Science.gov

Sample records for lander mission measurement

  1. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    NASA Technical Reports Server (NTRS)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-01-01

    , together with quantitative information on material mineralogy, chemistry, and physical properties (rock textures; soil grain size and shape distributions; degree and nature of soil induration; soil magnetic properties). The calibration targets provide radiometric and mineralogical control surfaces. The magnets allow observations of magnetic phases. Patch plates are imaged to determine adhesive and abrasive properties of soils. Coordinated mission planning is crucial for optimizing the measurement synergy among the packages included on the lander. This planning has already begun through generation of multi-sol detailed operations activities. One focus has been to develop a scenario to use the arm to dig a soil trench to a depth of tens of centimeters. The activity will be monitored through use of Pancam and RAC to ensure nominal operations and to acquire data to determine subsurface physical properties (e.g., angle of repose of trench walls). Pancam and Mini-TES observations would also provide constraints on mineralogy and texture for the walls and bottom of the trench during excavation. If desired, soils excavated at depth could be deposited on the surface and Mossbauer and APXS measurements could be acquired for these materials. Soil samples from various depths would be delivered to MECA for characterization of aqueous geochemistry and physical properties of soil grains, particularly size, shape, and hardness. These physical properties would be determined by optical and atomic force microscopy. When completed, detailed information of soil properties as a function of depth would be obtained. These various data sets would constrain our understanding of whether or not there are systematic variations in soil characteristics as a function of depth. These variations might be related, for example, to evaporative moisture losses and formation of salt deposits, thereby indicating water transport processes occurred fairly recently. Many other value-added measurement scenarios are

  2. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    NASA Astrophysics Data System (ADS)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-09-01

    , together with quantitative information on material mineralogy, chemistry, and physical properties (rock textures; soil grain size and shape distributions; degree and nature of soil induration; soil magnetic properties). The calibration targets provide radiometric and mineralogical control surfaces. The magnets allow observations of magnetic phases. Patch plates are imaged to determine adhesive and abrasive properties of soils. Coordinated mission planning is crucial for optimizing the measurement synergy among the packages included on the lander. This planning has already begun through generation of multi-sol detailed operations activities. One focus has been to develop a scenario to use the arm to dig a soil trench to a depth of tens of centimeters. The activity will be monitored through use of Pancam and RAC to ensure nominal operations and to acquire data to determine subsurface physical properties (e.g., angle of repose of trench walls). Pancam and Mini-TES observations would also provide constraints on mineralogy and texture for the walls and bottom of the trench during excavation. If desired, soils excavated at depth could be deposited on the surface and Mossbauer and APXS measurements could be acquired for these materials. Soil samples from various depths would be delivered to MECA for characterization of aqueous geochemistry and physical properties of soil grains, particularly size, shape, and hardness. These physical properties would be determined by optical and atomic force microscopy. When completed, detailed information of soil properties as a function of depth would be obtained. These various data sets would constrain our understanding of whether or not there are systematic variations in soil characteristics as a function of depth. These variations might be related, for example, to evaporative moisture losses and formation of salt deposits, thereby indicating water transport processes occurred fairly recently. Many other value-added measurement scenarios are

  3. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    NASA Technical Reports Server (NTRS)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-01-01

    , together with quantitative information on material mineralogy, chemistry, and physical properties (rock textures; soil grain size and shape distributions; degree and nature of soil induration; soil magnetic properties). The calibration targets provide radiometric and mineralogical control surfaces. The magnets allow observations of magnetic phases. Patch plates are imaged to determine adhesive and abrasive properties of soils. Coordinated mission planning is crucial for optimizing the measurement synergy among the packages included on the lander. This planning has already begun through generation of multi-sol detailed operations activities. One focus has been to develop a scenario to use the arm to dig a soil trench to a depth of tens of centimeters. The activity will be monitored through use of Pancam and RAC to ensure nominal operations and to acquire data to determine subsurface physical properties (e.g., angle of repose of trench walls). Pancam and Mini-TES observations would also provide constraints on mineralogy and texture for the walls and bottom of the trench during excavation. If desired, soils excavated at depth could be deposited on the surface and Mossbauer and APXS measurements could be acquired for these materials. Soil samples from various depths would be delivered to MECA for characterization of aqueous geochemistry and physical properties of soil grains, particularly size, shape, and hardness. These physical properties would be determined by optical and atomic force microscopy. When completed, detailed information of soil properties as a function of depth would be obtained. These various data sets would constrain our understanding of whether or not there are systematic variations in soil characteristics as a function of depth. These variations might be related, for example, to evaporative moisture losses and formation of salt deposits, thereby indicating water transport processes occurred fairly recently. Many other value-added measurement scenarios are

  4. Viking 75 project: Viking lander system primary mission performance report

    NASA Technical Reports Server (NTRS)

    Cooley, C. G.

    1977-01-01

    Viking Lander hardware performance during launch, interplanetary cruise, Mars orbit insertion, preseparation, separation through landing, and the primary landed mission, with primary emphasis on Lander engineering and science hardware operations, the as-flown mission are described with respect to Lander system performance and anomalies during the various mission phases. The extended mission and predicted Lander performance is discussed along with a summary of Viking goals, mission plans, and description of the Lander, and its subsystem definitions.

  5. The Philae lander mission and science overview

    NASA Astrophysics Data System (ADS)

    Boehnhardt, Hermann; Bibring, Jean-Pierre; Apathy, Istvan; Auster, Hans Ulrich; Ercoli Finzi, Amalia; Goesmann, Fred; Klingelhöfer, Göstar; Knapmeyer, Martin; Kofman, Wlodek; Krüger, Harald; Mottola, Stefano; Schmidt, Walter; Seidensticker, Klaus; Spohn, Tilman; Wright, Ian

    2017-05-01

    The Philae lander accomplished the first soft landing and the first scientific experiments of a human-made spacecraft on the surface of a comet. Planned, expected and unexpected activities and events happened during the descent, the touch-downs, the hopping across and the stay and operations on the surface. The key results were obtained during 12-14 November 2014, at 3 AU from the Sun, during the 63 h long period of the descent and of the first science sequence on the surface. Thereafter, Philae went into hibernation, waking up again in late April 2015 with subsequent communication periods with Earth (via the orbiter), too short to enable new scientific activities. The science return of the mission comes from eight of the 10 instruments on-board and focuses on morphological, thermal, mechanical and electrical properties of the surface as well as on the surface composition. It allows a first characterization of the local environment of the touch-down and landing sites. Unique conclusions on the organics in the cometary material, the nucleus interior, the comet formation and evolution became available through measurements of the Philae lander in the context of the Rosetta mission. This article is part of the themed issue 'Cometary science after Rosetta'.

  6. The Philae lander mission and science overview.

    PubMed

    Boehnhardt, Hermann; Bibring, Jean-Pierre; Apathy, Istvan; Auster, Hans Ulrich; Ercoli Finzi, Amalia; Goesmann, Fred; Klingelhöfer, Göstar; Knapmeyer, Martin; Kofman, Wlodek; Krüger, Harald; Mottola, Stefano; Schmidt, Walter; Seidensticker, Klaus; Spohn, Tilman; Wright, Ian

    2017-07-13

    The Philae lander accomplished the first soft landing and the first scientific experiments of a human-made spacecraft on the surface of a comet. Planned, expected and unexpected activities and events happened during the descent, the touch-downs, the hopping across and the stay and operations on the surface. The key results were obtained during 12-14 November 2014, at 3 AU from the Sun, during the 63 h long period of the descent and of the first science sequence on the surface. Thereafter, Philae went into hibernation, waking up again in late April 2015 with subsequent communication periods with Earth (via the orbiter), too short to enable new scientific activities. The science return of the mission comes from eight of the 10 instruments on-board and focuses on morphological, thermal, mechanical and electrical properties of the surface as well as on the surface composition. It allows a first characterization of the local environment of the touch-down and landing sites. Unique conclusions on the organics in the cometary material, the nucleus interior, the comet formation and evolution became available through measurements of the Philae lander in the context of the Rosetta mission.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  7. Europa Lander Mission Concept (Artist Rendering)

    NASA Image and Video Library

    2017-02-08

    This artist's rendering illustrates a conceptual design for a potential future mission to land a robotic probe on the surface of Jupiter's moon Europa. The lander is shown with a sampling arm extended, having previously excavated a small area on the surface. The circular dish on top is a dual-purpose high-gain antenna and camera mast, with stereo imaging cameras mounted on the back of the antenna. Three vertical shapes located around the top center of the lander are attachment points for cables that would lower the rover from a sky crane, which is envisioned as the landing system for this mission concept. http://photojournal.jpl.nasa.gov/catalog/PIA21048

  8. Low-Radiation Europa Lander Mission Concept

    NASA Astrophysics Data System (ADS)

    Strange, N. J.; Hand, K. P.; Casani, J. R.; Eisen, H. J.; Elliott, J. O.

    2011-12-01

    The Jet Propulsion Laboratory, California Institute of Technology, conducted a mission design study focused on delivering a redundant two-lander mission to the surface of Europa. A mission focused on surface science permits a short lifetime for the prime mission (7 days) and thus enables a low total radiation dose mission to Europa. Lowering the radiation dose retires much of the risk and cost threats associated with Europa missions. Here we describe the science investigations and accompanying payload studied as part of this effort. The science payload allocation for each lander is approximately 40 kilograms. The goal of this mission is to explore Europa to investigate its habitability. Our study of life on Earth has revealed three critical components that comprise a habitable environment and our current understanding of Europa indicates that it may harbor all three. These "keystones" for habitability are liquid water, a suite of essential elements, and chemical or radiation energy to power life. Europa, with its global liquid water ocean, likely in contact with a rocky seafloor, may be habitable today and it may have been habitable for much of the history of the solar system. Europa is thus the premier target in our search for evidence of both past and contemporary habitability. The discovery and exploration of a world that hosts extant, i.e., living, life permits investigations that could revolutionize our understanding of chemistry, biology, the origin of life, and the broader context of whether or not we are alone in the Universe. This mission provides the first steps toward that goal.

  9. Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Lay, Norman; Hine, Butler; Zornetzer, Steven

    2004-01-01

    Concepts are being investigated for exploratory missions to Mars based on Bioinspired Engineering of Exploration Systems (BEES), which is a guiding principle of this effort to develop biomorphic explorers. The novelty lies in the use of a robust telecom architecture for mission data return, utilizing multiple local relays (including the lander itself as a local relay and the explorers in the dual role of a local relay) to enable ranges 10 to 1,000 km and downlink of color imagery. As illustrated in Figure 1, multiple microflyers that can be both surface or aerially launched are envisioned in shepherding, metamorphic, and imaging roles. These microflyers imbibe key bio-inspired principles in their flight control, navigation, and visual search operations. Honey-bee inspired algorithms utilizing visual cues to perform autonomous navigation operations such as terrain following will be utilized. The instrument suite will consist of a panoramic imager and polarization imager specifically optimized to detect ice and water. For microflyers, particularly at small sizes, bio-inspired solutions appear to offer better alternate solutions than conventional engineered approaches. This investigation addresses a wide range of interrelated issues, including desired scientific data, sizes, rates, and communication ranges that can be accomplished in alternative mission scenarios. The mission illustrated in Figure 1 offers the most robust telecom architecture and the longest range for exploration with two landers being available as main local relays in addition to an ephemeral aerial probe local relay. The shepherding or metamorphic plane are in their dual role as local relays and image data collection/storage nodes. Appropriate placement of the landing site for the scout lander with respect to the main mission lander can allow coverage of extremely large ranges and enable exhaustive survey of the area of interest. In particular, this mission could help with the path planning and risk

  10. Canadian Partnership in the 2009 MARS SmartLander Mission

    NASA Astrophysics Data System (ADS)

    Daly, M. G.; Sallaberger, C. S.

    2002-01-01

    A year ago Canada initiated a major new thrust in its space program - Mars Exploration. One of the first significant Mars activities for Canada is the planned cooperation with NASA on the 2009 SmartLander mission. Two Canadian contributions have been identified for the NASA-led Mars Smart Lander mission: a Subsurface Sample Acquisition and Handling System (SAHS) and a LIDAR high-precision landing system. The SAHS is a major infrastructure element of the SmartLander and leverages Canadian expertise in both space robotics and mining technology. Its primary mission is to drill a hole to a depth of 10m, retrieve samples from a variety of depths, robotically perform a triage and primary analysis of the samples, as well as process and deliver these samples to scientific instruments. The LIDAR landing system is what gives the Lander its "Smart" capabilities. Using the return from scanning lasers, near real-time maps of the terrain are generated during descent from which the Lander can guide itself to a precise landing while avoiding obstacles. Engineering development of both systems is currently in progress. The Canadian Space Agency has contracted with MD Robotics to lead the Canadian industrial team for the SmartLander mission. This paper will give the current status of the Canadian Mars activities. The paper will also give details of the robotic and lidar systems being developed in Canada for the Mars SmartLander mission.

  11. Moon Express: Lander Capabilities and Initial Payload and Mission

    NASA Astrophysics Data System (ADS)

    Spudis, P.; Richards, R.; Burns, J. O.

    2013-12-01

    Moon Express Inc. is developing a common lander design to support the commercial delivery of a wide variety of possible payloads to the lunar surface. Significant recent progress has been made on lander design and configuration and a straw man mission concept has been designed to return significant new scientific and resource utilization data from the first mission. The Moon Express lander is derived from designs tested at NASA Ames Research Center over the past decade. The MX-1 version is designed to deliver 26 kg of payload to the lunar surface, with no global restrictions on landing site. The MX-2 lander can carry a payload of 400 kg and can deliver an upper stage (designed for missions that require Earth-return, such as sample retrieval) or a robotic rover. The Moon Express lander is powered by a specially designed engine capable of being operated in either monoprop or biprop mode. The concept for the first mission is a visit to a regional pyroclastic deposit on the lunar near side. We have focused on the Rima Bode dark mantle deposits (east of crater Copernicus, around 13 N, 4 W). These deposits are mature, having been exposed to solar wind for at least 3 Ga, and have high Ti content, suggesting high concentrations of implanted hydrogen. Smooth areas near the vent suggest that the ash beds are several tens of meters thick. The projected payload includes an imaging system to document the geological setting of the landing area, an APX instrument to provide major element composition of the regolith and a neutron spectrometer to measure the bulk hydrogen composition of the regolith at the landing site. Additionally, inclusion of a next generation laser retroreflector would markedly improve measurements of lunar librations and thus, constrain the dimensions of both the liquid and solid inner cores of the Moon, as well as provide tests of General Relativity. Conops are simple, with measurements of the surface composition commencing immediately upon landing. APX

  12. Jovian Tour Design for Orbiter and Lander Missions to Europa

    NASA Technical Reports Server (NTRS)

    Campagnola, Stefano; Buffington, Brent B.; Petropoulos, Anastassios E.

    2013-01-01

    Europa is one of the most interesting targets for solar system exploration, as its ocean of liquid water could harbor life. Following the recommendation of the Planetary Decadal Survey, NASA commissioned a study for a flyby mission, an orbiter mission, and a lander mission. This paper presents the moon tours for the lander and orbiter concepts. The total delta v and radiation dose would be reduced by exploiting multi-body dynamics and avoiding phasing loops in the Ganymede-to- Europa transfer. Tour 11-O3, 12-L1 and 12-L4 are presented in details and their performaces compared to other tours from previous Europa mission studies.

  13. Jovian Tour Design for Orbiter and Lander Missions to Europa

    NASA Technical Reports Server (NTRS)

    Campagnola, Stefano; Buffington, Brent B.; Petropoulos, Anastassios E.

    2013-01-01

    Europa is one of the most interesting targets for solar system exploration, as its ocean of liquid water could harbor life. Following the recommendation of the Planetary Decadal Survey, NASA commissioned a study for a flyby mission, an orbiter mission, and a lander mission. This paper presents the moon tours for the lander and orbiter concepts. The total delta v and radiation dose would be reduced by exploiting multi-body dynamics and avoiding phasing loops in the Ganymede-to- Europa transfer. Tour 11-O3, 12-L1 and 12-L4 are presented in details and their performaces compared to other tours from previous Europa mission studies.

  14. Conductivity and Dielectric Characteristics of Planetary Surfaces Measured with Mutual Impedance Probes: From Huygens and Rosetta Lander to Netlanders and Future Missions

    NASA Astrophysics Data System (ADS)

    Hamelin, M.; Grard, R.; Laakso, H.; Ney, R.; Schmidt, W.; Simoes, F.; Trautner, R.

    2004-04-01

    Both conductivity and dielectric constant measurements can contribute to the identification of sub-surface materials. They are of great interest in the case of water and ice possibly embedded in other materials due to the high variability with frequency of the dielectric constant of water ice, the high contrast between rocks and liquid water and also the high conductivity generally observed in wet terrains. A first instrument, Permittivity, Waves and Altimetry (PWA-HASI), on the HUYGENS probe should measure the complex permittivity of Titan after landing in January 2005. It consists of a particular mode of the Mutual Impedance (MI) probe designed mainly for atmospheric conductivity measurements. The success of the measurement depends strongly on the configuration of the probe after an uncontrolled landing and in any case the data analysis will be complex as the electrodes are very close to the probe body. A second instrument, the Permittivity Probe (PP-SESAME), on the Rosetta Lander is ready to be launched towards the GuerassimoChuryumov comet in February 2004. In this case safe landing is a major requirement of the mission. The electrode array, using the lander feet and two other hosting deployable parts, is less influenced by the lander body than in the HUYGENS case. However the perturbing influence of neighbouring sensors has to be suppressed by active methods and such a system is better but again complex. In the Netlander project to the surface of Mars, actually in pause after its phase B study, the opportunity to use long GPR electric antennas deployed on the ground as permittivity sensors has been studied and will be implemented in the design with minor modifications. Our goal is to design the future generation of permittivity probes not considered as `add on's but fully optimised for their task, making simpler the analysis and providing also the possibility to calibrate the former space pioneer instruments on selected earth targets. In addition, these future

  15. Phoenix Mission Lander on Mars, Artist Concept

    NASA Image and Video Library

    2005-06-01

    NASA Phoenix Mars Lander, landed on May 25, 2008, and explored the history of water and monitored polar climate on Mars until communications ended in November, 2008, about six months after landing, when its solar panels ceased operating in the winter.

  16. Europa Lander Mission: A Challenge to Find Traces of Alien Life

    NASA Astrophysics Data System (ADS)

    Zelenyi, Lev; Korablev, Oleg; Vorobyova, Elena; Martynov, Maxim; Akim, Efraim L.; Zakahrov, Alexander

    2010-01-01

    An international effort dedicated to science exploration of Jupiter system planned by ESA and NASA in the beginning of next decade includes in-depth science investigation of Europa. In parallel to EJSM (Europa-Jupiter System Mission) Russian Space Agency and the academy of Science plan Laplace-Europa Lander mission, which will include the small telecommunication and science orbiter and the surface element: Europa Lander. In-situ methods on the lander provide the only direct possibility to assess environmental conditions, and to perform the search for signatures of life. A critical advantage of such in situ analysis is the possibility to enhance concentration and detection limits and to provide ground truth for orbital measurements. The science mission of the lander is biological, geophysical, chemical, and environmental characterizations of the Europa surface. Remote investigations from the orbit around Europa would not be sufficient to address fully the astrobiology, geodesy, and geology goals. The science objectives of the planned mission, the synergy between the Europa Lander and EJSM mission elements, and a brief description of the Laplace-Europa Lander mission are presented.

  17. Orbiter, Flyby and Lander Mission Concepts for Investigating Europa's Habitability

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.

    2012-04-01

    . Each of the three mission options would address this goal in different and complementary ways, and each has high science value of its own, independent of the others. Each mission concept traces geophysical, compositional, and/or geological investigations that are best addressed by that specific platform. Investigations best addressed through near-continuous global data sets that are obtained under relatively uniform conditions could be undertaken by the orbiter; investigations that are more focused on characterization of local regions could be accomplished by a spacecraft making multiple flybys from Jupiter orbit; and measurements that are most effective from the surface could be addressed by a lander. Although there is overlap in the science objectives of these three mission concepts, each stands alone as a viable Europa mission concept.

  18. MPF Lander Measured Surface Pressure

    NASA Image and Video Library

    1997-10-14

    Here is a comparison of the most recent 24-hour met sessions. Note the general trend of increasing pressure with time into the mission. This indicates that the South polar cap is reducing, freeing CO2 into the atmosphere. Also note small pressure features around noon, which we think are "dust-devils." Sojourner spent 83 days of a planned seven-day mission exploring the Martian terrain, acquiring images, and taking chemical, atmospheric and other measurements. The final data transmission received from Pathfinder was at 10:23 UTC on September 27, 1997. Although mission managers tried to restore full communications during the following five months, the successful mission was terminated on March 10, 1998. http://photojournal.jpl.nasa.gov/catalog/PIA00976

  19. Preliminary Assessment of the Moon-Next Lunar Lander mission

    NASA Astrophysics Data System (ADS)

    Poncy, J.; Cogo, F.; Gily, A.; Martinot, V.; Simonini, L.

    2009-04-01

    The Moon NEXT mission studied by ESA through contracts to industry includes a Lunar Lander that deploys several optional payloads close to the Moon's South Pole. These payloads may comprise a Rover and other various experiments directly on the Lander or deposited by the Lander on the lunar surface. Moon-NEXT is an exploration precursor mission. Its payload addresses not only technological enhancement in view of future lunar establishment but also valuable science objectives. It sometimes combines both, as for instance when considering growing bacteria or operating a precursor to lunar radio-astronomy. The Moon's South Pole area, with its long-illumination crater rims, presents specificities that make this location a good candidate for a future human outpost. Moon NEXT is therefore a key mission for the exploration of the South Pole, the understanding of its environment, the comprehension of the structure of the soil and the mastery of its particularities. Thales Alenia Space is the leader of one of the consortia that have been awarded a study contract for Moon NEXT. Thales Alenia Space and its partners have assessed the feasibility of the mission. The assessment has covered the mission aspects, the operability of the Lander and the Rover and the sizing of all their subsystems, from structure, thermal control, propulsion to communications, power, data handling and of course guidance Navigation and Control. This paper summarizes the achievements obtained so far in this assessment phase. After recalling the challenges of the mission, it addresses how a suitable architecture has been selected for the lander, and how the design driving requirements have been addressed. The payload accommodation is discussed, as well as all the constraints and sizing character of payload requirements, whether for a fix payload or for a Rover. The budgets have been consolidated and the required technologies reviewed, paving the way for the following assessment and definition phases.

  20. Jovian tour design for orbiter and lander missions to Europa

    NASA Astrophysics Data System (ADS)

    Campagnola, Stefano; Buffington, Brent B.; Petropoulos, Anastassios E.

    2014-07-01

    Europa is one of the most interesting targets for solar system exploration, as its ocean of liquid water could harbor life. Following the recommendation of the Planetary Decadal Survey, NASA commissioned a study for a multiple flyby only mission, an orbiter mission, and a lander mission. This paper presents the moon tours for the lander and orbiter concepts. The total Δv and radiation dose would be reduced when compared to previous designs by exploiting multi-body dynamics and avoiding multi-revolution transfers in the Ganymede-to-Europa transfer. Tours 11-O3, 12-L1 and 12-L4 and their performances compared to other tours from previous Europa mission studies are presented in detail.

  1. The NetLander geophysical network on the surface of Mars: General mission description and technical design status

    NASA Astrophysics Data System (ADS)

    Marsal, O.; Venet, M.; Counil, J.-L.; Ferri, F.; Harri, A.-M.; Spohn, T.; Block, J.

    2002-07-01

    Simultaneous measurements collected by a network of landers spread over the surface of Mars will provide a unique leap forward in our knowledge of Mars. This is the objective of the NetLander (for Network Lander) project developed by CNES (French Space Agency), FMI (Finnish Meteorological Institute), IfP (Institute für Planetologie - Münster) in cooperation with a number of institutes in Europe and in the United States. The NetLander mission will deploy four identical landers on the surface of Mars. Each lander includes a scientific payload with instrumentation aimed at studying the interior of Mars, the atmosphere, the sub-surface, as well as the ionospheric structure and geodesy. The European NetLander mission will be launched in 2007 with the orbiter developed by CNES in the framework of the French Mars exploration program. After a cruise phase lasting several months, the NetLander probes will be separated from the orbiter and targeted to their landing sites. NetLander has successfully completed the phase A study. Its Entry, Descent and Landing System uses a front-shield, parachutes and air-bags. On the surface of Mars, NetLander will use solar arrays and batteries for its power supply. Particular attention is paid to the definition of this power supply system, which should provide enough energy throughout the mission, with a duration objective of one Martian year. Telecommunications will be possible via data relay satellites in orbit around Mars.

  2. Future Plans for MetNet Lander Mars Missions

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.; Schmidt, W.; Guerrero, H.; Vázquez, L.

    2012-04-01

    simplifies the integration into the transfer vehicle where besides the deployment mechanism only a power cable is needed to fully charge the batteries before separation. A bi-directional data link would be of advantage allowing besides a full system checkout also the last-minute adjustments of operational parameters once the most likely landing area is defined. The initial landing sites are selected in a latitude range of +/- 30 degrees and at low altitudes, thereby allowing the use of only solar panels as energy source and avoiding the political problems of including radioactive generators into the Lander. For high-latitude missions radioactive heaters will be necessary to make the systems survive the Martian winter. The MNL will be separated from the transfer vehicle either during the Mars-approaching trajectory or from the Martian orbit. The point of separation relative to the Martian orientation and the initial deployment angle define the final landing site, which additionally is influenced by atmospheric parameters during the descent phase. The behavior of the MNL's during its flight across the different layers of the Martian atmosphere is monitored by 3-axis accelerometers and 3-axis gyroscopes. This information is transmitted to the transfer vehicle via dedicated beacon antennas already during the descent phase. For the precursor missions this results in an initial velocity of 6080 m/s, a relative entry angle of -15° and a landing velocity of about 50 m/s. Later units will go also to higher latitudes and altitudes, using optimized payloads and power systems. The core payload contains the meteorological sensors for temperature, pressure and humidity measurements, a 4-lense panoramic camera and a 3-axis accelerometer for descent control. For the precursor missions this is extended to include also a 3-axis gyroscope device. Additionally a Solar Incident Sensor with a wide range of dedicated wavelength filters, an optical dust sensor, a 3-axis magnetometer and a

  3. Planetary protection implementation on future Mars lander missions

    NASA Technical Reports Server (NTRS)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  4. Planetary protection implementation on future Mars lander missions

    NASA Astrophysics Data System (ADS)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  5. Small Lunar Lander - A Near Term Precursor Mission

    NASA Astrophysics Data System (ADS)

    Soppa, Uwe; Kyr, Peter; Bolz, Joerg; Bischof, Bernd

    In preparation of the Ministerial Conference in November 2008, the European Space Agency is currently developing a roadmap leading to the capability to sustain long term planetary exploration missions and manned missions to Moon and Mars. Embedded in the cornerstone missions of today's European planetary exploration program, which are marked by the two robotic Exo-Mars and Mars Sample Return missions, ESA has defined a Small Lunar Landing Mission serving as a precursor mission allowing to validate key enabling technologies for planetary exploration, while providing a scientific platform to Lunar exploration at the same time. In reply for the call for missions fitting into the mission time frame ranging from 2014 through 2016, EADS Astrium has proposed a Lunar Lander which can be launched by a Soyuz Fregat, combined with a programmatic planning with the goal being ready to fly within the given time. In the meantime, a European lunar exploration program has gained momentum such that the goals of the proposed mission have been expanded towards the preparation of technologies required for the logistics of lunar exploration including transportation to the Moon and back, building and supporting large scale outposts up to permanently manned bases. These key functions are the capability of autonomous, soft and precision landing, the Rendez-Vous in lunar orbit, plus the provision of surface mobility for science and logistic operations. The paper will first present the concept of the proposed Lunar Landing mission, describe the technical design and programmatic planning, and put it into context of the Mars Sample Return mission. The spacecraft shall be launched into the GTO by a Soyuz Fregat from the Kourou Space Center, and travel to the Moon from there on direct, 5 days transfer trajectory. The spacecraft is a single stage lander with the capability to autonomously perform all operations from launcher separation down to the lunar surface. A lunar rover shall provide

  6. Telecommunications Relay Support of the Mars Phoenix Lander Mission

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Erickson, James K.; Gladden, Roy E.; Guinn, Joseph R.; Ilott, Peter A.; Jai, Benhan; Johnston, Martin D.; Kornfeld, Richard P.; Martin-Mur, Tomas J.; McSmith, Gaylon W.; hide

    2010-01-01

    The Phoenix Lander, first of NASA's Mars Scout missions, arrived at the Red Planet on May 25, 2008. From the moment the lander separated from its interplanetary cruise stage shortly before entry, the spacecraft could no longer communicate directly with Earth, and was instead entirely dependent on UHF relay communications via an international network of orbiting Mars spacecraft, including NASA's 2001 Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft, as well as ESA's Mars Express (MEX) spacecraft. All three orbiters captured critical event telemetry and/or tracking data during Phoenix Entry, Descent and Landing. During the Phoenix surface mission, ODY and MRO provided command and telemetry services, far surpassing the original data return requirements. The availability of MEX as a backup relay asset enhanced the robustness of the surface relay plan. In addition to telecommunications services, Doppler tracking observables acquired on the UHF link yielded an accurate position for the Phoenix landing site.

  7. Mars Lander Deck of NASA's InSight Mission

    NASA Image and Video Library

    2017-08-28

    This view looks upward toward the InSight Mars lander suspended upside down. It shows the top of the lander's science deck with the mission's two main science instruments -- the Seismic Experiment for Interior Structure (SEIS) and the Heat Flow and Physical Properties Probe (HP3) -- plus the robotic arm and other subsystems installed. The photo was taken Aug. 9, 2017, in a Lockheed Martin clean room facility in Littleton, Colorado. The InSight mission (for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is scheduled to launch in May 2018 and land on Mars Nov. 26, 2018. It will investigate processes that formed and shaped Mars and will help scientists better understand the evolution of our inner solar system's rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA21847

  8. Telecommunications Relay Support of the Mars Phoenix Lander Mission

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Erickson, James K.; Gladden, Roy E.; Guinn, Joseph R.; Ilott, Peter A.; Jai, Benhan; Johnston, Martin D.; Kornfeld, Richard P.; Martin-Mur, Tomas J.; McSmith, Gaylon W.; Thomas, Reid C.; Varghese, Phil; Signori, Gina; Schmitz, Peter

    2010-01-01

    The Phoenix Lander, first of NASA's Mars Scout missions, arrived at the Red Planet on May 25, 2008. From the moment the lander separated from its interplanetary cruise stage shortly before entry, the spacecraft could no longer communicate directly with Earth, and was instead entirely dependent on UHF relay communications via an international network of orbiting Mars spacecraft, including NASA's 2001 Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft, as well as ESA's Mars Express (MEX) spacecraft. All three orbiters captured critical event telemetry and/or tracking data during Phoenix Entry, Descent and Landing. During the Phoenix surface mission, ODY and MRO provided command and telemetry services, far surpassing the original data return requirements. The availability of MEX as a backup relay asset enhanced the robustness of the surface relay plan. In addition to telecommunications services, Doppler tracking observables acquired on the UHF link yielded an accurate position for the Phoenix landing site.

  9. Preliminary assessment of a Ceres Polar Lander mission

    NASA Astrophysics Data System (ADS)

    Poncy, J.; Grasset, Olivier; Martinot, V.; Gabriel, Gabriel

    2008-09-01

    The quest for water in all forms is a major challenge of planetary exploration. In the Inner System, beneath the Frost Line, H2O is relatively scarce: for it to survive in its solid form outside Earth's and Mars' atmospheres, H2O has to lie in areas exposed to little or no Sun. Three planetary bodies in the Inner System have a spin axis almost perpendicular to their orbital plane allowing temperatures below the sublimation limit in their polar areas: Mercury, our Moon and dwarf planet Ceres (fig. 1). Apart from the Moon's poles where the presence of water ice is not evidenced yet, the poles of Ceres are attractive and relatively easy targets for an in-situ mission. They will have been mapped by NASA's Dawn Orbiter by 2015. The successful landing of NASA's Phoenix on Mars has brought another evidence of the interest of modern precision landing techniques for planetary exploration. NASA's MSL and ESA's Moon-NEXT Lunar Lander missions will bring other examples of the relevance of such designs in the years to come. Thales Alenia Space and the "Laboratoire de Planétologie et Géodynamique" of the University of Nantes have carried out a preliminary evaluation of a Ceres Polar Lander mission, so as to explore the possibilities offered by soft landing techniques on such a valuable and affordable scientific target. This poster presents this assessment. It illustrates the scientific interest of Ceres' poles and the challenges of this environment for a potential lander. It assesses the feasibility of the mission in a preliminary way, as well as the ability to benefit from previous lander designs.

  10. Mars 101: Linking Educational Content to Mission Purpose on the Phoenix Mars Lander Mission Web Site

    NASA Astrophysics Data System (ADS)

    Schmidt, L. J.; Smith, P. H.; Lombardi, D.

    2006-12-01

    The Phoenix Mars Lander, scheduled to launch in August 2007, is the first mission in NASA's Scout Program. Phoenix has been specifically designed to measure volatiles (especially water) in the northern arctic plains of Mars, where the Mars Odyssey detected evidence of ice-rich soil near the surface. A fundamental part of the mission's goal-driven education and public outreach program is the Phoenix Mars Lander 2007 web site. Content for the site was designed not only to further the casual user's understanding of the Phoenix mission and its objectives, but also to meet the needs of the more science-attentive user who desires in-depth information. To this end, the web site's "Mars 101" module includes five distinct themes, all of which are directly connected to the mission's purpose: Mars Intro includes basic facts about Mars and how the planet differs from Earth; Polar Regions discusses the history of polar exploration on Earth and the similarities between these regions on Mars and Earth; Climate covers the effects that Earth's polar regions have on climate and how these same effects may occur on Mars; Water on Mars introduces the reader to the idea of liquid water and water ice on Mars; and Biology includes a discussion of the requirements of life and life in the universe to facilitate reader understanding of what Phoenix might find. Each of the five themes is described in simple language accompanied by relevant images and graphics, with hypertext links connecting the science-attentive user to more in-depth content. By presenting the "Mars 101" content in a manner that relates each subheading to a specific component of the mission's purpose, the Phoenix web site nurtures understanding of the mission and its relevance to NASA's Mars Exploration goals by the general lay public as well as the science-attentive user.

  11. Propulsive Maneuver Design for the 2007 Mars Phoenix Lander Mission

    NASA Technical Reports Server (NTRS)

    Raofi, Behzad; Bhat, Ramachandra S.; Helfrich, Cliff

    2008-01-01

    On May 25, 2008, the Mars Phoenix Lander (PHX) successfully landed in the northern planes of Mars in order to continue and complement NASA's "follow the water" theme as its predecessor Mars missions, such as Mars Odyssey (ODY) and Mars Exploration Rovers, have done in recent years. Instruments on the lander, through a robotic arm able to deliver soil samples to the deck, will perform in-situ and remote-sensing investigations to characterize the chemistry of materials at the local surface, subsurface, and atmosphere. Lander instruments will also identify the potential history of key indicator elements of significance to the biological potential of Mars, including potential organics within any accessible water ice. Precise trajectory control and targeting were necessary in order to achieve the accurate atmospheric entry conditions required for arriving at the desired landing site. The challenge for the trajectory control maneuver design was to meet or exceed these requirements in the presence of spacecraft limitations as well as other mission constraints. This paper describes the strategies used, including the specialized targeting specifically developed for PHX, in order to design and successfully execute the propulsive maneuvers that delivered the spacecraft to its targeted landing site while satisfying the planetary protection requirements in the presence of flight system constraints.

  12. Design of A Lander For The Bepicolombo Mission

    NASA Astrophysics Data System (ADS)

    Pansart, O.; Anselmi, A.

    The BepiColombo ESA mission will deploy two orbiters (Mercury Planetary Orbiter and Mercury Magnetospheric Orbiter, the latter provided by ISAS, Japan) and the Mercury Surface Element (MSE), the first lander on the surface of Mercury. The main purpose of MSE is to investigate the physical and chemical properties of a spot on the Mercury surface. Alcatel Space Industries has been designing the MSE and its associated propulsion module in the frame of a Definition Study led by Alenia Spazio, under ESA contract. The MSE mission starts at separation from the orbital composite spacecraft. During the descent and landing phase, a high-thrust bipropellant engine decelerates the MSE, and an airbag system is deployed to ensure a safe landing after a short free-fall phase. The MSE then starts its scientific mission on the Mercury surface. The paper addresses the following topics: Mission overview - Descent and Landing phase - MSE surface mission phase - System preliminary design and performances. The presented MSE baseline was studied as part of the industrial Definition Study. The mission itself is currently going through a redefinition phase which affects the whole ESA Scientific Program, and which may lead to a revised version by the May-June 2002 time frame.

  13. Navigation Strategy for the Mars 2001 Lander Mission

    NASA Astrophysics Data System (ADS)

    Mase, Robert A.; Spencer, David A.; Smith, John C.; Braun, Robert D.

    2000-01-01

    The Mars Surveyor Program (MSP) is an ongoing series of missions designed to robotically study, map and search for signs of life on the planet Mars. The MSP 2001 project will advance the effort by sending an orbiter, a lander and a rover to the red planet in the 2001 opportunity. Each vehicle will carry a science payload that will Investigate the Martian environment on both a global and on a local scale. Although this mission will not directly search for signs of life, or cache samples to be returned to Earth, it will demonstrate certain enabling technologies that will be utilized by the future Mars Sample Return missions. One technology that is needed for the Sample Return mission is the capability to place a vehicle on the surface within several kilometers of the targeted landing site. The MSP'01 Lander will take the first major step towards this type of precision landing at Mars. Significant reduction of the landed footprint will be achieved through two technology advances. The first, and most dramatic, is hypersonic aeromaneuvering; the second is improved approach navigation. As a result, the guided entry will produce in a footprint that is only tens of kilometers, which is an order of magnitude improvement over the Pathfinder and Mars Polar Lander ballistic entries. This reduction will significantly enhance scientific return by enabling the potential selection of otherwise unreachable landing sites with unique geologic interest and public appeal. A landed footprint reduction from hundreds to tens of kilometers is also a milestone on the path towards human exploration of Mars, where the desire is to place multiple vehicles within several hundred meters of the planned landing site. Hypersonic aeromaneuvering is an extension of the atmospheric flight goals of the previous landed missions, Pathfinder and Mars Polar Lander (MPL), that utilizes aerodynamic lift and an autonomous guidance algorithm while in the upper atmosphere. The onboard guidance algorithm will

  14. Navigation Strategy for the Mars 2001 Lander Mission

    NASA Technical Reports Server (NTRS)

    Mase, Robert A.; Spencer, David A.; Smith, John C.; Braun, Robert D.

    2000-01-01

    The Mars Surveyor Program (MSP) is an ongoing series of missions designed to robotically study, map and search for signs of life on the planet Mars. The MSP 2001 project will advance the effort by sending an orbiter, a lander and a rover to the red planet in the 2001 opportunity. Each vehicle will carry a science payload that will Investigate the Martian environment on both a global and on a local scale. Although this mission will not directly search for signs of life, or cache samples to be returned to Earth, it will demonstrate certain enabling technologies that will be utilized by the future Mars Sample Return missions. One technology that is needed for the Sample Return mission is the capability to place a vehicle on the surface within several kilometers of the targeted landing site. The MSP'01 Lander will take the first major step towards this type of precision landing at Mars. Significant reduction of the landed footprint will be achieved through two technology advances. The first, and most dramatic, is hypersonic aeromaneuvering; the second is improved approach navigation. As a result, the guided entry will produce in a footprint that is only tens of kilometers, which is an order of magnitude improvement over the Pathfinder and Mars Polar Lander ballistic entries. This reduction will significantly enhance scientific return by enabling the potential selection of otherwise unreachable landing sites with unique geologic interest and public appeal. A landed footprint reduction from hundreds to tens of kilometers is also a milestone on the path towards human exploration of Mars, where the desire is to place multiple vehicles within several hundred meters of the planned landing site. Hypersonic aeromaneuvering is an extension of the atmospheric flight goals of the previous landed missions, Pathfinder and Mars Polar Lander (MPL), that utilizes aerodynamic lift and an autonomous guidance algorithm while in the upper atmosphere. The onboard guidance algorithm will

  15. Micro-Mars: a low cost mission to planet Mars with scientific orbiter and lander applications

    NASA Astrophysics Data System (ADS)

    Kerstein, L.; Bischof, B.; Renken, H.; Hoffmann, H.; Apel, U.

    2003-11-01

    The proposed Micro-Mars Mission can contribute substantially to the international Mars exploration programme within the framework of a future low cost mission. The concept consists of an orbiter integrating a total scientific payload of 30 kg including a lightweight lander of 15 kg. The spacecraft will be launched as piggyback payload by an Ariane 5 ASAP with a total launch mass of 360 kg. It will use a bipropellant propulsion system with 210 kg of fuel and four thrusters of 22 N, and four of 10 N for orbit and attitude control. Further attitude actuation shall be performed by three reaction wheels and a gyropackage, a star sensor and a sun sensor for attitude sensing. Communication will be performed in S- and X-Band to earth and in UHF between orbiter and lander. From a highly elliptical orbit with a periapsis below 200 km, four instruments will perform high-resolution remote sensing observations and the payload consists of a camera system, a magnetometer, a dosimeter, and an ultrastable osciallator for radio science. The light-weight micro lander is a challenging technological experiment by itself. It is equiped with a suite of scientific instruments which will supplement the orbiter measurements and concentrate on the environment (temperature cycle, atmosphere, magnetosphere and radiation).

  16. Navigation Challenges of the Mars Phoenix Lander Mission

    NASA Technical Reports Server (NTRS)

    Portock, Brian M.; Kruizinga, Gerhard; Bonfiglio, Eugene; Raofi, Behzad; Ryne, Mark

    2008-01-01

    The Mars Phoenix Lander mission was launched on August 4th, 2007. To land safely at the desired landing location on the Mars surface, the spacecraft trajectory had to be controlled to a set of stringent atmospheric entry and landing conditions. The landing location needed to be controlled to an elliptical area with dimensions of 100km by 20km. The two corresponding critical components of the atmospheric entry conditions are the entry flight path angle (target: -13.0 deg +/-0.21 deg) and the entry time (within +/-30 seconds). The purpose of this paper is to describe the navigation strategies used to overcome the challenges posed during spacecraft operations, which included an attitude control thruster calibration campaign, a trajectory control strategy, and a trajectory reconstruction strategy. Overcoming the navigation challenges resulted in final Mars atmospheric entry conditions just 0.007 deg off in entry flight path angle and 14.9 sec early in entry time. These entry dispersions in addition to the entry, descent, and landing trajectory dispersion through the atmosphere, lead to a final landing location just 7 km away from the desired landing target.

  17. Navigation Challenges of the Mars Phoenix Lander Mission

    NASA Technical Reports Server (NTRS)

    Portock, Brian M.; Kruizinga, Gerhard; Bonfiglio, Eugene; Raofi, Behzad; Ryne, Mark

    2008-01-01

    The Mars Phoenix Lander mission was launched on August 4th, 2007. To land safely at the desired landing location on the Mars surface, the spacecraft trajectory had to be controlled to a set of stringent atmospheric entry and landing conditions. The landing location needed to be controlled to an elliptical area with dimensions of 100km by 20km. The two corresponding critical components of the atmospheric entry conditions are the entry flight path angle (target: -13.0 deg +/-0.21 deg) and the entry time (within +/-30 seconds). The purpose of this paper is to describe the navigation strategies used to overcome the challenges posed during spacecraft operations, which included an attitude control thruster calibration campaign, a trajectory control strategy, and a trajectory reconstruction strategy. Overcoming the navigation challenges resulted in final Mars atmospheric entry conditions just 0.007 deg off in entry flight path angle and 14.9 sec early in entry time. These entry dispersions in addition to the entry, descent, and landing trajectory dispersion through the atmosphere, lead to a final landing location just 7 km away from the desired landing target.

  18. Mission and Design Sensitivities for Human Mars Landers Using Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Thomas, Herbert D.; Dwyer Cianciolo, Alicia; Collins, Tim; Samareh, Jamshid

    2017-01-01

    This paper explores the impact of human Mars mission architecture decisions on the design and performance of a lander using the HIAD entry system: (a) Earth departure options, (b) Mars arrival options, (c) Entry Descent and Landing options.

  19. Selecting landing sites for lunar lander missions using spatial analysis

    NASA Astrophysics Data System (ADS)

    Djachkova, Maia; Lazarev, Evgeniy

    Russian Federal Space Agency (Roscosmos) is planning to launch two spacecrafts to the Moon with lander missions in 2015 and 2017. [1] Here, we present an approach to create a method of landing sites selection. We researched the physical features of the Moon using spatial analysis techniques presented in ArcGIS Desktop Software in accordance with its suitability for automatic landing. Hence we analyzed Russian lunar program and received the technical characteristics of the spacecrafts and scientific goals that they should meet [1]. Thus we identified the criteria of surface suitability for landing. We divided them into two groups: scientific criteria (the hydrogen content of the regolith [2] and day and night sur-face temperature [3]) and safety criteria (surface slopes and roughness, sky view factor, the Earth altitude, presence of polar permanently shadowed regions). In conformity with some investigations it is believed that the south polar region of the Moon is the most promising territory where water ice can be found (finding water ice is the main goal for Russian lunar missions [1]). According to the selected criteria and selected area of research we used remote sensing data from LRO (Lunar Reconnaissance Orbiter) [4] as basic data, because it is the most actual and easily available. The data was processed and analyzed using spatial analysis techniques of ArcGIS Desktop Software, so we created a number of maps depicting the criteria and then combined and overlaid them. As a result of overlay process we received five territories where the landing will be safe and the scientific goals will have being met. It should be noted that our analysis is only the first order assessment and the results cannot be used as actual landing sites for the lunar missions in 2015 and 2017, since a number of factors, which can only be analyzed in a very large scale, was not taken into account. However, an area of researching is narrowed to five territories, what can make the future

  20. Impact and Crashworthiness Characteristics of Venera Type Landers for Future Venus Missions

    NASA Technical Reports Server (NTRS)

    Schroeder, Kevin; Bayandor, Javid; Samareh, Jamshid

    2016-01-01

    In this paper an in-depth investigation of the structural design of the Venera 9-14 landers is explored. A complete reverse engineering of the Venera lander was required. The lander was broken down into its fundamental components and analyzed. This provided in-sights into the hidden features of the design. A trade study was performed to find the sensitivity of the lander's overall mass to the variation of several key parameters. For the lander's legs, the location, length, configuration, and number are all parameterized. The size of the impact ring, the radius of the drag plate, and other design features are also parameterized, and all of these features were correlated to the change of mass of the lander. A multi-fidelity design tool used for further investigation of the parameterized lander was developed. As a design was passed down from one level to the next, the fidelity, complexity, accuracy, and run time of the model increased. The low-fidelity model was a highly nonlinear analytical model developed to rapidly predict the mass of each design. The medium and high fidelity models utilized an explicit finite element framework to investigate the performance of various landers upon impact with the surface under a range of landing conditions. This methodology allowed for a large variety of designs to be investigated by the analytical model, which identified designs with the optimum structural mass to payload ratio. As promising designs emerged, investigations in the following higher fidelity models were focused on establishing their reliability and crashworthiness. The developed design tool efficiently modelled and tested the best concepts for any scenario based on critical Venusian mission requirements and constraints. Through this program, the strengths and weaknesses inherent in the Venera-Type landers were thoroughly investigated. Key features identified for the design of robust landers will be used as foundations for the development of the next generation of

  1. Viking lander imaging investigation during extended and continuation automatic missions. Volume 2: Lander 2 picture catalog of experiment data record

    NASA Technical Reports Server (NTRS)

    Jones, K. L.; Henshaw, M.; Mcmenomy, C.; Robles, A.; Scribner, P. C.; Wall, S. D.; Wilson, J. W.

    1981-01-01

    Images returned by the two Viking landers during the extended and continuation automatic phases of the Viking Mission are presented. Information describing the conditions under which the images were acquired is included with skyline drawings showing the images positioned in the field of view of the cameras. Subsets of the images are listed in a variety of sequences to aid in locating images of interest. The format and organization of the digital magnetic tape storage of the images are described. A brief description of the mission and the camera system is also included.

  2. Viking lander imaging investigation during extended and continuation automatic missions. Volume 1: Lander 1 picture catalog of experiment data record

    NASA Technical Reports Server (NTRS)

    Jones, K. L.; Henshaw, M.; Mcmenomy, C.; Robles, A.; Scribner, P. C.; Wall, S. D.; Wilson, J. W.

    1981-01-01

    All images returned by Viking Lander 1 during the extended and continuation automatic phases of the Viking Mission are presented. Listings of supplemental information which describe the conditions under which the images were acquired are included together with skyline drawings which show where the images are positioned in the field of view of the cameras. Subsets of the images are listed in a variety of sequences to aid in locating images of interest. The format and organization of the digital magnetic tape storage of the images are described as well as the mission and the camera system.

  3. Preface: The Chang'e-3 lander and rover mission to the Moon

    NASA Astrophysics Data System (ADS)

    Ip, Wing-Huen; Yan, Jun; Li, Chun-Lai; Ouyang, Zi-Yuan

    2014-12-01

    The Chang'e-3 (CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.

  4. UHF Relay Antenna Measurements on Phoenix Mars Lander Mockup

    NASA Technical Reports Server (NTRS)

    Ilott, Peter; Harrel, Jefferson; Arnold, Bradford; Bliznyuk, Natalia; Nielsen, Rick; Dawson, David; McGee, Jodi

    2006-01-01

    The Phoenix Lander, a NASA Discovery mission which lands on Mars in the spring of 2008, will rely entirely on UHF relay links between it and Mars orbiting assets, (Odyssey and Mars Reconnaissance Orbiter (MRO)), to communicate with the Earth. As with the Mars Exploration Rover (MER) relay system, non directional antennas will be used to provide roughly emispherical coverage of the Martian sky. Phoenix lander deck object pattern interference and obscuration are significant, and needed to be quantified to answer system level design and operations questions. This paper describes the measurement campaign carried out at the SPAWAR (Space and Naval Warfare Research) Systems Center San Diego (SSC-SD) hemispherical antenna range, using a Phoenix deck mockup and engineering model antennas. One goal of the measurements was to evaluate two analysis tools, the time domain CST, and the moment method WIPL-D software packages. These would subsequently be used to provide pattern analysis for configurations that would be difficult and expensive to model and test on Earth.

  5. UHF Relay Antenna Measurements on Phoenix Mars Lander Mockup

    NASA Technical Reports Server (NTRS)

    Ilott, Peter; Harrel, Jefferson; Arnold, Bradford; Bliznyuk, Natalia; Nielsen, Rick; Dawson, David; McGee, Jodi

    2006-01-01

    The Phoenix Lander, a NASA Discovery mission which lands on Mars in the spring of 2008, will rely entirely on UHF relay links between it and Mars orbiting assets, (Odyssey and Mars Reconnaissance Orbiter (MRO)), to communicate with the Earth. As with the Mars Exploration Rover (MER) relay system, non directional antennas will be used to provide roughly emispherical coverage of the Martian sky. Phoenix lander deck object pattern interference and obscuration are significant, and needed to be quantified to answer system level design and operations questions. This paper describes the measurement campaign carried out at the SPAWAR (Space and Naval Warfare Research) Systems Center San Diego (SSC-SD) hemispherical antenna range, using a Phoenix deck mockup and engineering model antennas. One goal of the measurements was to evaluate two analysis tools, the time domain CST, and the moment method WIPL-D software packages. These would subsequently be used to provide pattern analysis for configurations that would be difficult and expensive to model and test on Earth.

  6. Selecting a landing site of astrobiological interest for Mars landers and sample return missions

    NASA Astrophysics Data System (ADS)

    Wills, D.; Monaghan, E.; Foing, B. H.

    2008-09-01

    Abstract The landscape of Mars, despite its apparent hostility to life, is riddled with geological and mineralogical signs of past or present hydrological activity. As such, it is a key target for astrobiological exploration. There are, however, many factors that will need to be considered when planning in-situ and sample return missions, if these missions are indeed to adequately exploit the science potential of this intriguing world. These will not only take into account the environment of the landing site in terms of topography and ambient atmosphere etc., but also the geochemical make up of the surface regolith, evidence of hydrological processes and various other considerations. The knowledge base in all aspects of Martian science is being added to on an almost daily basis, and the aim of this work is to combine data and studies to nominate top priority landing locations for the search for evidence of life on Mars. We report in particular on science and technical criteria and our data analysis for sites of astrobiological interest. This includes information from previous missions (such as Mars Express, MGS, Odyssey, MRO and MER rovers) on mineralogical composition, geomorphology, evidence from past water history from imaging and spectroscopic data, and existence of in-situ prior information from landers and rovers (concerning evidences for volatiles, organics and habitability conditions). We discuss key mission objectives, and assess what sort of sites should be targeted in the light of these. We consider the accessibility of chosen locations, taking into account difficulties presented in accessing the polar regions and other regions of high altitude. We describe what additional measurements are needed, and outline the technical and scientific operations requirements of such in-situ landers and sample return missions. Approach In the first step of this study we focus on the science objectives of in-situ and sample return missions to Mars. We investigate the

  7. Performance characteristics of the PAW instrumentation on Beagle 2 (the astrobiology lander on ESA's Mars Express Mission)

    NASA Astrophysics Data System (ADS)

    Sims, Mark R.; Pullan, D.; Fraser, George W.; Whitehead, S.; Sykes, J.; Holt, J.; Butcher, Gillian I.; Nelms, Nick; Dowson, J.; Ross, D.; Bicknell, C.; Crocker, M.; Favill, B.; Wells, Alan A.; Richter, L.; Kochan, H.; Hamacher, Hans; Ratke, L.; Griffiths, Andrew D.; Coates, A. J.; Phillips, N.; Senior, A.; Zarnecki, John C.; Towner, M. C.; Leese, M.; Patel, M.; Wilson, C.; Thomas, Nicolas; Hviid, S.; Josset, Jean-Luc; Klingelhoefer, G.; Bernhardt, B.; van Duijn, P.; Sims, G.; Yung, K. L.

    2003-02-01

    The performance of the PAW instrumentation on the 60kg Beagle 2 lander for ESA"s 2003 Mars Express mission will be described. Beagle 2 will search for organic material on and below the surface of Mars in addition to a study of the inorganic chemistry and mineralogy of the landing site. The lander will utilize acquisition and preparation tools to obtain samples from below the surface, and both under and inside rocks. In situ analysis will include examination of samples with an optical microscope, Mossbauer and fluorescent X-ray spectrometers. Extracted samples will be returned to the lander for analysis, in particular a search for organics and a measurement of their isotopic composition. The PAW experiment performance data will be described along with the status of the project.

  8. Mission and Design Sensitivities for Human Mars Landers Using Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara P.; Thomas, Herbert D.; Collins, Tim; Dwyer Cianciolo, Alicia; Samareh, Jamshid

    2017-01-01

    Landing humans on Mars is one of NASA's long term goals. The Evolvable Mars Campaign (EMC) is focused on evaluating architectural trade options to define the capabilities and elements needed for a sustainable human presence on the surface of Mars. The EMC study teams have considered a variety of in-space propulsion options and surface mission options. As we seek to better understand how these choices affect the performance of the lander, this work informs and influences requirements for transportation systems to deliver the landers to Mars and enable these missions. This paper presents the effects of mission and vehicle design options on lander mass and performance. Beginning with Earth launch, options include fairing size assumptions, co-manifesting other elements with the lander, and Earth-Moon vicinity operations. Capturing into Mars orbit using either aerocapture or propulsive capture is assessed. For entry, descent, and landing both storable as well as oxygen and methane propellant combinations are considered, engine thrust level is assessed, and sensitivity to landed payload mass is presented. This paper focuses on lander designs using the Hypersonic Inflatable Aerodynamic Decelerators (HIAD), one of several entry system technologies currently considered for human missions.

  9. Surface Lander Missions to Mars: Support via Analysis of the NASA Ames Mars General Circulation Model

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Bridger, Alison F.C.; Haberle, Robert M.

    1997-01-01

    We have characterized the near-surface martian wind environment as calculated with a set of numerical simulations carried out with the NASA Ames Mars General Circulation Model (Mars GCM). These wind environments are intended to offer future spacecraft missions to the martian surface a data base from which to choose those locations which meet the mission's criteria for minimal near surface winds to enable a successful landing. We also became involved in the development and testing of the wind sensor which is currently onboard the Mars-bound Pathfinder lander. We began this effort with a comparison of Mars GCM produced winds with those measured by the Viking landers during their descent through the martian atmosphere and their surface wind measurements during the 3+ martian year lifetime of the mission. Unexpected technical difficulties in implementing the sophisticated Planetary Boundary Layer (PBL) scheme of Haberle et al. (1993) within the Mars GCM precluded our carrying out this investigation with the desired improvement to the model's treatment of the PBL. Thus, our results from this effort are not as conclusive as we had anticipated. As it turns out, similar difficulties have been experienced by other Mars modelling groups in attempting to implement very similar PBL routines into their GCMs (Mars General Circulation Model Intercomparison Workshop, held at Oxford University, United Kingdom, July 22-24, 1996; organized by J. Murphy, J. Hollingsworth, M. Joshi). These problems, which arise due to the nature of the time stepping in each of the models, are near to being resolved at the present. The model discussions which follow herein are based upon results using the existing, less sophisticated PBL routine. We fully anticipate implementing the tools we have developed in the present effort to investigate GCM results with the new PBL scheme implemented, and thereafter producing the technical document detailing results from the analysis tools developed during this

  10. Development of Thermal Sensors and Drilling Systems for Application on Lunar Lander Missions

    NASA Astrophysics Data System (ADS)

    Kömle, Norbert I.; Hütter, Erika S.; Kargl, Günter; Ju, Hehua; Gao, Yang; Grygorczuk, Jerzy

    2008-12-01

    The upcoming lunar lander missions, for example Chang’e 2 from CNSA and several mission proposals and studies currently under consideration at NASA (e.g. Neal et al., ROSES 2006 Proposal to NASA, 2006), ESA (e.g. Hufenbach, European Workshop on Lunar Landers, ESTEC, Noordwijk, The Netherlands, 2005; Foing, EPSC Abstracts, vol 2, EPSC2007-A-00422, European Planetary Science Congress, Potsdam, Germany, 2007) and JAXA, Japan (Matsumoto et al., Acta Astronautica, 59:68 76, 2006) offer new possibilities to measure the thermal properties of the lunar regolith and to determine the global lunar heat flow more accurately than it is hitherto known. Both properties are of high importance for the understanding of the lunar structure and the evolution of the Moon Earth system. In this paper we present some work on new thermal sensors to be used for in situ investigations of the lunar soil in combination with novel drilling techniques applicable for the lunar regolith. Such systems may preferably be mounted on mobile stations like the lunar rover currently built for the Chinese Chang’e 2 mission. A general description of a presently tested prototype of the lunar rover is given and mounting possibilities for a drilling system and thermal sensors are shown. Then we discuss some options for thermal sensors and drills and how they could be combined into one compact instrument. Subsequently a tube-like sensor suitable for measuring the thermal conductivity of the material surrounding a borehole is described in more detail. Finally the performance of such a tube-shaped sensor when applied in a lunar borehole is investigated by thermal modelling and compared with the behaviour of a more conventional needle-shaped sensor.

  11. Radon fluxes measured with the MANOP bottom lander

    NASA Astrophysics Data System (ADS)

    Berelson, W. M.; Buchholtz, M. R.; Hammond, D. E.; Santschi, P. H.

    1987-07-01

    At five Pacific Ocean sites, radon fluxes were determined from water samples collected by the MANOP Lander, from measurements of 222Rn and 226Ra concentrations in Lander-collected box core sediments, and from measurements of excess radon in the water column. At MANOP sites H and M, fluxes (all in atoms m -2 s -1) determined with Lander water samples (2200 and 1540 ± 480) agree within the measurement uncertainty with water column standing crop measurements (2220 ± 450, 2040 ± 470). At MANOP site C, the diffusive flux calculated from measurements of 226Ra in box core sediments (550 ± 20), the integrated deficiency of 222Rn in the sediments (720 ± 90), and the water column standing crop (500 ± 160) are in agreement, but all are about twice as large as the single Lander water measurement of the radon flux (330). At MANOP site S radon fluxes from measurements of Lander water (3000 ± 260) are in agreement with the predicted diffusive flux from site S sediments (2880), and both fluxes are close to the lower end of the range of water column standing crop measurements (3000-5170). In San Clemente Basin, California, the Lander water flux measurements at four different sites vary by a factor of 3 due to variability in the sediment radium distribution, but the average (1030 ± 190) is close to the water column standing crop value (780 ± 230). Because there is excellent agreement between the fluxes measured with Lander water samples and the predicted diffusive fluxes in most cases, diffusion must be the primary process controlling benthic exchange of radon at the sites studied. The agreement between the Lander water flux estimates and the water column standing crop estimates indicates that the MANOP Lander functions as an accurate benthic flux chamber in water depths ranging from 1900 to 4900 m. In San Clemente Basin, surficial sediments are enriched in manganese and radium, due to manganese cycling near the sediment-water interface. Molecular diffusion of radon from

  12. Source and event selection for radio-planetary frame-tie measurements using the Phobos Landers

    NASA Technical Reports Server (NTRS)

    Linfield, R.; Ulvestad, J.

    1988-01-01

    The Soviet Phobos Lander mission will place two spacecraft on the Martian moon Phobos in 1989. Measurements of the range from Earth-based stations to the landers will allow an accurate determination of the ephemerides of Phobos and Mars. Delta Very Long Base Interferometry (VLBI) between the landers and compact radio sources nearby on the sky will be used to obtain precise estimates of the angular offset between the radio and planetary reference frames. The accuracy of this frame-tie estimate is expected to be in the vicinity of 10 mrad, depending on how well several error sources can be controlled (calibrated or reduced). Many candidate radio sources for VLBI measurements were identified, but additional work is necessary to select those sources which have characteristics appropriate to the present application. Strategies for performing the source selection are described.

  13. Learning to Live on a Mars Day: Fatigue Countermeasures during the Phoenix Mars Lander Mission

    PubMed Central

    Barger, Laura K.; Sullivan, Jason P.; Vincent, Andrea S.; Fiedler, Edna R.; McKenna, Laurence M.; Flynn-Evans, Erin E.; Gilliland, Kirby; Sipes, Walter E.; Smith, Peter H.; Brainard, George C.; Lockley, Steven W.

    2012-01-01

    Study Objectives: To interact with the robotic Phoenix Mars Lander (PML) spacecraft, mission personnel were required to work on a Mars day (24.65 h) for 78 days. This alien schedule presents a challenge to Earth-bound circadian physiology and a potential risk to workplace performance and safety. We evaluated the acceptability, feasibility, and effectiveness of a fatigue management program to facilitate synchronization with the Mars day and alleviate circadian misalignment, sleep loss, and fatigue. Design: Operational field study. Setting: PML Science Operations Center. Participants: Scientific and technical personnel supporting PML mission. Interventions: Sleep and fatigue education was offered to all support personnel. A subset (n = 19) were offered a short-wavelength (blue) light panel to aid alertness and mitigate/reduce circadian desynchrony. They were assessed using a daily sleep/work diary, continuous wrist actigraphy, and regular performance tests. Subjects also completed 48-h urine collections biweekly for assessment of the circadian 6-sulphatoxymelatonin rhythm. Measurements and Results: Most participants (87%) exhibited a circadian period consistent with adaptation to a Mars day. When synchronized, main sleep duration was 5.98 ± 0.94 h, but fell to 4.91 ± 1.22 h when misaligned (P < 0.001). Self-reported levels of fatigue and sleepiness also significantly increased when work was scheduled at an inappropriate circadian phase (P < 0.001). Prolonged wakefulness (≥ 21 h) was associated with a decline in performance and alertness (P < 0.03 and P < 0.0001, respectively). Conclusions: The ability of the participants to adapt successfully to the Mars day suggests that future missions should utilize a similar circadian rhythm and fatigue management program to reduce the risk of sleepiness-related errors that jeopardize personnel safety and health during critical missions. Citation: Barger LK; Sullivan JP; Vincent AS; Fiedler ER; McKenna LM; Flynn-Evans EE

  14. System-level Analysis of Food Moisture Content Requirements for the Mars Dual Lander Transit Mission

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Perchonok, Michele H.

    2004-01-01

    In order to ensure that adequate water resources are available during a mission, any net water loss from the habitat must be balanced with an equivalent amount of required makeup water. Makeup water may come from a variety of sources, including water in shipped tanks, water stored in prepackaged food, product water from fuel cells, and in-situ water resources. This paper specifically addresses the issue of storing required makeup water in prepackaged food versus storing the water in shipped tanks for the Mars Dual Lander Transit Mission, one of the Advanced Life Support Reference Missions. In this paper, water mass balances have been performed for the Dual Lander Transit Mission, to determine the necessary requirement of makeup water under nominal operation (i.e. no consideration of contingency needs), on a daily basis. Contingency issues are briefly discussed with respect to impacts on makeup water storage (shipped tanks versus storage in prepackaged food). The Dual Lander Transit Mission was selected for study because it has been considered by the Johnson Space Center Exploration Office in enough detail to define a reasonable set of scenario options for nominal system operation and contingencies. This study also illustrates the concept that there are multiple, reasonable life support system scenarios for any one particular mission. Thus, the need for a particular commodity can depend upon many variables in the system. In this study, we examine the need for makeup water as it depends upon the configuration of the rest of the life support system.

  15. System-level Analysis of Food Moisture Content Requirements for the Mars Dual Lander Transit Mission

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Perchonok, Michele H.

    2004-01-01

    In order to ensure that adequate water resources are available during a mission, any net water loss from the habitat must be balanced with an equivalent amount of required makeup water. Makeup water may come from a variety of sources, including water in shipped tanks, water stored in prepackaged food, product water from fuel cells, and in-situ water resources. This paper specifically addresses the issue of storing required makeup water in prepackaged food versus storing the water in shipped tanks for the Mars Dual Lander Transit Mission, one of the Advanced Life Support Reference Missions. In this paper, water mass balances have been performed for the Dual Lander Transit Mission, to determine the necessary requirement of makeup water under nominal operation (i.e. no consideration of contingency needs), on a daily basis. Contingency issues are briefly discussed with respect to impacts on makeup water storage (shipped tanks versus storage in prepackaged food). The Dual Lander Transit Mission was selected for study because it has been considered by the Johnson Space Center Exploration Office in enough detail to define a reasonable set of scenario options for nominal system operation and contingencies. This study also illustrates the concept that there are multiple, reasonable life support system scenarios for any one particular mission. Thus, the need for a particular commodity can depend upon many variables in the system. In this study, we examine the need for makeup water as it depends upon the configuration of the rest of the life support system.

  16. Mission and Design Sensitivities for Human Mars Landers Using Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara P.; Thomas, Herbert D.; Dwyer Ciancio, Alicia; Collins, Tim; Samareh, Jamshid

    2017-01-01

    Landing humans on Mars is one of NASA's long term goals. NASA's Evolvable Mars Campaign (EMC) is focused on evaluating architectural trade options to define the capabilities and elements needed to sustain human presence on the surface of Mars. The EMC study teams have considered a variety of in-space propulsion options and surface mission options. Understanding how these choices affect the performance of the lander will allow a balanced optimization of this complex system of systems problem. This paper presents the effects of mission and vehicle design options on lander mass and performance. Beginning with Earth launch, options include fairing size assumptions, co-manifesting elements with the lander, and Earth-Moon vicinity operations. Capturing into Mars orbit using either aerocapture or propulsive capture is assessed. For entry, descent, and landing both storable as well as oxygen and methane propellant combinations are considered, engine thrust level is assessed, and sensitivity to landed payload mass is presented. This paper focuses on lander designs using the Hypersonic Inflatable Aerodynamic Decelerators, one of several entry system technologies currently considered for human missions.

  17. Micro-Mars: A low-cost mission to planet Mars with scientific orbiter and lander applications

    NASA Astrophysics Data System (ADS)

    Kerstein, L.; Bischof, B.; Renken, H.; Hoffmann, H.; Apel, U.

    2006-10-01

    The proposed Micro-Mars mission can contribute substantially to the international Mars exploration programme within the framework of a future low-cost mission. The concept consists of an orbiter integrating a total scientific payload of 30 kg including a light-weight lander of 15 kg. The spacecraft will be launched as piggyback payload by an Ariane 5 ASAP with a total launch mass of 360 kg. It will use a bipropellant propulsion system with 210 kg of fuel and four thrusters of 22 N, and four of 10 N for orbit and attitude control. Further attitude actuation shall be performed by three reaction wheels and a gyropackage, a star sensor and a sun sensor for attitude sensing. Communication will be performed in S- and X-Band to Earth and in UHF between orbiter and lander. From a highly elliptical orbit with a periapsis below 200 km, four instruments will perform high-resolution remote sensing observations and the payload consists of a camera system, a magnetometer, a dosimeter, and an ultrastable oscillator for radio science. The light-weight micro lander is a challenging technological experiment by itself. It is equipped with a suite of scientific instruments which will supplement the orbiter measurements and concentrate on the environment (temperature cycle, atmosphere, magnetosphere, and radiation).

  18. A global view of lander-to-orbiter communications accessibility for a Mars Global Network Mission

    NASA Technical Reports Server (NTRS)

    Friedlander, Alan L.

    1990-01-01

    Given the mission objective to deploy a number of small landers to the surface of Mars at various latitude/longitude locations, it is of interest to obtain a global perspective of the communications link geometry between the landers and a data relay orbiter. Specifically, the question to be answered is what is the total time interval over one Martian day (1 sol) that a lander at any given latitude and longitude can communicate data to the orbiter. Results should be obtained for more than one elevation angle constraint (lander antenna design issue), and also for several time points into the mission since the orbiter's periapsis location moves under the influence of Mars' oblateness perturbation. Such information is presented in terms of global contour maps of available communications time per sol summed over all orbiter pases on that day. Global data of this type complements more detailed local site data such as communications range and elevation vs time per pass. Communications time contour maps are included here for sol grids of 180, 232, 318, 361, and 404 corresponding to orbiter periapsis latitudes of 35 S, 90 S, equatorial, 45 N, and 90 N. For each of these days, there is a map for both a 15 deg and 45 deg minimum elevation constraint on the lander-to-orbiter line of sight. The jagged appearance of the contour lines is due to computational resolution in interpolating between a finite number of latitude/longitude grid points. Although the contours should really be smooth, the general information content is represented by the lower resolution maps shown here. An example of the tabulated, finite-grid data points is also given. Communication with all sites is possible at the 15 deg elevation constraint, at times only for several minutes per sol but more generally for a much longer time up to 14 hours per sol. Significantly less time is available with a 45 deg elevation constraint, and at certain times in the mission some localized regions of the planet are

  19. A lander mission to probe subglacial water on Saturn's moon Enceladus for life

    NASA Astrophysics Data System (ADS)

    Konstantinidis, Konstantinos; Flores Martinez, Claudio L.; Dachwald, Bernd; Ohndorf, Andreas; Dykta, Paul; Bowitz, Pascal; Rudolph, Martin; Digel, Ilya; Kowalski, Julia; Voigt, Konstantin; Förstner, Roger

    2015-01-01

    The plumes discovered by the Cassini mission emanating from the south pole of Saturn's moon Enceladus and the unique chemistry found in them have fueled speculations that Enceladus may harbor life. The presumed aquiferous fractures from which the plumes emanate would make a prime target in the search for extraterrestrial life and would be more easily accessible than the moon's subglacial ocean. A lander mission that is equipped with a subsurface maneuverable ice melting probe will be most suitable to assess the existence of life on Enceladus. A lander would have to land at a safe distance away from a plume source and melt its way to the inner wall of the fracture to analyze the plume subsurface liquids before potential biosignatures are degraded or destroyed by exposure to the vacuum of space. A possible approach for the in situ detection of biosignatures in such samples can be based on the hypothesis of universal evolutionary convergence, meaning that the independent and repeated emergence of life and certain adaptive traits is wide-spread throughout the cosmos. We thus present a hypothetical evolutionary trajectory leading towards the emergence of methanogenic chemoautotrophic microorganisms as the baseline for putative biological complexity on Enceladus. To detect their presence, several instruments are proposed that may be taken aboard a future subglacial melting probe. The "Enceladus Explorer" (EnEx) project funded by the German Space Administration (DLR), aims to develop a terrestrial navigation system for a subglacial research probe and eventually test it under realistic conditions in Antarctica using the EnEx-IceMole, a novel maneuverable subsurface ice melting probe for clean sampling and in situ analysis of ice and subglacial liquids. As part of the EnEx project, an initial concept study is foreseen for a lander mission to Enceladus to deploy the IceMole near one of the active water plumes on the moon's South-Polar Terrain, where it will search for

  20. Lander and rover exploration on the lunar surface: a study for Selene-B mission

    NASA Astrophysics Data System (ADS)

    Okada, T.; Sasaki, S.; Sugihara, T.; Saiki, K.; Akiyama, H.; Ohtake, M.; Takeda, H.; Kato, M.; Kubota, T.; Selene-B Rover Science Group

    We have been studying a future lunar landing mission preliminary named as the SELENE-B. In this mission, we propose a scientific investigation plan using a robotic rover. To clarify the origin and evolution of the Moon, early crustal formation probably from the ancient magma ocean should be investigated. A direct geologic investigation at the specific sites of scientific interest has the top priority. The candidate site is the crater central peak, "a window to the interior", where materials from deep interior are exposed and can be directly investigated without drilling down to more than several kilometers. After the pin-point and soft landing around the target site, we propose a corporative mission using a lander and rover. Although both of the lander and rover have scientific instruments and can conduct observation independently, detailed analyses of collected samples from the rover are also returned and conducted at the lander for cleaning and grinding. Primary scientific instruments include a multi-band stereo camera, a gamma-ray spectrometer, a sample corer, and sampling system on the rover, and a multi-spectral narrow angle panoramic camera using AOTF, sampling system, and a sample analysis package with X-ray spectrometer/diffractometer and a multi-spectral macro camera as well as the cleaning and grinding device. .

  1. Instrument study of the Lunar Dust eXplorer (LDX) for a lunar lander mission

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Srama, Ralf; Henkel, Hartmut; Sternovsky, Zoltan; Kempf, Sascha; Wu, Yiyong; Grün, Eberhard

    2014-11-01

    One of the highest-priority issues for a future human or robotic lunar exploration is the lunar dust. This problem should be studied in depth in order to develop an environment model for a future lunar exploration. A future ESA lunar lander mission requires the measurement of dust transport phenomena above the lunar surface. Here, we describe an instrument design concept to measure slow and fast moving charged lunar dust which is based on the principle of charge induction. LDX has a low mass and measures the speed and trajectory of individual dust particles with sizes below one micrometer. Furthermore, LDX has an impact ionization target to monitor the interplanetary dust background. The sensor consists of three planes of segmented grid electrodes and each electrode is connected to an individual charge sensitive amplifier. Numerical signals were computed using the Coulomb software package. The LDX sensitive area is approximately 400 cm2. Our simulations reveal trajectory uncertainties of better than 2° with an absolute position accuracy of better than 2 mm.

  2. Mobile Asteroid Surface Scout (MASCOT) - An asteroid lander package for the Hayabusa-2 mission

    NASA Astrophysics Data System (ADS)

    Lange, Caroline; Richter, Lutz; Dietze, Claudia; Ho, Tra-Mi; Lange, Michael; Sproewitz, Tom; Wagenbach, Susanne; Kroemer, Olaf; Witte, Lars; Braukhane, Andy

    2010-05-01

    The Hayabusa-2 mission is currently being studied by JAXA/JSPEC as a sample return mission to the C-type near-Earth asteroid 1999JU3. Hayabusa-2, with launch planned for 2014, would be the immediate successor to the currently flying Hayabusa mission. Originally in the context of the proposed ESA Cosmic Vision M-class mission Marco Polo, but then following an invitation by JAXA/JSPEC, the Institute of Space Systems of the German Aerospace Center (DLR) led a proposal for a separate lander package 'Mascot' (Mobile Asteroid Surface Scout) to be carried on the mission. A feasibility study was subsequently carried out that, upon consultation with the planetary science community, assessed different concepts for the lander that converged to a package with 3 kg of P/L, for a total mass of 10-15 kg. Presently, 'Mascot' enters the preliminary design phase while an Announcement of Opportunity for its payload complement is being prepared. The presentation will outline the current baseline design, with special consideration of how the highly demanding constraints that are being imposed on the system due to the general mission scenario, the asteroid environment and the tight budgetary limitations are being fulfilled in such a rather modest design, still offering an excellent science potential.

  3. Feasibility of a Dragon-Derived Mars Lander for Scientific and Human-Precursor Missions

    NASA Technical Reports Server (NTRS)

    Karcz, John S.; Davis, Sanford S.; Allen, Gary A.; Glass, Brian J.; Gonzales, Andrew; Heldmann, Jennifer Lynne; Lemke, Lawrence G.; McKay, Chris; Stoker, Carol R.; Wooster, Paul Douglass; Zarchi, Kerry A.

    2013-01-01

    A minimally-modified SpaceX Dragon capsule launched on a Falcon Heavy rocket presents the possibility of a new low-cost, high-capacity Mars lander for robotic missions. We have been evaluating such a "Red Dragon" platform as an option for the Icebreaker Discovery Program mission concept. Dragon is currently in service ferrying cargo to and from the International Space Station, and a crew transport version is in development. The upcoming version, unlike other Earth-return vehicles, exhibits most of the capabilities necessary to land on Mars. In particular, it has a set of high-thrust, throttleable, storable bi-propellant "SuperDraco" engines integrated directly into the capsule that are intended for launch abort and powered landings on Earth. These thrusters provide the possibility of a parachute-free, fully-propulsive deceleration at Mars from supersonic speeds to the surface, a descent approach which would also scale well to larger future human landers. We will discuss the motivations for exploring a Red Dragon lander, the current results of our analysis of its feasibility and capabilities, and the implications of the platform for the Icebreaker mission concept. In particular, we will examine entry, descent, and landing (EDL) in detail. We will also describe the modifications to Dragon necessary for interplanetary cruise, EDL, and operations on the Martian surface. Our analysis to date indicates that a Red Dragon lander is feasible and that it would be capable of delivering more than 1000 kg of payload to sites at elevations three kilometers below the Mars Orbiter Laser Altimeter (MOLA) reference, which includes sites throughout most of the northern plains and Hellas.

  4. Viking Lander imaging investigation: Picture catalog of primary mission experiment data record

    NASA Technical Reports Server (NTRS)

    Tucker, R. B.

    1978-01-01

    All the images returned by the two Viking Landers during the primary phase of the Viking Mission are presented. Listings of supplemental information which described the conditions under which the images were acquired are included together with skyline drawings which show where the images are positioned in the field of view of the cameras. Subsets of the images are listed in a variety of sequences to aid in locating images of interest. The format and organization of the digital magnetic tape storage of the images are described. The mission and the camera system are briefly described.

  5. Lander Technologies

    NASA Technical Reports Server (NTRS)

    Chavers, Greg

    2015-01-01

    Since 2006 NASA has been formulating robotic missions to the lunar surface through programs and projects like the Robotic Lunar Exploration Program, Lunar Precursor Robotic Program, and International Lunar Network. All of these were led by NASA Marshall Space Flight Center (MSFC). Due to funding shortfalls, the lunar missions associated with these efforts, the designs, were not completed. From 2010 to 2013, the Robotic Lunar Lander Development Activity was funded by the Science Mission Directorate (SMD) to develop technologies that would enable and enhance robotic lunar surface missions at lower costs. In 2013, a requirements-driven, low-cost robotic lunar lander concept was developed for the Resource Prospector Mission. Beginning in 2014, The Advanced Exploration Systems funded the lander team and established the MSFC, Johnson Space Center, Applied Physics Laboratory, and the Jet Propulsion Laboratory team with MSFC leading the project. The lander concept to place a 300-kg rover on the lunar surface has been described in the New Technology Report Case Number MFS-33238-1. A low-cost lander concept for placing a robotic payload on the lunar surface is shown in figures 1 and 2. The NASA lander team has developed several lander concepts using common hardware and software to allow the lander to be configured for a specific mission need. In addition, the team began to transition lander expertise to United States (U.S.) industry to encourage the commercialization of space, specifically the lunar surface. The Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative was started and the NASA lander team listed above is partnering with three competitively selected U.S. companies (Astrobotic, Masten Space Systems, and Moon Express) to develop, test, and operate their lunar landers.

  6. Beagle 2: a proposed exobiology lander for ESA's 2003 Mars Express mission.

    PubMed

    Sims, M R; Pillinger, C T; Wright, I P; Dowson, J; Whitehead, S; Wells, A; Spragg, J E; Fraser, G; Richter, L; Hamacher, H; Johnstone, A; Meredith, N P; de la Nougerede, C; Hancock, B; Turner, R; Peskett, S; Brack, A; Hobbs, J; Newns, M; Senior, A; Humphries, M; Keller, H U; Thomas, N; Lingard, J S; Ng, T C

    1999-01-01

    The aim of the proposed Beagle 2 small lander for ESA's 2003 Mars Express mission is to search for organic material on and below the surface of Mars and to study the inorganic chemistry and mineralogy of the landing site. The lander will have a total mass of 60kg including entry, descent, and landing system. Experiments will be deployed on the surface using a robotic arm. It will use a mechanical mole and grinder to obtain samples from below the surface, under rocks, and inside rocks. Sample analysis by a mass spectrometer will include isotopic analysis. An optical microscope, an X-ray spectrometer and a Mossbauer spectrometer will conduct in-situ rock studies.

  7. Beagle 2: a proposed exobiology lander for ESA's 2003 Mars express mission

    NASA Astrophysics Data System (ADS)

    Sims, M. R.; Pillinger, C. T.; Wright, I. P.; Dowson, J.; Whitehead, S.; Wells, A.; Spragg, J. E.; Fraser, G.; Richter, L.; Hamacher, H.; Johnstone, A.; Meredith, N. P.; de La Nougerede, C.; Hancock, B.; Turner, R.; Peskett, S.; Brack, A.; Hobbs, J.; Newns, M.; Senior, A.; Humphries, M.; Keller, H. U.; Thomas, N.; Lingard, J. S.; Underwood, J. C.; Sale, N. M.; Neal, M. F.; Klingelhofer, G.; Ng, T. C.

    1999-01-01

    The aim of the proposed Beagle 2 small lander for ESA's 2003 Mars Express mission is to search for organic material on and below the surface of Mars and to study the inorganic chemistry and mineralogy of the landing site. The lander will have a total mass of 60kg including entry, descent, and landing system. Experiments will be deployed on the surface using a robotic arm. It will use a mechanical mole and grinder to obtain samples from below the surface, under rocks, and inside rocks. Sample analysis by a mass spectrometer will include isotopic analysis. An optical microscope, an X- ray spectrometer and a Mossbauer spectrometer will conduct in-situ rock studies.

  8. Mars Volatiles and Climate Surveyor (MVACS) Integrated Payload for the Mars Polar Lander Mission

    NASA Astrophysics Data System (ADS)

    Paige, D. A.; Boynton, W. V.; Crisp, D.; DeJong, E.; Harri, A. M.; Hansen, C. J.; Keller, H. U.; Leshin, L. A.; Smith, P. H.; Zurek, R. W.

    1998-01-01

    The Mars Volatiles and Climate Surveyor (MVACS) integrated payload for the Mars Polar Lander will be launched in January 1999, with a scheduled landing on Mars' south-polar layered deposits in December 1999. Over the course of its 90-day nominal mission during the martian southern spring and summer seasons, it will make in situ measurements that will provide new insights into the behavior and distribution of martian volatiles, MVACS consists of four major instrument systems: a surface stereo imager (SSI), which will acquire multispectral stereo images of the surface and atmosphere; a 2-m robotic arm (RA), which will dig a O.5-m deep trench and acquire surface and subsurface samples that will be imaged by a focusable robotic arm camera (RAC), which will take close-up images of surface and subsurface samples at a spatial resolution of 21 micron; a meteorology package (MET), which will make the first measurements of surface pressure, temperature, and winds in Mars' southern hemisphere and employ a tunable diode laser (TDL) spectrometer to measure the water-vapor concentration and isotopic composition of CO2 in the martian atmosphere; and a thermal and evolved gas analyzer (TEGA), which will use differential scanning calorimetry and TDL-evolved gas analysis to determine the concentrations of ices, adsorbed volatiles, and volatile-bearing minerals in surface and subsurface soil samples. The unique in situ measurements made by MVACS at its high-latitude landing site will define a number of important aspects of the physical, isotopic, and chemical nature of the martian near-surface and subsurface environment that will be valuable in better understanding Mars meteorites and returned samples, as well as in the search for martian resources that could be utilized by humans.

  9. Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission

    NASA Technical Reports Server (NTRS)

    Cupples, Michael

    2007-01-01

    Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.

  10. Dielectric properties of Mars' surface: Proposed measurement on a Mars lander

    NASA Technical Reports Server (NTRS)

    Ulamec, S.; Grard, R.

    1993-01-01

    Recent studies of missions to Mars (MESUR by NASA and Marsnet by ESA) have suggested the development of semihard landers. One type was to be extremely basic, consisting mainly of a meteorological package, but with the possibility of other small, low-mass, low-power instruments. In particular, this type of lander was also considered for the exploration of the polar regions. Two methods to investigate the surface material at the landing site are discussed. Both measure the dielectric constant epsilon of the ground material. This information can then be used to elucidate the surface composition and structure. The determination of the permittivity would be of high scientific value, especially in the case of a landing on the polar ice.

  11. Lunar Radio_phase Ranging in Chinese Lunar Lander Mission for Astrometry

    NASA Astrophysics Data System (ADS)

    Ping, Jinsong; Meng, Qiao; Li, Wenxiao; Wang, Mingyuan; Wang, Zhen; Zhang, Tianyi; Han, Songtao

    2015-08-01

    The radio tracking data in lunar and planetary missions can be directly applied for scientific investigation. The variations of phase and of amplitude of the radio carrier wave signal linked between the spacecraft and the ground tracking antenna are used to deduce the planetary atmospheric and ionospheric structure, planetary gravity field, mass, ring, ephemeris, and even to test the general relativity. In the Chinese lunar missions, we developed the lunar and planetary radio science receiver to measure the distance variation between the tracking station-lander by means of open loop radio phase tracking. Using this method in Chang’E-3 landing mission, a lunar radio_phase ranging (LRR) technique was realized at Chinese deep space tracking stations and astronomical VLBI stations with H-maser clocks installed. Radio transponder and transmitter had been installed on the Chang’E-3/4. Transponder will receive the uplink S/X band radio wave transmitted from the two newly constructed Chinese deep space stations, where the high quality hydrogen maser atomic clocks have been used as local time and frequency standard. The clocks between VLBI stations and deep space stations can be synchronized to UTC standard within 20 nanoseconds using satellite common view methods. In the near future there will be a plan to improve this accuracy to 5 nanoseconds or better, as the level of other deep space network around world. In the preliminary LRR experiments of Chang'E-3, the obtained 1sps phase ranging observables have a resolution of 0.2 millimeter or better, with a fitting RMS about 2~3 millimeter, after the atmospheric and ionospheric errors removed. This method can be a new astrometric technique to measure the Earth tide and rotation, lunar orbit, tides and liberation, by means of solo observation or of working together with Lunar Laser Ranging. After differencing the ranging, we even obtained 1sps doppler series of 2-way observables with resolution of 0.07mm/second, which can

  12. A simulation of the Four-way lunar Lander-Orbiter tracking mode for the Chang'E-5 mission

    NASA Astrophysics Data System (ADS)

    Li, Fei; Ye, Mao; Yan, Jianguo; Hao, Weifeng; Barriot, Jean-Pierre

    2016-06-01

    The Chang'E-5 mission is the third phase of the Chinese Lunar Exploration Program and will collect and return lunar samples. After sampling, the Orbiter and the ascent vehicle will rendezvous and dock, and both spacecraft will require high precision orbit navigation. In this paper, we present a novel tracking mode-Four-way lunar Lander-Orbiter tracking that possibly can be employed during the Chang'E-5 mission. The mathematical formulas for the Four-way lunar Lander-Orbiter tracking mode are given and implemented in our newly-designed lunar spacecraft orbit determination and gravity field recovery software, the LUnar Gravity REcovery and Analysis Software/System (LUGREAS). The simulated observables permit analysis of the potential contribution Four-way lunar Lander-Orbiter tracking could make to precision orbit determination for the Orbiter. Our results show that the Four-way lunar Lander-Orbiter Range Rate has better geometric constraint on the orbit, and is more sensitive than the traditional two-way range rate that only tracks data between the Earth station and lunar Orbiter. After combining the Four-way lunar Lander-Orbiter Range Rate data with the traditional two-way range rate data and considering the Lander position error and lunar gravity field error, the accuracy of precision orbit determination for the Orbiter in the simulation was improved significantly, with the biggest improvement being one order of magnitude, and the Lander position could be constrained to sub-meter level. This new tracking mode could provide a reference for the Chang'E-5 mission and have enormous potential for the positioning of future lunar farside Lander due to its relay characteristic.

  13. LAPIS - LAnder Package Impacting a Seismometer - A Proposal for a Semi-Hard Lander Mission to the Moon

    NASA Astrophysics Data System (ADS)

    Lange, C.

    2009-04-01

    With an increased interest on the moon within the last years, at least with several missions in orbit or under development (SELENE/Japan, Chang'e/China, Chandrayaan/India and others), there is a strong demand within the German science community to participate in this initiative, building-up a national competence regarding lunar exploration. For this purpose, a Phase-0 analysis for a small lunar semi-hard landing scenario has been performed at DLR to foster future lunar exploration missions. This study's scope was to work out a more detailed insight into the design drivers and challenges and their impact on mass and cost budgets for such a mission. LAPIS has been dedicated to the investigation of the seismic activities of the moon, additionally to some other geophysical in-situ measurements at the lunar surface. In fact, the current status of the knowledge and understanding of lunar seismic activities leads to a range of open questions which have not been answered so far by the various Apollo missions in the past and could now possibly be answered by the studied LAPIS mission. Among these are the properties of the lunar core, the origin of deep and shallow moonquakes and the occurrence of micro-meteoroids. Therefore, as proposed first for LAPIS on the LEO mission, a payload of a short period micro-seismometer, based on European and American predevelopments, has been suggested. A staged mission scenario will be described, using a 2-module spacecraft with a propulsion part and a landing part, the so called LAPIS-PROP and LAPIS-LAND. In this scenario, the LAPIS-PROP module will do the cruise, until the spacecraft reaches an altitude of 100 m above the moon, after which the landing module will separate and continue to the actual semi-hard landing, which is based on deformable structures. Further technical details, e.g. considering the subsystem technologies, have been addressed within the performed study. These especially critical and uniquely challenging issues, such

  14. A consensus approach to planetary protection requirements: recommendations for Mars lander missions.

    PubMed

    Rummel, J D; Meyer, M A

    1996-01-01

    Over the last several years, the nature of the surface conditions on the planet Mars, our knowledge of the growth capabilities of Earth organisms under extreme conditions, and future opportunities for Mars exploration have been under extensive review in the United States and elsewhere. As part of these examinations, in 1992 the US Space Studies Board made a series of recommendations to NASA on the requirements that should be implemented on future missions that will explore Mars. In particular, significant changes were recommended in the requirements for Mars landers, changes that significantly alleviated the burden of planetary protection implementation for these missions. In this paper we propose a resolution implementing this new set of recommendations, for adoption by COSPAR at its 30th meeting in Hamburg. We also discuss future directions and study areas for planetary protection, in light of changing plans for Mars exploration.

  15. A consensus approach to planetary protection requirements: recommendations for Mars lander missions

    NASA Technical Reports Server (NTRS)

    Rummel, J. D.; Meyer, M. A.

    1996-01-01

    Over the last several years, the nature of the surface conditions on the planet Mars, our knowledge of the growth capabilities of Earth organisms under extreme conditions, and future opportunities for Mars exploration have been under extensive review in the United States and elsewhere. As part of these examinations, in 1992 the US Space Studies Board made a series of recommendations to NASA on the requirements that should be implemented on future missions that will explore Mars. In particular, significant changes were recommended in the requirements for Mars landers, changes that significantly alleviated the burden of planetary protection implementation for these missions. In this paper we propose a resolution implementing this new set of recommendations, for adoption by COSPAR at its 30th meeting in Hamburg. We also discuss future directions and study areas for planetary protection, in light of changing plans for Mars exploration.

  16. The Deep Space 4/Champollion Comet Rendezvous and Lander Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Smythe, William D.; Weissman, Paul R.; Muirhead, Brian K.; Tan-Wang, Grace H.; Sabahi, Dara; Grimes, James M.

    2000-01-01

    The Deep Space 4/Champollion mission is designed to test and validate technologies for landing on and anchoring to small bodies, and sample collection and transfer, in preparation for future sample return missions from comets, asteroids, and satellites. in addition, DS-4 will test technologies for advanced, multi-engine solar electric propulsion (SEP) systems, inflatable-rigidizable solar arrays, autonomous navigation and precision guidance for landing, autonomous hazard detection and avoidance, and advanced integrated avionics and packaging concepts. Deep Space-4/Champollion consists of two spacecraft: an orbiter/carrier vehicle which includes the multi-engine SEP stage, and a lander, called Champollion, which will descend to the surface of the 46P/Tempel 1 cometary nucleus. The spacecraft will launch in April, 2003 and land on the comet in September, 2006 Deep Space 4/Champollion is a joint project between NASA and CNES, the French space agency.

  17. Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions

    NASA Technical Reports Server (NTRS)

    Albee, Arden; Battel, Steven; Brace, Richard; Burdick, Garry; Casani, John; Lavell, Jeffrey; Leising, Charles; MacPherson, Duncan; Burr, Peter; Dipprey, Duane

    2000-01-01

    NASA's Mars Surveyor Program (MSP) began in 1994 with plans to send spacecraft to Mars every 26 months. Mars Global Surveyor (MGS), a global mapping mission, was launched in 1996 and is currently orbiting Mars. Mars Surveyor '98 consisted of Mars Climate Orbiter (MCO) and Mars Polar Lander (MPL). Lockheed Martin Astronautics (LMA) was the prime contractor for Mars Surveyor '98. The Jet Propulsion Laboratory (JPL), California Institute of Technology, manages the Mars Surveyor Program for NASA's Office of Space Science. MPL was developed under very tight funding constraints. The combined development cost of MPL and MCO, including the cost of the two launch vehicles, was approximately the same as the development cost of the Mars Pathfinder mission, including the cost of its single launch vehicle. The MPL project accepted the challenge to develop effective implementation methodologies consistent with programmatic requirements.

  18. SmallSat Spinning Lander with a Raman Spectrometer Payload for Future Ocean Worlds Exploration Missions

    NASA Technical Reports Server (NTRS)

    Ridenoure, R.; Angel, S. M.; Aslam, S.; Gorius, N.; Hewagama, T.; Nixon, C. A.; Sharma, S.

    2017-01-01

    We describe an Evolved Expendable Launch Vehicle Secondary Payload Adapter (ESPA)-class SmallSat spinning lander concept for the exploration of Europa or other Ocean World surfaces to ascertain the potential for life. The spinning lander will be ejected from an ESPA ring from an orbiting or flyby spacecraft and will carry on-board a standoff remote Spatial Heterodyne Raman spectrometer (SHRS) and a time resolved laser induced fluorescence spectrograph (TR-LIFS), and once landed and stationary the instruments will make surface chemical measurements. The SHRS and TR-LIFS have no moving parts have minimal mass and power requirements and will be able to characterize the surface and near-surface chemistry, including complex organic chemistry to constrain the ocean composition.

  19. NEXT Lunar Lander Mission - Overview and Challenges of the Lunar Rover Design

    NASA Astrophysics Data System (ADS)

    Allouis, Elie

    Looking ahead at the 2015-2018 timeframe, the European Space Agency (ESA) has recently started the investigation of the Next Exploration Science and Technology missions (NEXT) to demonstrate a number of key technologies for future programmes such as the Mars Sample Return (MSR). This paper provides the first insights into the mobile rover concept investigated as part of the NEXT Lunar Lander Study. Operating at the South Pole of the Moon, the rover will face a very challenging environment. Subjected to 200-hours long cold lunar nights at -200C for an initial mission duration of 1 year, and a total traverse of 20km, the design and operation of the rover requires careful attention. Its design is initially based on the knowledge developed for the ESA ExoMars mission, but the major differences in the environment and operation of the rover, means that most of the systems need a thorough assessment of their capabilities under Lunar condition and, where required, the development of new solutions. From the locomotion system designed to cope with uncertain lunar terrain, the thermal system dealing with gradients of hundreds of degrees, to the navigation through dark shadows, this paper illustrates some of the challenges future missions will face when targeting location such as the south pole on the Moon, but it will also provide details of the enabling technologies leading to the Mars Sample Return Mission and beyond.

  20. Learning to live on a Mars day: fatigue countermeasures during the Phoenix Mars Lander mission.

    PubMed

    Barger, Laura K; Sullivan, Jason P; Vincent, Andrea S; Fiedler, Edna R; McKenna, Laurence M; Flynn-Evans, Erin E; Gilliland, Kirby; Sipes, Walter E; Smith, Peter H; Brainard, George C; Lockley, Steven W

    2012-10-01

    To interact with the robotic Phoenix Mars Lander (PML) spacecraft, mission personnel were required to work on a Mars day (24.65 h) for 78 days. This alien schedule presents a challenge to Earth-bound circadian physiology and a potential risk to workplace performance and safety. We evaluated the acceptability, feasibility, and effectiveness of a fatigue management program to facilitate synchronization with the Mars day and alleviate circadian misalignment, sleep loss, and fatigue. Operational field study. PML Science Operations Center. Scientific and technical personnel supporting PML mission. Sleep and fatigue education was offered to all support personnel. A subset (n = 19) were offered a short-wavelength (blue) light panel to aid alertness and mitigate/reduce circadian desynchrony. They were assessed using a daily sleep/work diary, continuous wrist actigraphy, and regular performance tests. Subjects also completed 48-h urine collections biweekly for assessment of the circadian 6-sulphatoxymelatonin rhythm. Most participants (87%) exhibited a circadian period consistent with adaptation to a Mars day. When synchronized, main sleep duration was 5.98 ± 0.94 h, but fell to 4.91 ± 1.22 h when misaligned (P < 0.001). Self-reported levels of fatigue and sleepiness also significantly increased when work was scheduled at an inappropriate circadian phase (P < 0.001). Prolonged wakefulness (≥ 21 h) was associated with a decline in performance and alertness (P < 0.03 and P < 0.0001, respectively). The ability of the participants to adapt successfully to the Mars day suggests that future missions should utilize a similar circadian rhythm and fatigue management program to reduce the risk of sleepiness-related errors that jeopardize personnel safety and health during critical missions.

  1. Lunar Lander project: A study on future manned missions to the Moon

    NASA Astrophysics Data System (ADS)

    This project is based on designing a small lunar probe which will conduct research relating to future manned missions to the moon. The basic design calls for two experiments to be run. The first of these experiments is an enclosed environment section which will be exposed to solar radiation while on the moon. The purpose of this experiment is to determine the effect of radiation on an enclosed environment and how different shielding materials can be used to moderate this effect. The eight compartments will have the following covering materials: glass, polarized glass, plexiglass, polyurethane, and boron impregnated versions of the polyurethane and plexiglass. The enclosed atmosphere will be sampled by a mass spectrometer to determine elemental breakdown of its primary constituents. This is needed so that an accurate atmospheric processing system can be designed for a manned mission. The second experiment is a seismic study of the moon. A small penetrating probe will be shot into the lunar surface and data will be collected onboard the lander by an electronic seismograph which will store the data in the data storage unit for retrieval and transmission once every twenty-three hours. The project is designed to last ten years with possible extended life for an additional nine years at which point power requirements prevent proper functioning of the various systems.

  2. Interest and design of magnetic properties measurements on planetary and asteroid landers

    NASA Astrophysics Data System (ADS)

    Rochette, P.; Gattacceca, J.; Eisenlohr, P.

    2003-04-01

    Intrinsic magnetic properties, like susceptibility X, provide a precise determination of the iron phases with a penetration depth not available with other chemical and mineralogical sensing tools, thus allowing to unravel space weathering effects. Systematic studies of meteorites (see PS10.01 abstract of Rochette et al.) demonstrate that X measurements on asteroid surface could be a very efficient way to assign a meteorite class to a given asteroid. Another application could be the characterisation of the higly magnetic martian regolith. On the other hand natural remanent magnetization (NRM) measurements are crucial to interpret magnetic field anomalies such as those found on Mars and Moon, and likely to be found on Mercury. NRM gives also access to past magnetic fields and extinct planetary dynamo. Rugged, light and low consumption systems already exist for such measurements on earth and we will present a scheme to integrate both magnetic susceptibility (using a LC oscillator) and NRM (using a 3 axis fluxgate) on a lander to offer a versatile instrument package for every mission involving a lander. For the LC oscillator calibration of the geometric factor will be presented on a set of pebble of variable uneven shape and size. The fluxgate can be used both for making local magnetic anomaly maps, thus investigating subsurface structures, and for evaluating NRM of individual boulders.

  3. Mobile Payload Element (MPE): Concept study for a sample fetching rover for the ESA Lunar Lander Mission

    NASA Astrophysics Data System (ADS)

    Haarmann, R.; Jaumann, R.; Claasen, F.; Apfelbeck, M.; Klinkner, S.; Richter, L.; Schwendner, J.; Wolf, M.; Hofmann, P.

    2012-12-01

    In late 2010, the DLR Space Administration invited the German industry to submit a proposal for a study about a Mobile Payload Element (MPE), which could be a German national contribution to the ESA Lunar Lander Mission. Several spots in the south polar region of the moon come into consideration as landing site for this mission. All possible spots provide sustained periods of solar illumination, interrupted by darkness periods of several 10 h. The MPE is outlined to be a small, autonomous, innovative vehicle in the 10 kg class for scouting and sampling the environment in the vicinity of the lunar landing site. The novel capabilities of the MPE will be to acquire samples of lunar regolith from surface, subsurface as well as shadowed locations, define their geological context and bring them back to the lander. This will enable access to samples that are not contaminated by the lander descent propulsion system plumes to increase the chances of detecting any indigenous lunar volatiles contained within the samples. Kayser-Threde, as prime industrial contractor for Phase 0/A, has assembled for this study a team of German partners with relevant industrial and institutional competence in space robotics and lunar science. The primary scientific objective of the MPE is to acquire clearly documented samples and to bring them to the lander for analysis with the onboard Lunar Dust Analysis Package (L-DAP) and Lunar Volatile Resources Analysis Package (L-VRAP). Due to the unstable nature of volatiles, which are of particular scientific interest, the MPE design needs to provide a safe storage and transportation of the samples to the lander. The proposed MPE rover concept has a four-wheeled chassis configuration with active suspension, being a compromise between innovation and mass efficiency. The suspension chosen allows a compact stowage of the MPE on the lander as well as precise alignment of the solar generators and instruments. Since therefore no further complex mechanics are

  4. SEI lander requirements

    NASA Technical Reports Server (NTRS)

    Daues, Katherine R.

    1992-01-01

    This paper discusses lander requirements for missions to the moon and to Mars. These requirements vary depending on a number of factors ranging from overall program strategy to specific mission needs. There are also differences between landers delivering people and cargo to the moon and those required to deliver people and cargo to Mars. These differences are discussed and example missions are used to illustrate the ranges in lander requirements.

  5. SmallSat Spinning Landers for Ocean Worlds Exploration Missions - Future ESPA-Class Hitchhikers

    NASA Astrophysics Data System (ADS)

    Ridenoure, R.; Angel, S. M.; Aslam, S.; Gorius, N.; Hewagama, T.; Nixon, C. A.; Sharma, S.

    2017-02-01

    It is recommended that spinning lander concept studies should proceed in the next few years so that the necessary technologies, power sources, landing legs, landing radar, and CubeSat science payloads can be matured and demonstrated by 2050.

  6. Europa Habitability and Extant Life Exploration with Combined Flyby-Lander-Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Blanc, M.; Jones, G.; Prieto-Ballesteros, O.; Mimoun, D.; Masters, A.; Kempf, S.; Iess, L.; Martins, Z.; Lorenz, R.; Lasue, J.; Andre, N.; Bills, B. G.; Choblet, G.; Collins, G.; Cremonese, G.; Garnier, P.; Hand, K.; Hartogh, P.; Khurana, K. K.; Stephan, K.; Tosi, F.; Vance, S. D.; van Hoolst, T.; Westall, F.; Wolwerk, M.; Cooper, J. F.; Sittler, E. C.; Brinckerhoff, W.; Hurford, T.; Europa Initiative

    2016-10-01

    The optimal configuration for investigation of habitability and any extant life at Europa would be a combined constellation of flyby, lander, and orbiter spacecraft. The Europa Initiative is designing a small orbiter as part of this constellation.

  7. Science Program of Lunar Landers of "Luna-Glob" and "Luna-Resource" Missions

    NASA Astrophysics Data System (ADS)

    Mitrofanov, I. G.; Zelenyi, L. M.; Tret'yakov, V. I.; Dolgopolov, V. P.

    2011-03-01

    Program of scientific investigations is presented for two Russian polar landers: Luna Resource and Luna Glob. This program has to address two tasks: studies of composition of lunar polar regolith and studies of lunar exosphere at both poles.

  8. Characterisation of sites of astrobiology interest for Mars landers and sample return missions

    NASA Astrophysics Data System (ADS)

    Wills, D. E. S.; Monaghan, E. P.; Foing, B. H.

    2009-04-01

    Introduction: The aim of this work is to nominate and assess candidate landing sites for missions of astrobiological interest to Mars. We report in particular on science and technical criteria and our data analysis for sites suitable for an ExoMars-class mission. This includes information from previous missions (such as Mars Express, MGS, Odyssey, MRO and MER rovers) on mineralogical composition, geomorphology, evidence from past water history from imaging and spectroscopic data, and existence of in-situ prior information from landers and rovers (concerning evidences for volatiles, organics and habitability conditions). Science Goals and Objectives: Firstly, we look for morphological evidence of hydrological activity, including sedimentary deposits (deltas, valley networks), areas of ancient hydrothermal activity (spring deposits). Secondly, we look for mineralogical evidence of hydrological activity, such as phyllosilicates (formed by alteration due to water, indicate prolonged exposure to standing water), hydrated sulphates (formed by alteration due to water, not necessarily standing water), other water-containing minerals. Thirdly, we prioritise Noachian terrain (during this epoch, ~3.5 billion years ago, the Martian climate may have been warmer, and liquid water may have been stable on the surface). Finally, we look for sites where the potential for preservation of biosignatures is high (exposed bedrock, subsurface regions, spring sinters). Engineering Constraints: We consider the engineering constraints placed on the ExoMars misson. These include latitude (sufficient insolation for power), landing altitude (sufficient atmosphere for EDL), horizontal winds, shear, and wind turbulence (airbag free fall), radar altimeter reflectivity (for descent and landing control), obstacles and rock distribution (airbag landing), slopes (airbag landing), rover egress, and rover locomotion. The Priority Sites: Out of a short-list of ten proposed locations, we select two top

  9. Wet Chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: Data analysis and results

    NASA Astrophysics Data System (ADS)

    Kounaves, S. P.; Hecht, M. H.; Kapit, J.; Gospodinova, K.; DeFlores, L.; Quinn, R. C.; Boynton, W. V.; Clark, B. C.; Catling, D. C.; Hredzak, P.; Ming, D. W.; Moore, Q.; Shusterman, J.; Stroble, S.; West, S. J.; Young, S. M. M.

    2010-01-01

    Chemical analyses of three Martian soil samples were performed using the Wet Chemistry Laboratories on the 2007 Phoenix Mars Scout Lander. One soil sample was obtained from the top ˜2 cm (Rosy Red) and two were obtained at ˜5 cm depth from the ice table interface (Sorceress 1 and Sorceress 2). When mixed with water in a ˜1:25 soil to solution ratio (by volume), a portion of the soil components solvated. Ion concentrations were measured using an array of ion selective electrodes and solution conductivity using a conductivity cell. The measured concentrations represent the minimum leachable ions in the soil and do not take into account species remaining in the soil. Described is the data processing and analysis for determining concentrations of seven ionic species directly measured in the soil/solution mixture. There were no significant differences in concentrations, pH, or conductivity, between the three samples. Using laboratory experiments, refinement of the surface calibrations, and modeling, we have determined a pH for the soil solution of 7.7(±0.3), under prevalent conditions, carbonate buffering, and PCO2 in the cell headspace. Perchlorate was the dominant anion in solution with a concentration for Rosy Red of 2.7(±1) mM. Equilibrium modeling indicates that measured [Ca2+] at 0.56(±0.5) mM and [Mg2+] at 2.9(±1.5) mM, are consistent with carbonate equilibrium for a saturated solution. The [Na+] and [K+] were 1.4(±0.6), and 0.36(±0.3) mM, respectively. Results indicate that the leached portion of soils at the Phoenix landing site are slightly alkaline and dominated by carbonate and perchlorate. However, it should be noted that there is a 5-15 mM discrepancy between measured ions and conductivity and another species may be present.

  10. The method of landing sites selection for Russian lunar lander missions

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Igor; Djachkova, Maya; Litvak, Maxim; Sanin, Anton

    2016-04-01

    Russian space agency is planning to launch two lunar landers in the upcoming years - Luna-Glob (2018) and Luna-Resurs (2021). Instruments installed on board the landers are designed to study volatiles and water ice, lunar exosphere, dust particles and regolith composition. As primary scientific interest is concentrated in the south polar region, the landing sites for both landers will be selected there. Since rugged terrain, conditions of solar illumination at high altitudes and necessity of direct radio communication with the Earth, it is essential to select an optimal landing site for each lander. We present the method of landing sites selection, which is based on geographical information systems (GIS) technologies to perform analysis, based on the criteria of surface suitability for landing, such as slopes, illumination conditions and Earth visibility. In addition, the estimations of hydrogen concentration in regolith based on LEND/LRO data were used to evaluate landing site candidates on possible water ice presence. The method gave us 6 canditates to land. Four of them are located in the impact craters: Simpelius D, Simpelius E, Boguslawsky C, Boussingault, and the other two are located to the north of Schomberger crater and to the north-west of Boguslawsky C crater and associated with probable basin-related materials. The main parameters of these sites will be presented with possible prioritization based on both technical requirements and scientific interest.

  11. NASA's Robotic Lander Takes Flight

    NASA Image and Video Library

    On Monday, June 13, the robotic lander mission team was poised and ready when the lander prototype in the adjacent building lifted itself off the ground and rose unrestrained higher and higher. App...

  12. A Lunar L2-Farside Exploration and Science Mission Concept with the ORion Multi-Purpose Crew Vehicle and a Teleoperated Lander/Rover

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.; Kring, David; Norris, Scott; Hopkins, Josh; Lazio, Joseph; Kasper, Justin

    2012-01-01

    A novel concept is presented in this paper for a human mission to the lunar L2 (Lagrange) point that would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations. In an L2 halo orbit above the lunar farside, the astronauts would travel 15% farther from Earth than did the Apollo astronauts and spend almost three times longer in deep space. Such missions would validate the Orion MPCV's life support systems, would demonstrate the high-speed re-entry capability needed for return from deep space, and would measure astronauts' radiation dose from cosmic rays and solar flares to verify that Orion would provide sufficient protection, as it is designed to do. On this proposed mission, the astronauts would teleoperate landers and rovers on the unexplored lunar farside, which would obtain samples from the geologically interesting farside and deploy a low radio frequency telescope. Sampling the South Pole-Aitkin basin (one of the oldest impact basins in the solar system) is a key science objective of the 2011 Planetary Science Decadal Survey. Observations of the Universe's first stars/galaxies at low radio frequencies are a priority of the 2010 Astronomy & Astrophysics Decadal Survey. Such telerobotic oversight would also demonstrate capability for human and robotic cooperation on future, more complex deep space missions.

  13. A Lunar L2-Farside Exploration and Science Mission Concept with the ORion Multi-Purpose Crew Vehicle and a Teleoperated Lander/Rover

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.; Kring, David; Norris, Scott; Hopkins, Josh; Lazio, Joseph; Kasper, Justin

    2012-01-01

    A novel concept is presented in this paper for a human mission to the lunar L2 (Lagrange) point that would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations. In an L2 halo orbit above the lunar farside, the astronauts would travel 15% farther from Earth than did the Apollo astronauts and spend almost three times longer in deep space. Such missions would validate the Orion MPCV's life support systems, would demonstrate the high-speed re-entry capability needed for return from deep space, and would measure astronauts' radiation dose from cosmic rays and solar flares to verify that Orion would provide sufficient protection, as it is designed to do. On this proposed mission, the astronauts would teleoperate landers and rovers on the unexplored lunar farside, which would obtain samples from the geologically interesting farside and deploy a low radio frequency telescope. Sampling the South Pole-Aitkin basin (one of the oldest impact basins in the solar system) is a key science objective of the 2011 Planetary Science Decadal Survey. Observations of the Universe's first stars/galaxies at low radio frequencies are a priority of the 2010 Astronomy & Astrophysics Decadal Survey. Such telerobotic oversight would also demonstrate capability for human and robotic cooperation on future, more complex deep space missions.

  14. Quasi-microscope concept for planetary missions. [optically augmented lander camera for high resolution microscopy

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Burcher, E. E.; Wall, S. D.; Arvidson, R. E.; Giat, O.

    1977-01-01

    Viking lander cameras have returned stereo and multispectral views of the Martian surface with a resolution that approaches 2 mm/lp in the near field. A two-orders-of-magnitude increase in resolution could be obtained for collected surface samples by augmenting these cameras with auxiliary optics that would neither impose special camera design requirements nor limit the cameras field of view of the terrain. Quasi-microscope images would provide valuable data on the physical and chemical characteristics of planetary regoliths.

  15. Viking Lander reliability program

    NASA Technical Reports Server (NTRS)

    Pilny, M. J.

    1978-01-01

    The Viking Lander reliability program is reviewed with attention given to the development of the reliability program requirements, reliability program management, documents evaluation, failure modes evaluation, production variation control, failure reporting and correction, and the parts program. Lander hardware failures which have occurred during the mission are listed.

  16. Evaluation of Viking Lander barometric pressure sensor. [performance related to Viking mission environments

    NASA Technical Reports Server (NTRS)

    Mitchell, M.

    1977-01-01

    Variable reluctance type pressure sensors were evaluated to determine their performance characteristics related to Viking Mission environment levels. Static calibrations were performed throughout the evaluation over the full range of the sensors using two point contact manometer standards. From the beginning of the evaluation to the end of the evaluation, the zero shift in the two sensors was within 0.5 percent, and the sensitivity shift was 0.05 percent. The maximum thermal zero coefficient exhibited by the sensors was 0.032 percent over the temperature range of -28.89 C to 71.11 C. The evaluation results indicated that the sensors are capable of making high accuracy pressure measurements while being exposed to the conditions mentioned.

  17. Geomorphic and geologic settings of the Phoenix Lander mission landing site

    NASA Astrophysics Data System (ADS)

    Heet, T. L.; Arvidson, R. E.; Cull, S. C.; Mellon, M. T.; Seelos, K. D.

    2009-11-01

    The Phoenix Lander touched down on the northern distal flank of the shield volcano Alba Patera in a ˜150 km wide valley underlain by the Scandia region unit. The geomorphology and geology of the landing site is dominated by the ˜0.6 Ga, 11.5 km wide, bowl-shaped impact crater, Heimdal, and its areally extensive ejecta deposits. The Lander is located ˜20 km to the west of the crater and is sitting on a plains surface underlain by partially eroded Heimdal ejecta deposits. Heimdal was produced by a hypervelocity impact into fine-grained, ice-rich material and is inferred to have produced high velocity winds and a ground-hugging ejecta emplacement mode that destroyed or buried preexisting surfaces and rock fields out to ˜10 crater radii. Patterned ground is ubiquitous, with complex polygon patterns and rock rubble piles located on older plains (˜3.3 Ga) to the west of the ejecta deposits. Crater size frequency distributions are complex and represent equilibria between crater production and destruction processes (e.g., aeolian infill, cryoturbation, relaxation of icy substrate). Rock abundances increase near craters for the older plains and rocks with their dark shadows explain the reason for the few percent lower albedo for these plains as opposed to the Heimdal ejecta deposits. Many rocks at the landing site have been reworked by cryoturbation and moved to polygon troughs. The evidence for cryoturbation and the lack of aeolian features imply that the soils sampled by Phoenix are locally derived and mixed with a subordinate amount of windblown dust.

  18. Mars lander survey

    NASA Technical Reports Server (NTRS)

    Stump, William R.; Babb, Gus R.; Davis, Hubert P.

    1986-01-01

    The requirements, issues, and design options are reviewed for manned Mars landers. Issues such as high 1/d versus low 1/d shape, parking orbit, and use of a small Mars orbit transfer vehicle to move the lander from orbit to orbit are addressed. Plots of lander mass as a function of Isp, destination orbit, and cargo up and down, plots of initial stack mass in low Earth orbit as a function of lander mass and parking orbit, detailed weight statements, and delta V tables for a variety of options are included. Lander options include a range from minimum landers up to a single stage reusable design. Mission options include conjunction and Venus flyby trajectories using all-cryogenic, hybrid, NERVA, and Mars orbit aerobraking propulsion concepts.

  19. Reconciling the Differences between the Measurements of CO2 Isotopes by the Phoenix and MSL Landers

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Mahaffy, P. R.; Atreya, S.; Pavlov, A. A.; Trainer, M.; Webster, C. R.; Wong, M.

    2014-01-01

    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars. There have been several different measurements by landers and Earth based systems performed in recent years that have not been in agreement. In particular, measurements of the isotopic composition of martian atmospheric CO2 by the Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) are in stark disagreement. This work attempts to use measurements of mass 45 and mass 46 of martian atmospheric CO2 by the SAM and TEGA instruments to search for agreement as a first step towards reaching a consensus measurement that might be supported by data from both instruments.

  20. Three Dimensional Rover/Lander/Orbiter Mission-Planning (3D-ROMPS) System: A Modern Approach to Mission Planning

    NASA Technical Reports Server (NTRS)

    Scharfe, Nathan D.

    2005-01-01

    NASA's current mission planning system is based on point design, two-dimensional display, spread sheets, and report technology. This technology does not enable engineers to analyze the results of parametric studies of missions plans. This technology will not support the increased observational complexity and data volume of missions like Cassini, Mars Reconnaissance Orbiter (MRO), Mars Science Laboratory (MSL), and Mars Sample Return (MSR). The goal of the 3D-ROMPS task has been to establish a set of operational mission planning and analysis tools in the Image Processing Laboratory (IPL) Mission Support Area (MSA) that will respond to engineering requirements for planning future Solar System Exploration (SSE) missions using a three-dimensional display.

  1. Three Dimensional Rover/Lander/Orbiter Mission-Planning (3D-ROMPS) System: A Modern Approach to Mission Planning

    NASA Technical Reports Server (NTRS)

    Scharfe, Nathan D.

    2005-01-01

    NASA's current mission planning system is based on point design, two-dimensional display, spread sheets, and report technology. This technology does not enable engineers to analyze the results of parametric studies of missions plans. This technology will not support the increased observational complexity and data volume of missions like Cassini, Mars Reconnaissance Orbiter (MRO), Mars Science Laboratory (MSL), and Mars Sample Return (MSR). The goal of the 3D-ROMPS task has been to establish a set of operational mission planning and analysis tools in the Image Processing Laboratory (IPL) Mission Support Area (MSA) that will respond to engineering requirements for planning future Solar System Exploration (SSE) missions using a three-dimensional display.

  2. Lunar lander conceptual design

    NASA Technical Reports Server (NTRS)

    Lee, Joo Ahn; Carini, John; Choi, Andrew; Dillman, Robert; Griffin, Sean J.; Hanneman, Susan; Mamplata, Caesar; Stanton, Edward

    1989-01-01

    A conceptual design is presented of a Lunar Lander, which can be the primary vehicle to transport the equipment necessary to establish a surface lunar base, the crew that will man the base, and the raw materials which the Lunar Station will process. A Lunar Lander will be needed to operate in the regime between the lunar surface and low lunar orbit (LLO), up to 200 km. This lander is intended for the establishment and operation of a manned surface base on the moon and for the support of the Lunar Space Station. The lander will be able to fulfill the requirements of 3 basic missions: A mission dedicated to delivering maximum payload for setting up the initial lunar base; Multiple missions between LLO and lunar surface dedicated to crew rotation; and Multiple missions dedicated to cargo shipments within the regime of lunar surface and LLO. A complete set of structural specifications is given.

  3. Performance of the mission critical Electrical Support System (ESS) which handled communications and data transfer between the Rosetta Orbiter and its Lander Philae while en route to and at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, Susan; Rusznyak, Peter; Balaz, Jan; Schmidt, Walter; Fantinati, Cinzia; Kuechemann, Oliver; Geurts, Koen

    2016-08-01

    The Electrical Support System (ESS), which was designed and built in Ireland, handled commands transmitted from the Rosetta spacecraft to the Command and Data Management System (CDMS) aboard its Lander Philae during a ten year Cruise Phase to comet 67P/Churyumov-Gerasimenko as well as at the comet itself. The busy Cruise Phase included three Earth flybys, a fly-by of Mars and visits to two asteroids, Steins and Lutetia. Data originating at the individual Lander experiments measured while en-route to and at the comet were also handled by the ESS which received and reformatted them prior to their transmission by Rosetta to Earth. Since the success of the Lander depended on the acquisition of scientific data, the ESS was defined by the European Space Agency to be Mission Critical Hardware. The electronic design of the ESS and its method of handling communications between the spacecraft and Philae are herein presented. The nominal performance of the ESS during the Cruise Phase and in the course of subsequent surface campaigns is described and the successful fulfilment of the brief of this subsystem to retrieve unique scientific data measured by the instruments of the Philae Lander demonstrated.

  4. Viking lander spacecraft battery

    NASA Technical Reports Server (NTRS)

    Newell, D. R.

    1976-01-01

    The Viking Lander was the first spacecraft to fly a sterilized nickel-cadmium battery on a mission to explore the surface of a planet. The significant results of the battery development program from its inception through the design, manufacture, and test of the flight batteries which were flown on the two Lander spacecraft are documented. The flight performance during the early phase of the mission is also presented.

  5. Envisaged plasma and magnetic field measurements onboard the Rosetta Lander Philae on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Apathy, Istvan; Hilchenbach, Martin; Remizov, Anatoly; Auster, Hans-Ulrich; Berghofer, Gerhard

    Comets are the thinnest cheaters in our solar system. While the comet nucleus extents only up to a few kilometers, the coma can span several hundred million kilometers. ESA's corner stone mission Rosetta will orbit comet 67P/Churyumov-Gerasimenko and deliver the cometary lander Philae onto the comet surface in Novemebr 2014. The instrument ROMAP (Rosetta Lander Magnetometer and Plasma Monitor) onboard Philae consists of a fluxgate magnetometer and a plasma ion and electron sensor. ROMAP will measure for the first time the magnetic field, electron and ion distribution on a cometary surface.
The envisaged science will focuss on the space plasma and magnetic field in the vicinity and on the comet nucleus. We will present the instrument parameters and observation timeline. We will discuss the potential science envisaged from November 2014 onward such as the potential remanent magnetisation of the comet nucleus and what it would mean for the nucleus formation process as well as the envisaged unique solar wind plasma observations on a cometary surface including the transition from day to night side.

  6. Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Tropical rainfall affects the lives and economics of a majority of the Earth's population. Tropical rain systems, such as hurricanes, typhoons, and monsoons, are crucial to sustaining the livelihoods of those living in the tropics. Excess rainfall can cause floods and great property and crop damage, whereas too little rainfall can cause drought and crop failure. The latent heat release during the process of precipitation is a major source of energy that drives the atmospheric circulation. This latent heat can intensify weather systems, affecting weather thousands of kilometers away, thus making tropical rainfall an important indicator of atmospheric circulation and short-term climate change. Tropical forests and the underlying soils are major sources of many of the atmosphere's trace constituents. Together, the forests and the atmosphere act as a water-energy regulating system. Most of the rainfall is returned to the atmosphere through evaporation and transpiration, and the atmospheric trace constituents take part in the recycling process. Hence, the hydrological cycle provides a direct link between tropical rainfall and the global cycles of carbon, nitrogen, and sulfur, all important trace materials for the Earth's system. Because rainfall is such an important component in the interactions between the ocean, atmosphere, land, and the biosphere, accurate measurements of rainfall are crucial to understanding the workings of the Earth-atmosphere system. The large spatial and temporal variability of rainfall systems, however, poses a major challenge to estimating global rainfall. So far, there has been a lack of rain gauge networks, especially over the oceans, which points to satellite measurement as the only means by which global observation of rainfall can be made. The Tropical Rainfall Measuring Mission (TRMM), jointly sponsored by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of

  7. Viking Lander Model

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Viking Project found a place in history when it became the first mission to land a spacecraft successfully on the surface of another planet and return both imaging and non-imaging data over an extended time period. Two identical spacecraft, each consisting of a lander and an orbiter, were built. Each orbiter-lander pair flew together and entered Mars orbit; the landers then separated and descended to the planet's surface.

    The Viking 1 Lander touched down on the western slope of Chryse Planitia (the Plains of Gold) on July 20, 1976, while the Viking 2 lander settled down at Utopia Planitia on September 3, 1976.

    Besides taking photographs and collecting other science data on the Martian surface, the two landers conducted three biology experiments designed to look for possible signs of life. These experiments discovered unexpected and enigmatic chemical activity in the Martian soil, but provided no clear evidence for the presence of living microorganisms in soil near the landing sites. According to scientists, Mars is self-sterilizing. They believe the combination of solar ultraviolet radiation that saturates the surface, the extreme dryness of the soil and the oxidizing nature of the soil chemistry prevent the formation of living organisms in the Martian soil.

    The Viking mission was planned to continue for 90 days after landing. Each orbiter and lander operated far beyond its design lifetime. Viking Orbiter 1 functioned until July 25, 1978, while Viking Orbiter 2 continued for four years and 1,489 orbits of Mars, concluding its mission August 7, 1980. Because of the variations in available sunlight, both landers were powered by radioisotope thermoelectric generators -- devices that create electricity from heat given off by the natural decay of plutonium. That power source allowed long-term science investigations that otherwise would not have been possible. The last data from Viking Lander 2 arrived at Earth on April 11, 1980. Viking Lander

  8. Deployment of a lander on the binary asteroid (175706) 1996 FG3, potential target of the european MarcoPolo-R sample return mission

    NASA Astrophysics Data System (ADS)

    Tardivel, Simon; Michel, Patrick; Scheeres, Daniel J.

    2013-08-01

    The idea of deploying a lander on the secondary body of the binary primitive asteroid (175706) 1996 FG3 is investigated. 1996 FG3 is the backup target of the European sample return space mission MarcoPolo-R under assessment study at the European Space Agency in the framework of the M3 Medium-Class mission competition. The launch will take place in 2022-2024, depending on its selection at the end of 2013. A lander is indicated as an optional payload, depending on mass availability on the spacecraft. Obviously, the possible complexity of a lander deployment is also an important parameter to take into account. Here we demonstrate that, considering worst case scenarios and low requirements on the spacecraft GNC and deployment mechanism, the operations are easy to implement and safe for the main spacecraft. The concept of operations is to deploy a light lander from the L2 Lagrange point of the binary system, on a ballistic trajectory that will impact the secondary asteroid. The fundamental principles of this strategy are briefly presented and a detailed model of 1996 FG3 is considered, to which the strategy is applied. We show that the deployment is successful in 99.94% of cases.

  9. Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements

    NASA Technical Reports Server (NTRS)

    Bock, Yehuda; Agnew, Duncan C.; Fang, Peng; Genrich, Joachim F.; Hager, Bradford H.; Herring, Thomas A.; Hudnut, Kenneth W.; King, Robert W.; Larsen, Shawn; Minster, J.-B.

    1993-01-01

    The first measurements are reported for a major earthquake by a continuously operating GPS network, the permanent GPS Genetic ARRY (PGGA) in southern California. The Landers and Big Bear earthquakes of June 28, 1992 were monitored by daily observations. Ten weeks of measurements indicate significant coseismic motion at all PGGA sites, significant postseismic motion at one site for two weeks after the earthquakes, and no significant preseismic motion. These measurements demonstrate the potential of GPS monitoring for precise detection of precursory and aftershock seismic deformation in the near and far field.

  10. MSFC Robotic Lunar Lander Testbed and Current Status of the International Lunar Network (ILN) Anchor Nodes Mission

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara; Bassler, Julie; Harris, Danny; Morse, Brian; Reed, Cheryl; Kirby, Karen; Eng, Douglas

    2009-01-01

    The lunar lander robotic exploration testbed at Marshall Spaceflight Center provides a test environment for robotic lander test articles, components and algorithms to reduce the risk on the airless body designs during lunar landing. Also included is a chart comparing the two different types of Anchor nodes for the International Lunar Network (ILN): Solar/Battery and the Advanced Stirling Radioisotope generator (ARSG.)

  11. Morpheus Lander

    NASA Image and Video Library

    2017-03-23

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing. This is an image of the lander being installed in the B-2 facility for testing at Plum Brook Station.

  12. First Panoramic View from Comet Lander

    NASA Image and Video Library

    2014-11-13

    The Philae lander of Europe Rosetta mission has returned the first panoramic image from the surface of a comet. The unprocessed panorama from the lander CIVA-P camera shows a 360-degree view around the point of final touchdown.

  13. Identification and characterization of science-rich landing sites for lunar lander missions using integrated remote sensing observations

    NASA Astrophysics Data System (ADS)

    Flahaut, J.; Blanchette-Guertin, J.-F.; Jilly, C.; Sharma, P.; Souchon, A.; van Westrenen, W.; Kring, D. A.

    2012-12-01

    Despite more than 52 years of lunar exploration, a wide range of first-order scientific questions remain about the Moon's formation, temporal evolution, and current surface and interior properties. Addressing many of these questions requires obtaining new in situ analyses or return of lunar surface or shallow subsurface samples, and hence rely on the selection of optimal landing sites. Here, we present an approach to optimize science-rich lunar landing site selection studies based on the integration of remote sensing observations. Currently available remote sensing data, as well as features of interest published in the recent literature, were integrated in a Geographic Information System. This numerical database contains geographic information about all these findings, which can be consulted and used to simultaneously display multiple features and parameters of interest. To illustrate our approach, we identified the optimal landing sites to address the two top priorities (or goals) relative to Concept 3 of the National Research Council of the National Academies (2007), namely to 'Determine the extent and composition of the primary feldspathic crust, (ur)KREEP layer, and other products of differentiation' and to 'Inventory the variety, age, distribution and origin of lunar rock types'. We review site requirements and propose possible landing sites for both these goals. We identified 29 sites that best fulfill both these goals and compare them with the landing sites of planned future lunar lander missions. Finally, we detail two of these science-rich sites (Aristarchus and Theophilus craters) which are particularly accessible through their location on the nearside.

  14. Measuring the permittivity of the surface of the Churyumov-Gerasimenko nucleus: the PP-SESAME experiment on board the Philae/ROSETTA lander

    NASA Astrophysics Data System (ADS)

    Lethuillier, A.; Le Gall, A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, G.

    2014-04-01

    The Permittivity Probe (PP-SESAME) on-board the Philae Lander of the ROSETTA mission will determine the complex permittivity of the surface of the Churyumov-Gerasimenko nucleus and monitor its variations with time. Doing so, it will provide unique insight into the composition and activity of the comet. In this paper, we present the method we have developed to analyze PP-SESAME active measurements. This method will be tested in May 2014 with a replica of the instrument in the giant ice cave system of Dachstein, in Austria.

  15. Altair Lunar Lander Consumables Management

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Button, Robert; Linne, Diane

    2009-01-01

    The Altair lunar lander is scheduled to return humans to the moon in the year 2020. Keeping the crew of 4 and the vehicle functioning at their best while minimizing lander mass requires careful budgeting and management of consumables and cooperation with other constellation elements. Consumables discussed here include fluids, gasses, and energy. This paper presents the lander's missions and constraints as they relate to consumables and the design solutions that have been employed in recent Altair conceptual designs.

  16. Testing general relativity with Landers on the Martian satellite Phobos

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Borderies, N. J.; Campbell, J. K.; Dunne, J. A.; Ellis, J.

    1989-01-01

    A planned experiment to obtain range and Doppler data with the Phobos 2 Lander on the surface of the Martian satellite Phobos is described. With the successful insertion on January 29, 1989 of Phobos 2 into Mars orbit, it is anticipated that the Lander will be placed on the surface of Phobos in April 1989. Depending on the longevity of the Lander, range and Doppler data for a period of from one to several years are expected. Because these data are of value in performing solar-system tests of general relativity, the current accuracy of the relevant relativity tests using Deep Space Network data from the Mariner-9 orbiter of Mars in 1971 and from the Viking Landers in 1976-1982 is reviewed. The expected improvement from data anticipated during the Phobos 2 Lander Mission is also discussed; most important will be an improved sensitivity to any time variation in the gravitational 'constant' as measured in atomic units.

  17. Testing general relativity with Landers on the Martian satellite Phobos

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Borderies, N. J.; Campbell, J. K.; Dunne, J. A.; Ellis, J.

    1989-01-01

    A planned experiment to obtain range and Doppler data with the Phobos 2 Lander on the surface of the Martian satellite Phobos is described. With the successful insertion on January 29, 1989 of Phobos 2 into Mars orbit, it is anticipated that the Lander will be placed on the surface of Phobos in April 1989. Depending on the longevity of the Lander, range and Doppler data for a period of from one to several years are expected. Because these data are of value in performing solar-system tests of general relativity, the current accuracy of the relevant relativity tests using Deep Space Network data from the Mariner-9 orbiter of Mars in 1971 and from the Viking Landers in 1976-1982 is reviewed. The expected improvement from data anticipated during the Phobos 2 Lander Mission is also discussed; most important will be an improved sensitivity to any time variation in the gravitational 'constant' as measured in atomic units.

  18. Instrument study of the Lunar Dust eXplorer (LDX) for a lunar lander mission II: Laboratory model calibration

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Strack, Heiko; Bugiel, Sebastian; Wu, Yiyong; Srama, Ralf

    2015-10-01

    A dust trajectory detector placed on the lunar surface is exposed to extend people's knowledge on the dust environment above the lunar surface. The new design of Lunar Dust eXplorer (LDX) is well suited for lunar or asteroid landers with a broad range of particle charges (0.1-10 fC), speeds (few m s-1 to few km s-1) and sizes (0.1-10 μ m). The calibration of dust trajectory detector is important for the detector development. We do present experimental results to characterize the accuracy of the newly developed LDX laboratory model. Micron sized iron particles were accelerated to speed between 0.5 and 20 km s-1 with primary charges larger than 1 fC. The achieved accuracies of the detector are ± 5 % and ± 7 % for particle charge and speed, respectively. Dust trajectories can be determined with measurement accuracy better than ± 2°. A dust sensor of this type is suited for the exploration of the surface of small bodies without an atmosphere like the Earth's moon or asteroids in future, and the minisatellites are also suitable carriers for the study of interplanetary dust and manned debris on low Earth orbits.

  19. Robotic Lunar Landers for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2012-01-01

    The MSFC/APL Robotic Lunar Landing Project (RLLDP) team has developed lander concepts encompassing a range of mission types and payloads for science, exploration, and technology demonstration missions: (1) Developed experience and expertise in lander systems, (2) incorporated lessons learned from previous efforts to improve the fidelity of mission concepts, analysis tools, and test beds Mature small and medium lander designs concepts have been developed: (1) Share largely a common design architecture. (2) Flexible for a large number of mission and payload options. High risk development areas have been successfully addressed Landers could be selected for a mission with much of the concept formulation phase work already complete

  20. Planning and implementation of the on-comet operations of the instrument SD2 onboard the lander Philae of Rosetta mission

    NASA Astrophysics Data System (ADS)

    Di Lizia, P.; Bernelli-Zazzera, F.; Ercoli-Finzi, A.; Mottola, S.; Fantinati, C.; Remetean, E.; Dolives, B.

    2016-08-01

    The lander Philae of the Rosetta mission landed on the surface of the comet 67 P/Churyumov-Gerasimenko on November 12, 2014. Among the specific subsystems and instruments carried on Philae, the sampling, drilling and distribution (SD2) subsystem had the role of providing in-situ operations devoted to soil drilling, sample collection, and their distribution to three scientific instruments. After landing, a first sequence of scientific activities was carried out, relying mainly on the energy stored in the lander primary battery. Due to the limited duration and the communication delay, these activities had to be carried out automatically, with a limited possibility of developing and uploading commands from the ground. Philae's landing was not nominal and SD2 was operated in unexpected conditions: the lander was not anchored to the soil and leant on the comet surface shakily. Nevertheless, one sampling procedure was attempted. This paper provides an overview of SD2 operation planning and on-comet operations, and analyses SD2 achievements during the first science sequence of Philae's on-comet operations.

  1. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    NASA Astrophysics Data System (ADS)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space

  2. Carbon and Oxygen Stable Isotope Measurements of Martian Atmospheric CO2 by the Phoenix Lander

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.; Boynton, W. V.; Hoffman, J. H.; Ming, D. W.; Hamara, D.

    2010-01-01

    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars [1]. The isotopic composition of the martian atmosphere has been measured using a number of different methods (Table 1), however a precise value (<1%) has yet to be achieved. Given the elevated Delta(sup 13)C values measured in carbonates in martian meteorites [2-4] it has been proposed that the martian atmosphere was enriched in 13C [8]. This was supported by measurements of trapped CO2 gas in EETA 79001[2] which showed elevated Delta(sup 13)C values (Table 1). More recently, Earth-based spectroscopic measurements of the martian atmosphere have measured the martian CO2 to be depleted in C-13 relative to CO2 in the terrestrial atmosphere[ 7, 9-11]. The Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander [12] included a magnetic-sector mass spectrometer (EGA) [13] which had the goal of measuring the isotopic composition of martian atmospheric CO2 to within 0.5%. The mass spectrometer is a miniature instrument intended to measure both the martian atmosphere as well as gases evolved from heating martian soils.

  3. A lunar L2-Farside exploration and science mission concept with the Orion Multi-Purpose Crew Vehicle and a teleoperated lander/rover

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Kring, David A.; Hopkins, Joshua B.; Norris, Scott; Lazio, T. Joseph W.; Kasper, Justin

    2013-07-01

    A novel concept is presented in this paper for a human mission to the lunar L2 (Lagrange) point that would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations. In an L2 halo orbit above the lunar farside, the astronauts aboard the Orion Crew Vehicle would travel 15% farther from Earth than did the Apollo astronauts and spend almost three times longer in deep space. Such a mission would serve as a first step beyond low Earth orbit and prove out operational spaceflight capabilities such as life support, communication, high speed re-entry, and radiation protection prior to more difficult human exploration missions. On this proposed mission, the crew would teleoperate landers/rovers on the unexplored lunar farside, which would obtain samples from the geologically interesting farside and deploy a low radio frequency telescope. Sampling the South Pole-Aitken basin, one of the oldest impact basins in the solar system, is a key science objective of the 2011 Planetary Science Decadal Survey. Observations at low radio frequencies to track the effects of the Universe's first stars/galaxies on the intergalactic medium are a priority of the 2010 Astronomy and Astrophysics Decadal Survey. Such telerobotic oversight would also demonstrate capability for human and robotic cooperation on future, more complex deep space missions such as exploring Mars.

  4. Morpheus Lander

    NASA Image and Video Library

    2017-03-30

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing. This time-lapse video provides a view of the Morpheus test setup at Plum Brook Station's B-2 facility.

  5. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A NASA Global Precipitation Measurement (GPM) mission shirt is seen drying in the mid-day sun outside the Sun Pearl Hotel where many of the NASA GPM team are staying, Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  6. Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements

    USGS Publications Warehouse

    Bock, Y.; Agnew, D.C.; Fang, P.; Genrich, J.F.; Hager, B.H.; Herring, T.A.; Hudnut, K.W.; King, R.W.; Larsen, S.; Minster, J.-B.; Stark, K.; Wdowinski, S.; Wyatt, F.K.

    1993-01-01

    The measurement of crustal motions in technically active regions is being performed increasingly by the satellite-based Global Positioning System (GPS)1,2, which offers considerable advantages over conventional geodetic techniques3,4. Continuously operating GPS arrays with ground-based receivers spaced tens of kilometres apart have been established in central Japan5,6 and southern California to monitor the spatial and temporal details of crustal deformation. Here we report the first measurements for a major earthquake by a continuously operating GPS network, the Permanent GPS Geodetic Array (PGGA)7,9 in southern California. The Landers (magnitude Mw of 7.3) and Big Bear (Mw 6.2) earthquakes of 28 June 1992 were monitored by daily observations. Ten weeks of measurements, centred on the earthquake events, indicate significant coseismic motion at all PGGA sites, significant post-seismic motion at one site for two weeks after the earthquakes, and no significant preseismic motion. These measurements demonstrate the potential of GPS monitoring for precise detection of precursory and aftershock seismic deformation in the near and far field.

  7. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Envelopes with stamps depicting various space missions are shown at the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  8. The Global Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Jackson, Gail

    2014-05-01

    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA

  9. Planetary Seismology : Lander- and Wind-Induced Seismic Signals

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph

    2016-10-01

    Seismic measurements are of interest for future geophysical exploration of ocean worlds such as Europa or Titan, as well as Venus, Mars and the Moon. Even when a seismometer is deployed away from a lander (as in the case of Apollo) lander-generated disturbances are apparent. Such signatures may be usefully diagnostic of lander operations (at least for outreach), and may serve as seismic excitation for near-field propagation studies. The introduction of these 'spurious' events may also influence the performance of event detection and data compression algorithms.Examples of signatures in the Viking 2 seismometer record of lander mechanism operations are presented. The coherence of Viking seismometer noise levels and wind forcing is well-established : some detailed examples are examined. Wind noise is likely to be significant on future Mars missions such as InSight, as well as on Titan and Venus.

  10. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A daruma doll is seen amongst the NASA GPM Mission launch team in the Spacecraft Test and Assembly Building 2 (STA2) during the all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory, Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. One eye of the daruma doll is colored in when a goal is set, in this case a successful launch of GPM, and the second eye is colored in at the completion of the goal. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  11. The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment

    NASA Astrophysics Data System (ADS)

    Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman

    2017-02-01

    The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper ( >3 m depth) placement of the heat flow probe.

  12. Luna-25 lander: science of the first lunar day

    NASA Astrophysics Data System (ADS)

    Malakhov, Alexey; Mitrofanov, Igor; Tretyakov, Vladislav; Litvak, Maxim; Prokhorov, Vasily; Kozyrev, Alexander; Mokrousov, Maxim; Vostrukhin, Andrey

    2015-04-01

    Luna-25 lander is a Roscosmos mission to investigate the southern lunar pole to launch in 2018. The mission aims at testing the landing capability of the spacecraft as well as conducting a number of science experiments. The instrument suite consists of 10 scientific experiments to study both, the landing site and the moon as a whole. These include measurements of soil composition and volatiles in the vicinity of the lander, environmental conditions such as temperature variations, plasma and dust exosphere of Moon, measurements of Moon inner structure through seismic, radio and laser ranging sensors. Luna-25 will also provide a number of images of the lander surroundings and samples collected in its robotic arm. We present the details of the investigations program for the first lunar day for the entire instruments suite.

  13. Southern California Permanent GPS Geodetic Array: Continuous measurements of regional crustal deformation between the 1992 Landers and 1994 Northridge earthquakes

    USGS Publications Warehouse

    Bock, Y.; Wdowinski, S.; Fang, P.; Zhang, Jiahua; Williams, S.; Johnson, H.; Behr, J.; Genrich, J.; Dean, J.; Van Domselaar, M.; Agnew, D.; Wyatt, F.; Stark, K.; Oral, B.; Hudnut, K.; King, R.; Herring, T.; Dinardo, S.; Young, W.; Jackson, D.; Gurtner, W.

    1997-01-01

    The southern California Permanent GPS Geodetic Array (PGGA) was established in 1990 across the Pacific-North America plate boundary to continuously monitor crustal deformation. We describe the development of the array and the time series of daily positions estimated for its first 10 sites in the 19-month period between the June 28, 1992 (Mw=7.3), Landers and January 17, 1994 (Mw=6.7), Northridge earthquakes. We compare displacement rates at four site locations with those reported by Feigl et al. [1993], which were derived from an independent set of Global Positioning System (GPS) and very long baseline interferometry (VLBI) measurements collected over nearly a decade prior to the Landers earthquake. The velocity differences for three sites 65-100 km from the earthquake's epicenter are of order of 3-5 mm/yr and are systematically coupled with the corresponding directions of coseismic displacement. The fourth site, 300 km from the epicenter, shows no significant velocity difference. These observations suggest large-scale postseismic deformation with a relaxation time of at least 800 days. The statistical significance of our observations is complicated by our incomplete knowledge of the noise properties of the two data sets; two possible noise models fit the PGGA data equally well as described in the companion paper by Zhang et al. [this issue]; the pre-Landers data are too sparse and heterogeneous to derive a reliable noise model. Under a fractal white noise model for the PGGA data we find that the velocity differences for all three sites are statistically different at the 99% significance level. A white noise plus flicker noise model results in significance levels of only 94%, 43%, and 88%. Additional investigations of the pre-Landers data, and analysis of longer spans of PGGA data, could have an important effect on the significance of these results and will be addressed in future work. Copyright 1997 by the American Geophysical Union.

  14. Phoenix Lander Work Area

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows NASA's Phoenix Mars Lander Robotic Arm work area with an overlay. The pink area is available for digging, the green area is reserved for placing the Thermal and Electrical Conductivity Probe (TECP) instrument. Soil can be dumped in the violet area.

    Images were displayed using NASA Ames 'Viz' visualization software.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Global Precipitation Measurement Mission: Architecture and Mission Concept

    NASA Technical Reports Server (NTRS)

    Bundas, David

    2005-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.

  16. Planetary Landers and Entry Probes

    NASA Astrophysics Data System (ADS)

    Ball, Andrew J.; Garry, James R. C.; Lorenz, Ralph D.; Kerzhanovich, Viktor V.

    2007-05-01

    Preface; Acknowledgements; Part I. Engineering Issues Specific to Entry Probes, Landers or Penetrators: 1. Mission goals and system engineering; 2. Accommodation, launch, cruise and arrival from orbit or interplanetary trajectory; 3. Entering atmospheres; 4. Descent through an atmosphere; 5. Descent to an airless body; 6. Planetary balloons, aircraft, submarines and cryobots; 7. Arrival at a surface; 8. Thermal control of landers and entry probes; 9. Power systems; 10. Communication and tracking of entry probes; 11. Radiation environment; 12. Surface activities: arms, drills, moles and mobility; 13. Structures; 14. Contamination of spacecraft and planets; Part II. Previous Atmosphere/Surface Vehicles and Their Payloads: 15. Destructive impact probes; 16. Atmospheric entry probes; 17. Pod landers; 18. Legged landers; 19. Payload delivery penetrators; 20. Small body surface missions; Part III. 'Case Studies': 21. Surveyor landers; 22. Galileo probe; 23. Huygens; 24. Mars Pathfinder and Sojourner; 25. Deep Space 2 Mars microprobes; 26. Rosetta lander Philae; 27. Mars exploration rovers: Spirit and Opportunity; Appendix: Some key parameters for bodies in the Solar System; List of acronyms; Bibliography; References; Index.

  17. Planetary Landers and Entry Probes

    NASA Astrophysics Data System (ADS)

    Ball, Andrew; Garry, James; Lorenz, Ralph; Kerzhanovich, Viktor

    2010-02-01

    Preface; Acknowledgements; Part I. Engineering Issues Specific to Entry Probes, Landers or Penetrators: 1. Mission goals and system engineering; 2. Accommodation, launch, cruise and arrival from orbit or interplanetary trajectory; 3. Entering atmospheres; 4. Descent through an atmosphere; 5. Descent to an airless body; 6. Planetary balloons, aircraft, submarines and cryobots; 7. Arrival at a surface; 8. Thermal control of landers and entry probes; 9. Power systems; 10. Communication and tracking of entry probes; 11. Radiation environment; 12. Surface activities: arms, drills, moles and mobility; 13. Structures; 14. Contamination of spacecraft and planets; Part II. Previous Atmosphere/Surface Vehicles and Their Payloads: 15. Destructive impact probes; 16. Atmospheric entry probes; 17. Pod landers; 18. Legged landers; 19. Payload delivery penetrators; 20. Small body surface missions; Part III. 'Case Studies': 21. Surveyor landers; 22. Galileo probe; 23. Huygens; 24. Mars Pathfinder and Sojourner; 25. Deep Space 2 Mars microprobes; 26. Rosetta lander Philae; 27. Mars exploration rovers: Spirit and Opportunity; Appendix: Some key parameters for bodies in the Solar System; List of acronyms; Bibliography; References; Index.

  18. Extended duration lunar lander

    NASA Astrophysics Data System (ADS)

    Babic, Nikola; Carter, Matt; Cosper, Donna; Garza, David; Gonzalez, Eloy; Goodine, David; Hirst, Edward; Li, Ray; Lindsey, Martin; Ng, Tony

    1993-05-01

    Selenium Technologies has been conducting preliminary design work on a manned lunar lander for use in NASA's First Lunar Outpost (FLO) program. The resulting lander is designed to carry a crew of four astronauts to a prepositioned habitat on the lunar surface, remain on the lunar surface for up to 45 days while the crew is living in the habitat, then return the crew to earth via direct reentry and land recovery. Should the need arise, the crew can manually guide the lander to a safe lunar landing site, and live in the lander for up to ten days on the surface. Also, an abort to earth is available during any segment of the mission. The main propulsion system consists of a cluster of four modified Pratt and Whitney RL10 rocket engines that use liquid methane (LCH4) and liquid oxygen (LOX). Four engines are used to provide redundancy and a satisfactory engine out capability. Differences between the new propulsion system and the original system include slightly smaller engine size and lower thrust per engine, although specific impulse remains the same despite the smaller size. Concerns over nozzle ground clearance and engine reliability, as well as more information from Pratt and Whitney, brought about this change. The power system consists of a combination of regenerative fuel cells and solar arrays. While the lander is in flight to or from the moon, or during the lunar night, fuel cells provide all electrical power. During the lunar day, solar arrays are deployed to provide electrical power for the lander as well as electrolyzers, which separate some water back into hydrogen and oxygen for later use by the fuel cells. Total storage requirements for oxygen, hydrogen, and water are 61 kg, 551 kg, and 360 kg, respectively. The lander is a stage-and-a-half design with descent propellant, cargo, and landing gear contained in the descent stage, and the main propulsion system, ascent propellant, and crew module contained in the ascent stage. The primary structure for both

  19. Extended duration lunar lander

    NASA Technical Reports Server (NTRS)

    Babic, Nikola; Carter, Matt; Cosper, Donna; Garza, David; Gonzalez, Eloy; Goodine, David; Hirst, Edward; Li, Ray; Lindsey, Martin; Ng, Tony

    1993-01-01

    Selenium Technologies has been conducting preliminary design work on a manned lunar lander for use in NASA's First Lunar Outpost (FLO) program. The resulting lander is designed to carry a crew of four astronauts to a prepositioned habitat on the lunar surface, remain on the lunar surface for up to 45 days while the crew is living in the habitat, then return the crew to earth via direct reentry and land recovery. Should the need arise, the crew can manually guide the lander to a safe lunar landing site, and live in the lander for up to ten days on the surface. Also, an abort to earth is available during any segment of the mission. The main propulsion system consists of a cluster of four modified Pratt and Whitney RL10 rocket engines that use liquid methane (LCH4) and liquid oxygen (LOX). Four engines are used to provide redundancy and a satisfactory engine out capability. Differences between the new propulsion system and the original system include slightly smaller engine size and lower thrust per engine, although specific impulse remains the same despite the smaller size. Concerns over nozzle ground clearance and engine reliability, as well as more information from Pratt and Whitney, brought about this change. The power system consists of a combination of regenerative fuel cells and solar arrays. While the lander is in flight to or from the moon, or during the lunar night, fuel cells provide all electrical power. During the lunar day, solar arrays are deployed to provide electrical power for the lander as well as electrolyzers, which separate some water back into hydrogen and oxygen for later use by the fuel cells. Total storage requirements for oxygen, hydrogen, and water are 61 kg, 551 kg, and 360 kg, respectively. The lander is a stage-and-a-half design with descent propellant, cargo, and landing gear contained in the descent stage, and the main propulsion system, ascent propellant, and crew module contained in the ascent stage. The primary structure for both

  20. Exploring Triton with Multiple Landers

    NASA Astrophysics Data System (ADS)

    Balint, T. S.

    In our pathway for Outer Planetary Exploration several mission concepts were considered, based on the proposed Jupiter Icy Moons Orbiter (JIMO) mission architecture. This paper describes a JIMO follow-on mission concept to Neptune's largest moon. Triton is a target of interest for outer solar system studies. It has a highly inclined retrograde orbit, suggesting that it may have been a Kuiper Belt object, captured by Neptune. Given this assumption, its composition, which may include organic materials, would be of significant scientific interest. The present concept considers a surface mission architecture with two landers, each powered by a standard multi-mission radioisotope thermoelectric generator (MMRTG). The landers would operate on the surface for several years providing science data, thus expanding our understanding of the environment, the dynamic surface and atmospheric processes, and some of the seasonal variations. A JIMO class orbiter would provide telecommunication link between the landers and Earth, and would be instrumented to observe both Triton and Neptune. In this paper all key aspects of the mission architecture are addressed, including the science instruments, the main subsystems, trade options for the power system, and a conceptual design for the landers.

  1. Space Interferometry Mission: Measuring the Universe

    NASA Technical Reports Server (NTRS)

    Marr, James; Dallas, Saterios; Laskin, Robert; Unwin, Stephen; Yu, Jeffrey

    1991-01-01

    The Space Interferometry Mission (SIM) will be the NASA Origins Program's first space based long baseline interferometric observatory. SIM will use a 10 m Michelson stellar interferometer to provide 4 microarcsecond precision absolute position measurements of stars down to 20th magnitude over its 5 yr. mission lifetime. SIM will also provide technology demonstrations of synthesis imaging and interferometric nulling. This paper describes the what, why and how of the SIM mission, including an overall mission and system description, science objectives, general description of how SIM makes its measurements, description of the design concepts now under consideration, operations concept, and supporting technology program.

  2. Measurements of the composition of aerosol component of Venusian atmosphere with Vega 1 lander, preliminary data

    NASA Technical Reports Server (NTRS)

    Surkov, Y. A.; Ivanova, V. F.; Pudov, A. N.; Volkov, V. P.; Sheretov, E. P.; Kolotilin, B. I.; Safonov, M. P.; Thomas, R.; Lespagnol, J.; Hauser, A.

    1986-01-01

    Preliminary investigation of mass spectra of gaseous products of pyrolyzed Venusian cloud particles collected and analyzed by the complex device of mass-spectrometer and collector pyrolyzer on board Vega 1 lander revealed the presence of heavy particles in the upper cloud layer. Based on 64 amu peak (SO2+), an estimate of the lower limit of the sulfuric acid aerosol content at the 62 to 54 km heights of approximately 2.0 mg/cu m is obtained. A chlorine line (35 and 37 amu) is also present in the mass spectrum with a lower limit of the chlorine concentration of approximately 0.3 mg/ cu m.

  3. Airbursts as a viable source of seismic and acoustic energy for the 2016 InSight geophysical lander mission to Mars: analysis using terrestrial analogues

    NASA Astrophysics Data System (ADS)

    Taylor, Jennifer; Wookey, James; Teanby, Nick

    2014-05-01

    The explosion of a bolide as a terminal airburst, before impact into a planetary surface, is a well-documented source of both seismic and acoustic energy[1]. Here we aim to define some diagnostic properties of a recorded airburst time-series and determine detectability criteria for such events for a single station seismo-acoustic station on the Martian surface. In 2016 NASA will launch the InSight geophysical monitoring system. This lander will carry in its SEIS payload two 3-component seismic instruments - the Short Period (SP) and Very Broadband (VBB) seismometers, as well as a micro-barometer for measurement of atmospheric pressure fluctuations. The SEIS and MB packages aboard InSight could potentially be used together for seismo-acoustic detection of impact or airburst events. In past studies, this technique has been used to analyse and model the Washington State Bolide[2] and, more recently, the Chelyabinsk fireball in 2013[3]. Using a multi-station array, it is possible to estimate total kinetic energy of a bolide, its line-of-sight direction and the approximate time of its terminal burst[4]. However, with only a single station, as would be the case on Mars, more creative methods must be employed to extract information from the event. We explore the diagnostic waveform properties of an airburst, including various arrivals from the event. We also show how dominant frequency changes with distance from the event, altitude and yield. Several terrestrial events are analysed, including the 2013 Chelyabinsk fireball. We present theoretical calculations of the likely proportion of bolide terminal bursts on Mars relative to impacts, based on differences in the structure and composition of the Martian atmosphere. We go on to predict the seismic arrivals that may be observed by InSight from the coupling of the acoustic blast into the Martian crust. It is hoped that these diagnostic tools will be useful to identify and quantify bolide terminal bursts on Mars over the

  4. The Phoenix Mars Lander Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bonitz, Robert; Shiraishi, Lori; Robinson, Matthew; Carsten, Joseph; Volpe, Richard; Trebi-Ollennu, Ashitey; Arvidson, Raymond E.; Chu, P. C.; Wilson, J. J.; Davis, K. R.

    2009-01-01

    The Phoenix Mars Lander Robotic Arm (RA) has operated for over 150 sols since the Lander touched down on the north polar region of Mars on May 25, 2008. During its mission it has dug numerous trenches in the Martian regolith, acquired samples of Martian dry and icy soil, and delivered them to the Thermal Evolved Gas Analyzer (TEGA) and the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The RA inserted the Thermal and Electrical Conductivity Probe (TECP) into the Martian regolith and positioned it at various heights above the surface for relative humidity measurements. The RA was used to point the Robotic Arm Camera to take images of the surface, trenches, samples within the scoop, and other objects of scientific interest within its workspace. Data from the RA sensors during trenching, scraping, and trench cave-in experiments have been used to infer mechanical properties of the Martian soil. This paper describes the design and operations of the RA as a critical component of the Phoenix Mars Lander necessary to achieve the scientific goals of the mission.

  5. The Phoenix Mars Lander Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bonitz, Robert; Shiraishi, Lori; Robinson, Matthew; Carsten, Joseph; Volpe, Richard; Trebi-Ollennu, Ashitey; Arvidson, Raymond E.; Chu, P. C.; Wilson, J. J.; Davis, K. R.

    2009-01-01

    The Phoenix Mars Lander Robotic Arm (RA) has operated for over 150 sols since the Lander touched down on the north polar region of Mars on May 25, 2008. During its mission it has dug numerous trenches in the Martian regolith, acquired samples of Martian dry and icy soil, and delivered them to the Thermal Evolved Gas Analyzer (TEGA) and the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The RA inserted the Thermal and Electrical Conductivity Probe (TECP) into the Martian regolith and positioned it at various heights above the surface for relative humidity measurements. The RA was used to point the Robotic Arm Camera to take images of the surface, trenches, samples within the scoop, and other objects of scientific interest within its workspace. Data from the RA sensors during trenching, scraping, and trench cave-in experiments have been used to infer mechanical properties of the Martian soil. This paper describes the design and operations of the RA as a critical component of the Phoenix Mars Lander necessary to achieve the scientific goals of the mission.

  6. Comet Lander View During First Bounce

    NASA Image and Video Library

    2014-12-17

    The Philae lander of the European Space Agency Rosetta mission captured this view during its first bounce after hitting the surface of comet 67P/Churyumov-Gerasimenko on Nov. 12, 2014, with blurring as a result of the lander own motion. The image from

  7. Robotic Lander Development Project

    NASA Image and Video Library

    The Robotic Lander Development Project at the Marshall Center is testing a prototype lander that will aid in the design and development of a new generation of small, smart, versatile robotic lander...

  8. The Mars Lander/Rover (MLR)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Growing interest in a future manned mission to Mars illuminated a critical need for more information on the Martian environment, surface conditions, weather patterns, topography, etc. While the Viking landers provided valuable information of this type, the information came from fixed locations. There is a real need for Viking type of information from a number of locations on the Martian surface in order to adequately survey the planet for future landing and exploration sites. Current site survey mission discussions range from Mars orbiters to sample return missions. The limited data return from the former and the extreme expense of the latter suggest consideration of a 'middle ground' mission which provides needed survey information for an acceptable investment. Utah State University (USU) designed a Mars Lander/Rover (MLR) for use in gathering needed environmental and surface information from Mars. Philosophically, the MLR resembles a mobile Viking; that is, it moves from location to location on the Martian surface, measuring environmental conditions, analyzing soil samples, charting topographical features etc. Measured data is then telemetered to earth for further analysis. Conceptually, it was envisioned that MLR survey locations would be rather widely separated. In that sense the MLR was not a terrestrial vehicle limited to local movement about a fixed location. Rather, it would have the capability for movement over long distances to reach widely separated locations. The design focus, then, was upon a Mars Lander/Rover that leaves an orbit around Mars, reenters and soft lands on the Martian surface and moves sequentially to widely scattered locations to sample, measure, and analyze Martian environmental and surface conditions. Primary goals were payload mass and size definition, characterization of the Martian atmosphere, selection of sampling locations, identification of alternative design concepts, selection of a preferred concept, team organization, and

  9. Underneath the Phoenix Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Robotic Arm Camera on NASA's Phoenix Mars Lander took this image on Oct. 18, 2008, during the 142nd Martian day, or sol, since landing. The flat patch in the center of the image has the informal name 'Holy Cow,' based on researchers' reaction when they saw the initial image of it only a few days after the May 25, 2008 landing. Researchers first saw this flat patch in an image taken by the Robotic Arm Camera on May 30, the fifth Martian day of the mission.

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Underneath the Phoenix Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Robotic Arm Camera on NASA's Phoenix Mars Lander took this image on Oct. 18, 2008, during the 142nd Martian day, or sol, since landing. The flat patch in the center of the image has the informal name 'Holy Cow,' based on researchers' reaction when they saw the initial image of it only a few days after the May 25, 2008 landing. Researchers first saw this flat patch in an image taken by the Robotic Arm Camera on May 30, the fifth Martian day of the mission.

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Viking Lander 2 Anniversary

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This portion of a daytime IR image covers the Viking 2 landing site (shown with the X). The second landing on Mars took place September 3, 1976 in Utopia Planitia. The exact location of Lander 2 is not as well established as Lander 1 because there were no clearly identifiable features in the lander images as there were for the site of Lander 1. The Utopia landing site region contains pedestal craters, shallow swales and gentle ridges. The crater Goldstone was named in honor of the Tracking Station in the desert of California. The two Viking Landers operated for over 6 years (nearly four martian years) after landing. This one band IR (band 9 at 12.6 microns) image shows bright and dark textures, which are primarily due to differences in the abundance of rocks on the surface. The relatively cool (dark) regions during the day are rocky or indurated materials, fine sand and dust are warmer (bright). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. The dark rings around several of the craters are due to the presence of rocky (cool) material ejected from the crater. These rocks are well below the resolution of any existing Mars camera, but THEMIS can detect the temperature variations they produce. Daytime temperature variations are produced by a combination of topographic (solar heating) and thermophysical (thermal inertia and albedo) effects. Due to topographic heating the surface morphologies seen in THEMIS daytime IR images are similar to those seen in previous imagery and MOLA topography.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected

  12. Viking Lander 2 Anniversary

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This portion of a daytime IR image covers the Viking 2 landing site (shown with the X). The second landing on Mars took place September 3, 1976 in Utopia Planitia. The exact location of Lander 2 is not as well established as Lander 1 because there were no clearly identifiable features in the lander images as there were for the site of Lander 1. The Utopia landing site region contains pedestal craters, shallow swales and gentle ridges. The crater Goldstone was named in honor of the Tracking Station in the desert of California. The two Viking Landers operated for over 6 years (nearly four martian years) after landing. This one band IR (band 9 at 12.6 microns) image shows bright and dark textures, which are primarily due to differences in the abundance of rocks on the surface. The relatively cool (dark) regions during the day are rocky or indurated materials, fine sand and dust are warmer (bright). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. The dark rings around several of the craters are due to the presence of rocky (cool) material ejected from the crater. These rocks are well below the resolution of any existing Mars camera, but THEMIS can detect the temperature variations they produce. Daytime temperature variations are produced by a combination of topographic (solar heating) and thermophysical (thermal inertia and albedo) effects. Due to topographic heating the surface morphologies seen in THEMIS daytime IR images are similar to those seen in previous imagery and MOLA topography.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected

  13. Rosetta: Comet-Chaser, Comet-Lander, and Comet-Hopper All In One Mission! (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Chmielewski, Artur B.

    2015-09-01

    Mission to Catch a Comet! Comets have inspired awe and wonder since the dawn of history. Many scientists today believe that comets crashed into Earth in its formative period spewing organic molecules that were crucial to the growth of life. Comets may have formed about the same time as the giant planets of our solar system (Jupiter, Saturn, Uranus, and Neptune) - about 4.6 billion years ago. Some scientists think that comets and planets were both made from the same clumps of dust and ice that spewed from our Sun's birth; others think that these roving time capsules are even older than that, and that they may contain grains of interstellar stuff that is even older than our solar system.

  14. On the possibility of lunar core phase detection using new seismometers for soft-landers in future lunar missions

    NASA Astrophysics Data System (ADS)

    Yamada, Ryuhei; Garcia, Raphael F.; Lognonné, Philippe; Kobayashi, Naoki; Takeuchi, Nozomu; Nébut, Tanguy; Shiraishi, Hiroaki; Calvet, Marie; Ganepain-Beyneix, J.

    2013-06-01

    Information on the lunar central core; size, current state and composition; are key parameters to understand the origin and evolution of the Moon. Recent studies have indicated that possible seismic energies of core-reflected phases can be identified from past Apollo seismic data, and core sizes are determined, but we have still uncertainties to establish the lunar core parameters. We, therefore, plan to detect seismic phases that pass through the interior of the core and/or those reflected from the core-mantle boundary to ensure the parameters using new seismometers for future lunar soft-landing missions such as SELENE-2 and Farside Explorer projects. As the new seismometers, we can apply two types of sensors already developed; they are the Very Broad Band (VBB) seismometer and Short Period (SP) seismometer. We first demonstrate through waveform simulations that the new seismometers are able to record the lunar seismic events with S/N much better than Apollo seismometers. Then, expected detection numbers of core-phases on the entire lunar surface for the two types of seismometers are evaluated for two models of seismic moment distributions of deep moonquakes using the recent interior model (VPREMOON). The evaluation indicates that the VBB has performance to detect reflected S phases (ScS) from the core-mantle boundary mainly on the lunar near-side, and the P phases (PKP) passing through the interior of the core on some areas of the lunar far-side. Then, the SP can also detect PKP phases as first arrival seismic phase on limited regions on the lunar far-side. If appropriate positions of the seismic stations are selected, core-phases can be detected, allowing us to constrain the origin and evolution of the Moon with future lunar soft-landing missions.

  15. Mars Lander

    NASA Technical Reports Server (NTRS)

    1973-01-01

    VIKING PROJECT -- In 1976, NASA will land two automated scientific laboratories on the planet Mars. This pioneering effort to explore in detail the surface of another primary planet in our solar system will be identified by a name that exemplifies the spirit of historic exploration. To accomplish this goal, two spacecraft will be launched from the Kennedy Space Center within a month of another in mid-1975. These spacecraft, each including a lander and an orbiter, will hurtle nearly 460 million miles around the Sun before reaching the red planet. The descent will occur when Mars is about 225 million miles from Earth and nearly on the other side of the Sun. This requires a completely automated de-orbit and landing operation because, at that distance, two-way communication between Mars and Earth takes nearly 45 minutes. Surface science will then commence with principal scientific interest invested in biology, geology and meteorology.

  16. Welcome to a Comet, from Lander on Surface

    NASA Image and Video Library

    2014-11-13

    The Philae lander of the European Space Agency Rosetta mission is safely on the surface of Comet 67P/Churyumov-Gerasimenko, as these first two images from the lander CIVA camera confirm. One of the lander three feet can be seen in the foreground.

  17. MSL/SAM Measurements of Non Condensable Volatiles, Comparison with Viking Lander, and Implications for Seasonal Cycle

    NASA Astrophysics Data System (ADS)

    Atreya, Sushil; Squyres, Steve; Mahaffy, Paul; Leshin, Laurie; Franz, Heather; Trainer, Melissa; Wong, Michael; McKay, Christopher; Navarro-Gonzalez, Rafael; ScienceTeam, MarsScienceLab

    2013-04-01

    The first measurements of the composition of the Martian atmosphere above Gale Crater by the Sample Analysis at Mars (SAM) instrument on Curiosity Rover revealed that although the volume mixing ratios (vmr) of the gases are generally similar to those measured by the Viking Lander 2 (VL2) thirty five years ago [2], they are notably different for N2 and 40Ar [1]. SAM finds a vmr of 1.9% each for N2 and Ar, so that N2 is 30% lower while Ar is 21% greater than the corresponding VL2 values, resulting in a 40% lower N2/Ar ratio compared to the VL2 result. The Ar/N ratio is used to assess the degree of mixing between the Martian atmosphere and the internal gas component of Mars meteorites due to the shock of impact ejection [e.g. 3]. The above differences in N2 and 40Ar seem to result either from different instrument characteristics or time variable atmospheric phenomena or both. The VL2 data were taken during northern summer (48°N, Ls=135°), whereas the SAM measurements correspond to the beginning of spring season (4.5°S, Ls=182-190°). Previous observations by Mars Odyssey Gamma Ray Spectrometer over three years have shown that the Ar mixing ratio increased by a factor of 6 over the south polar region in the winter [4]. However, the data are controversial for the equatorial region, ranging from no seasonal change [4] to as much as a 35% change [5]. No significant change was seen between the equator (SAM) and the midlatitude northern summer (VL2), however [4]. Thus the difference between the SAM and VL2 Ar does not appear to be related to different seasons. On the other hand, the vmr's of non-condensable volatiles (NCV), N2, Ar and CO, at any latitude are expected to vary seasonally due to the annual, global CO2 cycle. Diurnal changes are not expected, considering the long lifetimes of NCV's that exceed the martian year [6]. In addition to Ar, seasonal changes have been recorded in CO from ground-based [7] and MRO/CRISM observations [8], but show a much smaller

  18. Phoenix Lander on Mars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander monitors the atmosphere overhead and reaches out to the soil below in this artist's depiction of the spacecraft fully deployed on the surface of Mars.

    Phoenix has been assembled and tested for launch in August 2007 from Cape Canaveral Air Force Station, Fla., and for landing in May or June 2008 on an arctic plain of far-northern Mars. The mission responds to evidence returned from NASA's Mars Odyssey orbiter in 2002 indicating that most high-latitude areas on Mars have frozen water mixed with soil within arm's reach of the surface.

    Phoenix will use a robotic arm to dig down to the expected icy layer. It will analyze scooped-up samples of the soil and ice for factors that will help scientists evaluate whether the subsurface environment at the site ever was, or may still be, a favorable habitat for microbial life. The instruments on Phoenix will also gather information to advance understanding about the history of the water in the icy layer. A weather station on the lander will conduct the first study Martian arctic weather from ground level.

    The vertical green line in this illustration shows how the weather station on Phoenix will use a laser beam from a lidar instrument to monitor dust and clouds in the atmosphere. The dark 'wings' to either side of the lander's main body are solar panels for providing electric power.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems, Denver. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen (Denmark), the Max Planck Institute (Germany) and the Finnish Meteorological institute. JPL is a division of the California Institute of Technology in Pasadena.

  19. Phoenix Lander on Mars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander monitors the atmosphere overhead and reaches out to the soil below in this artist's depiction of the spacecraft fully deployed on the surface of Mars.

    Phoenix has been assembled and tested for launch in August 2007 from Cape Canaveral Air Force Station, Fla., and for landing in May or June 2008 on an arctic plain of far-northern Mars. The mission responds to evidence returned from NASA's Mars Odyssey orbiter in 2002 indicating that most high-latitude areas on Mars have frozen water mixed with soil within arm's reach of the surface.

    Phoenix will use a robotic arm to dig down to the expected icy layer. It will analyze scooped-up samples of the soil and ice for factors that will help scientists evaluate whether the subsurface environment at the site ever was, or may still be, a favorable habitat for microbial life. The instruments on Phoenix will also gather information to advance understanding about the history of the water in the icy layer. A weather station on the lander will conduct the first study Martian arctic weather from ground level.

    The vertical green line in this illustration shows how the weather station on Phoenix will use a laser beam from a lidar instrument to monitor dust and clouds in the atmosphere. The dark 'wings' to either side of the lander's main body are solar panels for providing electric power.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems, Denver. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen (Denmark), the Max Planck Institute (Germany) and the Finnish Meteorological institute. JPL is a division of the California Institute of Technology in Pasadena.

  20. Viking Lander Atlas of Mars

    NASA Technical Reports Server (NTRS)

    Liebes, S., Jr.

    1982-01-01

    Half size reproductions are presented of the extensive set of systematic map products generated for the two Mars Viking landing sites from stereo pairs of images radioed back to Earth. The maps span from the immediate foreground to the remote limits of ranging capability, several hundred meters from the spacecraft. The maps are of two kinds - elevation contour and vertical profile. Background and explanatory material important for understanding and utilizing the map collection included covers the Viking Mission, lander locations, lander cameras, the stereo mapping system and input images to this system.

  1. Tropical Rainfall Measurement Mission (TRMM) Operation Summary

    NASA Technical Reports Server (NTRS)

    Nio, Tomomi; Saito, Susumu; Stocker, Erich; Pawloski, James H.; Murayama, Yoshifumi; Ohata, Takeshi

    2015-01-01

    The Tropical Rainfall Measurement Mission (TRMM) is a joint U.S. and Japan mission to observe tropical rainfall, which was launched by H-II No. 6 from Tanegashima in Japan at 6:27 JST on November 28, 1997. After the two-month commissioning of TRMM satellite and instruments, the original nominal mission lifetime was three years. In fact, the operations has continued for approximately 17.5 years. This paper provides a summary of the long term operations of TRMM.

  2. Global Precipitation Measurement (GPM) Mission Development Status

    NASA Technical Reports Server (NTRS)

    Azarbarzin, Ardeshir Art

    2011-01-01

    Mission Objective: (1) Improve scientific understanding of the global water cycle and fresh water availability (2) Improve the accuracy of precipitation forecasts (3) Provide frequent and complete sampling of the Earth s precipitation Mission Description (Class B, Category I): (1) Constellation of spacecraft provide global precipitation measurement coverage (2) NASA/JAXA Core spacecraft: Provides a microwave radiometer (GMI) and dual-frequency precipitation radar (DPR) to cross-calibrate entire constellation (3) 65 deg inclination, 400 km altitude (4) Launch July 2013 on HII-A (5) 3 year mission (5 year propellant) (6) Partner constellation spacecraft.

  3. MEP (Mars Environment Package): toward a package for studying environmental conditions at the surface of Mars from future lander/rover missions.

    PubMed

    Chassefière, E; Bertaux, J-L; Berthelier, J-J; Cabane, M; Ciarletti, V; Durry, G; Forget, F; Hamelin, M; Leblanc, F; Menvielle, M; Gerasimov, M; Korablev, O; Linkin, S; Managadze, G; Jambon, A; Manhès, G; Lognonné, Ph; Agrinier, P; Cartigny, P; Giardini, D; Pike, T; Kofman, W; Herique, A; Coll, P; Person, A; Costard, F; Sarda, Ph; Paillou, Ph; Chaussidon, M; Marty, B; Robert, F; Maurice, S; Blanc, M; d'Uston, C; Sabroux, J-Ch; Pineau, J-F; Rochette, P

    2004-01-01

    In view to prepare Mars human exploration, it is necessary to promote and lead, at the international level, a highly interdisciplinary program, involving specialists of geochemistry, geophysics, atmospheric science, space weather, and biology. The goal of this program will be to elaborate concepts of individual instruments, then of integrated instrumental packages, able to collect exhaustive data sets of environmental parameters from future landers and rovers of Mars, and to favour the conditions of their implementation. Such a program is one of the most urgent need for preparing human exploration, in order to develop mitigation strategies aimed at ensuring the safety of human explorers, and minimizing risk for surface operations. A few main areas of investigation may be listed: particle and radiation environment, chemical composition of atmosphere, meteorology, chemical composition of dust, surface and subsurface material, water in the subsurface, physical properties of the soil, search for an hypothesized microbial activity, characterization of radio-electric properties of the Martian ionosphere. Scientists at the origin of the present paper, already involved at a high degree of responsibility in several Mars missions, and actively preparing in situ instrumentation for future landed platforms (Netlander--now cancelled, MSL-09), express their readiness to participate in both ESA/AURORA and NASA programs of Mars human exploration. They think that the formation of a Mars Environment working group at ESA, in the course of the AURORA definition phase, could act positively in favour of the program, by increasing its scientific cross-section and making it still more focused on human exploration. c2004 Published by Elsevier Ltd on behalf of COSPAR.

  4. MEP (Mars Environment Package): toward a package for studying environmental conditions at the surface of Mars from future lander/rover missions

    NASA Astrophysics Data System (ADS)

    Chassefière, E.; Bertaux, J.-L.; Berthelier, J.-J.; Cabane, M.; Ciarletti, V.; Durry, G.; Forget, F.; Hamelin, M.; Leblanc, F.; Menvielle, M.; Gerasimov, M.; Korablev, O.; Linkin, S.; Managadze, G.; Jambon, A.; Manhès, G.; Lognonné, Ph.; Agrinier, P.; Cartigny, P.; Giardini, D.; Pike, T.; Kofman, W.; Herique, A.; Coll, P.; Person, A.; Costard, F.; Sarda, Ph.; Paillou, Ph.; Chaussidon, M.; Marty, B.; Robert, F.; Maurice, S.; Blanc, M.; d'Uston, C.; Sabroux, J.-Ch.; Pineau, J.-F.; Rochette, P.

    2004-01-01

    In view to prepare Mars human exploration, it is necessary to promote and lead, at the international level, a highly interdisciplinary program, involving specialists of geochemistry, geophysics, atmospheric science, space weather, and biology. The goal of this program will be to elaborate concepts of individual instruments, then of integrated instrumental packages, able to collect exhaustive data sets of environmental parameters from future landers and rovers of Mars, and to favour the conditions of their implementation. Such a program is one of the most urgent need for preparing human exploration, in order to develop mitigation strategies aimed at ensuring the safety of human explorers, and minimizing risk for surface operations. A few main areas of investigation may be listed: particle and radiation environment, chemical composition of atmosphere, meteorology, chemical composition of dust, surface and subsurface material, water in the subsurface, physical properties of the soil, search for an hypothesized microbial activity, characterization of radio-electric properties of the Martian ionosphere. Scientists at the origin of the present paper, already involved at a high degree of responsibility in several Mars missions, and actively preparing in situ instrumentation for future landed platforms (Netlander—now cancelled, MSL-09), express their readiness to participate in both ESA/AURORA and NASA programs of Mars human exploration. They think that the formation of a Mars Environment working group at ESA, in the course of the AURORA definition phase, could act positively in favour of the program, by increasing its scientific cross-section and making it still more focused on human exploration.

  5. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard is seen on launch pad 1 of the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  6. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is seen in this 10 second exposure as it rolls out to launch pad 1 of the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  7. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-28

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen on launch pad 1 of the Tanegashima Space Center, Friday, Feb. 28, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  8. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is seen as it rolls out to launch pad 1 of the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  9. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    The Takesaki Observation Center is seen at the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  10. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    The launch pads at the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center are seen a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  11. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-28

    Flames and smoke from a Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, are seen during the launch from the Tanegashima Space Center, Friday, Feb. 28, 2014, Tanegashima, Japan. The GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  12. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-28

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, fades into the dark as it launches from the Tanegashima Space Center, Friday, Feb. 28, 2014, Tanegashima, Japan. The GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  13. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    The entrance sign to the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) is seen a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  14. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    The sun sets just outside the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  15. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-28

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen launching from the Tanegashima Space Center, Friday, Feb. 28, 2014, Tanegashima, Japan. The GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  16. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    NASA GPM Radio Frequency Engineer David Lassiter monitors the progress of an all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory at the Spacecraft Test and Assembly Building 2 (STA2), Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  17. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    NASA GPM Safety Quality and Assurance, Shirley Dion, and, NASA GPM Quality and Assurance, Larry Morgan, monitor the all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory at the Spacecraft Test and Assembly Building 2 (STA2), Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  18. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A live television view of the H-IIA rocket, with the Global Precipitation Measurement (GPM) Core Observatory onboard, is seen inside the Spacecraft Test and Assembly Building 2 (STA2) during an all-day launch simulation, Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  19. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A sign guides travelers to the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), Saturday, Feb. 22, 2014, Tanegashima Island, Japan. A launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory is planned for Feb. 28, 2014 from the space center. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  20. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A roadside sign shows visitors of Minamitane Town various locations for activities, including the viewing of rocket launches from the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), where the launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory is scheduled to take place in the next week, Saturday, Feb. 22, 2014, Minamitane Town, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Launch is planned for Feb. 28, 2014. Photo Credit: (NASA/Bill Ingalls)

  1. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Tourist photograph themselves in astronaut space suites next to a cardboard cutout of Japan Aerospace Exploration Agency (JAXA) Astronaut Akihiko Hoshide at the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  2. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A sign with a model of the Japanese H-IIB rocket welcomes visitors to Minamitane Town, one of only a few small towns located outside of the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), where the launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory will take place in the next week, Saturday, Feb. 22, 2014, Tanegashima Island, Japan. The NASA-Japan Aerospace Exploration Agency (JAXA) GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  3. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    Space themed signs are seen along the roads to and from the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), Saturday, Feb. 22, 2014, Tanegashima Island, Japan. A launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory is planned for Feb. 28, 2014 from the space center. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  4. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    A light house and weather station is seen at the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  5. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    Roadside flags welcome the NASA team and visitors to Minamitame Town, one of only a few small towns located outside of the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), where the launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory will take place in the next week, Saturday, Feb. 22, 2014, Tanegashima Island, Japan. The NASA-Japan Aerospace Exploration Agency (JAXA) GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. The launch is planned for Feb. 28, 2014. Photo Credit: (NASA/Bill Ingalls)

  6. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    The Tanegashima Space Center (TNSC) lighthouse is seen on Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  7. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    Andy Aylward, GPM EGSE, monitors the progress of an all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory at the Spacecraft Test and Assembly Building 2 (STA2), Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  8. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    Topiary shaped into the logo of the Japan Aerospace Exploration Agency (JAXA) is seen at the Tanegashima Space Center (TNSC) a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  9. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-25

    Japan Aerospace Exploration Agency (JAXA) team members stand before at the Kawachi Shrine, the second shrine in a traditional San-ja Mairi, or Three Shrine Pilgrimage, where the team prays for a successful launch, Tuesday, Feb. 25, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the Tanegashima Space Center (TNSC) on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  10. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-24

    Launch pad 1 is seen at the Tanegashima Space Center (TNSC) on Monday, Feb. 24, 2014 in Tanegashima, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from pad 1 on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  11. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A rocket is seen at the entrance to the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  12. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    The NASA Global Precipitation Measurement (GPM) Core Observatory team is seen during an all-day launch simulation for GPM at the Spacecraft Test and Assembly Building 2 (STA2), Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  13. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A small roadside park honoring spaceflight is seen in Minamitane Town, Saturday Feb. 22, 2014, Tanegashima Island, Japan. Minamitane Town is located not far from the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), where the launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory is planned for Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  14. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-25

    Japan Aerospace Exploration Agency (JAXA) are seen as they depart the Houman Shrine, the third, and final, shrine in a traditional San-ja Mairi, or Three Shrine Pilgrimage, where the team prays for a successful launch, Tuesday, Feb. 25, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the Tanegashima Space Center (TNSC) on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  15. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-26

    Chief officers from Mitsubishi Heavy Industries, Ltd., the Japan Aerospace Exploration Agency (JAXA) and NASA met on Wednesday, Feb. 26, 2014 in the Range Control Center (RCC) of the Tanegashima Space Center, Japan, to review the readiness of the Global Precipitation Measurement (GPM) Core Observatory for launch. The spacecraft is scheduled to launch aboard an H-IIA rocket early on the morning of Feb. 28 Japan time. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  16. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    A full size model of an H-II rocket is seen at the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) visitors center a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  17. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    A sign at an overlook, named Rocket Hill, helps viewers identify the various facilities of the Tanegashima Space Center (TNSC), including launch pad 1 that will be used Feb. 28, 2014 for the launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-Japan Aerospace Exploration Agency (JAXA) GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  18. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A jogger runs past a sign welcoming NASA and other visitors to Minamitane Town on Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  19. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-25

    Japan Aerospace Exploration Agency (JAXA) team members bow at the Ebisu Shrine, the first shrine in a traditional San-ja Mairi, or Three Shrine Pilgrimage, where the team prays for a successful launch, Tuesday, Feb. 25, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the Tanegashima Space Center (TNSC) on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  20. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    Caroline Kennedy, U.S. Ambassador Extraordinary and Plenipotentiary to Japan, right, is welcomed by Japan Aerospace Exploration Agency (JAXA), President, Naoki Okumura, at the Tanegashima Space Center Visitors Center on Thursday, Feb. 27, 2014, Tanegashima, Japan. The Ambassador is visiting the space center and hopes to witness the planned launch of a Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  1. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A surfer navigates the waters in front of the Tanegashima Space Center (TNSC) launch pads on Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  2. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-28

    Caroline Kennedy, U.S. Ambassador Extraordinary and Plenipotentiary to Japan, congratulated both NASA and the Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) Core Observatory teams and noted it was an example of over 40 years of strong U.S. and Japan relations, Friday Feb. 28, 2014, Tanegashima Space Center (TNSC) Tanegashima, Japan. The Ambassador witnessed the launch of a Japanese H-IIA rocket carrying the NASA-JAXA, GPM Core Observatory. The GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  3. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Shrubs and flowers in the shape of a space shuttle, star and planet are seen just outside the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  4. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-25

    The Ebisu Shrine, the first shrine in a traditional San-ja Mairi, or Three Shrine Pilgrimage, is seen just after members of the Japan Aerospace Exploration Agency (JAXA) team prayed for a successful launch, Tuesday, Feb. 25, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the Tanegashima Space Center (TNSC) on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  5. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A building designed to look like a space shuttle is seen a few kilometers outside of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  6. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-25

    Japan Aerospace Exploration Agency (JAXA) team members pray at the Houman Shrine, the third, and final, shrine in a traditional San-ja Mairi, or Three Shrine Pilgrimage, where the team prays for a successful launch, Tuesday, Feb. 25, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the Tanegashima Space Center (TNSC) on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  7. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A visitor looks over a Tanegashima Space Center (TNSC) Facility Map, Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency's (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  8. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A car drives on the twisty roads that hug the coast line of the Tanegashima Space Center (TNSC) on Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  9. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    Caroline Bouvier Kennedy, U.S. Ambassador Extraordinary and Plenipotentiary to Japan, center, tours the Tanegashima Space Center, Visitors Center with Japan Aerospace Exploration Agency (JAXA), President, Naoki Okumura, right, on Thursday, Feb. 27, 2014, Tanegashima, Japan. The Ambassador visiting the space center and hopes to witness the planned launch of a Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  10. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A roadside sign announces the upcoming launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Saturday, Feb. 22, 2014, Minamitane Town, Tanegashima Island, Japan. Once launched from the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) the NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. The launch is planned for Feb. 28, 2014. Photo Credit: (NASA/Bill Ingalls)

  11. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    George Dakermanji, NASA GPM Power, monitors the progress of an all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory at the Spacecraft Test and Assembly Building 2 (STA2), Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  12. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    Clyde Woodall, NASA GPM launch services, is seen during the all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory at the Spacecraft Test and Assembly Building 2 (STA2), Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  13. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    NASA GPM Test Conductors, Michelle Lacombe, left, and Bill Dehaven participate in an all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory at the Spacecraft Test and Assembly Building 2 (STA2), Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  14. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    NASA GPM Systems team member Tim Grunner, left, and NASA GPM Test Conductor John Pope talk during an all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory at the Spacecraft Test and Assembly Building 2 (STA2), Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  15. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    NASA GPM Test Conductors, Bill Dehaven, left, and John Pope, standing, and other GPM team members, participate in an all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory at the Spacecraft Test and Assembly Building 2 (STA2), Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  16. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    NASA GPM Test Conductors John Pope, and, Michelle Lacombe talk during the all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory at the Spacecraft Test and Assembly Building 2 (STA2), Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  17. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-25

    Masahiro Kojima, GPM Dual-frequency Precipitation Radar project manager, Japan Aerospace Exploration Agency (JAXA), Tsukuba, bows at the Ebisu Shrine, the first shrine in a traditional San-ja Mairi, or Three Shrine Pilgrimage, in which members of the JAXA team pray for a successful launch, Tuesday, Feb. 25, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the Tanegashima Space Center (TNSC) on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  18. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-26

    Masahiro Kojima, GPM Dual-frequency Precipitation Radar project manager, Japan Aerospace Exploration Agency (JAXA), left, and, Art Azarbarzin, NASA Global Precipitation Measurement (GPM) project manager, talk after the GPM Launch Readiness Review (LRR), Wednesday, Feb. 26, 2014 at Tanegashima Space Center, Japan. The GPM spacecraft is scheduled to launch aboard an H-IIA rocket early on the morning of Feb. 28 Japan time. At the meeting in the space center's Range Control Center, all preparations to date were reviewed and approval was given to proceed with launch on schedule. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  19. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Minamitane elementary school girls pose for a photo in front of a sign featuring the town's mascot "Chuta-kun", Sunday, Feb. 23, 2014, Tanegashima Island, Japan. The Chuta-kun mascot rides a rocket and has guns on the side of his helmet to show the areas history as the site of the first known contact of Europe and the Japanese, in 1543 and the introduction of the gun. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  20. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-26

    A daruma doll is seen on the desk of Masahiro Kojima, GPM Dual-frequency Precipitation Radar project manager, Japan Aerospace Exploration Agency (JAXA), at the Tanegashima Space Cener's Range Control Center (RCC), Wednesday, Feb. 26, 2014, Tanegashima, Japan. One eye of the daruma doll is colored in when a goal is set and the second eye is colored in at the completion of the goal. JAXA plans to launch an H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  1. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-25

    Japan Aerospace Exploration Agency (JAXA) team members walk with their offering of sake to the Houman Shrine, the third, and final, shrine in a traditional San-ja Mairi, or Three Shrine Pilgrimage, where the team prays for a successful launch, Tuesday, Feb. 25, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the Tanegashima Space Center (TNSC) on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  2. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-25

    An offering of sake can be seen at the Ebisu Shrine, the first shrine in a traditional San-ja Mairi, or Three Shrine Pilgrimage, in which members of the Japan Aerospace Exploration Agency (JAXA) team pray for a successful launch, Tuesday, Feb. 25, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the Tanegashima Space Center (TNSC) on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  3. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-26

    Art Azarbarzin, NASA Global Precipitation Measurement (GPM) project manager, left, participates in the GPM Launch Readiness Review (LRR) along with Chief officers from Mitsubishi Heavy Industries, Ltd., and the Japan Aerospace Exploration Agency (JAXA) on Wednesday, Feb. 26, 2014 at Tanegashima Space Center, Japan. The spacecraft is scheduled to launch aboard an H-IIA rocket early on the morning of Feb. 28 Japan time. At the meeting in the space center's Range Control Center, all preparations to date were reviewed and approval was given to proceed with launch on schedule. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  4. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-26

    Members of the weather team prepare reports for the Global Precipitation Measurement (GPM) Core Observatory Launch Readiness Review (LRR) with Chief officers from Mitsubishi Heavy Industries, Ltd., the Japan Aerospace Exploration Agency (JAXA), and NASA, on Wednesday, Feb. 26, 2014 at Tanegashima Space Center, Japan. The GPM spacecraft is scheduled to launch aboard an H-IIA rocket early on the morning of Feb. 28 Japan time. At the meeting in the space center's Range Control Center, all preparations to date were reviewed and approval was given to proceed with launch on schedule. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  5. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    NASA GPM Systems team members, Tim Grunner, left, Harry Culver, 2nd from left, and, Liza Bartusek, right, talk, along with with GPM Testing team member Beth Weinsteen, during an all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory at the Spacecraft Test and Assembly Building 2 (STA2), Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  6. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    Andy Aylward, NASA GPM EGSE, left, Beth Weinsteen, NASA GPM Integration and Testing Team, center, and another GPM team member, talk during the all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory at the Spacecraft Test and Assembly Building 2 (STA2), Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  7. Wind reconstruction algorithm for Viking Lander 1

    NASA Astrophysics Data System (ADS)

    Kynkäänniemi, Tuomas; Kemppinen, Osku; Harri, Ari-Matti; Schmidt, Walter

    2017-06-01

    The wind measurement sensors of Viking Lander 1 (VL1) were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.

  8. Robotic Lunar Lander Development Status

    NASA Technical Reports Server (NTRS)

    Ballard, Benjamin; Cohen, Barbara A.; McGee, Timothy; Reed, Cheryl

    2012-01-01

    NASA Marshall Space Flight Center and John Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.

  9. Resource Prospector Lander: Architecture and Trade Studies

    NASA Technical Reports Server (NTRS)

    Moore, Josh; Calvert, Derek; Frady, Greg; Chavers, Greg; Wayne, Andrew; Hull, Patrick; Lowery, Eric; Farmer, Jeff; Trinh, Huu; Rojdev, Kristina; hide

    2014-01-01

    NASA's Resource Prospector (RP) is a multi-center and multi-institution collaborative project to investigate the polar regions of the Moon in search of volatiles. The mission is rated Class D and is approximately 10 days. The RP vehicle comprises three elements: the Lander, the Rover, and the Payload. The Payload is housed on the Rover and the Rover is on top of the Lander. The focus of this paper is on the Lander element for the RP vehicle. The design of the Lander was requirements driven and focused on a low-cost approach. To arrive at the final configuration, several trade studies were conducted. Of those trade studies, there were six primary trade studies that were instrumental in determining the final design. This paper will discuss each of these trades in further detail and show how these trades led to the final architecture of the RP Lander.

  10. Robotic Lunar Landers for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Chavers, D. G.; Cohen, B. A.; Bassler, J. A.; Hammond, M. S.; Harris, D. W.; Hill, L. A.; Eng, D.; Ballard, B. W.; Kubota, S. D.; Morse, B. J.; hide

    2010-01-01

    NASA Marshall Space Flight Center (MSFC) and The Johns Hopkins University Applied Physics Laboratory (APL) have been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. This paper describes some of the lunar lander concepts derived from these studies conducted by the MSFC/APL Robotic Lunar Lander Development Project team. In addition, the results to date of the lunar lander development risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing and combined GN&C and avionics testing will be addressed. The most visible elements of the risk reduction program are two autonomous lander flight test vehicles: a compressed air system with limited flight durations and a second version using hydrogen peroxide propellant to achieve significantly longer flight times and the ability to more fully exercise flight sensors and algorithms.

  11. Active Collision Avoidance for Planetary Landers

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Hannan, Mike; Srinivasan, Karthik

    2014-01-01

    Present day robotic missions to other planets require precise, a priori knowledge of the terrain to pre-determine a landing spot that is safe. Landing sites can be miles from the mission objective, or, mission objectives may be tailored to suit landing sites. Future robotic exploration missions should be capable of autonomously identifying a safe landing target within a specified target area selected by mission requirements. Such autonomous landing sites must (1) 'see' the surface, (2) identify a target, and (3) land the vehicle. Recent advances in radar technology have resulted in small, lightweight, low power radars that are used for collision avoidance and cruise control systems in automobiles. Such radar systems can be adapted for use as active hazard avoidance systems for planetary landers. The focus of this CIF proposal is to leverage earlier work on collision avoidance systems for MSFC's Mighty Eagle lander and evaluate the use of automotive radar systems for collision avoidance in planetary landers.

  12. Lunar Polar Coring Lander

    NASA Technical Reports Server (NTRS)

    Angell, David; Bealmear, David; Benarroche, Patrice; Henry, Alan; Hudson, Raymond; Rivellini, Tommaso; Tolmachoff, Alex

    1990-01-01

    Plans to build a lunar base are presently being studied with a number of considerations. One of the most important considerations is qualifying the presence of water on the Moon. The existence of water on the Moon implies that future lunar settlements may be able to use this resource to produce things such as drinking water and rocket fuel. Due to the very high cost of transporting these materials to the Moon, in situ production could save billions of dollars in operating costs of the lunar base. Scientists have suggested that the polar regions of the Moon may contain some amounts of water ice in the regolith. Six possible mission scenarios are suggested which would allow lunar polar soil samples to be collected for analysis. The options presented are: remote sensing satellite, two unmanned robotic lunar coring missions (one is a sample return and one is a data return only), two combined manned and robotic polar coring missions, and one fully manned core retrieval mission. One of the combined manned and robotic missions has been singled out for detailed analysis. This mission proposes sending at least three unmanned robotic landers to the lunar pole to take core samples as deep as 15 meters. Upon successful completion of the coring operations, a manned mission would be sent to retrieve the samples and perform extensive experiments of the polar region. Man's first step in returning to the Moon is recommended to investigate the issue of lunar polar water. The potential benefits of lunar water more than warrant sending either astronauts, robots or both to the Moon before any permanent facility is constructed.

  13. Robotic Lander Prototype

    NASA Image and Video Library

    NASA engineers successfully integrated and completed system testing on a new robotic lander recently at Teledyne Brown Engineering’s facility in Huntsville in support of the Robotic Lunar Lander ...

  14. Robotic Lunar Landers for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Hill, L. A.; Bassler, J. A.; Chavers, D. G.; Hammond, M. S.; Harris, D. W.; Kirby, K. W.; Morse, B. J.; Mulac, B. D.; Reed, C. L. B.

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory has been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. In 2005, the Robotic Lunar Exploration Program Mission #2 (RLEP-2) was selected as a Exploration Systems Mission Directorate precursor robotic lunar lander mission to demonstrate precision landing and definitively determine if there was water ice at the lunar poles; however, this project was canceled. Since 2008, the team has been supporting NASA s Science Mission Directorate designing small lunar robotic landers for diverse science missions. The primary emphasis has been to establish anchor nodes of the International Lunar Network (ILN), a network of lunar science stations envisioned to be emplaced by multiple nations. This network would consist of multiple landers carrying instruments to address the geophysical characteristics and evolution of the moon. Additional mission studies have been conducted to support other objectives of the lunar science community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects. This paper describes the current status of the robotic lunar mission studies that have been conducted by the MSFC/APL Robotic Lunar Lander Development team, including the ILN Anchor Nodes mission. In addition, the results to date of the lunar lander development risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing and combined GN&C and avionics testing will be addressed. The most visible elements of the risk reduction program are two autonomous lander test articles: a compressed air system with limited flight durations and a second version using hydrogen peroxide propellant to achieve significantly longer flight times and the ability to

  15. High performances imaging systems for planetary landers

    NASA Astrophysics Data System (ADS)

    Josset, J.-L.; Beauvivre, S.

    2003-04-01

    Each planetary mission brings its specific needs and environmental conditions: high temperature and radiations for Mercury, shock, thermal cycles and low temperature operation for Mars, long vacuum cruise phase and very low temperature for comet nucleus. Nevertheless, all the missions share the same interests in term of low mass, low power and harsh environmental conditions. When a mission includes a lander, mass optimization is even more critical for the benefit of the overall science return. SPACE-X has developed high-performances imaging systems for Rosetta Lander and MarsExpress Lander. Future imaging systems for new exploration missions have to consider the promising micro-nano-technology developments in terms of miniaturisation, low power, wireless capabilities, etc.

  16. Potential Ice Table Under Lander Imaged

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image captured by the Robotic Arm Camera aboard NASA's Phoenix Mars Lander on Sol 6, the sixth Martian day of the mission, (May 31, 2008) shows a close-up of the 'Snow Queen' feature under the lander.

    Swept clear of surface dust by the thruster rockets as Phoenix landed, the area has a smooth surface with layers visible and several smooth rounded cavities.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Robotic Lunar Landers for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Bassler, J. A.; Hammond, M. S.; Harris, D. W.; Hill, L. A.; Kirby, K. W.; Morse, B. J.; Mulac, B. D.; Reed, C. L. B.

    2010-01-01

    The Moon provides an important window into the early history of the Earth, containing information about planetary composition, magmatic evolution, surface bombardment, and exposure to the space environment. Robotic lunar landers to achieve science goals and to provide precursor technology development and site characterization are an important part of program balance within NASA s Science Mission Directorate (SMD) and Exploration Systems Mission Directorate (ESMD). A Robotic Lunar Lan-der mission complements SMD's initiatives to build a robust lunar science community through R&A lines and increases international participation in NASA's robotic exploration of the Moon.

  18. NetLander thermal control

    NASA Astrophysics Data System (ADS)

    Romberg, O.; Bodendieck, F.; Block, J.; Nadalini, R.; Schneider, N.

    2003-11-01

    The first mission to establish a network of stations on the surface of Mars will be the NetLander mission, which is planned for the near future. Four identical surface modules are equipped with science payloads dedicated to study the atmosphere and geosphere of Mars at four different landing locations spread over the two hemispheres. The mission duration will be one Martian year. The surface modules and their sensitive electronics compartments have to withstand a wide range of hostile conditions on Mars. Further constraints are given during flight, where heat can be exchanged only across small interfaces. The purpose of the NetLander thermal control system is to maintain the electronics and battery temperatures within a narrow band. Contrasting demands of reduced heat leaks and effective dump of surplus heat require new technologies and advanced design concepts to be satisfied under strict mass limits imposed. Recently the first thermal test model with the original thermal equipment has been completed and tested. The model includes a high performance insulation combined with an innovative Loop Heat Pipe system integrated into a one-to-one lander-structure. The paper describes the design and development activities as well as the ground test campaign performed in simulated Martian environment.

  19. Measuring the Permittivity of the Nucleus of a Comet: the PP-SESAME Experiment on Board the Philae/ROSETTA Lander

    NASA Astrophysics Data System (ADS)

    Lethuillier, A.; Le Gall, A. A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.; Seidensticker, K. J.; Fischer, H. H.

    2015-12-01

    The Permittivity Probe (SESAME-PP) on-board the Philae Lander of the ROSETTA mission was designed to constrain the complex permittivity of the first 2 m of the nucleus of comet 67P/Churyumov-Gerasimenko and to monitor its variations with time. Doing so, it is meant to provide a unique insight into the composition of the comet, and in particular, into its water content. PP-SESAME acquired data on November 13, 2015, both during Philae descent to the comet and at the surface of the nucleus. The PP-SESAME instrument is derived from the quadrupole array technique. A sinusoidal electrical current is sent into the ground through a transmitting dipole, and the induced electrical voltage on a receiving dipole is measured. The complex permittivity of the material is inferred from the mutual impedance derived from the measurements. In practice, the influence of both the electronic circuit of the instrument and the conducting elements in its close environment must be accounted for in order to best estimate both the dielectric constant and electrical conductivity of the ground. For that purpose, we have developed a method called the "capacity-influence matrix method". A replica of the instrument was recently built in LATMOS (France) in order to validate this method. In this paper, we will present the tests conducted with the replica in a controlled environment and their comparison to numerical simulations. We will also show simulations relevant to the PP-SESAME experiment on the nucleus of comet 67P/Churyumov-Gerasimenko. These simulations were run for realistic scenarios of the Philae's attitude and environment at its final landing site. We discuss their implications in terms of surface electrical and compositional properties.

  20. Entry System Design Considerations for Mars Landers

    NASA Technical Reports Server (NTRS)

    Lockwood, Mary Kae; Powell, Richard W.; Graves, Claude A.; Carman, Gilbert L.

    2001-01-01

    The objective for the next generation or Mars landers is to enable a safe landing at specific locations of scientific interest. The 1st generation entry, descent and landing systems, ex. Viking and Pathfinder, provided successful landing on Mars but by design were limited to large scale, 100s of km, landing sites with minimal local hazards. The 2 nd generation landers, or smart landers, will provide scientists with access to previously unachievable landing sites by providing precision landing to less than 10 km of a target landing site, with the ability to perform local hazard avoidance, and provide hazard tolerance. This 2nd generation EDL system can be utilized for a range of robotic missions with vehicles sized for science payloads from the small 25-70 kg, Viking, Pathfinder, Mars Polar Lander and Mars Exploration Rover-class, to the large robotic Mars Sample Return, 300 kg plus, science payloads. The 2nd generation system can also be extended to a 3nd generation EDL system with pinpoint landing, 10's of meters of landing accuracy, for more capable robotic or human missions. This paper will describe the design considerations for 2nd generation landers. These landers are currently being developed by a consortium of NASA centers, government agencies, industry and academic institutions. The extension of this system and additional considerations required for a 3nd generation human mission to Mars will be described.

  1. Phobos lander coding system: Software and analysis

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Pollara, F.

    1988-01-01

    The software developed for the decoding system used in the telemetry link of the Phobos Lander mission is described. Encoders and decoders are provided to cover the three possible telemetry configurations. The software can be used to decode actual data or to simulate the performance of the telemetry system. The theoretical properties of the codes chosen for this mission are analyzed and discussed.

  2. Mars Relay Lander and Orbiter Overflight Profile Estimation

    NASA Technical Reports Server (NTRS)

    Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Peterson, Corey L.

    2012-01-01

    This software allows science and mission operations to view graphs of geometric overflights of satellites and landers within the Mars (or other planetary) networks. It improves on the MaROS Web interface within any modern Web browser, in that it adds new capabilities to the MaROS suite. The profile for an overflight is an important element for selecting communication/ overflight opportunities between the landers and orbiters within the Mars network. Unfortunately, determining these estimates is very computationally expensive and difficult to compute by hand. This software allows the user to select different overflights (via the existing MaROS Web interface) and specify the smoothness of the estimation. Estimates for the geometric relationship between a lander and an orbiter are determined based upon the orbital conditions of the orbiter at the moment the orbiter rises above the horizon from the perspective of the lander. It utilizes 2-body orbital equations to propagate the trajectory through the duration of the view period, and returns profiles that represent the range between the two vehicles, and the elevation and azimuth angles of the orbiter as measured from the lander s position. The algorithms assume a 2-body relationship with an ideal, spherical planetary body, so therefore can see errors less than 2% at polar landing sites on Mars. These algorithms are being implemented to provide rough estimates rapidly for the geometry of a geometric view period where more complete data is unavailable, such as for planning purposes. While other software for this task exists, each at the time of this reporting has been contained within a much more complicated package. This tool allows science and mission operations to view the estimates with a few clicks of the mouse.

  3. The Philae Lander: Science planning and operations

    NASA Astrophysics Data System (ADS)

    Moussi, Aurélie; Fronton, Jean-François; Gaudon, Philippe; Delmas, Cédric; Lafaille, Vivian; Jurado, Eric; Durand, Joelle; Hallouard, Dominique; Mangeret, Maryse; Charpentier, Antoine; Ulamec, Stephan; Fantinati, Cinzia; Geurts, Koen; Salatti, Mario; Bibring, Jean-Pierre; Boehnhardt, Hermann

    2016-08-01

    Rosetta is an ambitious mission launched in March 2004 to study comet 67P/Churyumov-Gerasimenko. It is composed of a space probe (Rosetta) and the Philae Lander. The mission is a series of premieres: among others, first probe to escort a comet, first time a landing site is selected with short turnaround time, first time a lander has landed on a comet nucleus. In November 2014, once stabilized on the comet, Philae has performed its "First Science Sequence". Philae's aim was to perform detailed and innovative in-situ experiments on the comet's surface to characterize the nucleus by performing mechanical, chemical and physical investigations on the comet surface. The main contribution to the Rosetta lander by the French space agency (CNES) is the Science Operation and Navigation Center (SONC) located in Toulouse. Among its tasks is the scheduling of the scientific activities of the 10 lander experiments and then to provide it to the Lander Control Center (LCC) located in DLR Cologne. The teams in charge of the Philae activity scheduling had to cope with considerable constraints in term of energy, data management, asynchronous processes and co-activities or exclusions between instruments. Moreover the comet itself, its environment and the landing conditions remained unknown until separation time. The landing site was selected once the operational sequence was already designed. This paper will explain the specific context of the Rosetta lander mission and all the constraints that the lander activity scheduling had to face to fulfill the scientific objectives specified for Philae. A specific tool was developed by CNES and used to design the complete sequence of activities on the comet with respect to all constraints. The baseline scenario for the lander operation will also be detailed as well as the sequence performed on the comet to highlight the difficulties and challenges that the operational team faced.

  4. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; Deweese, Keith; Vess, Missie; Welter, Gary; O'Donnell, James R., Jr.

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation and Control (GNC) analysis team encountered four main on orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo-induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GNC engineers identified and tracked down the root causes. Flight data and GNC on board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  5. ExoMars Lander Radioscience LaRa, a Space Geodesy Experiment to Mars.

    NASA Astrophysics Data System (ADS)

    Dehant, Veronique; Le Maistre, Sebastien; Yseboodt, Marie; Peters, Marie-Julie; Karatekin, Ozgur; Van Hove, Bart; Rivoldini, Attilio; Baland, Rose-Marie; Van Hoolst, Tim

    2017-04-01

    The LaRa (Lander Radioscience) experiment is designed to obtain coherent two-way Doppler measurements from the radio link between the ExoMars lander and Earth over at least one Martian year. The instrument life time is thus almost twice the one Earth year of nominal mission duration. The Doppler measurements will be used to observe the orientation and rotation of Mars in space (precession, nutations, and length-of-day variations), as well as polar motion. The ultimate objective is to obtain information / constraints on the Martian interior, and on the sublimation / condensation cycle of atmospheric CO2. Rotational variations will allow us to constrain the moment of inertia of the entire planet, including its mantle and core, the moment of inertia of the core, and seasonal mass transfer between the atmosphere and the ice caps. The LaRa experiment will be combined with other ExoMars experiments, in order to retrieve a maximum amount of information on the interior of Mars. Specifically, combining LaRa's Doppler measurements with similar data from the Viking landers, Mars Pathfinder, Mars Exploration Rovers landers, and the forthcoming InSight-RISE lander missions, will allow us to improve our knowledge on the interior of Mars with unprecedented accuracy, hereby providing crucial information on the formation and evolution of the red planet.

  6. Life Support Systems for Lunar Landers

    NASA Technical Reports Server (NTRS)

    Anderson, Molly

    2008-01-01

    Engineers designing life support systems for NASA s next Lunar Landers face unique challenges. As with any vehicle that enables human spaceflight, the needs of the crew drive most of the lander requirements. The lander is also a key element of the architecture NASA will implement in the Constellation program. Many requirements, constraints, or optimization goals will be driven by interfaces with other projects, like the Crew Exploration Vehicle, the Lunar Surface Systems, and the Extravehicular Activity project. Other challenges in the life support system will be driven by the unique location of the vehicle in the environments encountered throughout the mission. This paper examines several topics that may be major design drivers for the lunar lander life support system. There are several functional requirements for the lander that may be different from previous vehicles or programs and recent experience. Some of the requirements or design drivers will change depending on the overall Lander configuration. While the configuration for a lander design is not fixed, designers can examine how these issues would impact their design and be prepared for the quick design iterations required to optimize a spacecraft.

  7. A First Look at Carbon and Oxygen Stable Isotope Measurements of Martian Atmospheric C02 by the Phoenix Lander

    NASA Technical Reports Server (NTRS)

    Niles, P.B.; Ming, D.W.; Boynton, W.V.; Hamara, D.; Hoffman, J.H.

    2009-01-01

    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars. The isotopic composition of the martian atmosphere has been measured using a number of different methods (Table 1), however a precise value (<1%) has yet to be achieved. Given the elevated 13C values measured in carbonates in martian meteorites it has been supposed that the martian atmosphere was enriched in delta(sup 13)C. This was supported by measurements of trapped CO2 gas in EETA 79001[2] which showed elevated delta(sup 13)C values (Table 1). More recently, Earth-based spectroscopic measurements of the martian atmosphere have measured the martian CO2 to be depleted in delta(sup 13)C relative to CO2 in the terrestrial atmosphere. The spectroscopic measurements performed by Krasnopolsky et al. were reported with approx.2% uncertainties which are much smaller than the Viking measurements, but still remain very large in comparison to the magnitude of carbon and oxygen isotope fractionations under martian surface conditions. The Thermal Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander included a magnetic sector mass spectrometer (EGA) which had the goal of measuring the isotopic composition of martian atmospheric CO2 to within 0.5%. The mass spectrometer is a miniature magnetic sector instrument intended to measure both the martian atmosphere as well as gases evolved from heating martian soils. Ions produced in the ion source are drawn out by a high voltage and focused by a magnetic field onto a set of collector slits. Four specific trajectories are selected to cover the mass ranges, 0.7 - 4, 7 - 35, 14 - 70, and 28 - 140 Da. Using four channels reduces the magnitude of the mass scan and provides simultaneous coverage of the mass ranges. Channel electron multiplier (CEM

  8. Dust Storm Moving Near Phoenix Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This series of images show the movement of several dust storms near NASA's Phoenix Mars Lander. These images were taken by the lander's Surface Stereo Imager (SSI) on the 137th Martian day, or sol, of the mission (Oct. 13, 2008).

    These images were taken about 50 seconds apart, showing the formation and movement of dust storms for nearly an hour. Phoenix scientists are still figuring out the exact distances these dust storms occurred from the lander, but they estimate them to be about 1 to 2 kilometers (.6 or 1.2 miles) away.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Dust Storm Moving Near Phoenix Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This series of images show the movement of several dust storms near NASA's Phoenix Mars Lander. These images were taken by the lander's Surface Stereo Imager (SSI) on the 137th Martian day, or sol, of the mission (Oct. 13, 2008).

    These images were taken about 50 seconds apart, showing the formation and movement of dust storms for nearly an hour. Phoenix scientists are still figuring out the exact distances these dust storms occurred from the lander, but they estimate them to be about 1 to 2 kilometers (.6 or 1.2 miles) away.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Artist Concept of InSight Lander on Mars

    NASA Image and Video Library

    2015-08-18

    This artist's concept from August 2015 depicts NASA's InSight Mars lander fully deployed for studying the deep interior of Mars. This illustration updates the correct placement and look of Insight's main instruments. For an earlier artist rendition, see PIA17358. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, will investigate processes that formed and shaped Mars. Its findings will improve understanding about the evolution of our inner solar system's rocky planets, including Earth. The lander will be the first mission to permanently deploy instruments directly onto Martian ground using a robotic arm. The two instruments to be placed into a work area in front of the lander are a seismometer (contributed by the French space agency Centre National d'Études Spatiales, or CNES) to measure the microscopic ground motions from distant marsquakes providing information about the interior structure of Mars, and a heat-flow probe (contributed by the German Aerospace Center, or DLR) designed to hammer itself 3 to 5 meters (about 16 feet) deep and monitor heat coming from the planet's interior. The mission will also track the lander's radio to measure wobbles in the planet's rotation that relate to the size of its core and a suite of environmental sensors to monitor the weather and variations in the magnetic field. Two cameras will aid in instrument deployment and monitoring the local environment. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19811

  11. Descent Assisted Split Habitat Lunar Lander Concept

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Goodliff, Kandyce; Cornelius, David M.

    2008-01-01

    The Descent Assisted Split Habitat (DASH) lunar lander concept utilizes a disposable braking stage for descent and a minimally sized pressurized volume for crew transport to and from the lunar surface. The lander can also be configured to perform autonomous cargo missions. Although a braking-stage approach represents a significantly different operational concept compared with a traditional two-stage lander, the DASH lander offers many important benefits. These benefits include improved crew egress/ingress and large-cargo unloading; excellent surface visibility during landing; elimination of the need for deep-throttling descent engines; potentially reduced plume-surface interactions and lower vertical touchdown velocity; and reduced lander gross mass through efficient mass staging and volume segmentation. This paper documents the conceptual study on various aspects of the design, including development of sortie and outpost lander configurations and a mission concept of operations; the initial descent trajectory design; the initial spacecraft sizing estimates and subsystem design; and the identification of technology needs

  12. Lunar lander ground support system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This year's project, like the previous Aerospace Group's project, involves a lunar transportation system. The basic time line will be the years 2010-2030 and will be referred to as a second generation system, as lunar bases would be present. The project design completed this year is referred to as the Lunar Lander Ground Support System (LLGSS). The area chosen for analysis encompasses a great number of vehicles and personnel. The design of certain elements of the overall lunar mission are complete projects in themselves. For this reason the project chosen for the Senior Aerospace Design is the design of specific servicing vehicles and additions or modifications to existing vehicles for the area of concern involving servicing and maintenance of the lunar lander while on the surface.

  13. Lunar lander ground support system

    NASA Astrophysics Data System (ADS)

    This year's project, like the previous Aerospace Group's project, involves a lunar transportation system. The basic time line will be the years 2010-2030 and will be referred to as a second generation system, as lunar bases would be present. The project design completed this year is referred to as the Lunar Lander Ground Support System (LLGSS). The area chosen for analysis encompasses a great number of vehicles and personnel. The design of certain elements of the overall lunar mission are complete projects in themselves. For this reason the project chosen for the Senior Aerospace Design is the design of specific servicing vehicles and additions or modifications to existing vehicles for the area of concern involving servicing and maintenance of the lunar lander while on the surface.

  14. The ROSETTA Lander anchoring system

    NASA Astrophysics Data System (ADS)

    Thiel, Markus; Stöcker, Jakob; Rohe, Christian; Kömle, Norbert I.; Kargl, Günter; Hillenmaier, Olaf; Lell, Peter

    2003-09-01

    A major goal of the ESA cornerstone mission ROSETTA is to land a package of scientific instruments known as the ROSETTA Lander on the nucleus of a comet. Due to the low gravity a highly reliable fixation of the ROSETTA Lander to the target comet 67P/Churyumov-Gerasimenko (3rd) is essential. For that purpose a redundant Anchoring System, consisting of two pyrotechnically actuated Anchoring Harpoons and a redundant Control Electronics has been developed, built and qualified at the Max-Planck-Institut für extraterrestrische Physik (MPE), Garching. The pyrotechnical gas generator has been developed jointly by Pyroglobe GmbH and MPE, the procurement of the control electronics has been sub-contracted to Magson GmbH, Berlin. A study to obtain a suitable lubrication method for the commutator of a brushed DC motor has been conducted at the European Space Tribology Laboratory (ESTL; S. D. Lewis et al., 2003).

  15. ROSETTA lander Philae: Touch-down reconstruction

    NASA Astrophysics Data System (ADS)

    Roll, Reinhard; Witte, Lars

    2016-06-01

    The landing of the ROSETTA-mission lander Philae on November 12th 2014 on Comet 67 P/Churyumov-Gerasimenko was planned as a descent with passive landing and anchoring by harpoons at touch-down. Actually the lander was not fixed at touch-down to the ground due to failing harpoons. The lander internal damper was actuated at touch-down for 42.6 mm with a speed of 0.08 m/s while the lander touch-down speed was 1 m/s. The kinetic energy before touch-down was 50 J, 45 J were dissipated by the lander internal damper and by ground penetration at touch-down, and 5 J kinetic energy are left after touch-down (0.325 m/s speed). Most kinetic energy was dissipated by ground penetration (41 J) while only 4 J are dissipated by the lander internal damper. Based on these data, a value for a constant compressive soil-strength of between 1.55 kPa and 1.8 kPa is calculated. This paper focuses on the reconstruction of the touch-down at Agilkia over a period of around 20 s from first ground contact to lift-off again. After rebound Philae left a strange pattern on ground documented by the OSIRIS Narrow Angle Camera (NAC). The analysis shows, that the touch-down was not just a simple damped reflection on the surface. Instead the lander had repeated contacts with the surface over a period of about 20 s±10 s. This paper discusses scenarios for the reconstruction of the landing sequence based on the data available and on computer simulations. Simulations are performed with a dedicated mechanical multi-body model of the lander, which was validated previously in numerous ground tests. The SIMPACK simulation software was used, including the option to set forces at the feet to the ground. The outgoing velocity vector is mostly influenced by the timing of the ground contact of the different feet. It turns out that ground friction during damping has strong impact on the lander outgoing velocity, on its rotation, and on its nutation. After the end of damping, the attitude of the lander can be

  16. Challenges of the Viking Mars Lander system. [autonomous design

    NASA Technical Reports Server (NTRS)

    Goodlette, J. D.

    1975-01-01

    A number of natural constraints have led to a highly autonomous Lander system design. Almost all communications to and from the Lander are via the Orbiter. A functional description of the Lander mission is given, taking into account deorbit and descent, entry, terminal descent, landing, and landed operations. The challenges of the system design are considered along with the mechanical configuration and aspects of thermal control. Attention is given to science data return, aspects of reliability and redundancy, and details regarding the software.

  17. Robotic Lunar Landers For Science And Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Bassler, J. A.; Morse, B. J.; Reed, C. L. B.

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. In 2005, the Robotic Lunar Exploration Program Mission #2 (RLEP-2) was selected as an ESMD precursor robotic lander mission to demonstrate precision landing and determine if there was water ice at the lunar poles; however, this project was canceled. Since 2008, the team has been supporting SMD designing small lunar robotic landers for science missions, primarily to establish anchor nodes of the International Lunar Network (ILN), a network of lunar geophysical nodes. Additional mission studies have been conducted to support other objectives of the lunar science community. This paper describes the current status of the MSFC/APL robotic lunar mission studies and risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing, combined GN&C and avionics testing, and two autonomous lander test articles.

  18. Dust adhesion on Viking lander camera window

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    Studies of dust impingement on a duplicate Viking Lander camera window indicated the possibility of window obscuration after several days of exposure even at low dust concentration levels. As a result the following corrective measures were recommended: (1) The clearance between the housing surface and the camera post should be eliminated by using an appropriately designed plastic skirt: (2) The three horizontal ledges below the window inside the cavity act as bases for pile-up of dust that slides down the window surface; they should be replaced by a single inclined plane down which the dust will slide and fall out on the ground: (3) Adhered dust on the window surface can be removed by high pressure CO2 jets directed down against the window; the amount of CO2 gas needed for the entire mission can be carried in a 3 1/2-inch diameter sphere equipped with a remotely programable valve. These measures were incorporated in the design of the lander camera system. The continued high quality of photographs transmitted from the Viking spacecraft several months after landing attests to their effectiveness.

  19. The Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne

    1999-01-01

    Recognizing the importance of rain in the tropics and the accompanying latent heat release, NASA for the U.S. and NASDA for Japan have partnered in the design, construction and flight of an Earth Probe satellite to measure tropical rainfall and calculate the associated heating. Primary mission goals are 1) the understanding of crucial links in climate variability by the hydrological cycle, 2) improvement in the large-scale models of weather and climate 3) improvement in understanding cloud ensembles and their impacts on larger scale circulations. The linkage with the tropical oceans and landmasses are also emphasized. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in November 1997 with fuel enough to obtain a four to five year data set of rainfall over the global tropics from 37 N to 37 S. This paper reports progress from launch date through the spring of 1999. The data system and its products and their access is described, as are the algorithms used to obtain the data. Some exciting early results from TRMM are described. Some important algorithm improvements are shown. These will be used in the first total data reprocessing, scheduled to be complete in early 2000. The reader is given information on how to access and use the data.

  20. The Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Kummerow, Christian D.; Meneghini, Robert; Hou, Arthur; Adler, Robert F.; Huffman, George; Barkstrom, Bruce; Wielicki, Bruce; Goodman, Steven J.; Christian, Hugh; hide

    1999-01-01

    Recognizing the importance of rain in the tropics and the accompanying latent heat release, NASA for the U.S. and NASDA for Japan have partnered in the design, construction and flight of an Earth Probe satellite to measure tropical rainfall and calculate the associated heating. Primary mission goals are: 1) the understanding of crucial links in climate variability by the hydrological cycle, 2) improvement in the large-scale models of weather and climate, and 3) improvement in understanding cloud ensembles and their impacts on larger scale circulations. The linkage with the tropical oceans and landmasses are also emphasized. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in November 1997 with fuel enough to obtain a four to five year data set of rainfall over the global tropics from 37 deg N to 37 deg S. This paper reports progress from launch date through the spring of 1999. The data system and its products and their access is described, as are the algorithms used to obtain the data. Some exciting early results from TRMM are described. Some important algorithm improvements are shown. These will be used in the first total data reprocessing, scheduled to be complete in early 2000. The reader is given information on how to access and use the data.

  1. Development of the Viking Mars lander thermal control subsystem design

    NASA Technical Reports Server (NTRS)

    Morey, T. F.; Gorman, D. N.

    1974-01-01

    Two Viking spacecraft, each consisting of a lander capsule coupled to an orbiter, will be launched toward Mars during the summer of 1975. About a year later, the orbiters will go into orbit around Mars and the landers will descend to the surface for 90-day landed missions. The lander must withstand a wide variety of environmental and operational conditions during all phases of the mission, including prelaunch sterilization. On the surface of Mars, the lander internal temperatures must be controlled under widely varying thermal environments and atmospheric conditions. The lander thermal design is based on the maximum use of passive techniques and is integrated into the overall vehicle design and operation. The solutions to the unusual combinations of design problems and a summary of the results of full scale model testing under simulated mission conditions are presented.

  2. Development of the Viking Mars lander thermal control subsystem design

    NASA Technical Reports Server (NTRS)

    Morey, T. F.; Gorman, D. N.

    1974-01-01

    Two Viking spacecraft, each consisting of a lander capsule coupled to an orbiter, will be launched toward Mars during the summer of 1975. About a year later, the orbiters will go into orbit around Mars and the landers will descend to the surface for 90-day landed missions. The lander must withstand a wide variety of environmental and operational conditions during all phases of the mission, including prelaunch sterilization. On the surface of Mars, the lander internal temperatures must be controlled under widely varying thermal environments and atmospheric conditions. The lander thermal design is based on the maximum use of passive techniques and is integrated into the overall vehicle design and operation. The solutions to the unusual combinations of design problems and a summary of the results of full scale model testing under simulated mission conditions are presented.

  3. Planetary seismology—Expectations for lander and wind noise with application to Venus

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2012-03-01

    The amplitudes of seismic signals on a planetary surface are discussed in the context of observable physical quantities - displacement, velocity and acceleration - in order to assess the number of events that a sensor with a given detection threshold may capture in a given period. Spacecraft engineers are generally unfamiliar with expected quantities or the language used to describe them, and seismologists are rarely presented with the challenges of accommodation of instrumentation on spacecraft. This paper attempts to bridge this gap, so that the feasibility of attaining seismology objectives on future missions - and in particular, a long-lived Venus lander - can be rationally assessed. For seismometers on planetary landers, the background noise due to wind or lander systems is likely to be a stronger limitation on the effective detection threshold than is the instrument sensitivity itself, and terrestrial data on vehicle noise is assessed in this context. We apply these considerations to investigate scenarios for a long-lived Venus lander mission, which may require a mechanical cooler powered by a Stirling generator. We also consider wind noise: the case for decoupling of a seismometer from a lander is strong on bodies with atmospheres, as is the case for shielding the instrument from wind loads. However, since the atmosphere acts on the elastic ground as well as directly on instruments, the case for deep burial is not strong, but it is important that windspeed and pressure be documented by adequate meteorology measurements.

  4. Aqueous history of Mars as inferred from landed mission measurements of rocks, soils, and water ice

    NASA Astrophysics Data System (ADS)

    Arvidson, Raymond E.

    2016-09-01

    The missions that have operated on the surface of Mars acquired data that complement observations acquired from orbit and provide information that would not have been acquired without surface measurements. Data from the Viking Landers demonstrated that soils have basaltic compositions, containing minor amounts of salts and one or more strong oxidants. Pathfinder with its rover confirmed that the distal portion of Ares Vallis is the site of flood-deposited boulders. Spirit found evidence for hydrothermal deposits surrounding the Home Plate volcanoclastic feature. Opportunity discovered that the hematite signature on Meridiani Planum as seen from orbit is due to hematitic concretions concentrated on the surface as winds eroded sulfate-rich sandstones that dominate the Burns formation. The sandstones originated as playa muds that were subsequently reworked by wind and rising groundwater. Opportunity also found evidence on the rim of the Noachian Endurance Crater for smectites, with extensive leaching along fractures. Curiosity acquired data at the base of Mount Sharp in Gale Crater that allows reconstruction of a sustained fluvial-deltaic-lacustrine system prograding into the crater. Smectites and low concentrations of chlorinated hydrocarbons have been identified in the lacustrine deposits. Phoenix, landing above the Arctic Circle, found icy soils, along with low concentrations of perchlorate salt. Perchlorate is considered to be a strong candidate for the oxidant found by the Viking Landers. It is also a freezing point depressant and may play a role in allowing brines to exist at and beneath the surface in more modern periods of time on Mars.

  5. Martian Meteorological Lander

    NASA Astrophysics Data System (ADS)

    Vorontsov, V.; Pichkhadze, K.; Polyakov, A.

    2002-01-01

    much more reliable in comparison with MML of first and second options because their functional diagram is realized by operation of 3-4 (instead of 8-10 for MML of first and second concepts) executive devices. A distinctive moment for MML of last three concepts , namely for variants 3 and 5, is the final stage of landing stipulated by penetration of forebody into the soil. Such a profile of landing was taken into account during the development of one of the landing vehicles for the "MARS-96" SC. This will permit to implement simple technical decisions for putting the meteorological complex into operation and to carry out its further operations on the surface. After comparative analysis of 5 concepts for the more detailed development concepts with parachute system and with IBU and penetration unit have been chosen as most prospective. However, finally, on the next step the new modification of the lander (hybrid version of third and fifth option with inflatable braking device and penetrating unit) has been proposed and chosen for the next step of development. The several small stations should be transported to Mars in frameworks of Scout Mars mission, or Phobos Sample Return mission as piggyback payload.

  6. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; DeWeese, Keith; Vess, Melissa; O'Donnell, James R., Jr.; Welter, Gary

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation, and Control (GN&C) analysis team encountered four main on-orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GN&C engineers identified the anomalies and tracked down the root causes. Flight data and GN&C on-board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  7. Land Measurement from Future Landsat Missions

    NASA Astrophysics Data System (ADS)

    Irons, J. R.; Masek, J. G.; Ochs, W. R.; Gao, F.

    2005-12-01

    The current strategy for implementing a successor mission to Landsat 7 involves the integration of Landsat sensors onto satellites under development for the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Unlike the data from other sensors planned for NPOESS satellites, Landsat data are not yet incorporated into algorithms for the generation of environmental data records. Placing the Landsat program into the NPOESS system creates the opportunity for defining and implementing environmental data records which fuse high resolution Landsat data with coarser resolution observations from the other sensors to create a suite of useful land measurement products. For example, a prototype product has been developed merging Landsat 7 Enhanced Thematic Mapper-Plus (ETM+) data with Moderate-Resolution Imaging Spectroradiometer (MODIS) data to create synthetic "daily" high resolution land reflectance images. This product is regarded as a preliminary step in creating annual, global land cover and land cover change maps meeting the needs of the Climate Change Science Program (CCSP) and other national and international environmental monitoring programs. The strategy for continuing the Landsat mission, the prototype land reflectance product, and the potential for using Landsat data to operationally produce a suite of land cover / land use change data records will be discussed.

  8. Philae Lander Setting on Comet, with Cliff-Image Inset

    NASA Image and Video Library

    2014-12-17

    This graphic depicts the position of the Philae lander of the European Space Agency Rosetta mission, and a nearby cliff photographed by the lander, in the context of topographic modeling of the surface of comet 67P/Churyumov-Gerasimenko nucleus.

  9. Northeast View From Pathfinder Lander

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This panorama of the region to the northeast of the lander was constructed to support the Sojourner Rover Team's plans to conduct an 'autonomous traverse' to explore the terrain away from the lander after science objectives in the lander vicinity had been met. The large, relatively bright surface in the foreground, about 10 meters (33 feet) from the spacecraft, in this scene is 'Baker's Bench.' The large, elongated rock left of center in the middle distance is 'Zaphod.'

    This view was produced by combining 8 individual 'Superpan' scenes from the left and right eyes of the IMP camera. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  10. The Viking Mars lander camera

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Taylor, G. R.; Mccall, H. F.; Patterson, W. R.

    1975-01-01

    The 7.3 kg cameras for the 1976 Viking Mars expedition feature an array of 12 silicon photodiodes, including six spectral bands for color and near-infrared imaging with an angular resolution of 0.12 deg and four focus steps for broadband imaging, with an improved angular resolution of 0.04 deg. The field of view in elevation ranges from 40 deg above to 60 deg below the horizon, and in azimuth ranges to 342.5 deg. The cameras are mounted 0.8 m apart to provide a stereo view of the area accessible to a surface sampler for biological and chemical investigations. The scanning rates are synchronized to the lander data transmission rates of 16000 bits per sec to the Viking orbiters as relay stations and 250 bits per sec directly to earth. However, image data can also be stored on a lander tape recorder. About 10 million bits of image data will be transmitted during most days of the 60-day-long mission planned for each lander.

  11. Northeast View From Pathfinder Lander

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This panorama of the region to the northeast of the lander was constructed to support the Sojourner Rover Team's plans to conduct an 'autonomous traverse' to explore the terrain away from the lander after science objectives in the lander vicinity had been met. The large, relatively bright surface in the foreground, about 10 meters (33 feet) from the spacecraft, in this scene is 'Baker's Bench.' The large, elongated rock left of center in the middle distance is 'Zaphod.'

    This view was produced by combining 8 individual 'Superpan' scenes from the left and right eyes of the IMP camera. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  12. The atmosphere structure and meteorology instrument on the Mars Pathfinder lander

    NASA Astrophysics Data System (ADS)

    Seiff, Alvin; Tillman, James E.; Murphy, James R.; Schofield, John T.; Crisp, David; Barnes, Jeffrey R.; LaBaw, Clayton; Mahoney, Colin; Mihalov, John D.; Wilson, Gregory R.; Haberle, Robert

    An instrument on the Pathfinder lander has been designed to measure the structure of Mars' atmosphere during spacecraft entry and descent from ~150km altitude to the surface, and to measure meteorological parameters after landing for the landed duration of the mission. This is specified to be nominally 30 Mars days but potentially up to 1 Earth year. Landed sensors will measure surface level pressure; temperatures at 0.25, 0.5, and 1.0 m above the surface; and wind speed and direction at a height of 1.1 m. These sensors are mounted on a slender mast about 1.63 m from the center of the Lander base petal so as to avoid flow disturbance and thermal contamination insofar as possible. Wind sensing is most sensitive at velocities <20ms-1 but can resolve speeds up to 50ms-1, with directional accuracy ~10°. A key point of interest in atmosphere structure is comparison with profiles obtained by Viking 20 years ago, to evaluate changes predicted to occur with solar activity and with dust loading of the atmosphere. The proximity of the landing site to that of Viking Lander 1 will permit comparison with and extension of the earlier lander data, which were taken over a period of more than 3 Mars years. The improved sensitivity of the lander instruments will also permit investigation of many new phenomena.

  13. First Touchdown Site of Comet Lander

    NASA Image and Video Library

    2014-11-13

    This image of comet 67P/Churyumov-Gerasimenko marks the first touchdown point of the Philae lander of the European Space Agency Rosetta mission. The image was taken by on Sept. 14, 2104, nearly two months before Philae Nov. 12 landing.

  14. View of Comet from Lander During Descent

    NASA Image and Video Library

    2014-11-12

    This image of comet 67P/Churyumov-Gerasimenko was taken by the Philae lander of the European Space Agency Rosetta mission during Philae descent toward the comet on Nov. 12, 2014 from a distance of approximate two miles three kilometers.

  15. TRMM (Tropical Rainfall Measuring Mission): A satellite mission to measure tropical rainfall

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne (Editor)

    1988-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is presented. TRMM is a satellite program being studied jointly by the United States and Japan which would carry out the systematic study of tropical rainfall required for major strides in weather and climate research. The scientific justification for TRMM is discussed. The implementation process for the scientific community, NASA management, and the other decision-makers and advisory personnel who are expected to evaluate the priority of the project is outlined.

  16. Flow field measurements around a Mars lander model using hot film anemometers under simulated Mars surface conditions

    NASA Technical Reports Server (NTRS)

    Greene, G. C.; Keafer, L. S., Jr.; Marple, C. G.; Foughner, J. T., Jr.

    1972-01-01

    Results are presented from a wind-tunnel investigation of the flow field around a 0.45-scale model of a Mars lander. The tests were conducted in air at values of Reynolds number equivalent to those anticipated on Mars. The effects of Reynolds number equivalent to those anticipated on Mars. The effects of Reynolds number, model orientation with respect to the airstream, and the position of a dish-type antenna on the flow field were determined. An appendix is included which describes the calibration and operational characteristics of hot-film anemometers under simulated Mars surface conditions.

  17. Phoenix Lander on Mars (Stereo)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander monitors the atmosphere overhead and reaches out to the soil below in this stereo illustration of the spacecraft fully deployed on the surface of Mars. The image appears three-dimensional when viewed through red-green stereo glasses.

    Phoenix has been assembled and tested for launch in August 2007 from Cape Canaveral Air Force Station, Fla., and for landing in May or June 2008 on an arctic plain of far-northern Mars. The mission responds to evidence returned from NASA's Mars Odyssey orbiter in 2002 indicating that most high-latitude areas on Mars have frozen water mixed with soil within arm's reach of the surface.

    Phoenix will use a robotic arm to dig down to the expected icy layer. It will analyze scooped-up samples of the soil and ice for factors that will help scientists evaluate whether the subsurface environment at the site ever was, or may still be, a favorable habitat for microbial life. The instruments on Phoenix will also gather information to advance understanding about the history of the water in the icy layer. A weather station on the lander will conduct the first study Martian arctic weather from ground level.

    The vertical green line in this illustration shows how the weather station on Phoenix will use a laser beam from a lidar instrument to monitor dust and clouds in the atmosphere. The dark 'wings' to either side of the lander's main body are solar panels for providing electric power.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems, Denver. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen (Denmark), the Max Planck Institute (Germany) and the Finnish Meteorological institute. JPL is a division of the California

  18. Phoenix Lander on Mars (Stereo)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander monitors the atmosphere overhead and reaches out to the soil below in this stereo illustration of the spacecraft fully deployed on the surface of Mars. The image appears three-dimensional when viewed through red-green stereo glasses.

    Phoenix has been assembled and tested for launch in August 2007 from Cape Canaveral Air Force Station, Fla., and for landing in May or June 2008 on an arctic plain of far-northern Mars. The mission responds to evidence returned from NASA's Mars Odyssey orbiter in 2002 indicating that most high-latitude areas on Mars have frozen water mixed with soil within arm's reach of the surface.

    Phoenix will use a robotic arm to dig down to the expected icy layer. It will analyze scooped-up samples of the soil and ice for factors that will help scientists evaluate whether the subsurface environment at the site ever was, or may still be, a favorable habitat for microbial life. The instruments on Phoenix will also gather information to advance understanding about the history of the water in the icy layer. A weather station on the lander will conduct the first study Martian arctic weather from ground level.

    The vertical green line in this illustration shows how the weather station on Phoenix will use a laser beam from a lidar instrument to monitor dust and clouds in the atmosphere. The dark 'wings' to either side of the lander's main body are solar panels for providing electric power.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems, Denver. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen (Denmark), the Max Planck Institute (Germany) and the Finnish Meteorological institute. JPL is a division of the California

  19. NASA's Robotic Lunar Lander Development Project

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2012-01-01

    Since early 2005, NASA's Robotic Lunar Lander Development (RLLD) office at NASA MSFC, in partnership with the Applied Physics Laboratory (APL), has developed mission concepts and preformed risk-reduction activities to address planetary science and exploration objectives uniquely met with landed missions. The RLLD team developed several concepts for lunar human-exploration precursor missions to demonstrate precision landing and in-situ resource utilization, a multi-node lunar geophysical network mission, either as a stand-alone mission, or as part of the International Lunar Network (ILN), a Lunar Polar Volatiles Explorer and a Mercury lander mission for the Planetary Science decadal survey, and an asteroid rendezvous and landing mission for the Exploration Precursor Robotics Mission (xPRM) office. The RLLD team has conducted an extensive number of risk-reduction activities in areas common to all lander concepts, including thruster testing, propulsion thermal control demonstration, composite deck design and fabrication, and landing leg stability and vibration. In parallel, the team has developed two robotic lander testbeds providing closed-loop, autonomous hover and descent activities for integration and testing of flight-like components and algorithms. A compressed-air test article had its first flight in September 2009 and completed over 150 successful flights. This small test article (107 kg dry/146 kg wet) uses a central throttleable thruster to offset gravity, plus 3 descent thrusters (37lbf ea) and 6 attitude-control thrusters (12lbf ea) to emulate the flight system with pulsed operation over approximately 10s of flight time. The test article uses carbon composite honeycomb decks, custom avionics (COTS components assembled in-house), and custom flight and ground software. A larger (206 kg dry/322 kg wet), hydrogen peroxide-propelled vehicle began flight tests in spring 2011 and fly over 30 successful flights to a maximum altitude of 30m. The monoprop testbed

  20. Selection and Characterization of Landing Sites for Chandrayaan-2 Lander

    NASA Astrophysics Data System (ADS)

    Gopala Krishna, Barla; Amitabh, Amitabh; Srinivasan, T. P.; Karidhal, Ritu; Nagesh, G.; Manjusha, N.

    2016-07-01

    Indian Space Research Organisation has planned the second mission to moon known as Chandrayaan-2, which consists of an Orbiter, a Lander and a Rover. This will be the first soft landing mission of India on lunar surface. The Orbiter, Lander and Rover individually will carry scientific payloads that enhance the scientific objectives of Chandrayaan-2. The Lander soft lands on the lunar surface and subsequently Lander & Rover will carry on with the payload activities on the moon surface. Landing Site identification based on the scientific and engineering constrains of lander plays an important role in success of a mission. The Lander poses some constraints because of its engineering design for the selection of the landing site and on the other hand the landing site / region imparts some constrain on the Lander. The various constraints that have to be considered for the study of the landing site are Local slope, Sun illumination during mission life, Radio communication with the Earth, Global slope towards equator, Boulders size, Crater density and boulder distribution. This paper describes the characterization activities of the different landing locations which have been studied for Chandrayaan-2 Lander. The sites have been studied both in the South Polar and North Polar regions of the moon on the near side. The Engineering Constraints at the sites due to the Lander, Factors that affect mission life (i.e. illumination at the location), Factors influencing communication to earth (i.e. RF visibility) & Shadow movements have been studied at these locations and zones that are favourable for landing have been short listed. This paper gives methodology of these studies along with the results of the characteristics of all the sites and the recommendations for further action in finalizing the landing area.

  1. Artemis: Common lunar lander project status

    NASA Technical Reports Server (NTRS)

    Bailey, Stephen

    1992-01-01

    Information is given in viewgraph form on the Artemis Common Lunar Lander project status. The plans are to start the Space Exploration Initiative (SEI) with lunar robotic missions that can demonstrate the NASA cultural change and provide a catalyst for human exploration of the moon and Mars. The Artemis Common Lunar Lander Concept developed by the Johnson Space Center (JSC) has been accepted as the centerpiece of this lunar robotic exploration program. Topics covered include the anticipated program structure, a concept overview, lander value as a function of payload mass, the approach of the JSC in-house study, an example launch vehicle packaging concept, and the use of the Delta 2 launch vehicle.

  2. Artemis: Common lunar lander project status

    NASA Technical Reports Server (NTRS)

    Bailey, Stephen

    1992-01-01

    Information is given in viewgraph form on the Artemis Common Lunar Lander project status. The plans are to start the Space Exploration Initiative (SEI) with lunar robotic missions that can demonstrate the NASA cultural change and provide a catalyst for human exploration of the moon and Mars. The Artemis Common Lunar Lander Concept developed by the Johnson Space Center (JSC) has been accepted as the centerpiece of this lunar robotic exploration program. Topics covered include the anticipated program structure, a concept overview, lander value as a function of payload mass, the approach of the JSC in-house study, an example launch vehicle packaging concept, and the use of the Delta 2 launch vehicle.

  3. ROSETTA lander Philae - soil strength analysis

    NASA Astrophysics Data System (ADS)

    Roll, Reinhard; Witte, Lars; Arnold, Walter

    2016-12-01

    The landing of Philae, the lander of ESA's ROSETTA-mission, on November 12th 2014 on Comet 67P/Churyumov-Gerasimenko, was planned as a descent with passive landing activating a damper system and anchoring by harpoons at touch-down. The lander was not fixed to the ground at touch-down due to failing harpoons. The lander damper, however, was actuated for a length of 42.6 mm with a maximal speed of 0.08 m/s, while the lander speed was 1 m/s. Based on the damper data and a detailed mechanical model of Philae, an estimate can be made for the forces acting and the energy dissipated at touch-down inside the lander and the energy dissipated by ground penetration. The forces acting at ground penetration provide constraints on the mechanical strength of the soil. Two different soil models are investigated. Assuming constant compressive strength σ, one obtains σ ≈ 2 kPa. Assuming an increasing σs strength with penetration depth with results in σs = 3 kPa/m fits the damper data best.

  4. NASA's Robotic Lunar Lander Development Program

    NASA Technical Reports Server (NTRS)

    Ballard, Benjamin W.; Reed, Cheryl L. B.; Artis, David; Cole, Tim; Eng, Doug S.; Kubota, Sanae; Lafferty, Paul; McGee, Timothy; Morese, Brian J.; Chavers, Gregory; Moore, Joshua; Bassler, Julie A.; Cohen, D. Barbara; Farmer, Jeffrey; Freestone, Todd; Hammond, Monica S.; Hannan, Mike C.; Hill, Lawrence D.; Harris, Danny W.; Holloway, Todd A.; Lowery, John E.; Mulac, Brian D.; Stemple, Cindy

    2012-01-01

    NASA Marshall Space Flight Center and the Johns Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.

  5. Phoenix Mars Lander in Testing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's next Mars-bound spacecraft, the Phoenix Mars Lander, was partway through assembly and testing at Lockheed Martin Space Systems, Denver, in September 2006, progressing toward an August 2007 launch from Florida. In this photograph, spacecraft specialists work on the lander after its fan-like circular solar arrays have been spread open for testing. The arrays will be in this configuration when the spacecraft is active on the surface of Mars.

    Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. It will dig into the surface, test scooped-up samples for carbon-bearing compounds and serve as NASA's first exploration of a potential modern habitat on Mars.

    mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  6. Planetary cubesats - mission architectures

    NASA Astrophysics Data System (ADS)

    Bousquet, Pierre W.; Ulamec, Stephan; Jaumann, Ralf; Vane, Gregg; Baker, John; Clark, Pamela; Komarek, Tomas; Lebreton, Jean-Pierre; Yano, Hajime

    2016-07-01

    Miniaturisation of technologies over the last decade has made cubesats a valid solution for deep space missions. For example, a spectacular set 13 cubesats will be delivered in 2018 to a high lunar orbit within the frame of SLS' first flight, referred to as Exploration Mission-1 (EM-1). Each of them will perform autonomously valuable scientific or technological investigations. Other situations are encountered, such as the auxiliary landers / rovers and autonomous camera that will be carried in 2018 to asteroid 1993 JU3 by JAXA's Hayabusas 2 probe, and will provide complementary scientific return to their mothership. In this case, cubesats depend on a larger spacecraft for deployment and other resources, such as telecommunication relay or propulsion. For both situations, we will describe in this paper how cubesats can be used as remote observatories (such as NEO detection missions), as technology demonstrators, and how they can perform or contribute to all steps in the Deep Space exploration sequence: Measurements during Deep Space cruise, Body Fly-bies, Body Orbiters, Atmospheric probes (Jupiter probe, Venus atmospheric probes, ..), Static Landers, Mobile landers (such as balloons, wheeled rovers, small body rovers, drones, penetrators, floating devices, …), Sample Return. We will elaborate on mission architectures for the most promising concepts where cubesat size devices offer an advantage in terms of affordability, feasibility, and increase of scientific return.

  7. The Philae/Rosetta Lander at Comet 67P/Churyumov-Gerasimenko - First Result, on overview

    NASA Astrophysics Data System (ADS)

    Bibring, J. P.; Boehnhardt, H.

    2014-12-01

    The Philae lander onboard ESA Rosetta mission is planned to land November 11, 2014 on comet 67P/Churyumov-Gerasimenko. Before and during landing, descent, touch-down, then the days and weeks thereafter, campaigns of scientific measurements will be performed, involving the 10 instruments onboard, i.e. APXS, CIVA, CONSERT, COSAC, MUPUS, PTOLEMY, ROLIS, ROMAP, SD2 and SESAME. An overview of these activities will be provided and the first results from the Philae instruments presented and discussed.

  8. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    An overhead crane lowers the backshell with the Phoenix Mars Lander inside toward a spin table for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  9. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    This closeup shows the spin test of the Phoenix Mars Lander in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  10. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, an overhead crane lifts the heat shield from the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  11. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, technicians attach a crane to the Phoenix Mars Lander spacecraft. The crane will be used to remove the heat shield from around the Phoenix. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  12. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, an overhead crane moves the heat shield toward a platform at left. The heat shield was removed from the Phoenix Mars Lander spacecraft at right. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  13. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    An overhead crane lifts the backshell with the Phoenix Mars Lander inside off its work stand in the Payload Hazardous Servicing Facility. The spacecraft is being moved to a spin table (back left) for spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  14. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft is ready for spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  15. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft will undergo spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  16. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell. In the background, workers are helping place the heat shield, just removed from the Phoenix, onto a platform. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  17. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, workers help guide the heat shield onto a platform. The heat shield was removed from the Phoenix Mars Lander spacecraft.. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  18. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, workers watch as an overhead crane lowers the heat shield toward a platform. The heat shield was removed from the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  19. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, technicians secure the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  20. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, technicians lower a crane over the Phoenix Mars Lander spacecraft. The crane will be used to remove the heat shield from around the Phoenix. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  1. Automatic Hazard Detection for Landers

    NASA Technical Reports Server (NTRS)

    Huertas, Andres; Cheng, Yang; Matthies, Larry H.

    2008-01-01

    Unmanned planetary landers to date have landed 'blind'; that is, without the benefit of onboard landing hazard detection and avoidance systems. This constrains landing site selection to very benign terrain,which in turn constrains the scientific agenda of missions. The state of the art Entry, Descent, and Landing (EDL) technology can land a spacecraft on Mars somewhere within a 20-100km landing ellipse.Landing ellipses are very likely to contain hazards such as craters, discontinuities, steep slopes, and large rocks, than can cause mission-fatal damage. We briefly review sensor options for landing hazard detection and identify a perception approach based on stereo vision and shadow analysis that addresses the broadest set of missions. Our approach fuses stereo vision and monocular shadow-based rock detection to maximize spacecraft safety. We summarize performance models for slope estimation and rock detection within this approach and validate those models experimentally. Instantiating our model of rock detection reliability for Mars predicts that this approach can reduce the probability of failed landing by at least a factor of 4 in any given terrain. We also describe a rock detector/mapper applied to large-high-resolution images from the Mars Reconnaissance Orbiter (MRO) for landing site characterization and selection for Mars missions.

  2. Automatic Hazard Detection for Landers

    NASA Technical Reports Server (NTRS)

    Huertas, Andres; Cheng, Yang; Matthies, Larry H.

    2008-01-01

    Unmanned planetary landers to date have landed 'blind'; that is, without the benefit of onboard landing hazard detection and avoidance systems. This constrains landing site selection to very benign terrain,which in turn constrains the scientific agenda of missions. The state of the art Entry, Descent, and Landing (EDL) technology can land a spacecraft on Mars somewhere within a 20-100km landing ellipse.Landing ellipses are very likely to contain hazards such as craters, discontinuities, steep slopes, and large rocks, than can cause mission-fatal damage. We briefly review sensor options for landing hazard detection and identify a perception approach based on stereo vision and shadow analysis that addresses the broadest set of missions. Our approach fuses stereo vision and monocular shadow-based rock detection to maximize spacecraft safety. We summarize performance models for slope estimation and rock detection within this approach and validate those models experimentally. Instantiating our model of rock detection reliability for Mars predicts that this approach can reduce the probability of failed landing by at least a factor of 4 in any given terrain. We also describe a rock detector/mapper applied to large-high-resolution images from the Mars Reconnaissance Orbiter (MRO) for landing site characterization and selection for Mars missions.

  3. Digibaro pressure instrument onboard the Phoenix Lander

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.; Polkko, J.; Kahanpää, H. H.; Schmidt, W.; Genzer, M. M.; Haukka, H.; Savijarv1, H.; Kauhanen, J.

    2009-04-01

    The Phoenix Lander landed successfully on the Martian northern polar region. The mission is part of the National Aeronautics and Space Administration's (NASA's) Scout program. Pressure observations onboard the Phoenix lander were performed by an FMI (Finnish Meteorological Institute) instrument, based on a silicon diaphragm sensor head manufactured by Vaisala Inc., combined with MDA data processing electronics. The pressure instrument performed successfully throughout the Phoenix mission. The pressure instrument had 3 pressure sensor heads. One of these was the primary sensor head and the other two were used for monitoring the condition of the primary sensor head during the mission. During the mission the primary sensor was read with a sampling interval of 2 s and the other two were read less frequently as a check of instrument health. The pressure sensor system had a real-time data-processing and calibration algorithm that allowed the removal of temperature dependent calibration effects. In the same manner as the temperature sensor, a total of 256 data records (8.53 min) were buffered and they could either be stored at full resolution, or processed to provide mean, standard deviation, maximum and minimum values for storage on the Phoenix Lander's Meteorological (MET) unit.The time constant was approximately 3s due to locational constraints and dust filtering requirements. Using algorithms compensating for the time constant effect the temporal resolution was good enough to detect pressure drops associated with the passage of nearby dust devils.

  4. NASA's Robotic Lander Takes Flight

    NASA Image and Video Library

    On Wednesday, June 8, the lander prototype managed by the Robotic Lunar Lander Development Project at NASA's Marshall Space Flight Center in Huntsville, Ala., hovered autonomously for 15 seconds at...

  5. InSight Lander in Assembly

    NASA Image and Video Library

    2015-05-27

    The Mars lander that NASA's InSight mission will use for investigating how rocky planets formed and evolved is being assembled by Lockheed Martin Space Systems, Denver. In this scene from January 2015, Lockheed Martin spacecraft specialists are working on the lander in a clean room. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19402

  6. Precipitation Measurements from Space: The Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2007-01-01

    Water is fundamental to the life on Earth and its phase transition between the gaseous, liquid, and solid states dominates the behavior of the weather/climate/ecological system. Precipitation, which converts atmospheric water vapor into rain and snow, is central to the global water cycle. It regulates the global energy balance through interactions with clouds and water vapor (the primary greenhouse gas), and also shapes global winds and dynamic transport through latent heat release. Surface precipitation affects soil moisture, ocean salinity, and land hydrology, thus linking fast atmospheric processes to the slower components of the climate system. Precipitation is also the primary source of freshwater in the world, which is facing an emerging freshwater crisis in many regions. Accurate and timely knowledge of global precipitation is essential for understanding the behavior of the global water cycle, improving freshwater management, and advancing predictive capabilities of high-impact weather events such as hurricanes, floods, droughts, and landslides. With limited rainfall networks on land and the impracticality of making extensive rainfall measurements over oceans, a comprehensive description of the space and time variability of global precipitation can only be achieved from the vantage point of space. This presentation will examine current capabilities in space-borne rainfall measurements, highlight scientific and practical benefits derived from these observations to date, and provide an overview of the multi-national Global Precipitation Measurement (GPM) Mission scheduled to bc launched in the early next decade.

  7. Precipitation Measurements from Space: The Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2007-01-01

    Water is fundamental to the life on Earth and its phase transition between the gaseous, liquid, and solid states dominates the behavior of the weather/climate/ecological system. Precipitation, which converts atmospheric water vapor into rain and snow, is central to the global water cycle. It regulates the global energy balance through interactions with clouds and water vapor (the primary greenhouse gas), and also shapes global winds and dynamic transport through latent heat release. Surface precipitation affects soil moisture, ocean salinity, and land hydrology, thus linking fast atmospheric processes to the slower components of the climate system. Precipitation is also the primary source of freshwater in the world, which is facing an emerging freshwater crisis in many regions. Accurate and timely knowledge of global precipitation is essential for understanding the behavior of the global water cycle, improving freshwater management, and advancing predictive capabilities of high-impact weather events such as hurricanes, floods, droughts, and landslides. With limited rainfall networks on land and the impracticality of making extensive rainfall measurements over oceans, a comprehensive description of the space and time variability of global precipitation can only be achieved from the vantage point of space. This presentation will examine current capabilities in space-borne rainfall measurements, highlight scientific and practical benefits derived from these observations to date, and provide an overview of the multi-national Global Precipitation Measurement (GPM) Mission scheduled to bc launched in the early next decade.

  8. A mobile planetary lander utilizing elastic loop suspension

    NASA Technical Reports Server (NTRS)

    Trautwein, W.

    1976-01-01

    Efforts to increase the cost effectiveness of future lunar and planetary rover missions have led to the mobile lander concept, which replaces the landing legs of a soft-lander craft with a compact mobility system of sufficient strength to withstand the landing impact. The results of a mobile lander conceptual design effort based on existing NASA-Viking '75 hardware are presented. The elastic loop concept, developed as a post-Apollo rover technology, is found to meet stringent stowage, traction, power and weight requirements.

  9. Low Cost Precision Lander for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Hoppa, G. V.; Head, J. N.; Gardner, T. G.; Seybold, K. G.

    2004-12-01

    For 60 years the US Defense Department has invested heavily in producing small, low mass, precision-guided vehicles. The technologies matured under these programs include terrain-aided navigation, closed loop terminal guidance algorithms, robust autopilots, high thrust-to-weight propulsion, autonomous mission management software, sensors, and data fusion. These technologies will aid NASA in addressing New Millennium Science and Technology goals as well as the requirements flowing from the Moon to Mars vision articulated in January 2004. Establishing and resupplying a long-term lunar presence will require automated landing precision not yet demonstrated. Precision landing will increase safety and assure mission success. In our lander design, science instruments amount to 10 kg, 16% of the lander vehicle mass. This compares favorably with 7% for Mars Pathfinder and less than 15% for Surveyor. The mission design relies on a cruise stage for navigation and TCMs for the lander's flight to the moon. The landing sequence begins with a solid motor burn to reduce the vehicle speed to 300-450 m/s. At this point the lander is about 2 minutes from touchdown and has 600 to 700 m/s delta-v capability. This allows for about 10 km of vehicle divert during terminal descent. This concept of operations closely mimics missile operational protocol used for decades: the vehicle remains inert, then must execute its mission flawlessly on a moment's notice. The vehicle design uses a propulsion system derived from heritage MDA programs. A redesigned truss provides hard points for landing gear, electronics, power supply, and science instruments. A radar altimeter and a Digital Scene Matching Area Correlator (DSMAC) provide data for the terminal guidance algorithms. This approach leverages the billions of dollars DoD has invested in these technologies, to land useful science payloads precisely on the lunar surface at relatively low cost.

  10. Experiments on asteroids using hard landers

    NASA Technical Reports Server (NTRS)

    Turkevich, A.; Economou, T.

    1978-01-01

    Hard lander missions to asteroids are examined using the Westphal penetrator study as a basis. Imagery and chemical information are considered to be the most significant science to be obtained. The latter, particularly a detailed chemical analysis performed on an uncontaminated sample, may answer questions about the relationships of asteroids to meteorites and the place of asteroids in theories of the formation of the solar system.

  11. Thermal Considerations for Designing the Next Lunar Lander

    NASA Astrophysics Data System (ADS)

    Garrison, Matthew B.; Nguyen, Daniel H.

    2007-01-01

    The Vision for Space Exploration calls for NASA to develop a lunar lander that is capable of delivering humans anywhere on the moon's surface at any time. This presents a significant challenge for thermal engineers, as the lander must be able to survive both the freezing 14-day long lunar night as well as the harsh lunar noon. These problems and potential solutions are presented for each stage of the proposed mission that will return American astronauts to the moon.

  12. Viking Lander 2 Anniversary

    NASA Image and Video Library

    2002-12-13

    This portion of NASA Mars Odyssey image covers NASA Viking 2 landing site shown with the X. The second landing on Mars took place September 3, 1976 in Utopia Planitia. The exact location of Lander 2 is not as well established as Lander 1 because there were no clearly identifiable features in the lander images as there were for the site of Lander 1. The Utopia landing site region contains pedestal craters, shallow swales and gentle ridges. The crater Goldstone was named in honor of the Tracking Station in the desert of California. The two Viking Landers operated for over 6 years (nearly four martian years) after landing. This one band IR (band 9 at 12.6 microns) image shows bright and dark textures, which are primarily due to differences in the abundance of rocks on the surface. The relatively cool (dark) regions during the day are rocky or indurated materials, fine sand and dust are warmer (bright). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. The dark rings around several of the craters are due to the presence of rocky (cool) material ejected from the crater. These rocks are well below the resolution of any existing Mars camera, but THEMIS can detect the temperature variations they produce. Daytime temperature variations are produced by a combination of topographic (solar heating) and thermophysical (thermal inertia and albedo) effects. Due to topographic heating the surface morphologies seen in THEMIS daytime IR images are similar to those seen in previous imagery and MOLA topography. http://photojournal.jpl.nasa.gov/catalog/PIA04023

  13. Mission Specialist Lenoir checks vision using DIOPTER measuring device

    NASA Image and Video Library

    1982-11-16

    STS005-04-146 (11-16 Nov. 1982) --- Astronaut William B. Lenoir, STS-5 mission specialists, checks his vision using DIOPTER measuring device on middeck in front of Development Flight Instrument (DFI) unit. Photo credit: NASA

  14. Mars Atmosphere Argon Density Measurement on MER Mission

    NASA Astrophysics Data System (ADS)

    Economou, T. E.

    2008-11-01

    Using the Alpha Particle X-ray Spectrometer (APXS) on board Spirit and Opportunity rovers on MER mission, we were able to measure the argon density variation in the martian atmosphere as a function of seasonal changes.

  15. Expendable Cooling for a One-Day Venus Lander

    NASA Astrophysics Data System (ADS)

    Pauken, M. T.; Fernandez, C. J.; Jeter, S. M.

    2014-06-01

    A thermal architecture of a Venus lander mission using an expendable coolant system has been developed to enable a day-long surface mission. The system uses an aqua-ammonia mixture to provide cooling of the electronics and the pressure vessel.

  16. Mars pathfinder lander deployment mechanisms

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.

    1996-01-01

    The Mars Pathfinder Lander employs numerous mechanisms, as well as autonomous mechanical functions, during its Entry, Descent and Landing (EDL) Sequence. This is the first US lander of its kind, since it is unguided and airbag-protected for hard landing using airbags, instead of retro rockets, to soft land. The arrival condition, location, and orientation of the Lander will only be known by the computer on the Lander. The Lander will then autonomously perform the appropriate sequence to retract the airbags, right itself, and open, such that the Lander is nearly level with no airbag material covering the solar cells. This function uses two different types of mechanisms - the Airbag Retraction Actuators and the Lander Petal Actuators - which are designed for the high torque, low temperature, dirty environment and for limited life application. The development of these actuators involved investigating low temperature lubrication, Electrical Discharge Machining (EDM) to cut gears, and gear design for limited life use.

  17. Mars Surface near Viking Lander 1 Footpad

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, which has been flipped horizontally, was taken by Viking Lander 1 on August 1, 1976, 12 sols after landing. Much like images that have returned from Phoenix, the soil beneath Viking 1 has been exposed due to exhaust from thruster engines during descent. This is visible to the right of the struts of Viking's surface-sampler arm housing, seen on the left.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Lunar lander conceptual design

    NASA Technical Reports Server (NTRS)

    Stecklein, J. M.; Petro, A. J.; Stump, W. R.; Adorjan, A. S.; Chambers, T. V.; Donofrio, M.; Hirasaki, J. K.; Morris, O. G.; Nudd, G.; Rawlings, R. P.

    1992-01-01

    This paper is a first look at the problems of building a lunar lander to support a small lunar surface base. A series of trade studies was performed to define the lander. The initial trades concerned choosing number of stages, payload mass, parking orbit altitude, and propellant type. Other important trades and issues included plane change capability, propellant loading and maintenance location, and reusability considerations. Given a rough baseline, the systems were then reviewed. A conceptual design was then produced. The process was carried through only one iteration. Many more iterations are needed. A transportation system using reusable, aerobraked orbital transfer vehicles (OTV's) is assumed. These OTV's are assumed to be based and maintained at a low Earth orbit (LEO) space station, optimized for transportation functions. Single- and two-stage OTV stacks are considered. The OTV's make the translunar injection (TLI), lunar orbit insertion (LOI), and trans-Earth injection (TEI) burns, as well as midcourse and perigee raise maneuvers.

  19. Development of Mini-Landers for Very Small Lunar Surface Payloads

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.

    2013-01-01

    Over the last 5 years, NASA has invested in development and risk-reduction activities for a new generation of planetary landers capable of carrying instruments and technology demonstrations to the lunar surface and other airless bodies. The Robotic Lunar Lander Development Project (RLLDP) is jointly implemented by NASA Marshall Space Flight Center (MSFC) and the Johns Hopkins University Applied Physics Laboratory (APL). The RLLDP team has produced mission architecture designs for multiple airless body missions to meet both science and human precursor mission needs. The mission architecture concept studies encompass small, medium, and large landers, with payloads from a few kilograms to over 1000 kg, to the Moon and other airless bodies. The payload and concept of operations for the U.S. contribution to the ILN was guided by an independent Science Definition Team, which required each node to operate for 6 years continuously, including through lunar eclipse periods, and to carry a seismometer, heatflow probe, retroreflector, and electromagnetic sounding instrument. Some configuration trades using penetrators, hard landers, and soft landers are discussed in [1, 2]; the preferred concept became soft-landing propulsive landers discussed in [3]. The landers were sized primairly according to their power systems: an ASRG lander configuration is estimated at 155 kg dry mass, which includes a payload suite estimated at 23 kg including payload accommodation and deployment; a solar array-battery (SAB) lander configuration is somewhat larger at 265 kg of dry mass including a 19 kg payload suite with payload accommodation

  20. Lander, Airbags, & Martian Terrain

    NASA Image and Video Library

    1997-07-05

    Several objects have been imaged by the Imager for Mars Pathfinder (IMP) during the spacecraft's first day on Mars. Portions of the deflated airbags, part of one the lander's petals, soil, and several rocks are visible. The furrows in the soil were artificially produced by the retraction of the airbags after landing, which occurred at 10:07 a.m. PDT. http://photojournal.jpl.nasa.gov/catalog/PIA00616

  1. The development of Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    Kozu, Toshiaki; Kojima, Masahiro; Oikawa, Koki; Okamoto, Ken'ichi; Keating, Thomas; Cline, Helmut P.

    1992-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint-program between the U.S. and Japan. The objective of this international cooperative program is to carry out the systematic study of tropical rainfall required for major strides in weather and climate research. In this paper, launch operation, mission operation and data processing as well as the system design and development status of the TRMM satellite are presented.

  2. The Tropical Rainfall Measuring Mission: An Overview

    NASA Technical Reports Server (NTRS)

    Kummerow. Christian; Hong, Ye

    1999-01-01

    The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. To address these issues, the TRMM satellite was launched in Nov. 1997. It has been operating successfully ever since.

  3. NASA Propulsion Concept Studies and Risk Reduction Activities for Resource Prospector Lander

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Williams, Hunter; Burnside, Chris

    2015-01-01

    The Resource Prospector mission is to investigate the Moon's polar regions in search of volatiles. The government-version lander concept for the mission is composed of a braking stage and a liquid-propulsion lander stage. A propulsion trade study concluded with a solid rocket motor for the braking stage while using the 4th-stage Peacekeeper (PK) propulsion components for the lander stage. The mechanical design of the liquid propulsion system was conducted in concert with the lander structure design. A propulsion cold-flow test article was fabricated and integrated into a lander development structure, and a series of cold flow tests were conducted to characterize the fluid transient behavior and to collect data for validating analytical models. In parallel, RS-34 PK thrusters to be used on the lander stage were hot-fire tested in vacuum conditions as part of risk reduction activities.

  4. The Global Precipitation Measurement (GPM) Mission: An Overview

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2006-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission that uses advanced precipitation radar with a constellation of passive microwave radiometers to improve the accuracy, sampling, and coverage of global precipitation measurements. It is a science mission with integrated applications goals focusing on (1) advancing the knowledge of the global watedenergy cycle variability and freshwater availability and (2) improving weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The GPM Mission is currently a partnership between NASA and the Japanese Aerospace Exploration Agency (JAXA), with opportunities for additional domestic and international partners in satellite constellation buildup and ground validation activities. The GPM Core satellite, which carries a JAXA-provided dual-frequency precipitation radar and a NASAprovided microwave radiometers with high-frequency capabilities for light rain and frozen precipitation measurements, is expected to be launched in the 2010 timeframe. The GPM Core will serve as a precipitation physics laboratory and a calibration system for improved precipitation measurements by a heterogeneous constellation of dedicated and operational microwave radiometers. NASA also plans to provide a "wild card" constellation member with a copy of the radiometer carried on the GPM Core to be placed in an orbit that maximizes the coverage and sampling of the constellation. An overview of the GPM mission concept, instrument capabilities, ground validation plans, and the expected scientific and societal benefits will be presented.

  5. The Global Precipitation Measurement (GPM) Mission: An Overview

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2006-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission that uses advanced precipitation radar with a constellation of passive microwave radiometers to improve the accuracy, sampling, and coverage of global precipitation measurements. It is a science mission with integrated applications goals focusing on (1) advancing the knowledge of the global watedenergy cycle variability and freshwater availability and (2) improving weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The GPM Mission is currently a partnership between NASA and the Japanese Aerospace Exploration Agency (JAXA), with opportunities for additional domestic and international partners in satellite constellation buildup and ground validation activities. The GPM Core satellite, which carries a JAXA-provided dual-frequency precipitation radar and a NASAprovided microwave radiometers with high-frequency capabilities for light rain and frozen precipitation measurements, is expected to be launched in the 2010 timeframe. The GPM Core will serve as a precipitation physics laboratory and a calibration system for improved precipitation measurements by a heterogeneous constellation of dedicated and operational microwave radiometers. NASA also plans to provide a "wild card" constellation member with a copy of the radiometer carried on the GPM Core to be placed in an orbit that maximizes the coverage and sampling of the constellation. An overview of the GPM mission concept, instrument capabilities, ground validation plans, and the expected scientific and societal benefits will be presented.

  6. Artist Concept of InSight Lander on Mars

    NASA Image and Video Library

    2014-03-26

    This artist's concept depicts the stationary NASA Mars lander known by the acronym InSight at work studying the interior of Mars. The InSight mission (for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is scheduled to launch in March 2016 and land on Mars six months later. It will investigate processes that formed and shaped Mars and will help scientists better understand the evolution of our inner solar system's rocky planets, including Earth. InSight will deploy two instruments to the ground using a robotic arm: a seismometer (contributed by the French space agency Centre National d'Etudes Spatiales, or CNES) to measure the microscopic ground motions from distant marsquakes, providing detailed information about the interior structure of Mars; and a heat-flow probe (contributed by the German Aerospace Center, or DLR) designed to hammer itself 3 to 5 meters (about 16 feet) deep and monitor heat coming from the planet's interior. The mission will also track the lander's radio to measure wobbles in the planet's rotation that relate to the size of its core and will include a camera and a suite of environmental sensors to monitor the weather and variations in the magnetic field. Lockheed Martin Space Systems, Denver, is building the spacecraft. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA17358

  7. Radio science experiments - The Viking Mars Orbiter and Lander.

    NASA Technical Reports Server (NTRS)

    Michael, W. H., Jr.; Cain, D. L.; Fjeldbo, G.; Levy, G. S.; Davies, J. G.; Grossi, M. D.; Shapiro, I. I.; Tyler, G. L.

    1972-01-01

    The objective of the radio science investigations is to extract the maximum scientific information from the data provided by the radio and radar systems on the Viking Orbiters and Landers. Unique features of the Viking missions include tracking of the landers on the surface of Mars, dual-frequency S- and X-band tracking data from the orbiters, lander-to-orbiter communications system data, and lander radar data, all of which provide sources of information for a number of scientific investigations. Post-flight analyses will provide both new and improved scientific information on physical and surface properties of Mars, on atmospheric and ionospheric properties of Mars, and on solar system properties.

  8. Radio science experiments - The Viking Mars Orbiter and Lander.

    NASA Technical Reports Server (NTRS)

    Michael, W. H., Jr.; Cain, D. L.; Fjeldbo, G.; Levy, G. S.; Davies, J. G.; Grossi, M. D.; Shapiro, I. I.; Tyler, G. L.

    1972-01-01

    The objective of the radio science investigations is to extract the maximum scientific information from the data provided by the radio and radar systems on the Viking Orbiters and Landers. Unique features of the Viking missions include tracking of the landers on the surface of Mars, dual-frequency S- and X-band tracking data from the orbiters, lander-to-orbiter communications system data, and lander radar data, all of which provide sources of information for a number of scientific investigations. Post-flight analyses will provide both new and improved scientific information on physical and surface properties of Mars, on atmospheric and ionospheric properties of Mars, and on solar system properties.

  9. In Situ Atmospheric Pressure Measurements in the Martian Southern Polar Region: Mars Volatiles and Climate Surveyor Meteorology Package on the Mars Polar Lander

    NASA Technical Reports Server (NTRS)

    Harri, A.-M.; Polkko, J.; Siili, T.; Crisp, D.

    1998-01-01

    Pressure observations are crucial for the success of the Mars Volatiles and Climate Surveyor (MVACS) Meteorology (MET) package onboard the Mars Polar Lander (MPL), due for launch early next year. The spacecraft is expected to land in December 1999 (L(sub s) = 256 degrees) at a high southern latitude (74 degrees - 78 degrees S). The nominal period of operation is 90 sols but may last up to 210 sols. The MVACS/MET experiment will provide the first in situ observations of atmospheric pressure, temperature, wind, and humidity in the southern hemisphere of Mars and in the polar regions. The martian atmosphere goes through a large-scale atmospheric pressure cycle due to the annual condensation/sublimation of the atmospheric CO2. Pressure also exhibits short period variations associated with dust storms, tides, and other atmospheric events. A series of pressure measurements can hence provide us with information on the large-scale state and dynamics of the atmosphere, including the CO2 and dust cycles as well as local weather phenomena. The measurements can also shed light on the shorter time scale phenomena (e.g., passage of dust devils) and hence be important in contributing to our understanding of mixing and transport of heat, dust, and water vapor.

  10. Summary Report of Mission Acceleration Measurements for STS-95

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Hrovat, Kenneth

    2000-01-01

    John H. Glenn's historic return to space was a primary focus of the STS-95 mission. The Hubble Space Telescope (HST) Orbital Systems Test (HOST). an STS-95 payload, was an in-flight demonstration of HST components to be installed during the next HST servicing mission. One of the components under evaluation was the cryocooler for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Based on concerns about vibrations from the operation of the NICMOS cryocooler affecting the overall HST line-of-sight requirements, the Space Acceleration Measurement System for Free-Flyers (SAMS-FF) was employed to measure the vibratory environment of the STS-95 mission, including any effects introduced by the NICMOS cryocooler. The STS-95 mission represents the first STS mission supported by SAMS-FF. Utilizing a Control and Data Acquisition Unit (CDU) and two triaxial sensor heads (TSH) mounted on the HOST support structure in Discovery's cargo bay, the SAMS-FF and the HOST project were able to make vibratory measurements both on-board the vibration-isolated NICMOS cryocooler and off-board the cryocooler mounting plate. By comparing the SAMS-FF measured vibrations on-board and off-board the NICMOS cryocooler, HST engineers could assess the cryocooler g-jitter effects on the HST line-of-sight requirements. The acceleration records from both SAMS-FF accelerometers were analyzed and significant features of the microgravity environment are detailed in this report.

  11. Mars Polar Lander: The Search Begins

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Science Systems. This model is illuminated in the same way that sunlight would illuminate the real lander at 2 p.m. local time in December 1999--in other words, the model is illuminated exactly the way it would be if it occurred in the MOC image shown above (left). This figure shows what the Mars Polar Lander would look like if viewed from above by cameras of different resolutions from 1 centimeter (0.4 inch) per pixel in the upper left to 1.5 meters (5 feet) per pixel in the lower right. The 1.5 meters per pixel view is the best resolution that can be achieved by MOC. Note that at MOC resolution, the lander is just a few pixels across.

    The problem of recognizing the lander in MOC images is obvious--all that might be seen is a pattern of a few bright and dark gray pixels. This means that it will be extremely difficult to identify the lander by looking at the relatively noisy MOC images that can be acquired at the landing site--like those shown in the top picture.

    How, then, is the MGS MOC team looking for the lander? Primarily, they are looking for associations of features that, together, would suggest whether or not the Mars landing was successful. For example, the parachute that was used to slow the lander from supersonic speeds to just under 300 km/hr (187 mph) was to have been jettisoned, along with part of the aeroshell that protected the lander from the extreme heat of entry, about 40 seconds before landing. The parachute and aeroshell are likely to be within a kilometer (6 tenths of a mile) of the lander. The parachute and aeroshell are nearly white, so they should stand out well against the red martian soil. The parachute, if lying on the ground in a fully open, flat position, would measure about 6 meters (20 feet)--thus it would cover three or four pixels (at most) in a MOC image. If the parachute can be found, the search for the lander can be narrowed to a small, nearby zone. If, as another example, the landing rockets kicked up a lot of dust and

  12. Mars Polar Lander: The Search Begins

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Science Systems. This model is illuminated in the same way that sunlight would illuminate the real lander at 2 p.m. local time in December 1999--in other words, the model is illuminated exactly the way it would be if it occurred in the MOC image shown above (left). This figure shows what the Mars Polar Lander would look like if viewed from above by cameras of different resolutions from 1 centimeter (0.4 inch) per pixel in the upper left to 1.5 meters (5 feet) per pixel in the lower right. The 1.5 meters per pixel view is the best resolution that can be achieved by MOC. Note that at MOC resolution, the lander is just a few pixels across.

    The problem of recognizing the lander in MOC images is obvious--all that might be seen is a pattern of a few bright and dark gray pixels. This means that it will be extremely difficult to identify the lander by looking at the relatively noisy MOC images that can be acquired at the landing site--like those shown in the top picture.

    How, then, is the MGS MOC team looking for the lander? Primarily, they are looking for associations of features that, together, would suggest whether or not the Mars landing was successful. For example, the parachute that was used to slow the lander from supersonic speeds to just under 300 km/hr (187 mph) was to have been jettisoned, along with part of the aeroshell that protected the lander from the extreme heat of entry, about 40 seconds before landing. The parachute and aeroshell are likely to be within a kilometer (6 tenths of a mile) of the lander. The parachute and aeroshell are nearly white, so they should stand out well against the red martian soil. The parachute, if lying on the ground in a fully open, flat position, would measure about 6 meters (20 feet)--thus it would cover three or four pixels (at most) in a MOC image. If the parachute can be found, the search for the lander can be narrowed to a small, nearby zone. If, as another example, the landing rockets kicked up a lot of dust and

  13. Global precipitation measurement (GPM) mission core spacecraft systems engineering challenges

    NASA Astrophysics Data System (ADS)

    Bundas, David J.; O'Neill, Deborah; Rhee, Michael; Feild, Thomas; Meadows, Gary; Patterson, Peter

    2006-09-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  14. Cold Pressor Response in High Landers Versus Low Landers

    PubMed Central

    Ghildiyal, Archana; Goyal, Manish; Verma, Dileep; Singh, Shraddha; Tiwari, Sunita

    2014-01-01

    Background: Native high landers face two main environmental challenges i.e. hypobaric hypoxia and low ambient temperatures. Both factors contribute to increased sympathetic stimulation and increased blood pressure. Despite these challenges, subjects living at high altitude have lower systolic and diastolic pressures as compared to subjects living in plains. Present study investigated cold pressor test (CPT) which is a potential predictor of future hypertension in high landers and low landers Materials and Methods: Vascular reactivity in terms of changes in systolic and diastolic blood pressure and heart rate in response to cold pressor test has been compared in high lander (n=45) and low lander (n=46) population. Results: Systolic and diastolic blood pressure changes and heart rate changes with cold pressor test are lower in high landers as compared to low landers. Females in both the groups in general exhibited greater cold pressor response than males. Conclusion: Hypo-reactive cold pressor test is due to higher parasympathetic tone and lower sympathetic tone. Decreased cold pressor response in high landers reflects another adaptive modulation of sympatho-vagal activity that enables them to stay in hypobaric atmosphere and lower temperatures without undue autonomic stress. PMID:25478333

  15. Using Engineering Cameras on Mars Landers and Rovers to Retrieve Atmospheric Dust Loading

    NASA Astrophysics Data System (ADS)

    Wolfe, C. A.; Lemmon, M. T.

    2014-12-01

    Dust in the Martian atmosphere influences energy deposition, dynamics, and the viability of solar powered exploration vehicles. The Viking, Pathfinder, Spirit, Opportunity, Phoenix, and Curiosity landers and rovers each included the ability to image the Sun with a science camera that included a neutral density filter. Direct images of the Sun provide the ability to measure extinction by dust and ice in the atmosphere. These observations have been used to characterize dust storms, to provide ground truth sites for orbiter-based global measurements of dust loading, and to help monitor solar panel performance. In the cost-constrained environment of Mars exploration, future missions may omit such cameras, as the solar-powered InSight mission has. We seek to provide a robust capability of determining atmospheric opacity from sky images taken with cameras that have not been designed for solar imaging, such as lander and rover engineering cameras. Operational use requires the ability to retrieve optical depth on a timescale useful to mission planning, and with an accuracy and precision sufficient to support both mission planning and validating orbital measurements. We will present a simulation-based assessment of imaging strategies and their error budgets, as well as a validation based on archival engineering camera data.

  16. Triton Explorer - Neptune Orbiter Mission Study

    NASA Astrophysics Data System (ADS)

    Balint, T. S.; Shirley, J. H.

    2005-12-01

    Triton is larger than the planet Pluto, and its highly inclined, retrograde orbit suggests that it may be a captured object that initially formed somewhere else in the solar system. Its composition (and its inventory of organic materials) is thus of considerable interest. Triton possesses an appreciable atmosphere, and its circulation, like that of Mars, is one of seasonal condensation flow between the southern and northern hemispheres. Although the surface pressure is only ~ 16 microbar, winds of 5-15 m / sec flow toward the equator from the sunlit hemisphere. Voyager 2 detected a number of plumes extending from the surface to approximately 8 km elevation within the atmosphere. Triton exhibits a variety of puzzling surface features; among these are structural features that suggest extensive faulting in the past, together with ice volcanism, and dark streaks that may be associated with the plumes. The Solar System Exploration Decadal Survey (NRC, 2003) lists a Neptune Orbiter / Triton Explorer as a "Deferred High-Priority Flight Mission" that may be considered for the second decade of this century. Likely science objectives for a Triton Lander mission would include a more complete characterization of the composition and circulation of the atmosphere; investigation of the physical processes responsible for plume formation; surface composition measurements; and geophysical monitoring, including seismological measurements that could potentially constrain the physics of plume eruptions. We describe here a conceptual dual-Lander mission to explore Triton's surface. Each of the two Landers would be powered by a standard multi-mission radioisotope thermoelectric generator (MMRTG). These Landers could operate on the surface of Triton for several years. A companion Neptune Orbiter would provide telecommunication links between the Landers and the Earth, and would be instrumented to observe both Triton and Neptune. Although a Jupiter Icy Moons Orbiter (JIMO) follow-on mission

  17. A Discovery-Class Lunette Mission Concept for a Lunar Geophysical Network

    NASA Technical Reports Server (NTRS)

    Elliott, John; Alkalai, Leon

    2010-01-01

    The Lunette mission concept for a network of small, inexpensive lunar landers has evolved over the last three years as the focus of space exploration activities in the US has changed. Originating in a concept for multiple landers launched as a secondary payload capable of regional science and site survey activities, Lunette has recently been developed into a Discovery-class mission concept that offers global lunar coverage enabling network science on a much broader scale. A particular mission concept has been refined by the Lunette team that would result in a low-cost global lunar geophysical network, comprised of two landers widely spaced on the near side of the moon. Each of the two identical landers would carry a suite of instruments that would make continuous measurements of seismic activity, heat flow, and the electromagnetic environment during the full lunar day/night cycle. Each lander would also deploy a next-generation laser retroreflector capable of improving on distance measurement accuracy by an order of magnitude over those emplaced by the previous Apollo and Lunokhod missions. This paper presents a comprehensive overview of the Lunette geophysical network mission concept, including mission and flight system design, as well as the key requirements and constraints that guided them.

  18. Rosetta Lander - Philae: Operations on 67P and attempts for Long Term Science

    NASA Astrophysics Data System (ADS)

    Ulamec, Stephan; Biele, Jens; Cozzoni, Barbara; Delmas, Cedric; Fantinati, Cinzia; Geurts, Koen; Jansen, Sven; Jurado, Eric; Küchemann, Oliver; Lommatsch, Valentina; Maibaum, Michael; O'Rourke, Laurence

    2016-04-01

    Philae is a comet Lander, part of Rosetta which is a Cornerstone Mission of the ESA Horizon 2000 programme. Philae successfully landed on comet 67P/Churyumov-Gerasimenko on November 12th, 2014 and performed a First Scientific Sequence, based on the energy stored in it's on board batteries. All ten instruments of the Philae payload have been operated at least once. Due to the fact that the final landing site (after several bounces) was poorly illuminated, Philae went into hibernation on November 15th, and the teams hoped for a wake-up at closer heliocentric distances. Signals from the Lander were indeed received on June 13th when 67P was at a distance of about 1.4 AU from the Sun. Housekeeping values showed that Philae had already been active earlier, but no RF contact with the mothership could be established. Seven more times, signals from Philae were received, the last ones on July 9th, 2015. Unfortunately, no reliable or predictable links could be achieved. The paper will give an overview of the activities with Philae after its hibernation, interpretation of the received housekeeping data and the various strategies to attempt more contacts and long term science measurements. Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta's Philae Lander is provided by a consortium led by DLR, MPS, CNES and ASI with additional contributions from Hungary, UK, Finland, Ireland and Austria.

  19. Earth Sensor Assembly for the Tropical Rainfall Measuring Mission Observatory

    NASA Technical Reports Server (NTRS)

    Prince, Steven S.; Hoover, James M.

    1995-01-01

    EDO Corporation/Barnes Engineering Division (BED) has provided the Tropical Rainfall Measurement Mission (TRMM) Earth Sensor Assembly (ESA), a key element in the TRMM spacecraft's attitude control system. This report documents the history, design, fabrication, assembly, and test of the ESA.

  20. The Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2008-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission to unify and advance global precipitation measurements from a constellation of dedicated and operational microwave sensors. The GPM concept centers on the deployment of a Core Spacecraft in a non-Sun-synchronous orbit at 65' inclination carrying a dual-frequency precipitation radar (DPR) and a multi-frequency passive microwave radiometer (GMI) with high-frequency capabilities to serve as a precipitation physics observatory and calibration standard for the constellation radiometers. The baseline GPM constellation is envisioned to comprise conical-scanning microwave imagers (e.g., GMI, SSMIS, AMSR, MIS, MADRAS, GPM-Brazil) augmented with cross-track microwave temperaturelhumidity sounders (e.g., MHS, ATMS) over land. In addition to the Core Satellite, the GPM Mission will contribute a second GMI to be flown in a low-inclination (approx.40deg) non-Sun-synchronous orbit to improve near real-time monitoring of hurricanes. GPM is a science mission with integrated applications goals aimed at (1) advancing the knowledge of the global waterlenergy cycle variability and freshwater availability and (2) improving weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional partners in satellite constellation and ground validation activities. Within the framework of the inter-governmental Group ob Earth Observations (GEO) and Global Earth Observation System of Systems (GEOSS), GPM has been identified as a cornerstone for the Precipitation Constellation (PC) being developed under the auspices of Committee of Earth Observation Satellites (CEOS). The GPM Core Observatory is scheduled for launch in 201 3, followed by the launch of the GPM Low- Inclination Observatory in 2014. An

  1. The Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2008-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission to unify and advance global precipitation measurements from a constellation of dedicated and operational microwave sensors. The GPM concept centers on the deployment of a Core Spacecraft in a non-Sun-synchronous orbit at 65 degrees inclination carrying a dual-frequency precipitation radar (DPR) and a multi-frequency passive microwave radiometer (GMI) with high-frequency capabilities to serve as a precipitation physics observatory and calibration standard for the constellation radiometers. The baseline GPM constellation is envisioned to comprise conical-scanning microwave imagers (e.g., GMI, SSMIS, AMSR, MIS, MADRAS, GPM-Brazil) augmented with cross-track microwave temperature/humidity sounders (e.g., MHS, ATMS) over land. In addition to the Core Satellite, the GPM Mission will contribute a second GMI to be flown in a low-inclination (approximately 40 deg.) non-Sun-synchronous orbit to improve near real-time monitoring of hurricanes. GPM is a science mission with integrated applications goals aimed at (1) advancing the knowledge of the global water/energy cycle variability and freshwater availability and (2) improving weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional partners in satellite constellation and ground validation activities. Within the framework of the inter-governmental Group ob Earth Observations (GEO) and Global Earth Observation System of Systems (GEOSS), GPM has been identified as a cornerstone for the Precipitation Constellation (PC) being developed under the auspices of Committee of Earth Observation Satellites (CEOS). The GPM Core Observatory is scheduled for launch in 2013, followed by the launch of the GPM Low-Inclination Observatory in

  2. The Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2008-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission to unify and advance global precipitation measurements from a constellation of dedicated and operational microwave sensors. The GPM concept centers on the deployment of a Core SpacecraR in a non-Sun-synchronous orbit at 65 deg. inclination carrying a dual-frequency precipitation radar (DPR) and a multi-frequency passive microwave radiometer (GMI) with high-frequency capabilities to serve as a precipitation physics observatory and calibration standard for the constellation radiometers. The baseline GPM constellation is envisioned to comprise conical-scanning microwave imagers (e.g., GMI, SSMIS, AMSR, MIS, MADRAS, GPM-Brazil) augmented with cross-track microwave temperaturethumidity sounders (e.g., MHS, ATMS) over land. In addition to the Core Satellite, the GPM Mission will contribute a second GMI to be flown in a low-inclination (approximately 40 deg.) non-Sun-synchronous orbit to improve near-realtime monitoring of hurricanes. GPM is a science mission with integrated applications goals aimed at (1) advancing the knowledge of the global watertenergy cycle variability and freshwater availability and (2) improving weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional partners in satellite constellation and ground validation activities. Within the framework of the inter-governmental Group ob Earth Observations (GEO) and Global Earth Observation System of Systems (GEOSS), GPM has been identified as a cornerstone for the Precipitation Constellation (PC) being developed under the auspices of Committee of Earth Observation Satellites (CEOS). The GPM Core Observatory is scheduled for launch in 2013, followed by the launch of the GPM Low-Inclination Observatory in 2014

  3. Robotic Lander Prototype Completes Initial Tests

    NASA Image and Video Library

    NASA's Robotic Lunar Lander Development Project at Marshall Space Flight Center in Huntsville, Ala., completed an initial series of integrated tests on a new lander prototype. The prototype lander ...

  4. Enabling technologies for Chinese Mars lander guidance system

    NASA Astrophysics Data System (ADS)

    Jiang, Xiuqiang; Li, Shuang

    2017-04-01

    Chinese first Mars exploration activity, orbiting landing and roaming collaborative mission, has been programmed and started. As a key technology, Mars lander guidance system is intended to serve atmospheric entry, descent and landing (EDL) phases. This paper is to report the formation process of enabling technology road map for Chinese Mars lander guidance system. First, two scenarios of the first-stage of the Chinese Mars exploration project are disclosed in detail. Second, mission challenges and engineering needs of EDL guidance, navigation, and control (GNC) are presented systematically for Chinese Mars exploration program. Third, some useful related technologies developed in China's current aerospace projects are pertinently summarized, especially on entry guidance, parachute descent, autonomous hazard avoidance and safe landing. Finally, an enabling technology road map of Chinese Mars lander guidance is given through technological inheriting and improving.

  5. Aerobot measurements successfully obtained during Solo Spirit Balloon Mission

    NASA Astrophysics Data System (ADS)

    Avidson, Raymond E.; Bowman, Judd D.; Guinness, Edward A.; Johnson, Sarah S.; Slavney, S. H.; Stein, Thomas C.; Bachelder, Aaron D.; Cameron, Jonathan M.; Cutts, James A.; Ivlev, Robert V.; Kahn, Ralph A.

    Robotic balloons, also known as aerobots, have become candidates for collecting atmospheric data and detailed surface observations of Venus, Mars, and Titan. A mission to Venus over a decade ago used two of them. Their inclusion last year in attempts by a balloonist to circumnavigate the Earth aptly demonstrated their utility for remote sensing and in situ observations of planetary atmospheres.To simulate aspects of an aerobot mission, a small payload to measure local atmospheric conditions and balloon position and velocity was included on Solo Spirit “Round the World” flights during January and August of last year. These missions, flown in Roziere balloons, were attempts by Steve Fossett to become the first person to circumnavigate the globe in a balloon without stopping. Neither attempt was successful, but the aerobot came through with flying colors.

  6. Science potential from a Europa lander.

    PubMed

    Pappalardo, R T; Vance, S; Bagenal, F; Bills, B G; Blaney, D L; Blankenship, D D; Brinckerhoff, W B; Connerney, J E P; Hand, K P; Hoehler, T M; Leisner, J S; Kurth, W S; McGrath, M A; Mellon, M T; Moore, J M; Patterson, G W; Prockter, L M; Senske, D A; Schmidt, B E; Shock, E L; Smith, D E; Soderlund, K M

    2013-08-01

    The prospect of a future soft landing on the surface of Europa is enticing, as it would create science opportunities that could not be achieved through flyby or orbital remote sensing, with direct relevance to Europa's potential habitability. Here, we summarize the science of a Europa lander concept, as developed by our NASA-commissioned Science Definition Team. The science concept concentrates on observations that can best be achieved by in situ examination of Europa from its surface. We discuss the suggested science objectives and investigations for a Europa lander mission, along with a model planning payload of instruments that could address these objectives. The highest priority is active sampling of Europa's non-ice material from at least two different depths (0.5-2 cm and 5-10 cm) to understand its detailed composition and chemistry and the specific nature of salts, any organic materials, and other contaminants. A secondary focus is geophysical prospecting of Europa, through seismology and magnetometry, to probe the satellite's ice shell and ocean. Finally, the surface geology can be characterized in situ at a human scale. A Europa lander could take advantage of the complex radiation environment of the satellite, landing where modeling suggests that radiation is about an order of magnitude less intense than in other regions. However, to choose a landing site that is safe and would yield the maximum science return, thorough reconnaissance of Europa would be required prior to selecting a scientifically optimized landing site.

  7. Northeast View From Pathfinder Lander - Anaglyph

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This panorama of the region to the northeast of the lander was constructed to support the Sojourner Rover Team's plans to conduct an 'autonomous traverse' to explore the terrain away from the lander after science objectives in the lander vicinity had been met. The large, relatively bright surface in the foreground, about 10 meters (33 feet) from the spacecraft, in this scene is 'Baker's Bench.' The large, elongated rock left of center in the middle distance is 'Zaphod.'

    This anaglyph view was produced by combining the left and right eye mosaics (above) by assigning the left eye view to the red color plane and the right eye view to the green and blue color planes (cyan), to produce a stereo anaglyph mosaic. This mosaic can be viewed in 3-D on your computer monitor or in color print form by wearing red-blue 3-D glasses.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  8. Neutral Gas and Ion Measurements by the CONTOUR Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Niemann, Hasso B. (Technical Monitor)

    2002-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Comet Nucleus Tour (CONTOUR) Mission will measure the chemical and isotopic composition of neutral and ion species in the coma of comet Encke and the subsequent targets of this mission. Currently the second target of this mission is comet Schwassmann-Wachmann 3. This neutral gas and ion data together with complementary data from the dust analyzer and the imaging spectrometer is designed to allow a broad characterization of the molecular and elemental composition of each cometary nucleus. These experiments enable the study of the of the likely variations in chemical conditions present in different regions of the early solar nebula where the comets formed. With these experiments we will also test ideas about cometary contributions of organics, water, and other volatiles to the inner planets. The CONTOUR NGIMS data set from multiple comets is expected to provide an important extension of to the only other detailed in situ data set from a close flyby of a nucleus, that from Halley. CONTOUR will extend this measurement of an Oort cloud comet to the class of short period comets thought to originate in the Kuiper belt. This data will complement the detailed measurements to be carried out at a single nucleus by the Rosetta Mission.

  9. Rock Moved by Mars Lander Arm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location.

    'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team.

    The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape.

    The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been.

    This image was taken at about 12:30 p.m., local solar time on Mars. The view is to the north northeast of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  10. Rock Moved by Mars Lander Arm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location.

    'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team.

    The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape.

    The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been.

    This image was taken at about 12:30 p.m., local solar time on Mars. The view is to the north northeast of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  11. Hopper concepts for small body landers

    NASA Astrophysics Data System (ADS)

    Ulamec, S.; Kucherenko, V.; Biele, J.; Bogatchev, A.; Makurin, A.; Matrossov, S.

    2011-02-01

    The investigation of small bodies, comets and asteroids, can contribute substantially to our understanding of the formation and history of the Solar System. In situ observations by landers play an important role in this field.Due to the low gravity of comets and asteroids, mobility of surface elements can be achieved by hopping devices, providing relatively low delta-v.The first such hopper was part of the Soviet Phobos 2 Mission in the 1980s.The current paper presents the results of a study for a small (˜10 kg) hopper device, optimized for a mission to a relatively small asteroid. The hopper may, e.g. be considered as part of the Japanese Hayabusa 2 mission, to be launched in the 2014/15 timeframe.Concepts for the actuation of the hopper, dynamics and mechanical aspects are discussed in further detail.

  12. MarsLab: A HEDS Lander Concept

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; McKay, C.; Connolly, J.

    2000-01-01

    Recognizing that the human exploration of Mars will be a science-focused enterprise, the Human Exploration and Development of Space (HEDS) program set out three years ago to develop a mix of science and technology Lander payloads as a first step toward a human mission. With three experiments ready for flight and four more in development, the HEDS Mars program has the capability to stage missions with considerable impact. This presentation describes one such mission design by no means unique. Ambitious in scope, it encompasses elements of all seven HEDS payloads in a configuration with a uniquely HEDS character. Pragmatically, a subset of these elements could be selected for existing small Lander platforms. Bristling with scientific experiments, technology demonstrations, and outreach elements, MarsLab represents a prototype of a manned science station or scientific outpost. A cartoon overview of MarsLab defines its major elements, explained more fully in the sections that follow. The concept is endorsed by PI's of the various HEDS payloads, details of which are presented elsewhere at this workshop.

  13. MarsLab: A HEDS Lander Concept

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; McKay, C.; Connolly, J.

    2000-01-01

    Recognizing that the human exploration of Mars will be a science-focused enterprise, the Human Exploration and Development of Space (HEDS) program set out three years ago to develop a mix of science and technology Lander payloads as a first step toward a human mission. With three experiments ready for flight and four more in development, the HEDS Mars program has the capability to stage missions with considerable impact. This presentation describes one such mission design by no means unique. Ambitious in scope, it encompasses elements of all seven HEDS payloads in a configuration with a uniquely HEDS character. Pragmatically, a subset of these elements could be selected for existing small Lander platforms. Bristling with scientific experiments, technology demonstrations, and outreach elements, MarsLab represents a prototype of a manned science station or scientific outpost. A cartoon overview of MarsLab defines its major elements, explained more fully in the sections that follow. The concept is endorsed by PI's of the various HEDS payloads, details of which are presented elsewhere at this workshop.

  14. Titan Saturn System Mission Instrumentation

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Lunine, J.; Reh, K.; Lebreton, J.-P.; Erd, C.; Beauchamp, P.; Matson, D.

    2012-10-01

    The Titan Saturn System Mission (TSSM), another future mission proposed for Titan's exploration, includes an orbiter and two in situ elements: a hot-air balloon and a lake lander. The instrumentation of those two elements will be presented.

  15. Hoisting NASA's InSight Lander

    NASA Image and Video Library

    2017-08-28

    The Mars lander portion of NASA's InSight spacecraft is lifted from the base of a storage container in preparation for testing, in this photo taken June 20, 2017, in a Lockheed Martin clean room facility in Littleton, Colorado. The InSight mission (for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is scheduled to launch in May 2018 and land on Mars Nov. 26, 2018. It will investigate processes that formed and shaped Mars and will help scientists better understand the evolution of our inner solar system's rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA21844

  16. Historical perspective - Viking Mars Lander propulsion

    NASA Technical Reports Server (NTRS)

    Morrisey, Donald C.

    1989-01-01

    This paper discusses the Viking 1 and 2 missions to Mars in 1975-1976 and describes the design evolution of the Viking Terminal Descent Rocket Engines responsible for decelerating the Viking Mars Landers during the final portion of their descent from orbit. The Viking Terminal Descent Rocket Engines have twice the thrust of the largest monopropellant hydrazine engine developed previously but weigh considerably less. The engine has 18 nozzles, the capability of 10:1 throttling, is totally sealed until fired, employs no organic unsealed materials, is 100 percent germ free, utilized hydrazine STM-20 as the propellant, and starts at a temperature more than 45 F below the propellant's freezing point.

  17. In Brief: Ice at Mars lander site

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-07-01

    Eight dice-sized bits of ice vanished within 4 days from a trench dug on Mars by the robotic arm on NASA's Phoenix lander, confirming what scientists suspected the material was. ``It must be ice,'' said mission principal investigator Peter Smith of the University of Arizona, Tucson. ``These little clumps completely disappearing over the course of a few days: that is perfect evidence that it's ice. There had been some question whether the bright material was salt. Salt can't do that,'' he said.

  18. Lunar lander stage requirements based on the Civil Needs Data Base

    NASA Technical Reports Server (NTRS)

    Mulqueen, John A.

    1992-01-01

    This paper examines the lunar lander stages that will be necessary for the future exploration and development of the Moon. Lunar lander stage sizing is discussed based on the projected lunar payloads listed in the Civil Needs Data Base. Factors that will influence the lander stage design are identified and discussed. Some of these factors are (1) lunar orbiting and lunar surface lander bases; (2) implications of direct landing trajectories and landing from a parking orbit; (3) implications of landing site and parking orbit; (4) implications of landing site and parking orbit selection; (5) the use of expendable and reusable lander stages; and (6) the descent/ascent trajectories. Data relating the lunar lander stage design requirements to each of the above factors and others are presented in parametric form. These data will provide useful design data that will be applicable to future mission model modifications and design studies.

  19. ARIM-1: The Atmospheric Refractive Index Measurements Sounding Rocket Mission

    NASA Technical Reports Server (NTRS)

    Ruiz, B. Ian (Editor)

    1995-01-01

    A conceptual design study of the ARIM-1 sounding rocket mission, whose goal is to study atmospheric turbulence in the tropopause region of the atmosphere, is presented. The study was conducted by an interdisciplinary team of students at the University of Alaska Fairbanks who were enrolled in a Space Systems Engineering course. The implementation of the ARIM-1 mission will be carried out by students participating in the Alaska Student Rocket Program (ASRP), with a projected launch date of August 1997. The ARIM-1 vehicle is a single stage sounding rocket with a 3:1 ogive nose cone, a payload diameter of 8 in., a motor diameter of 7.6 in., and an overall height of 17.0 ft including the four fins. Emphasis is placed on standardization of payload support systems. The thermosonde payload will measure the atmospheric turbulence by direct measurement of the temperature difference over a distance of one meter using two 3.45-micron 'hot-wire' probes. The recovery system consists of a 6 ft. diameter ribless guide surface drogue chute and a 33 ft. diameter main cross parachute designed to recover a payload of 31 pounds and slow its descent rate to 5 m/s through an altitude of 15 km. This document discusses the science objectives, mission analysis, payload mechanical configuration and structural design, recovery system, payload electronics, ground station, testing plans, and mission implementation.

  20. Program control on the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Pennington, Dorothy J.; Majerowicw, Walter

    1994-01-01

    The Tropical Rainfall Measuring Mission (TRMM), an integral part of NASA's Mission to Planet Earth, is the first satellite dedicated to measuring tropical rainfall. TRMM will contribute to an understanding of the mechanisms through which tropical rainfall influences global circulation and climate. Goddard Space Flight Center's (GSFC) Flight Projects Directorate is responsible for establishing a Project Office for the TRMM to manage, coordinate, and integrate the various organizations involved in the development and operation of this complex satellite. The TRMM observatory, the largest ever developed and built inhouse at GSFC, includes state-of-the-art hardware. It will carry five scientific instruments designed to determine the rate of rainfall and the total rainfall occurring between the north and south latitudes of 35 deg. As a secondary science objective, TRMM will also measure the Earth's radiant energy budget and lightning.

  1. ATMOS: Long term atmospheric measurements for mission to planet Earth

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A long-term, space-based measurement program, together with continued balloon and aircraft-borne investigations, is essential to monitor the predicted effects in the atmosphere, to determine to what extent the concentration measurements agree with current models of stratospheric chemistry, and to determine the condition of the ozone layer. The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment is currently making comprehensive, global measurements of Earth's atmosphere as part of the Atmospheric Laboratory for Applications and Science (ATLAS) program on the Space Shuttle. Part of NASA's Mission to Planet Earth, ATLAS is a continuing series of missions to study Earth and the Sun and provide a more fundamental understanding of the solar influences on Earth's atmosphere. The ATMOS program, instruments, and science results are presented.

  2. Cryogenic Thermal Conductivity Measurements on Candidate Materials for Space Missions

    NASA Technical Reports Server (NTRS)

    Tuttle, JIm; Canavan, Ed; Jahromi, Amir

    2017-01-01

    Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. In addition to having mechanical properties appropriate for surviving the launch environment, these materials generally must have thermal conductivity values which meet specific requirements in their operating temperature ranges. Space missions commonly propose to include materials for which the thermal conductivity is not well known at cryogenic temperatures. We developed a test facility in 2004 at NASAs Goddard Space Flight Center to measure material thermal conductivity at temperatures between 4 and 300 Kelvin, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for several materials.

  3. The Global Precipitation Measurement Mission: NASA Status and Early Results

    NASA Astrophysics Data System (ADS)

    Skofronick-Jackson, Gail; Huffman, G.; Petersen, W.; Kidd, Chris

    The Global Precipitation Measurement (GPM) mission’s Core satellite, launched 27 February 2014, is well-designed to estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth’s water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. GPM is a joint NASA-JAXA mission. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)’s highly successful rain-sensing package. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65 (°) non-Sun-synchronous orbit serving as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory carries a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR provides measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements places greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM mission science objectives and instrument

  4. Low Cost Approach to Mars Pathfinder and Small Landers

    NASA Technical Reports Server (NTRS)

    Spear, Anthony J.

    1994-01-01

    NASA'sMars Surveyor Program will launch several small orbiters to Mars, each carrying subsets fo the Mars Observer instruments, starting as early as '96, to achieve the Mars Observer Mission objectives. Small landers will follow, as early as '98, accomplishing surface investigations as determined by the NASA AO process.

  5. Philae Lander View of Perihelion Cliff on Comet Surface

    NASA Image and Video Library

    2014-12-17

    From the location where it came to rest after bounces, the Philae lander of the European Space Agency Rosetta mission captured this view of a cliff on the nucleus of comet 67P/Churyumov-Gerasimenko. The feature is called Perihelion Cliff.

  6. Test of Lander Vision System for Mars 2020

    NASA Image and Video Library

    2016-10-04

    A prototype of the Lander Vision System for NASA Mars 2020 mission was tested in this Dec. 9, 2014, flight of a Masten Space Systems Xombie vehicle at Mojave Air and Space Port in California. http://photojournal.jpl.nasa.gov/catalog/PIA20848

  7. Rosetta Lander - Philae: First Landing and Operations on a Comet

    NASA Astrophysics Data System (ADS)

    Ulamec, Stephan; Biele, Jens; Delmas, Cedric; Fantinati, Cinzia; Gaudon, Philippe; Geurts, Koen; Jurado, Eric; Lommatsch, Valentina; Maibaum, Michael; Moussi-Soffys, Aurélie; Salatti, Mario

    2015-04-01

    Philae is a comet Lander, part of Rosetta which is a Cornerstone Mission of the ESA Horizon 2000 programme. In August 2014 Rosetta did rendezvous with comet 67P/Churyumov-Gerasimenko (CG) after a 10 year cruise. Both its nucleus and coma have been studied allowing the selection of a landing site for Philae. Philae was separated from the Rosetta main spacecraft on November 12, 2014 and touched the comet surface after seven hours of descent. After several bounces it came to rest and continued to send scientific data to Earth. All ten instruments of its payload have been operated at least once. Due to the fact that the Lander could not be anchored, the originally planned first scientific sequence had to be modified. Philae went into hibernation on November 15th, after its primary battery ran out of energy. Re-activation of the Lander is expected in spring/summer 2015 when CG is closer to the sun and the solar generator of Philae will provide more power. The paper will give an overview of separation, descent and landing, the search for the final landing spot as well as Lander operations after separation. Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta's Philae lander is provided by a consortium led by DLR, MPS, CNES and ASI with additional contributions from Hungary, UK, Finland, Ireland and Austria.

  8. Phoenix Lander on Mars with Surrounding Terrain, Polar Projection

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view is a polar projection that combines more than 500 exposures taken by the Surface Stereo Imager camera on NASA's Mars Phoenix Lander and projects them as if looking down from above.

    The black circle on the spacecraft is where the camera itself is mounted on the lander, out of view in images taken by the camera. North is toward the top of the image. The lander's meteorology mast extends above the southwest horzon and is topped by the telltale wind gauge.

    The ground surface around the lander has polygonal patterning similar to patterns in permafrost areas on Earth. The landing site is at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars.

    This view in approximately true color comprises more than 100 different Stereo Surface Imager pointings, with images taken through three different filters at each pointing. The images were taken throughout the period from the 13th Martian day, or sol, after landing to the 47th sol (June 5 through July 12, 2008). The lander's Robotic Arm is cut off in this mosaic view because component images were taken when the arm was out of the frame.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. In-Situ Propellant Supplied Lunar Lander Concept

    NASA Astrophysics Data System (ADS)

    Donahue, Benjamin; Maulsby, Curtis

    2008-01-01

    Future NASA and commercial Lunar missions will require innovative spacecraft configurations incorporating reliable, sustainable propulsion, propellant storage, power and crew life support technologies that can evolve into long duration, partially autonomous systems that can be used to emplace and sustain the massive supplies required for a permanently occupied lunar base. Ambitious surface science missions will require efficient Lunar transfer systems to provide the consumables, science equipment, energy generation systems, habitation systems and crew provisions necessary for lengthy tours on the surface. Lunar lander descent and ascent stages become significantly more efficient when they can be refueled on the Lunar surface and operated numerous times. Landers enabled by Lunar In-Situ Propellant Production (ISPP) facilities will greatly ease constraints on spacecraft mass and payload delivery capability, and may operate much more affordably (in the long term) then landers that are dependant on Earth supplied propellants. In this paper, a Lander concept that leverages ISPP is described and its performance is quantified. Landers, operating as sortie vehicles from Low Lunar Orbit, with efficiencies facilitated by ISPP will enable economical utilization and enhancements that will provide increasingly valuable science yields from Lunar Bases.

  10. Technology development for long-lived Venus landers.

    NASA Astrophysics Data System (ADS)

    Ekonomov, 1.; Korablev, O.; Zasova, L.

    2007-08-01

    Simultaneously with many successful lander missions on Venus in 1972-1985 Soviet Union began develop long-lived lander on surface of Venus. The basic problem were extreme conditions on a surface: P=10MPa, T=500 C . Then operations have been stopped and have renewed in 2006 already in new Russia. Mission "VENERA (VENUS) - D" is included into the Federal space program of Russia on 2006 - 2015 with launch in 2016. To this date Russia alone can't create a reliable electronics for 500 C, but we have got examples GaN electronics for 350 C. Cooling technology with boiling water is offered for interior devices of lander at pressure 10 MPa and temperature 310 C. As the power source of an electronics we use high-temperature galvanic cells on the base of Li4Si [LiCl, KCl, LiF] FeS2 which are released in Russia as reserve power sources. They are capable to work directly on a surface of Venus without any thermal protection. At lander two kinds of vacuum technology can be used: 1) in multilayer (MLI ) thermal blanket for lander, 2) in electro-vacuum devices, for example transmitter . For creation and maintenance of vacuum at temperature 400-500 C: chemical gas absorbers ( getter materials ) are used, they actively absorb both carbon dioxide and nitrogen .

  11. The MetNet vehicle: a lander to deploy environmental stations for local and global investigations of Mars

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti; Pichkadze, Konstantin; Zeleny, Lev; Vazquez, Luis; Schmidt, Walter; Alexashkin, Sergey; Korablev, Oleg; Guerrero, Hector; Heilimo, Jyri; Uspensky, Mikhail; Finchenko, Valery; Linkin, Vyacheslav; Arruego, Ignacio; Genzer, Maria; Lipatov, Alexander; Polkko, Jouni; Paton, Mark; Savijärvi, Hannu; Haukka, Harri; Siili, Tero; Khovanskov, Vladimir; Ostesko, Boris; Poroshin, Andrey; Diaz-Michelena, Marina; Siikonen, Timo; Palin, Matti; Vorontsov, Viktor; Polyakov, Alexander; Valero, Francisco; Kemppinen, Osku; Leinonen, Jussi; Romero, Pilar

    2017-02-01

    Investigations of global and related local phenomena on Mars such as atmospheric circulation patterns, boundary layer phenomena, water, dust and climatological cycles and investigations of the planetary interior would benefit from simultaneous, distributed in situ measurements. Practically, such an observation network would require low-mass landers, with a high packing density, so a large number of landers could be delivered to Mars with the minimum number of launchers.The Mars Network Lander (MetNet Lander; MNL), a small semi-hard lander/penetrator design with a payload mass fraction of approximately 17 %, has been developed, tested and prototyped. The MNL features an innovative Entry, Descent and Landing System (EDLS) that is based on inflatable structures. The EDLS is capable of decelerating the lander from interplanetary transfer trajectories down to a surface impact speed of 50-70 m s-1 with a deceleration of < 500 g for < 20 ms. The total mass of the prototype design is ≈ 24 kg, with ≈ 4 kg of mass available for the payload.The EDLS is designed to orient the penetrator for a vertical impact. As the payload bay will be embedded in the surface materials, the bay's temperature excursions will be much less than if it were fully exposed on the Martian surface, allowing a reduction in the amount of thermal insulation and savings on mass.The MNL is well suited for delivering meteorological and atmospheric instruments to the Martian surface. The payload concept also enables the use of other environmental instruments. The small size and low mass of a MNL makes it ideally suited for piggy-backing on larger spacecraft. MNLs are designed primarily for use as surface networks but could also be used as pathfinders for high-value landed missions.

  12. Remote Raman System for Planetary Landers: Data Reduction and Analysis

    NASA Technical Reports Server (NTRS)

    Horton, K. A.; Domergue-Schmidt, N.; Sharma, S. K.; Deb, P.; Lucey, P. G.

    2000-01-01

    Raman spectroscopy is typically envisioned as an in situ analysis technique. Raman spectra measured remotely (10s of meters) from a planetary lander can be calibrated to spectral radiance and the Raman scattering efficiency can be determined.

  13. Two Stage Battery System for the ROSETTA Lander

    NASA Astrophysics Data System (ADS)

    Debus, André

    2002-01-01

    The ROSETTA mission, lead by ESA, will be launched by Ariane V from Kourou in January 2003 and after a long trip, the spacecraft will reach the comet Wirtanen 46P in 2011. The mission includes a lander, built under the leadership of DLR, on which CNES has a large participation and is concerned by providing a part of the payload and some lander systems. Among these, CNES delivers a specific battery system in order to comply with the mission environment and the mission scenario, avoiding particularly the use of radio-isotopic heaters and radio-isotopic electrical generators usually used for such missions far from the Sun. The battery system includes : - a pack of primary batteries of lithium/thionyl chloride cells, this kind of generator - a secondary stage, including rechargeable lithium-ion cells, used as redundancy for the - a specific electronic system dedicated to the battery handling and to secondary battery - a mechanical and thermal (insulation, and heating devices) structures permitting the The complete battery system has been designed, built and qualified in order to comply with the trip and mission requirements, keeping within low mass and low volume limits. This battery system is presently integrated into the Rosetta Lander flight model and will leave the Earth at the beginning of next year. Such a development and experience could be re-used in the frame of cometary and planetary missions.

  14. The ROSETTA PHILAE Lander damping mechanism as probe for the Comet soil strength.

    NASA Astrophysics Data System (ADS)

    Roll, R.

    2015-10-01

    The ROSETTA Lander is equipped with an one axis damping mechanism to dissipate kinetic energy during the touch down. This damping is necessary to avoid damages to the Lander by a hard landing shock and more important to avoid re-bouncing from ground with high velocity. The damping mechanism works best for perpendicular impact, which means the velocity vector is parallel to the damper axis and all three feet touch the ground at the same time. That is usually not the case. Part of the impact energy can be transferred into rotational energy at ground contact if the impact is not perpendicular. This energy will lift up the Lander from the ground if the harpoons and the hold down thruster fail, as happen in mission. The damping mechanism itself is an electrical generator, driven by a spindle inside a telescopic tube. This tube was extended in mission for landing by 200mm. A maximum damping length of 140mm would be usually required to compensate a landing velocity of 1m/s, if the impact happens perpendicular on hard ground. After landing the potentiometer of the telescopic tube reading shows a total damping length of only 42,5mm. The damping mechanism and the overall mechanical behavior of the Lander at touch down are well tested and characterized and transferred to a multi-body computer model. The incoming and outgoing flightpath of PHILAE allow via computer-simulation the reconstruction of the touch down. It turns out, that the outgoing flight direction is dominated by the local ground slope and that the damping length is strongly dependent on the soil strength. Damping of soft comet ground must be included to fit the damping length measured. Scenario variations of the various feet contact with different local surface features (stone or regolith) and of different soil models finally lead to a restricted range for the soil strength at the touch down area.

  15. Measuring the permittivity of the surface of the Churyumov-Gerasimenko nucleus: the PP-SESAME experiment on board the Philae/ROSETTA lander

    NASA Astrophysics Data System (ADS)

    Lethuillier, A.; Le Gall, A. A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.

    2014-12-01

    Within Philae, the lander of the Rosetta spacecraft, the Permittivity Probe (PP) experiment as part of the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME) package was designed to measure the low frequency (Hz-kHz) electrical properties of the close subsurface of the nucleus.At frequencies below 10 kHz, the electrical signature of the matter is especially sensitive to the presence of water ice and its temperature. PP-SESAME will thus allow to determine the water ice content in the near-surface and to monitor its diurnal and orbital variations thus providing essential insight on the activity and evolution of the cometary nucleus.The PP-SESAME instrument is derived from the quadrupole array technique. A sinusoidal electrical current is sent into the ground through a first dipole, and the induced electrical voltage is measured with a second dipole. The complex permittivity of the material is inferred from the mutual impedance derived from the measurements. In practice, the influence of both the electronic circuit of the instrument and the conducting elements in its close environment must be accounted for in order to best estimate the dielectric constant and electric conductivity of the ground. To do this we have developed a method called the "capacity-influence matrix method".A replica of the instrument was recently built in LATMOS (France) and was tested in the frame of a field campaign in the giant ice cave system of Dachstein, Austria. In the caves, the ground is covered with a thick layer of ice, which temperature is rather constant throughout the year. This measurement campaign allowed us to test the "capacity influence matrix method" in a natural icy environment.The first measurements of the PP-SESAME/Philae experiment should be available in mid-November. In this paper we will present the "capacity-influence matrix method", the measurements and results from the Austrian field campaign and the preliminary analysis of the PP-SESAME/Philae data.

  16. NASA's Global Precipitation Measurement (GPM) Mission for Science and Society

    NASA Astrophysics Data System (ADS)

    Jackson, Gail

    2016-04-01

    Water is fundamental to life on Earth. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The Global Precipitation Measurement (GPM) Mission, launched February 27, 2014, is an international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. The joint NASA-JAXA GPM Core Observatory serves as the cornerstone and anchor to unite the constellation radiometers. The GPM Core Observatory carries a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. As a science mission with integrated application goals, GPM is designed to (1) advance precipitation measurement capability from space through combined use of active and passive microwave sensors, (2) advance the knowledge of the global water/energy cycle and freshwater availability through better description of the space-time variability of global precipitation, and (3) improve weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of instantaneous precipitation rates and time-integrated rainfall accumulation. Since launch, the instruments have been collecting outstanding precipitation data. New scientific insights resulting from GPM data, an overview of the GPM mission concept and science activities in the United States

  17. Global Precipitation Measurement (GPM) Mission Applications: Activities, Challenges, and Vision

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Hou, Arthur

    2012-01-01

    Global Precipitation Measurement (GPM) is an international satellite mission to provide nextgeneration observations of rain and snow worldwide every three hours. NASA and the Japan Aerospace Exploration Agency (JAXA) will launch a "Core" satellite carrying advanced instruments that will set a new standard for precipitation measurements from space. The data they provide will be used to unify precipitation measurements made by an international network of partner satellites to quantify when, where, and how much it rains or snows around the world. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information to directly benefit society. Building upon the successful legacy of the Tropical Rainfall Measuring Mission (TRMM), GPM's next-generation global precipitation data will lead to scientific advances and societal benefits within a range of hydrologic fields including natural hazards, ecology, public health and water resources. This talk will highlight some examples from TRMM's IS-year history within these applications areas as well as discuss some existing challenges and present a look forward for GPM's contribution to applications in hydrology.

  18. Optimized Supercritical Fluid Refrigeration Cycle for Venus Lander Payload Electronics Active Cooling

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; McNamara, C.; Gatti, A.; Guererro, J.

    2017-05-01

    This paper presents an active electronics thermal control system allowing for continuous operation of instruments for Venus lander missions. The thermal control system uses supercritical fluids cascaded and optimized for minimum compressor power.

  19. Attitude reconstruction of ROSETTA's Lander PHILAE using two-point magnetic field observations by ROMAP and RPC-MAG

    NASA Astrophysics Data System (ADS)

    Heinisch, Philip; Auster, Hans-Ulrich; Richter, Ingo; Hercik, David; Jurado, Eric; Garmier, Romain; Güttler, Carsten; Glassmeier, Karl-Heinz

    2016-08-01

    As part of the European Space Agency's ROSETTA Mission the Lander PHILAE touched down on comet 67P/Churyumov-Gerasimenko on November 12, 2014. The magnetic field has been measured onboard the orbiter and the lander. The orbiter's tri-axial fluxgate magnetometer RPC-MAG is one of five sensors of the ROSETTA Plasma Consortium. The lander is also equipped with a tri-axial fluxgate magnetometer as part of the ROSETTA Lander Magnetometer and Plasma-Monitor package (ROMAP). This unique setup makes a two point measurement between the two spacecrafts in a relatively small distance of less than 50 km possible. Both magnetometers were switched on during the entire descent, the initial touchdown, the bouncing between the touchdowns and after the final touchdown. We describe a method for attitude determination by correlating magnetic low-frequency waves, which was tested under different conditions and finally used to reconstruct PHILAE's attitude during descent and after landing. In these cases the attitude could be determined with an accuracy of better than ± 5 °. These results were essential not only for PHILAE operations planning but also for the analysis of the obtained scientific data, because nominal sources for this information, like solar panel currents and camera pictures could not provide sufficient information due to the unexpected landing position.

  20. The ExoMars 2016 mission

    NASA Astrophysics Data System (ADS)

    Svedhem, Håkan; Vago, Jorge; de Groot, Rolf

    2015-11-01

    The ExoMars programme is a joint activity by the European Space Agency (ESA) and ROSCOSMOS, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, Schiaparelli, and the Exomars 2018 mission which carries a lander and a rover.The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector for search of subsurface hydrogen. ESA is providing the TGO spacecraft and the Schiaparelli Lander demonstrator and two of the TGO instruments and ROSCOSMOS is providing the launcher and the other two TGO instruments.After the arrival of the ExoMars 2018 mission at the surface of Mars, the TGO will handle the communication between the Earth and the Rover and lander through its UHF communication system. The 2016 mission will be launched by a Russian Proton rocket from Baikonur in January 2016 and will arrive at Mars in October the same year. This presentation will cover a description of the 2016 mission, including the spacecraft, its payload and science and the related plans for scientific operations and measurements.

  1. Lander Trajectory Reconstruction computer program

    NASA Technical Reports Server (NTRS)

    Adams, G. L.; Bradt, A. J.; Ferguson, J. B.; Schnelker, H. J.

    1971-01-01

    The Lander Trajectory Reconstruction (LTR) computer program is a tool for analysis of the planetary entry trajectory and atmosphere reconstruction process for a lander or probe. The program can be divided into two parts: (1) the data generator and (2) the reconstructor. The data generator provides the real environment in which the lander or probe is presumed to find itself. The reconstructor reconstructs the entry trajectory and atmosphere using sensor data generated by the data generator and a Kalman-Schmidt consider filter. A wide variety of vehicle and environmental parameters may be either solved-for or considered in the filter process.

  2. Validation procedure for GOCE mission using balloon borne gradient measurements

    NASA Astrophysics Data System (ADS)

    Latka, J.

    2003-04-01

    VALIDATION PROCEDURE FOR GOCE MISSION USING BALLOON BORNE GRADIENT MEASUREMENTS. J.K.Latka (1) (1)Space Research Centre PAS jkl@cbk.waw.pl VALIDATION PROCEDURE FOR GOCE MISSION USING BALLOON BORNE GRADIENT MEASUREMENTS. J.K.Latka (1) (1)Space Research Centre PAS jkl@cbk.waw.pl Amelioration of the global mode of the EARTH gravity field is the aim of the satellite mission GOCE. In order to accomplish such a task,especially careful investigation of experiment itself errors ought to be made. Validation of the results is one of the important tasks. Together with the laboratory calibration they will give the estimation of experiment systematic errors. There are several concepts of a validation process. One of them is the measurement of the gradients using a gradiometer situated on board of a balloon travelling in the Mediterranean area, from Sicily to Spain. Upward continuation procedure should give data for comparisons with GOCE results. In the paper the method of least square collocation is presented as a tool for upward continuation. For calculations one use the simulated values of gradients. The covriance function is based on the models of the Earth gravity field. The models EGM96,OSU81 and their modifications are used.

  3. Command and data management system (CDMS) of the Philae lander

    NASA Astrophysics Data System (ADS)

    Balázs, A.; Baksa, A.; Bitterlich, H.; Hernyes, I.; Küchemann, O.; Pálos, Z.; Rustenbach, J.; Schmidt, W.; Spányi, P.; Sulyán, J.; Szalai, S.; Várhalmi, L.

    2016-08-01

    The paper covers the principal requirements, design concepts and implementation of the hardware and software for the central on-board computer (CDMS) of the Philae lander in the context of the ESA Rosetta space mission, including some technical details. The focus is on the implementation of fault tolerance, autonomous operation and operational flexibility by means of specific linked data structures and code execution mechanisms that can be interpreted as a kind of object oriented model for mission sequencing.

  4. Earth Site Corresponding to Phoenix Mars Lander's Targeted Site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The targeted landing site for NASA's Phoenix Mars Lander is at about 68 degrees north latitude, 233 degrees east longitude in the Martian arctic.

    On Earth, those coordinates specify a location in northwestern Canada.

    Canada supplied the Phoenix spacecraft's Meteorological Station.

    The Phoenix Mission is led by the University of Arizona on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory. Spacecraft development is by Lockheed Martin Space Systems.

  5. Exploring Europa with a Surface Lander Powered by a Small Radioisotope Power System (RPS)

    NASA Technical Reports Server (NTRS)

    Abelson, Robert D.; Shirley, James H.

    2005-01-01

    This paper describes a conceptual landed mission to the Jovian satellite Europa using a small RPS powered lander that would ride piggyback on the proposed Jupiter Icy Moons Orbiter (JIMO). This mission study was performed to assess the feasibility of landing a realistic science driven payload using a conceptual small radioisotope power system (US) to provide electrical and thermal power during the extended duration cruise phase (up to 13 years) and the nominal 30 day surface science mission. This paper includes individual sections that describe the key science goals, the mission architecture, and the conceptual design of the Europa Lander Mission (ELM) spacecraft.

  6. NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.; Bassler, Julie A.; Ballard, Benjamin; Chavers, Greg; Eng, Doug S.; Hammond, Monica S.; Hill, Larry A.; Harris, Danny W.; Hollaway, Todd A.; Kubota, Sanae; hide

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA's robotic lunar lander flight projects. Additional mission studies have been conducted to support other objectives of the lunar science and exploration community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects.

  7. Plasma instruments on the Rosetta Lander

    NASA Astrophysics Data System (ADS)

    Apathy, I.; Auster, H. U.; Berghofer, G.; Remizov, A.; Rosenbauer, H.; Romap Team

    2003-04-01

    The scientific objectives, design, and capabilities of the ROSETTA Lander experiment ROMAP are presented. Main scientific goals of ROMAP are (1) long term measurements on the surface to study the cometary activity as function of the distance from the Sun and (2) magnetic measurements during the descent phase of the Lander to investigate the structure of a possible remnant magnetization of the nucleus. The Rosetta Lander experiment ROMAP consists as magnetometer, electrostatic analyser, faraday cup and two pressure sensors. Electrostatic analyser and faraday cup are able to determine the major solar wind parameters like density, speed, temperature, and flow direction by measuring ions up to 8.000keV and electrons up to 4.200keV. The Magnetometer is able to determine the magnetic field vector up to 32Hz with 10pT resolution. The pressure measurement will be done with a combined Penning and Minipirani sensor in a range between 10-8 to 10 mbar. The paper demonstrates the high integration level of sensors and electronics. That is the basic for a combined field/plasma measurement instrument with less than 1 Watt power consumption and 1 kg mass.

  8. Development of an Audio Microphone for the Mars Surveyor 98 Lander

    NASA Astrophysics Data System (ADS)

    Delory, G. T.; Luhmann, J. G.; Curtis, D. W.; Friedman, L. D.; Primbsch, J. H.; Mozer, F. S.

    1998-01-01

    In December 1999, the next Mars Surveyor Lander will bring the first microphone to the surface of Mars. The Mars Microphone represents a joint effort between the Planetary Society and the University of California at Berkeley Space Sciences Laboratory and is riding on the lander as part of the LIDAR instrument package provided by the Russian Academy of Sciences in Moscow. The inclusion of a microphone on the Mars Surveyor Lander represents a unique opportunity to sample for the first time the acoustic environment on the surface, including both natural and lander-generated sounds. Sounds produced by martian meteorology are among the signals to be recorded, including wind and impacts of sand particles on the instrument. Photographs from the Viking orbiters as well as Pathfinder images show evidence of small tornado-like vortices that may be acoustically detected, along with noise generated by static discharges possible during sandstorms. Lander-generated sounds that will be measured include the motion and digging of the lander arm as it gathers soil samples for analysis. Along with these scientific objectives, the Mars Microphone represents a powerful tool for public outreach by providing sound samples on the Internet recorded during the mission. The addition of audio capability to the lander brings us one step closer to a true virtual presence on the Mars surface by complementing the visual capabilities of the Mars Surveyor cameras. The Mars Microphone is contained in a 5 x 5 x 1 cm box, weighs less than 50 g, and uses 0.1 W of power during its most active times. The microphone used is a standard hearing-aid electret. The sound sampling and processing system relies on an RSC-164 speech processor chip, which performs 8-bit A/ D sampling and sound compression. An onboard flight program enables several modes for the instrument, including varying sample ranges of 5 kHz and 20 kHz, and a selectable gain setting with 64x dynamic range. The device automatically triggers on

  9. Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite to unify precipitation measurements from the constellation of sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder

  10. Life Sciences Investigations for ESA's First Lunar Lander

    NASA Astrophysics Data System (ADS)

    Carpenter, J. D.; Angerer, O.; Durante, M.; Linnarson, D.; Pike, W. T.

    2010-12-01

    Preparing for future human exploration of the Moon and beyond is an interdisciplinary exercise, requiring new technologies and the pooling of knowledge and expertise from many scientific areas. The European Space Agency is working to develop a Lunar Lander, as a precursor to future human exploration activities. The mission will demonstrate new technologies and perform important preparatory investigations. In the biological sciences the two major areas requiring investigation in advance of human exploration are radiation and its effects on human physiology and the potential toxicity of lunar dust. This paper summarises the issues associated with these areas and the investigations planned for the Lunar Lander to address them.

  11. Scientific preparations for lunar exploration with the European Lunar Lander

    NASA Astrophysics Data System (ADS)

    Carpenter, J. D.; Fisackerly, R.; De Rosa, D.; Houdou, B.

    2012-12-01

    Recent Lunar missions and new scientific results in multiple disciplines have shown that working and operating in the complex lunar environment and exploiting the Moon as a platform for scientific research and further exploration poses major challenges. Underlying these challenges are fundamental scientific unknowns regarding the Moon's surface, its environment, the effects of this environment and the availability of potential resources. The European Lunar Lander is a mission proposed by the European Space Agency to prepare for future exploration. The mission provides an opportunity to address some of these key unknowns and provide information of importance for future exploration activities. Areas of particular interest for investigation on the Lunar Lander include the integrated plasma, dust, charge and radiation environment and its effects, the properties of lunar dust and its physical effects on systems and physiological effects on humans, the availability, distribution and potential application of in situ resources for future exploration. A model payload has then been derived, taking these objectives to account and considering potential payloads proposed through a request for information, and the mission's boundary conditions. While exploration preparation has driven the definition there is a significant synergy with investigations associated with fundamental scientific questions. This paper discusses the scientific objectives for the ESA Lunar Lander Mission, which emphasise human exploration preparatory science and introduces the model scientific payload considered as part of the on-going mission studies, in advance of a formal instrument selection.

  12. Battery and Fuel Cell Development Goals for the Lunar Surface and Lander

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    2008-01-01

    NASA is planning a return to the moon and requires advances in energy storage technology for its planned lunar lander and lunar outpost. This presentation describes NASA s overall mission goals and technical goals for batteries and fuel cells to support the mission. Goals are given for secondary batteries for the lander s ascent stage and suits for extravehicular activity on the lunar surface, and for fuel cells for the lander s descent stage and regenerative fuel cells for outpost power. An overall approach to meeting these goals is also presented.

  13. Phoenix Lander on Mars Stereo

    NASA Image and Video Library

    2007-05-10

    NASA Phoenix Mars Lander monitors the atmosphere overhead and reaches out to the soil below in this stereo illustration of the spacecraft fully deployed on the surface of Mars. 3D glasses are necessary to view this image.

  14. Morpheus Lander Hot Fire Test

    NASA Image and Video Library

    This video shows a successful "hot fire" test of the Morpheus lander on February 27, 2012, at the VTB Flight Complex at NASA's Johnson Space Center. The engine burns for an extended period of time ...

  15. Composite View from Phoenix Lander

    NASA Image and Video Library

    2009-07-02

    This mosaic of images from the Surface Stereo Imager camera on NASA Phoenix Mars Lander shows several trenches dug by Phoenix, plus a corner of the spacecraft deck and the Martian arctic plain stretching to the horizon.

  16. An overview of NASA's ASCENDS Mission's Lidar Measurement Requirements

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Browell, E. V.; Menzies, R. T.; Lin, B.; Spiers, G. D.; Ismail, S.

    2014-12-01

    The objectives of NASA's ASCENDS mission are to improve the knowledge of global CO2 sources and sinks by precisely measuring the tropospheric column abundance of atmospheric CO2 and O2. The mission will use a continuously operating nadir-pointed integrated path differential absorption (IPDA) lidar in a polar orbit. The lidar offers a number of important new capabilities and will measure atmospheric CO2 globally over a wide range of challenging conditions, including at night, at high latitudes, through hazy and thin cloud conditions, and to cloud tops. The laser source enables a measurement of range, so that the absorption path length to the scattering surface will be always accurately known. The lidar approach also measures consistently in a nadir-zenith path and the narrow laser linewidth allows weighting the measurement to the lower troposphere. Using these measurements with atmospheric and flux models will allow improved estimates of CO2 fluxes and hence better understanding of the processes that exchange CO2 between the surface and atmosphere. The ASCENDS formulation team has developed a preliminary set of requirements for the lidar measurements. These were developed based on experience gained from the numerous ASCENDS airborne campaigns that have used different candidate lidar measurement techniques. They also take into account the complexity of making precise measurement of atmospheric gas columns when viewing the Earth from space. Some of the complicating factors are the widely varying reflectance and topographic heights of the Earth's land and ocean surfaces, the variety of cloud types, and the degree of cloud and aerosol absorption and scattering in the atmosphere. The requirements address the precision and bias in the measured column mixing ratio, the dynamic range of the expected surface reflected signal, the along-track sampling resolution, measurements made through thin clouds, measurements to forested and slope surfaces, range precision, measurements

  17. Ground truth observations for TRMM. [Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Thiele, Otto W.

    1989-01-01

    Plans to obtain ground truth data for the validation of the Tropical Rainfall Measuring Mission (TRMM) are examined. The experimental rainfall measuring techniques considered for the program are discussed, including optical and Doppler rain gages, satellite beacon attenuation, underwater hydrophones, profilers, microwave attenuation, multiple frequency/polarization radar, and scanning and airborne Doppler radar. The TRMM validation program is considered, noting observations to compare averaged TRMM rainfall data with similar ground truth data and to compare the rainfall and height distribution data from TRMM with instantaneous ground truth data.

  18. Ground truth observations for TRMM. [Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Thiele, Otto W.

    1989-01-01

    Plans to obtain ground truth data for the validation of the Tropical Rainfall Measuring Mission (TRMM) are examined. The experimental rainfall measuring techniques considered for the program are discussed, including optical and Doppler rain gages, satellite beacon attenuation, underwater hydrophones, profilers, microwave attenuation, multiple frequency/polarization radar, and scanning and airborne Doppler radar. The TRMM validation program is considered, noting observations to compare averaged TRMM rainfall data with similar ground truth data and to compare the rainfall and height distribution data from TRMM with instantaneous ground truth data.

  19. The Chang'e 3 Mission Overview

    NASA Astrophysics Data System (ADS)

    Li, Chunlai; Liu, Jianjun; Ren, Xin; Zuo, Wei; Tan, Xu; Wen, Weibin; Li, Han; Mu, Lingli; Su, Yan; Zhang, Hongbo; Yan, Jun; Ouyang, Ziyuan

    2015-07-01

    The Chang'e 3 (CE-3) mission was implemented as the first lander/rover mission of the Chinese Lunar Exploration Program (CLEP). After its successful launch at 01:30 local time on December 2, 2013, CE-3 was inserted into an eccentric polar lunar orbit on December 6, and landed to the east of a 430 m crater in northwestern Mare Imbrium (19.51°W, 44.12°N) at 21:11 on December 14, 2013. The Yutu rover separated from the lander at 04:35, December 15, and traversed for a total of 0.114 km. Acquisition of science data began during the descent of the lander and will continue for 12 months during the nominal mission. The CE-3 lander and rover each carry four science instruments. Instruments on the lander are: Landing Camera (LCAM), Terrain Camera (TCAM), Extreme Ultraviolet Camera (EUVC), and Moon-based Ultraviolet Telescope (MUVT). The four instruments on the rover are: Panoramic Camera (PCAM), VIS-NIR Imaging Spectrometer (VNIS), Active Particle induced X-ray Spectrometer (APXS), and Lunar Penetrating Radar (LPR). The science objectives of the CE-3 mission include: (1) investigation of the morphological features and geological structures of and near the landing area; (2) integrated in-situ analysis of mineral and chemical composition of and near the landing area; and (3) exploration of the terrestrial-lunar space environment and lunar-based astronomical observations. This paper describes the CE-3 objectives and measurements that address the science objectives outlined by the Comprehensive Demonstration Report of Phase II of CLEP. The CE-3 team has archived the initial science data, and we describe data accessibility by the science community.

  20. Testing Phoenix Mars Lander Parachute in Idaho

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander will parachute for nearly three minutes as it descends through the Martian atmosphere on May 25, 2008. Extensive preparations for that crucial period included this drop test near Boise, Idaho, in October 2006.

    The parachute used for the Phoenix mission is similar to ones used by NASA's Viking landers in 1976. It is a 'disk-gap-band' type of parachute, referring to two fabric components -- a central disk and a cylindrical band -- separated by a gap.

    Although the Phoenix parachute has a smaller diameter (11.8 meters or 39 feet) than the parachute for the 2007 Mars Pathfinder landing (12.7 meters or 42 feet), its Viking configuration results in slightly larger drag area. The smaller physical size allows for a stronger system because, given the same mass and volume restrictions, a smaller parachute can be built using higher strength components. The Phoenix parachute is approximately 1.5 times stronger than Pathfinder's. Testing shows that it is nearly two times stronger than the maximum opening force expected during its use at Mars.

    Engineers used a dart-like weight for the drop testing in Idaho. On the Phoenix spacecraft, the parachute is attached the the backshell. The backshell is the upper portion of a capsule around the lander during the flight from Earth to Mars and protects Phoenix during the initial portion of the descent through Mars' atmosphere.

    Phoenix will deploy its parachute at about 12.6 kilometers (7.8 miles) in altitude and at a velocity of 1.7 times the speed of sound. A mortar on the spacecraft fires to deploy the parachute, propelling it away from the backshell into the supersonic flow. The mortar design for Phoenix is essentially the same as Pathfinder's. The parachute and mortar are collectively called the 'parachute decelerator system.' Pioneer Aerospace, South Windsor, Conn., produced this system for Phoenix. The same company provided the parachute decelerator systems for Pathfinder, Mars Polar

  1. Hard Substrate, Possibly Ice, Uncovered Under the Mars Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Robotic Arm Camera on NASA's Phoenix Mars Lander captured this image underneath the lander on the fifth Martian day, or sol, of the mission. Descent thrusters on the bottom of the lander are visible at the top of the image.

    This view from the north side of the lander toward the southern leg shows smooth surfaces cleared from overlying soil by the rocket exhaust during landing. One exposed edge of the underlying material was seen in Sol 4 images, but the newer image reveals a greater extent of it. The abundance of excavated smooth and level surfaces adds evidence to a hypothesis that the underlying material is an ice table covered by a thin blanket of soil.

    The bright-looking surface material in the center, where the image is partly overexposed, may not be inherently brighter than the foreground material in shadow.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Hard Substrate, Possibly Ice, Uncovered Under the Mars Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Robotic Arm Camera on NASA's Phoenix Mars Lander captured this image underneath the lander on the fifth Martian day, or sol, of the mission. Descent thrusters on the bottom of the lander are visible at the top of the image.

    This view from the north side of the lander toward the southern leg shows smooth surfaces cleared from overlying soil by the rocket exhaust during landing. One exposed edge of the underlying material was seen in Sol 4 images, but the newer image reveals a greater extent of it. The abundance of excavated smooth and level surfaces adds evidence to a hypothesis that the underlying material is an ice table covered by a thin blanket of soil.

    The bright-looking surface material in the center, where the image is partly overexposed, may not be inherently brighter than the foreground material in shadow.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Connecting the Dots: Lander, Heat Shield, Parachute

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This enhanced-color image from Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) camera shows the Phoenix landing area viewed from orbit. The spacecraft appears more blue than it would in reality. From top to bottom are the Phoenix lander with its solar panels deployed on the Martian surface, the heat shield and bounce mark the heat shield made on the Martian surface, and the top of the Phoenix parachute attached to the bottom of the back shell.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Active Collision Avoidance for Planetary Landers

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Hannan, Mike; Srinivasan, Karthik

    2015-01-01

    The use of automotive radar systems are being evaluated for collision avoidance in planetary landers. Our focus is to develop a low-cost, light-weight collision avoidance system that overcomes the drawbacks identified with optical-based systems. We also seek to complement the Autonomous Landing and Hazard Avoidance Technology system by providing mission planners an alternative system that can be used on low-cost, small robotic missions and in close approach. Our approach takes advantage of how electromagnetic radiation interacts with solids. As the wavelength increases, the sensitivity of the radiation to isolated solids of a specific particle size decreases. Thus, rocket exhaust-blown dust particles, which have major significance in visible wavelengths, have much less significance at radar wavelengths.

  5. Morpheus Lander Testing Campaign

    NASA Technical Reports Server (NTRS)

    Hart, Jeremy J.; Mitchell, Jennifer D.

    2011-01-01

    NASA s Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing designed to serve as a testbed for advanced spacecraft technologies. The Morpheus vehicle has successfully performed a set of integrated vehicle test flights including hot-fire and tether tests, ultimately culminating in an un-tethered "free-flight" This development and testing campaign was conducted on-site at the Johnson Space Center (JSC), less than one year after project start. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper documents the integrated testing campaign, including descriptions of test types (hot-fire, tether, and free-flight), test objectives, and the infrastructure of JSC testing facilities. A major focus of the paper will be the fast pace of the project, rapid prototyping, frequent testing, and lessons learned from this departure from the traditional engineering development process at NASA s Johnson Space Center.

  6. Low Cost Precision Lander for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Head, J. N.; Gardner, T. G.; Hoppa, G. V.; Seybold, K. G.

    2004-12-01

    For 60 years the US Defense Department has invested heavily in producing small, low mass, precision guided vehicles. The technologies matured under these programs include terrain-aided navigation, closed loop terminal guidance algorithms, robust autopilots, high thrust-to-weight propulsion, autonomous mission management software, sensors, and data fusion. These technologies will aid NASA in addressing New Millennium Science and Technology goals as well as the requirements flowing from the Vision articulated in January 2004. Establishing and resupplying a long term lunar presence will require automated landing precision not yet demonstrated. Precision landing will increase safety and assure mission success. In the DOD world, such technologies are used routinely and reliably. Hence, it is timely to generate a point design for a precise planetary lander useful for lunar exploration. In this design science instruments amount to 10 kg, 16% of the lander vehicle mass. This compares favorably with 7% for Mars Pathfinder and less than 15% for Surveyor. The mission design flies the lander in an inert configuration to the moon, relying on a cruise stage for navigation and TCMs. The lander activates about a minute before impact. A solid booster reduces the vehicle speed to 300-450 m/s. The lander is now about 2 minutes from touchdown and has 600 to 700 m/s delta-v capability, allowing for about 10 km of vehicle divert during terminal descent. This concept of operations is chosen because it closely mimics missile operational timelines used for decades: the vehicle remains inert in a challenging environment, then must execute its mission flawlessly on a moment's notice. The vehicle design consists of a re-plumbed propulsion system, using propellant tanks and thrusters from exoatmospheric programs. A redesigned truss provides hard points for landing gear, electronics, power supply, and science instruments. A radar altimeter and a Digital Scene Matching Area Correlator (DSMAC

  7. Radiation measured with different dosimeters during STS-121 space mission

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Semones, E.; Gaza, R.; Johnson, S.; Zapp, N.; Weyland, M.; Rutledge, R.; Lin, T.

    2009-02-01

    Radiation impact to astronauts depends on the particles' linear energy transfer (LET) and is dominated by high LET radiation. Radiation risk experienced by astronauts can be determined with the radiation LET spectrum measured and the risk response function obtained from radiobiology. Systematical measurement of the space radiation is an important part for the research on the impact of radiation to astronauts and to make the radiation ALARA (as low as reasonably achievable). For NASA space missions at low Earth orbit (LEO), the active dosimeter used for all LET is the tissue equivalent proportional counter (TEPC) and the passive dosimeters used for the astronauts and for the monitored areas are the combination of CR-39 plastic nuclear track detectors (PNTDs) for high LET and thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeter (OSLDs) for low LET. TEPC, CR-39 PNTDs and TLDs/OSLDs were used to measure the radiation during STS-121 space mission. LET spectra and radiation quantities were obtained with active and passive dosimeters. This paper will introduce the physical principles for TEPC and CR-39 detectors, the LET spectrum method for radiation measurement using CR-39 detectors and TEPC, and will present and compare the radiation LET spectra and quantities measured with TEPC, CR-39 PNTDs and TLDs/OSLDs.

  8. Mars 2001 Orbiter, Lander and Rover

    NASA Astrophysics Data System (ADS)

    Saunders, R. S.

    1999-09-01

    The Mars 2001 mission is well equipped to analyze the surface of Mars. The mission: 1) completes MO objectives with gamma ray spectrometer elemental mapping, 2) explores a new region of the Martian surface, and 3) is the first in the combined Mars strategy of the Human Exploration and Development of Space (HEDS) and Space Science Enterprises of NASA. The mission demonstrates technologies and collects environmental data that provide the basis for permanent outposts or a decision to send humans to Mars. Potential sites include ancient crust and ancient aqueous environments. The orbiter carries the gamma ray spectrometer, a thermal emission spectrometer (THEMIS) and imager that will map the mineral abundance at selected sites and a radiation experiment, Marie, to assess radiation hazards. The lander carries a suite of Space Science and HEDS instruments including a robotic arm with camera. The arm will deploy a Moessbauer spectrometer to determine the state of iron in the soil. The arm will deploy the rover and dig up to 0.5 m to deliver soil to MECA, the soil and dust characterization experiments. The Mars In Situ Propellant Precursor Experiment (MIP) will assess in situ propellant production technology and produce oxygen from the Martian atmosphere. The landed Marie radiation experiment will assess radiation hazards on the surface. The lander carries a panoramic camera bore-sighted with a thermal emission spectrometer (PanCam/MiniTES) to allow comparison between mineralogical data and elemental data. The descent imaging system (MARDI) will image from parachute deployment to the surface. The rover is Sojourner class, with an upgraded Alpha Proton X-ray Spectrometer (APXS) experiment carefully calibrated on Earth and on Mars. The instruments will be operated in an integrated mode to provide maximum capability to explore and characterize a new region on Mars. MSP-01 is a NASA/JPL Mission.

  9. Rosetta Lander - Philae: preparations for landing on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Ulamec, S.; Biele, J.; Jurado, E.; Gaudon, P.; Geurts, K.

    2013-12-01

    Rosetta is a Cornerstone Mission of the ESA Horizon 2000 programme. It is going to rendezvous with comet 67P/Churyumov-Gerasimenko after a ten year cruise and will study both its nucleus and coma with an orbiting spacecraft as well as with a Lander, Philae, that has been designed to land softly on the comet nucleus. Aboard Philae, a payload consisting of ten scientific instruments will perform in-situ studies of the cometary material. Philae will be separated from the mother spacecraft from a dedicated delivery trajectory. It then descends, ballistically, to the surface of the comet, stabilized with an internal flywheel. At touch-down anchoring harpoons will be fired and a damping mechanism within the landing gear will provide the lander from re-bouncing. Currently the characteristics of the nucleus of the comet are hardly known. Mapping with the orbiter cameras (shape, slopes, surface roughness) and essential measurements like gravity field, state of rotation or outgassing parameters can only be performed after arrival of the main spacecraft, between May and October 2014. These data will be used for selecting a landing site and defining the detailed landing strategy. Landing is foreseen for November 2014 at a heliocentric distance of 3 AU. The paper describes the Rosetta Lander system and its payload, but emphasizes on the preparations for landing, the landing site selection process and the planned operational timeline.

  10. Radioscience and seismic measurements for the INSIGHT mission about interior of Mars.

    NASA Astrophysics Data System (ADS)

    Dehant, Véronique; Asmar, Sami; Folkner, William; Lognonné, Philippe; Banerdt, Bruce; Smrekar, Suzanne; Rivoldini, Attilio; Christensen, Ulrich; Giardini, Domenico; Pike, Tom; Clinton, John; Garcia, Raphael; Johnson, Catherine; Kobayashi, Naoki; Knapmeyer-Endrun, Brigitte; Mimoun, David; Mocquet, Antoine; Panning, Mark; Tromp, Jeroen; Weber, Renee

    2015-04-01

    We shall use the X-band radio link of the future 2016 InSIGHT (Interior exploration using Seismic Investigations, Geodesy, and Heat Transport) lander on the surface of Mars with the objective to better determine the rotation and interior structure of Mars. This X-band radio link consists in two-way Doppler measurements from a direct radio-link between the Martian lander and deep space tracking stations on the Earth. On the basis of these measurements, it will be possible to monitor the lander position relative to the Earth and in turn to improve the determination of the Mars' orientation and rotation parameters (MOP), i.e. the rotation rate variations (or Length of Days LOD), the precession rate and the nutations of the rotation axis. As these MOP parameters are related to the interior of the planet, we further discuss the expected improvement in our knowledge of Mars' interior in synergy with the seismic data, which include the tidal data. We will show in particular how to determine the state, size, and composition of the Martian core. These parameters are very important for understanding the evolution of Mars.

  11. Lunar Lander Structural Design Studies at NASA Langley

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Antol, Jeffrey; Watson, Judith J.; Flick, John J.; Saucillo, Rudolph J.; Mazanek, Daniel D.; North, David D.

    2007-01-01

    The National Aeronautics and Space Administration is currently developing mission architectures, vehicle concepts and flight hardware to support the planned human return to the Moon. During Phase II of the 2006 Lunar Lander Preparatory Study, a team from the Langley Research Center was tasked with developing and refining two proposed Lander concepts. The Descent-Assisted, Split Habitat Lander concept uses a disposable braking stage to perform the lunar orbit insertion maneuver and most of the descent from lunar orbit to the surface. The second concept, the Cargo Star Horizontal Lander, carries ascent loads along its longitudinal axis, and is then rotated in flight so that its main engines (mounted perpendicular to the vehicle longitudinal axis) are correctly oriented for lunar orbit insertion and a horizontal landing. Both Landers have separate crew transport volumes and habitats for surface operations, and allow placement of large cargo elements very close to the lunar surface. As part of this study, lightweight, efficient structural configurations for these spacecraft were proposed and evaluated. Vehicle structural configurations were first developed, and preliminary structural sizing was then performed using finite element-based methods. Results of selected structural design and trade studies performed during this activity are presented and discussed.

  12. Experimental Enhanced Upper Stage (XEUS): An affordable large lander system

    NASA Astrophysics Data System (ADS)

    Scotkin, J.; Masten, D.; Powers, J.; O'Konek, N.; Kutter, B.; Stopnitzky, B.

    The Experimental Enhanced Upper Stage (XEUS) offers a path to reduce costs and development time to sustainable activity beyond LEO by equipping existing large cryogenic propulsion stages with MSS VTVL propulsion and GNC to create a large, multi-thrust axis lander. Conventional lander designs have been driven by the assumption that a single, highly reliable, and efficient propulsion system should conduct the entire descent, approach, and landing. Compromises in structural, propulsion, and operational efficiency result from this assumption. System reliability and safety also suffer. The result is often an iterative series of optimizations, making every subsystem mission-unique and expensive. The XEUS multi-thrust axis lander concept uniquely addresses the programmatic and technical challenges of large-mass planetary landing by taking advantage of proven technologies and decoupling the deorbit and descent propulsion system from the landing propulsion system. Precise control of distributed, multi-thrust axis landing propulsion units mounted on the horizontal axis of a Centaur stage will ultimately enable the affordable deployment of large planetary rovers, uncrewed base infrastructure and manned planetary expeditions. The XEUS lander has been designed to offer a significantly improved mass fraction and mass to surface capability over conventional lander designs, while reducing airlock/payload to surface distances and distributing plume effects by using multiple gimbaled landing thrusters. In utilizing a proven cryogenic propulsion stage, XEUS reduces development costs required for development of new cryogenic propulsion stages and fairings and builds upon the strong heritage of successful Centaur and MSS RLV flights.

  13. Analysis of TRMM Microphysical Measurements: Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    SPEC Incorporated participated in three of the four TRMM field campaigns (TEFLUN-A, TEFLUN-B and KWAJEX), installing and operating a cloud particle imager (CPI) and a high volume precipitation spectrometer (HVPS) on the SPEC Learjet in TEFLUN-A, the University of North Dakota Citation in TEFLUN-B and KWAJEX, and a CPI on the NASA DC-8 in KWAJEX. This report presents and discusses new software tools and algorithms that were developed to analyze microphysical data collected during these field campaigns, as well as scientific interpretations of the data themselves. Software algorithms were developed to improve the analysis of microphysical measurements collected by the TRMM aircraft during the field campaigns. Particular attention was paid to developing and/or improving algorithms used to compute particle size distributions and ice water content. Software was also developed in support of production of the TRMM Common Microphysical Product (CMP) data files. CMP data files for TEFLUN-A field campaign were produced and submitted to the DAAC. Typical microphysical properties of convective and stratiform regions from TEFLUN-A and KWAJEX clouds were produced. In general, it was found that in the upper cloud region near -20 to -25 C, stratiform clouds contain very high (greater than 1 per cubic centimeter) concentrations of small ice particles, which are suspected to be a residual from homogeneous freezing and sedimentation of small drops in a convective updraft. In the upper cloud region near -20 to -25 C, convective clouds contain aggregates, which are not found lower in the cloud. Stratiform clouds contain aggregates at all levels, with the majority in the lowest levels. Convective cloud regions contain much higher LWC and drop concentrations than stratiform regions at all levels, and higher LWC in the middle and upper regions. Stratiform clouds contain higher IWC than convective clouds only at the lowest level. Irregular shaped ice particles are found in very high

  14. Global Precipitation Measurement (GPM) Mission after Three Years

    NASA Astrophysics Data System (ADS)

    Huffman, George; Skofronick-Jackson, Gail

    2017-04-01

    The Global Precipitation Measurement (GPM) mission is a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA) to advance scientific understanding and practical application of satellite-based global precipitation estimates. The GPM Core Observatory spacecraft, launched February 27, 2014, provides high-quality passive microwave (PMW) and radar observations. These data are subjects of study and application in their own right, and they are also used to unify and advance precipitation measurements from a constellation of research and operational satellite PMW sensors to provide "next-generation" precipitation products. Both uses are facilitated by the the GPM Core Observatory's 65° non-Sun-synchronous orbit at an altitude of 407 km, which precesses across all times of day and covers the tropics and mid-latitudes, where a majority of the Earth's population lives. GPM provides products ranging from raw instrument data to Core and partner swath precipitation estimates, to gridded and accumulated products, and finally to multi-satellite merged products. The U.S. GPM Science Team is developing such a merged product, the Integrated Multi-satellitE Retrievals for GPM (IMERG), which is available with a 5-hour latency with temporal resolution of 30 minutes and spatial resolution of 0.1° x 0.1° ( 10km x 10km). Some products have a 1-hour latency for societal applications, such as floods, landslides, hurricanes, blizzards, and typhoons, and all of these products have long-latency high-quality science products. After three years in orbit, GPM has fulfilled its initial mission requirements, which are to measure rain rates from 0.2 to 110 mm/hr and to detect and estimate falling snow. The GPM mission is well on its way to providing essential data on precipitation (rain and snow) from micro to local to global scales, providing precipitation particle size distributions in the clouds, 5-15 km estimates of regional precipitation, and merged global precipitation

  15. Global Precipitation Measurement (GPM) Mission: NASA Precipitation Processing System (PPS)

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2008-01-01

    NASA is contributing the precipitation measurement data system PPS to support the GPM mission. PPS will distribute all GPM data products including NASA s GMI data products freely and quickly. PPS is implementing no system mechanisms for restricting access to GPM data. PPS is implementing no system mechanisms for charging for GPM data products. PPS will provide a number of geographical and parameter subsetting features available to its users. The first implementation of PPS (called PPS--) will assume processing of TRMM data effective 1 June 2008. TRMM realtime data will be available via PPS- to all users requesting access

  16. Gas Pressure Measurements on Space Shuttle Mission-39.

    DTIC Science & Technology

    2007-11-02

    AIR FORCE BASE, MA 01731-3010 D2 fC QUPC BP TD 1 GAS PRESSURE MEASUREMENTS ON SPACE SHUTTLE MISSION-39 William F. Denig Rodney A. Viereck 9 April 1996...DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time...VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1 . AGENCY USE ONLY (Leave

  17. Progress of the Dust Accumulation and Removal Technology Experiment (DART) for the Mars 2001 Lander

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Landis, Geoffrey A.; Wilt, David; Krasowski, Michael; Greer, Lawrence; Baraona, Cosmo; Scheiman, David

    2005-01-01

    Dust deposition could be a significant problem for photovoltaic array operation for long duration missions on the surface of Mars. Measurements made by Pathfinder showed 0.3 percent loss of solar array performance per day due to dust obscuration. We have designed an experiment package, "DART", which is part of the Mars ISPP Precursor (MIP) package, to fly on the Mars-2001 Surveyor Lander. This mission, to launch in April 2001, will arrive on Mars in January 2002. The DART experiment is designed to quantify dust deposition from the Mars atmosphere, measure the properties of settled dust, measure the effect of dust deposition on array performance, and test several methods of clearing dust from solar cells.

  18. New Method for Astrometric Measurements in Space Mission, JASMINE.

    NASA Astrophysics Data System (ADS)

    Yano, T.; Gouda, N.; Yamada, Y.

    2006-08-01

    We present a new method for measuring positions of stars in the Milky Way Galaxy by astrometric satellite, JASMINE, which is in progress at the National Astronomical Observatory of Japan. JASMINE is the acronym of the Japan Astrometry Satellite Mission for Infrared (z-band : 0.9 micron) Exploration, and is planned to be launched around 2015 The main objective of JASMINE is to study the fundamental structure and evolution of the bulge components of the Milky Way Galaxy. In order to accomplish these objectives, JASMINE will measure trigonometric parallaxes, positions and proper motions of about a few million stars during the observational program, with the precision of 10 microarcsec at z =14mag. The telescope of JASMINE has just one field of view, which is different from other astrometric satellites like Hipparcos and GAIA, that have two fields of view with large angle. These satellites, Hipparcos and GAIA, scan along the great circle with the spin axis perpendicular to both two fields of view to estimate the relative positions of stars on the great circle. They scan many different great circles to observe all the sky. On the other hand, JASMINE will take overlapping fields of view without any gaps to survey an area of about 20deg*10deg. Accordingly survey area covers the region of about 20deg*10deg in the bulge component. JASMINE will continue the above procedure for observing the area during the mission life. As a consequence, JASMINE will observe the restricted regions around the Galactic bulge and sweep repeatedly. The mission life is planned to be 5 years.

  19. New method for astrometric measurements in Space Mission, JASMINE

    NASA Astrophysics Data System (ADS)

    Yano, T.; Gouda, N.; Yamada, Y.

    We present a new method for measuring positions of stars in the Milky Way Galaxy by astrometric satellite, JASMINE, which is in progress at the National Astronomical Observatory of Japan. JASMINE is the acronym of the Japan Astrometry Satellite Mission for Infrared (z-band : 0.9 micron) Exploration, and is planned to be launched around 2015 The main objective of JASMINE is to study the fundamental structure and evolution of the bulge components of the Milky Way Galaxy. In order to accomplish these objectives, JASMINE will measure trigonometric parallaxes, positions and proper motions of about a few million stars during the observational program, with the precision of 10 microarcsec at z =14mag. The telescope of JASMINE has just one field of view, which is different from other astrometric satellites like Hipparcos and GAIA, that have two fields of view with large angle. These satellites, Hipparcos and GAIA, scan along the great circle with the spin axis perpendicular to both two fields of view to estimate the relative positions of stars on the great circle. They scan many different great circles to observe all the sky. On the other hand, JASMINE will take overlapping fields of view without any gaps to survey an area of about 20deg×10deg. Accordingly survey area covers the region of about 20deg×10deg in the bulge component. JASMINE will continue the above procedure for observing the area during the mission life. As a consequence, JASMINE will observe the restricted regions around the Galactic bulge and sweep repeatedly. The mission life is planned to be 5 years.

  20. SRAG Measurements Performed During the Orion EFT-1 Mission

    NASA Technical Reports Server (NTRS)

    Gaza, Ramona

    2015-01-01

    The Exploration Flight Test 1 (EFT-1) was the first flight of the Orion Multi-Purpose Crew Vehicle (MPCV). The flight was launched on December 5, 2014, by a Delta IV Heavy rocket and lasted 4.5 hours. The EFT-1 trajectory involved one low altitude orbit and one high altitude orbit with an apogee of almost 6000 km. As a result of this particular flight profile, the Orion MPCV passed through intense regions of trapped protons and electron belts. In support of the radiation measurements aboard the EFT-1, the Space Radiation Analysis Group (SRAG) provided a Battery-operated Independent Radiation Detector (BIRD) based on Timepix radiation monitoring technology similar to that employed by the ISS Radiation Environmental Monitors (REM). In addition, SRAG provided a suite of optically and thermally stimulated luminescence detectors, with 2 Radiation Area Monitor (RAM) units collocated with the BIRD instrument for comparison purposes, and 6 RAM units distributed at different shielding configurations within the Orion MPCV. A summary of the EFT-1 Radiation Area Monitors (RAM) mission dose results obtained from measurements performed in the Space Radiation Dosimetry Laboratory at the NASA Johnson Space Center will be presented. Each RAM included LiF:Mg,Ti (TLD-100), (6)LiF:Mg,Ti (TLD-600), (7)LiF:Mg,Ti (TLD-700), Al2O3:C (Luxel trademark), and CaF2:Tm (TLD-300). The RAM mission dose values will be compared with the BIRD instrument total mission dose. In addition, a similar comparison will be shown for the ISS environment by comparing the ISS RAM data with data from the six Timepix-based REM units deployed on ISS as part of the NASA REM Technology Demonstration.

  1. The Tropical Rainfall Measuring Mission (TRMM) Progress Report

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Meneghini, Robert; Kummerow, Christian D.; Meneghini, Robert; Hou, Arthur; Adler, Robert F.; Huffman, George; Barkstrom, Bruce; Wielicki, Bruce; Goodman, Steve

    1999-01-01

    Recognizing the importance of rain in the tropics and the accompanying latent heat release, NASA for the U.S. and NASDA for Japan have partnered in the design, construction and flight of an Earth Probe satellite to measure tropical rainfall and calculate the associated heating. Primary mission goals are 1) the understanding of crucial links in climate variability by the hydrological cycle, 2) improvement in the large-scale models of weather and climate 3) Improvement in understanding cloud ensembles and their impacts on larger scale circulations. The linkage with the tropical oceans and landmasses are also emphasized. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in November 1997 with fuel enough to obtain a four to five year data set of rainfall over the global tropics from 37'N to 37'S. This paper reports progress from launch date through the spring of 1999. The data system and its products and their access is described, as are the algorithms used to obtain the data. Some exciting early results from TRMM are described. Some important algorithm improvements are shown. These will be used in the first total data reprocessing, scheduled to be complete in early 2000. The reader is given information on how to access and use the data.

  2. Lunar lander ground support system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The design of the Lunar Lander Ground Support System (LLGSS) is examined. The basic design time line is around 2010 to 2030 and is referred to as a second generation system, as lunar bases and equipment would have been present. Present plans for lunar colonization call for a phased return of personnel and materials to the moons's surface. During settlement of lunar bases, the lunar lander is stationary in a very hostile environment and would have to be in a state of readiness for use in case of an emergency. Cargo and personnel would have to be removed from the lander and transported to a safe environment at the lunar base. An integrated system is required to perform these functions. These needs are addressed which center around the design of a lunar lander servicing system. The servicing system could perform several servicing functions to the lander in addition to cargo servicing. The following were considered: (1) reliquify hydrogen boiloff; (2) supply power; and (3) remove or add heat as necessary. The final design incorporates both original designs and existing vehicles and equipment on the surface of the moon at the time considered. The importance of commonality is foremost in the design of any lunar machinery.

  3. Development of a prototype fluid volume measurement system. [for urine volume measurement on space missions

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Sabin, C. M.; Meckel, P. T.

    1974-01-01

    The research is reported in applying the axial fluid temperature differential flowmeter to a urine volume measurement system for space missions. The fluid volume measurement system is described along with the prototype equipment package. Flowmeter calibration, electronic signal processing, and typical void volume measurements are also described.

  4. Multibody Modeling and Simulation for the Mars Phoenix Lander Entry, Descent and Landing

    NASA Technical Reports Server (NTRS)

    Queen, Eric M.; Prince, Jill L.; Desai, Prasun N.

    2008-01-01

    A multi-body flight simulation for the Phoenix Mars Lander has been developed that includes high fidelity six degree-of-freedom rigid-body models for the parachute and lander system. The simulation provides attitude and rate history predictions of all bodies throughout the flight, as well as loads on each of the connecting lines. In so doing, a realistic behavior of the descending parachute/lander system dynamics can be simulated that allows assessment of the Phoenix descent performance and identification of potential sensitivities for landing. This simulation provides a complete end-to-end capability of modeling the entire entry, descent, and landing sequence for the mission. Time histories of the parachute and lander aerodynamic angles are presented. The response of the lander system to various wind models and wind shears is shown to be acceptable. Monte Carlo simulation results are also presented.

  5. Successes with the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Huffman, George; Stocker, Erich; Petersen, Walter

    2016-01-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Status and successes in terms of spacecraft, instruments, retrieval products, validation, and impacts for science and society will be presented. Precipitation, microwave, satellite

  6. Overview of the Altair Lunar Lander Thermal Control System Design

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA's Constellation Program has been developed to successfully return humans to the Lunar surface by 2020. The Constellation Program includes several different project offices including Altair, which is the next generation Lunar Lander. The planned Altair missions are very different than the Lunar missions accomplished during the Apollo era. These differences have resulted in a significantly different thermal control system architecture. The current paper will summarize the Altair mission architecture and the various operational phases. In addition, the derived thermal requirements will be presented. The paper will conclude with a brief description of the thermal control system designed to meet these unique and challenging thermal requirements.

  7. Rest In Peace Mars Polar Lander

    NASA Image and Video Library

    2002-12-04

    On December 3, 1999) Mars Polar Lander (MPL) was set to touchdown on the enigmatic layered terrain located near the South Pole. Unfortunately, communications with the spacecraft were lost and never regained. The Mars Program Independent Assessment Team concluded that this loss was most likely due to premature retrorocket shutdown resulting in the crash of the lander. The image primarily shows what appears to be a ridged surface with some small isolated hills. Historically, exploration has and will continue to be a very hard and risky endeavor and sometimes you lose. But the spirit of exploration and discovery has served mankind well throughout the ages and it has now driven us to the far reaches of space. Therefore, with this in mind the THEMIS Team today is releasing an image of the region where MPL was set to land in memory of this mission and the unquenchable spirit of exploration. It is hoped that in the near future we will once again attempt another landing in the Martian polar regions. http://photojournal.jpl.nasa.gov/catalog/PIA04016

  8. Phoenix Mars Lander with Solar Arrays Open

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's next Mars-bound spacecraft, the Phoenix Mars Lander, was partway through assembly and testing at Lockheed Martin Space Systems, Denver, in September 2006, progressing toward an August 2007 launch from Florida. In this photograph, spacecraft specialists work on the lander after its fan-like circular solar arrays have been spread open for testing. The arrays will be in this configuration when the spacecraft is active on the surface of Mars.

    Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. It will dig into the surface, test scooped-up samples for carbon-bearing compounds and serve as NASA's first exploration of a potential modern habitat on Mars.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  9. Northeast View from Pathfinder Lander

    NASA Image and Video Library

    1997-11-04

    This panorama of the region to the northeast of the lander was constructed to support the Sojourner Rover Team's plans to conduct an "autonomous traverse" to explore the terrain away from the lander after science objectives in the lander vicinity had been met. The large, relatively bright surface in the foreground, about 10 meters (33 feet) from the spacecraft, in this scene is "Baker's Bench." The large, elongated rock left of center in the middle distance is "Zaphod." This view was produced by combining 8 individual "Superpan" scenes from the left and right eyes of the IMP camera. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be. http://photojournal.jpl.nasa.gov/catalog/PIA01000

  10. Phoenix Mars Lander Spacecraft Heat Shield Installation

    NASA Image and Video Library

    2007-05-11

    In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  11. Phoenix Mars Lander Spacecraft Heat Shield Installation

    NASA Image and Video Library

    2007-05-11

    In the Payload Hazardous Servicing Facility, technicians prepare to install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  12. Phoenix Mars Lander Spacecraft Heat Shield Installation

    NASA Image and Video Library

    2007-05-11

    In the Payload Hazardous Servicing Facility, technicians complete the installation of the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  13. Phoenix Mars Lander Spacecraft Heat Shield Installation

    NASA Image and Video Library

    2007-05-11

    In the Payload Hazardous Servicing Facility, technicians install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  14. Phoenix Mars Lander Spacecraft Heat Shield Installation

    NASA Image and Video Library

    2007-05-11

    In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander is moved into position for installation on the spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  15. Imaging experiment: The Viking Lander

    USGS Publications Warehouse

    Mutch, T.A.; Binder, A.B.; Huck, F.O.; Levinthal, E.C.; Morris, E.C.; Sagan, C.; Young, A.T.

    1972-01-01

    The Viking Lander Imaging System will consist of two identical facsimile cameras. Each camera has a high-resolution mode with an instantaneous field of view of 0.04??, and survey and color modes with instantaneous fields of view of 0.12??. Cameras are positioned one meter apart to provide stereoscopic coverage of the near-field. The Imaging Experiment will provide important information about the morphology, composition, and origin of the Martian surface and atmospheric features. In addition, lander pictures will provide supporting information for other experiments in biology, organic chemistry, meteorology, and physical properties. ?? 1972.

  16. The Philae Science Mission - A Preview

    NASA Astrophysics Data System (ADS)

    Boehnhardt, H.; Bibring, J.-P.

    2014-04-01

    The PHILAE Science Mission is based on measurements from 10 scientific instruments, i.e. the α-particle and X-ray spectrometer APXS, the visible camera and near-infrared spectrometer CIVA, the radio sounding experiment CONSERT, the molecule mass spectrometer and gas chromatograph COSAC, the accelerometer and thermal probe MUPUS, the light elements and isotope mass spectrometer and gas chromatograph PTOLEMY, the down-looking camera ROLIS, the magnetometer and plasma package ROMAP, the drill system SD2, and the acoustic and electric probe and dust impact sensor SESAME. The measurements are performed during 4 mission phase, i.e. during the pre-landing phase (PDCS) while the lander is still attached to the ROSETTA orbiter, during the separation, descent and landing phase (SDL), during the First Science Sequence (FSS) within about 3 days after landing and during a Long-Term Science phase (LTS) which follows the FSS immediately or after a short hibernation period depending on the landing site and the related power situation of the lander. The PDCS and SDL phase only a subset of the lander instruments will be active with scientific measurements, i.e. CIVA, CONSERT, PTOLEMY, ROMAP and SESAME during PDCS and CIVA, CONSERT, ROLIS, and ROMAP during SDL. The FSS and LTS phases will utilize all 10 PHILAE instruments for science. The presentations provides an overview of the PHILAE observations during the various mission phases, outlines the expected results and comments on the impact of the landing sites for the PHILAE science.

  17. Progress of the Mars Array Technology Experiment (MATE) on the 2001 Lander

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Baraona, Cosmo; Wilt, Dave; Jenkins, Phil; Krasowski, Michael; Greer, Lawrence; Lekki, John; Spina, Daniel; Landis, Geoff

    2005-01-01

    NASA is planning missions to Mars every two years until 2010, these missions will rely on solar power. Sunlight on the surface of Mars is altered by airborne dust and fluctuates from day to day. The MATE flight experiment was designed to evaluate solar cell performance and will fly on the Mars 2001 surveyor Lander as part of the Mars In-Situ Propellant Production Precursor (MIP) package. MATE will measure several solar cell technologies and characterize the Martian environment's solar power. This will be done by measuring full IV curvers on solar cells, direct and global insolation, temperature, and spectral content. The lander is scheduled to launch in April 2001 and arrive on Mars in January of 2002. The site location has not been identified but will be near the equator, is a powered landing, and is baselined for 90 sols. The intent of this paper is to provide a brief overview of the MATE experiment and progress to date. The MATE Development Unit (DU) hardware has been built and has completed testing, work is beginning in the Qualification Unit which will start testing later this year, Flight Hardware is to be delivered next spring.

  18. Effects of surface clutter on rain measurements from the tropical rainfall measuring mission satellite

    NASA Astrophysics Data System (ADS)

    Manabe, Takeshi; Ihara, Toshio; Okamoto, Ken'ich

    The effects of sea-surface clutter on rain measurements with a satellite-borne rain radar are quantitatively evaluated for clutter interferences through antenna sidelobes and pulse-compression range sidelobes. Calculations are made for a dual-frequency radar operating at 13.8 and 24.15 GHz proposed for the Tropical Rainfall Measuring Mission satellite.

  19. Robotic Lander Completes Multiple Outdoor Flight

    NASA Image and Video Library

    NASA’s Robotic Lander Development Project in Huntsville, Ala., has successfully completed seven autonomous outdoor flight tests of a lander prototype, dubbed Mighty Eagle. On Oct. 14, Mighty Eagl...

  20. Chemistry Lab for Phoenix Mars Lander

    NASA Image and Video Library

    2007-08-02

    The targeted landing site for NASA Phoenix Mars Lander is at about 68 degrees north latitude, 233 degrees east longitude in the Martian arctic. The Phoenix lander, which landed May 25, 2008 ceased its operations about six months later.

  1. Spaceship Discovery's Crew and Cargo Lander Module Designs for Human Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Benton, Mark G.

    2008-01-01

    The Spaceship Discovery design was first presented at STAIF 2006. This conceptual design space vehicle architecture for human solar system exploration includes two types of Mars exploration lander modules: A piloted crew lander, designated Lander Module 2 (LM2), and an autonomous cargo lander, designated Lander Module 3 (LM3). The LM2 and LM3 designs were first presented at AIAA Space 2007. The LM2 and LM3 concepts have recently been extensively redesigned. The specific objective of this paper is to present these revised designs. The LM2 and LM3 landers are based on a common design that can be configured to carry either crew or cargo. They utilize a combination of aerodynamic reentry, parachutes, and propulsive braking to decelerate from orbital velocity to a soft landing. The LM2 crew lander provides two-way transportation for a nominal three-person crew between Mars orbit and the surface, and provides life support for a 30-day contingency mission. It contains an ascent section to return the crew to orbit after completion of surface operations. The LM3 cargo lander provides one-way, autonomous transportation of cargo from Mars orbit to the surface and can be configured to carry a mix of consumables and equipment, or equipment only. Lander service life and endurance is based on the Spaceship Discovery conjunction-class Design Reference Mission 2. The LM3 is designed to extend the surface stay for three crew members in an LM2 crew lander such that two sets of crew and cargo landers enable human exploration of the surface for the bulk of the 454 day wait time at Mars, in two shifts of three crew members each. Design requirements, mission profiles, mass properties, performance data, and configuration layouts are presented for the LM2 crew and LM3 cargo landers. These lander designs are a proposed solution to the problem of safely transporting a human crew from Mars orbit to the surface, sustaining them for extended periods of time on the surface, and returning them

  2. Lander radioscience for obtaining the rotation and orientation of Mars

    NASA Astrophysics Data System (ADS)

    Dehant, Veronique; Folkner, William; Renotte, Etienne; Orban, Daniel; Asmar, Sami; Balmino, Georges; Barriot, Jean-Pierre; Benoist, Jeremy; Biancale, Richard; Biele, Jens; Budnik, Frank; Burger, Stefaan; de Viron, Olivier; Häusler, Bernd; Karatekin, Özgur; Le Maistre, Sébastien; Lognonné, Philippe; Menvielle, Michel; Mitrovic, Michel; Pätzold, Martin; Rivoldini, Attilio; Rosenblatt, Pascal; Schubert, Gerald; Spohn, Tilman; Tortora, Paolo; Van Hoolst, Tim; Witasse, Olivier; Yseboodt, Marie

    2009-07-01

    The paper presents the concept, the objectives, the approach used, and the expected performances and accuracies of a radioscience experiment based on a radio link between the Earth and the surface of Mars. This experiment involves radioscience equipment installed on a lander at the surface of Mars. The experiment with the generic name lander radioscience (LaRa) consists of an X-band transponder that has been designed to obtain, over at least one Martian year, two-way Doppler measurements from the radio link between the ExoMars lander and the Earth (ExoMars is an ESA mission to Mars due to launch in 2013). These Doppler measurements will be used to obtain Mars' orientation in space and rotation (precession and nutations, and length-of-day variations). More specifically, the relative position of the lander on the surface of Mars with respect to the Earth ground stations allows reconstructing Mars' time varying orientation and rotation in space. Precession will be determined with an accuracy better by a factor of 4 (better than the 0.1% level) with respect to the present-day accuracy after only a few months at the Martian surface. This precession determination will, in turn, improve the determination of the moment of inertia of the whole planet (mantle plus core) and the radius of the core: for a specific interior composition or even for a range of possible compositions, the core radius is expected to be determined with a precision decreasing to a few tens of kilometers. A fairly precise measurement of variations in the orientation of Mars' spin axis will enable, in addition to the determination of the moment of inertia of the core, an even better determination of the size of the core via the core resonance in the nutation amplitudes. When the core is liquid, the free core nutation (FCN) resonance induces a change in the nutation amplitudes, with respect to their values for a solid planet, at the percent level in the large semi-annual prograde nutation amplitude and

  3. Investigation of Mars Rotational Dynamics Using Earth-based Radio Tracking of Mars Landers

    NASA Technical Reports Server (NTRS)

    Edwards, C. D., Jr.; Folkner, W. M.; Kahn, R. D.; Preston, R. A.

    1993-01-01

    The development of space geodetic techniques over the past two decades has made it possible to measure the rotational dynamics of the Earth at the milliarcsecond level, improving our geophysical models of the Earth 's interior and the interactions between the solid Earth and its atmosphere. We have found that the rotational dynamics of Mars can be determined to nearly the same level of accuracy by acquiring Earth-based two-way radio tracking observations of three or more landers globally distributed on the surface of Mars. Our results indicate that the precession and long-term obliquity changes of the Mars pole direction can be determined to an angular accuracy corresponding to about 15 cm/yr at the planet's surface. In addition, periodic nutations of the pole and seasonal variations in the spin rate of the planet can be determined to 10 cm or less. Measuring the rotation of Mars at this accuracy would greatly improve the determination of the planet' s moment of inertia and would resolve the size of a planetary fluid core, providing a valuable constraint on Mars interior models. Detecting seasonal variations in the spin rate of Mars would provide global constraints on atmospheric angular momentum changes due to sublimation of the Mars CO2 polar ice caps. Finally, observation of quasisecular changes in Mars obliquity would have significant implications for understanding long-term climatic change. The key to achieving these accuracies is a globally distributed network of Mars landers with stable, phase-coherent radio transponders. By simultaneously acquiring coherent two-way carrier phase observations between a single Earth tracking station and multiple Mars landers, Earth media errors are essentially eliminated, providing an extremely sensitive measure of changes in the differential path lengths between the Earth tracking station and the Mars landers due to Mars rotation. Time variability of the instrumental phase delay through the radio transponder may represent

  4. Characterization of the Canadian meteorological instruments on the Phoenix Mars Lander using CFD

    NASA Astrophysics Data System (ADS)

    Lange, Carlos F.

    On May 25, 2008 the Phoenix Mars Lander will set down in the Northern region of Mars. Canada's contribution to this mission is the meteorological station consisting of a Lidar, a pressure sensor from the Finnish Meteorological Institute, and three temperature sensors, which are placed vertically along a mast. In addition, placed on top of the mast is a wind sensor, which is a development and contribution of the Danish team at Aarhus University in collaboration with the University of Alberta, Canada. During normal operations of the Lander, heat will be generated and transferred to the environment. If the difference in temperature between the lander and the environment is large enough, natural convection will result. This can, in turn, affect the wind, pressure, and temperature measurements. Thus, for accurate environment measurements, characterization of these effects is essential. The atmosphere of Mars consists mainly of CO2 gas. At the beginning of the day, the expected values of temperature and pressure at the landing site are 200 K and 800 Pa, respectively. This hostile environment, combined with the low gravity of Mars (3.7 m/s2 ), makes evaluation of the problem experimentally extremely difficult and costly. CFD, however, can be used as a viable alternative. Due to the large range of length scales present in the 3D problem, different strategies have been employed to characterize the velocity and temperature sensors. Simulations consisting of only the velocity sensor were performed, resulting in a wealth of information on the structure of the flow near the sensor. Results indicate that, for certain cases, the wind sensor is partially sheltered from natural convection. To identify the effect of thermal wakes produced by other instruments on the lander, a full lander model was used to study the temperature sensors. Simulations focusing on different angles and wind speeds result in specific cases of importance, where the camera's wake can potentially cause a

  5. Charge measurements for an asteroid sample return mission

    NASA Astrophysics Data System (ADS)

    Macfaden, A.; Aplin, K. L.; Bowles, N. E.

    2013-09-01

    Photoelectric charging of asteroid regolith material influences particle motion and escape. Differing spacecraft and asteroid charges may also affect sample return on missions such as Marco Polo-R. To study this, bespoke 2D particle-in-cell code simulating the behaviour of photoelectrons trapped near a photoemitting surface (photosheath) has been written and implemented. The spacecraft- photosheath system reaches equilibrium in 1 ms, which is rapid compared to the descent timescale. Equilibria reached in simulations are therefore assumed representative of the dynamic spacecraft environment. Predicted potentials at different heightsand with different solar zenith angle are presented, so that an instrument to measure the potential difference across the spacecraft can be defined. The distorting effect of the spacecraft significantly modifies the potential difference and displacement currents during the terminal descent, by introducing an equipotential body, creating a shadow, and photoemitting itself. By considering the distortion from different parts of the spacecraft, optimal locations for a set of electrodes to measure the potential difference are suggested. Potential differences of about 100 mV are expected to be generated across the electrodes, which should be representative of the electrical environment. The results demonstrate that a simple set of electrodes can measure the asteroid's surface electric field during sample collection.

  6. Phoenix Lander on Mars with Surrounding Terrain, Vertical Projection

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view is a vertical projection that combines more than 500 exposures taken by the Surface Stereo Imager camera on NASA's Mars Phoenix Lander and projects them as if looking down from above.

    The black circle on the spacecraft is where the camera itself is mounted on the lander, out of view in images taken by the camera. North is toward the top of the image. The height of the lander's meteorology mast, extending toward the southwest, appears exaggerated because that mast is taller than the camera mast.

    This view in approximately true color covers an area about 30 meters by 30 meters (about 100 feet by 100 feet). The landing site is at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars.

    The ground surface around the lander has polygonal patterning similar to patterns in permafrost areas on Earth.

    This view comprises more than 100 different Stereo Surface Imager pointings, with images taken through three different filters at each pointing. The images were taken throughout the period from the 13th Martian day, or sol, after landing to the 47th sol (June 5 through July 12, 2008). The lander's Robotic Arm is cut off in this mosaic view because component images were taken when the arm was out of the frame.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Development of a Compact, Deep-Penetrating Heat Flow Instrument for Lunar Landers: In-Situ Thermal Conductivity System

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.

  8. Scientific Objectives and operational Scheme of the Planetary Underground Tool (Pluto) Experiment on the Beagle 2 Mars Lander

    NASA Astrophysics Data System (ADS)

    Richter, L.; Gromov, V.; Kochan, H.; Kosacki, K.; Tokano, T.

    2003-04-01

    The payload of the Beagle 2 lander of ESA's Mars Express mission includes a regolith-penetrating, tethered "Mole" intended for acquisition of several subsurface soil samples from depths between about 10 cm and approximately 1.5 m. These samples will then be analysed by the Gas Analysis Package (GAP) instrument on the lander, primarily with regard to isotopic composition and organic molecules. In addition, a share of each sample can be deposited onto the lander structure to be investigated with instruments mounted on the lander's PAW instrument carrier, such as the Mössbauer and X-ray fluorescence spectrometers and the optical microscope. After giving a brief overview of the experiment design, this paper focuses on the various science objectives addressed by the Beagle 2 Mole system, also referred to as the PLanetary Underground TOol (PLUTO). Apart from its capability to make subsurface regolith samples available to lander-based experiments for the first time on a Mars landing mission, PLUTO will be capable of performing scientific measurements of its own which utilize the Mole's soil penetration process and its temporary residence within the regolith: while it penetrates into the Martian soil by way of soil displacement through the action of an internal hammering mechanism, the Mole will allow mechanical properties of the regolith to be inferred and additionally, a temperature sensor mounted on the Mole will support investigations of soil thermophysical properties and measurements of the subsurface temperature profile. Using a Mole soil penetration theory calibrated by ground-based experiments, regolith bulk density, cohesion, and internal friction angle can be constrained as a function of depth using the Mole penetration path (and retrieval path) vs. time which is measured by a sensor indicating the amount of tether extracted by the PLUTO Mole. The obtained depth profiles of these quantities should provide insight into the depositional history and stratigraphy of

  9. Space acceleration measurement system description and operations on the First Spacelab Life Sciences Mission

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; Finley, Brian D.

    1991-01-01

    The Space Acceleration Measurement System (SAMS) project and flight units are briefly described. The SAMS operations during the STS-40 mission are summarized, and a preliminary look at some of the acceleration data from that mission are provided. The background and rationale for the SAMS project is described to better illustrate its goals. The functions and capabilities of each SAMS flight unit are first explained, then the STS-40 mission, the SAMS's function for that mission, and the preparation of the SAMS are described. Observations about the SAMS operations during the first SAMS mission are then discussed. Some sample data are presented illustrating several aspects of the mission's microgravity environment.

  10. Chemistry Lab for Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The science payload of NASA's Phoenix Mars Lander includes a multi-tool instrument named the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The instrument's wet chemistry laboratory, prominent in this photograph, will measure a range of chemical properties of Martian soil samples, such as the presence of dissolved salts and the level of acidity or alkalinity. Other tools that are parts of the instrument are microscopes that will examine samples' mineral grains and a probe that will check the soil's thermal and electrical properties.

  11. Chemistry Lab for Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The science payload of NASA's Phoenix Mars Lander includes a multi-tool instrument named the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The instrument's wet chemistry laboratory, prominent in this photograph, will measure a range of chemical properties of Martian soil samples, such as the presence of dissolved salts and the level of acidity or alkalinity. Other tools that are parts of the instrument are microscopes that will examine samples' mineral grains and a probe that will check the soil's thermal and electrical properties.

  12. Tropical Rainfall Measuring Mission (TRMM) project. I - Introduction

    NASA Technical Reports Server (NTRS)

    Theon, John S.; Fugono, Nobuyoshi

    1990-01-01

    Results of a 1-year USA-Japan study of the feasibility of the joint TRMM project are briefly reviewed. The TRMM mission will fly four precipitation sensors, a single-frequency radar, two types of microwave radiometers, and a visible and infrared radiometer. The scientific background of the mission and its organizational and engineering aspects are summarized.

  13. Mars MetNet Mission Pressure and Humidity Devices

    NASA Astrophysics Data System (ADS)

    Haukka, H.; Harri, A.-M.; Schmidt, W.; Genzer, M.; Polkko, J.; Kemppinen, O.; Leinonen, J.

    2012-09-01

    A new kind of planetary exploration mission for Mars is being developed in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission [1] is based on a new semi-hard landing vehicle called MetNet Lander (MNL). MetBaro and MetHumi are part of the scientific payload of the MNL. Main scientific goal of both devices is to measure the meteorological phenomena (pressure and humidity) of the Martian atmosphere and complement the previous Mars mission atmospheric measurements (Viking and Phoenix) for better understanding of the Martian atmospheric conditions.

  14. The Planning of Lander Science Observations after ROSETTA Deep Space Hibernation

    NASA Astrophysics Data System (ADS)

    Barthelemy, Maud; Ulamec, Stephan; Gaudon, Philippe; Biele, Jens; Pätz, Brigitte; Ashman, Mike

    2014-05-01

    After 10 years of its interplanetary journey, Rosetta has woken up from hibernation to meet Churyumov-Gerasimenko comet in the second term of 2014. The Rosetta spacecraft is composed of an Orbiter and a Lander part. The spacecraft will deliver the Lander, named Philae, to land on the surface of the comet in November 2014. During the Cruise Phase, the Lander, attached to the Orbiter, participated in several commissioning and payload checkout observations. In April 2014, after almost 3 years of hibernation, the Lander and the Orbiter will enter a commissioning phase to check the health of all instruments. Then, from May to November, Prelanding science activities can be planned, although the priority will go to those observations that help to select the landing site. The Lander project has, in much the same way as the Orbiter, its own ground segment: the Rosetta Lander Ground Segment (RLGS). The RLGS is composed of the Science Operations and Navigation Center - SONC - at CNES in Toulouse and the Lander Control Center - LCC - at DLR in Cologne. There are 10 instruments on board of Philae trying to conduct science observations during the life of the Lander. As the comet travels closer to the sun the temperature will eventually become too hot for Philae. The Orbiter, however, is planned to operate for much longer, until end of 2015, passing perihelion. Each of the 10 instruments is represented by a principal investigator. The Lander project also has Lead Scientists, who make sure that the science objectives of the Lander are fulfilled and are on hand to solve any eventual conflicts in this regard. To plan their observations, the Lander team listed their science objectives and ranked them. From these objectives, Specific On-Comet Operation Plan (SOCOP) documents are written by LCC describing the proposed observations. Then, at SONC, the MOST (Mission Operation Scheduling Tool) is used to generate a science experiment plan. This plan is confirmed by the PIs and the Lead

  15. Beagle 2: the exobiological lander of Mars Express

    NASA Astrophysics Data System (ADS)

    Pullan, D.; Sims, M. R.; Wright, I. P.; Pillinger, C. T.; Trautner, R.

    2004-08-01

    In late 2003, the Beagle 2 lander component of the Mars Express mission is planned to touch down in the Isidis Planitia region of Mars (265.0°W, 11.6°N). Once safely deployed on the surface, Beagle 2 will conduct an intensive and exhaustive programme of surface operations for about 180 sols (equivalent to about 6 months on Earth). The principal objective is the detection of extinct and/or extant life, or at least to establish if the conditions at the landing site were ever suitable for life to have evolved in the planet's history. To achieve this goal, a systematic set of experiments using a complemetary suite of instruments will perform in situ geochemical, mineralogical and petrological analysis of selected rocks and soils. Studies of the martian environment will also be conducted via chemical analysis of the atmosphere, local geomorphological assessment of the landing site and measurement/monitoring of dynamic environmental processes, including transient events such as "dust devils". Further studies, unique to Beagle 2, include analysis of the subsurface regime using a ground penetration tool and the first attempt at in situ isotopic dating of rocks on another planet. The complete experiment package weights less than 9 kg and requires less than 40 W of power. With a probe mass limit of 69 kg, imposed by mission constraints, and a landed mass of 33 kg, Beagle 2 thus aims to fly the highest mass ratio of payload-to-support systems of any mission to Mars. This is achievable only by adopting an integrated design approach and employing minimal or zero redundancy.

  16. Measurements of dust on Mars to be obtained from upcoming missions

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.

    1991-01-01

    Measurements of dust on the Mars surface and in its atmosphere will be made from several upcoming missions. The best defined missions are Mars Observer, the Soviet Mars 94 mission, and the Mars Environment Survey (MESUR) mission. A discussion is presented of what measurements pertaining to airborne or surface dust will be made and what properties can be inferred from them. The payloads for the latter two missions are not yet determined. In all cases, only that information which pertains to dust is included; each mission contains additional instruments that provide no information on this topic. Following the discussion of individual instruments is a summary of the types of measurements and observations that will be made from the ensemble collection of instruments and missions, and a brief discussion of the types of measurements of dust which will not be made.

  17. A Wind Tunnel Study on the Mars Pathfinder (MPF) Lander Descent Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Soriano, J. Francisco; Coquilla, Rachael V.; Wilson, Gregory R.; Seiff, Alvin; Rivell, Tomas

    2001-01-01

    The primary focus of this study was to determine the accuracy of the Mars Pathfinder lander local pressure readings in accordance with the actual ambient atmospheric pressures of Mars during parachute descent. In order to obtain good measurements, the plane of the lander pressure sensor opening should ideally be situated so that it is parallel to the freestream. However, due to two unfavorable conditions, the sensor was positioned in locations where correction factors are required. One of these disadvantages is due to the fact that the parachute attachment point rotated the lander's center of gravity forcing the location of the pressure sensor opening to be off tangent to the freestream. The second and most troublesome factor was that the lander descends with slight oscillations that could vary the amplitude of the sensor readings. In order to accurately map the correction factors required at each sensor position, an experiment simulating the lander descent was conducted in the Martian Surface Wind Tunnel at NASA Ames Research Center. Using a 115 scale model at Earth ambient pressures, the test settings provided the necessary Reynolds number conditions in which the actual lander was possibly subjected to during the descent. In the analysis and results of this experiment, the readings from the lander sensor were converted to the form of pressure coefficients. With a contour map of pressure coefficients at each lander oscillatory position, this report will provide a guideline to determine the correction factors required for the Mars Pathfinder lander descent pressure sensor readings.

  18. Enrgetic Particle Measurements On Future Missions In The Outer Heliosphere

    NASA Astrophysics Data System (ADS)

    Droege, W.; Heber, B.

    Major goals of the Interstellar Probe Mission are (i) to understand the acceleration of particles at the termination shock, and (ii) to sample the flux of interstellar cosmic rays (both ions and electrons) beyond the heliopause. The termination shock is expected to be unique amongst heliospheric shocks in that the back-reaction of energetic protons is thought to mediate the transition in a complex fashion. Other important and related scientific objectives are to investigate the possible reacceleration of galactic cosmic rays at the termination shock, their modulation throughout the heliosphere, particle ac- celeration at interplanetary disturbances, and to search for low-energy positrons from galactic sources. We propose to construct a state-of-the-art energetic particle and ra- diation detector called to fly on the Interstellar Probe. The instrument consists of a stack of solid state detectors and a CsI(Tl) scintillator, and is surrounded by active shielding. The instrument will have a commandable, self-adaptive geometric factor to accommodate a large dynamic range in the particle flux. It will measure the differen- tial energy spectra of electrons from 0.2 to > 30 MeV, H and He isotopes from 4 to 130 MeV/nucleon, and positrons from 0.2 to 5 MeV.

  19. Geomorphic Map of Region Around Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This map shows shows a color-coded interpretation of geomorphic units categories based on surface textures and contours in the region where NASA's Phoenix Mars Lander has studied an arctic Martian plain. It covers an area about 65 kilometers by 65 kilometers (40 miles by 40 miles).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. Color Image of Phoenix Lander on Mars Surface

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an enhanced-color image from Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) camera. It shows the Phoenix lander with its solar panels deployed on the Mars surface. The spacecraft appears more blue than it would in reality.

    The blue/green and red filters on the HiRISE camera were used to make this picture.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Geomorphic Map of Region Around Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This map shows shows a color-coded interpretation of geomorphic units categories based on surface textures and contours in the region where NASA's Phoenix Mars Lander has studied an arctic Martian plain. It covers an area about 65 kilometers by 65 kilometers (40 miles by 40 miles).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Non-Cooled Power System for Venus Lander

    NASA Technical Reports Server (NTRS)

    Salazar, Denise; Landis, Geoffrey A.; Colozza, Anthony J.

    2014-01-01

    The Planetary Science Decadal Survey of 2013-2022 stated that the exploration of Venus is of significant interest. Studying the seismic activity of the planet is of particular importance because the findings can be compared to the seismic activity of Earth. Further, the geological and atmospheric properties of Venus will shed light into the past and future of Earth. This paper presents a radioisotope power system (RPS) design for a small low-power Venus lander. The feasibility of the new power system is then compared to that of primary batteries. A requirement for the power source system is to avoid moving parts in order to not interfere with the primary objective of the mission - to collect data about the seismic activity of Venus using a seismometer. The target mission duration of the lander is 117 days, a significant leap from Venera 13, the longest-lived lander on the surface of Venus, which survived for 2 hours. One major assumption for this mission design is that the power source system will not provide cooling to the other components of the lander. This assumption is based on high-temperature electronics technology that will enable the electronics and components of the lander to operate at Venus surface temperature. For the proposed RPS, a customized General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHSRTG) is designed and analyzed. The GPHS-RTG is chosen primarily because it has no moving parts and it is capable of operating for long duration missions on the order of years. This power system is modeled as a spherical structure for a fundamental thermal analysis. The total mass and electrical output of the system are calculated to be 24 kilograms and 26 Watts, respectively. An alternative design for a battery-based power system uses Sodium Sulfur batteries. To deliver a similar electrical output for 117 days, the battery mass is calculated to be 234 kilograms. Reducing mission duration or power required will reduce the required battery mass

  3. Viking Lander Mosaics of Mars

    NASA Technical Reports Server (NTRS)

    Morris, E. C.

    1985-01-01

    The Viking Lander 1 and 2 cameras acquired many high-resolution pictures of the Chryse Planitia and Utopia Planitia landing sites. Based on computer-processed data of a selected number of these pictures, eight high-resolution mosaics were published by the U.S. Geological Survey as part of the Atlas of Mars, Miscellaneous Investigation Series. The mosaics are composites of the best picture elements (pixels) of all the Lander pictures used. Each complete mosaic extends 342.5 deg in azimuth, from approximately 5 deg above the horizon to 60 deg below, and incorporates approximately 15 million pixels. Each mosaic is shown in a set of five sheets. One sheet contains the full panorama from one camera taken in either morning or evening. The other four sheets show sectors of the panorama at an enlarged scale; when joined together they make a panorama approximately 2' X 9'.

  4. Summary Report of Mission Acceleration Measurements for STS-89

    NASA Technical Reports Server (NTRS)

    Hrovat, Kenneth; McPherson, Kevin

    1999-01-01

    Support of microgravity research on the 89th flight of the Space Transportation System (STS-89) and a continued effort to characterize the acceleration environment of the Space Shuttle Orbiter and the Mir Space Station form the basis for this report. For the STS-89 mission, the Space Shuttle Endeavour was equipped with a Space Acceleration Measurement System (SAMS) unit, which collected more than a week's worth of data. During docked operations with Mir, a second SAMS unit collected approximately a day's worth of data yielding the only set of acceleration measurements recorded simultaneously on the two spacecraft. Based on the data acquired by these SAMS units, this report serves to characterize a number of acceleration events and quantify their impact on the local nature of the accelerations experienced at the Mechanics of Granular Materials (MGM) experiment location. Crew activity was shown to nearly double the median root-mean-square (RMS) acceleration level calculated below 10 Hz, while the Enhanced Orbiter Refrigerator/Freezer operating at about 22 Hz was a strong acceleration source in the vicinity of the MGM location. The MGM science requirement that the acceleration not exceed plus or minus 1 mg was violated numerous times during their experiment runs; however, no correlation with sample instability has been found to this point. Synchronization between the SAMS data from Endeavour and from Mir was shown to be close much of the time, but caution with respect to exact timing should be exercised when comparing these data. When orbiting as a separate vehicle prior to docking, Endeavour had prominent structural modes above 3 Hz, while Mir exhibited a cluster of modes around 1 Hz. When mated, a transition to common modes was apparent in the two SAMS data sets. This report is not a comprehensive analysis of the acceleration data, so those interested in further details should contact the Principal Investigator Microgravity Services team at the National Aeronautics

  5. Space-Frame Lunar Lander

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2010-01-01

    The space-frame lunar lander was originally intended to (1) land on rough lunar terrain, (2) deform itself to conform to the terrain so as to be able to remain there in a stable position and orientation, and (3) if required, further deform itself to perform various functions. In principle, the space-frame lunar lander could be used in the same way on Earth, as might be required, for example, to place meteorological sensors or a radio-communication relay station on an otherwise inaccessible mountain peak. the space-frame lunar lander would include a truss-like structure consisting mostly of a tetrahedral mesh of nodes connected by variable-length struts, the lengths of which would be altered in coordination to impart the desired overall size and shape to the structure. Thrusters (that is, small rocket engines), propellant tanks, a control system, and instrumentation would be mounted in and on the structure (see figure). Once it had landed and deformed itself to the terrain through coordinated variations in the lengths of the struts, the structure could be further deformed into another space-frame structure

  6. Lunar transit telescope lander design

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1991-01-01

    The Program Development group at NASA's Marshall Space Flight Center has been involved in studying the feasibility of placing a 16 meter telescope on the lunar surface to scan the skies using visible/ Ultraviolet/ Infrared light frequencies. The precursor telescope is now called the TRANSIT LUNAR TELESCOPE (LTT). The Program Development Group at Marshall Space Flight Center has been given the task of developing the basic concepts and providing a feasibility study on building such a telescope. The telescope should be simple with minimum weight and volume to fit into one of the available launch vehicles. The preliminary launch date is set for 2005. A study was done to determine the launch vehicle to be used to deliver the telescope to the lunar surface. The TITAN IV/Centaur system was chosen. The engineering challenge was to design the largest possible telescope to fit into the TITAN IV/Centaur launch system. The telescope will be comprised of the primary, secondary and tertiary mirrors and their supporting system in addition to the lander that will land the telescope on the lunar surface and will also serve as the telescope's base. The lunar lander should be designed integrally with the telescope in order to minimize its weight, thus allowing more weight for the telescope and its support components. The objective of this study were to design a lander that meets all the constraints of the launching system. The basic constraints of the TITAN IV/Centaur system are given.

  7. Lunar transit telescope lander design

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1992-01-01

    The Program Development group at NASA's Marshall Space Flight Center has been involved in studying the feasibility of placing a 16 meter telescope on the lunar surface to scan the skies using visible/ Ultraviolet/ Infrared light frequencies. The precursor telescope is now called the TRANSIT LUNAR TELESCOPE (LTT). The Program Development Group at Marshall Space Flight Center has been given the task of developing the basic concepts and providing a feasibility study on building such a telescope. The telescope should be simple with minimum weight and volume to fit into one of the available launch vehicles. The preliminary launch date is set for 2005. A study was done to determine the launch vehicle to be used to deliver the telescope to the lunar surface. The TITAN IV/Centaur system was chosen. The engineering challenge was to design the largest possible telescope to fit into the TITAN IV/Centaur launch system. The telescope will be comprised of the primary, secondary and tertiary mirrors and their supporting system in addition to the lander that will land the telescope on the lunar surface and will also serve as the telescope's base. The lunar lander should be designed integrally with the telescope in order to minimize its weight, thus allowing more weight for the telescope and its support components. The objective of this study were to design a lander that meets all the constraints of the launching system. The basic constraints of the TITAN IV/Centaur system are given.

  8. Lunar transit telescope lander design

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1992-01-01

    The Program Development group at NASA's Marshall Space Flight Center has been involved in studying the feasibility of placing a 16 meter telescope on the lunar surface to scan the skies using visible/ Ultraviolet/ Infrared light frequencies. The precursor telescope is now called the TRANSIT LUNAR TELESCOPE (LTT). The Program Development Group at Marshall Space Flight Center has been given the task of developing the basic concepts and providing a feasibility study on building such a telescope. The telescope should be simple with minimum weight and volume to fit into one of the available launch vehicles. The preliminary launch date is set for 2005. A study was done to determine the launch vehicle to be used to deliver the telescope to the lunar surface. The TITAN IV/Centaur system was chosen. The engineering challenge was to design the largest possible telescope to fit into the TITAN IV/Centaur launch system. The telescope will be comprised of the primary, secondary and tertiary mirrors and their supporting system in addition to the lander that will land the telescope on the lunar surface and will also serve as the telescope's base. The lunar lander should be designed integrally with the telescope in order to minimize its weight, thus allowing more weight for the telescope and its support components. The objective of this study were to design a lander that meets all the constraints of the launching system. The basic constraints of the TITAN IV/Centaur system are given.

  9. Chandrayaan-2: India's First Soft-landing Mission to Moon

    NASA Astrophysics Data System (ADS)

    Mylswamy, Annadurai; Krishnan, A.; Alex, T. K.; Rama Murali, G. K.

    2012-07-01

    latitude location is preferred from scientific interest. Multiple communication links involving Rover-Lander-Earth, Orbiter-Earth and Rover-Orbiter will be implemented. Scientific Payloads:, The scientific payloads on orbiter include a Terrain Mapping Camera (TMC-2), an Imaging Infra-Red Spectrometer (IIRS), a Dual Band (L&S-Band) Synthetic Aperture Radar (SAR), a Collimated Large Area Soft x-ray Spectrometer (CLASS), and a Chandra's Atmospheric Composition Explorer(ChACE-2). TMC with two cameras will provide 3D imaging and DEM, while the IIRS will cover the 0.8-5 micron region at high spectral resolution using a grating spectrograph coupled to an active cooler based MCT array detector. It will provide information on mineral composition and detect OH and H2O and also measure thermal emission from the lunar surface. CLASS is an improved version of C1XS flown on Chandrayaan-1 and will employ swept charge detector (SCD) for detection of X-rays from lunar surface during solar flares.ChACE-2 is a modified version of ChACE-1, one of the instruments on Moon Impact Probe (MIP) that provided hints for the presence of water molecule in lunar exosphere. The Synthetic Aperture Radar will include both L (1.25 GHz) and S (2.5 GHz) bands with selectable resolution of up to a few meters. A radiating patch arrangement is designed for the integrated L-band and S-band antenna. There will be two payloads on the Rover: an Alpha Particle induced X-ray Spectrometer (APXS) and a Laser Induced Breakdown Spectroscopy (LIBS) for studies of chemical composition and volatiles present in lunar surface material near the landing site. The Lander Craft will have suite of instruments to study both physical and chemical properties of the landing site. It will have direct communication link to Earth Stations. The Lander will also act as the relay for communication with the Rover. The design and development of the various mission elements as well as of the scientific payloads are currently in progress both in

  10. Europa Surface Radiation Environment for Lander Assessment

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Sturner, Steven J.

    2006-01-01

    The Jovian magnetospheric particle environment at Europa's surface is critical to assessment of landed astrobiological experiments in three respects: (1) the landing site must be chosen for the best prospects for detectable organic or inorganic signs of Life, e.g. regions of freshly emergent flows from the subsurface; (2) lander systems must reach the surface through the Jovian magnetospheric environment and operate long enough on the surface to return useful data; (3) lander instrumentation must be capable of detecting signs of life in the context of the local environmental radiation and associated chemistry. The Galileo, Voyager, and Pioneer missions have provided a wealth of data on energetic particle intensities throughout the Jovian magnetosphere including from many flybys of Europa. cumulative radiation dosages for spacecraft enroute to Europa can be well characterized, but knowledge of the surface radiation environment is very limited. Energetic electrons should primarily impact the trailing hemisphere with decreasing intensity towards the center of the leading hemisphere and are the most significant radiation component down to meter depths in the surface regolith due to secondary interactions. Observed surface distribution for sulfates is suggestive of electron irradiation but may have alternative interpretations. Having much-larger magnetic gyroradii than electrons, energetic protons and heavier ions irradiate more of the global surface. The particular orientations of electron, proton, and ion gyromotion would project into corresponding directional (e.g., east-west) anisotropies of particle flu into the surface. Particular topographic features at the landing site may therefore offer shielding from part of the incident radiation.

  11. Europa Surface Radiation Environment for Lander Assessment

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Sturner, Steven J.

    2006-01-01

    The Jovian magnetospheric particle environment at Europa's surface is critical to assessment of landed astrobiological experiments in three respects: (1) the landing site must be chosen for the best prospects for detectable organic or inorganic signs of Life, e.g. regions of freshly emergent flows from the subsurface; (2) lander systems must reach the surface through the Jovian magnetospheric environment and operate long enough on the surface to return useful data; (3) lander instrumentation must be capable of detecting signs of life in the context of the local environmental radiation and associated chemistry. The Galileo, Voyager, and Pioneer missions have provided a wealth of data on energetic particle intensities throughout the Jovian magnetosphere including from many flybys of Europa. cumulative radiation dosages for spacecraft enroute to Europa can be well characterized, but knowledge of the surface radiation environment is very limited. Energetic electrons should primarily impact the trailing hemisphere with decreasing intensity towards the center of the leading hemisphere and are the most significant radiation component down to meter depths in the surface regolith due to secondary interactions. Observed surface distribution for sulfates is suggestive of electron irradiation but may have alternative interpretations. Having much-larger magnetic gyroradii than electrons, energetic protons and heavier ions irradiate more of the global surface. The particular orientations of electron, proton, and ion gyromotion would project into corresponding directional (e.g., east-west) anisotropies of particle flu into the surface. Particular topographic features at the landing site may therefore offer shielding from part of the incident radiation.

  12. Preliminary design of a universal Martian lander

    NASA Astrophysics Data System (ADS)

    Norman, Timothy L.; Gaskin, David E.; Adkins, Sean; Gunawan, Mary; Johnson, Raquel; Macdonnell, David; Parlock, Andrew; Sarick, John; Bodwell, Charles; Hashimoto, Kouichi

    In the next 25 years, mankind will be undertaking yet another giant leap forward in the exploration of the solar system: a manned mission to Mars. This journey will provide important information on the composition and history of both Mars and the Solar System. A manned mission will also provide the opportunity to study how humans can adapt to long term space flight conditions and the Martian environment. As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The UML's design will provide a 'universal' platform, consisting of four modules for living and laboratory experiments and a liquid-fuel propelled Manned Ascent Return Vehicle (MARV). The distinguishing feature of the UML is the 'universal' design of the modules which can be connected to form a network of laboratories and living quarters for future missions thereby reducing development and production costs. The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules will be assembled to form a Martian base where scientific experiments will be performed. The mission will also incorporate hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psychological effects of living on Mars. In situ fuel production for the MARV will be produced from gases in the Martian atmosphere. Following surface operations, the eight member crew will use the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  13. Preliminary design of a universal Martian lander

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Gaskin, David E.; Adkins, Sean; Gunawan, Mary; Johnson, Raquel; Macdonnell, David; Parlock, Andrew; Sarick, John; Bodwell, Charles; Hashimoto, Kouichi

    1993-01-01

    In the next 25 years, mankind will be undertaking yet another giant leap forward in the exploration of the solar system: a manned mission to Mars. This journey will provide important information on the composition and history of both Mars and the Solar System. A manned mission will also provide the opportunity to study how humans can adapt to long term space flight conditions and the Martian environment. As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The UML's design will provide a 'universal' platform, consisting of four modules for living and laboratory experiments and a liquid-fuel propelled Manned Ascent Return Vehicle (MARV). The distinguishing feature of the UML is the 'universal' design of the modules which can be connected to form a network of laboratories and living quarters for future missions thereby reducing development and production costs. The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules will be assembled to form a Martian base where scientific experiments will be performed. The mission will also incorporate hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psychological effects of living on Mars. In situ fuel production for the MARV will be produced from gases in the Martian atmosphere. Following surface operations, the eight member crew will use the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  14. In-situ Subsurface Science Addressed By The "mole" On The Beagle 2 Mars Lander

    NASA Astrophysics Data System (ADS)

    Richter, L.; Gromov, V. V.; Möhlmann, D.; Kochan, H.; Tokano, T.

    The payload of the Beagle 2 lander of ESA's Mars Express mission includes a regolith- penetrating, tethered "Mole" intended for acquisition of several subsurface soil sam- ples from depths between about 30 cm and some 1E1.5 m. These samples will then be analysed by the Gas Analysis Package instrument on the lander, primarily with re- gard to isotopic composition and to organic molecules. However, after giving a brief overview of the Mole experiment, this paper focuses on additional in-situ science con- ducted by the Beagle 2 Mole system, also referred to as the PLanetary Underground TOol (PLUTO): while it penetrates into the Martian regolith by way of soil displace- ment through the action of an internal hammering mechanism, the Mole will allow mechanical properties of the regolith to be studied as a function of depth - being a first on a Mars mission - and additionally, a temperature sensor mounted on the outside of the Mole will support investigations of soil thermophysical properties and measure- ments of the subsurface temperature profile, again as a first-time achievement. Using a Mole soil penetration theory calibrated by ground-based experiments, regolith bulk density, cohesion, and internal friction angle can be constrained as a function of depth using the Mole penetration path (and retrieval path) vs. time which is measured by a winch rotation sensor indicating the amount of tether extracted by the Mole. The obtained depth profiles of these quantities should provide insight into the depositional history and stratigraphy of the regolith at the site. Measurements of the regolith tem- perature will be conducted by the Mole both as a function of depth during soil in- trusion, and as a function of time for constant depth, as the Mole can be left in the subsurface for periods of days or weeks before it is retrieved, especially during the later part of the Beagle 2 landed mission. Subsurface temperature measurements will support calibrations of Mars regolith

  15. In-situ subsurface science addressed by the Mole on the Beagle 2 Mars lander

    NASA Astrophysics Data System (ADS)

    Richter, L.; Gromov, V.; Kochan, H.; Möhlmann, D.; Tokano, T.

    The payload of the Beagle 2 lander of ESA's Mars Express mission includes a regolithpenetrating, tethered "Mole" intended for acquisition of several subsurface soil sam ples from depths between about 30 cm and some 1E1.5 m. These samples will then be analysed by the Gas Analysis Package instrument on the lander, primarily with regard to isotopic composition and to organic molecules. However, after giving a brief overview of the Mole experiment, this paper focuses on additional in-situ science conducted by the Beagle 2 Mole system, also referred to as the PLanetary Underground TOol (PLUTO): while it penetrates into the Martian regolith by way of soil displacement through the action of an internal hammering mechanism, the Mole will allow mechanical properties of the regolith to be studied as a function of depth - being a first on a Mars mission - and additionally, a temperature sensor mounted on the outside of the Mole will support investigations of soil thermophysical properties and measurements of the subsurface temperature profile, again as a first-time achievement. Using a Mole soil penetration theory calibrated by ground-based experiments, regolith bulk density, cohesion, and internal friction angle can be constrained as a function of depth using the Mole penetration path (and retrieval path) vs. time which is measured by a winch rotation sensor indicating the amount of tether extracted by the Mole. The obtained depth profiles of these quantities should provide insight into the depositional history and stratigraphy of the regolith at the site. Measurements of the regolith temperature will be conducted by the Mole both as a function of depth during soil intrusion, and as a function of time for constant depth, as the Mole can be left in the subsurface for periods of days or weeks before it is retrieved, especially during the later part of the Beagle 2 landed mission. Subsurface temperature measurements will support calibrations of Mars regolith thermophysical

  16. COMPASS Final Report: Advanced Long-Life Lander Investigating the Venus Environment (ALIVE)

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Paul, Michael

    2016-01-01

    The COncurrent Multi-disciplinary Preliminary Assessment of Space Systems (COMPASS) Team partnered with the Applied Research Laboratory to perform a NASA Innovative Advanced Concepts (NIAC) Program study to evaluate chemical based power systems for keeping a Venus lander alive(power and cooling) and functional for a period of days. The mission class targeted was either a Discovery ($500M) or New Frontiers ($750M to $780M) class mission. Historic Soviet Venus landers have only lasted on the order of 2 hours in the extreme Venus environment: temperatures of 460 C and pressures of 93 bar. Longer duration missions have been studied using plutonium powered systems to operate and cool landers for up to a year. However, the plutonium load is very large. This NIAC study sought to still provide power and cooling but without the plutonium.

  17. Rosetta Lander - Philae on Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Biele, J.; Ulamec, S.; Cozzoni, B.; Fantinati, C.; Gaudon, P.; Geurts, K.; Jurado, E.; Küchemann, O.; Lommatsch, V.; Finke, F.; Maibaum, M.; Moussi-Soffys, A.; Salatti, M.

    2015-10-01

    Rosetta is a Cornerstone Mission of the ESA Horizon 2000 programme. In August 2014 it reached comet 67P/Churyumov-Gerasimenko after a 10 year cruise. Both its nucleus and coma have been studied with its orbiter payload of eleven PI instruments, allowing the selection of a landing site for Philae. The landing on the comet nucleus successfully took place on November 12th 2014. Philae touched the comet surface seven hours after ejection from the orbiter. After several bounces it came to rest and continued to send scientific data to Earth. All ten instruments of its payload have been operated at least once. Due to the fact that the Lander could not be anchored, the originally planned first scientific sequence had to be modified. Philae went into hibernation on November 15th, after its primary battery ran out of energy. Re-activation of the Lander is expected in spring/summer 2015 (before the conference) when CG is closer to the sun and the solar generator of Philae will provide more power. The presentation will give an overview of the activities of Philae on the comet, including a status report on the re-activation after hibernation. Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta's Philae lander is provided by a consortium led by DLR, MPS, CNES and ASI with additional contributions from Hungary, UK, Finland, Ireland and Austria.

  18. Phoenix Lander Self Portrait on Mars, Vertical Projection

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view is a vertical projection that combines hundreds of exposures taken by the Surface Stereo Imager camera on NASA's Mars Phoenix Lander and projects them as if looking down from above.

    The black circle is where the camera itself is mounted on the lander, out of view in images taken by the camera. North is toward the top of the image.

    This view comprises more than 100 different Stereo Surface Imager pointings, with images taken through three different filters at each pointing. The images were taken throughout the period from the 13th Martian day, or sol, after landing to the 47th sol (June 5 through July 12, 2008). The lander's Robotic Arm appears cut off in this mosaic view because component images were taken when the arm was out of the frame.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Sesame - An Experiment of the Rosetta Lander Philae: Objectives and General Design

    NASA Astrophysics Data System (ADS)

    Seidensticker, K. J.; Möhlmann, D.; Apathy, I.; Schmidt, W.; Thiel, K.; Arnold, W.; Fischer, H.-H.; Kretschmer, M.; Madlener, D.; Péter, A.; Trautner, R.; Schieke, S.

    2007-02-01

    SESAME is an instrument complex built in international co-operation and carried by the Rosetta lander Philae intended to land on comet 67P/Churyumov-Gerasimenko in 2014. The main goals of this instrument suite are to measure mechanical and electrical properties of the cometary surface and the shallow subsurface as well as of the particles emitted from the cometary surface. Most of the sensors are mounted within the six soles of the landing gear feet in order to provide good contact with or proximity to the cometary surface. The measuring principles, instrument designs, technical layout, operational concepts and the results from the first in-flight measurements are described. We conclude with comments on the consequences of the last minute change of the target comet and how to improve and to preserve the knowledge during the long-duration Rosetta mission.

  20. The Asteroid Impact Mission (AIM): Studying the geophysics of small binaries, measuring asteroid deflection and studying impact physics

    NASA Astrophysics Data System (ADS)

    Kueppers, Michael; Michel, Patrick; AIM Team

    2016-10-01

    Binary asteroids and their formation mechanisms are of particular interest for understanding the evolution of the small bodies in the solar system. Also, hazards to Earth from impact of near-Earth asteroids and their mitigation have drawn considerable interest over the last decades.Those subjects are both addressed by ESA's Asteroid Impact mission, which is part of the Asteroid Impact & Deflection Assessment (AIDA) currently under study in collaboration between NASA and ESA. NASA's DART mission will impact a projectile into the minor component of the binary near-Earth asteroid (65803) Didymos in 2022. The basic idea is to demonstrate the effect of the impact on the orbital period of the secondary around the primary. ESA's AIM will monitor the Didymos system for several months around the DART impact time.AIM will be launched in aurumn 2020. It is foreseen to arrive at Didymos in April 2022. The mission takes advantage of a close approach of Didymos to Earth. The next opportunity would arise in 2040 only.AIM will stay near Didymos for approximately 6 months. Most of the time it will be placed on the illuminated side of the system, at distances of approximately 35 km and 10 km. AIM is expected to move away from Didymos for some time around the DART impact.The reference payload for AIM includes two visual imagers, a hyperspectral camera, a lidar, a thermal infrared imager, a monostatic high frequency radar, and a bistatic low frequency radar. In addition, AIM will deploy a small lander on the secondary asteroid, and two cubesats that will be used for additional, more risky investigations close to or on the surface of the asteroid.Major contributions from AIM are expected in the study of the geophysics of small asteroids (including for the first time, radar measurements of an interior structure), the formation of binary asteroids, the momentum enhancement factor from the DART impact (through measuring the mass and the change of orbit of the seondary), and impact physics

  1. Attitude-Reconstruction of ROSETTA's lander PHILAE using two-point observations by ROMAP and RPC-MAG

    NASA Astrophysics Data System (ADS)

    Heinisch, Philip; Auster, Hans-Ulrich; Richter, Ingo; Berghofer, Gerhard; Fornacon, Karl-Heinz; Glassmeier, Karl-Heinz

    2015-04-01

    As part of the European Space Agency's ROSETTA Mission the lander PHILAE touched down on comet 67P/Churyumov-Gerasimenko on November 12, 2014. The lander is equipped with a tri-axial fluxgate magnetometer as part of the Rosetta Lander Magnetometer and Plasma-Monitor package (ROMAP). This magnetometer was switched on during descent, the bouncing between the touchdowns and after the final touchdown, which made it possible to reconstruct not only PHILAE's rotation and nutation during flight, but also to determine the exact touchdown times. Together with the tri-axial fluxgate magnetometer of the Rosetta Plasma Consortium (RPC-MAG) onboard the ROSETTA orbiter, simultaneous measurements during the descent and after the touchdowns were used to determine PHILAE's absolute attitude. This was done by correlating magnetic low-frequency waves below 60 mHz simultaneously observed on PHILAE and in orbit by RPC-MAG, which was made possible by the relatively small distance between the two spacecraft's of less than 50km. The results gained from this method are consistent with the illumination patterns of PHILAE's solar arrays and the RF-link periods.

  2. Human Mars Lander Design for NASA's Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Chapman, Jack; Sutherlin, Steve; Taylor, Brian; Fabisinski, Leo; Collins, Tim; Cianciolo Dwyer, Alicia; Samareh, Jamshid; Robertson, Ed; Studak, Bill; hide

    2016-01-01

    Landing humans on Mars will require entry, descent, and landing capability beyond the current state of the art. Nearly twenty times more delivered payload and an order of magnitude improvement in precision landing capability will be necessary. To better assess entry, descent, and landing technology options and sensitivities to future human mission design variations, a series of design studies on human-class Mars landers has been initiated. This paper describes the results of the first design study in the series of studies to be completed in 2016 and includes configuration, trajectory and subsystem design details for a lander with Hypersonic Inflatable Aerodynamic Decelerator (HIAD) entry technology. Future design activities in this series will focus on other entry technology options.

  3. A sophisticated lander for scientific exploration of Mars: scientific objectives and implementation of the Mars-96 Small Station.

    PubMed

    Linkin, V; Harri, A M; Lipatov, A; Belostotskaja, K; Derbunovich, B; Ekonomov, A; Khloustova, L; Kremnev, R; Makarov, V; Martinov, B; Nenarokov, D; Prostov, M; Pustovalov, A; Shustko, G; Jarvinen, I; Kivilinna, H; Korpela, S; Kumpulainen, K; Lehto, A; Pellinen, R; Pirjola, R; Riihela, P; Salminen, A; Schmidt, W; McKay, C P

    1998-01-01

    A mission to Mars including two Small Stations, two Penetrators and an Orbiter was launched at Baikonur, Kazakhstan, on 16 November 1996. This was called the Mars-96 mission. The Small Stations were expected to land in September 1997 (Ls approximately 178 degrees), nominally to Amazonis-Arcadia region on locations (33 N, 169.4 W) and (37.6 N, 161.9 W). The fourth stage of the Mars-96 launcher malfunctioned and hence the mission was lost. However, the state of the art concept of the Small Station can be applied to future Martian lander missions. Also, from the manufacturing and performance point of view, the Mars-96 Small Station could be built as such at low cost, and be fairly easily accommodated on almost any forthcoming Martian mission. This is primarily due to the very simple interface between the Small Station and the spacecraft. The Small Station is a sophisticated piece of equipment. With the total available power of approximately 400 mW the Station successfully supports an ambitious scientific program. The Station accommodates a panoramic camera, an alpha-proton-x-ray spectrometer, a seismometer, a magnetometer, an oxidant instrument, equipment for meteorological observations, and sensors for atmospheric measurement during the descent phase, including images taken by a descent phase camera. The total mass of the Small Station with payload on the Martian surface, including the airbags, is only 32 kg. Lander observations on the surface of Mars combined with data from Orbiter instruments will shed light on the contemporary Mars and its evolution. As in the Mars-96 mission, specific science goals could be exploration of the interior and surface of Mars, investigation of the structure and dynamics of the atmosphere, the role of water and other materials containing volatiles and in situ studies of the atmospheric boundary layer processes. To achieve the scientific goals of the mission the lander should carry a versatile set of instruments. The Small Station

  4. 1998 Mars Missions Science Briefing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA executives gathered together for an interview to discuss the 1998 Mars Mission. A simulated overview of the Lander Mission is presented. Also presented are views of pre-launch activities, countdown, and launch of the spacecraft, burnouts of the first, second, and third engines, and the probe separating from the spacecraft. During this mission the Lander performs in situ investigations that address the science theme "Volatiles and Climate History" on Mars. The purpose of this mission is to study the following: climate; life; water; carbon dioxide; and dust particles.

  5. 1998 Mars Missions Science Briefing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA executives gathered together for an interview to discuss the 1998 Mars Mission. A simulated overview of the Lander Mission is presented. Also presented are views of pre-launch activities, countdown, and launch of the spacecraft, burnouts of the first, second, and third engines, and the probe separating from the spacecraft. During this mission the Lander performs in situ investigations that address the science theme "Volatiles and Climate History" on Mars. The purpose of this mission is to study the following: climate; life; water; carbon dioxide; and dust particles.

  6. Errors in Viking Lander Atmospheric Profiles Discovered Using MOLA Topography

    NASA Technical Reports Server (NTRS)

    Withers, Paul; Lorenz, R. D.; Neumann, G. A.

    2002-01-01

    Each Viking lander measured a topographic profile during entry. Comparing to MOLA (Mars Orbiter Laser Altimeter), we find a vertical error of 1-2 km in the Viking trajectory. This introduces a systematic error of 10-20% in the Viking densities and pressures at a given altitude. Additional information is contained in the original extended abstract.

  7. Fusion-Enabled Pluto Orbiter and Lander

    NASA Technical Reports Server (NTRS)

    Thomas, Stephanie

    2017-01-01

    The Pluto orbiter mission proposed here is credible and exciting. The benefits to this and all outer-planet and interstellar-probe missions are difficult to overstate. The enabling technology, Direct Fusion Drive, is a unique fusion engine concept based on the Princeton Field-Reversed Configuration (PFRC) fusion reactor under development at the Princeton Plasma Physics Laboratory. The truly game-changing levels of thrust and power in a modestly sized package could integrate with our current launch infrastructure while radically expanding the science capability of these missions. During this Phase I effort, we made great strides in modeling the engine efficiency, thrust, and specific impulse and analyzing feasible trajectories. Based on 2D fluid modeling of the fusion reactors outer stratum, its scrape-off-layer (SOL), we estimate achieving 2.5 to 5 N of thrust for each megawatt of fusion power, reaching a specific impulse, Isp, of about 10,000 s. Supporting this model are particle-in-cell calculations of energy transfer from the fusion products to the SOL electrons. Subsequently, this energy is transferred to the ions as they expand through the magnetic nozzle and beyond. Our point solution for the Pluto mission now delivers 1000 kg of payload to Pluto orbit in 3.75 years using 7.5 N constant thrust. This could potentially be achieved with a single 1 MW engine. The departure spiral from Earth orbit and insertion spiral to Pluto orbit require only a small portion of the total delta-V. Departing from low Earth orbit reduces mission cost while increasing available mission mass. The payload includes a lander, which utilizes a standard green propellant engine for the landing sequence. The lander has about 4 square meters of solar panels mounted on a gimbal that allows it to track the orbiter, which beams 30 to 50 kW of power using a 1080 nm laser. Optical communication provides dramatically high data rates back to Earth. Our mass modeling investigations revealed that if

  8. Progress of the Mars Array Technology Experiment (MATE) on the '01 Lander

    NASA Technical Reports Server (NTRS)

    Scheiman, D. A.; Baraona, C. R.; Jenkins, P.; Wilt, D.; Krasowski, M.; Greer, L.; Lekki, J.; Spina, D.

    1999-01-01

    Future missions to Mars will rely heavily on solar power from the sun, various solar cell types and structures must be evaluated to find the optimum. Sunlight on the surface of Mars is altered by air-borne dust that fluctuates in density from day to day. The dust affects both the intensity and spectral content of the sunlight. The MATE flight experiment was designed for this purpose and will fly on the Mars 2001 Surveyor Lander as part of the Mars In-Situ Propellant Production Precursor (MIP) package. MATE will measure the performance of several solar cell technologies and characterize the Martian environment in terms of solar power. This will be done by measuring full IV curves on solar cells, direct and global insolation, temperature, and spectral content. The Lander is is scheduled to launch in April 2001 and arrive on Mars in January of 2002. The site location has not been identified but will be near the equator and last from 100 to 300 days. The intent of this of this paper is to describe and update the progress on MATE. MATE has four main objectives for its mission to Mars. First is to measure the performance of solar cells daily on the surface of Mars, this will determine the day to day fluctuations in sunlight and temperature and provide a nominal power output. Second, in addition to measuring solar cell performance, it will allow for an intercomparison of different solar cell technologies. Third, It will study the long term effects of dust on the solar cells. Fourth and last, it will characterize the mars environment as viewed by the solar cell, measuring spectrum, insolation, and temperature. Additional information is contained in the original extended abstract.

  9. Progress of the Mars Array Technology Experiment (MATE) on the '01 Lander

    NASA Technical Reports Server (NTRS)

    Scheiman, D. A.; Baraona, C. R.; Jenkins, P.; Wilt, D.; Krasowski, M.; Greer, L.; Lekki, J.; Spina, D.

    1999-01-01

    Future missions to Mars will rely heavily on solar power from the sun, various solar cell types and structures must be evaluated to find the optimum. Sunlight on the surface of Mars is altered by air-borne dust that fluctuates in density from day to day. The dust affects both the intensity and spectral content of the sunlight. The MATE flight experiment was designed for this purpose and will fly on the Mars 2001 Surveyor Lander as part of the Mars In-Situ Propellant Production Precursor (MIP) package. MATE will measure the performance of several solar cell technologies and characterize the Martian environment in terms of solar power. This will be done by measuring full IV curves on solar cells, direct and global insolation, temperature, and spectral content. The Lander is is scheduled to launch in April 2001 and arrive on Mars in January of 2002. The site location has not been identified but will be near the equator and last from 100 to 300 days. The intent of this of this paper is to describe and update the progress on MATE. MATE has four main objectives for its mission to Mars. First is to measure the performance of solar cells daily on the surface of Mars, this will determine the day to day fluctuations in sunlight and temperature and provide a nominal power output. Second, in addition to measuring solar cell performance, it will allow for an intercomparison of different solar cell technologies. Third, It will study the long term effects of dust on the solar cells. Fourth and last, it will characterize the mars environment as viewed by the solar cell, measuring spectrum, insolation, and temperature. Additional information is contained in the original extended abstract.

  10. A network of small landers on Mars

    NASA Technical Reports Server (NTRS)

    Burke, James D.; Mostert, Robert N.

    1990-01-01

    This paper describes a class of small landers that could form part of a global network of scientific instrumentation on Mars. Two types of landers are considered: penetrators that implant instruments a few meters beneath the surface, and rough landers that may hit the surface at speeds up to tens of m/sec and survive through the use of impact-limiting techniques. Because some scientific objectives, such as seismic and meteorological investigations, require durations of months and years lander designs giving long lifetimes in the Martian environment are needed. This paper describes both past and more recent work at JPL toward this goal.

  11. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  12. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  13. MUPUS on the Rosetta Lander Philae: First Results

    NASA Astrophysics Data System (ADS)

    Spohn, T.; Joerg, K.

    2014-12-01

    The Rosetta lander Philae is planned to land on he nucleus of comet Churyumov-Gerasimenko on Nov 11 2014 and start its battery powered first science sequence. The "MUlti-PUrpose probe for surface and sub-surface Science" MUPUS will measure the temperature profile up to a depth of 30cm and the thermal conductivity using a self-penetrating needle-probe, the surface brightness temperature using a radiometer, the hardness of the comet soil by measuring the progress of insertion of the probe and the deceleration of the two anchors that will be shot to fix the lander. The anchors are equipped with an accelerometer and a temperature sensor each. The self-penetrating needle-probe, or penetrator for short, has an electro-magnetically driven hammer mechanism on top and a rod of about 1cm diameter and 32cm length equipped with 16 temperature sensors that can also be heated with controlled power of up to 2W to measure the thermal conductivity. MUPUS is stored on the lander but will be deployed to a distance of about 1m from the lander using a motor driven deployment device that extends from the lander balcony. The science goals of the instrument are to measure the temperature profile in the near surface layers of the comet and the heat flow into the comet nucleus to complement the surface energy balance of the nucleus with a quantity that is difficult to measure remotely or to estimate. The thermal conductivity can be further used to characterize the near surface layers and possibly determine the depth to pristine ice. The first science sequence will allow for insertion of the probe and for a first series of temperature and thermal conductivity measurements. MUPUS is looking at the long-term science sequence to complement these data. At the AGU fall meeting - assuming a successful landing and installation of the probe - we will report on results from the first science sequence.

  14. Unlocking the secrets of the universe, Rosetta lander named Philae

    NASA Astrophysics Data System (ADS)

    2004-02-01

    Philae is the island in the river Nile on which an obelisk was found that had a bilingual inscription including the names of Cleopatra and Ptolemy in Egyptian hieroglyphs. This provided the French historian Jean-François Champollion with the final clues that enabled him to decipher the hieroglyphs of the Rosetta Stone and unlock the secrets of the civilisation of ancient Egypt. Just as the Philae Obelisk and the Rosetta Stone provided the keys to an ancient civilisation, the Philae lander and the Rosetta orbiter aim to unlock the mysteries of the oldest building blocks of our Solar System - comets. Germany, France, Italy and Hungary are the main contributors to the lander, working together with Austria, Finland, Ireland and the UK. The main contributors held national competitions to select the most appropriate name. Philae was proposed by 15-year-old Serena Olga Vismara from Arluno near Milan, Italy. Her hobbies are reading and surfing the internet, where she got the idea of naming the lander Philae. Her prize will be a visit to Kourou to attend the Rosetta launch. Study of Comet Churyumov-Gerasimenko will allow scientists to look back 4600 million years to an epoch when no planets existed and only a vast swarm of asteroids and comets surrounded the Sun. On arrival at the comet in 2014, Philae will be commanded to self-eject from the orbiter and unfold its three legs, ready for a gentle touchdown. Immediately after touchdown, a harpoon will be fired to anchor Philae to the ground and prevent it escaping from the comet's extremely weak gravity. The legs can rotate, lift or tilt to return Philae to an upright position. Philae will determine the physical properties of the comet's surface and subsurface and their chemical, mineralogical and isotopic composition. This will complement the orbiter's studies of the overall characterisation of the comet's dynamic properties and surface morphology. Philae may provide the final clues enabling the Rosetta mission to unlock

  15. The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Schmitz, N.; Koncz, A.; Michaelis, H.; Schroeder, S. E.; Mottola, S.; Trauthan, F.; Hoffmann, H.; Roatsch, T.; Jobs, D.; Kachlicki, J.; Pforte, B.; Terzer, R.; Tschentscher, M.; Weisse, S.; Mueller, U.; Perez-Prieto, L.; Broll, B.; Kruselburger, A.; Ho, T.-M.; Biele, J.; Ulamec, S.; Krause, C.; Grott, M.; Bibring, J.-P.; Watanabe, S.; Sugita, S.; Okada, T.; Yoshikawa, M.; Yabuta, H.

    2016-06-01

    The MASCOT Camera (MasCam) is part of the Mobile Asteroid Surface Scout (MASCOT) lander's science payload. MASCOT has been launched to asteroid (162173) Ryugu onboard JAXA's Hayabusa 2 asteroid sample return mission on Dec 3rd, 2014. It is scheduled to arrive at Ryugu in 2018, and return samples to Earth by 2020. MasCam was designed and built by DLR's Institute of Planetary Research, together with Airbus-DS Germany. The scientific goals of the MasCam investigation are to provide ground truth for the orbiter's remote sensing observations, provide context for measurements by the other lander instruments (radiometer, spectrometer and magnetometer), the orbiter sampling experiment, and characterize the geological context, compositional variations and physical properties of the surface (e.g. rock and regolith particle size distributions). During daytime, clear filter images will be acquired. During night, illumination of the dark surface is performed by an LED array, equipped with 4×36 monochromatic light-emitting diodes (LEDs) working in four spectral bands. Color imaging will allow the identification of spectrally distinct surface units. Continued imaging during the surface mission phase and the acquisition of image series at different sun angles over the course of an asteroid day will contribute to the physical characterization of the surface and also allow the investigation of time-dependent processes and to determine the photometric properties of the regolith. The MasCam observations, combined with the MASCOT hyperspectral microscope (MMEGA) and radiometer (MARA) thermal observations, will cover a wide range of observational scales and serve as a strong tie point between Hayabusa 2's remote-sensing scales ( 103- 10^{-3} m) and sample scales ( 10^{-3}- 10^{-6} m). The descent sequence and the close-up images will reveal the surface features over a broad range of scales, allowing an assessment of the surface's diversity and close the gap between the orbital

  16. The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Schmitz, N.; Koncz, A.; Michaelis, H.; Schroeder, S. E.; Mottola, S.; Trauthan, F.; Hoffmann, H.; Roatsch, T.; Jobs, D.; Kachlicki, J.; Pforte, B.; Terzer, R.; Tschentscher, M.; Weisse, S.; Mueller, U.; Perez-Prieto, L.; Broll, B.; Kruselburger, A.; Ho, T.-M.; Biele, J.; Ulamec, S.; Krause, C.; Grott, M.; Bibring, J.-P.; Watanabe, S.; Sugita, S.; Okada, T.; Yoshikawa, M.; Yabuta, H.

    2017-07-01

    The MASCOT Camera (MasCam) is part of the Mobile Asteroid Surface Scout (MASCOT) lander's science payload. MASCOT has been launched to asteroid (162173) Ryugu onboard JAXA's Hayabusa 2 asteroid sample return mission on Dec 3rd, 2014. It is scheduled to arrive at Ryugu in 2018, and return samples to Earth by 2020. MasCam was designed and built by DLR's Institute of Planetary Research, together with Airbus-DS Germany. The scientific goals of the MasCam investigation are to provide ground truth for the orbiter's remote sensing observations, provide context for measurements by the other lander instruments (radiometer, spectrometer and magnetometer), the orbiter sampling experiment, and characterize the geological context, compositional variations and physical properties of the surface (e.g. rock and regolith particle size distributions). During daytime, clear filter images will be acquired. During night, illumination of the dark surface is performed by an LED array, equipped with 4×36 monochromatic light-emitting diodes (LEDs) working in four spectral bands. Color imaging will allow the identification of spectrally distinct surface units. Continued imaging during the surface mission phase and the acquisition of image series at different sun angles over the course of an asteroid day will contribute to the physical characterization of the surface and also allow the investigation of time-dependent processes and to determine the photometric properties of the regolith. The MasCam observations, combined with the MASCOT hyperspectral microscope (MMEGA) and radiometer (MARA) thermal observations, will cover a wide range of observational scales and serve as a strong tie point between Hayabusa 2's remote-sensing scales (103-10^{-3} m) and sample scales (10^{-3}-10^{-6} m). The descent sequence and the close-up images will reveal the surface features over a broad range of scales, allowing an assessment of the surface's diversity and close the gap between the orbital observations

  17. Panoramic View of Lander During Turn

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 360-degree panoramic mosaic image composed of data from the hazard avoidance camera on the Mars Exploration Rover Spirit shows a view of the lander from under the rover deck. The images were taken as the rover turned from its landing position 95 degrees toward the northwest side of the lander.

  18. Measurements of Shuttle Glow on Mission STS 41-G

    DTIC Science & Technology

    1988-09-29

    Cogger, I. McDade , E. Murad, and T. Slanger in the preparatioi of this manuscript. REFERENCES Abreu, V. J., W. R. Skinner, P. B. Hays, and J-H. Yee... McDade , S. B. Mende, and G. R. Swenson, Observations of glow from shuttle surfaces during Mission STS 41-G, Planet. Space Sci., 34, 1159-1166, 1986...continuum component, Geophys. Res. Lett., 12, 453-456, 1985. Shepard , G. G., C W. Lake, J. R. Miller, and L. L. Cogger, A spatial spectral scanning

  19. Rosetta Lander - Philae: activities after hibernation and landing preparations

    NASA Astrophysics Data System (ADS)

    Ulamec, Stephan; Biele, Jens; Sierks, Holger; Blazquez, Alejandro; Cozzoni, Barbara; Fantinati, Cinzia; Gaudon, Philippe; Geurts, Koen; Jurado, Eric; Paetz, Brigitte.; Maibaum, Michael

    Rosetta is a Cornerstone Mission of the ESA Horizon 2000 programme. It is going to rendezvous with comet 67P/Churyumov-Gerasimenko after a ten year cruise and will study both its nucleus and coma with an orbiting spacecraft as well as with a Lander, Philae. Aboard Philae, a payload consisting of ten scientific instruments will perform in-situ studies of the cometary material. Rosetta and Philae have been in hibernation until January 20, 2014. After the successful wakeup they will undergo a post hibernation commissioning. The orbiter instruments (like e.g. the OSIRIS cameras) are to characterize the target comet to allow landing site selection and the definition of a separation, descent and landing (SDL) strategy for the Lander. By August 2014 our currently very poor knowledge of the characteristics of the nucleus of the comet will have increased dramatically. The paper will report on the latest updates in Separation-Descent-Landing (SDL) planning. Landing is foreseen for November 2014 at a heliocentric distance of 3 AU. Philae will be separated from the mother spacecraft from a dedicated delivery trajectory. It then descends ballistically to the surface of the comet, stabilized with an internal flywheel. At touch-down anchoring harpoons will be fired and a damping mechanism within the landing gear will provide the lander from re-bouncing. The paper will give an overview of the Philae system, the operational activities after hibernation and the latest status on the preparations for landing.

  20. Prediction of Viking lander camera image quality

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Burcher, E. E.; Jobson, D. J.; Wall, S. D.

    1976-01-01

    Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances.