, C.; Gaudon, P.; Geurts, K.; Jurado, E.; Küchemann, O.; Lommatsch, V.; Finke, F.; Maibaum, M.; Moussi-Soffys, A.; Salatti, M.

    2015-10-01

    Rosetta is a Cornerstone Mission of the ESA Horizon 2000 programme. In August 2014 it reached comet 67P/Churyumov-Gerasimenko after a 10 year cruise. Both its nucleus and coma have been studied with its orbiter payload of eleven PI instruments, allowing the selection of a landing site for Philae. The landing on the comet nucleus successfully took place on November 12th 2014. Philae touched the comet surface seven hours after ejection from the orbiter. After several bounces it came to rest and continued to send scientific data to Earth. All ten instruments of its payload have been operated at least once. Due to the fact that the Lander could not be anchored, the originally planned first scientific sequence had to be modified. Philae went into hibernation on November 15th, after its primary battery ran out of energy. Re-activation of the Lander is expected in spring/summer 2015 (before the conference) when CG is closer to the sun and the solar generator of Philae will provide more power. The presentation will give an overview of the activities of Philae on the comet, including a status report on the re-activation after hibernation. Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta's Philae lander is provided by a consortium led by DLR, MPS, CNES and ASI with additional contributions from Hungary, UK, Finland, Ireland and Austria.

  5. Phoenix Lander Self Portrait on Mars, Vertical Projection

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view is a vertical projection that combines hundreds of exposures taken by the Surface Stereo Imager camera on NASA's Mars Phoenix Lander and projects them as if looking down from above.

    The black circle is where the camera itself is mounted on the lander, out of view in images taken by the camera. North is toward the top of the image.

    This view comprises more than 100 different Stereo Surface Imager pointings, with images taken through three different filters at each pointing. The images were taken throughout the period from the 13th Martian day, or sol, after landing to the 47th sol (June 5 through July 12, 2008). The lander's Robotic Arm appears cut off in this mosaic view because component images were taken when the arm was out of the frame.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. The Asteroid Impact Mission (AIM): Studying the geophysics of small binaries, measuring asteroid deflection and studying impact physics

    NASA Astrophysics Data System (ADS)

    Kueppers, Michael; Michel, Patrick; AIM Team

    2016-10-01

    Binary asteroids and their formation mechanisms are of particular interest for understanding the evolution of the small bodies in the solar system. Also, hazards to Earth from impact of near-Earth asteroids and their mitigation have drawn considerable interest over the last decades.Those subjects are both addressed by ESA's Asteroid Impact mission, which is part of the Asteroid Impact & Deflection Assessment (AIDA) currently under study in collaboration between NASA and ESA. NASA's DART mission will impact a projectile into the minor component of the binary near-Earth asteroid (65803) Didymos in 2022. The basic idea is to demonstrate the effect of the impact on the orbital period of the secondary around the primary. ESA's AIM will monitor the Didymos system for several months around the DART impact time.AIM will be launched in aurumn 2020. It is foreseen to arrive at Didymos in April 2022. The mission takes advantage of a close approach of Didymos to Earth. The next opportunity would arise in 2040 only.AIM will stay near Didymos for approximately 6 months. Most of the time it will be placed on the illuminated side of the system, at distances of approximately 35 km and 10 km. AIM is expected to move away from Didymos for some time around the DART impact.The reference payload for AIM includes two visual imagers, a hyperspectral camera, a lidar, a thermal infrared imager, a monostatic high frequency radar, and a bistatic low frequency radar. In addition, AIM will deploy a small lander on the secondary asteroid, and two cubesats that will be used for additional, more risky investigations close to or on the surface of the asteroid.Major contributions from AIM are expected in the study of the geophysics of small asteroids (including for the first time, radar measurements of an interior structure), the formation of binary asteroids, the momentum enhancement factor from the DART impact (through measuring the mass and the change of orbit of the seondary), and impact physics

  7. Attitude-Reconstruction of ROSETTA's lander PHILAE using two-point observations by ROMAP and RPC-MAG

    NASA Astrophysics Data System (ADS)

    Heinisch, Philip; Auster, Hans-Ulrich; Richter, Ingo; Berghofer, Gerhard; Fornacon, Karl-Heinz; Glassmeier, Karl-Heinz

    2015-04-01

    As part of the European Space Agency's ROSETTA Mission the lander PHILAE touched down on comet 67P/Churyumov-Gerasimenko on November 12, 2014. The lander is equipped with a tri-axial fluxgate magnetometer as part of the Rosetta Lander Magnetometer and Plasma-Monitor package (ROMAP). This magnetometer was switched on during descent, the bouncing between the touchdowns and after the final touchdown, which made it possible to reconstruct not only PHILAE's rotation and nutation during flight, but also to determine the exact touchdown times. Together with the tri-axial fluxgate magnetometer of the Rosetta Plasma Consortium (RPC-MAG) onboard the ROSETTA orbiter, simultaneous measurements during the descent and after the touchdowns were used to determine PHILAE's absolute attitude. This was done by correlating magnetic low-frequency waves below 60 mHz simultaneously observed on PHILAE and in orbit by RPC-MAG, which was made possible by the relatively small distance between the two spacecraft's of less than 50km. The results gained from this method are consistent with the illumination patterns of PHILAE's solar arrays and the RF-link periods.

  8. A sophisticated lander for scientific exploration of Mars: scientific objectives and implementation of the Mars-96 Small Station.

    PubMed

    Linkin, V; Harri, A M; Lipatov, A; Belostotskaja, K; Derbunovich, B; Ekonomov, A; Khloustova, L; Kremnev, R; Makarov, V; Martinov, B; Nenarokov, D; Prostov, M; Pustovalov, A; Shustko, G; Jarvinen, I; Kivilinna, H; Korpela, S; Kumpulainen, K; Lehto, A; Pellinen, R; Pirjola, R; Riihela, P; Salminen, A; Schmidt, W; McKay, C P

    1998-01-01

    A mission to Mars including two Small Stations, two Penetrators and an Orbiter was launched at Baikonur, Kazakhstan, on 16 November 1996. This was called the Mars-96 mission. The Small Stations were expected to land in September 1997 (Ls approximately 178 degrees), nominally to Amazonis-Arcadia region on locations (33 N, 169.4 W) and (37.6 N, 161.9 W). The fourth stage of the Mars-96 launcher malfunctioned and hence the mission was lost. However, the state of the art concept of the Small Station can be applied to future Martian lander missions. Also, from the manufacturing and performance point of view, the Mars-96 Small Station could be built as such at low cost, and be fairly easily accommodated on almost any forthcoming Martian mission. This is primarily due to the very simple interface between the Small Station and the spacecraft. The Small Station is a sophisticated piece of equipment. With the total available power of approximately 400 mW the Station successfully supports an ambitious scientific program. The Station accommodates a panoramic camera, an alpha-proton-x-ray spectrometer, a seismometer, a magnetometer, an oxidant instrument, equipment for meteorological observations, and sensors for atmospheric measurement during the descent phase, including images taken by a descent phase camera. The total mass of the Small Station with payload on the Martian surface, including the airbags, is only 32 kg. Lander observations on the surface of Mars combined with data from Orbiter instruments will shed light on the contemporary Mars and its evolution. As in the Mars-96 mission, specific science goals could be exploration of the interior and surface of Mars, investigation of the structure and dynamics of the atmosphere, the role of water and other materials containing volatiles and in situ studies of the atmospheric boundary layer processes. To achieve the scientific goals of the mission the lander should carry a versatile set of instruments. The Small Station

  9. Human Mars Lander Design for NASA's Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Chapman, Jack; Sutherlin, Steve; Taylor, Brian; Fabisinski, Leo; Collins, Tim; Cianciolo Dwyer, Alicia; Samareh, Jamshid; Robertson, Ed; Studak, Bill; Vitalpur, Sharada; Lee, Allan Y.; Rakow, Glenn

    2016-01-01

    Landing humans on Mars will require entry, descent, and landing capability beyond the current state of the art. Nearly twenty times more delivered payload and an order of magnitude improvement in precision landing capability will be necessary. To better assess entry, descent, and landing technology options and sensitivities to future human mission design variations, a series of design studies on human-class Mars landers has been initiated. This paper describes the results of the first design study in the series of studies to be completed in 2016 and includes configuration, trajectory and subsystem design details for a lander with Hypersonic Inflatable Aerodynamic Decelerator (HIAD) entry technology. Future design activities in this series will focus on other entry technology options.

  10. 1998 Mars Missions Science Briefing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA executives gathered together for an interview to discuss the 1998 Mars Mission. A simulated overview of the Lander Mission is presented. Also presented are views of pre-launch activities, countdown, and launch of the spacecraft, burnouts of the first, second, and third engines, and the probe separating from the spacecraft. During this mission the Lander performs in situ investigations that address the science theme "Volatiles and Climate History" on Mars. The purpose of this mission is to study the following: climate; life; water; carbon dioxide; and dust particles.

  11. Progress of the Mars Array Technology Experiment (MATE) on the '01 Lander

    NASA Technical Reports Server (NTRS)

    Scheiman, D. A.; Baraona, C. R.; Jenkins, P.; Wilt, D.; Krasowski, M.; Greer, L.; Lekki, J.; Spina, D.

    1999-01-01

    Future missions to Mars will rely heavily on solar power from the sun, various solar cell types and structures must be evaluated to find the optimum. Sunlight on the surface of Mars is altered by air-borne dust that fluctuates in density from day to day. The dust affects both the intensity and spectral content of the sunlight. The MATE flight experiment was designed for this purpose and will fly on the Mars 2001 Surveyor Lander as part of the Mars In-Situ Propellant Production Precursor (MIP) package. MATE will measure the performance of several solar cell technologies and characterize the Martian environment in terms of solar power. This will be done by measuring full IV curves on solar cells, direct and global insolation, temperature, and spectral content. The Lander is is scheduled to launch in April 2001 and arrive on Mars in January of 2002. The site location has not been identified but will be near the equator and last from 100 to 300 days. The intent of this of this paper is to describe and update the progress on MATE. MATE has four main objectives for its mission to Mars. First is to measure the performance of solar cells daily on the surface of Mars, this will determine the day to day fluctuations in sunlight and temperature and provide a nominal power output. Second, in addition to measuring solar cell performance, it will allow for an intercomparison of different solar cell technologies. Third, It will study the long term effects of dust on the solar cells. Fourth and last, it will characterize the mars environment as viewed by the solar cell, measuring spectrum, insolation, and temperature. Additional information is contained in the original extended abstract.

  12. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  13. A network of small landers on Mars

    NASA Technical Reports Server (NTRS)

    Burke, James D.; Mostert, Robert N.

    1990-01-01

    This paper describes a class of small landers that could form part of a global network of scientific instrumentation on Mars. Two types of landers are considered: penetrators that implant instruments a few meters beneath the surface, and rough landers that may hit the surface at speeds up to tens of m/sec and survive through the use of impact-limiting techniques. Because some scientific objectives, such as seismic and meteorological investigations, require durations of months and years lander designs giving long lifetimes in the Martian environment are needed. This paper describes both past and more recent work at JPL toward this goal.

  14. MUPUS on the Rosetta Lander Philae: First Results

    NASA Astrophysics Data System (ADS)

    Spohn, T.; Joerg, K.

    2014-12-01

    The Rosetta lander Philae is planned to land on he nucleus of comet Churyumov-Gerasimenko on Nov 11 2014 and start its battery powered first science sequence. The "MUlti-PUrpose probe for surface and sub-surface Science" MUPUS will measure the temperature profile up to a depth of 30cm and the thermal conductivity using a self-penetrating needle-probe, the surface brightness temperature using a radiometer, the hardness of the comet soil by measuring the progress of insertion of the probe and the deceleration of the two anchors that will be shot to fix the lander. The anchors are equipped with an accelerometer and a temperature sensor each. The self-penetrating needle-probe, or penetrator for short, has an electro-magnetically driven hammer mechanism on top and a rod of about 1cm diameter and 32cm length equipped with 16 temperature sensors that can also be heated with controlled power of up to 2W to measure the thermal conductivity. MUPUS is stored on the lander but will be deployed to a distance of about 1m from the lander using a motor driven deployment device that extends from the lander balcony. The science goals of the instrument are to measure the temperature profile in the near surface layers of the comet and the heat flow into the comet nucleus to complement the surface energy balance of the nucleus with a quantity that is difficult to measure remotely or to estimate. The thermal conductivity can be further used to characterize the near surface layers and possibly determine the depth to pristine ice. The first science sequence will allow for insertion of the probe and for a first series of temperature and thermal conductivity measurements. MUPUS is looking at the long-term science sequence to complement these data. At the AGU fall meeting - assuming a successful landing and installation of the probe - we will report on results from the first science sequence.

  15. Unlocking the secrets of the universe, Rosetta lander named Philae

    NASA Astrophysics Data System (ADS)

    2004-02-01

    Philae is the island in the river Nile on which an obelisk was found that had a bilingual inscription including the names of Cleopatra and Ptolemy in Egyptian hieroglyphs. This provided the French historian Jean-François Champollion with the final clues that enabled him to decipher the hieroglyphs of the Rosetta Stone and unlock the secrets of the civilisation of ancient Egypt. Just as the Philae Obelisk and the Rosetta Stone provided the keys to an ancient civilisation, the Philae lander and the Rosetta orbiter aim to unlock the mysteries of the oldest building blocks of our Solar System - comets. Germany, France, Italy and Hungary are the main contributors to the lander, working together with Austria, Finland, Ireland and the UK. The main contributors held national competitions to select the most appropriate name. Philae was proposed by 15-year-old Serena Olga Vismara from Arluno near Milan, Italy. Her hobbies are reading and surfing the internet, where she got the idea of naming the lander Philae. Her prize will be a visit to Kourou to attend the Rosetta launch. Study of Comet Churyumov-Gerasimenko will allow scientists to look back 4600 million years to an epoch when no planets existed and only a vast swarm of asteroids and comets surrounded the Sun. On arrival at the comet in 2014, Philae will be commanded to self-eject from the orbiter and unfold its three legs, ready for a gentle touchdown. Immediately after touchdown, a harpoon will be fired to anchor Philae to the ground and prevent it escaping from the comet's extremely weak gravity. The legs can rotate, lift or tilt to return Philae to an upright position. Philae will determine the physical properties of the comet's surface and subsurface and their chemical, mineralogical and isotopic composition. This will complement the orbiter's studies of the overall characterisation of the comet's dynamic properties and surface morphology. Philae may provide the final clues enabling the Rosetta mission to unlock

  16. The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Schmitz, N.; Koncz, A.; Michaelis, H.; Schroeder, S. E.; Mottola, S.; Trauthan, F.; Hoffmann, H.; Roatsch, T.; Jobs, D.; Kachlicki, J.; Pforte, B.; Terzer, R.; Tschentscher, M.; Weisse, S.; Mueller, U.; Perez-Prieto, L.; Broll, B.; Kruselburger, A.; Ho, T.-M.; Biele, J.; Ulamec, S.; Krause, C.; Grott, M.; Bibring, J.-P.; Watanabe, S.; Sugita, S.; Okada, T.; Yoshikawa, M.; Yabuta, H.

    2016-06-01

    The MASCOT Camera (MasCam) is part of the Mobile Asteroid Surface Scout (MASCOT) lander's science payload. MASCOT has been launched to asteroid (162173) Ryugu onboard JAXA's Hayabusa 2 asteroid sample return mission on Dec 3rd, 2014. It is scheduled to arrive at Ryugu in 2018, and return samples to Earth by 2020. MasCam was designed and built by DLR's Institute of Planetary Research, together with Airbus-DS Germany. The scientific goals of the MasCam investigation are to provide ground truth for the orbiter's remote sensing observations, provide context for measurements by the other lander instruments (radiometer, spectrometer and magnetometer), the orbiter sampling experiment, and characterize the geological context, compositional variations and physical properties of the surface (e.g. rock and regolith particle size distributions). During daytime, clear filter images will be acquired. During night, illumination of the dark surface is performed by an LED array, equipped with 4×36 monochromatic light-emitting diodes (LEDs) working in four spectral bands. Color imaging will allow the identification of spectrally distinct surface units. Continued imaging during the surface mission phase and the acquisition of image series at different sun angles over the course of an asteroid day will contribute to the physical characterization of the surface and also allow the investigation of time-dependent processes and to determine the photometric properties of the regolith. The MasCam observations, combined with the MASCOT hyperspectral microscope (MMEGA) and radiometer (MARA) thermal observations, will cover a wide range of observational scales and serve as a strong tie point between Hayabusa 2's remote-sensing scales ( 103- 10^{-3} m) and sample scales ( 10^{-3}- 10^{-6} m). The descent sequence and the close-up images will reveal the surface features over a broad range of scales, allowing an assessment of the surface's diversity and close the gap between the orbital

  17. Measuring Staff Perceptions of University Identity and Activities: The Mission and Values Inventory

    ERIC Educational Resources Information Center

    Ferrari, Joseph R.; Velcoff, Jessica

    2006-01-01

    Higher education institutions need to ascertain whether their stakeholders understand the school's mission, vision, and values. In the present study, the psychometric properties of a mission identity and activity measure were investigated with two staff samples. Using a principal component factor analysis (varimax rotation), respondents in Sample…

  18. Rosetta Lander - Philae: activities after hibernation and landing preparations

    NASA Astrophysics Data System (ADS)

    Ulamec, Stephan; Biele, Jens; Sierks, Holger; Blazquez, Alejandro; Cozzoni, Barbara; Fantinati, Cinzia; Gaudon, Philippe; Geurts, Koen; Jurado, Eric; Paetz, Brigitte.; Maibaum, Michael

    Rosetta is a Cornerstone Mission of the ESA Horizon 2000 programme. It is going to rendezvous with comet 67P/Churyumov-Gerasimenko after a ten year cruise and will study both its nucleus and coma with an orbiting spacecraft as well as with a Lander, Philae. Aboard Philae, a payload consisting of ten scientific instruments will perform in-situ studies of the cometary material. Rosetta and Philae have been in hibernation until January 20, 2014. After the successful wakeup they will undergo a post hibernation commissioning. The orbiter instruments (like e.g. the OSIRIS cameras) are to characterize the target comet to allow landing site selection and the definition of a separation, descent and landing (SDL) strategy for the Lander. By August 2014 our currently very poor knowledge of the characteristics of the nucleus of the comet will have increased dramatically. The paper will report on the latest updates in Separation-Descent-Landing (SDL) planning. Landing is foreseen for November 2014 at a heliocentric distance of 3 AU. Philae will be separated from the mother spacecraft from a dedicated delivery trajectory. It then descends ballistically to the surface of the comet, stabilized with an internal flywheel. At touch-down anchoring harpoons will be fired and a damping mechanism within the landing gear will provide the lander from re-bouncing. The paper will give an overview of the Philae system, the operational activities after hibernation and the latest status on the preparations for landing.

  19. Rock Moved by Mars Lander Arm, Stereo View

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location.

    'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team.

    The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape.

    The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been.

    This left-eye and right-eye images for this stereo view were taken at about 12:30 p.m., local solar time on Mars. The scene appears three-dimensional when seen through blue-red glasses.The view is to the north northeast of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  20. Altair Lunar Lander Development Status: Enabling Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Laurini, Kathleen C.; Connolly, John F.

    2009-01-01

    As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.

  1. Panoramic View of Lander During Turn

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 360-degree panoramic mosaic image composed of data from the hazard avoidance camera on the Mars Exploration Rover Spirit shows a view of the lander from under the rover deck. The images were taken as the rover turned from its landing position 95 degrees toward the northwest side of the lander.

  2. Prediction of Viking lander camera image quality

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Burcher, E. E.; Jobson, D. J.; Wall, S. D.

    1976-01-01

    Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances.

  3. Mars Mobile Lander Systems for 2005 and 2007 Launch Opportunities

    NASA Technical Reports Server (NTRS)

    Sabahi, D.; Graf, J. E.

    2000-01-01

    A series of Mars missions are proposed for the August 2005 launch opportunity on a medium class Evolved Expendable Launch Vehicle (EELV) with a injected mass capability of 2600 to 2750 kg. Known as the Ranger class, the primary objective of these Mars mission concepts are: (1) Deliver a mobile platform to Mars surface with large payload capability of 150 to 450 kg (depending on launch opportunity of 2005 or 2007); (2) Develop a robust, safe, and reliable workhorse entry, descent, and landing (EDL) capability for landed mass exceeding 750 kg; (3) Provide feed forward capability for the 2007 opportunity and beyond; and (4) Provide an option for a long life telecom relay orbiter. A number of future Mars mission concepts desire landers with large payload capability. Among these concepts are Mars sample return (MSR) which requires 300 to 450 kg landed payload capability to accommodate sampling, sample transfer equipment and a Mars ascent vehicle (MAV). In addition to MSR, large in situ payloads of 150 kg provide a significant step up from the Mars Pathfinder (MPF) and Mars Polar Lander (MPL) class payloads of 20 to 30 kg. This capability enables numerous and physically large science instruments as well as human exploration development payloads. The payload may consist of drills, scoops, rock corers, imagers, spectrometers, and in situ propellant production experiment, and dust and environmental monitoring.

  4. Rosetta Lander - Landing and operations on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Ulamec, Stephan; Fantinati, Cinzia; Maibaum, Michael; Geurts, Koen; Biele, Jens; Jansen, Sven; Küchemann, Oliver; Cozzoni, Barbara; Finke, Felix; Lommatsch, Valentina; Moussi-Soffys, Aurelie; Delmas, Cedric; O´Rourke, Laurence

    2016-08-01

    The Rosetta Lander Philae is part of the ESA Rosetta Mission which reached comet 67P/Churyumov-Gerasimenko after a 10 year cruise in August 2014. Since then, Rosetta has been studying both its nucleus and coma with instruments aboard the Orbiter. On November 12th, 2014 the Lander, Philae, was successfully delivered to the surface of the comet and operated for approximately 64 h after separation from the mother spacecraft. Since the active cold gas system aboard the Lander as well as the anchoring harpoons did not work, Philae bounced after the first touch-down at the planned landing site "Agilkia". At the final landing site, "Abydos", a modified First Scientific Sequence was performed. Due to the unexpectedly low illumination conditions and a lack of anchoring the sequence had to be adapted in order to minimize risk and maximize the scientific output. All ten instruments could be activated at least once, before Philae went into hibernation. In June 2015, the Lander contacted Rosetta again having survived successfully a long hibernation phase. This paper describes the Lander operations around separation, during descent and on the surface of the comet. We also address the partly successful attempts to re-establish contact with the Lander in June/July, when the internal temperature & power received were sufficient for Philae to become active again.

  5. Planetary Lake Lander - A Robotic Sentinel to Monitor a Remote Lake

    NASA Technical Reports Server (NTRS)

    Pedersen, Liam; Smith, Trey; Lee, Susan; Cabrol, Nathalie; Rose, Kevin

    2012-01-01

    The Planetary Lake Lander Project is studying the impact of rapid deglaciation at a high altitude alpine lake in the Andes, where disrupted environmental, physical, chemical, and biological cycles result in newly emerging natural patterns. The solar powered Lake Lander robot is designed to monitor the lake system and characterize both baseline characteristics and impacts of disturbance events such as storms and landslides. Lake Lander must use an onboard adaptive science-on-the-fly approach to return relevant data about these events to mission control without exceeding limited energy and bandwidth resources. Lake Lander carries weather sensors, cameras and a sonde that is winched up and down the water column to monitor temperature, dissolved oxygen, turbidity and other water quality parameters. Data from Lake Lander is returned via satellite and distributed to an international team of scientists via web-based ground data systems. Here, we describe the Lake Lander Project scientific goals, hardware design, ground data systems, and preliminary data from 2011. The adaptive science-on-the-fly system will be described in future papers.

  6. Brake Failure from Residual Magnetism in the Mars Exploration Rover Lander Petal Actuator

    NASA Technical Reports Server (NTRS)

    Jandura, Louise

    2004-01-01

    In January 2004, two Mars Exploration Rover spacecraft arrived at Mars. Each safely delivered an identical rover to the Martian surface in a tetrahedral lander encased in airbags. Upon landing, the airbags deflated and three Lander Petal Actuators opened the three deployable Lander side petals enabling the rover to exit the Lander. Approximately nine weeks prior to the scheduled launch of the first spacecraft, one of these mission-critical Lander Petal Actuators exhibited a brake stuck-open failure during its final flight stow at Kennedy Space Center. Residual magnetism was the definitive conclusion from the failure investigation. Although residual magnetism was recognized as an issue in the design, the lack of an appropriately specified lower bound on brake drop-out voltage inhibited the discovery of this problem earlier in the program. In addition, the brakes had more unit-to-unit variation in drop-out voltage than expected, likely due to a larger than expected variation in the magnetic properties of the 15-5 PH stainless steel brake plates. Failure analysis and subsequent rework of two other Lander Petal Actuators with marginal brakes was completed in three weeks, causing no impact to the launch date.

  7. Design of a Thermal and Micrometeorite Protection System for an Unmanned Lunar Cargo Lander

    NASA Technical Reports Server (NTRS)

    Hernandez, Carlos A.; Sunder, Sankar; Vestgaard, Baard

    1989-01-01

    The first vehicles to land on the lunar surface during the establishment phase of a lunar base will be unmanned lunar cargo landers. These landers will need to be protected against the hostile lunar environment for six to twelve months until the next manned mission arrives. The lunar environment is characterized by large temperature changes and periodic micrometeorite impacts. An automatically deployable and reconfigurable thermal and micrometeorite protection system was designed for an unmanned lunar cargo lander. The protection system is a lightweight multilayered material consisting of alternating layers of thermal and micrometeorite protection material. The protection system is packaged and stored above the lander common module. After landing, the system is deployed to cover the lander using a system of inflatable struts that are inflated using residual fuel (liquid oxygen) from the fuel tanks. Once the lander is unloaded and the protection system is no longer needed, the protection system is reconfigured as a regolith support blanket for the purpose of burying and protecting the common module, or as a lunar surface garage that can be used to sort and store lunar surface vehicles and equipment. A model showing deployment and reconfiguration of the protection system was also constructed.

  8. Measurements of Shuttle Glow on Mission STS 41-G

    DTIC Science & Technology

    1988-09-29

    Cogger, I. McDade , E. Murad, and T. Slanger in the preparatioi of this manuscript. REFERENCES Abreu, V. J., W. R. Skinner, P. B. Hays, and J-H. Yee... McDade , S. B. Mende, and G. R. Swenson, Observations of glow from shuttle surfaces during Mission STS 41-G, Planet. Space Sci., 34, 1159-1166, 1986...continuum component, Geophys. Res. Lett., 12, 453-456, 1985. Shepard , G. G., C W. Lake, J. R. Miller, and L. L. Cogger, A spatial spectral scanning

  9. Mars Sample Return mission: Two alternate scenarios

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Two scenarios for accomplishing a Mars Sample Return mission are presented herein. Mission A is a low cost, low mass scenario, while Mission B is a high technology, high science alternative. Mission A begins with the launch of one Titan IV rocket with a Centaur G' upper stage. The Centaur performs the trans-Mars injection burn and is then released. The payload consists of two lander packages and the Orbital Transfer Vehicle, which is responsible for supporting the landers during launch and interplanetary cruise. After descending to the surface, the landers deploy small, local rovers to collect samples. Mission B starts with 4 Titan IV launches, used to place the parts of the Planetary Transfer Vehicle (PTV) into orbit. The fourth launch payload is able to move to assemble the entire vehicle by simple docking routines. Once complete, the PTV begins a low thrust trajectory out from low Earth orbit, through interplanetary space, and into low Martian orbit. It deploys a communication satellite into a 1/2 sol orbit and then releases the lander package at 500 km altitude. The lander package contains the lander, the Mars Ascent Vehicle (MAV), two lighter than air rovers (called Aereons), and one conventional land rover. The entire package is contained with a biconic aeroshell. After release from the PTV, the lander package descends to the surface, where all three rovers are released to collect samples and map the terrain.

  10. The geology of the Viking Lander 1 site

    NASA Technical Reports Server (NTRS)

    Binder, A. B.; Arvidson, R. E.; Guinness, E. A.; Jones, K. L.; Mutch, T. A.; Morris, E. C.; Pieri, D. C.; Sagan, C.

    1977-01-01

    Stereo pictures show that Viking Lander 1 landed on volcanic terrain of undulating topography in the plains of Chryse. The bedrock is exposed along several ridge crests, and blocks are more numerous than can be attributed to impact ejecta. The presence of a variety of rock types suggests in situ weathering of extrusive and near-surface basaltic igneous rocks along a linear volcanic vent. Fine-grained sediment is present in drift complexes and isolated drifts. A small patch of fine-grained sediment slumped down one of the drift faces during the course of the Viking mission. Otherwise, no other morphological changes unrelated to spacecraft activity have been observed.

  11. Lunar Dust Environment and Plasma Package for Lunar Lander - Definition Study

    NASA Astrophysics Data System (ADS)

    Laifr, J.; Auster, U.; Bale, S. D.; Delory, G. T.; Devoto, P.; Farrell, W. M.; Glassmeier, K.; Guicking, L.; Halekas, J. S.; Hellinger, P.; Hercik, D.; Horanyi, M.; Kataria, D.; Kozacek, Z.; Mazelle, C. X.; Omura, Y.; Owen, C. J.; Pavelka, R.; Plaschke, F.; Rucker, H. O.; Saito, Y.; Sternovsky, Z.; Stverak, S.; Travnicek, P. M.; Turin, P.; Vana, P.

    2012-12-01

    Dust, the charged lunar surface, and the ambient plasma form a closely coupled system. The lunar surface is permanently under the influence of charging effects such as UV radiation or energetic solar wind and magnetospheric particles. The surface charging effects result in strong local electric fields which in turn may lead to mobilization and transport of charged dust particles. Furthermore, the environment can become even more complex in the presence of local crustal magnetic anomalies or due to sunlight/shadow transitions. A detail understanding of these phenomena and their dependence on external influences is a key point for future robotic and human lunar exploration and requires an appropriately tuned instrumentation for in-situ measurements. Here we present results from the concept and design phase A - a study of the Lunar Dust Environment and Plasma Package (L-DEPP), which has been proposed as one of model instrument payloads for the planned Lunar Lander mission of the European Space Agency. Focus is held on scientific objectives and return of the mission with respect to environmental and mission technology constraints and requirements. L-DEPP is proposed to consist of the following instruments: ELDA - Electrostatic Lunar Dust Analyser, LPM - Langmuir Probe and Magnetometer, LRU - Broadband radio receiver and electric field antennae and LEIA - Lunar Electron and Ion Analyser. In addition to the dust and plasma measurements the RADIO experiment will provide a site survey testing for future radio astronomy observations. Lunar Dust Environment and Plasma Package CAD Model

  12. MetNet - Martian Network Mission

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.

    2009-04-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The actual practical mission development work started in January 2009 with participation from various countries and space agencies. The scientific rationale and goals as well as key mission solutions will be discussed. The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. This development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development.

  13. Terrestrial outgoing radiation measurements with small satellite mission

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Dewitte, Steven; Karatekin, Ozgur; Chevalier, André; Conscience, Christian

    2015-04-01

    The solar force is the main driver of the Earth's climate. For a balanced climate system, the incoming solar radiation is equal to the sum of the reflected visible and reemitted thermal radiation at top of the atmosphere (TOA). Thus the energy imbalance plays an important role to diagnose the health of nowadays climate. However it remains a challenge to directly track the small Energy imbalance in Earth's Radiation Budget (EIERB) from space due to the complicities of the Earth's climate system and the limitation on long term stability of space instrument. The terrestrial outgoing radiation (TOR) has been recoded with a Bolometric Oscillation Sensor onboard PICAD microsatellite. In this presentation, we will report the three years TOR observed with PICARD-BOS and its further comparison with the CERES product. However the data acquired from this mission is still not enough to derive the EIERB. But the heritage gained from this experiment shields a light on the EIERB tracking with the small satellite even a cubesat mission.

  14. Planetary protection implementation for the rosetta mission

    NASA Astrophysics Data System (ADS)

    Schwehm, G.; Ellwood, J.; Scheuerle, H.; Ulamec, S.; Debus, A.; Moura, D.

    The European Space Agency's Rosetta mission to explore comet 46P/ Wirtanen will be launched in January 2003. After a long interplanetary cruise that will include gravity assist manoeuvres, one at Mars and two at the Earth and close fly-bys of asteroids Otawara and Siwa, in July 2006 and July 2008, respectively, the spacecraft will approach the comet around November 2011. After an extended comet nucleus global mapping and characterisation phase a small lander will be deployed onto the nucleus surface for in -situ investigation of the upper layers of the comet and core sounding. For the different mission phases specific Planetary Protection rules will apply. According to the present COSPAR Planetary Protection Policy the Rosetta mission falls into category 3 for the Mars gravity assist, which will bring the spacecraft as close as 200 km to Mars, and into category 2 for the comet exploration phase. As the implementation of a Planetary Protection Plan for an actual mission is a novelity for ESA, we will describe the procedures and the measures taken to assure a very low probability of impact at Mars and for the organics contamination control for the Rosetta Lander.

  15. System Analysis Applied to Autonomy: Application to Human-Rated Lunar/Mars Landers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2006-01-01

    System analysis is an essential technical discipline for the modern design of spacecraft and their associated missions. Specifically, system analysis is a powerful aid in identifying and prioritizing the required technologies needed for mission and/or vehicle development efforts. Maturation of intelligent systems technologies, and their incorporation into spacecraft systems, are dictating the development of new analysis tools, and incorporation of such tools into existing system analysis methodologies, in order to fully capture the trade-offs of autonomy on vehicle and mission success. A "system analysis of autonomy" methodology will be outlined and applied to a set of notional human-rated lunar/Mars lander missions toward answering these questions: 1. what is the optimum level of vehicle autonomy and intelligence required? and 2. what are the specific attributes of an autonomous system implementation essential for a given surface lander mission/application in order to maximize mission success? Future human-rated lunar/Mars landers, though nominally under the control of their crew, will, nonetheless, be highly automated systems. These automated systems will range from mission/flight control functions, to vehicle health monitoring and prognostication, to life-support and other "housekeeping" functions. The optimum degree of autonomy afforded to these spacecraft systems/functions has profound implications from an exploration system architecture standpoint.

  16. TAGS 85/2N RTG Power for Viking Lander Capsule

    DOE R&D Accomplishments Database

    1969-08-01

    Results of studies performed by Isotopes, Inc., Nuclear Systems Division, to optimize and baseline a TAGS 85/2N RTG for the Viking Lander Capsule prime electrical power source are presented. These studies generally encompassed identifying the Viking RTG mission profile and design requirements, and establishing a baseline RTG design consistent with these requirements.

  17. Antenna Designs for the Mars Exploration Rovers (MER) Spacecraft, Lander, and Rover

    NASA Technical Reports Server (NTRS)

    Vacchione, Joseph; Thelen, Michael; Brown, Paula; Huang, John; Kelly, Ken; Krishnan, Satish

    2001-01-01

    This presentation focuses on the design of antennas for the Mars Exploration Rovers (MER). Specific topics covered include: MER spacecraft architecture, the evolution of an antenna system, MER cruise stage antennas, antenna stacks, the heat-shield/back shell antenna, and lander and rover antennas. Additionally, the mission's science objectives are reviewed.

  18. Exploring Triton with multiple landers

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.

    2005-01-01

    In our pathway for Outer Planetary Exploration several mission concepts were considered, based on the proposed JIMO mission architecture. This paper describes a JIMO follow-on mission concept to Neptunes largest moon. Triton is a target of interest for outer solar system studies. It has a highly inclined retrograde orbit, suggesting that it may have been a Kuiper Belt object captured by Neptune. Given this assumption its composition, which may include organic materials, would be of significant scientific interest.

  19. Rosetta Lander - Philae: Landing preparations

    NASA Astrophysics Data System (ADS)

    Ulamec, Stephan; Biele, Jens; Blazquez, Alejandro; Cozzoni, Barbara; Delmas, Cedric; Fantinati, Cinzia; Gaudon, Philippe; Geurts, Koen; Jurado, Eric; Küchemann, Oliver; Lommatsch, Valentina; Maibaum, Michael; Sierks, Holger; Witte, Lars

    2015-02-01

    Rosetta and Philae have been in hibernation until January 20, 2014. After the successful wakeup they underwent a post-hibernation commissioning. The orbiter instruments (like e.g. the OSIRIS cameras, VIRTIS, MIRO, Alice and ROSINA) characterized the target comet and its environment to allow landing site selection and the definition of a separation, descent and landing (SDL) strategy for the Lander. By September 2014 our previously poor knowledge of the characteristics of the nucleus of the comet has increased drastically and the nominal and backup landing could be selected. The nominal site, as well as the corresponding descent strategy have been confirmed in mid-October, one month before the landing. The paper summarizes the selection process for a landing site and the planning for Separation-Descent-Landing (SDL).

  20. Declining Sunshine for Phoenix Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The yellow line on this graphic indicates the number of hours of sunlight each sol, or Martian day, at the Phoenix landing site's far-northern latitude, beginning with the entire Martian day (about 24 hours and 40 minutes) for the first 90 sols, then declining to no sunlight by about sol 300. The blue tick mark indicates that on Sol 124 (Sept. 29, 2008), the sun is above the horizon for about 20 hours.

    The brown vertical bar represents the period from Nov. 18 to Dec. 24, 2008, around the 'solar conjunction,' when the sun is close to the line between Mars and Earth, affecting communications.

    The green vertical rectangle represents the period from February to November 2009 when the Phoenix lander is expected to be encased in carbon-dioxide ice.

  1. On the Tropical Rainfall Measuring Mission (TRMM): Bringing NASA's Earth System Science Program to the Classroom

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall

    1998-01-01

    The Tropical Rainfall Measuring Mission is the first mission dedicated to measuring tropical and subtropical rainfall using a variety of remote sensing instrumentation, including the first spaceborne rain-measuring radar. Since the energy released when tropical rainfall occurs is a primary "fuel" supply for the weather and climate "engine"; improvements in computer models which predict future weather and climate states may depend on better measurements of global tropical rainfall and its energy. In support of the STANYS conference theme of Education and Space, this presentation focuses on one aspect of NASA's Earth Systems Science Program. We seek to present an overview of the TRMM mission. This overview will discuss the scientific motivation for TRMM, the TRMM instrument package, and recent images from tropical rainfall systems and hurricanes. The presentation also targets educational components of the TRMM mission in the areas of weather, mathematics, technology, and geography that can be used by secondary school/high school educators in the classroom.

  2. NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update

    NASA Technical Reports Server (NTRS)

    Morse, Brian J.; Reed, Cheryl L. B.; Kirby, Karen W.; Cohen, Barbara A.; Bassler, Julie A.; Harris, Danny W.; Chavers, D. Gregory

    2010-01-01

    In early 2008, NASA established the Lunar Quest Program, a new lunar science research program within NASA s Science Mission Directorate. The program included the establishment of the anchor nodes of the International Lunar Network (ILN), a network of lunar science stations envisioned to be emplaced by multiple nations. This paper describes the current status of the ILN Anchor Nodes mission development and the lander risk-reduction design and test activities implemented jointly by NASA s Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory. The lunar lander concepts developed by this team are applicable to multiple science missions, and this paper will describe a mission combining the functionality of an ILN node with an investigation of lunar polar volatiles.

  3. Nuclear Emulsion Measurements of the Astronauts’ Radiation Exposures on Skylab Missions 2, 3 and 4,

    DTIC Science & Technology

    1975-12-10

    AD-AO19 804 NUCLEAR EMULSION MEASUREMENTS OF THE ASTRONAUTS’ RADIATION EXPOSURES ON SKYLAB MISSIONS 2, 3 AND 4 Hermann J. Schaefer, et al Naval...N/A NUCLEAR EMULSION MEASUREMENTS OF THE ASTRONAUTS’ RADIATION EXPOSURES ON SKYLAB MISSIONS 2, 3, AND 4. N/ ___ _ _ ANZ Hermann J. Schaefer and...corresponding shield distribution of the entire vehicle tesi alirections ofetionable whether the very large effort involved in this eask isd• ~~really

  4. Radiation dosimetry measurements during U.S. Space Shuttle missions with the RME-III

    NASA Technical Reports Server (NTRS)

    Golightly, M. J.; Hardy, K.; Quam, W.

    1994-01-01

    Time-resolved radiation dosimetry measurements inside the crew compartment have been made during recent Shuttle missions with the U.S. Air Force Radiation Monitoring Equipment-III (RME-III), a portable battery-powered four-channel tissue equivalent proportional counter. Results from the first six missions are presented and discussed. Half of the missions had orbital inclinations of 28.5 degrees with the remainder at inclinations of 57 degrees or greater; altitudes ranged from 300 to 600 km. The determined dose equivalent rates ranged from 70 to 5300 microSv/day. The RME-III measurements are in good agreement with other dosimetry measurements made aboard the vehicles. Measurements indicate that medium- and high-LET particles contribute less than 2% of the particle fluence for all missions, but up to 50% of the dose equivalent, depending on the spacecraft's altitude and orbital inclination. Isocontours of fluence, dose and dose equivalent rate have been developed from measurements made during the STS-28 mission. The drift rate of the South Atlantic Anomaly is estimated to be 0.49 degrees W/yr and 0.12 degrees N/yr. The calculated trapped proton and GCR dose for the STS-28 mission was significantly lower than the measured values.

  5. CE-4 Mission and Future Journey to Lunar

    NASA Astrophysics Data System (ADS)

    Zou, Yongliao; Wang, Qin; Liu, Xiaoqun

    2016-07-01

    Chang'E-4 mission, being undertaken by phase two of China Lunar Exploration Program, represents China's first attempt to explore farside of lunar surface. Its probe includes a lander, a rover and a telecommunication relay which is scheduled to launch in around 2018. The scientific objectives of CE-4 mission will be implemented to investigate the lunar regional geological characteristics of landing and roving area, and also will make the first radio-astronomy measurements from the most radio-quiet region of near-earth space. The rover will opreate for at least 3 months, the lander for half a year, and the relay for no less than 3 years. Its scinetific instruments includes Cameras, infrared imaging spectrometer, Penetrating Radar onboard the rover in which is the same as the paylads on board the CE-3 rover, and a Dust-analyzer, a Temperature-instrument and a Wide Band Low Frequency Digital Radio Astronomical Station will be installed on board the lander. Our scientific goals of the future lunar exploration will aim at the lunar geology, resources and surface environments. A series of exploraion missions such as robotic exploration and non-manned lunar scientific station is proposed in this paper.

  6. Conclusion of Viking Lander Imaging Investigation: Picture catalog of experiment data record

    NASA Technical Reports Server (NTRS)

    Wall, S. D.; Ashmore, T. C.

    1985-01-01

    The images returned by the two Viking landers during the Viking Survey Mission are presented in this report. Listing of supplemental information which describe the conditions under which the images were acquired are included. Subsets of the images are listed in a variety of sequences to aid in locating images of interest. The format and organization of the digital magnetic tape storage of the images are described. A brief description of the mission and the camera system is also included.

  7. Missions to Mars

    NASA Astrophysics Data System (ADS)

    Chicarro, A. F.; Science Team

    2002-10-01

    This presentation started with a historical perspective of the astronomical discovery of Mars and followed by an overview of previous missions to Mars by the United States and the Soviet Union. Recently launched missions, such as Nozomi, Mars Global Surveyor and Mars Odyssey were addressed in more detailed, as well as a few other missions soon to be launched. Among these, Mars Express is particularly relevant as the first European mission towards the red planet, and the talk concentrated on it, including both the Mars Express orbiter spacecraft and the Beagle-2 lander to be launched in 2003.

  8. Simulating the Phoenix Lander meteorological conditions with a Mars GCM

    NASA Astrophysics Data System (ADS)

    Daerden, F.; Neary, L.; Whiteway, J.; Dickinson, C.; Komguem, L.; McConnell, J. C.; Kaminski, J. W.

    2012-04-01

    An updated version of the GEM-Mars Global Circulation Model [1] is applied for the simulation of the meteorological conditions at the Phoenix lander site for the time period of the surface operations (Ls=76-150). The simulation results for pressure and temperature at the surface are compared to data from the Phoenix Meteorological Station (MET). The vertical profiles of dust and temperature are compared to Phoenix LIDAR measurements and data from orbit (CRISM and MCS on MRO). The simulated conditions in the PBL are compared to those obtained in a dedicated PBL-Aeolian dust model [2] which was successfully applied to drive a detailed microphysical model [3] for the interpretation of clouds and precipitation observed by the LIDAR on Phoenix [4,5]. [1] Moudden, Y. and J.C. McConnell (2005): A new model for multiscale modeling of the Martian atmosphere, GM3, J. Geophys. Res. 110, E04001, doi:10.1029/2004JE002354 [2] Davy, R., P. A. Taylor, W. Weng, and P.-Y. Li (2009), A model of dust in the Martian lower atmosphere, J. Geophys. Res., 114, D04108, doi:10.1029/2008JD010481. [3] Daerden, F., J.A. Whiteway, R. Davy, C. Verhoeven, L. Komguem, C. Dickinson, P. A. Taylor, and N. Larsen (2010), Simulating Observed Boundary Layer Clouds on Mars, Geophys. Res. Lett., 37, L04203, doi:10.1029/2009GL041523 [4] Whiteway, J., M. Daly, A. Carswell, T. Duck, C. Dickinson, L. Komguem, and C. Cook (2008), Lidar on the Phoenix mission to Mars, J. Geophys. Res., 113, E00A08, doi:10.1029/2007JE003002. [5] Whiteway, J., et al. (2009), Mars water ice clouds and precipitation, Science, 325, 68 - 70.

  9. Phoenix Lander's Thermal Evolved Gas Analyzer: Differential Scanning Calorimeter and Mass Spectrometer Database Development

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Lauer, H. V.; Golden, D. C.; Ming, D. W.; Boynton, W. V.

    2008-01-01

    The Mars Scout Phoenix lander will land in the north polar region of Mars in May, 2008. One objective of the Phoenix lander is to search for evidence of past life in the form of molecular organics that may be preserved in the subsurface soil. The Thermal Evolved Gas Analyzer (TEGA) was developed to detect these organics by coupling a simultaneous differential thermal analyzer (SDTA) with a mass spectrometer. Martian soil will be heated to approx.1000 C and potential organic decomposition products such as CO2, CH4 etc. will be examined for with the MS. TEGA s SDTA will also assess the presence of endothermic and exothermic reactions that are characteristic of soil organics and minerals as the soil is heated. The MS in addition to detecting organic decompositon products, will also assess the levels of soil inorganic volatiles such as H2O, SO2, and CO2. Organic detection has a high priority for this mission; however, TEGA has the ability to provide valuable insight into the mineralogical composition of the soil. The overall goal of this work is to develop a TEGA database of minerals that will serve as a reference for the interpretation of Phoenix-TEGA. Previous databases for the ill-fated Mars Polar Lander (MPL)-TEGA instrument only went to 725 C. Furthermore, the MPL-TEGA could only detect CO2 and H2O while the Phoenix-TEGA MS can examine up to 144 atomic mass units. The higher temperature Phoenix-TEGA SDTA coupled with the more capable MS indicates that a higher temperature database is required for TEGA interpretation. The overall goal of this work is to develop a differential scanning calorimeter (DSC) database of minerals along with corresponding MS data of evolved gases that can used to interpret TEGA data during and after mission operations. While SDTA and DSC measurement techniques are slightly different (SDTA does not use a reference pan), the results are fundamentally similar and thus DSC is a useful technique in providing comparative data for the TEGA

  10. Findings from the PP-SESAME experiment on board the Philae/ROSETTA lander on the surface of comet 67P

    NASA Astrophysics Data System (ADS)

    Lethuillier, A.; Le Gall, A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.; Fischer, H.; Seidensticker, K.

    2015-10-01

    The Permittivity Probe (PP-SESAME [1]) on-board the Philae Lander of the ROSETTA mission was designed to constrain the complex permittivity of the first 2 meters of the nucleus of comet 67P/Churyumov- Gerasimenko and to monitor its variations with time. Doing so, it is meant to provide unique insight into the composition (and activity if data could have been acquired longer) of the comet. In this paper, we present the analysis of the PP-SESAME measurements acquired during the first science sequence, on November 13, 2014, on the surface of the comet.

  11. Laboratory measurements of dielectric properties of compact and granular materials, in relation with Rosetta mission.

    NASA Astrophysics Data System (ADS)

    Brouet, Y.; Levasseur-Regourd, A. C.; Encrenaz, P.; Gheudin, M.; Ciarletti, V.; Gulkis, S.; Jambon, A.; Ruffié, G.; Prigent, C.

    2012-04-01

    The European Rosetta spacecraft (s/c), launched in 2004, will be the first s/c to orbit a comet and place a lander module on its surface. In 2014, the s/c will rendezvous with the comet 67P/Churyumov-Gerasimenko and place the lander on its surface thereby allowing in situ and remote sensing of the comet nucleus. Two radio experiments, one passive (MIRO [1]) and one active (CONSERT [2]), are aboard the Rosetta s/c. MIRO, composed of two radiometers, with center band frequencies at 190 GHz and at 563 GHz to determine the brightness temperatures of the target surfaces and sub-surfaces, has already observed asteroids (2867) Steins [3] and (21) Lutetia [4]. CONSERT will investigate the deep interior of the nucleus using 90 MHz radio-waves transmitted from the orbiter through the nucleus and returned to the orbiter from the lander. To support interpretations of MIRO and CONSERT observations, a program of dielectric properties measurements is under development on a large range of frequencies encompassing those of the above-mentioned experiments. Several instruments for dielectric constant determination are available at IMS laboratory (Bordeaux, France): impedance analyzer, coaxial sensor, resonant cavities (measuring respectively at 100 MHz, 0.5-6 GHz, 1.2-13.4 GHz). Millimeter benches are available at both IMS and LERMA laboratories (measuring respectively at 30-110 GHz and 70-230 GHz). Taking into account the possible presence of regolith layers on the surface of asteroids or nuclei and the very low density of cometary nuclei [5], the dependence of the dielectric constant on the structure and porosity of given granular materials needs also to be investigated (while the thermal and hygrometric conditions are carefully monitored). We have already reported measurements obtained on various meteorites, possibly representative of some asteroid surfaces [6, 7]. We will also report systematic measurements obtained on a large sample of pyroclastic deposits from Etna, providing

  12. Novel Architecture for a Long-Life, Lightweight Venus Lander

    SciTech Connect

    Bugby, D.; Seghi, S.; Kroliczek, E.; Pauken, M.

    2009-03-16

    This paper describes a novel concept for an extended lifetime, lightweight Venus lander. Historically, to operate in the 480 deg. C, 90 atm, corrosive, mostly CO{sub 2} Venus surface environment, previous landers have relied on thick Ti spherical outer shells and thick layers of internal insulation. But even the most resilient of these landers operated for only about 2 hours before succumbing to the environment. The goal on this project is to develop an architecture that extends lander lifetime to 20-25 hours and also reduces mass compared to the Pioneer Venus mission architecture. The idea for reducing mass is to: (a) contain the science instruments within a spherical high strength lightweight polymer matrix composite (PMC) tank; (b) surround the PMC tank with an annular shell of high performance insulation pre-pressurized to a level that (after landing) will exceed the external Venus surface pressure; and (c) surround the insulation with a thin Ti outer shell that contains only a net internal pressure, eliminating buckling overdesign mass. The combination of the PMC inner tank and thin Ti outer shell is lighter than a single thick Ti outer shell. The idea for extending lifetime is to add the following three features: (i) an expendable water supply that is placed within the insulation or is contained in an additional vessel within the PMC tank; (ii) a thin spherical evaporator shell placed within the insulation a short radial distance from the outer shell; and (iii) a thin heat-intercepting liquid cooled shield placed inboard of the evaporator shell. These features lower the temperature of the insulation below what it would have been with the insulation alone, reducing the internal heat leak and lengthening lifetime. The use of phase change materials (PCMs) inside the PMC tank is also analyzed as a lifetime-extending design option. The paper describes: (1) analytical modeling to demonstrate reduced mass and extended life; (2) thermal conductivity testing of high

  13. Novel Architecture for a Long-Life, Lightweight Venus Lander

    NASA Astrophysics Data System (ADS)

    Bugby, D.; Seghi, S.; Kroliczek, E.; Pauken, M.

    2009-03-01

    This paper describes a novel concept for an extended lifetime, lightweight Venus lander. Historically, to operate in the 480° C, 90 atm, corrosive, mostly CO2 Venus surface environment, previous landers have relied on thick Ti spherical outer shells and thick layers of internal insulation. But even the most resilient of these landers operated for only about 2 hours before succumbing to the environment. The goal on this project is to develop an architecture that extends lander lifetime to 20-25 hours and also reduces mass compared to the Pioneer Venus mission architecture. The idea for reducing mass is to: (a) contain the science instruments within a spherical high strength lightweight polymer matrix composite (PMC) tank; (b) surround the PMC tank with an annular shell of high performance insulation pre-pressurized to a level that (after landing) will exceed the external Venus surface pressure; and (c) surround the insulation with a thin Ti outer shell that contains only a net internal pressure, eliminating buckling overdesign mass. The combination of the PMC inner tank and thin Ti outer shell is lighter than a single thick Ti outer shell. The idea for extending lifetime is to add the following three features: (i) an expendable water supply that is placed within the insulation or is contained in an additional vessel within the PMC tank; (ii) a thin spherical evaporator shell placed within the insulation a short radial distance from the outer shell; and (iii) a thin heat-intercepting liquid cooled shield placed inboard of the evaporator shell. These features lower the temperature of the insulation below what it would have been with the insulation alone, reducing the internal heat leak and lengthening lifetime. The use of phase change materials (PCMs) inside the PMC tank is also analyzed as a lifetime-extending design option. The paper describes: (1) analytical modeling to demonstrate reduced mass and extended life; (2) thermal conductivity testing of high

  14. Measurement of fish movements at depths to 6000 m using a deep-ocean lander incorporating a short base-line sonar utilizing miniature code-activated transponder technology

    NASA Astrophysics Data System (ADS)

    Bagley, P. M.; Bradley, S.; Priede, I. G.; Gray, P.

    1999-12-01

    Most research on animal behaviour in the deep ocean (to depths of 6000 m) is restricted to the capture of dead specimens or viewing activity over small areas of the sea floor by means of cameras or submersibles. This paper describes the use of a miniature acoustic code-activated transponder (CAT) tag and short base-line sonar to track the movements of deep-sea fish in two dimensions over an area 1 km in diameter centred on a lander platform. The CAT tags and sonar are transported to the deep-sea floor by means of a subsea mooring which is ballasted so that it lands and remains on the sea floor for the duration of the tracking experiment (the lander). A description of the CAT, lander and short base-line sonar is given. Results are presented to illustrate the operation of the system.

  15. Robotic Lander Gets Sideways During Test

    NASA Video Gallery

    During a recent test at NASA’s Marshall Space Flight Center inHuntsville, Ala., the robotic lander prototype, known as Mighty Eagle,performed a hover test flying up to three feet and then trans...

  16. Robotic Landers: Small With Big Benefits

    NASA Video Gallery

    NASA and the Johns Hopkins University Applied Physics Laboratory are creating a new generation of smart, versatile robotic landers. for exploring the moon, asteroids, and other airless bodies in ou...

  17. Science, Measurement, and Technology Requirements for Infrared Climate Benchmark Missions

    NASA Technical Reports Server (NTRS)

    Johnson, David G.; Mlynczak, Martin G.

    2011-01-01

    Quantifying climate change in the presence of natural variability requires highly accurate global measurements covering more than a decade. Instrument design considerations for trending terrestrial emitted radiance are described.

  18. MMPM - Mars MetNet Precursor Mission

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.; Schmidt, W.; Pichkhadze, K.; Linkin, V.; Vazquez, L.; Uspensky, M.; Polkko, J.; Genzer, M.; Lipatov, A.; Guerrero, H.; Alexashkin, S.; Haukka, H.; Savijarvi, H.; Kauhanen, J.

    2008-09-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. Prototyping of the payload instrumentation with final dimensions was carried out in 2003-2006.This huge development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development. To understand the behavior and dynamics of the Martian atmosphere, a wealth of simultaneous in situ observations are needed on varying types of Martian orography, terrain and altitude spanning all latitudes and longitudes. This will be performed by the Mars MetNet Mission. In addition to the science aspects the

  19. An Autonomous Instrument Package for Providing 'Pathfinder' Network Measurements on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Lognonne, Ph.

    2003-01-01

    The investigations of the interior and atmosphere of Mars have been identified as high scientific priorities in most planetary exploration strategy document since the time of Viking. Most recently, the National Academy of Sciences has recommended a long-lived Mars network mission as its second highest scientific priority for Mars (after sample return) for the purpose of performing seismological investigations of the interior and studying the activity and composition of the atmosphere. Despite consistent recommendations by advisory groups, Mars network missions (MESUR, Marsnet, InterMarsnet, NetLander/MSR 05, NetLander/Premier 07, NetLander/?? 09) have undergone a strikingly consistent 'Phoenix' cycle of death and rebirth over the past 15 years, and there are still no confirmed plans to address the interior and atmosphere of Mars. The latest attempt is the NetLander mission. The objective of NetLander is to place a network of four landers on Mars to perform detailed measurements of the seismicity and atmospheric pressure, temperature, wind, humidity, and opacity (as well as provide images, subsurface radar sounding profiles, and electric/magnetic field measurements). However, this mission has recently encountered major programmatic difficulties within CNES and NASA. NASA has already cancelled its participation and the mission itself is facing imminent cancellation if CNES cannot solve programmatic issues associated with launching the mission in 2009. In this presentation we will describe an approach that could move us closer to realizing the goals of a Mars network mission and will secure at least one geophysical and meteorological observatory in 2009.

  20. Linear Covariance Analysis for a Lunar Lander

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Bhatt, Sagar; Fritz, Matthew; Woffinden, David; May, Darryl; Braden, Ellen; Hannan, Michael

    2017-01-01

    A next-generation lunar lander Guidance, Navigation, and Control (GNC) system, which includes a state-of-the-art optical sensor suite, is proposed in a concept design cycle. The design goal is to allow the lander to softly land within the prescribed landing precision. The achievement of this precision landing requirement depends on proper selection of the sensor suite. In this paper, a robust sensor selection procedure is demonstrated using a Linear Covariance (LinCov) analysis tool developed by Draper.

  1. Self-unloading, reusable, lunar lander project

    NASA Technical Reports Server (NTRS)

    Arseculeratne, Ruwan; Cavazos, Melissa; Euker, John; Ghavidel, Fred; Hinkel, Todd J.; Hitzfelder, John; Leitner, Jesse; Nevik, James; Paynter, Scott; Zolondek, Allen

    1990-01-01

    In the early 21st century, NASA will return to the Moon and establish a permanent base. To achieve this goal safely and economically, B&T Engineering has designed an unmanned, reusable, self-unloading lunar lander. The lander is designed to deliver 15,000 kg payloads from an orbit transfer vehicle (OTV) in a low lunar polar orbit and an altitude of 200 km to any location on the lunar surface.

  2. Permittivity Probe on the Rosetta Lander Philae: Preparation for On-Comet-Phase

    NASA Astrophysics Data System (ADS)

    Schmidt, Walter; Grard, Réjean; Hamelin, Michel; Ciarletti, Valerie; Le Gall, Alice; Caujolle-Bert, Sylvain; Kargl, Günther

    2013-04-01

    Mid of November 2014 the ESA Rosetta spacecraft will send its Lander Philae to the surface of the comet 67P/Churyumov-Gerasimenko. The three landing gear feet carry sensors of the Surface Electrical, Seismic and Acoustic Monitoring Experiments (SESAME), among them the Permittivity Probe (PP) [1]. Together with sensors attached to the MUPUS PEN and the APXS detector lid, PP features three transmitter electrodes and 2 receiver electrodes. Using any combination of two transmitters the quadrupole arrangement can measure the electrical properties of the comet surface material at different depths between 50 cm and about 2 m. The instrument is optimized for the detection of water ice inside the observed volume, its purity and temperature. For PP a critical mission phase is the descent towards the comet surface as after separation from the spacecraft and unfolding of the landing gear the instrument is for the first time in the real measurement configuration while the vacuum condition of space provides a known reference. This phase will be used for calibration of all signal disturbances like stray capacitances caused by cable connections, structure elements and other instruments. During the past year a special test scenario was developed and tested combining the operational requirements from several instruments into an integrated time line. Together with laboratory measurements using flight-equivalent material the electrical properties of the PP instrument network will be modeled. The results set the framework for the analysis of the on-comet observations under different electrode-combinations and geometry conditions. An observation sequence for the first days after landing was defined taking the different observational requirements into account. Reference: [1] Seidensticker, K.J., Thiel, K. and Schmidt, W., 2004: The Rosetta Lander Experiment SESAME and the new Target Comet 67P/Churyumov-Gerasimenko. Astrophys. Space Sci., 311,297-307.

  3. Status of the Rosetta lander experiment SESAME and its instrument CASSE

    NASA Astrophysics Data System (ADS)

    Seidensticker, Klaus; Faber, Claudia; Fischer, Hans-Herbert; Knapmeyer, Martin; Knollenberg, Joerg; Krause, Christian; Krueger, Harald; Schmidt, Walter; Thiel, Klaus

    SESAME (Surface Electric Sounding and Acoustic Monitoring Experiment) is one of nine ex-periments on the Rosetta lander Philae. Launched in 2004 as part of the ESA Rosetta mission, Philae will land in 2014 on comet 67P/Churyumov-Gerasimenko. SESAME is a complex of the three instruments CASSE (Comet Acoustic Surface Sounding Experiment), DIM (Dust Impact Monitor) and PP (Permittivity Probe) built with the goal to determine physical and chemical properties of the target comet. We will describe the measuring principles and goals of these instruments. In addition, the experiment behavior during the long cruise phase that has been used for a comprehensive testing and calibration program of the instruments including major updates of the flight software will be presented. Although built for active and passive in-situ measurements on the surface of comet 67P/Churyumov-Gerasimenko, CASSE has been used to detect interplanetary dust particles during the flybys of asteroids 2867 Steins and 21 Lutetia as well as for technical support measurements both for the Rosetta Lander and for the Rosetta Orbiter. Data obtained with CASSE helped to calibrate the Philae Flywheel that will be used for stabilization during the descent to the cometary sur-face. CASSE was also used to monitor the outcome of re-lubricating one of the orbiter reaction wheels that are used for spacecraft attitude control. In addition, we will present CASSE laboratory experiments. These experiments have the goal to improve the interpretation of the complex CASSE data and to study the vibration generated by another Philae experiment MUPUS during the insertion of its PEN sensor as a secondary signal source.

  4. Long-Lived Venus Lander Conceptual Design: How To Keep It Cool

    NASA Technical Reports Server (NTRS)

    Dyson, Ridger W.; Schmitz, Paul C.; Penswick, L. Barry; Bruder, Geoffrey A.

    2009-01-01

    Surprisingly little is known about Venus, our neighboring sister planet in the solar system, due to the challenges of operating in its extremely hot, corrosive, and dense environment. For example, after over two dozen missions to the planet, the longest-lived lander was the Soviet Venera 13, and it only survived two hours on the surface. Several conceptual Venus mission studies have been formulated in the past two decades proposing lander architectures that potentially extend lander lifetime. Most recently, the Venus Science and Technology Definition Team (STDT) was commissioned by NASA to study a Venus Flagship Mission potentially launching in the 2020- 2025 time-frame; the reference lander of this study is designed to survive for only a few hours more than Venera 13 launched back in 1981! Since Cytherean mission planners lack a viable approach to a long-lived surface architecture, specific scientific objectives outlined in the National Science Foundation Decadal Survey and Venus Exploration Advisory Group final report cannot be completed. These include: mapping the mineralogy and composition of the surface on a planetary scale determining the age of various rock samples on Venus, searching for evidence of changes in interior dynamics (seismometry) and its impact on climate and many other key observations that benefit with time scales of at least a full Venus day (Le. daylight/night cycle). This report reviews those studies and recommends a hybrid lander architecture that can survive for at least one Venus day (243 Earth days) by incorporating selective Stirling multi-stage active cooling and hybrid thermoacoustic power.

  5. Design of Small Impact-Resistant RTGs for Global Network of Unmanned Mars Landers

    SciTech Connect

    Schock, Alfred

    1991-06-26

    Ongoing studies by the National Aeronautics and Space Administration (NASA) for the robotic exploration of Mars contemplate a network of at least twenty small and relatively inexpensive landers distributed over both low and high latitudes of the Martian globe. They are intended to explore the structural, mineralogical, and chemical characteristics of the Martian soil, search for possible subsurface trapped ice, and collect long-term seismological and meteorological data over a period of ten years. They can also serve as precursors for later unmanned and manned Mars missions.; The collected data will be transmitted periodically, either directly to Earth or indirectly via an orbiting relay. The choice of transmission will determine the required power, which is currently expected to be between 2 and 12 watts(e) per lander. This could be supplied either by solar arrays or by Radioisotope Thermoelectric Generators (RTGs). Solar-powered landers could only be used for low Martian latitudes, but RTG-powered landers can be used for both low and high latitudes. Moreover, RTGs are less affected by Martian sandstorms and can be modified to resist high-G-load impacts. High impact resistance is a critical goal. It is desired by the mission designers, to minimize the mass and complexity of the system needed to decelerate the landers to a survivable impact velocity.; To support the NASA system studies, the U.S. Department of Energy's Office of Special Applications (DOE/OSA) asked Fairchild to perform RTG design studies for this mission. The key problem in designing these RTGs is how to enable the generators to tolerate substantially higher G-loads than those encountered on previous RTG missions.; The Fairchild studies resulted in designs of compact RTGs based on flight-proven and safety-qualified heat source components, with a number of novel features designed to provide the desired high impact tolerance. The present paper describes those designs and their rationale, and a

  6. Mars planetary geodesy using earth-based observations of Mars landers

    NASA Technical Reports Server (NTRS)

    Edwards, C. D., Jr.; Kahn, R. D.; Folkner, W. M.; Preston, R. A.

    1992-01-01

    The potential for earth-based radiometric observations of a network of Mars surface landers to provide accurate determination of the Mars rotational orientation in inertial space is investigated. An error budget is presented for the carrier phase data type and related to system requirements for the surface landers. Differencing the carrier phase observations for a pair of Mars landers can provide extremely high precision due to common-mode error cancellation. Results of a covariance analysis are presented which show that Mars orientation can be determined to better than 10 milliarcsec, corresponding to decimeter distances at the planet surface. Recommendations on how to incorporate these concepts into future Mars missions, such as the Mars Environmental Survey, are discussed.

  7. NASA Propulsion Sub-System Concept Studies and Risk Reduction Activities for Resource Prospector Lander

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.

    2015-01-01

    NASA's exploration roadmap is focused on developing technologies and performing precursor missions to advance the state of the art for eventual human missions to Mars. One of the key components of this roadmap is various robotic missions to Near-Earth Objects, the Moon, and Mars to fill in some of the strategic knowledge gaps. The Resource Prospector (RP) project is one of these robotic precursor activities in the roadmap. RP is a multi-center and multi-institution project to investigate the polar regions of the Moon in search of volatiles. The mission is rated Class D and is approximately 10 days, assuming a five day direct Earth to Moon transfer. Because of the mission cost constraint, a trade study of the propulsion concepts was conducted with a focus on available low-cost hardware for reducing cost in development, while technical risk, system mass, and technology advancement requirements were also taken into consideration. The propulsion system for the lander is composed of a braking stage providing a high thrust to match the lander's velocity with the lunar surface and a lander stage performing the final lunar descent. For the braking stage, liquid oxygen (LOX) and liquid methane (LCH4) propulsion systems, derived from the Morpheus experimental lander, and storable bi-propellant systems, including the 4th stage Peacekeeper (PK) propulsion components and Space Shuttle orbital maneuvering engine (OME), and a solid motor were considered for the study. For the lander stage, the trade study included miniaturized Divert Attitude Control System (DACS) thrusters (Missile Defense Agency (MDA) heritage), their enhanced thruster versions, ISE-100 and ISE-5, and commercial-off-the-shelf (COTS) hardware. The lowest cost configuration of using the solid motor and the PK components while meeting the requirements was selected. The reference concept of the lander is shown in Figure 1. In the current reference configuration, the solid stage is the primary provider of delta

  8. Space qualification of an automotive microcontroller for the DREAMS-P/H pressure and humidity instrument on board the ExoMars 2016 Schiaparelli lander

    NASA Astrophysics Data System (ADS)

    Nikkanen, T.; Schmidt, W.; Harri, A.-M.; Genzer, M.; Hieta, M.; Haukka, H.; Kemppinen, O.

    2015-10-01

    Finnish Meteorological Institute (FMI) has developed a novel kind of pressure and humidity instrument for the Schiaparelli Mars lander, which is a part of the ExoMars 2016 mission of the European Space Agency (ESA) [1]. The DREAMS-P pressure instrument and DREAMS-H humidity instrument are part of the DREAMS science package on board the lander. DREAMS-P (seen in Fig. 1 and DREAMS-H were evolved from earlier planetary pressure and humidity instrument designs by FMI with a completely redesigned control and data unit. Instead of using the conventional approach of utilizing a space grade processor component, a commercial off the shelf microcontroller was selected for handling the pressure and humidity measurements. The new controller is based on the Freescale MC9S12XEP100 16-bit automotive microcontroller. Coordinated by FMI, a batch of these microcontroller units (MCUs) went through a custom qualification process in order to accept the component for spaceflight on board a Mars lander.

  9. The Asteroid Impact Mission

    NASA Astrophysics Data System (ADS)

    Carnelli, Ian; Galvez, Andres; Mellab, Karim

    2016-04-01

    The Asteroid Impact Mission (AIM) is a small and innovative mission of opportunity, currently under study at ESA, intending to demonstrate new technologies for future deep-space missions while addressing planetary defense objectives and performing for the first time detailed investigations of a binary asteroid system. It leverages on a unique opportunity provided by asteroid 65803 Didymos, set for an Earth close-encounter in October 2022, to achieve a fast mission return in only two years after launch in October/November 2020. AIM is also ESA's contribution to an international cooperation between ESA and NASA called Asteroid Impact Deflection Assessment (AIDA), consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the AIM rendezvous spacecraft. The primary goals of AIDA are to test our ability to perform a spacecraft impact on a near-Earth asteroid and to measure and characterize the deflection caused by the impact. The two mission components of AIDA, DART and AIM, are each independently valuable but when combined they provide a greatly increased scientific return. The DART hypervelocity impact on the secondary asteroid will alter the binary orbit period, which will also be measured by means of lightcurves observations from Earth-based telescopes. AIM instead will perform before and after detailed characterization shedding light on the dependence of the momentum transfer on the asteroid's bulk density, porosity, surface and internal properties. AIM will gather data describing the fragmentation and restructuring processes as well as the ejection of material, and relate them to parameters that can only be available from ground-based observations. Collisional events are of great importance in the formation and evolution of planetary systems, own Solar System and planetary rings. The AIDA scenario will provide a unique opportunity to observe a collision event directly in space, and simultaneously from ground-based optical and

  10. 3D Visualization for Phoenix Mars Lander Science Operations

    NASA Technical Reports Server (NTRS)

    Edwards, Laurence; Keely, Leslie; Lees, David; Stoker, Carol

    2012-01-01

    Planetary surface exploration missions present considerable operational challenges in the form of substantial communication delays, limited communication windows, and limited communication bandwidth. A 3D visualization software was developed and delivered to the 2008 Phoenix Mars Lander (PML) mission. The components of the system include an interactive 3D visualization environment called Mercator, terrain reconstruction software called the Ames Stereo Pipeline, and a server providing distributed access to terrain models. The software was successfully utilized during the mission for science analysis, site understanding, and science operations activity planning. A terrain server was implemented that provided distribution of terrain models from a central repository to clients running the Mercator software. The Ames Stereo Pipeline generates accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. These terrain models can then be visualized within the Mercator environment. The central cross-cutting goal for these tools is to provide an easy-to-use, high-quality, full-featured visualization environment that enhances the mission science team s ability to develop low-risk productive science activity plans. In addition, for the Mercator and Viz visualization environments, extensibility and adaptability to different missions and application areas are key design goals.

  11. Altair Lander Life Support: Design Analysis Cycles 4 and 5

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Curley, Su; Rotter, Henry; Yagoda, Evan

    2010-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.

  12. Altair Lander Life Support: Design Analysis Cycles 4 and 5

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Curley, Su; Rotter, Henry; Stambaugh, Imelda; Yagoda, Evan

    2011-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.

  13. Hypervelocity Aeroheating Measurements in Wake of Mars Mission Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Perkins, John N.

    1995-01-01

    Detailed measurements of aerodynamic heating rates in the wake of a Mars-Pathfinder configuration model have been made. Heating data were obtained in a conventional wind tunnel, the NASA LaRC 31" Mach 10 Air Tunnel, and in a high-enthalpy impulse facility, the NASA HYPULSE expansion tube, in which air and CO2 were employed as test gases. The enthalpy levels were 0.7 MJ/kg in the Mach 10 Tunnel, 12 MJ/kg at Mach 9.8 for HYPULSE CO2 tests and 14 MJ/kg at Mach 7.9 for HYPULSE air tests. Wake heating rates were also measured on three similar parametric configurations, and forebody heating measurements were made in order to facilitate CFD comparisons. The ratio of peak wake heating to forebody stagnation point heating in the Mach 10 Tunnel varied from 7% to 15% depending on the freestream Reynolds number. In HYPULSE, the ratio was 5% for both air and CO 2. It was observed that an increase in the ratio of forebody corner radius to nose radius resulted in a decrease in peak wake heating, and moved the peak closer to the base of the forebody. The wake flow establishment process in HYPULSE was studied, and a method was developed to determine when the wake has become fully established.

  14. Onboard Processing of Electromagnetic Measurements for the Luna - Glob Mission

    NASA Astrophysics Data System (ADS)

    Hruska, F.; Kolmasova, I.; Santolik, O.; Skalski, A.; Pronenko, V.; Belyayev, S.; Lan, R.; Uhlir, L.

    2013-12-01

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  15. Buoyant thermal plumes from planetary landers and rovers: Application to sizing of meteorological masts

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Sotzen, Kristin S.

    2014-01-01

    Objective. Landers on Mars and Titan may have warm surfaces as a result of solar heating or the carriage of radioisotope power sources. This warmth can perturb downwind meteorological measurements, but cannot be modeled as a simple aerodynamic wake because buoyant forces can be significant. Methods. We use an analytic model from the industrial aerodynamics literature on smoke dispersion from fires and smokestacks to evaluate the plume trajectories. Computational Fluid Dynamics (CFD) simulations are also performed for a Titan lander. Results. CFD yields results similar to the analytic model. (Albeit with a possibly weaker dependence on windspeed than the classic model.) We apply the models to evaluate the probability of immersion of instrumentation in plumes from the Mars Science Laboratory (MSL) Curiosity and for a Titan lander under various wind scenarios. Conclusions. Lander perturbations can be easily calculated. Practice implications. None.

  16. Summary Report of Mission Acceleration Measurements for STS-95: Launched October 19, 1998

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Hrovat, Kevin

    2000-01-01

    John H. Glenn's historic return to space was a primary focus of the STS-95 mission. The Hubble Space Telescope (HST) orbital Systems Test (HOST), an STS-95 payload, was an in-flight demonstration of HST components to be installed during the next HST servicing mission. One of the components under evaluation was the cryocooler for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Based on concerns about vibrations from the operation of the NICMOS cryocooler affecting the overall HST line-of-sight requirements, the Space Acceleration Measurement System for Free-Flyers (SAMS-FF) was employed to measure the vibratory environment of the STS-95 mission, including any effects introduced by the NICMOS cryocooler. The STS-95 mission represents the first STS mission supported by SAMS-FF. Utilizing a Control and Data Acquisition Unit (CDU) and two triaxial sensor heads (TSH) mounted on the HOST support structure in Discovery's cargo bay, the SAMS-FF and the HOST project were able to make vibratory measurements both on-board the vibration-isolated NICMOS cryocooler and off-board the cryocooler mounting plate. By comparing the SAMS-FF measured vibrations on-board and off-board the NICMOS cryocooler, HST engineers could assess the cryocooler g-jitter effects on the HST line-of-sight requirements. The acceleration records from both SAMS-FF accelerometers were analyzed and significant features of the microgravity environment are detailed in this report.

  17. Summary Report of Mission Acceleration Measurement for STS-87, Launched November 19, 1997

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; DeLombard, Richard; Reckart, Timothy

    1999-01-01

    Two accelerometer systems, the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System, were used to measure and record the microgravity environment of the Orbiter Columbia during the STS-87 mission in November-December 1997. Data from two separate Space Acceleration Measurement System units were telemetered to the ground during the mission and data plots were displayed for investigators of the Fourth United States Microgravity Payload experiments in near real-time using the World Wide Web. Plots generated using Orbital Acceleration Research Experiment data (telemetered to the ground using a tape delay) were provided to the investigators using the World Wide Web approximately twelve hours after data recording. Disturbances in the microgravity environment as recorded by these instruments are grouped by source type: Orbiter systems, on-board activities, payload operations, and unknown sources. The environment related to the Ku-band antenna dither, Orbiter structural modes, attitude deadband collapses, water dump operations, crew sleep, and crew exercise was comparable to the effects of these sources on previous Orbiter missions. Disturbances related to operations of the Isothermal Dendritic Growth Experiment and Space Acceleration Measurement Systems that were not observed on previous missions are detailed. The effects of Orbiter cabin and airlock depressurization and extravehicular activities are also reported for the first time. A set of data plots representing the entire mission is included in the CD-ROM version of this report.

  18. Summary Report of Mission Acceleration Measurement for STS-87: Launched November 19, 1997

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; DeLombard, Richard; Reckart, Timothy

    1999-01-01

    Two accelerometer systems, the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System, were used to measure and record the microgravity environment of the Orbiter Columbia during the STS-87 mission in November-December 1997. Data from two separate Space Acceleration Measurement System units were telemetered to the ground during the mission and data plots were displayed for investigators of the Fourth United States Microgravity Payload experiments in near real-time using the World Wide Web. Plots generated using Orbital Acceleration Research Experiment data (telemetered to the ground using a tape delay) were provided to the investigators using the World Wide Web approximately twelve hours after data recording. Disturbances in the microgravity environment as recorded by these instruments are grouped by source type: Orbiter systems, on-board activities, payload operations, and unknown sources. The environment related to the Ku-band antenna dither, Orbiter structural modes, attitude deadband collapses, water dump operations, crew sleep, and crew exercise was comparable to the effects of these sources on previous Orbiter missions. Disturbances related to operations of the Isothermal Dendritic Growth Experiment and Space Acceleration Measurement Systems that were not observed on previous missions are detailed. The effects of Orbiter cabin and airlock depressurization and extravehicular activities are also reported for the first time. A set of data plots representing the entire mission is included in the CD-ROM version of this report.

  19. Mechanical Properties of the Surface Material of Comet 67P/Churyumov-Gerasimenko Measured By the Casse Instrument Onboard the Philae Lander

    NASA Astrophysics Data System (ADS)

    Knapmeyer, M.; Fischer, H. H.; Seidensticker, K. J.; Arnold, W.; Faber, C.; Möhlmann, D.; Thiel, K.

    2014-12-01

    Satellite remote sensing of ocean color is a critical tool for assessing the productivity of marine ecosystems and monitoring changes resulting from climatic or environmental influences. Yet water-leaving radiance comprises less than 10% of the signal measured from space, making correction for absorption and scattering by the intervening atmosphere imperative. Traditional ocean color retrieval algorithms utilize a standard set of aerosol models and the assumption of negligible water-leaving radiance in the near-infrared. Modern improvements have been developed to handle absorbing aerosols such as urban particulates in coastal areas and transported desert dust over the open ocean, where ocean fertilization can impact biological productivity at the base of the marine food chain. Even so, imperfect knowledge of the absorbing aerosol optical properties or their height distribution results in well-documented sources of error. In the UV, the problem of UV-enhanced absorption and nonsphericity of certain aerosol types are amplified due to the increased Rayleigh and aerosol optical depth, especially at off-nadir view angles. Multi-angle spectro-polarimetric measurements have been advocated as an additional tool to better understand and retrieve the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of the work to be described is the assessment of the effects of absorbing aerosol properties on water leaving radiance measurement uncertainty by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. The phase matrices for the spherical smoke particles were calculated using a standard

  20. Benthic long-term Observatories based on Lander Technology

    NASA Astrophysics Data System (ADS)

    Linke, P.; Pfannkuche, O.; Sommer, S.; Gubsch, S.; Gust, G.

    2003-04-01

    Landers are autonomous carrier systems for a wide range of scientific applications. The GEOMAR Lander System is based on a tripod-shaped platform for various scientific payloads to monitor, measure and experiment at the deep sea floor. These landers can be deployed using hybrid fibre optical or coaxial cables with a special launching device or in the conventional free falling mode. The launcher enables accurate positioning on meter scale, soft deployment and rapid disconnection of lander and launcher by an electric release. The bi-directional video and data telemetry provides on line video transmission, power supply and surface control of various relay functions. Within the collaborative project LOTUS novel long-term observatories have been developed and integrated into the GEOMAR Lander System. An overview of the recent developments is presented. Two new observatories are presented in detail to study the temporal variability of physico-chemical and biogeochemical mechanisms, flux- and turnover rates related to the decomposition and formation of near surface gas hydrates embedded in their original sedimentary matrix. With the Biogeochemical Observatory, BIGO, the temporal variability of the biologically facilitated methane turnover in the sediment and fluxes across the sediment water interface is studied in two mesocosms. Inside the mesocosms the oxygen content can be maintained by a chemostat. The in situ flow regime is measured outside the mesocosms and is reproduced within the chamber with an intelligent stirring system. This approach represents a major step in the development of benthic chambers from stationary to dynamic systems. The Fluid-Flux Observatory (FLUFO) measures the different types of fluid fluxes at the benthic boundary layer of sediments overlying near surface gas hydrates and monitors relevant environmental parameters as temperature, pressure and near bottom currents. FLUFO consists of two chamber units. Both units separate the gas phase from the

  1. Turbulent processes in Earth's magnetosheath by Cluster mission measurements

    NASA Astrophysics Data System (ADS)

    Kozak, L. V.; Lui, A. T. Y.; Kronberg, E. A.; Prokhorenkov, A. S.

    2017-02-01

    Methods and approaches which can be used for the analysis of hydrodynamic and magnetohydrodynamic turbulent flows are chosen for this study. It is defined that the best methods for determination of turbulent process types are the methods of statistical physics. Within the statistical approach the fractal analysis (height of the maximum of probability density fluctuations of the studied parameters) and multifractal analysis (study of a power dependence of high order statistical moments and construction of multifractal spectrum) are considered. It is indicated that the statistical analysis of turbulent process properties can be supplemented with spectral studies (wavelet analysis). Physical processes in the transition regions of the magnetosphere: foreshock, shock, post-shock and magnetosheath are investigated using high frequency measurements by Cluster satellites. Extended self-similarity analysis and structure function analysis demonstrate the presence of super-diffusion processes and the highest values of generalized diffusion coefficients observed in post-shock region. It can be noted that different approaches for the analysis of turbulent processes give similar results and indicate the presence of super-diffusion processes in the transition region of the Earth's magnetosphere. This fact must be taken into account when constructing quantitative models of a transfer process. Wavelet analysis shows the presence of cascade and inverse cascade processes in the Earth's magnetosheath. Good agreement with other studies and our new results contribute to improvement of our understanding of turbulence.

  2. DXL: A sounding rocket mission measuring Solar Wind Charge eXchange properties

    NASA Astrophysics Data System (ADS)

    Galeazzi, Massimiliano

    2016-04-01

    Solar Wind interacts with the interstellar neutrals via charge exchange mechanism to produce spatially and temporally varying x-rays making it difficult to separate from other diffuse sources. The Diffuse X-rays from the Local Galaxy (DXL) mission measured the spatial signature of Solar Wind Charge eXchange (SWCX) emission due to the helium focusing cone. The mission used 2 large area proportional counters and was able to separate the SWCX contribution from Local Hot Bubble emission. The data from the mission provide a robust estimate of the SWCX contribution to the ROSAT maps, measuring the compound SWCX cross section with He in all ROSAT bands. The results showed that the total SWCX contribution in the ¼ keV band is, on average, ~27%. A new mission, DXL-2, was launched on December 4, 2015 with two new counters for a better understanding of the energy distribution of heliospheric SWCX photons, by using a multi-band approach. A dedicated scan to accurately measure the cone position and solve the IBEX controversy was also performed. The talk will discuss the DXL mission, the results from the first flight, and the preliminary results from the latest flight.Submitted for the DXL Collaboration

  3. Radio Telescopes to Keep Sharp Eye on Mars Lander

    NASA Astrophysics Data System (ADS)

    2008-05-01

    As NASA's Phoenix Mars Lander descends through the Red Planet's atmosphere toward its landing on May 25, its progress will be scrutinized by radio telescopes from the National Radio Astronomy Observatory (NRAO). At NRAO control rooms in Green Bank, West Virginia, and Socorro, New Mexico, scientists, engineers and technicians will be tracking the faint signal from the lander, 171 million miles from Earth. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF To make a safe landing, Phoenix must make a risky descent, slowing down from nearly 13,000 mph at the top of the Martian atmosphere to only 5 mph in the final seconds before touchdown. NASA officials point out that fewer than half of all Mars landing missions have been successful, but the scientific rewards of success are worth the risk. Major events in the spacecraft's atmospheric entry, descent and landing will be marked by changes in the Doppler Shift in the frequency of the vehicle's radio signal. Doppler Shift is the change in frequency caused by relative motion between the transmitter and receiver. At Green Bank, NRAO and NASA personnel will use the giant Robert C. Byrd Green Bank Telescope (GBT) to follow the Doppler changes and verify that the descent is going as planned. The radio signal from Phoenix is designed to be received by other spacecraft in Mars orbit, then relayed to Earth. However, the GBT, a dish antenna with more than two acres of collecting surface and highly-sensitive receivers, can directly receive the transmissions from Phoenix. "We'll see the frequency change as Phoenix slows down in the Martian atmosphere, then there will be a big change when the parachute deploys," said NRAO astronomer Frank Ghigo. When the spacecraft's rocket thrusters slow it down for its final, gentle touchdown, its radio frequency will stabilize, Ghigo said. "We'll have confirmation of these major events through our direct reception several seconds earlier than the controllers at NASA's Jet Propulsion

  4. Landing on small bodies: From the Rosetta Lander to MASCOT and beyond

    NASA Astrophysics Data System (ADS)

    Philae; MASCOT Teams; Ulamec, Stephan; Biele, Jens; Bousquet, Pierre-W.; Gaudon, Philippe; Geurts, Koen; Ho, Tra-Mi; Krause, Christian; Lange, Caroline; Willnecker, Rainer; Witte, Lars

    2014-01-01

    Recent planning for science and exploration missions has emphasized the high interest in the close investigation of small bodies in the Solar System. In particular in-situ observations of asteroids and comets play an important role in this field and will contribute substantially to our understanding of the formation and history of the Solar System.The first dedicated comet Lander is Philae, an element of ESA's Rosetta mission to comet 67/P Churyumov-Gerasimenko. Rosetta was launched in 2004. After more than 7 years of cruise (including three Earth and one Mars swing-by as well as two asteroid flybys) the spacecraft has gone into a deep space hibernation in June 2011. When approaching the target comet in early 2014, Rosetta will be re-activated. The cometary nucleus will be characterized remotely to prepare for Lander delivery, currently foreseen for November 2014.The Rosetta Lander was developed and manufactured, similar to a scientific instrument, by a consortium consisting of international partners. Project management is located at DLR in Cologne/Germany, with co-project managers at CNES (France) and ASI (Italy). The scientific lead is at the Max Planck Institute for Solar System Science (Lindau, Germany) and the Institut d'Astrophysique Spatiale (Paris).Mainly scientific institutes provided the subsystems, instruments and the complete, qualified lander system. Operations are performed in two dedicated centers, the Lander Control Center (LCC) at DLR-MUSC and the Science Operations and Navigation Center (SONC) at CNES. This concept was adopted to reduce overall cost of the project and is foreseen also to be applied for development and operations of future small bodies landers.A mission profiting from experience gained during Philae development and operations is MASCOT, a surface package for the Japanese Hayabusa 2 mission. MASCOT is a small (˜10kg) mobile device, delivered to the surface of asteroid 1999JU3. There it will operate for about 16h. During this time a

  5. Landing on small bodies: From the Rosetta Lander to MASCOT and beyond

    NASA Astrophysics Data System (ADS)

    Ulamec, Stephan; Biele, Jens; Bousquet, Pierre-W.; Gaudon, Philippe; Geurts, Koen; Ho, Tra-Mi; Krause, Christian; Lange, Caroline; Willnecker, Rainer; Witte, Lars; The Philae; Mascot Teams

    2014-01-01

    Recent planning for science and exploration missions has emphasized the high interest in the close investigation of small bodies in the Solar System. In particular in-situ observations of asteroids and comets play an important role in this field and will contribute substantially to our understanding of the formation and history of the Solar System. The first dedicated comet Lander is Philae, an element of ESA's Rosetta mission to comet 67/P Churyumov-Gerasimenko. Rosetta was launched in 2004. After more than 7 years of cruise (including three Earth and one Mars swing-by as well as two asteroid flybys) the spacecraft has gone into a deep space hibernation in June 2011. When approaching the target comet in early 2014, Rosetta will be re-activated. The cometary nucleus will be characterized remotely to prepare for Lander delivery, currently foreseen for November 2014. The Rosetta Lander was developed and manufactured, similar to a scientific instrument, by a consortium consisting of international partners. Project management is located at DLR in Cologne/Germany, with co-project managers at CNES (France) and ASI (Italy). The scientific lead is at the Max Planck Institute for Solar System Science (Lindau, Germany) and the Institut d'Astrophysique Spatiale (Paris). Mainly scientific institutes provided the subsystems, instruments and the complete, qualified lander system. Operations are performed in two dedicated centers, the Lander Control Center (LCC) at DLR-MUSC and the Science Operations and Navigation Center (SONC) at CNES. This concept was adopted to reduce overall cost of the project and is foreseen also to be applied for development and operations of future small bodies landers. A mission profiting from experience gained during Philae development and operations is MASCOT, a surface package for the Japanese Hayabusa 2 mission. MASCOT is a small (˜10 kg) mobile device, delivered to the surface of asteroid 1999JU3. There it will operate for about 16 h. During this

  6. Spacecraft Conceptual Design Compared to the Apollo Lunar Lander

    NASA Technical Reports Server (NTRS)

    Young, C.; Bowie, J.; Rust, R.; Lenius, J.; Anderson, M.; Connolly, J.

    2011-01-01

    Future human exploration of the Moon will require an optimized spacecraft design with each sub-system achieving the required minimum capability and maintaining high reliability. The objective of this study was to trade capability with reliability and minimize mass for the lunar lander spacecraft. The NASA parametric concept for a 3-person vehicle to the lunar surface with a 30% mass margin totaled was considerably heavier than the Apollo 15 Lunar Module "as flown" mass of 16.4 metric tons. The additional mass was attributed to mission requirements and system design choices that were made to meet the realities of modern spaceflight. The parametric tool used to size the current concept, Envision, accounts for primary and secondary mass requirements. For example, adding an astronaut increases the mass requirements for suits, water, food, oxygen, as well as, the increase in volume. The environmental control sub-systems becomes heavier with the increased requirements and more structure was needed to support the additional mass. There was also an increase in propellant usage. For comparison, an "Apollo-like" vehicle was created by removing these additional requirements. Utilizing the Envision parametric mass calculation tool and a quantitative reliability estimation tool designed by Valador Inc., it was determined that with today?s current technology a Lunar Module (LM) with Apollo capability could be built with less mass and similar reliability. The reliability of this new lander was compared to Apollo Lunar Module utilizing the same methodology, adjusting for mission timeline changes as well as component differences. Interestingly, the parametric concept's overall estimated risk for loss of mission (LOM) and loss of crew (LOC) did not significantly improve when compared to Apollo.

  7. Altair Lander Life Support: Requirements Analysis Cycles 1 and 2

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Curley, Su; Rotter, Henry; Yagoda, Evan

    2010-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA's Altair Lunar Lander has unique missions to perform and will need a unique life support system to complete them. Initial work demonstrated a feasible minimally -functional Lander design. This work was completed in Design Analysis Cycles (DAC) 1, 2, and 3 were reported in a previous paper'. On October 21, 2008, the Altair project completed the Mission Concept Review (MCR), moving the project into Phase A. In Phase A activities, the project is preparing for the System Requirements Review (SRR). Altair has conducted two Requirements Analysis Cycles (RACs) to begin this work. During this time, the life support team must examine the Altair mission concepts, Constellation Program level requirements, and interfaces with other vehicles and spacesuits to derive the right set of requirements for the new vehicle. The minimum functionality design meets some of these requirements already and can be easily adapted to meet others. But Altair must identify which will be more costly in mass, power, or other resources to meet. These especially costly requirements must be analyzed carefully to be sure they are truly necessary, and are the best way of explaining and meeting the true need. If they are necessary and clear, they become important mass threats to track at the vehicle level. If they are not clear or do not seem necessary to all stakeholders, Altair must work to redefine them or push back on the requirements writers. Additionally, the life support team is evaluating new technologies to see if they are more effective than the existing baseline design at performing necessary functions in Altair's life support system.

  8. A Plan for Measuring Climatic Scale Global Precipitation Variability: The Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The outstanding success of the Tropical Rainfall Measuring Mission (TRMM) stemmed from a near flawless launch and deployment, a highly successful measurement campaign, achievement of all original scientific objectives before the mission life had ended, and the accomplishment of a number of unanticipated but important additional scientific advances. This success and the realization that satellite rainfall datasets are now a foremost tool in the understanding of decadal climate variability has helped motivate a comprehensive global rainfall measuring mission, called 'The Global Precipitation Mission' (GPM). The intent of this mission is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction, the global carbon budget, and atmosphere-biosphere-cryosphere chemistry. This paper addresses the status of that mission currently planed for launch in the early 2007 time frame. The GPM design involves a nine-member satellite constellation, one of which will be an advanced TRMM-like 'core' satellite carrying a dual-frequency Ku-Ka band radar (df-PR) and a TMI-like radiometer. The other eight members of the constellation can be considered drones to the core satellite, each carrying some type of passive microwave radiometer measuring across the 10.7-85 GHz frequency range, likely based on both real and synthetic aperture antenna technology and to include a combination of new lightweight dedicated GPM drones and both co-existing operational and experimental satellites carrying passive microwave radiometers (i.e., SSM/l, AMSR, etc.). The constellation is designed to provide a minimum of three-hour sampling at any spot on the globe using sun-synchronous orbit architecture, with the core satellite providing relevant measurements on internal cloud precipitation microphysical processes. The core satellite also enables 'training' and 'calibration' of the drone retrieval process. Additional

  9. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Science Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2007-01-01

    The Global Precipitation Measurement (GPM) Mission, an international satellite mission to unify and advance space-based precipitation measurements around the globe, is a science mission with integrated application goals. The mission is designed to (1) advance the knowledge of the global water cycle and freshwater availability, and (2) improve weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The cornerstone of GPM is the deployment of a Core Spacecraft in a unique 65 deg-inclined orbit to serve as a physics observatory and a calibration reference to improve the accuracy of precipitation measurements by a heterogeneous constellation of dedicated and operational passive microwave sensors. The Core Spacecraft will carry a dual-frequency (Ku-Ka band) radar and a multi-channel microwave radiometer with high-frequency capabilities to provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improved retrieval algorithms for passive microwave radiometers. The GPM constellation is envisioned to comprise 5 or more conical-scanning microwave radiometers provided by partners, augmented by cross-track microwave sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, NPOESS, and MetOp satellites for improved sampling over land. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional international partners in constellation satellites and ground validation. An overview of the GPM mission concept and science activities in the United States will be presented.

  10. On the control of magnetic perturbing field onboard landers: the Magnetometer Protection program for the ESA ExoMars/Humboldt MSMO magnetometer experiment

    NASA Astrophysics Data System (ADS)

    Menvielle, M.; Primdahl, F.; Brauer, P.; Falkenberg, T. V.; Jensen, P. A.; Merayo, J. M.; Vennerstrom, S.

    2009-04-01

    Magnetic field observations at a planetary surface have a wide potential of scientific applications, ranging from processes in the dynamic interaction between the planet environment and the solar wind, to determining the structure and thermal evolution of the interior of the planet as well as characterizing its sub-surface. Magnetic fields are generated by electric currents in the planetary space environment, induced currents in the planetary interior and possibly remanent magnetism. In consequence, hardly any other single physical quantity can be used in such a variety of studies related to planetary research. The major difficulty in implementing a magnetometer experiment onboard a lander is to achieve at acceptable costs a good Magnetometer Protection, namely to control the perturbing magnetic field generated by the lander during operations at the planetary surface, so as to achieve the least magnetic contamination of the magnetometer data by lander generated magnetic perturbations, and thus the best possible magnetic signal to magnetic noise ratio, thus ensuring the best possible magnetometer experiment science return. The purpose of this talk is to show that simple and non-expensive solutions enable one to limit the intensity of lander generated perturbing magnetic fields to levels that are compliant with the science based measurement requirements. The presented solutions are based upon ‘best effort' to being critically concerned with magnetic noise reduction, with emphasis on good and simple engineering techniques enabling minimization of and control over the magnetic perturbations at the magnetometer sensor during the surface operations phase. The presentation deals with the case history of the ongoing preparation of the MSMO magnetometer experiment, which is part the Humboldt scientific payload in the frame of the ESA ExoMars mission. Experience from previous missions constitutes the background for the MSMO Magnetometer Protection strategy. DC and AC

  11. Near-field postseismic deformation associated with the 1992 Landers and 1999 Hector Mine, California, earthquakes

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.; Prescott, W.H.

    2003-01-01

    After the Landers earthquake (Mw = 7.3, 1992.489) a linear array of 10 monuments extending about 30 km N50??E on either side of the earthquake rupture plus a nearby offtrend reference monument were surveyed frequently by GPS until 2003.2. The array also spans the rupture of the subsequent Hector Mine earthquake (Mw = 7.1, 1999.792 . The pre-Landers velocities of monuments in the array relative to interior North America were estimated from earlier trilateration and very long baseline interferometry measurements. Except at the reference monument, the post-Landers velocities of the individual monuments in the array relaxed to their preseismic values within 4 years. Following the Hector Mine earthquake the velocities of the monuments relaxed to steady rates within 1 year. Those steady rates for the east components are about equal to the pre-Landers rates as is the steady rate for the north component of the one monument east of the Hector Mine rupture. However, the steady rates for the north components of the 10 monuments west of the rupture are systematically ???10 mm yr1 larger than the pre-Landers rates. The relaxation to a steady rate is approximately exponential with decay times of 0.50 ?? 0.10 year following the Landers earthquake and 0.32 ?? 0.18 year following the Hector Mine earthquake. The postearthquake motions of the Landers array following the Landers earthquake are not well approximated by the viscoelastic-coupling model of Pollitz et al. [2000]. A similar viscoelastic-coupling model [Pollitz et al., 2001] is more successful in representing the deformation after the Hector Mine earthquake.

  12. Summary report of mission acceleration measurements for Spacehab-01, STS-57 launched 21 June 1993

    NASA Technical Reports Server (NTRS)

    Finley, Brian; Grodsinsky, Carlos; Delombard, Richard

    1994-01-01

    The maiden voyage of the commercial Spacehab laboratory module onboard the STS-57 mission was integrated with several accelerometer packages, one of which was the Space Acceleration Measurement System (SAMS). The June 21st 1993, launch was the seventh successful mission for the Office of Life and Microgravity Sciences and Application's (OLMSA) SAMS unit. This flight was also complemented by a second accelerometer system. The Three Dimensional Microgravity Accelerometer (3-DMA), a Code C funded acceleration measurement system, offering an on-orbit residual calibration as a reference for the unit's four triaxial accelerometers. The SAMS accelerometer unit utilized three remote triaxial sensor heads mounted on the forward Spacehab module bulkhead and on one centrally located experiment locker door. These triaxial heads had filter cut-offs set to 5, 50, and 1000 Hz. The mission also included other experiment specific accelerometer packages in various locations.

  13. Summary Report of Mission Acceleration Measurements for STS-62, Launched 4 March 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1994-01-01

    The second mission of the United States Microgravity Payload on-board the STS-62 mission was supported with three accelerometer instruments: the Orbital Acceleration Research Experiment (OARE) and two units of the Space Acceleration Measurements System (SAMS). The March 4, 1994 launch was the fourth successful mission for OARE and the ninth successful mission for SAMS. The OARE instrument utilizes a sensor for very low frequency measurements below one Hertz. The accelerations in this frequency range are typically referred to as quasisteady accelerations. One of the SAMS units had two remote triaxial sensor heads mounted on the forward MPESS structure between two furnance experiments, MEPHISTO and AADSF. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The other SAMS unit utilized three remote triaxial sensor heads. Two of the sensor heads were mounted on the aft MPESS structure between the two experiments IDGE and ZENO. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The third sensor head was mounted on the thermostat housing inside the IDGE experiment container. This triaxial head had a low-pass filter cut-off frequency at 5 Hz. This report is prepared to furnish interested experiment investigators with a guide to evaluating the acceleration environment during STS-62 and as a means of identifying areas which require further study. To achieve this purpose, various pieces of information are included, such as an overview of the STS-62 mission, a description of the accelerometer system flown on STS-62, some specific analysis of the accelerometer data in relation to the various mission activities, and an overview of the low-gravity environment during the entire mission. An evaluation form is included at the end of the report to solicit users' comments about the usefulness of this series of reports.

  14. Phoenix Mars Lander: Vortices and Dust Devils at the Landing Site

    NASA Astrophysics Data System (ADS)

    Ellehoj, M. D.; Taylor, P. A.; Gunnlaugsson, H. P.; Gheynani, B. T.; Drube, L.; von Holstein-Rathlou, C.; Whiteway, J.; Lemmon, M.; Madsen, M. B.; Fisher, D.; Volpe, R.; Smith, P.

    2008-12-01

    Near continuous measurements of temperatures and pressure on the Phoenix Mars Lander are used to identify the passage of vertically oriented vortex structures at the Phoenix landing site (126W, 68N) on Mars. Observations: During the Phoenix mission the pressure and temperature sensors frequently detected features passing over or close to the lander. Short duration (order 20 s) pressure drops of order 1-2 Pa, and often less, were observed relatively frequently, accompanied by increases in temperature. Similar features were observed from the Pathfinder mission, although in that case the reported pressure drops were often larger [1]. Statistics of the pressure drop features over the first 102 sols of the Phoenix mission shows that most of the events occur between noon and 15:00 LMST - the hottest part of the sol. Dust Raising: By assuming the concept of a vortex in cyclostrophic flow as well as various assumptions about the atmosphere, we obtain a pressure drop of 1.9 - 3.2 Pa if dust is to be raised. We only saw few pressure drops this large in Sols 0-102. However, the features do not need to pass directly over the lander and the pressures could be lower than the minima we measure. Furthermore, the response time of the pressure sensor is of order 3-5 s so it may not capture peak pressure perturbations. Thus, more dust devils may have occurred near the Phoenix site, but most of our detected vortices would be ghostly, dustless devils. Modelling: Using a Large Eddy Simulation model, we can simulate highly convective boundary layers on Mars [2]. The typical vortex has a diameter of 150 m, and extends up to 1 km. Further calculations give an incidence of 11 vortex events per day that could be compatible with the LES simulations. Deeper investigation of this is planned -but the numbers are roughly compatible. If the significant pressure signatures are limited to the center of the vortex then 5 per sol might be appropriate. The Phoenix mission has collected a unique set of

  15. Summary Report of Mission Acceleration Measurements for STS-75, Launched February 22, 1996

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; Moskowitz, Milton E.; McPherson, Kevin M.; DeLombard, Richard

    1996-01-01

    Two accelerometers provided acceleration data during the STS-75 mission in support of the third United States Microgravity Payload (USMP-3) experiments. The Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurement System (SAMS) provided a measure of the microgravity environment of the Space Shuttle Columbia. The OARE provided investigators with quasi-steady acceleration measurements after about a six hour time lag dictated by downlink constraints. SAMS data were downlinked in near-real-time and recorded on-board for post-mission analysis. An overview of the mission is provided as are brief discussions of these two accelerometer systems. Data analysis techniques used to process SAMS and OARE data are discussed Using a combination of these techniques, the microgravity environment related to several different Orbiter, crew, and experiment operations is presented and interpreted. The microgravity environment represented by SAMS and OARE data is comparable to the environments measured by the instruments on earlier microgravity science missions. The OARE data compared well with predictions of the quasi-steady environment. The SAMS data show the influence of thruster firings and crew motion (transient events) and of crew exercise, Orbiter systems, and experiment operations (oscillatory events). Thruster activity on this mission appears to be somewhat more frequent than on other microgravity missions with the combined firings of the F5L and F5R jets producing significant acceleration transients. The specific crew activities performed in the middeck and flight deck, the SPREE table rotations, the waste collection system compaction, and the fuel cell purge had negligible effects on the microgravity environment of the USMP-3 carriers. The Ku band antenna repositioning activity resulted in a brief interruption of the ubiquitous 17 Hz signal in the SAMS data. In addition, the auxiliary power unit operations during the Flight Control System checkout

  16. Summary Report of Mission Acceleration Measurements for STS-78. Launched June 20, 1996

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Hrovat, Kenneth; McPherson, Kevin M.; Moskowitz, Milton E.; Rogers, Melissa J. B.

    1997-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-78 mission using accelerometers from three different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System and the Microgravity Measurement Assembly. The quasi-steady environment was also calculated in near real-time during the mission by the Microgravity Analysis Workstation. The Orbital Acceleration Research Experiment provided investigators with real-time quasi-steady acceleration measurements. The Space Acceleration Measurement System recorded higher frequency data on-board for post-mission analysis. The Microgravity Measurement Assembly provided investigators with real-time quasi-steady and higher frequency acceleration measurements. The Microgravity Analysis Workstation provided calculation of the quasi-steady environment. This calculation was presented to the science teams in real-time during the mission. The microgravity environment related to several different Orbiter, crew and experiment operations is presented and interpreted in this report. A radiator deploy, the Flight Control System checkout, and a vernier reaction control system reboost demonstration had minimal effects on the acceleration environment, with excitation of frequencies in the 0.01 to 10 Hz range. Flash Evaporator System venting had no noticeable effect on the environment while supply and waste water dumps caused excursions of 2 x lO(exp -6) to 4 x 10(exp -6) g in the Y(sub b) and Z(sub b) directions. Crew sleep and ergometer exercise periods can be clearly seen in the acceleration data, as expected. Accelerations related to the two Life Science Laboratory Equipment Refrigerator/Freezers were apparent in the data as are accelerations caused by the Johnson Space Center Projects Centrifuge. As on previous microgravity missions, several signals are present in the acceleration data for which a source has not been identified. The causes of these accelerations

  17. Location and Geologic Setting for the Three U.S. Mars Landers

    NASA Technical Reports Server (NTRS)

    Parker, T. J.; Kirk, R. L.

    1999-01-01

    Super resolution of the horizon at both Viking landing sites has revealed "new" features we use for triangulation, similar to the approach used during the Mars Pathfinder Mission. We propose alternative landing site locations for both landers for which we believe the confidence is very high. Super resolution of VL-1 images also reveals some of the drift material at the site to consist of gravel-size deposits. Since our proposed location for VL-2 is NOT on the Mie ejecta blanket, the blocky surface around the lander may represent the meter-scale texture of "smooth palins" in the region. The Viking Lander panchromatic images typically offer more repeat coverage than does the IMP on Mars Pathfinder, due to the longer duration of these landed missions. Sub-pixel offsets, necessary for super resolution to work, appear to be attributable to thermal effects on the lander and settling of the lander over time. Due to the greater repeat coverage (particularly in the near and mid-fields) and all-panchromatic images, the gain in resolution by super resolution processing is better for Viking than it is with most IMP image sequences. This enhances the study of textural details near the lander and enables the identification rock and surface textures at greater distances from the lander. Discernment of stereo in super resolution im-ages is possible to great distances from the lander, but is limited by the non-rotating baseline between the two cameras and the shorter height of the cameras above the ground compared to IMP. With super resolution, details of horizon features, such as blockiness and crater rim shapes, may be better correlated with Orbiter images. A number of horizon features - craters and ridges - were identified at VL-1 during the misison, and a few hils and subtle ridges were identified at VL-2. We have added a few "new" horizon features for triangulation at the VL-2 landing site in Utopia Planitia. These features were used for independent triangulation with features

  18. The ESA Lunar Lander and the search for Lunar Volatiles

    NASA Astrophysics Data System (ADS)

    Morse, A. D.; Barber, S. J.; Pillinger, J. M.; Sheridan, S.; Wright, I. P.; Gibson, E. K.; Merrifield, J. A.; Waltham, N. R.; Waugh, L. J.; Pillinger, C. T.

    2011-10-01

    Following the Apollo era the moon was considered a volatile poor body. Samples collected from the Apollo missions contained only ppm levels of water formed by the interaction of the solar wind with the lunar regolith [1]. However more recent orbiter observations have indicated that water may exist as water ice in cold polar regions buried within craters at concentrations of a few wt. % [2]. Infrared images from M3 on Chandrayaan-1 have been interpreted as showing the presence of hydrated surface minerals with the ongoing hydroxyl/water process feeding cold polar traps. This has been supported by observation of ephemeral features termed "space dew" [3]. Meanwhile laboratory studies indicate that water could be present in appreciable quantities in lunar rocks [4] and could also have a cometary source [5]. The presence of sufficient quantities of volatiles could provide a resource which would simplify logistics for long term lunar missions. The European Space Agency (ESA's Directorate of Human Spaceflight and Operations) have provisionally scheduled a robotic mission to demonstrate key technologies to enable later human exploration. Planned for launch in 2018, the primary aim is for precise automated landing, with hazard avoidance, in zones which are almost constantly illuminated (e.g. at the edge of the Shackleton crater at the lunar south pole). These regions would enable the solar powered Lander to survive for long periods > 6 months, but require accurate navigation to within 200m. Although landing in an illuminated area, these regions are close to permanently shadowed volatile rich regions and the analysis of volatiles is a major science objective of the mission. The straw man payload includes provision for a Lunar Volatile and Resources Analysis Package (LVRAP). The authors have been commissioned by ESA to conduct an evaluation of possible technologies to be included in L-VRAP which can be included within the Lander payload. Scientific aims are to demonstrate the

  19. Supersonic Aerodynamic Characteristics of Proposed Mars '07 Smart Lander Configurations

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Horvath, Thomas J.; Erickson, Gary E.; Green, Joseph M.

    2002-01-01

    Supersonic aerodynamic data were obtained for proposed Mars '07 Smart Lander configurations in NASA Langley Research Center's Unitary Plan Wind Tunnel. The primary objective of this test program was to assess the supersonic aerodynamic characteristics of the baseline Smart Lander configuration with and without fixed shelf/tab control surfaces. Data were obtained over a Mach number range of 2.3 to 4.5, at a free stream Reynolds Number of 1 x 10(exp 6) based on body diameter. All configurations were run at angles of attack from -5 to 20 degrees and angles of sideslip of -5 to 5 degrees. These results were complemented with computational fluid dynamic (CFD) predictions to enhance the understanding of experimentally observed aerodynamic trends. Inviscid and viscous full model CFD solutions compared well with experimental results for the baseline and 3 shelf/tab configurations. Over the range tested, Mach number effects were shown to be small on vehicle aerodynamic characteristics. Based on the results from 3 different shelf/tab configurations, a fixed control surface appears to be a feasible concept for meeting aerodynamic performance metrics necessary to satisfy mission requirements.

  20. Global Precipitation Measurement (GPM) Mission: Precipitation Processing System (PPS) GPM Mission Gridded Text Products Provide Surface Precipitation Retrievals

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz; Kelley, O.; Kummerow, C.; Huffman, G.; Olson, W.; Kwiatkowski, J.

    2015-01-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar, and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMIDPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for researchers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations.This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments GMI, DPR, and combined GMIDPR (2) surface precipitation retrievals for the partner constellation

  1. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Technical Reports Server (NTRS)

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; Miles, Natasha; Nehrir, Amin; Obland, Michael; O'Dell, Chris; Sweeney, Colm; Yang, Melissa

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  2. Development of Generic Aircrew Measures of Performance for Distributed Mission Training

    DTIC Science & Technology

    2003-03-31

    Canadian subject matter experts ( SMEs ) to refine the task selection. The measurement framework stems from a conceptual model of an AF mission...recommended: Objective performance data; Behaviourally Anchored Rating Scales (BARS) scored by SMEs ; and the Pathfinder technique. This recommendation is...57 6.6.7 Subjective techniques: III. SME ratings of behaviour......................................................................59 7. THE

  3. Operating the Dual-Orbiter GRAIL Mission to Measure the Moon's Gravity

    NASA Technical Reports Server (NTRS)

    Beerer, Joseph G.; Havens, Glen G.

    2012-01-01

    NASA's mission to measure the Moon's gravity and determine the interior structure, from crust to core, has almost completed its 3-month science data collection phase. The twin orbiters of the Gravity Recovery and Interior Laboratory (GRAIL) mission were launched from Florida on September 10, 2011, on a Delta-II launch vehicle. After traveling for nearly four months on a low energy trajectory to the Moon, they were inserted into lunar orbit on New Year's Eve and New Year's Day. In January 2012 a series of circularization maneuvers brought the orbiters into co-planar near-circular polar orbits. In February a distant (75- km) rendezvous was achieved and the science instruments were turned on. A dual- frequency (Ka and S-band) inter-orbiter radio link provides a precise orbiter-to-orbiter range measurement that enables the gravity field estimation. NASA's Jet Propulsion Laboratory in Pasadena, CA, manages the GRAIL project. Mission management, mission planning and sequencing, and navigation are conducted at JPL. Lockheed Martin, the flight system manufacturer, operates the orbiters from their control center in Denver, Colorado. The orbiters together have performed 28 propulsive maneuvers to reach and maintain the science phase configuration. Execution of these maneuvers, as well as the payload checkout and calibration activities, has gone smoothly due to extensive pre-launch operations planning and testing. The key to the operations success has been detailed timelines for product interchange between the operations teams and proven procedures from previous JPL/LM planetary missions. Once in science phase, GRAIL benefitted from the payload operational heritage of the GRACE mission that measures the Earth's gravity.

  4. Mars Relays Satellite Orbit Design Considerations for Global Support of Robotic Surface Missions

    NASA Technical Reports Server (NTRS)

    Hastrup, Rolf; Cesarone, Robert; Cook, Richard; Knocke, Phillip; McOmber, Robert

    1993-01-01

    This paper discusses orbit design considerations for Mars relay satellite (MRS)support of globally distributed robotic surface missions. The orbit results reported in this paper are derived from studies of MRS support for two types of Mars robotic surface missions: 1) the mars Environmental Survey (MESUR) mission, which in its current definition would deploy a global network of up to 16 small landers, and 2)a Small Mars Sample Return (SMSR) mission, which included four globally distributed landers, each with a return stage and one or two rovers, and up to four additional sets of lander/rover elements in an extended mission phase.

  5. Big Crater as Viewed by Pathfinder Lander

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The 'Big Crater' is actually a relatively small Martian crater to the southeast of the Mars Pathfinder landing site. It is 1500 meters (4900 feet) in diameter, or about the same size as Meteor Crater in Arizona. Superimposed on the rim of Big Crater (the central part of the rim as seen here) is a smaller crater nicknamed 'Rimshot Crater.' The distance to this smaller crater, and the nearest portion of the rim of Big Crater, is 2200 meters (7200 feet). To the right of Big Crater, south from the spacecraft, almost lost in the atmospheric dust 'haze,' is the large streamlined mountain nicknamed 'Far Knob.' This mountain is over 450 meters (1480 feet) tall, and is over 30 kilometers (19 miles) from the spacecraft. Another, smaller and closer knob, nicknamed 'Southeast Knob' can be seen as a triangular peak to the left of the flanks of the Big Crater rim. This knob is 21 kilometers (13 miles) southeast from the spacecraft.

    The larger features visible in this scene - Big Crater, Far Knob, and Southeast Knob - were discovered on the first panoramas taken by the IMP camera on the 4th of July, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. The scene includes rocky ridges and swales or 'hummocks' of flood debris that range from a few tens of meters away from the lander to the distance of South Twin Peak. The largest rock in the nearfield, just left of center in the foreground, nicknamed 'Otter', is about 1.5 meters (4.9 feet) long and 10 meters (33 feet) from the spacecraft.

    This view of Big Crater was produced by combining 6 individual 'Superpan' scenes from the left and right eyes of the IMP camera. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be.

    Mars Pathfinder is the second in NASA

  6. The PRIME (Phobos Reconnaissance and International Mars Exploration) Mission and Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Lee, P.; Hildebrand, A. R.; Richards, R.; Prime Mission Team

    2008-03-01

    PRIME is an international robotic lander mission concept to explore Mars's inner moon Phobos to address the outstanding question of its origin. The mission could also play a significant role as a milestone in Mars sample return efforts.

  7. Nuclear emulsion measurements of the astronauts' radiation exposures on Skylab missions 2, 3, and 4

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.; Sullivan, J. J.

    1975-01-01

    On the Skylab missions, Ilford G.5 and K.2 emulsions were flown as part of passive dosimeter packs carried by the astronauts on their wrists. Due to the long mission times, latent image fading and track crowing imposed limitations on a quantitative track and grain count analysis. For Skylab 2, the complete proton energy spectrum was determined within reasonable error limits. A combined mission dose equivalent of 2,490 millirems from protons, tissue stars and neutrons was measured on Skylab 2. A stationary emulsion stack, kept in a film vault drawer on the same mission, displayed a highly structured directional distribution of the fluence of low-energy protons (enders) reflecting the local shield distribution. On the 59 and 84-day mission 3 and 4, G.5 emulsions had to be cut on the microtom to 5-7 microns for microscopic examination. Even so, the short track segments in such thin layers precluded a statistically reliable grain count analysis. However, the K.2 emulsions still allowed accurate proton ender counts without special provisions.

  8. Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

    NASA Technical Reports Server (NTRS)

    Lancaster, R. S.; Spinhirne, J. D.; Manizade, K. F.

    2004-01-01

    Multiangle remote sensing provides a wealth of information for earth and climate monitoring, such as the ability to measure the height of cloud tops through stereoscopic imaging. As technology advances so do the options for developing spacecraft instrumentation versatile enough to meet the demands associated with multiangle measurements. One such instrument is the infrared spectral imaging radiometer, which flew as part of mission STS-85 of the space shuttle in 1997 and was the first earth- observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height with a precision of +/- 620 m from the multispectral stereo measurements acquired during this flight has been developed, and the results are compared with coincident direct laser ranging measurements from the shuttle laser altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

  9. Tropical Rainfall Measuring Mission (TRMM). Phase B: Data capture facility definition study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The National Aeronautics and Aerospace Administration (NASA) and the National Space Development Agency of Japan (NASDA) initiated the Tropical Rainfall Measuring Mission (TRMM) to obtain more accurate measurements of tropical rainfall then ever before. The measurements are to improve scientific understanding and knowledge of the mechanisms effecting the intra-annual and interannual variability of the Earth's climate. The TRMM is largely dependent upon the handling and processing of the data by the TRMM Ground System supporting the mission. The objective of the TRMM is to obtain three years of climatological determinations of rainfall in the tropics, culminating in data sets of 30-day average rainfall over 5-degree square areas, and associated estimates of vertical distribution of latent heat release. The scope of this study is limited to the functions performed by TRMM Data Capture Facility (TDCF). These functions include capturing the TRMM spacecraft return link data stream; processing the data in the real-time, quick-look, and routine production modes, as appropriate; and distributing real time, quick-look, and production data products to users. The following topics are addressed: (1) TRMM end-to-end system description; (2) TRMM mission operations concept; (3) baseline requirements; (4) assumptions related to mission requirements; (5) external interface; (6) TDCF architecture and design options; (7) critical issues and tradeoffs; and (8) recommendation for the final TDCF selection process.

  10. Cost Effective Mission Strategy for Lunar Sample Return Mission Probe

    NASA Astrophysics Data System (ADS)

    Nadar, G.; Shah, U. B.; Kothandhapani, A.; Singh, N. K.; Hegde, N. S.

    2016-11-01

    A novel lunar sample return mission from south pole region is proposed where, after ascent and Trans-Geo Injection, the return module attains an Earth orbit and is de-orbited using aero-braking. Also includes a lander and an orbiter with payload.

  11. Radiometric performance of the Viking Mars lander cameras

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Burcher, E. E.; Taylor, E. J.; Wall, S. D.

    1975-01-01

    The Viking lander cameras feature an array of 12 silicon photodiodes for electronic focus selection and multispectral imaging. Comparisons of absolute radiometric calibrations of the four cameras selected for the mission to Mars with performance predictions based on their design data revealed minor discrepancies. These discrepancies were caused primarily by the method used to calibrate the photosensor array and apparently also from light reflections internal to the array. The sensitivity and dynamic range of all camera channels are found to be sufficient for high quality pictures, providing that the commandable gains and offsets can be optimized for the scene radiance; otherwise, the quantization noise may be too high or the dynamic range too low for an adequate characterization of the scene.

  12. The Preliminary Design of a Universal Martian Lander

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Gaskin, David; Adkins, Sean; MacDonnell, David; Ross, Enoch; Hashimoto, Kouichi; Miller, Loran; Sarick, John; Hicks, Jonathan; Parlock, Andrew; Swalley, Frank (Technical Monitor)

    1993-01-01

    As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules are assembled to form a Martian base where scientific experiments are performed. The mission also incorporates hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psycho-logical effects of living on Mars. In situ fuel production for the Martian Ascent and Rendezvous Vehicle (MARV) is produced From gases in the Martian atmosphere. Following surface operations, the eight member crew uses the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  13. Airbags to Martian Landers: Analyses at Sandia National Laboratories

    SciTech Connect

    Gwinn, K.W.

    1994-03-01

    A new direction for the national laboratories is to assist US business with research and development, primarily through cooperative research and development agreements (CRADAs). Technology transfer to the private sector has been very successful as over 200 CRADAs are in place at Sandia. Because of these cooperative efforts, technology has evolved into some new areas not commonly associated with the former mission of the national laboratories. An example of this is the analysis of fabric structures. Explicit analyses and expertise in constructing parachutes led to the development of a next generation automobile airbag; which led to the construction, testing, and analysis of the Jet Propulsion Laboratory Mars Environmental Survey Lander; and finally led to the development of CAD based custom garment designs using 3D scanned images of the human body. The structural analysis of these fabric structures is described as well as a more traditional example Sandia with the test/analysis correlation of the impact of a weapon container.

  14. Study of a quasi-microscope design for planetary landers

    NASA Technical Reports Server (NTRS)

    Giat, O.; Brown, E. B.

    1973-01-01

    The Viking Lander fascimile camera, in its present form, provides for a minimum object distance of 1.9 meters, at which distance its resolution of 0.0007 radian provides an object resolution of 1.33 millimeters. It was deemed desirable, especially for follow-on Viking missions, to provide means for examing Martian terrain at resolutions considerably higher than that now provided. This led to the concept of quasi-microscope, an attachment to be used in conjunction with the fascimile camera to convert it to a low power microscope. The results are reported of an investigation to consider alternate optical configurations for the quasi-microscope and to develop optical designs for the selected system or systems. Initial requirements included consideration of object resolutions in the range of 2 to 50 micrometers, an available field of view of the order of 500 pixels, and no significant modifications to the fascimile camera.

  15. History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)

    NASA Technical Reports Server (NTRS)

    House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.

    1986-01-01

    The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.

  16. Practicability of In Situ K-Ar Age Dating by Martian Landers; A Study of Mars Analogs and Meteorites

    NASA Astrophysics Data System (ADS)

    Park, Jisun; Ming, D. W.; Garrison, D. H.; Jones, J. H.; Bogard, D. D.

    2009-12-01

    Purpose of this noble gas investigation was to evaluate the feasibility of in situ K-Ar radiometric age dating of Martian surface rocks by future robotic missions, such as the Mars Science Laboratory(MSL), under constraints inherent to the Martian surface and lander design. The MSL Sample Analysis at Mars(SAM) instrument has the capability to measure noble gas compositions of Martain rocks and atmosphere. We evaluate requirements for SAM to obtain adequate noble gas abundances and compositions within the current instrumental operating conditions. In particular, maximum furnace temperature is limited to 1100ºC or lower due to power supply constraints. As a simulation experiment, we analyzed three Martian shergottites and terrestrial MORB, under the same conditions afforded SAM on the Martian surface. Our results suggest that SAM noble gas recoveries might be sufficient for K-Ar age determinations. Comparing these results with previous experiments performed on Martian meteorites at NASA-JSC, we can asses the capability of Mars lander designs with a variety of Martian rock types. The noble gas composition of Martian meteorites can be difficult to interpret due to the combined signals of in situ 40K decay, shock implanted 40Ar from Martian atmosphere[2,3], and 40Ar inherited from parent magma[4,5]. These components should also be considered in interpreting lander data. A possible advantage for landers is that K concentrations reported from the Martian surface are variable and possibly quite high, a desirable trait for K-Ar age dating. Spirit APXS reports 3000-7000ppm K for most locations but in some areas, concentrations as high as 25000ppm have been observed[6,7]. [1] Bogard (2009) MaPS44, 3-14; [2] Bogard and Johnson (1983) Science221,651-654 [3] Marti et al. (1995) Science267, 1981-1984; [4] Bogard and Park (2008) MAPS43, 1113-1126. [5] Bogard et al. (2009) MAPS44, 905-923. [6] Ming et al. (2006) JGR111, E02S12. [7] Ming D.W. et al. (2008) JGR113, E12S39.

  17. Relationship of Global Precipitation Measurement (GPM) Mission to Global Change Research

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). This new mission is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC). Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various research areas in the course of the mission formulation phase that are of interest to the global change scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning: (1) the rate of global water cycling through the atmosphere and surface and the relationship of precipitation variability to the sustained rate of the water cycle; (2) the relationship between climate change and cloud macrophysical- microphysical processes; and (3) the general improvement in measuring precipitation at the fundamental microphysical level that will take place during the GPM era and an explanation of how these improvements are expected to come about.

  18. A GNM mission and system design proposal

    NASA Technical Reports Server (NTRS)

    Bailey, Stephen

    1990-01-01

    Here, the author takes an advocacy position for the proposed Mars Global Network Mission (GNM); it is not intended to be an objective review, although both pros and cons are presented in summary. The mission consists of launches from earth in the '96, '98, and '01 opportunities on Delta-class launch vehicles (approx. 1000 kg injected to Mars in 8 to 10 ft diameter shroud). The trans Mars boost stage injects a stack of small independent, aeroshelled spacecraft. The stack separates from the boost stage and each rigid (as opposed to deployable) aeroshell flies to Mars on its own, performing midcourse maneuvers as necessary. Each spacecraft flies a unique trajectory which is targeted to achieve approach atmospheric interface at the desired latitude and lighting conditions; arrival times may vary by a month or more. A direct entry is performed, there is no propulsive orbit capture. The aeroshelled rough-landers are targeted to achieve a desired attitude and entry flight path angle, and then follow a passive ballistic trajectory until terminal descent. Based on sensed acceleration (integrated to deduce altitude), the aft aeroshell skirt is jettisoned; a short later a supersonic parachute is deployed. The ballistic coefficient of the parachute is sized to achieve terminal velocity at about 8 km. However the parachute is not deployed until a few Km above the surface to minimize wind-induced drift. The nose cap descent imaging begins, a laser altimeter also measures true altitude. Based on range and range rate to the surface, the parachute is jettisoned and the lander uses descent engines to achieve touchdown velocity. A contact sensor shuts down the motors to avoid cratering, and the lander rough-lands at less than 5 m/sec. The remaining aeroshell and a deployable bladder attenuate landing loads and minimize the possibility of tip over. Science instruments are deployed and activated, and the network is established.

  19. Explosive propulsion applications. [to future unmanned missions

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Varsi, G.; Back, L. H.

    1974-01-01

    The feasibility and application of an explosive propulsion concept capable of supporting future unmanned missions in the post-1980 era were examined and recommendations made for advanced technology development tasks. The Venus large lander mission was selected as the first in which the explosive propulsion concept can find application. A conceptual design was generated and its performance, weight, costs, and interaction effects determined. Comparisons were made with conventional propulsion alternatives. The feasibility of the explosive propulsion system was verified for planetology experiments within the dense atmosphere of Venus as well as the outer planets. Additionally, it was determined that the Venus large lander mission could be augmented ballistically with a significant delivery margin.

  20. Science and Measurement Requirements for a Plant Physiology and Functional Types Mission: Measuring the Composition, Function and Health of Global Land and Coastal Ocean Ecosystems

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi; Gamon, John; Hook, Simon; Meister, Gerhard; Middleton, Betsy; Ollinger, Scott; Roberts, Dar; Siegel, Dave; Townsend, Phil; Saatchi, Sassan; Unstin, Susan; Turner, Woody; Wickland, Diane; Bontempi, Paula; Emanuel, Bill

    2007-01-01

    This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.

  1. Science and Measurement Requirements for a Plant Physiology and Functional Types Mission: Measuring the Composition, Function and Health of Global Land and Coastal Ocean Ecosystems

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi; Gamon, John; Hook, Simon; Meister, Gerhard; Middleton, Betsy; Ollinger, Scott; Roberts, Dar; Siegel, Dave; Townsend, Phil; Saatchi, Sassan; Unstin, Susan; Turner, Woody; Wickland, Diane; Bontempi, Paula; Emanuel, Bill

    2007-01-01

    This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.

  2. The ExoMars 2016 Mission

    NASA Astrophysics Data System (ADS)

    Svedhem, Håkan; Vago, Jorge; de Groot, Rolf; McCoy, Don

    2016-04-01

    ExoMars is a joint programme of the European Space Agency (ESA) and Roscosmos, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, EDM, named Schiaparelli, and the ExoMars 2018 mission, which carries a lander and a rover. The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector to search for subsurface hydrogen (as proxy for water ice and hydrated minerals). The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The EDM is carried to Mars by the TGO and is separated three days before arrival at Mars. In addition to demonstrating the landing capability two scientific investigations are included with the EDM. The AMELIA investigation aims at characterising the Martian atmosphere during the entry and descent using technical and engineering sensors of the EDM, and the DREAMS suite of sensors that will characterise the environment of the landing site for a few days after the landing. ESA provides the TGO spacecraft and the Schiaparelli Lander demonstrator, ESA member states provide two of the TGO instruments and Roscosmos provides the launcher and the other two TGO instruments. After the arrival of the ExoMars 2018 mission at the surface of Mars, the TGO will handle all communications between the Earth and the Rover. The communication between TGO and the rover/lander is done through a UHF communications system, a contribution from NASA. The 2016 mission will be launched by a Russian Proton rocket from Baikonur in March 2016 (launch window 14-25 March) and will arrive at Mars on 19 October. This presentation will cover a description of the 2016 mission, including the spacecraft

  3. Compact Low Power DPU for Plasma Instrument LINA on the Russian Luna-Glob Lander

    NASA Astrophysics Data System (ADS)

    Schmidt, Walter; Riihelä, Pekka; Kallio, Esa

    2013-04-01

    The Swedish Institute for Space Physics in Kiruna is bilding a Lunar Ions and Neutrals Analyzer (LINA) for the Russian Luna-Glob lander mission and its orbiter, to be launched around 2016 [1]. The Finnish Meteorological Institute is responsible for designing and building the central data processing units (DPU) for both instruments. The design details were optimized to serve as demonstrator also for a similar instrument on the Jupiter mission JUICE. To accommodate the originally set short development time and to keep the design between orbiter and Lander as similar as possible, the DPU is built around two re-programmable flash-based FPGAs from Actel. One FPGA contains a public-domain 32-bit processor core identical for both Lander and orbiter. The other FPGA handles all interfaces to the spacecraft system and the detectors, somewhat different for both implementations. Monitoring of analog housekeeping data is implemented as an IP-core from Stellamar inside the interface FPGA, saving mass, volume and especially power while simplifying the radiation protection design. As especially on the Lander the data retention before transfer to the orbiter cannot be guaranteed under all conditions, the DPU includes a Flash-PROM containing several software versions and data storage capability. With the memory management implemented inside the interface FPGA, one of the serial links can also be used as test port to verify the system, load the initial software into the Flash-PROM and to control the detector hardware directly without support by the processor and a ready developed operating system and software. Implementation and performance details will be presented. Reference: [1] http://www.russianspaceweb.com/luna_glob_lander.html.

  4. Summary Report of Mission Acceleration Measurements for STS-65, Launched 8 July 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1995-01-01

    The second flight of the International Microgravity Laboratory (IML-2) payload on board the STS-65 mission was supported by three accelerometer instruments: The Orbital Acceleration Research Experiment (OARE) located close to the orbiter center of mass; the Quasi-Steady Acceleration Measurement experiment, and the Space Acceleration Measurement System (SAMS), both in the Spacelab module. A fourth accelerometer, the Microgravity Measuring Device recorded data in the middeck in support of exercise isolation tests.Data collected by OARE and SAMS during IML-2 are displayed in this report. The OARE data represent the microgravity environment below 1 Hz. The SAMS data represent the environment in the 0.01 Hz to 100 Hz range. Variations in the environment caused by unique activities are presented. Specific events addressed are: crew activity, crew exercise, experiment component mixing activities, experiment centrifuge operations, refrigerator/freezer operations and circulation pump operations. The analyses included in this report complement analyses presented in other mission summary reports.

  5. The Global Precipitation Measurement (GPM) Mission: U.S. Program and Science Status

    NASA Astrophysics Data System (ADS)

    Hou, A.; Azarbarzin, A.; Kakar, R.; Neeck, S.

    2009-04-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors to provide next-generation precipitation data products for scientific research and societal applications. NASA and JAXA will deploy the GPM Core Observatory carrying an advanced radar-radiometer system to serve as a physics observatory and calibration reference for constellation radiometers. NASA will deploy the GPM Low-Inclination Observatory to enhance the near real-time monitoring of hurricanes and mid-latitude storms, and JAXA will contribute data from the Global Change Observation Mission-Water (GCOM-W) satellite. Partnerships are under development to include additional conical-scanning microwave imagers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, NPOESS, and European MetOp satellites, which are used to improve the precipitation sampling over land. In addition, Brazil has in its national space plan for a GPM low-inclination radiometer, and data from Chinese and Russian microwave radiometers could potentially become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). As a science mission with integrated application goals, GPM is expected to (1) provide new measurement standards for precipitation estimation from space, (2) improve understanding of precipitation physics, the global water cycle variability, and freshwater availability, and (3) advance weather/climate/hydrological prediction capabilities to directly benefit the society. An overview of the GPM mission concept, program

  6. Low-cost unmanned lunar lander

    NASA Technical Reports Server (NTRS)

    Daniel, Walter K.

    1992-01-01

    Two student groups designed unmanned landers to deliver 200 kilogram payloads to the lunar surface. Payloads could include astronomical telescopes, small lunar rovers, and experiments related to future human exploration. Requirements include the use of existing hardware where possible, use of a medium-class launch vehicle, an unobstructed view of the sky for the payload, and access to the lunar surface for the payload. The projects were modeled after Artemis, a project that the NASA Office of Exploration is pursuing with a planned first launch in 1996. The Lunar Scout design uses a Delta 2 launch vehicle with a Star 48 motor for insertion into the trans-lunar trajectory. During the transfer, the solar panels will be folded inward and the spacecraft will be powered by rechargeable nickel-cadmium batteries. The lander will use a combination of a solid rocket motor and hydrazine thrusters for the descent to the lunar surface. The solar arrays will be deployed after landing. The lander will provide power for operations to the payload during the lunar day; batteries will provide 'stay-alive' power during the lunar night. A horn antenna on the lander will provide communications between the payload and the earth.

  7. Towards the Development of a Global Precipitation Measurement (GPM) Mission Concept

    NASA Technical Reports Server (NTRS)

    Shepherd, Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    The scientific success of the Tropical Rainfall Measuring Mission (TRMM) and additional satellite-focused precipitation retrieval projects have paved the way for a more advanced global precipitation mission. A comprehensive global measuring strategy is currently under study - Global Precipitation Measurement (GPM). The GPM study could ultimately lead to the development of the Global Precipitation Mission. The intent of GPM is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction and prediction of freshwater resources, the global carbon cycle, and biogeochemical cycles. This talk overviews the status and scientific agenda of this proposed mission currently planned for launch in the 2007-2008 time frame. GPM is planning to expand the scope of precipitation measurement through the use of a constellation of 6-10 satellites, one of which will be an advanced TRMM-like "core" satellite carry dual-frequency Ku-Ka band radar and a microwave radiometer (e.g. TMI-like). The other constellation members will likely include new lightweight satellites and co-existing operational/research satellites carrying passive microwave radiometers. The goal behind the constellation is to achieve no worse than 3-hour sampling at any spot on the globe. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-su n -synchronous satellites with the "core" satellite providing measurement of cloud-precipitation microphysical processes plus "training calibrating" information to be used with the retrieval algorithms for the constellation satellite measurements. The GPM is organized internationally, currently involving a partnership between NASA in the US, NASDA in Japan, and ESA in Europe (representing the European community). The program is expected to involve additional international partners, other federal agencies, and a diverse collection of scientists from academia

  8. Software Aids Visualization Of Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Weidner, Richard J.

    1996-01-01

    Report describes Simulator for Imager for Mars Pathfinder (SIMP) computer program. SIMP generates "virtual reality" display of view through video camera on Mars lander spacecraft of Mars Pathfinder mission, along with display of pertinent textual and graphical data, for use by scientific investigators in planning sequences of activities for mission.

  9. Science themes for early robotic missions: LPI workshops

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.

    1992-01-01

    Information is given in viewgraph form on science themes for early robotic missions that were developed during workshops. Topics covered include lunar resources, lunar terrain, lunar gravity, the lunar surface lander, and the Lunar Geoscience Explorer.

  10. Lunar lander configuration study and parametric performance analysis

    NASA Astrophysics Data System (ADS)

    Donahue, Benjamin B.; Fowler, C. R.

    1993-06-01

    Future Lunar exploration plans will call for delivery of significant mounts or cargo to provide for crew habitation, surface tansportation, and scientific exploration activities. Minimization of costly surface based infrastructure is in large part directly related to the design of the cargo delivery/landing craft. This study focused on evaluating Lunar lander concepts from a logistics oriented perspective, and outlines the approach used in the development of a preferred configuration, sets forth the benefits derived from its utilization and describes the missions and system considered. Results indicate that only direct-to-surface downloading of payloads provides for unassisted cargo removal operations imperative to efficient and low risk site buildup, including the emplacement of Space Station derivative surface habitat modules, immediate cargo jettison for both descent abort and emergency surface ascent essential to piloted missions carrying cargo, and short habitat egress/ingress paths necessary to productive surface work tours for crew members carrying hand held experiments, tools and other bulky articles. Accommodating cargo in a position underneath the vehicles structural frame, landing craft described herein eliminate altogether the necessity for dedicated surface based off-loading vehicles, the operations and maintenance associated with their operation, and the precipitous ladder climbs to and from the surface that are inherent to traditional designs. Parametric evaluations illustrate performance and mass variation with respect to mission requirements.

  11. Synthetic Vision Displays for Planetary and Lunar Lander Vehicles

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Williams, Steven P.; Shelton, Kevin J.; Kramer, Lynda J.; Bailey, Randall E.; Norman, Robert M.

    2008-01-01

    Aviation research has demonstrated that Synthetic Vision (SV) technology can substantially enhance situation awareness, reduce pilot workload, improve aviation safety, and promote flight path control precision. SV, and related flight deck technologies are currently being extended for application in planetary exploration vehicles. SV, in particular, holds significant potential for many planetary missions since the SV presentation provides a computer-generated view for the flight crew of the terrain and other significant environmental characteristics independent of the outside visibility conditions, window locations, or vehicle attributes. SV allows unconstrained control of the computer-generated scene lighting, terrain coloring, and virtual camera angles which may provide invaluable visual cues to pilots/astronauts, not available from other vision technologies. In addition, important vehicle state information may be conformally displayed on the view such as forward and down velocities, altitude, and fuel remaining to enhance trajectory control and vehicle system status. The paper accompanies a conference demonstration that introduced a prototype NASA Synthetic Vision system for lunar lander spacecraft. The paper will describe technical challenges and potential solutions to SV applications for the lunar landing mission, including the requirements for high-resolution lunar terrain maps, accurate positioning and orientation, and lunar cockpit display concepts to support projected mission challenges.

  12. The Global Precipitation Measurement (GPM) Mission: U.S. Program and Science Status

    NASA Astrophysics Data System (ADS)

    Hou, Arthur; Azarbarzin, Ardeshir; Kakar, Ramesh; Neeck, Steven

    2010-05-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy the GPM Core Observatory carrying an advanced radar-radiometer system to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory is scheduled for launch in July 2013. In addition, NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory to enhance the near real-time monitoring of hurricanes and mid-latitude storms. JAXA will also contribute data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include conical-scanning microwave imagers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, NPOESS, and European MetOp satellites, which are used to improve the precipitation sampling over land. Currently, Brazil has in its national space plan for a GPM low-inclination radiometer, and data from Chinese and Russian microwave radiometers could potentially become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide "next-generation" precipitation data products characterized by: (1) more accurate instantaneous precipitation measurement (especially for light rain and cold-season solid precipitation), (2) more

  13. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2010-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy the GPM Core Observatory carrying an advanced radar-radiometer system to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory is scheduled for launch in July 2013. NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory to enhance the near real-time monitoring of hurricanes and mid-latitude storms. JAXA will also contribute data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the NPP, POES, JPSS, and MetOp satellites, which are used to improve the precipitation sampling over land. Brazil has in its national space plan for a GPM low-inclination radiometer, and data from Chinese and Russian microwave radiometers could potentially become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide "next-generation" precipitation data products characterized by: (1) more accurate instantaneous precipitation measurement (especially for light rain and cold-season solid precipitation), (2) more frequent sampling by an expanded constellation of microwave radiometers including operational humidity sounders over land, (3) intercalibrated microwave

  14. Mars' rotational state and tidal deformations from radio interferometry of a network of landers.

    NASA Astrophysics Data System (ADS)

    Iess, L.; Giuliani, S.; Dehant, V.

    2012-04-01

    The precise determination of the rotational state of solar system bodies is one of the main tools to investigate their interior structure. Unfortunately the accuracies required for geophysical interpretations are very stringent, and generally unattainable from orbit using optical or radar tracking of surface landmarks. Radio tracking of a lander from ground or from a spacecraft orbiting the planet offers substantial improvements, especially if the lander lifetime is adequately long. The optimal configuration is however attained when two or more landers can be simultaneously tracked from a ground antenna in an interferometric mode. ESA has been considering a network of landers on Mars since many years, and recently this concept has been revived by the study of the Mars Network Science Mission (MNSM). The scientific rationale of MNSM is the investigation of the Mars' interior and atmosphere by means of a network of two or three landers, making it especially suitable for interferometric observations. In order to synthesize an interferometer, the MNSN landers must be tracked simultaneously from a single ground antenna in a coherent two-way mode. The uplink radio signal (at X- or Ka-band) is received by the landers' transponders and retransmitted to ground in the same frequency band. The signals received at ground station are then recorded (typically at few tens of kHz) and beaten against each other to form the output of the interferometer, a complex phasor. The differential phase retain information on Mars' rotational parameters and tidal deformations. A crucial aspect of the interferometric configuration is the rejection of common noise and error sources. Errors in the station location, Earth orientation parameters and ephemerides, path delays due to the Earth troposphere and ionosphere, and, to a good extent, interplanetary plasma are cancelled out. The main residual errors are due to differential path delays from Mars' atmosphere and differential drifts of the

  15. Observing System Simulations for the NASA ASCENDS Lidar CO2 Mission Concept: Substantiating Science Measurement Requirements

    NASA Technical Reports Server (NTRS)

    Kawa, Stephan R.; Baker, David Frank; Schuh, Andrew E.; Abshire, James Brice; Browell, Edward V.; Michalak, Anna M.

    2012-01-01

    The NASA ASCENDS mission (Active Sensing of Carbon Emissions, Nights, Days, and Seasons) is envisioned as the next generation of dedicated, space-based CO2 observing systems, currently planned for launch in about the year 2022. Recommended by the US National Academy of Sciences Decadal Survey, active (lidar) sensing of CO2 from space has several potentially significant advantages, in comparison to current and planned passive CO2 instruments, that promise to advance CO2 measurement capability and carbon cycle understanding into the next decade. Assessment and testing of possible lidar instrument technologies indicates that such sensors are more than feasible, however, the measurement precision and accuracy requirements remain at unprecedented levels of stringency. It is, therefore, important to quantitatively and consistently evaluate the measurement capabilities and requirements for the prospective active system in the context of advancing our knowledge of carbon flux distributions and their dependence on underlying physical processes. This amounts to establishing minimum requirements for precision, relative accuracy, spatial/temporal coverage and resolution, vertical information content, interferences, and possibly the tradeoffs among these parameters, while at the same time framing a mission that can be implemented within a constrained budget. Here, we present results of observing system simulation studies, commissioned by the ASCENDS Science Requirements Definition Team, for a range of possible mission implementation options that are intended to substantiate science measurement requirements for a laser-based CO2 space instrument.

  16. Trajectory Design for MoonRise: A Proposed Lunar South Pole Aitken Basin Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey S.; McElrath, Timothy P.; Anderson, Rodney L.; Sweetser, Theodore H.

    2015-03-01

    This paper presents the mission design for the proposed MoonRise New Frontiers mission: a lunar far side lander and return vehicle, with an accompanying communication satellite. Both vehicles are launched together, but fly separate low-energy transfers to the Moon. The communication satellite enters lunar orbit immediately upon arrival at the Moon, whereas the lander enters a staging orbit about the lunar Lagrange points. The lander descends and touches down on the surface 17 days after the communication satellite enters orbit. The lander remains on the surface for nearly two weeks before lifting off and returning to Earth via a low-energy return.

  17. Mars Polar Lander: The Search Continues

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] (A) Polar Lander landing site ellipses.

    [figure removed for brevity, see original site] (B) MOC coverage (orange) to 17 Jan. 2000.

    [figure removed for brevity, see original site] (C) MOC image mosaic to 17 Jan. 2000.

    [figure removed for brevity, see original site] (D) Sample high resolution views from MOC mosaic.

    Since mid-December 1999, the Mars Orbiter Camera (MOC) onboard the Mars Global Surveyor (MGS) spacecraft has been taking pictures of Mars Polar Lander's landing zone near 76oS, 195oW, in hopes of finding some evidence as to the fate of the spacecraft that went missing during its December 3, 1999, landing attempt. To take these pictures, the MGS spacecraft is pointed a few degrees off its normal, nadir-looking (straight down) path. The first phase of imaging was completed December 24, 1999, but nothing was found. A second, expanded search was requested by the Mars Surveyor Operations Project and was begun in early January 2000.

    The MOC operations team at Malin Space Science Systems has been busy with the Mars Polar Lander search since December 3rd--initial efforts focused on the use of MOC as a buffer or 'storage space' for data relayed through the MGS Mars Relay (MR) system. It had been hoped that the Polar Lander would try to communicate to Earth using its UHF antenna to relay data through the MGS relay system. Data from the relay come through the MOC and are received at Malin Space Science Systems much in the same way that pictures from MOC are obtained. The relay effort was concluded on January 17, 2000, with no word from the Polar Lander. Meanwhile, the MOC operations team began to plan, command, retrieve, and analyze images designed to look for the Polar Lander. These pictures are taken at the highest spatial resolution possible for MOC, 1.5 meters (5 ft.) per pixel. At this resolution, the fuselage and wings of a jumbo jet can be distinguished, but a Polar Lander would only be a few

  18. Drop Size Distribution Measurements Supporting the NASA Global Precipitation Measurement Mission: Infrastructure and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Carey, Lawerence D.; Gatlin, Patrick N.; Wingo, Matthew; Tokay, Ali; Wolff, David B.; Bringi, V. N.

    2011-01-01

    Global Precipitation Measurement Mission (GPM) retrieval algorithm validation requires datasets that characterize the 4-D structure, variability, and correlation properties of hydrometeor particle size distributions (PSD) and accumulations over satellite fields of view (5 -- 50 km). Key to this process is the combined use of disdrometer and polarimetric radar platforms. Here the disdrometer measurements serve as a reference for up-scaling dual-polarimetric radar observations of the PSD to the much larger volumetric sampling domain of the radar. The PSD observations thus derived provide a much larger data set for assessing DSD variability, and satellite-based precipitation retrieval algorithm assumptions, in all three spatial dimensions for a range of storm types and seasons. As one component of this effort, the GPM Ground Validation program recently acquired five 3rd generation 2D Video disdrometers as part of its Disdrometer and Radar Observations of Precipitation Facility (DROP), currently hosted in northern Alabama by the NASA Marshall Space Flight Center and the University of Alabama in Huntsville. These next-generation 2DVDs were operated and evaluated in different phases of data collection under the scanning domain of the UAH ARMOR C-band dual-polarimetric radar. During this period approximately 7500 minutes of PSD data were collected and processed to create gamma size distribution parameters using a truncated method of moments approach. After creating the gamma parameter datasets the DSDs were then used as input to T-matrix code for computation of polarimetric radar moments at C-band. The combined dataset was then analyzed with two basic objectives in mind: 1) the investigation of seasonal variability in the rain PSD parameters as observed by the 2DVDs; 2) the use of combined polarimetric moments and observed gamma distribution parameters in a functional form to retrieve PSD parameters in 4-D using the ARMOR radar for precipitation occurring in different

  19. Phoenix--the first Mars Scout mission.

    PubMed

    Shotwell, Robert

    2005-01-01

    NASA has initiated the first of a new series of missions to augment the current Mars Program. In addition to the systematic series of planned, directed missions currently comprising the Mars Program plan, NASA has started a series of Mars Scout missions that are low cost, price fixed, Principal [correction of Principle] Investigator-led projects. These missions are intended to provide an avenue for rapid response to discoveries made as a result of the primary Mars missions, as well as allow more risky technologies and approaches to be applied in the investigation of Mars. The first in this new series is the Phoenix mission which was selected as part of a highly competitive process. Phoenix will use the Mars 2001 Lander that was discontinued in 2000 and apply a new set of science objectives and mission objectives and will validate this soft lander architecture for future applications. This paper will provide an overview of both the Program and the Project.

  20. Measurement of precipitation induced FUV emission and Geocoronal Lyman Alpha from the IMI mission

    NASA Technical Reports Server (NTRS)

    Mende, Stephen B.; Fuselier, S. A.; Rairden, R. L.

    1995-01-01

    This final report describes the activities of the Lockheed Martin Palo Alto Research Laboratory in studying the measurement of ion and electron precipitation induced Far Ultra-Violet (FUV) emissions and Geocoronal Lyman Alpha for the NASA Inner Magnetospheric Imager (IMI) mission. this study examined promising techniques that may allow combining several FUV instruments that would separately measure proton aurora, electron aurora, and geocoronal Lyman alpha into a single instrument operated on a spinning spacecraft. The study consisted of two parts. First, the geocoronal Lyman alpha, proton aurora, and electron aurora emissions were modeled to determine instrument requirements. Second, several promising techniques were investigated to determine if they were suitable for use in an IMI-type mission. Among the techniques investigated were the Hydrogen gas cell for eliminating cold geocoronal Lyman alpha emissions, and a coded aperture spectrometer with sufficient resolution to separate Doppler shifted Lyman alpha components.

  1. Assimilation of Precipitation Measurement Missions Microwave Radiance Observations With GEOS-5

    NASA Technical Reports Server (NTRS)

    Jin, Jianjun; Kim, Min-Jeong; McCarty, Will; Akella, Santha; Gu, Wei

    2015-01-01

    The Global Precipitation Mission (GPM) Core Observatory satellite was launched in February, 2014. The GPM Microwave Imager (GMI) is a conically scanning radiometer measuring 13 channels ranging from 10 to 183 GHz and sampling between 65 S 65 N. This instrument is a successor to the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI), which has observed 9 channels at frequencies ranging 10 to 85 GHz between 40 S 40 N since 1997. This presentation outlines the base procedures developed to assimilate GMI and TMI radiances in clear-sky conditions, including quality control methods, thinning decisions, and the estimation of, observation errors. This presentation also shows the impact of these observations when they are incorporated into the GEOS-5 atmospheric data assimilation system.

  2. The Scientific Measurement System of the Gravity Recovery and Interior Laboratory (GRAIL) Mission

    NASA Astrophysics Data System (ADS)

    Asmar, Sami W.; Konopliv, Alexander S.; Watkins, Michael M.; Williams, James G.; Park, Ryan S.; Kruizinga, Gerhard; Paik, Meegyeong; Yuan, Dah-Ning; Fahnestock, Eugene; Strekalov, Dmitry; Harvey, Nate; Lu, Wenwen; Kahan, Daniel; Oudrhiri, Kamal; Smith, David E.; Zuber, Maria T.

    2013-09-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission to the Moon utilized an integrated scientific measurement system comprised of flight, ground, mission, and data system elements in order to meet the end-to-end performance required to achieve its scientific objectives. Modeling and simulation efforts were carried out early in the mission that influenced and optimized the design, implementation, and testing of these elements. Because the two prime scientific observables, range between the two spacecraft and range rates between each spacecraft and ground stations, can be affected by the performance of any element of the mission, we treated every element as part of an extended science instrument, a science system. All simulations and modeling took into account the design and configuration of each element to compute the expected performance and error budgets. In the process, scientific requirements were converted to engineering specifications that became the primary drivers for development and testing. Extensive simulations demonstrated that the scientific objectives could in most cases be met with significant margin. Errors are grouped into dynamic or kinematic sources and the largest source of non-gravitational error comes from spacecraft thermal radiation. With all error models included, the baseline solution shows that estimation of the lunar gravity field is robust against both dynamic and kinematic errors and a nominal field of degree 300 or better could be achieved according to the scaled Kaula rule for the Moon. The core signature is more sensitive to modeling errors and can be recovered with a small margin.

  3. Concept of Operations for Deploying a Lander on the Secondary Body of Binary Asteroid 1996 FG3

    NASA Astrophysics Data System (ADS)

    Tardivel, Simon; Michel, P.; Scheeres, D.

    2012-10-01

    The European Space Agency is currently performing an assessment study of the MarcoPolo-R space mission, in the framework of the M3 class competition of its Cosmic Vision Program. MarcoPolo-R is a sample return mission to a primitive asteroid, whose baseline target is the binary asteroid 1996FG3. The baseline mission, including the sample, is focused on the primary of the binary system. To date, little has yet been considered for the investigation of the secondary, apart from remote observations from the spacecraft. However, MarcoPolo-R may carry an optional lander, and if such a lander could be accommodated it may be relevant to use it for a more detailed investigation of the secondary. This poster presents a strategy for deploying a lander using an unpowered trajectory towards the secondary. This ballistic deployment allows for the design of a light lander with minimum platform overhead and maximum payload. The deployment operations are shown to be very simple and require minimum preparation. The main spacecraft is set on an orbit that reaches a specific point near the binary system L2 Lagrange Point facing the far side of the secondary, about 220 meters from the secondary surface, with a relative speed of about 10cm/s. The lander is then jettisoned using a spring-release mechanism that sets it on an impact trajectory that robustly intersects with the secondary surface. On impact, the lander only needs to dissipate a small amount of kinetic energy in order to ensure that it is energetically and dynamically trapped on the surface. Considering errors on spacecraft GNC and on the spring-release mechanism, and very large uncertainties on the gravity field of the asteroids, the strategy presented here yields a successful landing in more than 99.9% of cases, while ensuring the absolute safety of the spacecraft before, during and after deployment operations.

  4. MetNet Precursor - Network Mission to Mars

    NASA Astrophysics Data System (ADS)

    Harri, Arri-Matti

    2010-05-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The first MetNet vehicle, MetNet Precursor, slated for launch in 2011. The MetNet development work started already in 2001. The actual practical Precursor Mission development work started in January 2009 with participation from various space research institutes and agencies. The scientific rationale and goals as well as key mission solutions will be discussed. The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Time-resolved in situ Martian meteorological measurements acquired by the Viking, Mars Pathfinder and Phoenix landers and remote sensing observations by the Mariner 9, Viking, Mars Global Surveyor, Mars Odyssey and the Mars Express orbiters have provided the basis for our current understanding of the behavior of weather and climate on Mars. However, the available amount of data is still scarce and a wealth of additional in situ observations are needed on varying types of Martian orography, terrain and altitude spanning all latitudes and longitudes to address microscale and mesoscale atmospheric phenomena. Detailed characterization of the Martian atmospheric circulation patterns and climatological cycles requires simultaneous in situ atmospheric observations. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe

  5. The eXtra Small Analyzer for Neutrals (XSAN) instrument on-board of the Lunar-Glob lander

    NASA Astrophysics Data System (ADS)

    Wieser, Martin; Barabash, Stas

    A large fraction of up to 20 precent of the solar wind impinging onto the lunar surface is reflected back to space as energetic neutral atoms. The SARA instrument on the Chandrayaan-1 mission provided a comprehensive coverage of the lunar surface of this interaction by mapping it from a 100 - 200 km orbit. The micro-physics of this reflection process is unexplored however. With the eXtra Small Analyzer for Neutrals instrument (XSAN) placed on the Lunar-Glob lander, we will directly investigate the production process of energetic neutral atoms from a vantage point of only meters from the surface for the first time. The XSAN design is based on the Solar Wind Monitor (SWIM) family of instruments originally flown on the Indian Chandrayaan-1 mission and with derivatives built e.g. for ESA's BepiColombo Mission to Mercury or for Phobos-Grunt. XSAN extends the functionality of this instrument family by adding a neutral atom to ion conversion surface in its entrance system. This will make it possible to measure detailed energy spectra and mass composition of the energetic neutral atoms originating from the lunar surface. We present an overview of the XSAN instrument and its science and report on latest developments.

  6. Tropical Rainfall Measuring Mission (TRMM) project. VI - Spacecraft, scientific instruments, and launching rocket. Part 1 - Spacecraft

    NASA Technical Reports Server (NTRS)

    Keating, Thomas; Ihara, Toshio; Miida, Sumio

    1990-01-01

    A cooperative United States/Japan study was made for one year from 1987 to 1988 regarding the feasibility of the Tropical Rainfall Measuring Mission (TRMM). As part of this study a phase-A-level design of spacecraft for TRMM was developed by NASA/GSFC, and the result was documented in a feasibility study. The phase-A-level design is developed for the TRMM satellite utilizing a multimission spacecraft.

  7. CLAIRE: a Canadian Small Satellite Mission for Measurement of Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Sloan, James; Grant, Cordell; Germain, Stephane; Durak, Berke; McKeever, Jason; Latendresse, Vincent

    2016-07-01

    CLAIRE, a Canadian mission operated by GHGSat Inc. of Montreal, is the world's first satellite designed to measure greenhouse gas emissions from single targeted industrial facilities. Claire was launched earlier this year into a 500 km polar sun-synchronous orbit selected to provide an acceptable balance between return frequency and spatial resolution. Extensive simulations of oil & gas facilities, power plants, hydro reservoirs and even animal feedlots were used to predict the mission performance. The principal goal is to measure the emission rates of carbon dioxide and methane from selected targets with greater precision and lower cost than ground-based alternatives. CLAIRE will measure sources having surface areas less than 10 x 10 km2 with a spatial resolution better than 50 m, thereby providing industrial site operators and government regulators with the information they need to understand, manage and ultimately to reduce greenhouse gas emissions more economically. The sensor is based on a Fabry-Perot interferometer, coupled with a 2D InGaAs focal plane array operating in the short-wave infrared with a spectral resolution of about 0.1 nm. The patented, high étendue, instrument design provides signal to noise ratios that permit quantification of emission rates with accuracies adequate for most regulatory reporting thresholds. The very high spatial resolution of the density maps produced by the CLAIRE mission resolves plume shapes and emitter locations so that advanced dispersion models can derive accurate emission rates of multiple sources within the field of view. The satellite bus, provided by the University of Toronto's Space Flight Laboratory, is based on the well-characterized NEMO architecture, including hardware that has significant spaceflight heritage. The mission is currently undergoing initial test and validation measurements in preparation for commercial operation later this year.

  8. An Intercomparison of Lidar Ozone and Temperature Measurements From the SOLVE Mission With Predicted Model Values

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas J.; Hoegy, Walt; Lait, Leslie; Sumnicht, Grant; Twigg, Larry; Heaps, William

    2000-01-01

    Temperature profiles acquired by Goddard Space Flight Center's AROTEL lidar during the SOLVE mission onboard NASA's DC-8 are compared with predicted values from several atmospheric models (DAO, NCEP and UKMO). The variability in the differences between measured and calculated temperature fields was approximately 5 K. Retrieved temperatures within the polar vortex showed large regions that were significantly colder than predicted by the atmospheric models.

  9. Tropical Rainfall Measuring Mission (TRMM) and the Future of Rainfall Estimation from Space

    NASA Technical Reports Server (NTRS)

    Kakar, Ramesh; Adler, Robert; Smith, Eric; Starr, David OC. (Technical Monitor)

    2001-01-01

    Tropical rainfall is important in the hydrological cycle and to the lives and welfare of humans. Three-fourths of the energy that drives the atmospheric wind circulation comes from the latent heat released by tropical precipitation. Recognizing the importance of rain in the tropics, NASA for the U.S.A. and NASDA for Japan have partnered in the design, construction and flight of a satellite mission to measure tropical rainfall and calculate the associated latent heat release. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 27, 1997, and data from all the instruments first became available approximately 30 days after launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms and applications of these results to areas such as Data Assimilation and model initialization. TRMM has reduced the uncertainty of climatological rainfall in tropics by over a factor of two, therefore establishing a standard for comparison with previous data sets and climatologies. It has documented the diurnal variation of precipitation over the oceans, showing a distinct early morning peak and this satellite mission has shown the utility of precipitation information for the improvement of numerical weather forecasts and climate modeling. This paper discusses some promising applications using TRMM data and introduces a measurement concept being discussed by NASA/NASDA and ESA for the future of rainfall estimation from space.

  10. Mission Simulation of Space Lidar Measurements for Seasonal and Regional CO2 Variations

    NASA Technical Reports Server (NTRS)

    Kawa, Stephan; Collatz, G. J.; Mao, J.; Abshire, J. B.; Sun, X.; Weaver, C. J.

    2010-01-01

    Results of mission simulation studies are presented for a laser-based atmospheric [82 sounder. The simulations are based on real-time carbon cycle process modeling and data analysis. The mission concept corresponds to the Active Sensing of [82 over Nights, Days, and Seasons (ASCENDS) recommended by the US National Academy of Sciences Decadal Survey of Earth Science and Applications from Space. One prerequisite for meaningful quantitative sensor evaluation is realistic CO2 process modeling across a wide range of scales, i.e., does the model have representative spatial and temporal gradients? Examples of model comparison with data will be shown. Another requirement is a relatively complete description of the atmospheric and surface state, which we have obtained from meteorological data assimilation and satellite measurements from MODIS and [ALIPS0. We use radiative transfer model calculations, an instrument model with representative errors ' and a simple retrieval approach to complete the cycle from "nature" run to "pseudo-data" CO2, Several mission and instrument configuration options are examined/ and the sensitivity to key design variables is shown. We use the simulation framework to demonstrate that within reasonable technological assumptions for the system performance, relatively high measurement precision can be obtained, but errors depend strongly on environmental conditions as well as instrument specifications. Examples are also shown of how the resulting pseudo - measurements might be used to address key carbon cycle science questions.

  11. Mars Pathfinder Microrover - Implementing a Low Cost Planetary Mission Experiment

    NASA Technical Reports Server (NTRS)

    Matijevic, J.

    1995-01-01

    The Mars Pathfinder Microrover Flight Experiment (MFEX) is a NASA OACT flight experiment which is planned to be delivered and integrated with the Mars Pathfinder (MFP) lander and spacecraft system for landing on Mars on July 4, 1997. After landing, the MFEX rover is deployed from the lander and begins a 7 sol (1 sol=1 Martian day) mission to conduct technology experiments, deploy an alpha proton x-ray spectrometer (APXS) on rocks and soil, and image the lander as part of the engineering assessment of the mission after landing.

  12. The Mars Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.

    1996-09-01

    The Mars Pathfinder mission is a Discovery class mission that will place a small lander and rover on the surface of Mars on July 4, 1997. The Pathfinder flight system is a single small lander, packaged within an aeroshell and back cover with a back-pack-style cruise stage. The vehicle will be launched, fly independently to Mars, and enter the atmosphere directly on approach behind the aeroshell. The vehicle is slowed by a parachute and 3 small solid rockets before landing on inflated airbags. Petals of a small tetrahedron shaped lander open up, to right the vehicle. The lander is solar powered with batteries and will operate on the surface for up to a year, downlinking data on a high-gain antenna. Pathfinder will be the first mission to use a rover, with 3 imagers and an alpha proton X-ray spectrometer, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which will provide a calibration point or "ground truth" for orbital remote sensing observations. The rover (includes a series of technology experiments), the instruments (including a stereo multispectral surface imager on a pop up mast and an atmospheric structure instrument-surface meteorology package) and the telemetry system will allow investigations of: the surface morphology and geology at meter scale, the petrology and geochemistry of rocks and soils, the magnetic properties of dust, soil mechanics and properties, a variety of atmospheric investigations and the rotational and orbital dynamics of Mars. Landing downstream from the mouth of a giant catastrophic outflow channel, Ares Vallis, offers the potential of identifying and analyzing a wide variety of crustal materials, from the ancient heavily cratered terrain, intermediate-aged ridged plains and reworked channel deposits, thus allowing first-order scientific investigations of the early differentiation and evolution of the crust, the development of weathering products and early environments and conditions on Mars.

  13. Improved coordinates of features in the vicinity of the Viking lander site on Mars

    NASA Astrophysics Data System (ADS)

    Davies, M. E.; Dole, S. H.

    1980-03-01

    The measurement of longitude of the Viking 1 landing site and the accuracy of the coordinates of features in the area around the landing site are discussed. The longitude must be measured photogrammatically from the small crater, Airy 0, which defines the 0 deg meridian on Mars. The computer program, GIANT, which was used to perform the analytical triangulations, and the photogrammetric computation of the longitude of the Viking 1 lander site are described. Improved coordinates of features in the vicinity of the Viking 1 lander site are presented.

  14. Improved coordinates of features in the vicinity of the Viking lander site on Mars

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Dole, S. H.

    1980-01-01

    The measurement of longitude of the Viking 1 landing site and the accuracy of the coordinates of features in the area around the landing site are discussed. The longitude must be measured photogrammatically from the small crater, Airy 0, which defines the 0 deg meridian on Mars. The computer program, GIANT, which was used to perform the analytical triangulations, and the photogrammetric computation of the longitude of the Viking 1 lander site are described. Improved coordinates of features in the vicinity of the Viking 1 lander site are presented.

  15. MMPM - Mission implementation of Mars MetNet Precursor

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.

    2009-04-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The key technical aspects and solutions of the mission will be discussed. The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. This development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development.

  16. The Global Precipitation Measurement (GPM) Mission contributions to terrestrial hydrology and societal applications

    NASA Astrophysics Data System (ADS)

    Kirschbaum, D.; Skofronick Jackson, G.; Huffman, G. J.

    2015-12-01

    Too much or too little rain can serve as a tipping point for triggering catastrophic flooding and landslides or widespread drought. Knowing when, where and how much rain is falling globally is vital to understanding how vulnerable areas may be more or less impacted by these disasters. The Global Precipitation Measurement (GPM) mission is an international constellation of satellites coordinated through a partnership with NASA and the Japan Aerospace Exploration Agency (JAXA) to provide next-generation global observations of rain and snow. The GPM mission centers on the deployment of a Core Observatory satellite that serves as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. This satellite launched from Tanegashima Space Complex in Japan on January 28th, 2014 and carries advanced instruments setting a new standard for precipitation measurements from space. The GPM Core Observatory satellite measures rain and snow using two science instruments: the GPM Microwave Imager (GMI) and the Dual-frequency Precipitation Radar (DPR). The GMI captures precipitation intensities and horizontal patterns, while the DPR provides insights into the three dimensional structure of precipitating particles. Together these two instruments provide a database of measurements against which other partner satellites' microwave observations can be meaningfully compared and combined to make a global precipitation dataset. GPM has already provided unprecedented views of typhoons, extratropical systems, light rain, snow storms and extreme precipitation. Through improved measurements of precipitation globally, the GPM mission provides new insights into measuring the fluxes of Earth's water cycle. This presentation will outline new findings and advancements of GPM in understanding and modeling of Earth's water and energy cycles, improving forecasting of extreme events that cause natural hazards and disasters, and extending current

  17. In-Situ Missions for the Exploration of Titan's Lakes

    NASA Technical Reports Server (NTRS)

    Elliott, John O.; Waite, J. Hunter

    2011-01-01

    The lakes of Titan represent an increasingly tantalizing target for future exploration. As Cassini continues to reveal more details the lakes appear to offer a particularly rich reservoir of knowledge that could provide insights to Titan's formation and evolution, as well as an ideal location to explore Titan's potential for pre-biotic chemistry. A recent study of Titan Lake Probe missions was undertaken as one of several dozen studies commissioned by the National Research Council (NRC) Planetary Decadal Survey to explore the technical readiness, feasibility and affordability of scientifically promising mission scenarios. This in-depth study focused on an in-situ examination of a hydrocarbon lake on the Saturnian moon Titan--a target that presents unique scientific opportunities as well as several unique engineering challenges (e.g., submersion systems and cryogenic sampling) to enable those measurements. Per direction from the NRC Planetary Decadal Survey Satellites Panel, and after an initial trade-space examination, study architectures focused on three possible New Frontiers-class missions and a more ambitious Flagship-class lander intended as the in-situ portion of a larger collaborative mission. Detailed point designs were developed to explore these four potential mission options, including consideration of flight system and mission designs, as well as operations on and under the lake's surface and scenarios for data return. In this paper we present an overview of the science objectives of the missions, the mission architecture and surface.

  18. The Mars Pathfinder Mission and Science Results

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.

    1999-01-01

    Mars Pathfinder, the first low-cost, quick Discovery class mission to be completed, successfully landed on the surface of Mars on July 4, 1997, deployed and navigated a small rover, and collected data from 3 science instruments and 10 technology experiments. The mission operated on Mars for 3 months and returned 2.3 Gbits of new data, including over 16,500 lander and 550 rover images, 16 chemical analyses of rocks and soil, and 8.5 million individual temperature, pressure and wind measurements. The rover traversed 100 m clockwise around the lander, exploring about 200 square meters of the surface. The mission captured the imagination of the public, and garnered front page headlines during the first week. A total of about 566 million internet "hits" were registered during the first month of the mission, with 47 million "hits" on July 8th alone, making the Pathfinder landing by far the largest internet event in history at the time. Pathfinder was the first mission to deploy a rover on Mars. It carried a chemical analysis instrument, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which provided a calibration point or "ground truth" for orbital remote sensing observations. The combination of spectral imaging of the landing area by the lander camera, chemical analyses aboard the rover, and close-up imaging of colors, textures and fabrics with the rover cameras offered the potential of identifying rocks (petrology and mineralogy). With this payload, a landing site in Ares Vallis was selected because it appeared acceptably safe and offered the prospect of analyzing a variety of rock types expected to be deposited by catastrophic floods, which enabled addressing first-order scientific questions such as differentiation of the crust, the development of weathering products, and the nature of the early Martian environment and its subsequent evolution. The 3 instruments and rover allowed seven areas of scientific investigation: the

  19. The Mars Pathfinder Mission and Science Results

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.

    1999-01-01

    Mars Pathfinder, the first low-cost, quick Discovery class mission to be completed, successfully landed on the surface of Mars on July 4, 1997, deployed and navigated a small rover, and collected data from 3 science instruments and 10 technology experiments. The mission operated on Mars for 3 months and returned 2.3 Gbits of new data, including over 16,500 lander and 550 rover images, 16 chemical analyses of rocks and soil, and 8.5 million individual temperature, pressure and wind measurements. The rover traversed 100 m clockwise around the lander, exploring about 200 square meters of the surface. The mission captured the imagination of the public, and garnered front page headlines during the first week. A total of about 566 million internet "hits" were registered during the first month of the mission, with 47 million "hits" on July 8th alone, making the Pathfinder landing by far the largest internet event in history at the time. Pathfinder was the first mission to deploy a rover on Mars. It carried a chemical analysis instrument, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which provided a calibration point or "ground truth" for orbital remote sensing observations. The combination of spectral imaging of the landing area by the lander camera, chemical analyses aboard the rover, and close-up imaging of colors, textures and fabrics with the rover cameras offered the potential of identifying rocks (petrology and mineralogy). With this payload, a landing site in Ares Vallis was selected because it appeared acceptably safe and offered the prospect of analyzing a variety of rock types expected to be deposited by catastrophic floods, which enabled addressing first-order scientific questions such as differentiation of the crust, the development of weathering products, and the nature of the early Martian environment and its subsequent evolution. The 3 instruments and rover allowed seven areas of scientific investigation: the

  20. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.

    2011-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  1. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jianping; Kawa, Stephen R.; Weaver, Clark J.

    2010-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  2. PICARD SOL mission, a ground-based facility for long-term solar radius measurement

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Irbah, A.; Corbard, T.; Morand, F.; Thuillier, G.; Hauchecorne, A.; Ikhlef, R.; Rouze, M.; Renaud, C.; Djafer, D.; Abbaki, S.; Assus, P.; Chauvineau, B.; Cissé, E. M.; Dalaudier, F.; D'Almeida, Eric; Fodil, M.; Laclare, F.; Lesueur, P.; Lin, M.; Marcovici, J. P.; Poiet, G.

    2012-09-01

    For the last thirty years, ground time series of the solar radius have shown different variations according to different instruments. The origin of these variations may be found in the observer, the instrument, the atmosphere and the Sun. These time series show inconsistencies and conflicting results, which likely originate from instrumental effects and/or atmospheric effects. A survey of the solar radius was initiated in 1975 by F. Laclare, at the Calern site of the Observatoire de la Cˆote d'Azur (OCA). PICARD is an investigation dedicated to the simultaneous measurements of the absolute total and spectral solar irradiance, the solar radius and solar shape, and to the Sun's interior probing by the helioseismology method. The PICARD mission aims to the study of the origin of the solar variability and to the study of the relations between the Sun and the Earth's climate by using modeling. These studies will be based on measurements carried out from orbit and from the ground. PICARD SOL is the ground segment of the PICARD mission to allow a comparison of the solar radius measured in space and on ground. PICARD SOL will enable to understand the influence of the atmosphere on the measured solar radius. The PICARD Sol instrumentation consists of: SODISM II, a replica of SODISM (SOlar Diameter Imager and Surface Mapper), a high resolution imaging telescope, and MISOLFA (Moniteur d'Images SOLaires Franco-Alǵerien), a seeing monitor. Additional instrumentation consists in a Sun photometer, which measures atmospheric aerosol properties, a pyranometer to measure the solar irradiance, a visible camera, and a weather station. PICARD SOL is operating since March 2011. First results from the PICARD SOL mission are briefly reported in this paper.

  3. NanoSWARM: A Nano-satellite Mission to Measure Particles and Fields Around the Moon

    NASA Astrophysics Data System (ADS)

    Garrick-Bethell, I.

    2015-12-01

    The NanoSWARM mission concept uses a fleet of cubesats around the Moon to address a number of open problems in planetary science: 1) The mechanisms of space weathering, 2) The origins of planetary magnetism, 3) The origins, distributions, and migration processes of surface water on airless bodies, and 4) The physics of small-scale magnetospheres. To accomplish these goals, NanoSWARM targets scientifically rich features on the Moon known as swirls. Swirls are high-albedo features correlated with strong magnetic fields and low surface-water. NanoSWARM cubesats will make the first near-surface (<1 km altitude) measurements of solar wind flux and magnetic fields at swirls. NanoSWARM cubesats will also perform low-altitude neutron measurements to provide key constraints on the distribution of polar hydrogen concentrations, which are important volatile sinks in the lunar water cycle. To release its cubesats, NanoSWARM uses a high-heritage mother ship in a low altitude, polar, circular orbit. NanoSWARM's results will have direct applications to the geophysics, volatile distribution, and plasma physics of numerous other bodies, in particular asteroids and the terrestrial planets. The technologies and methods used by NanoSWARM will enable many new cubesat missions in the next decade. NanoSWARM was proposed as a NASA Discovery mission in February 2015.

  4. NanoSWARM - A nano-satellite mission to measure particles and fields around the Moon

    NASA Astrophysics Data System (ADS)

    Garrick-Bethell, Ian; Russell, Christopher; Pieters, Carle; Weiss, Benjamin; Halekas, Jasper; Poppe, Andrew; Larson, Davin; Lawrence, David; Elphic, Richard; Hayne, Paul; Blakely, Richard; Kim, Khan-Hyuk; Choi, Young-Jun; Jin, Ho; Hemingway, Doug; Nayak, Michael; Puig-Suari, Jordi; Jaroux, Belgacem; Warwick, Steven

    2015-04-01

    The NanoSWARM mission concept uses a fleet of cubesats around the Moon to address a number of open problems in planetary science: 1) The mechanisms of space weathering, 2) The origins of planetary magnetism, 3) The origins, distributions, and migration processes of surface water on airless bodies, and 4) The physics of small-scale magnetospheres. To accomplish these goals, NanoSWARM targets scientifically rich features on the Moon known as swirls. Swirls are high-albedo features correlated with strong magnetic fields and low surface-water. NanoSWARM cubesats will make the first near-surface (<500 m altitude) measurements of solar wind flux and magnetic fields at swirls. NanoSWARM cubesats will also perform low-altitude neutron measurements to provide key constraints on the distribution of polar hydrogen concentrations, which are important volatile sinks in the lunar water cycle. To release its cubesats, NanoSWARM uses a high-heritage mother ship in a low altitude, polar, circular orbit. NanoSWARM's results will have direct applications to the geophysics, volatile distribution, and plasma physics of numerous other bodies, in particular asteroids and the terrestrial planets. The technologies and methods used by NanoSWARM will enable many new cubesat missions in the next decade, and expand the cubesat paradigm into deep space. NanoSWARM will be proposed as a NASA Discovery mission in early 2015.

  5. Rosetta Mission Status Update

    NASA Astrophysics Data System (ADS)

    Taylor, M. G.; Altobelli, N.; Alexander, C. J.; Schwehm, G. H.; Jansen, F.; Küppers, M.; O'Rourke, L.; Barthelemy, M.; Geiger, B.; Grieger, B.; Moissl, R.; Vallat, C.

    2014-12-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to examine its environment insitu and its evolution in the inner solar system. The lander Philae will be the first device to land on a comet and perform in-situ science on the surface. Nearly 10 years after launch in 2004, on 20th January 2014 at 10:00 UTC the spacecraft woke up from hibernation. Following successful instrument commissioning, at the time of writing the spacecraft is about to rendez-vous with the comet. The rest of 2014 will involve careful mapping and characterisation of the nucleus and its environs, for science and to identify a landing site for the lander Philae in November. This presentation will provide a brief overview of the mission up to date and where we stand in early part of the escort phase of the mission which runs until end of 2015.

  6. Analysis of earth albedo effect on sun sensor measurements based on theoretical model and mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, Dan; Sedlak, Joseph

    1998-01-01

    Analysis of flight data from previous missions indicates that anomalous Sun sensor readings could be caused by Earth albedo interference. A previous Sun sensor study presented a detailed mathematical model of this effect. The model can be used to study the effect of both diffusive and specular reflections and to improve Sun angle determination based on perturbed Sun sensor measurements, satellite position, and an approximate knowledge of attitude. The model predicts that diffuse reflected light can cause errors of up to 10 degrees in Coarse Sun Sensor (CSS) measurements and 5 to 10 arc sec in Fine Sun Sensor (FSS) measurements, depending on spacecraft orbit and attitude. The accuracy of these sensors is affected as long as part of the illuminated Earth surface is present in the sensor field of view. Digital Sun Sensors (DSS) respond in a different manner to the Earth albedo interference. Most of the time DSS measurements are not affected, but for brief periods of time the Earth albedo can cause errors which are a multiple of the sensor least significant bit and may exceed one degree. This paper compares model predictions with Tropical Rainfall Measuring Mission (TRMM) CSS measurements in order to validate and refine the model. Methods of reducing and mitigating the impact of Earth albedo are discussed. ne CSS sensor errors are roughly proportional to the Earth albedo coefficient. Photocells that are sensitive only to ultraviolet emissions would reduce the effective Earth albedo by up to a thousand times, virtually eliminating all errors caused by Earth albedo interference.

  7. The Science of the Global-scale measurements of the Limb and Disk (GOLD) Mission

    NASA Astrophysics Data System (ADS)

    Burns, A. G.; Eastes, R.; McClintock, W. E.; Solomon, S. C.; Anderson, D. N.; Andersson, L.; Codrescu, M.; Daniell, R. E.; Harvey, J.; Krywonos, A.; Lankton, M.; Lumpe, J. D.; Richmond, A. D.; Rusch, D. W.; Siegmund, O.; Strickland, D. J.; Woods, T. N.; Lieberman, R. S.; Martinis, C. R.; Oberheide, J.; Budzien, S. A.; Dymond, K.; Eparvier, F. G.; Foroosh, H.; Aksnes, A.

    2013-12-01

    GOLD is a mission of opportunity that has been funded by NASA to fly on board a commercial communications satellite. GOLD is a far ultraviolet spectrometer that will measure the temperature, composition and electron density in the Earth's upper atmosphere from geostationary orbit. Because GOLD will remain over one location on the Earth's equator, local time and longitude effects can be separated. This geostationary perspective allows GOLD's primary science questions to be addressed in a new way: treating the thermosphere/ionosphere (TI) as a weather system. Four questions frame this mission that pertain to how the thermosphere and ionosphere (TI) respond to external forcing. Specifically the GOLD team will investigate the response of the TI to geomagnetic storms, changes in solar radiation; the effects of upwardly propagating tides on the system; and the presence and evolution of ionospheric bubbles. We will describe these scientific goals in more detail in this poster.

  8. Design and Performance of Tropical Rainfall Measuring Mission (TRMM) Super NiCd Batteries

    NASA Technical Reports Server (NTRS)

    Ahmad, Anisa J.; Rao, Gopalakrishna M.; Jallice, Doris E.; Moran Vickie E.

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan. The observatory is designed to monitor and study tropical rainfall and the associated release of energy that helps to power the global atmospheric circulation shaping both weather and climate around the globe. The spacecraft was launched from Japan on November 27,1997 via the NASDA H-2 launch vehicle. The TRMM Power Subsystem is a Peak Power Tracking system that can support the maximum TRMM load of 815 watts at the end of its three year life. The Power Subsystem consists of two 50 Ampere Hour Super NiCd batteries, Gallium Arsenide Solar Array and the Power System Electronics. This paper describes the TRMM Power Subsystem, battery design, cell and battery ground test performance, and in-orbit battery operations and performance.

  9. Summary Report of mission acceleration measurements for STS-66. Launched November 3, 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1995-01-01

    Experiments flown in the middeck of Atlantis during the STS-66 mission were supported by the Space Acceleration Measurement System (SAMS). In particular, the three triaxial SAMS sensor heads collected data in support of protein crystal growth experiments. Data collected during STS-66 are reviewed in this report. The STS-66 SAMS data represent the microgravity environment in the 0.01 Hz to 10 Hz range. Variations in the environment related to differing levels of crew activity are discussed in the report. A comparison is made among times when the crew was quiet during a public affairs conference, working quietly, and exercising. These levels of activity are also compared to levels recorded by a SAMS unit in the Spacelab on Columbia during the STS-65 mission.

  10. Water vapor and cloud water measurements over Darwin during the STEP 1987 tropical mission

    SciTech Connect

    Kelly, K.K.; Proffitt, M.H. ); Chan, K.R.; Loewenstein, M.; Podolske, J.R. ); Strahan, S.E. ); Wilson, J.C. ); Kley, D. )

    1993-05-20

    The authors report results of total water, and water vapor measurements made in the upper troposphere and stratosphere during the Stratosphere-Troposphere Exchange Project (STEP) Tropical mission over Darwin, Australia. Measurements were made from an ER-2 aircraft by lyman-[alpha] hygrometers. The average lower stratosphere water vapor was 2.4 parts per million by volume (ppmv), at a potential temperature of 375 K. This level is lower than the 3 to 4 ppmv water vapor level typical of the stratosphere.

  11. The 1992 Landers earthquake and surface faulting

    USGS Publications Warehouse

    Rymer, Michael J.

    1992-01-01

    Faulting associated with the June 28, 992, earthquake near Landers, California, broke the surface of the ground over a length of more than 70 km, the longest surface rupture in the United States since the great San Francisco quake of 1906. the strongest shaking associated with this magnitude 7.6 (MS) earthquake, the largest in the contiguous 48 states in the last 40 years, occurred in a sparsely populated sections of the Mojave Desert more than 200 km east of Los Angeles. the earthquake began with a sudden slip on the Johnson Valley fault about 10 km southwest of Landers. The initial fault movement probably occurred at a depth of less than 10 km. Surface faulting then propagated over 70 km to the north and northeast. The faulting linked preexisting faults-some previously known and mapped and others previously unknown-into a complex, coherent rupture zone. 

  12. The Landers earthquake; preliminary instrumental results

    USGS Publications Warehouse

    Jones, L.; Mori, J.; Hauksson, E.

    1992-01-01

    Early on the morning of June 28, 1992, millions of people in southern California were awakened by the largest earthquake to occur in the western United States in the past 40 yrs. At 4:58 a.m PDT (local time), faulting associated with the magnitude 7.3 earthquake broke through to earth's surface near the town of Landers, California. the surface rupture then propagated 70km (45 mi) to the north and northwest along a band of faults passing through the middle of the Mojave Desert. Fortunately, the strongest shaking occurred in uninhabited regions of the Mojave Desert. Still one child was killed in Yucca Valley, and about 400 people were injured in the surrounding area. the desert communities of Landers, Yucca Valley, and Joshua Tree in San Bernardino Country suffered considerable damage to buildings and roads. Damage to water and power lines caused problems in many areas. 

  13. Winter frost at Viking Lander 2 site

    NASA Technical Reports Server (NTRS)

    Svitek, Thomas; Murray, Bruce

    1990-01-01

    This paper presents quantitative evidence for cold trapping (frost redeposition) at the Viking Lander 2 site. This evidence consists of the frost surface coverage and color transition, the timing of this transition, and the limited vertical mixing and horizontal water transport. It is argued that cold trapping must be a general property of seasonal frost and, therefore, must be considered in order to understand the evolution of the surface environment of Mars.

  14. Micro-Pressure Sensors for Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Catling, David C.

    1996-01-01

    The joint research interchange effort was directed at the following principal areas: u further development of NASA-Ames' Mars Micro-meteorology mission concept as a viable NASA space mission especially with regard to the science and instrument specifications u interaction with the flight team from NASA's New Millennium 'Deep-Space 2' (DS-2) mission with regard to selection and design of micro-pressure sensors for Mars u further development of micro-pressure sensors suitable for Mars The research work undertaken in the course of the Joint Research Interchange should be placed in the context of an ongoing planetary exploration objective to characterize the climate system on Mars. In particular, a network of small probes globally-distributed on the surface of the planet has often been cited as the only way to address this particular science goal. A team from NASA Ames has proposed such a mission called the Micrometeorology mission, or 'Micro-met' for short. Surface pressure data are all that are required, in principle, to calculate the Martian atmospheric circulation, provided that simultaneous orbital measurements of the atmosphere are also obtained. Consequently, in the proposed Micro-met mission a large number of landers would measure barometric pressure at various locations around Mars, each equipped with a micro-pressure sensor. Much of the time on the JRI was therefore spent working with the engineers and scientists concerned with Micro-met to develop this particular mission concept into a more realistic proposition.

  15. MNSM - A Future Mars Network Science Mission

    NASA Astrophysics Data System (ADS)

    Chicarro, A. F.

    2012-04-01

    Following ESA' s successful Mars Express mission, European efforts in Mars Exploration are now taking place within the joint ESA-NASA Mars Exploration Programme, starting in 2016 with the Trace Gases Orbiter (TGO) focusing on atmospheric trace gases and in particular methane, and with the Entry and Descent Module (EDM). In 2018, a joint NASA-ESA rover will perform sample caching as well as geological, geochemical and exobiological measurements of the surface and the subsurface of Mars. A number of missions for 2020 and beyond are currently under study. Among those, a possible candidate is a Mars Network Science Mission (MNSM) of 3-6 surface stations, to investigate the interior of the planet, its rotational parameters and its atmospheric dynamics. These important science goals have not been fully addressed by Mars exploration so far and can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet such as a Mars Network mission. In addition, the geology, mineralogy and astrobiological significance of each landing site would be addressed, as three new locations on Mars would be reached. Such Mars Network Science Mission has been considered a significant priority by the planetary science community worldwide for the past two decades. In fact, a Mars Network mission concept has a long heritage, as it was studied a number of times by ESA, NASA and CNES (e.g., Marsnet, Intermarsnet, Netlander and MarsNEXT mission studies) since 1990. Study work has been renewed in ESA recently with MNSM Science and Engineering Teams being set up to update the scientific objectives of the mission and to evaluate its technical feasibility, respectively. The current mission baseline includes three ESA-led small landers with a robotic arm to be launched with a Soyuz rocket and direct communications to Earth (no need of a dedicated orbiter). However, a larger network could be put in place through international collaboration, as several

  16. Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

    NASA Technical Reports Server (NTRS)

    Lancaster, Redgie S.; Spinhirne, James D.; OCStarr, David (Technical Monitor)

    2001-01-01

    Multi-angle remote sensing provides a wealth of information for earth and climate monitoring. And, as technology advances so do the options for developing instrumentation versatile enough to meet the demands associated with these types of measurements. In the current work, the multiangle measurement capability of the Infrared Spectral Imaging Radiometer is demonstrated. This instrument flew as part of mission STS-85 of the space shuttle Columbia in 1997 and was the first earth-observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height from the multi-spectral stereo measurements acquired during this flight has been developed and the results demonstrate that a vertical precision of 10.6 km was achieved. Further, the accuracy of these measurements is confirmed by comparison with coincident direct laser ranging measurements from the Shuttle Laser Altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

  17. Radiator Study for Stationary Lunar Landers

    NASA Technical Reports Server (NTRS)

    OConnor, Brian; Abel, Elisabeth

    2010-01-01

    This paper provides an overview of a study to identify, select and evaluate potential heat rejection radiators for application to small, low power, stationary lunar landers. While this study supported risk mitigation activities related to the International Lunar Network project, the radiator concepts and performance assessments are applicable to a wide range of lunar lander applications. The radiator concepts identified and evaluated in this study were aimed at providing reliable heat rejection for landers that might be subjected to hot lunar noon conditions at the equator. As a part of the study, a literature search of lunar radiators was performed from which many radiator designs were developed. These designs were compared in a trade study and two of the most promising were used to develop six concepts. These six radiator concepts went through a more detailed thermal analysis using Thermal Desktop. The analysis considered heat rejection capability, and sensitivity to many factors such as dust deposition, latitude, life, and topographical features like landing on a hill, on a rock, or in a hole/crater. From the result of the analysis, two radiator concepts were selected for recommendation: a flat horizontal plate with a dust cover and a stacked vertical radiator with parabolic reflectors and a one degree tilting mechanism.

  18. Project UM-HAUL (UnManned Heavy pAyload Unloader and Lander): The design of a reusable lunar lander with an independent cargo unloader

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Project UM-Haul is the preliminary design of a reusable lunar transportation vehicle that travels between a lunar parking orbit and the lunar surface. This vehicle is an indispensible link in the overall task of establishing a lunar base as defined by the NASA Space Exploration Initiative. The response to this need consists of two independent vehicles: a lander and an unloader. The system can navigate and unload itself with a minimum amount of human intervention. The design addresses structural analysis, propulsion, power, controls, communications, payload handling and orbital operations. The Lander has the capacity to decend from low lunar orbit (LLO) to the lunar surface carrying a 7000 kg payload, plus the unloader, plus propellant for ascent to LLO. The Lander employs the Unloader by way of a motorized ramp. The Unloader is a terrain vehicle capable of carrying cargoes of 8,500 kg mass and employs a lift system to lower payloads to the ground. The system can perform ten missions before requiring major servicing.

  19. Analysis of condensates formed at the Viking 2 lander site - The first winter

    NASA Technical Reports Server (NTRS)

    Wall, S. D.

    1981-01-01

    Relative surface albedo, spectral reflectance estimates and a limited photometric function are reduced from Viking 2 lander data obtained during a 249 Mars day period, in the lander's first year, when a light ground covering appeared on the surface. During the deposition, surface broadband albedo more than doubled and blue reflectance increased by a factor of 4.0. Comparison of lander data with earlier laboratory measurements of CO2 and H2O frosts and snows shows that reflectance estimates do not resemble either of those solids. The condensate reflectance resembles that of the surface after the covering disappeared. The covering may have been colored by dust which fell before it, by dust mixed with it, or by dust on top of it; but the data strongly support a mixture of dust with H2O and CO2 solids. The covering thickness is estimated to be between 0.5 and a few millimeters.

  20. Geomagnetic induction study using the NetLander network of magnetometers

    NASA Astrophysics Data System (ADS)

    Pinçon, Jean-Louis; Menvielle, Michel; Szarka, Laszlo

    2000-10-01

    The NetLander mission will provide a unique opportunity to probe the internal structure of Mars from continuous magnetic recordings at the surface of the planet. When the resistivity varies only with depth only, and the externally originating variations are homogeneous at the scale of the studied area, the resistivity distribution can be related to the ratio of the vertical magnetic field to the spatial gradients of the horizontal magnetic field. Assuming the field at the surface of Mars behaves as a superposition of plane waves, the spatial gradient determination is equivalent to wave vectors identification. We present a multi-point data analysis technique initially developed in the frame of Cluster, the future ESA multi-spacecraft mission. It allows to obtain optimum frequency-wave vector spectra estimation from simultaneous magnetic field recordings made at a subset of three NetLander stations. The analysis of synthetic data have made it possible to study the effects of experimental constraints for NetLander on the frequency-wave vector spectrum estimation.

  1. An Altair Overview: Designing a Lunar Lander for 21st Century Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Brown, Kendall K.; Connolly, John F.

    2012-01-01

    Altair, the lunar lander element of NASA's Constellation program, was conducted in a different design environment than many other NASA projects of similar scope. Because of this relatively unique approach, there are a number of significant success stories that should be considered during the development of any future lunar landers or human spacecraft. This paper is divided into two separate themes; the first is the approach used during the conceptual design studies, including the systematic analysis cycles and the decision making process associated with each: and the second is a summary of the resulting lessons learned that were compiled after looking back at the lifetime of the Project. Altair was terminated before entering Phase B of its design, and was often criticized for being a very heavy and very large vehicle. While there was specific rationale for all of the decisions that led up to that configuration, future design cycles were specifically planned to re-address the mass challenge. Had the project continued, the deliberate, stepwise design process would have converged on an optimized lander design that balanced mass, risk, cost and capabilities. Some of the specific items that will be addressed in this paper include project development strategy, organizational approach and team dynamics, risk-informed design process, mission architecture constraints, mission key driving requirements, model-based systems engineering process, configuration studies, contingency considerations, subsystem overviews and key trade studies. The paper will conclude with a summary of the lessons identified during the Altair project and make suggestions for application to future studies.

  2. Lunar PanCam: Adapting ExoMars PanCam for the ESA Lunar Lander

    NASA Astrophysics Data System (ADS)

    Coates, A. J.; Griffiths, A. D.; Leff, C. E.; Schmitz, N.; Barnes, D. P.; Josset, J.-L.; Hancock, B. K.; Cousins, C. R.; Jaumann, R.; Crawford, I. A.; Paar, G.; Bauer, A.; the PanCam Team

    2012-12-01

    A scientific camera system would provide valuable geological context from the surface for lunar lander missions. Here, we describe the PanCam instrument from the ESA ExoMars rover and its possible adaptation for the proposed ESA lunar lander. The scientific objectives of the ESA ExoMars rover are designed to answer several key questions in the search for life on Mars. The ExoMars PanCam instrument will set the geological and morphological context for that mission. We describe the PanCam scientific objectives in geology, and atmospheric science, and 3D vision objectives. We also describe the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has a filter wheel, and a High Resolution Camera for close up investigations. The cameras are housed in an optical bench (OB) and electrical interface is provided via the PanCam Interface Unit (PIU). Additional hardware items include a PanCam Calibration Target (PCT). We also briefly discuss some PanCam testing during field trials. In addition, we examine how such a 'Lunar PanCam' could be adapted for use on the Lunar surface on the proposed ESA lunar lander.

  3. New Mission to Measure Global Lightning from the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.

    2015-12-01

    Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) from November 1997 to April 2015 between 38° N/S latitudes, and its Optical Transient Detector predecessor that acquired observation from May 1995 to April 2000 over 75° N/S latitudes. In February 2016, as an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission. The LIS on ISS will continue observations of the amount, rate, and radiant energy of total lightning over the Earth. More specifically, LIS measures lightning during both day and night, with storm scale resolution (~4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines. This mission will also extend TRMM time series observations, expand the latitudinal coverage to 54° latitude, provide real-time lightning data to operational users, espically over data sparse oceanic regions, and enable cross-sensor observations and calibrations that includes the new GOES-R Geostationary Lightning Mapper (GLM) and the Meteosat

  4. The Mars Environmental Compatibility Assessment (MECA) Wet Chemistry Experiment on the Mars 2001 Lander

    NASA Technical Reports Server (NTRS)

    Grannan, S. M.; Meloy, T. P.; Hecht, H.; Anderson, M. S.; Buehler, M.; Frant, M.; Kounaves, S. P.; Manatt, K. S.; Pike, W. T.; Schubert, W.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) is an instrument suite that will fly on the Mars Surveyor 2001 Lander Spacecraft. MECA is sponsored by the Human Exploration and Development of Space (HEDS) program and will evaluate potential hazards that the dust and soil of Mars might present to astronauts and their equipment on a future human mission to Mars. Four elements constitute the integrated MECA payload: a microscopy station, patch plates, an electrometer, and the wet chemistry experiment (WCE). The WCE is the first application of electrochemical sensors to study soil chemistry on another planetary body, in addition to being the first measurement of soil/water solution properties on Mars. The chemical composition and properties of the watersoluble materials present in the Martian soil are of considerable interest to the planetary science community because characteristic salts are formed by the water-based weathering of rocks, the action of volcanic gases, and biological activity. Thus the characterization of water-soluble soil materials on Mars can provide information on the geochemical history of the planet surface. Additional information is contained in the original extended abstract.

  5. Austere Human Missions to Mars

    NASA Technical Reports Server (NTRS)

    Price, Hoppy; Hawkins, Alisa; Radcliffe, Torrey

    2009-01-01

    This slide presentation reviews a possible mission architecture for a more austere Mars mission, than the one developed by NASA outlined in the Design Reference Architecture 5 (DRA 5). "Austere" architecture is scaled back from DRA 5 and might offer lower development cost, lower flight cost, and lower development risk. This approach will not meet all the DRA 5 mission requirements. Included in the presentation are the elements of an Austere mission, diagrams of the trans-Mars injection (TMI), cruise, and Mars Orbital Insertion for various phases of the mission, the entry descent landing (EDL) concept. The key features of the Transit Habitat (TransHab), the Earth Departure Stage (EDS), the landers, are reviewed. A chart shows the Mass in tons, of the conceptual types of Mars Landers. The EDL concept, EDL Phase diagrams for the Mars Lander are reviewed. New technologies that would be required are also reviewed. Flight test programs for the various parts of the architecture and a flight schedule are reviewed.

  6. Global Precipitation Measurement. Report 2; Benefits of Partnering with GPM Mission

    NASA Technical Reports Server (NTRS)

    Stocker, Erich F.; Smith, Eric A. (Editor); Adams, W. James (Editor); Starr, David OC. (Technical Monitor)

    2002-01-01

    An important goal of the Global Precipitation Measurement (GPM) mission is to maximize participation by non-NASA partners both domestic and international. A consequence of this objective is the provision for NASA to provide sufficient incentives to achieve partner buy-in and commitment to the program. NASA has identified seven specific areas in which substantive incentives will be offered: (1) partners will be offered participation in governance of GPM mission science affairs including definition of data products; (2) partners will be offered use of NASA's TDRSS capability for uplink and downlink of commands and data in regards to partner provided spacecraft; (3) partners will be offered launch support for placing partner provided spacecraft in orbit conditional upon mutually agreeable co-manifest arrangements; (4) partners will be offered direct data access at the NASA-GPM server level rather than through standard data distribution channels; (5) partners will be offered the opportunity to serve as regional data archive and distribution centers for standard GPM data products; and (6) partners will be offered the option to insert their own specialized filtering and extraction software into the GPM data processing stream or to obtain specialized subsets and products over specific areas of interest (7) partners will be offered GPM developed software tools that can be run on their platforms. Each of these incentives, either individually or in combination, represents a significant advantage to partners who may wish to participate in the GPM mission.

  7. Conceptual design study for the use of COBE rocket engines on the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objective of this conceptual design study is to verify that the Cosmic Background Explorer (COBE) Hydrazine Propulsion Subsystem (HPS) Rocket Engine Assembly (REA) will satisfy the Tropical Rainfall Measuring Mission (TRMM) requirements and to develop a preliminary thruster module design using the existing REAs. The performance of the COBE HPS 5 lbf thrusters meet the TRMM mission requirements. The preliminary design consists of a single 5 lbf REA REM which is isolation mounted to a spacecraft interface angle bracket (5 or 10 deg angle). The REM incorporates a catalyst bed heater and sensor assembly, and propellant thermal control is achieved by thermostatically controlled heaters on the thruster valves. A ROM cost of approx. $950 K has been estimated for the phase 2 program to finalize the design, fabricate, and test the hardware using mechanical thermostats for thermal control. In the event that solid state thermostats are used, the cost is estimated to be $160 K higher. A ROM cost is approx. $145 K is estimated to study the effects of using Japanese manufactured hydrazine for the TRMM mission.

  8. Summary report of mission acceleration measurements for STS-60, SPACEHAB2, launched 11 February 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1994-01-01

    The STS-60 mission, which launched on 11 February 1994, carried seven accelerometer systems. This report describes the configuration of each of these systems, where they were located on the Orbiter and the name of a contact person for each system. The Space Acceleration Measurement System (SAMS) was one of the accelerometer systems on-board and this mission marked its eighth successful flight. Acceleration data are provided here for SAMS which flew under an agreement between the NASA Microgravity Science and Applications division and the NASA office of Advanced Concepts and Technology. Acceleration data for the other accelerometer systems are not presented here. SAMS was located in the commercial SPACEHAB laboratory, on its second flight. The SAMS system was configured with three triaxial sensor heads with filter cut-offs of 5, 10, and 50 Hz. The acceleration environment related to an experiment centrifuge, an experiment refrigerator freezer unit, a SAMS sensor head rotation, an Orbiter shudder, and payload deploy activities are discussed. In the Appendices, all of the data from SAMS Head B (10 Hz) are plotted to provide an overview of the environment during the majority of the STS-60 mission. An evaluation form is included at the end of the report to solicit users' comments about the usefulness of this series of reports.

  9. Measurement requirements for a Near-Earth Asteroid impact mitigation demonstration mission

    NASA Astrophysics Data System (ADS)

    Wolters, Stephen D.; Ball, Andrew J.; Wells, Nigel; Saunders, Christopher; McBride, Neil

    2011-10-01

    A concept for an Impact Mitigation Preparation Mission, called Don Quijote, is to send two spacecrafts to a Near-Earth Asteroid (NEA): an Orbiter and an Impactor. The Impactor collides with the asteroid while the Orbiter measures the resulting change in the asteroid's orbit, by means of a Radio Science Experiment (RSE) carried out before and after the impact. Three parallel Phase A studies on Don Quijote were carried out for the European Space Agency: the research presented here reflects the outcomes of the study by QinetiQ. We discuss the mission objectives with regard to the prioritisation of payload instruments, with emphasis on the interpretation of the impact. The Radio Science Experiment is described and it is examined how solar radiation pressure may increase the uncertainty in measuring the orbit of the target asteroid. It is determined that to measure the change in orbit accurately a thermal IR spectrometer is mandatory, to measure the Yarkovsky effect. The advantages of having a laser altimeter are discussed. The advantages of a dedicated wide-angle impact camera are discussed and the field-of-view is initially sized through a simple model of the impact.

  10. NEEMO 14: Evaluation of Human Performance for Rover, Cargo Lander, Crew Lander, and Exploration Tasks in Simulated Partial Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2011-01-01

    The ultimate success of future human space exploration missions is dependent on the ability to perform extravehicular activity (EVA) tasks effectively, efficiently, and safely, whether those tasks represent a nominal mode of operation or a contingency capability. To optimize EVA systems for the best human performance, it is critical to study the effects of varying key factors such as suit center of gravity (CG), suit mass, and gravity level. During the 2-week NASA Extreme Environment Mission Operations (NEEMO) 14 mission, four crewmembers performed a series of EVA tasks under different simulated EVA suit configurations and used full-scale mockups of a Space Exploration Vehicle (SEV) rover and lander. NEEMO is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Quantitative and qualitative data collected during NEEMO 14, as well as from spacesuit tests in parabolic flight and with overhead suspension, are being used to directly inform ongoing hardware and operations concept development of the SEV, exploration EVA systems, and future EVA suits. OBJECTIVE: To compare human performance across different weight and CG configurations. METHODS: Four subjects were weighed out to simulate reduced gravity and wore either a specially designed rig to allow adjustment of CG or a PLSS mockup. Subjects completed tasks including level ambulation, incline/decline ambulation, standing from the kneeling and prone position, picking up objects, shoveling, ladder climbing, incapacitated crewmember handling, and small and large payload transfer. Subjective compensation, exertion, task acceptability, and duration data as well as photo and video were collected. RESULTS: There appear to be interactions between CG, weight, and task. CGs nearest the subject s natural CG are the most predictable in terms of acceptable performance across tasks. Future research should focus on

  11. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. Building upon the success of the U.S.-Japan Tropical Rainfall Measuring Mission (TRMM), the National Aeronautics and Space Administration (NASA) of the United States and the Japan Aerospace and Exploration Agency (JAXA) will deploy in 2013 a GPM "Core" satellite carrying a KulKa-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Imager (GMI) to establish a new reference standard for precipitation measurements from space. The combined active/passive sensor measurements will also be used to provide common database for precipitation retrievals from constellation sensors. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer- 2 (AMSR-2) on the GCOM-Wl satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological

  12. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Science Status

    NASA Astrophysics Data System (ADS)

    Hou, Arthur Y.; Skofronick-Jackson, Gail; Stocker, Erich F.

    2013-04-01

    The Global Precipitation Measurement (GPM) Mission is a satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors provided by a consortium of international partners. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite for precipitation measurements by the constellation sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR, the first dual-frequency radar in space, will provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will serve as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. In addition to the Core Observatory, the GPM constellation consists of (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES), (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar

  13. Pulsed Lidar for Measurement of C02 Concentrations for the ASCENDS Mission - Update

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Sun, Xiaoli; Mao, Jianping; Weaver, Clark; Yu, Anthony; Chen, Jeffrey; Rodriquez, Michael; Kawa, S. Randy

    2011-01-01

    We have been developing a laser-based sounding technique for the remote measurement of the tropospheric CO2 concentrations from orbit for NASA is ASCENDS mission. The mission's goals are to provide measurements of tropospheric CO2 abundance with global-coverage, a few hundred km spatial and monthly temporal resolution. These are needed to better understand CO2 fluxes and the processes that regulate CO2 storage by the land and oceans. For the lIP, we are developing and demonstrating the lidar techniques and key lidar technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft. Our final goal is to demonstrate the key capabilities needed for a space lidar and mission approach for the ASCENDS mission. We use a pulsed lidar technique, which is much less sensitive to errors from cloud and atmospheric scattering and to noise from solar background. It allows continuous measurements of CO2 mixing ratio in the lower troposphere during day and night. Our approach uses the 1570nm CO2 band and a two-wavelength laser absorption spectrometer, which continuously measures at nadir from a circular polar orbit. It directs the narrow co-aligned laser beams from the instrument's lasers toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. It uses a pair of tunable laser transmitters, which allowing measurement of the extinction from a single selected CO2 absorption line in the 1570 nm band and from a line pair in the Oxygen A-band near 765 nm. These regions have temperature insensitive absorption lines are free from interference from other gases. The lasers pulse at 10KHz, use tunable diode seed lasers followed by laser amplifiers, and have MHz spectral widths. During the measurement the lasers are stepped across the selected lines at a kHz rate. The receiver uses a 1-m class telescope and photon sensitive detectors and measures the background light and energies of the laser echoes from the

  14. TRMM ground truth in a monsoon environment - Darwin, Australia. [Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Keenan, T. D.; Holland, G. J.; Manton, M. J.; Simpson, J.

    1988-01-01

    A ground truth station for the Tropical Rainfall Measuring Mission (TRMM) is described. The station is situated in Darwin, Australia in a monsoon environment typical for Southeast Asia. The climatological features of the site, and the Darwin observational program are examined. The instruments and operations at the station are discussed, including a Doppler radar making full upper tropospheric soundings every 12 hrs and wind soundings every 6 hrs, and a mesoscale raingauge and surface observing network operating continuously through the summer monsoon seasons. The spatial and temporal characteristics of rainfall in the area and an outline of the research objectives of the program are presented.

  15. Oceanographic measurement capabilities of the NASA P-3 aircraft. [ERS-1 mission

    NASA Technical Reports Server (NTRS)

    Mollo-Christensen, Erik; Jackson, F. C.; Walsh, E. J.; Hoge, F.

    1986-01-01

    Instrumentation on NASA P3 aircraft available to provide ground truth for ERS-1 is described. The wave sensors include the 36 GHz Surface Contour Radar (SCR), the Ku-band Radar Ocean Wave Spectrometer (ROWS), and the Airborne Oceanographic Lidar. The other sensors include a C-band scatterometer, video camera, radiation thermometer, and AXRTs. The SCR and ROWS directional spectrum measurements are discussed. When planning for an underflight mission, the limited endurance of the aircraft (6 hr) and flight cost (2.7 K$/hr) must be considered. The advantage of the redundancy afforded by the several wave instruments is another important consideration.

  16. Continuous metabolic and cardiovascular measurements on a monkey subject during a simulated 6-day Spacelab mission

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Mains, R. C.; Kodama, A. M.; Mccutcheon, E. P.

    1978-01-01

    An adult male pig-tailed monkey (Macaca nemestrina) with surgically implanted biotelemetry unit was inserted into a fiberglass pod system which was installed in a Spacelab mock-up to simulate a 6-day mission during which extensive physiological measurements were obtained. The purpose of the pod was to make possible the study of respiratory gas exchange. Body temperature and selected cardiovascular parameters were recorded continuously for 2.6 days prior to 'launch', 6.3 days during 'flight', and 1.8 days after 'landing'. The results are surveyed, and it is concluded that it is feasible to perform sound physiological experiments on nonhuman primates in the Spacelab environment

  17. High resolution Microwave Spectrometer Sounder (HIMSS) instrument program. Appendix: TRMM study (an instrument for NASA's tropical rainfall measuring mission)

    NASA Technical Reports Server (NTRS)

    Lobl, E. (Editor)

    1991-01-01

    The TRMM (Tropical Rain Measuring Mission) Study shows the feasibility of a conically scanned, total power radiometer. The heritage of the TRMM radiometer is the Special Sensor Microwave/Imager (SSM/I) flying for the Air Force DMSP.

  18. From mission to measures: performance measure development for a Teen Pregnancy Prevention Program.

    PubMed

    Farb, Amy Feldman; Burrus, Barri; Wallace, Ina F; Wilson, Ellen K; Peele, John E

    2014-03-01

    The Office of Adolescent Health (OAH) sought to create a comprehensive set of performance measures to capture the performance of the Teen Pregnancy Prevention (TPP) program. This performance measurement system needed to provide measures that could be used internally (by both OAH and the TPP grantees) for management and program improvement as well as externally to communicate the program's progress to other interested stakeholders and Congress. This article describes the selected measures and outlines the considerations behind the TPP measurement development process. Issues faced, challenges encountered, and lessons learned have broad applicability for other federal agencies and, specifically, for TPP programs interested in assessing their own performance and progress.

  19. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  20. Comparison of mission design options for manned Mars missions

    NASA Technical Reports Server (NTRS)

    Babb, Gus R.; Stump, William R.

    1986-01-01

    A number of manned Mars mission types, propulsion systems, and operational techniques are compared. Conjunction and opposition class missions for cryogenic, hybrid (cryo/storable), and NERVA propulsion concepts are addressed. In addition, both Earth and Mars orbit aerobraking, direct entry of landers, hyperbolic rendezvous, and electric propulsion cases are examined. A common payload to Mars was used for all cases. The basic figure of merit used was weight in low Earth orbit (LEO) at mission initiation. This is roughly proportional to launch costs.

  1. [Analysis of Multiplatform CO (Carbon Monoxide) Measurements During Trace-P Mission

    NASA Technical Reports Server (NTRS)

    Pougatchev, Nikita S.

    2004-01-01

    Carbon monoxide is considered mission critical (TRACE-P NRA) because it is one of the gases involved in controlling the oxidizing power of the atmosphere and, as a tracer gas, is valuable in interpreting mission data sets. Carbon monoxide exhibits interannual differences, suggesting relatively short-term imbalances in sources and sinks. Sources of CO are dominated by fossil fuel combustion, biomass burning, and the photochemical oxidation of CH4 and nonmethane hydrocarbons while reaction with OH is believed to be the major sink for atmospheric CO, with additional losses due to soil uptake. Uncertainties in the magnitude and distribution of both sources and sinks remain fairly large however, and additional data are required to refine the global budget. Seasonal changes and a northern hemispheric latitudinal gradient have been described for a variety of Pacific basin sites through long-term monitoring of surface background levels. Latitudinal variations have also recently been described at upper tropospheric altitudes over a multi-year period by. TRACE-P will provide an aircraft survey of CO over the northern Pacific in the northern spring when CO concentrations are at their seasonal maximum in the northern hemisphere (NH) and at their seasonal minimum in the southern hemisphere (SH). Previous GTE missions, Le., PEM West-B and PEM Tropics-B, ground-based, and satellite observations (MAPS, April 1994) give us a general picture of the distribution of CO over the northern Pacific during this season. Based on these measurements, background CO levels over remote ocean areas are anticipated to be in the range of 110 - 180 ppbv, while those closer to the Asian continent may rise as high as 600 ppbv. These measurements also reveal high spatial variability (both horizontal and vertical) as well as temporal variations in CO over the area planned for the TRACE-P mission. This variability is a result of multiple CO sources, the meteorological complexity of transport processes

  2. Trajectory Design for MoonRise: A Proposed Lunar South Pole-Aitken Basin Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; McElrath, Timothy P.; Anderson, Rodney L.; Sweetser, Theodore H.

    2013-01-01

    This paper presents the mission design for the proposed MoonRise New Frontiers mission: a lunar far side lander and return vehicle, with an accompanying communication satellite. Both vehicles are launched together, but fly separate low-energy transfers to the Moon. The communication satellite enters lunar orbit immediately upon arrival at the Moon, whereas the lander enters a staging orbit about the lunar Lagrange points. The lander descends and touches down on the surface 17 days after the communication satellite enters orbit. The lander remains on the surface for nearly two weeks before lifting off and returning to Earth via a low-energy return.

  3. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  4. Visualizing the Operations of the Phoenix Mars Lander

    NASA Astrophysics Data System (ADS)

    Schwehr, K.; Andres, P.; Craig, J.; Deen, R.; de Jong, E.; Fortino, N.; Gorgian, Z.; Kuramura, K.; Lemmon, M.; Levoe, S.; Leung, C.; Lutz, N.; Ollerenshaw, R.; Smith, P.; Stetson, M.; Suzuki, S.; Phoenix Science Team

    2008-12-01

    With the successful landing of the Phoenix Mars Lander comes the task of visualizing the spacecraft, its operations and surrounding environment. The JPL Solar System Visualization team has brought together a wide range of talents and software to provide a suit of visualizations that shed light on the operations of this visitor to another world. The core set of tools range from web-based production tracking (Image Products Release Website), to custom 3D transformation software, through to studio quality 2D and 3D video production. We will demonstrate several of the key technologies that bring together these visualizations. Putting the scientific results of Phoenix in context requires managing the classic powers-of-10 problem. Everything from the location of polar dust storms down to the Atomic Force Microscope must be brought together in a context that communicates to both the scientific and public audiences. We used Lightwave to blend 2D and 3D visualizations into a continuous series of zooms using both simulations and actual data. Beyond the high-powered industrial strength solutions, we have strived to bring as much power down to the average computer user's standard view of the computer: the web browser. Zooming and Interactive Mosaics (ZIM) tool is a JavaScript web tool for displaying high-resolution panoramas in a spacecraft-centric view. This tool allows the user to pan and zoom through the mosaic, indentifying feature and target names, all the while maintaining a contextual frame-of-reference. Google Earth presents the possibility of taking hyperlinked web browser interaction into the 3D geo-browser modality. Until Google releases a Mars mode to Google Earth, we are forced to wrap the Earth in a Mars texture. However, this can still provide a suitable background for exploring interactive visualizations. These models range over both regional and local scales, with the lander positioned on Mars and the local environment mapped into pseudo-"Street View" modes

  5. Conceptual definition of a 50-100 kWe NEP system for planetary science missions

    NASA Technical Reports Server (NTRS)

    Friedlander, Alan

    1993-01-01

    The Phase 1 objective of this project is to assess the applicability of a common Nuclear Electric Propulsion (NEP) flight system of the 50-100 kWe power class to meet the advanced transportation requirements of a suite of planetary science (robotic) missions, accounting for differences in mission-specific payloads and delivery requirements. The candidate missions are as follows: (1) Comet Nucleus Sample Return; (2) Multiple Mainbelt Asteroid Rendezvous; (3) Jupiter Grand Tour (Galilean satellites and magnetosphere); (4) Uranus Orbiter/Probe (atmospheric entry and landers); (5) Neptune Orbiter/Probe (atmospheric entry and landers); and (6) Pluto-Charon Orbiter/Lander. The discussion is presented in vugraph form.

  6. Effective dose measured with a life size human phantom in a low Earth orbit mission.

    PubMed

    Yasuda, Hiroshi

    2009-03-01

    The biggest concern about the health risk to astronauts is how large the stochastic effects (cancers and hereditary effects) of space radiation could be. The practical goal is to determine the "effective dose" precisely, which is difficult for each crew because of the complex transport processes of energetic secondary particles. The author and his colleagues thus attempted to measure an effective dose in space using a life-size human phantom torso in the STS-91 Shuttle-Mir mission, which flew at nearly the same orbit as that of the Inter