Science.gov

Sample records for landfill cover systems

  1. METHANE PHYTOREMEDIATION BY VEGETATIVE LANDFILL COVER SYSTEMS

    EPA Science Inventory

    Landfill gas, consisting of methane and other gases, is produced from organic compounds degrading in landfills, contributes to global climate change, is toxic to various types of vegetation, and may pose a combustion hazard at higher concentrations. New landfills are required to ...

  2. Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems.

    PubMed

    Su, Yao; Zhang, Xuan; Xia, Fang-Fang; Zhang, Qi-Qi; Kong, Jiao-Yan; Wang, Jing; He, Ruo

    2014-05-01

    Aerobic CH4 oxidation plays an important role in mitigating CH4 release from landfills to the atmosphere. Therefore, in this study, oxidation activity and community of methanotrophs were investigated in a subtropical landfill. Among the three sites investigated, the highest CH4 concentration was detected in the landfill cover soil of the site (A) without a landfill gas (LFG) recovery system, although the refuse in the site had been deposited for a longer time (∼14-15 years) compared to the other two sites (∼6-11 years) where a LFG recovery system was applied. In April and September, the higher CH4 flux was detected in site A with 72.4 and 51.7gm(-2)d(-1), respectively, compared to the other sites. The abundance of methanotrophs assessed by quantification of pmoA varied with location and season. A linear relationship was observed between the abundance of methanotrophs and CH4 concentrations in the landfill cover soils (R=0.827, P<0.001). The key factors influencing the methanotrophic diversity in the landfill cover soils were pH, the water content and the CH4 concentration in the soil, of which pH was the most important factor. Type I methanotrophs, including Methylococcus, Methylosarcina, Methylomicrobium and Methylobacter, and type II methanotrophs (Methylocystis) were all detected in the landfill cover soils, with Methylocystis and Methylosarcina being the dominant genera. Methylocystis was abundant in the slightly acidic landfill cover soil, especially in September, and represented more than 89% of the total terminal-restriction fragment abundance. These findings indicated that the LFG recovery system, as well as physical and chemical parameters, affected the diversity and activity of methanotrophs in landfill cover soils.

  3. ENGINEERING BULLETIN: LANDFILL COVERS

    EPA Science Inventory

    Landfill covers are used at Superfund sites to minimize surface water infiltration and control gas migration. In many cases covers are used in conjunction with other waste treatment technologies, such as slurry walls, ground water pump-and-treat systems, and gas collection. This ...

  4. Hydrologic modeling of soil water storage in landfill cover systems

    SciTech Connect

    Barnes, F.J.; Rodgers, J.C.

    1987-01-01

    The accuracy of modeling soil water storage by two hydrologic models, CREAMS and HELP, was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that CREAMS generally represented soil moisture more accurately than HELP simulations. Soil profiles that more closely resembled natural agricultural soils were more accurately modeled than highly artificial layered soil profiles. Precautions for determining parameter values for model input and for interpreting simulation results are discussed.

  5. Landfill Gas Effects on Evapotranspirative Landfill Covers

    NASA Astrophysics Data System (ADS)

    Plummer, M. A.; Mattson, E.; Ankeny, M.; Kelsey, J.

    2005-05-01

    The performance of an evapotranspirative landfill cover can be adversely affected by transport of landfill gases to the plant root zone. Healthy plant communities are critical to the success and effectiveness of these vegetated landfill covers. Poor vegetative cover can result in reduced transpiration, increased percolation, and increased erosion regardless of the thickness of the cover. Visual inspections of landfill covers indicate that vegetation-free areas are not uncommon at municipal waste landfills. Data from soil profiles beneath these areas suggest that anaerobic conditions in the plant-rooting zone are controlling plant distribution. On the same landfill, aerobic conditions exist at similar depths beneath well-vegetated areas. The movement of methane and carbon dioxide, generated by degradation of organic wastes, into the overlying soil cover displaces oxygen in the root zone. Monitoring data from landfills in semi-arid areas indicate that barometric pumping can result in hours of anaerobic conditions in the root zone. Microbial consumption of oxygen in the root zone reduces the amount of oxygen available for plant root respiration but consumption of oxygen and methane also produce water as a reaction byproduct. This biogenic water production can be on the order of centimeters of water per year which, while increasing water availability, also has a negative feedback on transport of landfill gases through the cover. Accounting for these processes can improve evapotranspirative landfill cover design at other sites.

  6. In situ performance assessment of different final cover systems of municipal solid waste (MSW) landfill (France)

    SciTech Connect

    Poignard, S.; Didier, G.; Guerbois, M.

    1999-07-01

    Different configurations of cover systems (clay and a geosynthetic clay layer), are tested in order to evaluate their performances, and they are compared on an experimental Municipal Solid Waste Landfill in France. Results are given about the influence of a drainage layer under the top soil, the slope, and the material.

  7. An Interactive Real-time Decision Support System for Leachate Irrigation on Evapotranspiration Landfill Covers

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    Landfill disposal is still the most common and economical practice for municipal solid waste in most countries. However, heavily polluted leachate generated by excess rainwater percolating through the landfill waste is the major drawback of this practice. Evapotranspiration (ET) cover systems are increasingly being used as alternative cover systems to minimize percolation by evapotranspiration. Leachate recirculation is one of the least expensive options for leachate treatment. The combination of ET cover systems and leachate recirculation can be an economical and environment-friendly practice for landfill leachate management. An interactive real-time decision support system is being developed to better manage leachate irrigation using historical and forecasting weather data, and real time soil moisture data. The main frame of this system includes soil water modules, and plant-soil modules. An inverse simulation module is also included to calibrate certain parameters based on observed data when necessary. It would be an objectives-oriented irrigation management tool to minimize landfill operation costs and negative environmental impacts.

  8. Alternative Landfill Cover and Monitoring Systems for Landfills in Arid Environments

    SciTech Connect

    S. E. Rawlinson

    2002-09-01

    In December 2000, a performance monitoring facility was constructed adjacent to the mixed waste disposal unit U-3ax/bl at the Area 3 Radioactive Waste Management Site at the Nevada Test Site. This facility consists of eight drainage lysimeters measuring 10 feet in diameter, 8 feet deep, and backfilled with native soil. The lysimeters have three different surface treatments: two were left bare, two were revegetated with native species, and two were allowed to revegetate with invader species (two are reserved for future studies). The lysimeters are instrumented with an array of soil water content and soil water potential sensors and have sealed bottoms so that any drainage can be measured. All sensors are working properly and indicate that the bare lysimeters are the wettest, as expected. The vegetated lysimeters, both seeded and those allowed to revegetate with invader species, are significantly drier than the bare cover treatments. No drainage has occurred in any of the lysimeters. The Accelerated Site Technology Deployment program under the U.S. Department of Energy's Office of Science and Technology provided the funding for this project with the objective of reducing the uncertainty associated with the performance of monolayer-evapotranspiration waste covers in arid regions such as the one deployed at U-3ax/bl.

  9. Effectiveness of compacted soil liner as a gas barrier layer in the landfill final cover system.

    PubMed

    Moon, Seheum; Nam, Kyoungphile; Kim, Jae Young; Hwan, Shim Kyu; Chung, Moonkyung

    2008-01-01

    A compacted soil liner (CSL) has been widely used as a single barrier layer or a part of composite barrier layer in the landfill final cover system to prevent water infiltration into solid wastes for its acceptable hydraulic permeability. This study was conducted to test whether the CSL was also effective in prohibiting landfill gas emissions. For this purpose, three different compaction methods (i.e., reduced, standard, and modified Proctor methods) were used to prepare the soil specimens, with nitrogen as gas, and with water and heptane as liquid permeants. Measured gas permeability ranged from 2.03 x 10(-10) to 4.96 x 10(-9) cm(2), which was a magnitude of two or three orders greater than hydraulic permeability (9.60 x 10(-13) to 1.05 x 10(-11) cm(2)). The difference between gas and hydraulic permeabilities can be explained by gas slippage, which makes gas more permeable, and by soil-water interaction, which impedes water flow and then makes water less permeable. This explanation was also supported by the result that a liquid permeability measured with heptane as a non-polar liquid was similar to the intrinsic gas permeability. The data demonstrate that hydraulic requirement for the CSL is not enough to control the gas emissions from a landfill.

  10. A RULE-BASED SYSTEM FOR EVALUATING FINAL COVERS FOR HAZARDOUS WASTE LANDFILLS

    EPA Science Inventory

    This chapter examines how rules are used as a knowledge representation formalism in the domain of hazardous waste management. A specific example from this domain involves performance evaluation of final covers used to close hazardous waste landfills. Final cover design and associ...

  11. Field Water Balance of Landfill Final Covers

    EPA Science Inventory

    Landfill covers are critical to waste containment, yet field performance of specific cover designs has not been well documented and seldom been compared in side-by-side testing. A study was conducted to assess the ability of landfill final covers to control percolation into unde...

  12. Landfill Liners and Covers: Properties and Application to Army Landfills.

    DTIC Science & Technology

    1984-06-01

    sands and gravels were used for cover material. Several moni- toring points placed through and around the landfill defined the area of groundwater ... pollution . 2 1H. Dratfield and L. Mavtone, personal communication. 53 0 O GAS VENT 2’ FINAL COVER TREATMENT NEW- LAGOON W LT WAT _ LEACHATE COLLECTION

  13. The use of engineered lightweight fill for landfill cover remediation

    SciTech Connect

    Poe, D.E.; Gardner, R.B.; Xiaoyu Fu

    1995-12-31

    In 1991, SCS was retained to provide design and construction engineering services to retrofit a landfill gas migration control system and regrade/repair an existing low-permeability soil final cover system for a 10-acre closed landfill located in west-central Florida. The final cover system modifications consisted of regrading the top of the landfill to re-establish positive drainage across and off of the top of the landfill. While active, the landfill had received municipal solid waste (MSW), commercial solid waste, and various industrial wastes and sludges. The landfill was closed in the early 1980`s. At the time of filling, the subject landfill was operated as a trench fill. A series of 40-foot deep trenches were excavated across the fill area, and the MSW was placed and compacted into the trenches. The soil excavated during construction of the trenches was used to construct berms along the sides of the individual trenches. No constructed bottom liner or leachate collection system was incorporated into the design. This report presents the results of a conceptual evaluation of utilizing expanded polystyrene blocks or Geofoam, as the lightweight fill component for an alternative cover remediation.

  14. Construction Costs of Six Landfill Cover Designs

    SciTech Connect

    Dwyer, S.F.

    1998-12-23

    A large-scale field demonstration comparing and contrasting final landfill cover designs has been constructed and is currently being monitored. Four alternative cover designs and two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side for direct comparison. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper provides an overview of the construction costs of each cover design.

  15. Field water balance of landfill final covers.

    PubMed

    Albright, William H; Benson, Craig H; Gee, Glendon W; Roesler, Arthur C; Abichou, Tarek; Apiwantragoon, Preecha; Lyles, Bradley F; Rock, Steven A

    2004-01-01

    Landfill covers are critical to waste containment, yet field performance of specific cover designs has not been well documented and seldom been compared in side-by-side testing. A study was conducted to assess the ability of landfill final covers to control percolation into underlying waste. Conventional covers employing resistive barriers as well as alternative covers relying on water-storage principles were monitored in large (10 x 20 m), instrumented drainage lysimeters over a range of climates at 11 field sites in the United States. Surface runoff was a small fraction of the water balance (0-10%, 4% on average) and was nearly insensitive to the cover slope, cover design, or climate. Lateral drainage from internal drainage layers was also a small fraction of the water balance (0-5.0%, 2.0% on average). Average percolation rates for the conventional covers with composite barriers (geomembrane over fine soil) typically were less than 12 mm/yr (1.4% of precipitation) at humid locations and 1.5 mm/yr (0.4% of precipitation) at arid, semiarid, and subhumid locations. Average percolation rates for conventional covers with soil barriers in humid climates were between 52 and 195 mm/yr (6-17% of precipitation), probably due to preferential flow through defects in the soil barrier. Average percolation rates for alternative covers ranged between 33 and 160 mm/yr (6 and 18% of precipitation) in humid climates and generally less than 2.2 mm/yr (0.4% of precipitation) in arid, semiarid, and subhumid climates. One-half (five) of the alternative covers in arid, semiarid, and subhumid climates transmitted less than 0.1 mm of percolation, but two transmitted much more percolation (26.8 and 52 mm) than anticipated during design. The data collected support conclusions from other studies that detailed, site-specific design procedures are very important for successful performance of alternative landfill covers.

  16. Vegetative soil covers for hazardous waste landfills

    NASA Astrophysics Data System (ADS)

    Peace, Jerry L.

    Shallow land burial has been the preferred method for disposing of municipal and hazardous wastes in the United States because it is the simplest, cheapest, and most cost-effective method of disposal. Arid and semiarid regions of the western United States have received considerable attention over the past two decades in reference to hazardous, radioactive, and mixed waste disposal. Disposal is based upon the premise that low mean annual precipitation, high evapotranspiration, and low or negligible recharge, favor waste isolation from the environment for long periods of time. The objective of this study is to demonstrate that containment of municipal and hazardous wastes in arid and semiarid environments can be accomplished effectively without traditional, synthetic materials and complex, multi-layer systems. This research demonstrates that closure covers utilizing natural soils and native vegetation i.e., vegetative soil covers, will meet the technical equivalency criteria prescribed by the U.S. Environmental Protection Agency for hazardous waste landfills. Vegetative soil cover design combines layers of natural soil, native plant species, and climatic conditions to form a sustainable, functioning ecosystem that maintains the natural water balance. In this study, percolation through a natural analogue and an engineered cover is simulated using the one-dimensional, numerical code UNSAT-H. UNSAT-H is a Richards' equation-based model that simulates soil water infiltration, unsaturated flow, redistribution, evaporation, plant transpiration, and deep percolation. This study incorporates conservative, site-specific soil hydraulic and vegetation parameters. Historical meteorological data from 1919 to 1996 are used to simulate percolation through the natural analogue and an engineered cover, with and without vegetation. This study indicates that a 1 m (3 ft) cover is the minimum design thickness necessary to meet the U.S. Environmental Protection Agency

  17. Limits and dynamics of methane oxidation in landfill cover soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to understand the limits and dynamics of methane (CH4) oxidation in landfill cover soils, we investigated CH4 oxidation in daily, intermediate, and final cover soils from two California landfills as a function of temperature, soil moisture and CO2 concentration. The results indicate a signi...

  18. Exopolysaccharide control of methane oxidation in landfill cover soil

    SciTech Connect

    Hilger, H.A.; Liehr, S.K.; Barlaz, M.A.

    1999-12-01

    The study objective was to examine whether a relationship exists between the accumulation of exopolymeric substances (EPS) in landfill cover soil and the gradual decline in biotic methane oxidation observed in laboratory soil columns sparged with synthetic landfill gas. A mathematical model that combined multicomponent gas diffusion along the vertical axis of the columns with biotic methane oxidation was used to predict vertical gas gradients in the columns. An initial trial assumed methane oxidizers were embedded in a thin base layer of biofilm coating the soil, and the model predictions fit experimental data from soil columns early in their operating period. A second trial modeled the same system with a thick EPS layer coating the base biofilm and limiting diffusion of gases into and out of the cells. Predictions from the alter trials fit experimental data from soil columns later in their operating period when lower methane consumption rates were observed. The model results suggest that EPS accumulation may regulate methane oxidation rates in landfill covers.

  19. Models for hydrologic design of evapotranspiration landfill covers.

    PubMed

    Hauser, Victor L; Gimon, Dianna M; Bonta, James V; Howell, Terry A; Malone, Robert W; Williams, Jimmy R

    2005-09-15

    The technology used in landfill covers is changing, and an alternative cover called the evapotranspiration (ET) landfill cover is coming into use. Important design requirements are prescribed by Federal rules and regulations for conventional landfill covers but not for ET landfill covers. There is no accepted hydrologic model for ET landfill cover design. This paper describes ET cover requirements and design issues, and assesses the accuracy of the EPIC and HELP hydrologic models when used for hydrologic design of ET covers. We tested the models against high-quality field measurements available from lysimeters maintained by the Agricultural Research Service of the U.S. Department of Agriculture at Coshocton, Ohio, and Bushland, Texas. The HELP model produced substantial errors in estimating hydrologic variables. The EPIC model estimated ET and deep percolation with errors less than 7% and 5%, respectively, and accurately matched extreme events with an error of less than 2% of precipitation. The EPIC model is suitable for use in hydrologic design of ET landfill covers.

  20. TDR calibration for the alternative landfill cover demonstration (ALCD)

    SciTech Connect

    Lopez, J.; Dwyer, S.F.; Swanson, J.N.

    1997-09-01

    The Alternative Landfill Cover Demonstration is a large scale field test that compares the performance of various landfill cover designs in dry environments. An important component of the comparison is the change in the moisture content of the soils throughout the different cover test plots. Time Domain Reflectometry (TDR) is the primary method for the measurement of the volumetric moisture content. Each of the covers is composed of layers of varying types and densities of soils. The probes are therefore calibrated to calculate the volumetric moisture content in each of the different soils in order to gain the optimum performance of the TDR system. The demonstration plots are constructed in two phases; a different probe is used in each phase. The probe that is used in Phase 1 is calibrated for the following soils: compacted native soil, uncompacted native soil, compacted native soil mixed with 6% sodium bentonite by weight, and sand. The probe that is used in Phase 2 is calibrated for the following soils: compacted native soil, uncompacted native soil, and sand. In addition, the probes are calibrated for the varying cable lengths of the TDR probes. The resulting empirically derived equations allow for the calculation of in-situ volumetric moisture content of all of the varying soils throughout the cover test plots in the demonstration.

  1. Planning document for the Advanced Landfill Cover Demonstration

    SciTech Connect

    Hakonson, T.E.; Bostick, K.V.

    1994-10-01

    The Department of Energy and Department of Defense are faced with the closure of thousands of decommissioned radioactive, hazardous, and mixed waste landfills as a part of ongoing Environmental Restoration activities. Regulations on the closure of hazardous and radioactive waste landfills require the construction of a ``low-permeability`` cover over the unit to limit the migration of liquids into the underlying waste. These landfills must be maintained and monitored for 30 years to ensure that hazardous materials are not migrating from the landfill. This test plan is intended as an initial road map for planning, designing, constructing, evaluating, and documenting the Advanced Landfill Cover Demonstration (ALCD). It describes the goals/ objectives, scope, tasks, responsibilities, technical approach, and deliverables for the demonstration.

  2. [Depth Profiles of Methane Oxidation Kinetics and the Related Methanotrophic Community in a Simulated Landfill Cover].

    PubMed

    Xing, Zhi-lin; Zhao, Tian-tao; Gao, Yan-hui; He, Zhi; Yang, Xu; Peng, Xu-ya

    2015-11-01

    Simulated landfill cover with real time online monitoring system was developed using cover soils. Then the system started and the concentrations of bio-gas in various depths were continuously monitored, and it was found that the system ran continually and stably after 2-3 h when methane flux changed. After that, the relationship between regularity of methane oxidation and methane flux in landfill cover was analyzed. The results indicated that concentration of oxygen decreased with increasing methane flux when the depth was deeper than 20 cm, and no obvious correlation between oxygen concentration in landfill cover surface and methane flux, however, methane oxidation rate showed positive correlation with methane flux in various depths (range of R2 was 0.851-0.999). Kinetics of CH4 oxidation in landfill cover was fitted by CH4 -O2 dual-substrate model (range of R2 was 0.902-0.955), the half-saturation constant K(m) increasing with depth was 0.157-0.729 in dynamic condition. Finally, methanotrophs community structure in original cover soil sample and that in simulated landfill cover were investigated by high-throughout sequencing technology, and the statistics indicated that the abundance and species of methanotrophs in simulated landfill cover significantly increased compared with those in original cover soil sample, and type I methanotrophs including Methylobacter and Methylophilaceae and type II methanotrophs Methylocystis were dominant species.

  3. 75 FR 6597 - Determination to Approve Alternative Final Cover Request for the Lake County, MT Landfill...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    .... The pilot test consisted of the construction of two landfill cover test plots at the Lake County landfill facility. One plot used a landfill cover design with a flexible membrane liner, and the other...

  4. Bio-tarp alternative daily cover prototypes for methane oxidation atop open landfill cells.

    PubMed

    Adams, Bryn L; Besnard, Fabien; Bogner, Jean; Hilger, Helene

    2011-05-01

    Final landfill covers are highly engineered to prevent methane release into the atmosphere. However, methane production begins soon after waste placement and is an unaddressed source of emissions. The methane oxidation capacity of methanotrophs embedded in a "bio-tarp" was investigated as a means to mitigate methane release from open landfill cells. The bio-tarp would also serve as an alternative daily cover during routine landfill operation. Evaluations of nine synthetic geotextiles identified two that would likely be suitable bio-tarp components. Pilot tarp prototypes were tested in continuous flow systems simulating landfill gas conditions. Multilayered bio-tarp prototypes consisting of alternating layers of the two geotextiles were found to remove 16% of the methane flowing through the bio-tarp. The addition of landfill cover soil, compost, or shale amendments to the bio-tarp increased the methane removal up to 32%. With evidence of methane removal in a laboratory bioreactor, prototypes were evaluated at a local landfill using flux chambers installed atop intermediate cover at a landfill. The multilayered bio-tarp and amended bio-tarp configurations were all found to decrease landfill methane flux; however, the performance efficacy of bio-tarps was not significantly different from controls without methanotrophs. Because highly variable methane fluxes at the field site likely confounded the test results, repeat field testing is recommended under more controlled flux conditions.

  5. Designing systems for landfill gas migration control in Minnesota

    SciTech Connect

    Cannon, J.

    1996-11-01

    Camp, Dresser & McKee (CDM) has designed or is in the process of designing several landfill gas migration control systems in Minnesota. The systems are for both active and closed municipal solid waste landfills. The sites have a variety of covers, including geomembranes, clay caps, and non-engineered soil covers. The control system types include small perimeter systems, full-site systems and phased systems for active sites. Figure 1 shows the locations of the systems CDM is working on in Minnesota. This paper focuses on four sites: Oak Grove Landfill, Hopkins Landfill, Washington County Landfill, and Elk River Landfill. Table 1 provides an outline of the individual site characteristics. The first three sites are closed landfills. The Oak Grove Landfill system was designed and constructed for a group of industries responsible for closure and remedial action. The Hopkins and Washington County landfills are under the control of the Minnesota Pollution Control Agency (MPCA). The MPCA enacted a remedial action program at closed landfills, taking over responsibility for long-term liability under the terms of legally binding agreements negotiated with the site owners. The Elk River Landfill is an active, privately-owned facility. The migration problems and solutions developed for these four landfills are generally descriptive of all the landfills CDM is working on in Minnesota. All landfills have unique characteristics requiring site-specific solutions. CDM, after designing a number of migration control systems in Minnesota, is able to provide a generalized description of design options for specific types of sites. This paper discussions design options used to address different cover types, aesthetic needs, and waste depths, and includes a discussion of design needs for cold climates. A brief case history of the Oak Grove Landfill is included.

  6. Field Performance Of Three Compacted Clay Landfill Covers

    EPA Science Inventory

    A study was conducted at sites in subtropical Georgia, seasonal and humid Iowa, and arid southeastern California to evaluate the field hydrology of compacted clay covers for final closure of landfills. Water balance of the covers was monitored with large (10 by 20 m ), instrumen...

  7. Landfill disposal systems

    PubMed Central

    Slimak, Karen M.

    1978-01-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated. A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual

  8. On the performance of capillary barriers as landfill cover

    NASA Astrophysics Data System (ADS)

    Kämpf, M.; Montenegro, H.

    Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m). In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  9. Field measurements of frost penetration into a landfill cover that uses a paper sludge barrier

    SciTech Connect

    Moo-Young, H.K.; LaPlante, C.; Zimmie, T.F.; Quiroz, J.

    1999-07-01

    Frost penetration is a major environmental concern in landfill design. Freezing and thawing cycles may deteriorate the permeability of the liner or cap. In this study, the depth of frost penetration into a landfill cover that uses paper sludge as the impermeable barrier (the Hubbardston landfill in Massachusetts) was measured using a frost measurement system. A thermistor probe measured the temperature at various depths. Although temperature measurements are important, soil resistivity measurements are required to accurately predict the freezing level, since soil resistivity increases greatly upon freezing. A conductivity probe measured the half-bridge voltage between conductivity rings and a ground rod. Data were collected in data loggers. The data collected from 1992--1996 showed that the frost level did not penetrate the paper sludge capping layer. Heavy snow cover throughout the winters decreased the depth of frost penetration by insulating the landfill. The high water content in the sludge also contributed to the lack of freezing.

  10. Report: landfill alternative daily cover: conserving air space and reducing landfill operating cost.

    PubMed

    Haughey, R D

    2001-02-01

    Title 40, Part 258 of the Code of Federal Regulations, Solid Waste Disposal Facility Criteria, commonly referred to as Subtitle D, became effective on October 9, 1993. It establishes minimum criteria for solid waste disposal facility siting, design, operations, groundwater monitoring and corrective action, and closure and postclosure maintenance, while providing EPA-approved state solid waste regulatory programs flexibility in implementing the criteria. Section 258.21(a) [40 CFR 258.21(a)] requires owners or operators of municipal solid waste landfill (MSWLF) units to cover disposed solid waste with 30cm of earthen material at the end of the operating day, or at more frequent intervals, if necessary, to control disease vectors, fires, odours, blowing litter, and scavenging. This requirement is consistent with already existing solid waste facility regulations in many states. For many MSWLFs, applying daily cover requires the importation of soil which increases landfill operating costs. Daily cover also uses valuable landfill air space, reducing potential operating revenue and the landfill's operating life. 40 CFR 258.21 (b) allows the director of an approved state to approve alternative materials of an alternative thickness if the owner or operator demonstrates that the alternative material and thickness will control disease vectors, fires, odours, blowing litter, and scavenging without presenting a threat to human health and the environment. Many different types of alternative daily cover (ADC) are currently being used, including geosynthetic tarps, foams, garden waste, and auto shredder fluff. These materials use less air space than soil and can reduce operating costs. This paper discusses the variety of ADCs currently being used around the country and their applicability to different climates and operating conditions, highlighting the more unusual types of ADC, the types of demonstrations necessary to obtain approval of ADC, and the impact on landfill air space

  11. Impact assessment of intermediate soil cover on landfill stabilization by characterizing landfilled municipal solid waste.

    PubMed

    Qi, Guangxia; Yue, Dongbei; Liu, Jianguo; Li, Rui; Shi, Xiaochong; He, Liang; Guo, Jingting; Miao, Haomei; Nie, Yongfeng

    2013-10-15

    Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter.

  12. Fines migration from soil daily covers in Hong Kong landfills.

    PubMed

    Ng, Kelvin T W; Lo, Irene M C

    2010-11-01

    Laboratory tests using 240 mm diameter columns were conducted to study fines migration in conditions that simulate daily soil covers in Hong Kong municipal solid waste landfills. Five factors suspected to affect fines migration were examined: moisture content at soil compaction, overburden pressure, pumping rate, cover thickness, and soil-waste interface condition. The results show that moisture content at compaction, cover thickness, and soil-waste interface are the most influential parameters on fines migration in completely decomposed granite daily covers. The measured equivalent sizes of migratory fines from the soil covers were in the range of 4-140 μm. The majority of migratory fines migrated during first permeations, representing 64-86% of the total by mass. Larger particles tended to migrate from the soil mass during the saturation process. In a typical run, about 0.0018% of the total cover soil (by dry weight) was washed out during a typical 1h rainfall event. The results of the laboratory studies point to important engineering implications on the operation of local MSW landfills regarding the use of sandy daily covers.

  13. Gas Transport Parameters for Landfill Final Cover Soil: Measurements and Model Modification by Dry Bulk Density

    NASA Astrophysics Data System (ADS)

    Wickramarachchi, P. N.; Kawamoto, K.; Hamamoto, S.; Nagamori, M.; Moldrup, P.; Komatsu, T.

    2011-12-01

    Landfill sites have been emerging in greenhouse warming scenarios as a significant source of atmospheric methane (CH4). Until recently, landfill management strategies have mainly addressed the problem of preventing groundwater contamination and reduction of leachate generation. Being one of the largest sources of anthropogenic CH4 emission, the final cover system should also be designed for minimizing the greenhouse gases migration into the atmosphere or the areas surrounding the landfill while securing the hydraulic performance. Compared to the intensive research efforts on hydraulic performances of landfill final cover soil, few studies about gas transport characteristics of landfill cover soils have been done. However, recent soil-gas studies implied that the effects of soil physical properties such as bulk density (i.e., compaction level), soil particle size are key parameters to understand landfill gaseous performance. The gas exchange through the final cover soils is controlled by advective and diffusive gas transport. Air permeability (ka) governs the advective gas transport while the soil-gas diffusion coefficient (Dp) governs diffusive gas transport. In this study, the effects of compaction level and particle size fraction effects on ka and Dp for landfill final cover soil was investigated. The disturbed soil samples were taken from landfill final cover in Japan. A compaction tests were performed for the soil samples with two different size fractions (< 35 mm and < 2.0 mm). In the compaction tests at field water content , the soil samples were repacked into soil cores (i.d. 15-cm, length 12-cm, 2120 cm3) at two different compaction levels [(MP):2700 kN/m2 and (SP):600 kN/m2]. After the compaction tests, ka and Dp were measured and then samples were saturated and subsequently drained at different soil-water matric potential of 0.98, 2.94, 9.81, 1235 kPa and with air-dried and oven-dried conditions. Results showed that measured Dp and ka values for the

  14. Electrical leak detection system for landfill liners: A case history

    SciTech Connect

    White, C.C.; Barker, R.D.

    1997-12-01

    As landfill specifications become more stringent in the United Kingdom, the development of increasingly sophisticated monitoring methods is necessary to meet environmental protection goals. The case history describes the development of a 2-million-cubic-meter-capacity landfill, located in a sandstone quarry and 1 km from a public water supply borehole, where the sensitivity of the site to ground water contamination and the proximity to a public water supply borehole are particular issues. The landfill design incorporated a more sensitive environmental monitoring system, using a geophysical technique. The monitoring system comprises a permanent grid of electrodes installed beneath the landfill, connected by multicore cable to a computer-controlled earth resistance meter and switching unit in the site weighbridge. It was designed to detect holes in the landfill liner prior to and after covering with waste and to monitor the migration of contaminants beneath the landfill before they reach the perimeter observation boreholes, should leakage occur.

  15. Long-term performance of landfill covers - results of lysimeter test fields in Bavaria (Germany).

    PubMed

    Henken-Mellies, Wolf-Ulrich; Schweizer, Andreas

    2011-01-01

    A comprehensive study was conducted to examine the performance and possible changes in the effectiveness of landfill surface covers. Three different profiles of mineral landfill caps were examined. The results of precipitation and flow measurements show distinct seasonal differences which are typical for middle-European climatic conditions. In the case of the simple landfill cap design consisting of a thick layer of loamy sand, approximately 100-200 L m(-2) of annual seepage into the landfill body occurs during winter season. The three-layer systems of the two other test fields performed much better. Most of the water which percolated through the top soil profile drained sideways in the drainage layer. Only 1-3% of precipitation percolated through the sealing layer. The long-term effectiveness of the mineral sealing layer depended on the ability of the top soil layer to protect it from critical loss of soil water/critical increase of suction. In dry summers there was even a loss in soil water content at the base of the 2.0 m thick soil cover. The results of this study demonstrate the importance of the long-term aspect when assessing the effectiveness of landfill covers: The hydraulic conductivity at the time of construction gives only an initial (minimum) value. The hydraulic conductivity of the compacted clay layer or of the geosynthetic clay liner may increase substantially, if there is no long-lasting protection against desiccation (by a thick soil cover or by a geomembrane). This has to be taken into account in landfill cover design.

  16. Microbial mitigation of greenhouse gas emissions from landfill cover soils

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Woo

    Landfills are one of the major sources of methane (CH4), a potent greenhouse gas with a global warming potential (GWP) ˜23 times higher than that of carbon dioxide (CO2). Although some effective strategies have been formulated to prevent methane emissions from large landfills, many landfills allow methane to be freely emitted to the atmosphere. In such situations, it is often proposed to stimulate methanotrophs, a group of bacteria that consume methane, in the cover soil to prevent fugitive methane emissions. Several factors, however, must be addressed to make such a biogenic removal mechanism effective. First, methanotrophic activity can be inhibited by nonmethane organic compounds (NMOCs) that are commonly found in landfill soil gas. Second, although methanotrophs can be easily stimulated with the addition of nitrogenous fertilizers, biogenic production of nitrous oxide with a GWP ˜296 times higher than that of carbon dioxide, is also stimulated. To consider these issues, two general areas of research were performed. First, a dimensionless number was developed based on Michaelis-Menten kinetics that describes the effects of the presence of multiple NMOCs on methanotrophic growth and survival. This model was validated via experimental measurements of methanotrophic growth in the presence of varying amounts of NMOCs. Second, the effects of nutrient amendments on methane oxidation and nitrous oxide production were examined by constructing soil microcosms using landfill cover soils. Here, it was shown that the addition of ammonium in the presence of phenylacetylene stimulated methane oxidation but inhibited nitrous oxide production. Furthermore, to understand the methanotrophic community structure and activity in response to these amendments, DNA microarray and transcript analyses were performed. The results indicated the predominance of Type II methanotrophs but that Type I methanotrophs responded more significantly to these amendments. Also, substantial activity

  17. Effect of landfill cover layer modification on methane oxidation.

    PubMed

    Hu, Lifang; Long, Yuyang

    2016-12-01

    Levels of methane (CH4) oxidation in materials used for landfill cover attained in the laboratory are not often replicated in the field due to effects from the surrounding environment. This study investigates the three dominant factors affecting CH4 oxidation in the cover layer, namely, the thickness of cover layer, the methanotroph spraying manner, and the osmotic coefficient of the cover material. Results show that improved CH4 emission performance of the cover layer can be realized if methanotroph are introduced, meaning that a thinner cover layer is required. The highest CH4 emission reduction can be realized by spraying methanotroph into the top, middle, and bottom layers of a 30-cm thick cover layer with an osmotic coefficient of 7.76 × 10(-5) cm s(-1). Comparing results on cover layer thickness, methane monooxygenase (MMO) activity was much lower with increasing thickness meaning that the thicker cover could reduce O2 availability, thus inhibiting MMO activity. This suggests that MMO may be responsible for differences in CH4 emission reduction and/or oxidation making the osmotic coefficient an important factor for cover layer material.

  18. Reuse of MSWI bottom ash mixed with natural sodium bentonite as landfill cover material.

    PubMed

    Puma, Sara; Marchese, Franco; Dominijanni, Andrea; Manassero, Mario

    2013-06-01

    The research described in this study had the aim of evaluating the reuse of incinerator slag, mixed with sodium bentonite, for landfill capping system components. A characterization was performed on pure bottom ash (BA) samples from an incinerator in the north of Italy. The results show that the BA samples had appropriate properties as covers. The compacted dry unit weight of the studied BA (16.2 kN m(-3)) was lower than the average value that characterizes most conventional fill materials and this can be considered advantageous for landfill cover systems, since the fill has to be placed on low bearing capacity ground or where long-term settlement is possible. Moreover, direct shear tests showed a friction angle of 43°, corresponding to excellent mechanical characteristics that can be considered an advantage against failure. The hydraulic conductivity tests indicated a steady-state value of 8 × 10(-10) m s(-1) for a mixture characterized by a bentonite content by weight of 10%, which was a factor 10 better than required by Italian legislation on landfill covers. The results from a swell index test indicated that fine bentonite swelled, even when divalent cations were released by the BA. The leaching behaviour of the mixture did not show any contamination issues and was far better than obtained for the pure BA. Thus, the BA-bentonite mixture qualified as a suitable material for landfill cover in Italy. Moreover, owing to the low release of toxic compounds, the proposed cover system would have no effect on the leachate quality in the landfill.

  19. Flux measurements of benzene and toluene from landfill cover soils.

    PubMed

    Tassi, Franco; Montegrossi, Giordano; Vaselli, Orlando; Morandi, Andrea; Capecchiacci, Francesco; Nisi, Barbara

    2011-01-01

    Carbon dioxide and CH(4), C(6)H(6) and C(7)H(8) fluxes from the soil cover of Case Passerini landfill site (Florence, Italy) were measured using the accumulation and static closed chamber methods, respectively. Results show that the CH(4)/CO(2), CH(4)/C(6)H(6) and CH(4)/C(7)H(8) ratios of the flux values are relatively low when compared with those of the 'pristine' biogas produced by degradation processes acting on the solid waste material disposed in the landfill. This suggests that when biogas transits through the cover soil, CH(4) is affected by degradation processes activated by oxidizing bacteria at higher extent than both CO(2) and mono-aromatics. Among the investigated hydrocarbons, C(6)H(6) has shown the highest stability in a wide range of redox conditions. Toluene behaviour only partially resembles that of C(6)H(6), possibly because de-methylation processes require less energy than that necessary for the degradation of C(6)H(6), the latter likely occurring via benzoate at anaerobic conditions and/or through various aerobic metabolic pathways at relatively shallow depth in the cover soil where free oxygen is present. According to these considerations, aromatics are likely to play an important role in the environmental impact of biogas released into the atmosphere from such anthropogenic emission sites, usually only ascribed to CO(2) and CH(4). In this regard, flux measurements using accumulation and static closed chamber methods coupled with gas chromatography and gas chromatography-mass spectrometry analysis may properly be used to obtain a dataset for the estimation of the amount of volatile organic compounds dispersed from landfills.

  20. Impact of different plants on the gas profile of a landfill cover

    SciTech Connect

    Reichenauer, Thomas G.; Watzinger, Andrea; Riesing, Johann; Gerzabek, Martin H.

    2011-05-15

    Research highlights: > Plants influence gas profile and methane oxidation in landfill covers. > Plants regulate water content and increase the availability of oxygen for methane oxidation. > Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

  1. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

  2. Fly ash in landfill top covers - a review.

    PubMed

    Brännvall, E; Kumpiene, J

    2016-01-01

    Increase of energy recovery from municipal solid waste by incineration results in the increased amounts of incineration residues, such as fly ash, that have to be taken care of. Material properties should define whether fly ash is a waste or a viable resource to be used for various applications. Here, two areas of potential fly ash application are reviewed: the use of fly ash in a landfill top cover either as a liner material or as a soil amendment in vegetation layer. Fly ashes from incineration of three types of fuel are considered: refuse derived fuel (RDF), municipal solid waste incineration (MSWI) and biofuel. Based on the observations, RDF and MSWI fly ash is considered as suitable materials to be used in a landfill top cover liner. Whereas MSWI and biofuel fly ashes based on element availability for plant studies, could be considered suitable for the vegetation layer of the top cover. Responsible application of MSWI ashes is, however, warranted in order to avoid element accumulation in soil and elevation of background values over time.

  3. Digested sewage sludge solidification by converter slag for landfill cover.

    PubMed

    Kim, Eung-Ho; Cho, Jin-Kyu; Yim, Soobin

    2005-04-01

    A new technology for solidification of digested sewage sludge referred to as converter slag solidification (CSS) has been developed using converter slag as the solidifying agent and quick lime as the solidifying aid. The CSS technology was investigated by analyzing the physicochemical properties of solidified sludge and determining its microstructural characteristics. The feasibility of using solidified sludge as a landfill cover material was considered in the context of the economical recycling of waste. Sludge solidified using the CSS technology exhibited geotechnical properties that are appropriate for replacing currently used cover soil. Microscopic analyses using XRD, SEM and EDS revealed that the main hydrated product of solidification was CSH (CaO . SiO2 . nH2O), which may play an important role in the effective setting process. Negligible leaching of heavy metals from the solidified sludge was observed. The solidification process of the hydrated sludge, slag and quicklime eliminated the coliform bacteria. Recycled sewage sludge solidified using CCS technology could be used as an effective landfill cover.

  4. Earthworm activity in a simulated landfill cover soil shifts the community composition of active methanotrophs.

    PubMed

    Kumaresan, Deepak; Héry, Marina; Bodrossy, Levente; Singer, Andrew C; Stralis-Pavese, Nancy; Thompson, Ian P; Murrell, J Colin

    2011-12-01

    Landfills represent a major source of methane in the atmosphere. In a previous study, we demonstrated that earthworm activity in landfill cover soil can increase soil methane oxidation capacity. In this study, a simulated landfill cover soil mesocosm (1 m × 0.15 m) was used to observe the influence of earthworms (Eisenia veneta) on the active methanotroph community composition, by analyzing the expression of the pmoA gene, which is responsible for methane oxidation. mRNA-based pmoA microarray analysis revealed that earthworm activity in landfill cover soil stimulated activity of type I methanotrophs (Methylobacter, Methylomonas, Methylosarcina spp.) compared to type II methanotrophs (particularly Methylocystis spp.). These results, along with previous studies of methanotrophs in landfill cover soil, can now be used to plan in situ field studies to integrate earthworm-induced methanotrophy with other landfill management practises in order to maximize soil methane oxidation and reduce methane emissions from landfills.

  5. Effects of biochar amendment on geotechnical properties of landfill cover soil.

    PubMed

    Reddy, Krishna R; Yaghoubi, Poupak; Yukselen-Aksoy, Yeliz

    2015-06-01

    Biochar is a carbon-rich product obtained when plant-based biomass is heated in a closed container with little or no available oxygen. Biochar-amended soil has the potential to serve as a landfill cover material that can oxidise methane emissions for two reasons: biochar amendment can increase the methane retention time and also enhance the biological activity that can promote the methanotrophic oxidation of methane. Hydraulic conductivity, compressibility and shear strength are the most important geotechnical properties that are required for the design of effective and stable landfill cover systems, but no studies have been reported on these properties for biochar-amended landfill cover soils. This article presents physicochemical and geotechnical properties of a biochar, a landfill cover soil and biochar-amended soils. Specifically, the effects of amending 5%, 10% and 20% biochar (of different particle sizes as produced, size-20 and size-40) to soil on its physicochemical properties, such as moisture content, organic content, specific gravity and pH, as well as geotechnical properties, such as hydraulic conductivity, compressibility and shear strength, were determined from laboratory testing. Soil or biochar samples were prepared by mixing them with 20% deionised water based on dry weight. Samples of soil amended with 5%, 10% and 20% biochar (w/w) as-is or of different select sizes, were also prepared at 20% initial moisture content. The results show that the hydraulic conductivity of the soil increases, compressibility of the soil decreases and shear strength of the soil increases with an increase in the biochar amendment, and with a decrease in biochar particle size. Overall, the study revealed that biochar-amended soils can possess excellent geotechnical properties to serve as stable landfill cover materials.

  6. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  7. Methane oxidation in a landfill cover with capillary barrier.

    PubMed

    Berger, J; Fornés, L V; Ott, C; Jager, J; Wawra, B; Zanke, U

    2005-01-01

    The methane oxidation potential of a landfill cover with capillary barrier was investigated in an experimental plant (4.8 m x 0.8 m x 2.1m). The cover soil consisted of two layers, a mixture of compost plus sand (0.3 m) over a layer of loamy sand (0.9 m). Four different climatic conditions (summer, winter, spring and fall) were simulated. In and outgoing fluxes were measured. Gas composition, temperature, humidity, matrix potential and gas pressure were monitored in two profiles. CH4 oxidation rate within the investigated top cover ranged from 98% to 57%. The minimum was observed for a short time after irrigation. Temperature distribution, gas concentration profiles and lab-scaled batch experiments indicate that before irrigation the highest oxidising activity took place in a depth of about 30 cm. After irrigation the oxidising horizon seemed to migrate upwards since methanotrophic bacteria develop better there due to an adequate supply with oxygen. It can be assumed that the absence of oxygen is one of the most important limiting factors for the CH4 oxidation process. Abrupt cross-overs between horizons of different soil material may lead to zones of increased water saturation and decreased soil respiration.

  8. Accelerated carbonation of steel slags in a landfill cover construction

    SciTech Connect

    Diener, S.; Andreas, L.; Herrmann, I.; Ecke, H.; Lagerkvist, A.

    2010-01-15

    Steel slags from high-alloyed tool steel production were used in a full scale cover construction of a municipal solid waste (MSW) landfill. In order to study the long-term stability of the steel slags within the final cover, a laboratory experiment was performed. The effect on the ageing process, due to i.e. carbonation, exerted by five different factors resembling both the material characteristics and the environmental conditions is investigated. Leaching behaviour, acid neutralization capacity and mineralogy (evaluated by means of X-ray diffraction, XRD, and thermogravimetry/differential thermal analysis, TG/DTA) are tested after different periods of ageing under different conditions. Samples aged for 3 and 10 months were evaluated in this paper. Multivariate data analysis was used for data evaluation. The results indicate that among the investigated factors, ageing time and carbon dioxide content of the atmosphere were able to exert the most relevant effect. However, further investigations are required in order to clarify the role of the temperature.

  9. Isotope fractionation effects by diffusion and methane oxidation in landfill cover soils

    NASA Astrophysics Data System (ADS)

    de Visscher, Alex; de Pourcq, Ingrid; Chanton, Jeffrey

    2004-09-01

    When the open system isotope method has been used to determine the methane oxidation efficiency of a landfill cover soil, it has been assumed that gas transport from the landfill is primarily driven by advection, a mechanism that is not associated with isotopic fractionation. A controlled laboratory experiment revealed that this approach underestimated the methane oxidation efficiency because it underestimated the importance of molecular diffusion during gas transport. In a worst-case scenario laboratory column experiment where diffusion was an important gas transport mode, a comparison between a mass balance and the open system isotope method revealed that the latter underestimated methane oxidation by a factor 2 to 4. The vertical profile of the δ13C value of methane in the column confirmed that isotope fractionation associated with gas transport occurred. Similar profiles were observed in the field, but the effect was less pronounced. It is concluded that the isotope method as currently applied produces a conservative estimate of methane oxidation by landfill cover soils.

  10. Landfills

    EPA Pesticide Factsheets

    To provide information on landfills, including laws/regulations, and technical guidance on municipal solid waste, hazardous waste, industrial, PCBs, and construction and debris landfills. To provide resources for owners and operators of landfills.

  11. Gas Transport Parameters for Landfill Cover Soils: Effects of Soil Compaction and Water Blockages

    NASA Astrophysics Data System (ADS)

    Wickramarachchi, P. N.; Hamamoto, S.; Kawamoto, K.; Nawagamuwa, U.; Komatsu, T.; Moldrup, P.

    2009-12-01

    Recently, landfill sites have been emerging in greenhouse warming scenarios as a significant source of atmospheric CH4. landfill management strategies have mainly addressed the problem of preventing groundwater contamination and reduction of leachate generation. Being one of the largest source of anthropogenic CH4 emission , the final cover system should also be designed for minimizing the biogas migration into the atmosphere or the areas surrounding the landfill. Compared to the intensive research efforts on hydraulic performances of landfill final cover soil , there are few studies about gas transport characteristics of landfill cover soils. Therefore, the effects of soil physical properties such as bulk density (i.e., compaction level), soil particle size and water blockage effects on the gas exchange in t highly compacted final cover soil are largely unknown. The gas exchange through the final cover soils is controlled by advective and diffusive gas transport. Air permeability (ka) governs the advective gas transport while the soil-gas diffusion coefficient (Dp) governs diffusive gas transport . In this study, the effects of compaction level and water blockage effects on ka and Dp for two landfill final cover soils were investigated. The disturbed soil samples were taken from landfill final covers in Japan and Sri Lanka. A compaction tests were performed for the soil samples with two different size fractions (< 35 mm and < 2.0 mm). In the compaction tests at field water content , the soil samples were repacked into soil cores (i.d. 15-cm, length 12-cm) at two different compaction levels (2700 kN/m2 and 600 kN/m2). After the compaction tests, ka and Dp were measured and then samples were saturated and subsequently drained at different soil-water matric potential (pF; pF equals to log(-ɛ) where ɛ is soil-water matric potential in cm H2O) of 1.5, 2.0, 3.0, 4.1, and with air-dried (pF 6.0) and oven-dried (pF 6.9) conditions. Results showed that measured Dp values

  12. Evaluation of alternative landfill cover soils for attenuating hydrogen sulfide from construction and demolition (C&D) debris landfills.

    PubMed

    Plaza, Cristine; Xu, Qiyong; Townsend, Timothy; Bitton, Gabriel; Booth, Matthew

    2007-08-01

    Hydrogen sulfide (H(2)S) generated from C&D debris landfills has emerged as a major environmental concern due to odor problems and possible health impacts to landfill employees and surrounding residents. Research was performed to evaluate the performance of various cover materials as control measures for H(2)S emissions from C&D debris landfills. Twelve laboratory-scale simulated landfill columns containing gypsum drywall were operated under anaerobic conditions to promote H(2)S production. Five different cover materials were placed on top of the waste inside duplicate columns: (1) sandy soil, (2) sandy soil amended with lime, (3) clayey soil, (4) fine concrete (particle size less than 2.5 cm), and (5) coarse concrete (particle size greater than 2.5 cm). No cover was placed on two of the columns, which were used as controls. H(2)S concentrations measured from the middle of the waste layer ranged from 50,000 to 150,000 ppm. The different cover materials demonstrated varying H(2)S removal efficiencies. The sandy soil amended with lime and the fine concrete were the most effective for the control of H(2)S emissions. Both materials exhibited reduction efficiencies greater than 99%. The clayey and sandy soils exhibited lower reduction efficiencies, with average removal efficiencies of 65% and 30%, respectively. The coarse concrete was found to be the least efficient material as a result of its large particle size.

  13. Characterization of H2S removal and microbial community in landfill cover soils.

    PubMed

    Xia, Fang-Fang; Zhang, Hong-Tao; Wei, Xiao-Meng; Su, Yao; He, Ruo

    2015-12-01

    H2S is a source of odors at landfills and poses a threat to the surrounding environment and public health. In this work, compared with a usual landfill cover soil (LCS), H2S removal and biotransformation were characterized in waste biocover soil (WBS), an alternative landfill cover material. With the input of landfill gas (LFG), the gas concentrations of CH4, CO2, O2, and H2S, microbial community and activity in landfill covers changed with time. Compared with LCS, lower CH4 and H2S concentrations were detected in the WBS. The potential sulfur-oxidizing rate and sulfate-reducing rate as well as the contents of acid-volatile sulfide, SO4(2-), and total sulfur in the WBS and LCS were all increased with the input of LFG. After exposure to LFG for 35 days, the sulfur-oxidizing rate of the bottom layer of the WBS reached 82.5 μmol g dry weight (d.w.)(-1) day(-1), which was 4.3-5.4 times of that of LCS. H2S-S was mainly deposited in the soil covers, while it escaped from landfills to the atmosphere. The adsorption, absorption, and biotransformation of H2S could lead to the decrease in the pH values of landfill covers; especially, in the LCS with low pH buffer capacity, the pH value of the bottom layer dropped to below 4. Pyrosequencing of 16S ribosomal RNA (rRNA) gene showed that the known sulfur-metabolizing bacteria Ochrobactrum, Paracoccus, Comamonas, Pseudomonas, and Acinetobacter dominated in the WBS and LCS. Among them, Comamonas and Acinetobacter might play an important role in the metabolism of H2S in the WBS. These findings are helpful to understand sulfur bioconversion process in landfill covers and to develop techniques for controlling odor pollution at landfills.

  14. Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars.

    PubMed

    Sadasivam, Bala Yamini; Reddy, Krishna R

    2015-08-01

    The natural presence of methane oxidizing bacteria (MOB) in landfill soils can stimulate the bio-chemical oxidation of CH4 to CO2 and H2O under suitable environmental conditions. This mechanism can be enhanced by amending the landfill cover soil with organic materials such as biochars that are recalcitrant to biological degradation and are capable of adsorbing CH4 while facilitating the growth and activity of MOB within their porous structure. Several series of batch and small-scale column tests were conducted to quantify the CH4 sorption and transport properties of landfill cover soil amended with four types of waste hardwood biochars under different levels of amendment percentages (2, 5 and 10% by weight), exposed CH4 concentrations (0-1 kPa), moisture content (dry, 25% and 75% water holding capacity), and temperature (25, 35 and 45 °C). The linear forms of the pseudo second-order kinetic model and the Langmuir isotherm model were used to determine the kinetics and the maximum CH4 adsorption capacity of cover materials. The maximum CH4 sorption capacity of dry biochar-amended soils ranged from 1.03 × 10(-2) to 7.97 × 10(-2) mol kg(-1) and exhibited a ten-fold increase compared to that of soil with 1.9 × 10(-3) mol kg(-1). The isosteric heat of adsorption for soil was negative and ranged from -30 to -118 kJ/mol, while that of the biochar-amended soils was positive and ranged from 24 to 440 kJ/mol. The CH4 dispersion coefficients for biochar-amended soils obtained through predictive transport modeling indicated that amending the soil with biochar enhanced the methane transport rates by two orders of magnitude, thereby increasing their potential for enhanced exchange of gases within the cover system. Overall, the use of hardwood biochars as a cover soil amendment to reduce methane emissions from landfills appears to be a promising alternative to conventional soil covers.

  15. Methane emissions from MSW landfill with sandy soil covers under leachate recirculation and subsurface irrigation

    NASA Astrophysics Data System (ADS)

    Zhang, Houhu; He, Pinjing; Shao, Liming

    CH 4 emissions and leachate disposal are recognized as the two major concerns in municipal solid waste (MSW) landfills. Recently, leachate recirculation was attempted to accelerate land-filled waste biodegradation and thus enhanced landfill gas generation. Leachate irrigation was also conducted for volume reduction effectively. Nevertheless, the impacts of leachate recirculation and irrigation on landfill CH 4 emissions have not been previously reported. A field investigation of landfill CH 4 emissions was conducted on selected sandy soil cover with leachate recirculation and subsurface irrigation based on whole year around measurement. The average CH 4 fluxes were 311±903, 207±516, and 565±1460 CH 4 m -2 h -1 from site A without leachate recirculation and subsurface irrigation, lift B2 with leachate subsurface irrigation, and lift B1 with both leachate recirculation and subsurface irrigation, respectively. Both gas recovery and cover soil oxidation minimized CH 4 emissions efficiently, while the later might be more pronounced when the location was more than 5 m away from gas recovery well. After covered by additional clay soil layer, CH 4 fluxes dropped by approximately 35 times in the following three seasons compared to the previous three seasons in lift B2. The diurnal peaks of CH 4 fluxes occurred mostly followed with air or soil temperature in the daytimes. The measured CH 4 fluxes were much lower than those of documented data from the landfills, indicating that the influences of leachate recirculation and subsurface irrigation on landfill CH 4 emissions might be minimized with the help of a well-designed sandy soil cover. Landfill cover composed of two soil layers (clay soil underneath and sandy soil above) is suggested as a low-cost and effective alternative to minimize CH 4 emissions.

  16. Assessing the environmental impact of ashes used in a landfill cover construction.

    PubMed

    Travar, I; Lidelöw, S; Andreas, L; Tham, G; Lagerkvist, A

    2009-04-01

    Large amounts of construction materials will be needed in Europe in anticipation for capping landfills that will be closed due to the tightening up of landfill legislation. This study was conducted to assess the potential environmental impacts of using refuse derived fuel (RDF) and municipal solid waste incineration (MSWI) ashes as substitutes for natural materials in landfill cover designs. The leaching of substances from a full-scale landfill cover test area built with different fly and bottom ashes was evaluated based on laboratory tests and field monitoring. The water that drained off above the liner (drainage) and the water that percolated through the liner into the landfill (leachate) were contaminated with Cl(-), nitrogen and several trace elements (e.g., As, Cu, Mo, Ni and Se). The drainage from layers containing ash will probably require pre-treatment before discharge. The leachate quality from the ash cover is expected to have a minor influence on overall landfill leachate quality because the amounts generated from the ash covers were low, <3-30l (m(2)yr)(-1). Geochemical modelling indicated that precipitation of clay minerals and other secondary compounds in the ash liner was possible within 3 years after construction, which could contribute to the retention of trace elements in the liner in the long term. Hence, from an environmental view point, the placement of ashes in layers above the liner is more critical than within the liner.

  17. Evaluation of the odour reduction potential of alternative cover materials at a commercial landfill.

    PubMed

    Solan, P J; Dodd, V A; Curran, T P

    2010-02-01

    The availability of virgin soils and traditional landfill covers are not only costly and increasingly becoming scarce, but they also reduce the storage capacity of landfill. The problem can be overcome by the utilisation of certain suitable waste streams as alternative landfill covers. The objective of this study was to assess the suitability of Construction & Demolition fines (C&D), Commercial & Industrial fines (C&I) and woodchip (WC) as potential landfill cover materials in terms of odour control. Background odour analysis was conducted to determine if any residual odour was emitted from the cover types. It was deemed negligible for the three materials. The odour reduction performance of each of the materials was also examined on an area of an active landfill site. A range of intermediate cover compositions were also studied to assess their performance. Odour emissions were sampled using a Jiang hood and analysed. Results indicate that the 200 mm deep combination layer of C&D and wood chip used on-site is adequate for odour abatement. The application of daily cover was found to result in effective reduction allowing for the background odour of woodchip.

  18. Use of Impervious Covers and Carbon Adsorption for the Control of Leachate Production in Municipal Landfills.

    DTIC Science & Technology

    1979-05-01

    REPORT 4 PERIOD COVERED Carbon Adsorption for the Control of THESIS /oW* J0 Leachate Production in Municipal Landfills 6 PERFORMING 01G. REPORT NUMBER...LEACHATE PRODUCTION IN MUNICIPAL LANDFILLS A Thesis by / RICHARD CHARLES CARMICHAEL // Submitted to the Graduate College of Texas A&M University in...leachate.4 Depending upon the The format and style of this thesis follows that of the Journal of the Water Pollution Control Federation. . r4* 2

  19. Analysis of Vegetative on Six Different Landfill Cover Profiles in an Arid Environment.

    SciTech Connect

    Dwyer, Stephen F.; McClellan, Yvonne; Reavis, Bruce A.; Dwyer, Brian P.; Newman, Gretchen; Wolters, Gale

    2005-05-01

    A large-scale field demonstration comparing final landfill cover designs was constructed and monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle 'D' Soil Cover and a RCRA Subtitle 'C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for arid environments. The demonstration was intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. A portion of this project involves the characterization of vegetation establishment and growth on the landfill covers. The various prototype landfill covers were expected to have varying flux rates (Dwyer et al 2000). The landfill covers were further expected to influence vegetation establishment and growth, which may impact site erosion potential and long-term site integrity. Objectives of this phase were to quantify the types of plants occupying each site, the percentage of ground covered by these plants, the density (number of plants per unit area) of plants, and the plant biomass production. The results of this vegetation analysis are presented in this report.3 DRAFT07/06/14AcknowledgementsWe would like to thank all technical and support staff from Sandia and the USDA Forest Service's Rocky Mountain Station not included in the authors' list of this document for their valuable contributions to this research. We would also like to acknowledge the Department of Energy's Subsurface Contaminants Focus Area for funding this work.4

  20. Prediction of long-term erosion from landfill covers in the southwest

    SciTech Connect

    Anderson, C.E.; Stormont, J.C.

    1997-12-31

    Erosion is a primary stressor of landfill covers, especially for climates with high intensity storms and low native plant density. Rills and gullies formed by discrete events can damage barrier layers and induce failure. Geomorphologic, empirical and physical modeling procedures are available to provide estimates of surface erosion, but numerical modeling requires accurate representation of the severe rainfall events that generate erosion. The National Weather Service precipitation frequency data and estimates of 5, 10, 15, 30 and 60-minute intensity can be statistically combined in a numerical model to obtain long-term erosion estimates. Physically based numerical models using the KINEROS and AHYMO programs have been utilized to predict the erosion from a southwestern landfill or waste containment site with 0.03, 0.05 and 0.08 meter per meter surface slopes. Results of AHYMO modeling were within 15 percent of average annual values computed with the empirical Universal Soil Loss Equation. However, the estimation of rill and gully formation that primarily degrades cover systems requires quantifying single events. For Southwestern conditions, a single 10-year storm can produce erosion quantifies equal to three times the average annual erosion and a 100-year storm can produce five times the average annual erosion.

  1. Steel slag used in landfill cover liners: laboratory and field tests.

    PubMed

    Herrmann, Inga; Andreas, Lale; Diener, Silvia; Lind, Lotta

    2010-12-01

    Stricter rules for landfilling within the EU have led to the closure of many landfills and a need for large amounts of cover liner materials. Therefore, the potential utilization of mixtures of electric arc furnace slag (EAFS) and ladle slag (LS), which are currently deposited in landfills, as a material for use as landfill liner was investigated. Laboratory analyses showed the mixtures to have similar compression strength to that of high-strength concrete and low hydraulic conductivity (< 10(-11) m s(-1) in some cases). However, both their hydraulic conductivity and compaction properties were strongly affected by the time between adding water to the mixtures and compacting them (tests showed that a delay of 24 h can lead to an increase in hydraulic conductivity, so it should be compacted as soon as possible after mixing the material with water). In addition, the performance of a cover liner constructed using EAFS and LS was studied in a 2-year field trial on a landfill for municipal solid waste, in which the average amount of leachate collected from ten lysimeters was only 27 L m(-2) year(-1), easily meeting Swedish criteria for the permeability of covers on non-hazardous waste landfills (≤ 50 L m(-2) year(-1)). Thus, the material seems to have promising potential for use in barrier constructions.

  2. Field Performance Of A Compacted Clay Landfill Final Cover At A Humid Site

    EPA Science Inventory

    A study was conducted in southern Georgia, USA, to evalaute how the hydraulic properties of the compacted clay barrier layer in a final landfill cover changed over a 4-year service life. The cover was part of a test section constructed in a large drainage lysimeter that allowed ...

  3. Design of top covers supporting aerobic in situ stabilization of old landfills - An experimental simulation in lysimeters

    SciTech Connect

    Hrad, Marlies; Huber-Humer, Marion; Wimmer, Bernhard; Reichenauer, Thomas G.

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Tested engineered covers as surrogate to gas extraction during and after in situ aeration. Black-Right-Pointing-Pointer Examined how covers influence gas emissions, water balance and leachate generation. Black-Right-Pointing-Pointer Investigated effect of top covers on air-distribution in waste mass during aeration. Black-Right-Pointing-Pointer We suggest criteria and cover design to meet the demands during and after aeration. Black-Right-Pointing-Pointer Such cover systems may offer greenhouse gas emission reduction also after active aeration. - Abstract: Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 Multiplication-Sign 2 Multiplication-Sign 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH{sub 4} loadings up to 300 l CH{sub 4}/m{sup 2} d. In addition, the compost material provided high air permeability

  4. Effects of a temporary HDPE cover on landfill gas emissions: multiyear evaluation with the static chamber approach at an Italian landfill.

    PubMed

    Capaccioni, Bruno; Caramiello, Cristina; Tatàno, Fabio; Viscione, Alessandro

    2011-05-01

    According to the European Landfill Directive 1999/31/EC and the related Italian Legislation ("D. Lgs. No. 36/2003"), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements. A possible quantitative approach for field measurement and consequential evaluation of landfill CO(2), CH(4) emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the "Fano" town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005-2009). For the entire multiyear monitoring period, the resulting CO(2), CH(4) emission rates varied on the whole up to about 13,100g CO(2) m(-2)d(-1) and 3800 g CH(4) m(-2)d(-1), respectively. The elaboration of these landfill gas emission data collected at the "Fano" case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH(4) emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given

  5. Estimation on the self recovery behavior of low-conductivity layer in landfill final cover by laboratory conductivity tests.

    PubMed

    Kwon, O; Park, J

    2006-11-01

    This study examined the application of a Self Recovering Sustainable Layer (SRSL) as a landfill final cover. Low-conductivity layers in landfill covers are known to have problems associated with cracking as a result of the differential settlement or climatic changes. A SRSL is defined as a layer with chemical properties that reduces the increased hydraulic conductivity resulting from cracking by forming low-conductivity precipitates of chemicals contained in the layer. In this study, the formation of precipitates was confirmed using a batch test, spectroscopic analysis and mineralogical speciation tests. The possibility of secondary contamination due to the chemicals used for recovery was evaluated using a leaching test. A laboratory conductivity test was performed on a single layer composed of each chemical as well as on a 2-layer system. The recovery performance of the SRSL was estimated by developing artificial cracks in the specimens and observing the change in hydraulic conductivity as a function of time. In the laboratory conductivity test, the hydraulic conductivity of a 2-layer system as well as those of the individual layers that comprise the 2-layer system was estimated. In addition sodium ash was found to enhance the reduction in conductivity. A significant increase in conductivity was observed after the cracks developed but this was reduced with time, which indicated that the SRSL has a proper recovering performance. In conclusion, a SRSL can be used as a landfill final cover that could maintain low-conductivity even after the serious damages due to settlement.

  6. Alternative landfill cover technology demonstration at Kaneohe Marine Corps Base Hawaii

    SciTech Connect

    Karr, L.A.; Harre, B.; Hakonson, T.E.

    1997-12-31

    Surface covers to control water infiltration to waste buried in landfills will be the remediation alternative of choice for most hazardous and sanitary landfills operated by the Department of Defense. Although surface covers are the least expensive method of remediation for landfills, they can still be expensive solutions. Conventional wisdom suggests that landfill capping technology is well developed as evidenced by the availability of EPA guidance for designing and constructing what has become known as the {open_quotes}RCRA Cap{close_quotes}. In practice, however, very little testing of the RCRA cap, or any other design, has been done to evaluate how effective these designs are in limiting infiltration of water into waste. This paper describes a low cost alternative to the {open_quotes}RCRA Cap{close_quotes} that is being evaluated at Marine Corps Base Hawaii (MCBH) Kaneohe Bay. This study uses an innovative, simple and inexpensive concept to manipulate the fate of water falling on a landfill. The infiltration of water through the cap will be controlled by combining the evaporative forces of vegetation to remove soil water, with engineered structures that limit infiltration of precipitation into the soil. This approach relies on diverting enough of the annual precipitation to runoff, so that the water that does infiltrate into the soil can easily be removed by evapotranspiration.

  7. Large-Scale Field Study of Landfill Covers at Sandia National Laboratories

    SciTech Connect

    Dwyer, S.F.

    1998-09-01

    A large-scale field demonstration comparing final landfill cover designs has been constructed and is currently being monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for dry environments. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper presents an overview of the ongoing demonstration.

  8. Minimizing N2O fluxes from full-scale municipal solid waste landfill with properly selected cover soil.

    PubMed

    Zhang, Houhu; He, Pinjing; Shao, Liming; Qu, Xian; Lee, Duujong

    2008-01-01

    Municipal solid waste landfills emit nitrous oxide (N2O) gas. Assuming that the soil cover is the primary N2O source from landfills, this study tested, during a four-year project, the hypothesis that the proper use of chosen soils with fine texture minimizes N2O emissions. A full-scale sanitary landfill, a full-scale bioreactor landfill and a cell planted with Nerium indicum or Festuca arundinacea Schreb, at the Hangzhou Tianziling landfill in Hangzhou City were the test sites. The N2O emission rates from all test sites were considerably lower than those reported in the published reports. Specifically, the N2O emission rate was dependent on soil water content and nitrate concentrations in the cover soil. The effects of leachate recirculation and irrigation were minimal. Properly chosen cover soils applied to the landfills reduced N2O flux.

  9. Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California cover soils.

    PubMed

    Bogner, Jean E; Spokas, Kurt A; Chanton, Jeffrey P

    2011-01-01

    Compared with natural ecosystems and managed agricultural systems, engineered landfills represent a highly managed soil system for which there has been no systematic quantification of emissions from coexisting daily, intermediate, and final cover materials. We quantified the seasonal variability of CH, CO, and NO emissions from fresh refuse (no cover) and daily, intermediate, and final cover materials at northern and southern California landfill sites with engineered gas extraction systems. Fresh refuse fluxes (g m d [± SD]) averaged CH 0.053 (± 0.03), CO 135 (± 117), and NO 0.063 (± 0.059). Average CH emissions across all cover types and wet/dry seasons ranged over more than four orders of magnitude (<0.01-100 g m d) with most cover types, including both final covers, averaging <0.1 g m d with 10 to 40% of surface areas characterized by negative fluxes (uptake of atmospheric CH). The northern California intermediate cover (50 cm) had the highest CH fluxes. For both the intermediate (50-100 cm) and final (>200 cm) cover materials, below which methanogenesis was well established, the variability in gaseous fluxes was attributable to cover thickness, texture, density, and seasonally variable soil moisture and temperature at suboptimal conditions for CH oxidation. Thin daily covers (30 cm local soil) and fresh refuse generally had the highest CO and NO fluxes, indicating rapid onset of aerobic and semi-aerobic processes in recently buried refuse, with rates similar to soil ecosystems and windrow composting of organic waste. This study has emphasized the need for more systematic field quantification of seasonal emissions from multiple types of engineered covers.

  10. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    SciTech Connect

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.; Chen, R.; Zhou, C.

    2015-10-15

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  11. Field performance of alternative landfill covers vegetated with cottonwood and eucalyptus trees.

    PubMed

    Abichou, Tarek; Musagasa, Jubily; Yuan, Lei; Chanton, Jeff; Tawfiq, Kamal; Rockwood, Donald; Licht, Louis

    2012-01-01

    A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid Waste management facility in Tallahassee, Florida. Additional unlined test sections were also constructed and monitored in order to compare soil water storage, soil temperature, and tree growth inside lysimeters and in unlined test sections. The unlined test sections were in direct contact with landfill gas. Surface runoff on the ET covers was a small proportion of the water balance (1% of precipitation) as compared to 13% in the conventional cover. Percolation in the ET covers averaged 17% and 24% of precipitation as compared to 33% in the conventional cover. On average, soil water storage was higher in the lined lysimeters (429 mm) compared to unlined test sections (408 mm). The average soil temperature in the lysimeters was lower than in the unlined test sections. The average tree height inside the lysimeters was not significantly lower (8.04 mfor eucalyptus and 7.11 mfor cottonwood) than outside (8.82 m for eucalyptus and 8.01 m for cottonwood). ET tree covers vegetated with cottonwood or eucalyptus are feasible for North Florida climate as an alternative to GCL covers.

  12. N 2O emissions at municipal solid waste landfill sites: Effects of CH 4 emissions and cover soil

    NASA Astrophysics Data System (ADS)

    Zhang, Houhu; He, Pinjing; Shao, Liming

    Municipal solid waste landfills are the significant anthropogenic sources of N 2O due to the cooxidation of ammonia by methane-oxidizing bacteria in cover soils. Such bacteria could be developed through CH 4 fumigation, as evidenced by both laboratory incubation and field measurement. During a 10-day incubation with leachate addition, the average N 2O fluxes in the soil samples, collected from the three selected landfill covers, were multiplied by 1.75 ( p < 0.01), 3.56 ( p < 0.01), and 2.12 ( p < 0.01) from the soil samples preincubated with 5% CH 4 for three months when compared with the control, respectively. Among the three selected landfill sites, N 2O fluxes in two landfill sites were significantly correlated with the variations of the CH 4 emissions without landfill gas recovery ( p < 0.001). N 2O fluxes were also elevated by the increase of the CH 4 emissions with landfill gas recovery in another landfill site ( p > 0.05). The annual average N 2O flux was 176 ± 566 μg N 2O-N m -2 h -1 ( p < 0.01) from sandy soil-covered landfill site, which was 72% ( p < 0.05) and 173% ( p < 0.01) lower than the other two clay soil covered landfill sites, respectively. The magnitude order of N 2O emissions in three landfill sites was also coincident by the results of laboratory incubation, suggesting the sandy soil cover could mitigate landfill N 2O emissions.

  13. [Effects of leachate irrigation and cover soil type on N2O emission from municipal solid waste landfill].

    PubMed

    He, Pin-Jing; Chen, Miao; Zhang, Hou-Hu; Shao, Li-Ming

    2008-07-01

    By the method of static chamber, the seasonal and diurnal variations of N2O fluxes in two full-scale municipal solid waste (MSW) landfills covered with sandy and clay soils were measured to study the effects of leachate irrigation and cover soil type on the landfill N2O emission. The results showed that the N2O flux in the MSW landfill covered with sandy soil was (242 +/- 576) microg N2O-N x m(-2) x h(-1) in summer, being 3.2 times (P > 0.05) as high as that in spring [(74.4 +/- 314) microg N2O-N x m(-2) x h(-1), while the N2O flux in the MSW landfill covered with clay soil was (591 +/- 767) microg N2O-N x m(-2) x h(-1) in summer, being 2.2 times (P < 0.05) as high as that in spring [(269 +/- 335) microg N2O-N x m(-2) x h(-1)]. Leachate irrigation promoted the N2O emission from the soil cover of the landfill covered with sandy soil, and the N2O flux in the landfill was 1 time higher than that of the control (P > 0.05). Under leachate irrigation, the average N2O flux in spring and summer in the landfill covered with sand soil was (211 +/- 460) microg N2O-N x m(-2) x h(-1), being only 1/2 of that [(430 +/- 605) microg N2O-N x m(-2) x h(-1)] in the landfill covered with clay soil without leachate irrigation (P > 0.05 ). Therefore, no matter leachate irrigation was conducted or not, the N2O emission from MSW landfill could be minimized by covering with infertile sandy soil.

  14. Methane oxidation in a landfill cover soil reactor: Changing of kinetic parameters and microorganism community structure.

    PubMed

    Xing, Zhi L; Zhao, Tian T; Gao, Yan H; Yang, Xu; Liu, Shuai; Peng, Xu Y

    2017-02-23

    Changing of CH4 oxidation potential and biological characteristics with CH4 concentration was studied in a landfill cover soil reactor (LCSR). The maximum rate of CH4 oxidation reached 32.40 mol d(-1) m(-2) by providing sufficient O2 in the LCSR. The kinetic parameters of methane oxidation in landfill cover soil were obtained by fitting substrate diffusion and consumption model based on the concentration profile of CH4 and O2. The values of [Formula: see text] (0.93-2.29%) and [Formula: see text] (140-524 nmol kgsoil-DW(-1)·s(-1)) increased with CH4 concentration (9.25-20.30%), while the values of [Formula: see text] (312.9-2.6%) and [Formula: see text] (1.3 × 10(-5) to 9.0 × 10(-3) nmol mL(-1) h(-1)) were just the opposite. MiSeq pyrosequencing data revealed that Methylobacter (the relative abundance was decreased with height of LCSR) and Methylococcales_unclassified (the relative abundance was increased expect in H 80) became the key players after incubation with increasing CH4 concentration. These findings provide information for assessing CH4 oxidation potential and changing of biological characteristics in landfill cover soil.

  15. Impact of different plants on the gas profile of a landfill cover.

    PubMed

    Reichenauer, Thomas G; Watzinger, Andrea; Riesing, Johann; Gerzabek, Martin H

    2011-05-01

    Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa+grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa+grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

  16. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover.

    PubMed

    Ng, C W W; Chen, Z K; Coo, J L; Chen, R; Zhou, C

    2015-10-01

    Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas-water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different climate conditions. The results of experimental study and numerical simulation reveal that as the degree of saturation and thickness of clay increase, the gas breakthrough pressure increases but the gas emission rate decreases significantly. Under a gas pressure of 10 kPa (the upper bound limit of typical landfill gas pressure), a 0.6m or thicker

  17. VEGETATIVE COVERS FOR WASTE CONTAINMENT

    EPA Science Inventory

    Disposal of municipal ahd hazardous waste in the United States is primarily accomplished by containment in lined and capped landfills. Evapotranspiration cover systems offer an alternative to conventional landfill cap systems. These covers work on completely different principles ...

  18. Methane oxidation in compost-based landfill cover with vegetation during wet and dry conditions in the tropics.

    PubMed

    Tanthachoon, Nathiya; Chiemchaisri, Chart; Chiemchaisri, Wilai; Tudsri, Sayan; Kumar, Sunil

    2008-05-01

    The effect of compost and vegetation on methane (CH4) oxidation was investigated during wet and dry conditions in a tropical region. A laboratory-scale experiment was conducted to examine the performance of nonvegetated and vegetated landfill cover systems in terms of CH4 oxidation efficiency. Two types of landfill cover materials (compost and sandy loam) and two species of tropical grasses (Sporobolus virginicus and Panicum repens) were studied for their effect on the CH4 oxidation reaction. It was found that the use of compost as cover material could maintain a high methane oxidation rate (MOR) of 12 mol CH4/m3 x day over a 250-day period. Leachate application showed a positive effect on promoting methanotrophic activity and increasing MOR. A high MOR of 12 mol CH4/m3 x day was achieved when using compost cover with P. repens during wet and dry seasons when leachate irrigation was practiced. In dry conditions, a lower MOR of 8 mol CH4/m3 x day was observed for 80 days.

  19. Estimation of mass transport parameters of gases for quantifying CH4 oxidation in landfill soil covers.

    PubMed

    Im, J; Moon, S; Nam, K; Kim, Y-J; Kim, J Y

    2009-02-01

    Methane (CH(4)), which is one of the most abundant anthropogenic greenhouse gases, is produced from landfills. CH(4) is biologically oxidized to carbon dioxide, which has a lower global warming potential than methane, when it passes through a cover soil. In order to quantify the amount of CH(4) oxidized in a landfill cover soil, a soil column test, a diffusion cell test, and a mathematical model analysis were carried out. In the column test, maximum oxidation rates of CH(4) (V(max)) showed higher values in the upper part of the column than those in the lower part caused by the penetration of O(2) from the top. The organic matter content in the upper area was also higher due to the active microbial growth. The dispersion analysis results for O(2) and CH(4) in the column are counter-intuitive. As the upward flow rate of the landfill gas increased, the dispersion coefficient of CH(4) slightly increased, possibly due to the effect of mechanical dispersion. On the other hand, as the upward flow rate of the landfill gas increased, the dispersion coefficient of O(2) decreased. It is possible that the diffusion of gases in porous media is influenced by the counter-directional flow rate. Further analysis of other gases in the column, N(2) and CO(2), may be required to support this hypothesis, but in this paper we propose the possibility that the simulations using the diffusion coefficient of O(2) under the natural condition may overestimate the penetration of O(2) into the soil cover layer and consequently overestimate the oxidation of CH(4).

  20. Methane flux and oxidation at two types of intermediate landfill covers

    SciTech Connect

    Abichou, Tarek . E-mail: abichou@eng.fsu.edu; Chanton, Jeffery; Powelson, David; Fleiger, Jill; Escoriaza, Sharon; Lei, Yuan; Stern, Jennifer

    2006-07-01

    Methane emissions were measured on two areas at a Florida (USA) landfill using the static chamber technique. Because existing literature contains few measurements of methane emissions and oxidation in intermediate cover areas, this study focused on field measurement of emissions at 15-cm-thick non-vegetated intermediate cover overlying 1-year-old waste and a 45-cm-thick vegetated intermediate cover overlying 7-year-old waste. The 45 cm thick cover can also simulate non-engineered covers associated with older closed landfills. Oxidation of the emitted methane was evaluated using stable isotope techniques. The arithmetic means of the measured fluxes were 54 and 22 g CH{sub 4} m{sup -2} d{sup -1} from the thin cover and the thick cover, respectively. The peak flux was 596 g m{sup -2} d{sup -1} for the thin cover and 330 g m{sup -2} d{sup -1} for the thick cover. The mean percent oxidation was significantly greater (25%) at the thick cover relative to the thin cover (14%). This difference only partly accounted for the difference in emissions from the two sites. Inverse distance weighing was used to describe the spatial variation of flux emissions from each cover type. The geospatial mean flux was 21.6 g m{sup -2} d{sup -1} for the thick intermediate cover and 50.0 g m{sup -2} d{sup -1} for the thin intermediate cover. High emission zones in the thick cover were fewer and more isolated, while high emission zones in the thin cover were continuous and covered a larger area. These differences in the emission patterns suggest that different CH{sub 4} mitigation techniques should be applied to the two areas. For the thick intermediate cover, we suggest that effective mitigation of methane emissions could be achieved by placement of individualized compost cells over high emission zones. Emissions from the thin intermediate cover, on the other hand, can be mitigated by placing a compost layer over the entire area.

  1. Characterization of adsorption removal of hydrogen sulfide by waste biocover soil, an alternative landfill cover.

    PubMed

    He, Ruo; Xia, Fang-Fang; Wang, Jing; Pan, Chang-Liang; Fang, Cheng-Ran

    2011-02-15

    Landfill is an important anthropogenic source of odorous gases. In this work, the adsorption characteristics of H(2)S on waste biocover soil, an alternative landfill cover, were investigated. The results showed that the adsorption capacity of H(2)S increased with the reduction of particle size, the increase of pH value and water content of waste biocover soil. The optimal composition of waste biocover soil, in regard to operation cost and H(2)S removal performance, was original pH value, water content of 40% (w/w) and particle size of ≤4 mm. A net increase was observed in the adsorption capacity of H(2)S with temperatures in the range of 4-35°C. The adsorption capacity of H(2)S on waste biocover soil with optimal composition reached the maximum value of 60±1 mg/kg at oxygen concentration of 10% (v/v). When H(2)S concentration was about 5% (v/v), the adsorption capacity was near saturation, maintaining at 383±40 mg/kg. Among the four experimental soils, the highest adsorption capacity of H(2)S was observed on waste biocover soil, followed by landfill cover soil, mulberry soil, and sand soil, which was only 9.8% of that of waste biocover soil.

  2. Deployment of an alternative cover and final closure of the Mixed Waste Landfill, Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect

    Peace, Gerald L.; Goering, Timothy James; McVey, Michael David (GRAM, Inc., Albuquerque, NM); Borns, David James

    2003-06-01

    An alternative cover design consisting of a monolithic layer of native soil is proposed as the closure path for the Mixed Waste Landfill at Sandia National Laboratories, New Mexico. The proposed design would rely upon soil thickness and evapotranspiration to provide long-term performance and stability, and would be inexpensive to build and maintain. The proposed design is a 3-ft-thick, vegetated soil cover. The alternative cover meets the intent of RCRA Subtitle C regulations in that: (a) water migration through the cover is minimized; (b) maintenance is minimized by using a monolithic soil layer; (c) cover erosion is minimized by using erosion control measures; (d) subsidence is accommodated by using a ''soft'' design; and (e) the permeability of the cover is less than or equal to that of natural subsurface soil present. Performance of the proposed cover is integrated with natural site conditions, producing a ''system performance'' that will ensure that the cover is protective of human health and the environment. Natural site conditions that will produce a system performance include: (a) extremely low precipitation and high potential evapotranspiration; (b) negligible recharge to groundwater; (c) an extensive vadose zone; (d) groundwater approximately 500 ft below the surface; and (e) a versatile, native flora that will persist indefinitely as a climax ecological community with little or no maintenance.

  3. Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers.

    PubMed

    Stralis-Pavese, Nancy; Sessitsch, Angela; Weilharter, Alexandra; Reichenauer, Thomas; Riesing, Johann; Csontos, József; Murrell, J Colin; Bodrossy, Levente

    2004-04-01

    Landfill sites are responsible for 6-12% of global methane emission. Methanotrophs play a very important role in decreasing landfill site methane emissions. We investigated the methane oxidation capacity and methanotroph diversity in lysimeters simulating landfill sites with different plant vegetations. Methane oxidation rates were 35 g methane m-2 day-1 or higher for planted lysimeters and 18 g methane m-2 day-1 or less for bare soil controls. Best methane oxidation, as displayed by gas depth profiles, was found under a vegetation of grass and alfalfa. Methanotroph communities were analysed at high throughput and resolution using a microbial diagnostic microarray targeting the particulate methane monooxygenase (pmoA) gene of methanotrophs and functionally related bacteria. Members of the genera Methylocystis and Methylocaldum were found to be the dominant members in landfill site simulating lysimeters. Soil bacterial communities in biogas free control lysimeters, which were less abundant in methanotrophs, were dominated by Methylocaldum. Type Ia methanotrophs were found only in the top layers of bare soil lysimeters with relatively high oxygen and low methane concentrations. A competetive advantage of type II methanotrophs over type Ia methanotrophs was indicated under all plant covers investigated. Analysis of average and individual results from parallel samples was used to identify general trends and variations in methanotroph community structures in relation to depth, methane supply and plant cover. The applicability of the technology for the detection of environmental perturbations was proven by an erroneous result, where an unexpected community composition detected with the microarray indicated a potential gas leakage in the lysimeter being investigated.

  4. Spatial variability of soil gas concentration and methane oxidation capacity in landfill covers.

    PubMed

    Röwer, Inga Ute; Geck, Christoph; Gebert, Julia; Pfeiffer, Eva-Maria

    2011-05-01

    In order to devise design criteria for biocovers intended to enhance the microbial oxidation of landfill methane it is critical to understand the factors influencing gas migration and methane oxidation in landfill cover soils. On an old municipal solid waste landfill in north-western Germany soil gas concentrations (10, 40, 90 cm depth), topsoil methane oxidation capacity and soil properties were surveyed at 40 locations along a 16 m grid. As soil properties determine gas flow patterns it was hypothesized that the variability in soil gas composition and the subsequent methanotrophic activity would correspond to the variability of soil properties. Methanotrophic activity was found to be subject to high spatial variability, with values ranging between 0.17 and 9.80 g CH(4)m(-2)h(-1)(.) Considering the current gas production rate of 0.03 g CH(4)m(-2)h(-1), the oxidation capacity at all sampled locations clearly exceeded the flux to the cover, and can be regarded as an effective instrument for mitigating methane fluxes. The methane concentration in the cover showed a high spatial heterogeneity with values between 0.01 and 0.32 vol.% (10 cm depth), 22.52 vol.% (40 cm), and 36.85 vol.% (90 cm). The exposure to methane raised the oxidation capacity, suggested by a statistical correlation to an increase in methane concentration at 90 cm depth. Methane oxidation capacity was further affected by the methanotroph bacteria pH optimum and nutrient availability, and increased with decreasing pH towards neutrality, and increased with soluble ion concentration). Soil methane and carbon dioxide concentration increased with lower flow resistance of the cover, as represented by the soil properties of a reduced bulk density, increase in air capacity and in relative ground level.

  5. A comparison of CH4, N2O and CO2 emissions from three different cover types in a municipal solid waste landfill.

    PubMed

    Wang, Xiaojun; Jia, Mingsheng; Lin, Xiangyu; Xu, Ying; Ye, Xin; Kao, Chih Ming; Chen, Shaohua

    2017-04-01

    High-density polyethylene (HDPE) membranes are commonly used as a cover component in sanitary landfills, although only limited evaluations of its effect on greenhouse gas (GHG) emissions have been completed. In this study, field GHG emission were investigated at the Dongbu landfill, using three different cover systems: HDPE covering; no covering, on the working face; and a novel material-Oreezyme Waste Cover (OWC) material as a trial material. Results showed that the HDPE membrane achieved a high CH4 retention, 99.8% (CH4 mean flux of 12 mg C m(-2) h(-1)) compared with the air-permeable OWC surface (CH4 mean flux of 5933 mg C m(-2) h(-1)) of the same landfill age. Fresh waste at the working face emitted a large fraction of N2O, with average fluxes of 10 mg N m(-2) h(-2), while N2O emissions were small at both the HDPE and the OWC sections. At the OWC section, CH4 emissions were elevated under high air temperatures but decreased as landfill age increased. N2O emissions from the working face had a significant negative correlation with air temperature, with peak values in winter. A massive presence of CO2 was observed at both the working face and the OWC sections. Most importantly, the annual GHG emissions were 4.9 Gg yr(-1) in CO2 equivalents for the landfill site, of which the OWC-covered section contributed the most CH4 (41.9%), while the working face contributed the most N2O (97.2%). HDPE membrane is therefore, a recommended cover material for GHG control.

  6. Assessing the performance of a cold region evapotranspiration landfill cover using lysimetry and electrical resistivity tomography.

    PubMed

    Schnabel, William E; Munk, Jens; Abichou, Tarek; Barnes, David; Lee, William; Pape, Barbara

    2012-01-01

    In order to test the efficacy ofa cold-region evapotranspiration (ET) landfill cover against a conventional compacted clay (CCL) landfill cover, two pilot scale covers were constructed in side-by-side basin lysimeters (20m x 10m x 2m) at a site in Anchorage, Alaska. The primary basis of comparison between the two lysimeters was the percolation of moisture from the bottom of each lysimeter. Between 30 April 2005 and 16 May 2006, 51.5 mm of water percolated from the ET lysimeter, compared to 50.6 mm for the the CCL lysimeter. This difference was not found to be significant at the 95% confidence level. As part of the project, electrical resistivity tomography (ERT) was utilized to measure and map soil moisture in ET lysimeter cross sections. The ERT-generated cross sections were found to accurately predict the onset and duration of lysimeter percolation. Moreover, ERT-generated soil moisture values demonstrated a strong linear relationship to lysimeter percolation rates (R-Squared = 0.92). Consequently, ERT is proposed as a reliable tool for assessing the function of field scale ET covers in the absence of drainage measurement devices.

  7. Gas permeability of biochar-amended clay: potential alternative landfill final cover material.

    PubMed

    Wong, James Tsz Fung; Chen, Zhongkui; Ng, Charles Wang Wai; Wong, Ming Hung

    2016-04-01

    Compacted biochar-amended clay (BAC) has been proposed as an alternative landfill final cover material in this study. Biochar has long been proposed to promote crop growth, mitigate odor emission, and promote methane oxidation in field soils. However, previous studies showed that soil-gas permeability was increased upon biochar application, which will promote landfill gas emission. The objective of the present study is to investigate the possibility of using compacted BAC as an alternative material in landfill final cover by evaluating its gas permeability. BAC samples were prepared by mixing 425-μm-sieved peanut shell biochar with kaolin clay in different ratios (0, 5, 10, and 15 %, w/w) and compacting at different degrees of compactions (DOC) (80, 85, and 90 %) with an optimum water content of 35 %. The gas permeability of the BACs was measured by flexible wall gas permeameter and the microstructure of the BACs was analyzed by SEM with energy-dispersive x-ray spectroscopy (EDX). The results show that the effects of biochar content on BAC gas permeability is highly dependent on the DOC. At high DOC (90 %), the gas permeability of BAC decreases with increasing biochar content due to the combined effect of the clay aggregation and the inhibition of biochar in the gas flow. However, at low DOC (80 %), biochar incorporation has no effects on gas permeability because it no longer acts as a filling material to the retard gas flow. The results from the present study imply that compacted BAC can be used as an alternative final cover material with decreased gas permeability when compared with clay.

  8. Effects of substrate induced respiration on the stability of bottom ash in landfill cover environment.

    PubMed

    Ilyas, A; Lovat, E; Persson, K M

    2014-12-01

    The municipal solid waste incineration bottom ash is being increasingly used to construct landfill covers in Sweden. In post-closure, owing to increased cover infiltration, the percolating water can add external organic matter to bottom ash. The addition and subsequent degradation of this external organic matter can affect metal mobility through complexation and change in redox conditions. However, the impacts of such external organic matter addition on bottom ash stability have not been fully evaluated yet. Therefore, the objective of this study was to evaluate the impact of external organic matter on bottom ash respiration and metal leaching. The samples of weathered bottom ash were mixed with oven dried and digested wastewater sludge (1%-5% by weight). The aerobic respiration activity (AT4), as well as the leaching of metals, was tested with the help of respiration and batch leaching tests. The respiration and heavy metal leaching increased linearly with the external organic matter addition. Based on the results, it was concluded that the external organic matter addition would negatively affect the quality of landfill cover drainage.

  9. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    SciTech Connect

    1981-01-01

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  10. A decision support system for assessing landfill performance

    SciTech Connect

    Celik, Basak; Girgin, Sertan; Yazici, Adnan; Unlue, Kahraman

    2010-01-15

    Designing environmentally sound landfills is a challenging engineering task due to complex interactions of numerous design variables; such as landfill size, waste characteristics, and site hydrogeology. Decision support systems (DSS) can be utilized to handle these complex interactions and to aid in a performance-based landfill design by coupling system simulation models (SSM). The aim of this paper is to present a decision support system developed for a performance-based landfill design. The developed DSS is called Landfill Design Decision Support System - LFDSS. A two-step DSS framework, composed of preliminary design and detailed design phases, is set to effectively couple and run the SSMs and calculation modules. In preliminary design phase, preliminary design alternatives are proposed using general site data. In detailed design phase, proposed design alternatives are further simulated under site-specific data using SSMs for performance evaluation. LFDSS calculates the required landfill volume, performs landfill base contour design, proposes preliminary design alternatives based on general site conditions, evaluates the performance of the proposed designs, calculates the factor of safety values for slope stability analyses, and performs major cost calculations. The DSS evaluates the results of all landfill design alternatives, and determines whether the design satisfies the predefined performance criteria. The DSS ultimately enables comparisons among different landfill designs based on their performances (i.e. leachate head stability, and groundwater contamination), constructional stability and costs. The developed DSS was applied to a real site, and the results demonstrated the strengths of the developed system on designing environmentally sound and feasible landfills.

  11. A decision support system for assessing landfill performance.

    PubMed

    Celik, Başak; Girgin, Sertan; Yazici, Adnan; Unlü, Kahraman

    2010-01-01

    Designing environmentally sound landfills is a challenging engineering task due to complex interactions of numerous design variables; such as landfill size, waste characteristics, and site hydrogeology. Decision support systems (DSS) can be utilized to handle these complex interactions and to aid in a performance-based landfill design by coupling system simulation models (SSM). The aim of this paper is to present a decision support system developed for a performance-based landfill design. The developed DSS is called Landfill Design Decision Support System - LFDSS. A two-step DSS framework, composed of preliminary design and detailed design phases, is set to effectively couple and run the SSMs and calculation modules. In preliminary design phase, preliminary design alternatives are proposed using general site data. In detailed design phase, proposed design alternatives are further simulated under site-specific data using SSMs for performance evaluation. LFDSS calculates the required landfill volume, performs landfill base contour design, proposes preliminary design alternatives based on general site conditions, evaluates the performance of the proposed designs, calculates the factor of safety values for slope stability analyses, and performs major cost calculations. The DSS evaluates the results of all landfill design alternatives, and determines whether the design satisfies the predefined performance criteria. The DSS ultimately enables comparisons among different landfill designs based on their performances (i.e. leachate head stability, and groundwater contamination), constructional stability and costs. The developed DSS was applied to a real site, and the results demonstrated the strengths of the developed system on designing environmentally sound and feasible landfills.

  12. Attenuation of hydrogen sulfide at construction and demolition debris landfills using alternative cover materials.

    PubMed

    Xu, Qiyong; Townsend, Timothy; Reinhart, Debra

    2010-04-01

    The attenuation of H(2)S emissions by various landfill cover materials was evaluated using both laboratory and field experiments. The results demonstrated that cover materials consisting of selected waste products (compost and yard trash) and soils amended with quicklime and calcium carbonate effectively attenuated H(2)S emissions and detectable H(2)S emissions were only encountered in a testing plot using a sandy soil cover (average emission rate was 4.67x10(-6)mgm(-2)s(-1)). H(2)S concentration profiles in the cover materials indicated that H(2)S was removed as it migrated through the cover materials. At the same depth in the testing area, the H(2)S concentration in the sandy soil field plot was always higher than that of other testing plots because the sand (a) demonstrated less ability to remove H(2)S and (b) exhibited a higher H(2)S concentration at the base of the cover. Laboratory experiments confirmed these observations, with a combination of physical adsorption, chemical reactions, and biological oxidation, accounting for the enhanced removal. In addition to removal, the results suggest that some of the cover materials reduced H(2)S generation by creating less favorable conditions for sulfate-reducing bacteria (e.g., high pH and temperature).

  13. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    SciTech Connect

    David D. Breshears; Fairley J. Barnes; John W. Nyhan; Johnny A. Salazar

    1998-09-01

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improved designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the average and

  14. Structure and function of methanotrophic communities in a landfill-cover soil.

    PubMed

    Henneberger, Ruth; Lüke, Claudia; Mosberger, Lona; Schroth, Martin H

    2012-07-01

    In landfill-cover soils, aerobic methane-oxidizing bacteria (MOB) convert CH(4) to CO(2), mitigating emissions of the greenhouse gas CH(4) to the atmosphere. We investigated overall MOB community structure and assessed spatial differences in MOB diversity, abundance and activity in a Swiss landfill-cover soil. Molecular cloning, terminal restriction-fragment length polymorphism (T-RFLP) and quantitative PCR of pmoA genes were applied to soil collected from 16 locations at three different depths to study MOB community structure, diversity and abundance; MOB activity was measured in the field using gas push-pull tests. The MOB community was highly diverse but dominated by Type Ia MOB, with novel pmoA sequences present. Type II MOB were detected mainly in deeper soil with lower nutrient and higher CH(4) concentrations. Substantial differences in MOB community structure were observed between one high- and one low-activity location. MOB abundance was highly variable across the site [4.0 × 10(4) to 1.1 × 10(7) (g soil dry weight)(-1)]. Potential CH(4) oxidation rates were high [1.8-58.2 mmol CH(4) (L soil air)(-1) day(-1) ] but showed significant lateral variation and were positively correlated with mean CH(4) concentrations (P < 0.01), MOB abundance (P < 0.05) and MOB diversity (weak correlation, P < 0.17). Our findings indicate that Methylosarcina and closely related MOB are key players and that MOB abundance and community structure are driving factors in CH(4) oxidation at this landfill.

  15. Steel slags in a landfill top cover--experiences from a full-scale experiment.

    PubMed

    Andreas, L; Diener, S; Lagerkvist, A

    2014-03-01

    A full scale field study has been carried out in order to test and evaluate the use of slags from high-alloy steel production as the construction materials for a final cover of an old municipal landfill. Five test areas were built using different slag mixtures within the barrier layer (liner). The cover consisted of a foundation layer, a liner with a thickness of 0.7 m, a drainage layer of 0.3 m, a protection layer of 1.5 m and a vegetation layer of 0.25 m. The infiltration varied depending on the cover design used, mainly the liner recipe but also over time and was related to seasons and precipitation intensity. The test areas with liners composed of 50% electric arc furnace (EAF) slag and 50% cementitious ladle slag (LS) on a weight basis and with a proper consistence of the protection layer were found to meet the Swedish infiltration criteria of ⩽50 l (m(2)a)(-1) for final covers for landfills for non-hazardous waste: the cumulative infiltration rates to date were 44, 19 and 0.4 l (m(2)a)(-1) for A1, A4 and A5, respectively. Compared to the precipitation, the portion of leachate was always lower after the summer despite high precipitation from June to August. The main reason for this is evapotranspiration but also the fact that the time delay in the leachate formation following a precipitation event has a stronger effect during the shorter summer sampling periods than the long winter periods. Conventional techniques and equipment can be used but close cooperation between all involved partners is crucial in order to achieve the required performance of the cover. This includes planning, method and equipment testing and quality assurance.

  16. Modelling of stable isotope fractionation by methane oxidation and diffusion in landfill cover soils

    SciTech Connect

    Mahieu, Koenraad De Visscher, Alex; Vanrolleghem, Peter A.; Van Cleemput, Oswald

    2008-07-01

    A technique to measure biological methane oxidation in landfill cover soils that is gaining increased interest is the measurement of stable isotope fractionation in the methane. Usually to quantify methane oxidation, only fractionation by oxidation is taken into account. Recently it was shown that neglecting the isotope fractionation by diffusion results in underestimation of the methane oxidation. In this study a simulation model was developed that describes gas transport and methane oxidation in landfill cover soils. The model distinguishes between {sup 12}CH{sub 4}, {sup 13}CH{sub 4}, and {sup 12}CH{sub 3}D explicitly, and includes isotope fractionation by diffusion and oxidation. To evaluate the model, the simulations were compared with column experiments from previous studies. The predicted concentration profiles and isotopic profiles match the measured ones very well, with a root mean square deviation (RMSD) of 1.7 vol% in the concentration and a RMSD of 0.8 per mille in the {delta}{sup 13}C value, with {delta}{sup 13}C the relative {sup 13}C abundance as compared to an international standard. Overall, the comparison shows that a model-based isotope approach for the determination of methane oxidation efficiencies is feasible and superior to existing isotope methods.

  17. Field note: comparative efficacy of a woody evapotranspiration landfill cover following the removal of aboveground biomass.

    PubMed

    Schnabel, William; Munk, Jens; Byrd, Amanda

    2015-01-01

    Woody vegetation cultivated for moisture management on evapotranspiration (ET) landfill covers could potentially serve a secondary function as a biomass crop. However, research is required to evaluate the extent to which trees could be harvested from ET covers without significantly impacting their moisture management function. This study investigated the drainage through a six-year-old, primarily poplar/cottonwood ET test cover for a period of one year following the harvest of all woody biomass exceeding a height of 30 cm above ground surface. Results were compared to previously reported drainage observed during the years leading up to the coppice event. In the first year following coppice, the ET cover was found to be 93% effective at redirecting moisture during the spring/summer season, and 95% effective during the subsequent fall/winter season. This was slightly lower than the 95% and 100% efficacy observed in the spring/summer and fall/winter seasons, respectively, during the final measured year prior to coppice. However, the post-coppice efficacy was higher than the efficacy observed during the first three years following establishment of the cover. While additional longer-term studies are recommended, this project demonstrated that woody ET covers could potentially produce harvestable biomass while still effectively managing aerial moisture.

  18. Keeping landfill gas systems in tune

    SciTech Connect

    Blackman, L.; Myers, L.; Bjerkin, L.; Freemon, P.

    1998-01-01

    The efficiency of LFG recovery systems is influenced by many complex and interrelated factors including atmospheric conditions and LFG dynamics. In order to balance the operation of a LFG system, the factors that influence the system, such as the effects of atmospheric conditions must be understood and taken into consideration. The dynamics include: typical, daily diurnal changes in barometric pressure and the temperature and density of the ambient air due to local meteorological conditions; major changes in barometric pressure and the temperature and density of ambient air due to transient high and low pressure systems related to weather conditions; dynamics of the biochemical activity within the landfill; and dynamics of the LFG flowing through the gas extraction system pipe lines. These factors dramatically influence LFG density, mass flow, quantity, and quality. They also influence the ability of a well designed gas collection system to effectively control gas migration and to provide a reasonably high gas product for energy recovery. Thus, an efficient LFG extraction system must attempt to compensate for these varying and uncontrollable conditions.

  19. Effect of lime-stabilized sludge as landfill cover on refuse decomposition

    SciTech Connect

    Rhew, R.D.; Barlaz, M.A.

    1995-07-01

    Increased quantities of wastewater-treatment sludge coupled with more stringent regulations make it important to develop alternatives for residuals management. The use of a mixture of anaerobically digested, lime-stabilized wastewater sludge (LSS) and soil as a cover material was evaluated for its effect on refuse decomposition and leachate quality. Tests were conducted in 4-L reactors filled with shredded refuse an operated to accelerate refuse stabilization. Cover mixtures evaluated in quadruplicate included pure soil, pure lime, and mixtures containing 40% and 70% LSS in soil. Methane production and leachate stabilization were enhanced in reactors containing added lime or LSS. The presence of LSS in the cover did not increase the concentrations of NH{sub 3}-N, PO{sub 4}-P, Cd, Cr, Fe, Ni, Pb, or Zn in the leachate. There was a slight increase in Cu attributable to LSS. The use of LSS, or other lime-containing wastes in landfill cover material has the potential to be beneficial as a source of inexpensive cover material, as an outlet for lime waste, and as a method to enhance refuse decomposition and leachate stabilization.

  20. Field Performance of A Compacted Clay Landfill Final cover At A Humid Site

    SciTech Connect

    Albright, William H.; Benson, Craig H.; Gee, Glendon W.; Abichou, Tarek; Mcdonald, Eric V.; Tyler, Scott W.; Rock, Steven

    2006-11-01

    A study was conducted in southern Georgia, USA to evaluate how the hydraulic properties of the compacted clay barrier layer in a landfill final cover changed over a 4-yr service life. The cover was part of a test section constructed in a large drainage lysimeter that allowed CE Database subject headings: landfill, hydrogeology, compacted soils, lysimeters, desiccation continuous monitoring of the water balance. Patterns in the drainage (i.e., flow from the bottom of the cover) record suggest that preferential flow paths developed in the clay barrier soon after construction, apparently in response to desiccation cracking. After four years, the clay barrier was excavated and examined for changes in soil structure and hydraulic conductivity. Tests were conducted in situ with a sealed double-ring infiltrometer and two-stage borehole permeameters and in the laboratory on hand-carved blocks taken during construction and after four years of service. The in situ and laboratory tests indicated that the hydraulic conductivity increased approximately three orders of magnitude (from ? 10-7 to ? 10-4 cm s-1) during the service life. A dye tracer test and soil structure analysis showed that extensive cracking and root development occurred throughout the entire depth of the barrier layer. Laboratory tests on undisturbed specimens of the clay barrier indicated that the hydraulic conductivity of damaged clay barriers can be under-estimated significantly if small specimens (e.g., tube samples) are used for hydraulic conductivity assessment. The findings also indicate that clay barriers must be protected from desiccation and root intrusion if they are expected to function as intended, even at sites in warm, humid locations.

  1. Hydraulic conductivity of fly ash-sewage sludge mixes for use in landfill cover liners.

    PubMed

    Herrmann, Inga; Svensson, Malin; Ecke, Holger; Kumpiene, Jurate; Maurice, Christian; Andreas, Lale; Lagerkvist, Anders

    2009-08-01

    Secondary materials could help meeting the increasing demand of landfill cover liner materials. In this study, the effect of compaction energy, water content, ash ratio, freezing, drying and biological activity on the hydraulic conductivity of two fly ash-sewage sludge mixes was investigated using a 2(7-1) fractional factorial design. The aim was to identify the factors that influence hydraulic conductivity, to quantify their effects and to assess how a sufficiently low hydraulic conductivity can be achieved. The factors compaction energy and drying, as well as the factor interactions material x ash ratio and ash ratio x compaction energy affected hydraulic conductivity significantly (alpha=0.05). Freezing on five freeze-thaw cycles did not affect hydraulic conductivity. Water content affected hydraulic conductivity only initially. The hydraulic conductivity data were modelled using multiple linear regression. The derived models were reliable as indicated by R(adjusted)(2) values between 0.75 and 0.86. Independent on the ash ratio and the material, hydraulic conductivity was predicted to be between 1.7 x 10(-11)m s(-1) and 8.9 x 10(-10)m s(-1) if the compaction energy was 2.4 J cm(-3), the ash ratio between 20% and 75% and drying did not occur. Thus, the investigated materials met the limit value for non-hazardous waste landfills of 10(-9)m s(-1).

  2. [Effect of operational modes on community structure of type I methanotroph in the cover soil of municipal solid waste landfill].

    PubMed

    Yu, Ting; He, Pin-Jing; Lü, Fan; Shao, Li-Ming

    2008-10-01

    Type I methanotroph is crucial for methane oxidization and it responses fast to the changes in environment. In this study, 16S rDNA-based denaturing gradient gel electrophoresis (DGGE) gene fingerprint technology was applied to investigate the effect of operational modes, i. e. high-density polyethylene liner (HDPE) isolation or subsurface irrigation of landfill leachate and vegetation, on community structure and diversity of type I methanotroph in soils covering municipal solid waste landfill. 16S rDNA based phylogenetic analysis reveals type I methanotroph in all tested soils belongs to Methylobacter. According to Shannon-Wiener diversity index and principal component analysis, landfill leachate subsurface irrigation and vegetation have more impact on type I methanotroph community structure and diversity than HDPE liner isolation does, and they reduce type I methanotroph diversity. Leachate irrigation is supposed to inhibit the growth of Methylobacter population. Community structure of type I methanotroph in landfill cover soil isolated by HDPE, i.e. invaded by landfill gas, shifts during long-term gas interference. When cover age is 1.5 years old, Shannon-Wiener diversity index of type I methanotroph reaches its maximum.

  3. Water balance relationships in four alternative cover designs for radioactive and mixed waste landfills

    SciTech Connect

    Warren, R.W.; Hakonson, T.E.; Trujillo, G.

    1994-08-01

    Preliminary results are presented from a field study to evaluate the relative hydrologic performance of various landfill capping technologies installed by the Los Alamos National Laboratory at Hill Air Force Base, Utah. Four cover designs (two Los Alamos capillary barrier designs, one modified EPA RCRA design, and one conventional design) were installed in large lysimeters instrumented to monitor the fate of natural precipitation between 01 January 1990 and 20 September 1993. After 45 months of study, results showed that the cover designs containing barrier layers were effective in reducing deep percolation as compared to a simple soil cap design. The RCRA cover, incorporating a clay hydraulic barrier, was the most effective of all cover designs in controlling percolation but was not 100% effective. Over 90% of all percolation and barrier lateral flow occurred during the months of February through May of each year, primarily as a result of snow melt, early spring rains and low evapotranspiration. Gravel mulch surface treatments (70--80% coverage) were effective in reducing runoff and erosion. The two plots receiving gravel mulch treatments exhibited equal but enhanced amounts of evapotranspiration despite the fact that one plot was planted with additional shrubs.

  4. Two-year performance by evapotranspiration covers for municipal solid waste landfills in northwest Ohio.

    PubMed

    Barnswell, Kristopher D; Dwyer, Daryl F

    2012-12-01

    Evapotranspiration (ET) covers have gained interest as an alternative to conventional covers for the closure of municipal solid waste (MSW) landfills because they are less costly to construct and are expected to have a longer service life. Whereas ET covers have gained acceptance in arid and semi-arid regions (defined by a precipitation (P) to potential evapotranspiration (PET) ratio less than 0.75) by meeting performance standards (e.g. rate of percolation), it remains unclear whether they are suitable for humid regions (P:PET greater than 0.75). The goal of this project is to extend their application to northwest Ohio (P:PET equals 1.29) by designing covers that produce a rate of percolation less than 32 cm yr(-1), the maximum acceptable rate by the Ohio Environmental Protection Agency (OEPA). Test ET covers were constructed in drainage lysimeters (1.52 m diameter, 1.52 m depth) using dredged sediment amended with organic material and consisted of immature (I, plants seeded onto soil) or mature (M, plants transferred from a restored tall-grass prairie) plant mixtures. The water balance for the ET covers was monitored from June 2009 to June 2011, which included measured precipitation and percolation, and estimated soil water storage and evapotranspiration. Precipitation was applied at a rate of 94 cm yr(-1) in the first year and at rate of 69 cm yr(-1) in the second year. During the first year, covers with the M plant mixture produced noticeably less percolation (4 cm) than covers with the I plant mixture (17 cm). However, during the second year, covers with the M plant mixture produced considerably more percolation (10 cm) than covers with the I plant mixture (3 cm). This is likely due to a decrease in the aboveground biomass for the M plant mixture from year 1 (1008 g m(-2)) to year 2 (794 g m(-2)) and an increase for the I plant mixture from year 1 (644 g m(-2)) to year 2 (1314 gm(-2)). Over the 2-year period, the mean annual rates of percolation for the covers

  5. Use of the time domain reflectrometry in hydraulic studies of multilayered landfill covers for closure of waste landfills at Los Alamos, New Mexico

    SciTech Connect

    Nyhan, J.W.; Schofield, T.G.; Martin, C.E.

    1994-04-01

    The Los Alamos National Laboratory examined water balance relationships for four different landfill cover designs containing hydraulic and capillary engineered barriers. Seepage is being evaluated as a function of slope length for each plot, as well as interflow, runoff, and precipitation, using an automated water flow datalogging system that routinely collects hourly data. Soil water content within these 16 field plots has been routinely monitored four times a day since November 1991 using time domain reflectrometry techniques with an automated and multiplexed measurement system. Volumetric water content is measured with a pair of 60-cm-long waveguides at each of 212 locations. One set of waveguides was emplaced vertically in four locations in every soil layer to determine soil water inventory in each field plot. A second set of waveguides was emplaced horizontally in several soil layers to provide a more detailed picture of soil water dynamics close to soil layer interfaces. Field data is presented showing pulses of soil water moving through the soil and engineered barriers with high temporal and spatial resolution.

  6. Scaling methane oxidation: from laboratory incubation experiments to landfill cover field conditions.

    PubMed

    Abichou, Tarek; Mahieu, Koenraad; Chanton, Jeff; Romdhane, Mehrez; Mansouri, Imane

    2011-05-01

    Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K(m), to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.

  7. Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions

    SciTech Connect

    Abichou, Tarek; Mahieu, Koenraad; Chanton, Jeff; Romdhane, Mehrez; Mansouri, Imane

    2011-05-15

    Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.

  8. [Innovative ET cover system and its hydrologic evaluation].

    PubMed

    Liu, Chuan-shun; Cai, Jun-xiong; Wang, Jing-zhai; Rong, Yu

    2010-07-01

    The evapotranspiration (ET) cover system,as an alternative cover system of landfill, has been used in many remediation projects since 2003. It is an inexpensive, practical,and easily maintained biological system, but is mainly favorable in arid and semiarid sites due to limited water-holding capacity of the single loam layer and limited transpiration of grass. To improve the effectiveness of percolation control, an innovative scheme of ET was suggested in this paper: (1) a clay liner was added under the single loam layer to increase the water-holding capacity; (2) combined vegetation consisting of shrub and grass was used to replace the grass cover. Hydrologic evaluation of conventional cover,ET cover and the innovative ET cover under the same condition was performed using the computer program HELP, which showed the performance of the innovative ET cover is obviously superior to that of ET cover and conventional cover.

  9. Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: Daily, intermediate, and final California cover soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We quantified the seasonal variability of CH4, CO2, and N2O emissions from fresh refuse and daily, intermediate, and final cover materials at two California landfills. Fresh refuse fluxes (g m-2 d-1) averaged CH4 0.053[+/-0.03], CO2 135[+/-117], and N2O 0.063[+/-0.059]. Average CH4 emissions across ...

  10. Design document for landfill capping Prototype Decision Support System. Draft 1.0

    SciTech Connect

    Stone, J.J.; Paige, G.; Hakonson, T.E.; Lane, L.J.

    1994-01-01

    The overall objective of the Prototype Decision Support System for shallow land burial project is to ``Develop a Decision Support System tool which incorporates simulation modeling and multi-objective decision theory for the purpose of designing and evaluating alternative trench cap designs for mixed waste landfill covers. The goal is to improve the quality of technical information used by the risk manager to select landfill cover designs while taking into account technological, economical, and regulatory factors.`` The complexity of the technical and non-technical information, and how the information varies in importance across sites, points to the need for decision analysis tools that provide a common basis for integrating, synthesizing, and valuing the decision input. Because the cost of remediating thousands of contaminated DOE sites is projected to be in the 10`s--100`s of billions of dollars, methods will be needed to establish cleanup priorities and to help in the selection and evaluation of cost effective remediation alternatives. Even at this early stage in DOE`s cleanup program, it is certain that capping technologies will be heavily relied upon to remediate the 3000+ landfills on DOE property. Capping is favored in remediating most DOE landfills because, based on preliminary baseline risk assessments, human and ecological risks are considered to be low at most of these sites and the regulatory requirements for final closure of old landfills can be met using a well designed cap to isolate the buried waste. This report describes a program plan to design, develop, and test a decision support system (DSS) for assisting the DOE risk manager in evaluating capping alternatives for radioactive and hazardous waste landfills. The DOE DSS will incorporate methods for calculating, integrating and valuing technical, regulatory, and economic criteria.

  11. Assessing the performance of gas collection systems in select Chinese landfills according to the LandGEM model: drawbacks and potential direction.

    PubMed

    Sun, Yue; Yue, Dongbei; Li, Rundong; Yang, Ting; Liu, Shiliang

    2015-01-01

    In China, municipal solid waste (MSW) is primarily treated by landfilling. Landfill gas (LFG) collection effectively reduces methane emission from MSW landfills. An accurate system of LFG collection is important in landfill planning, design, and operation. However, China has not developed such systems. In this study, the efficiency of methane collection is calculated in three Chinese landfills with different collection systems (A: vertical wells for MSW before 2010; combined horizontal trenches and under-membrane pipes for MSW from 2011 onwards; B: combined horizontal trenches and vertical wells; C: vertical wells only). This efficiency was computed by dividing the quantity of methane obtained from landfill operation records by the quantity estimated based on the LandGEM model. Results show that the collection efficiencies of landfills with vertical wells and/or horizontal pipes ranged from 8.3% to 27.9%, whereas those of a system equipped with geomembrane reached 65.3%. The poor performance of the landfills was attributed to the open burning of early-stage LFG, LFG release from cracks in high-density polyethylene covers, and high levels of leachate within a landfill site. Therefore, this study proposes an integrated LFG collection system that can remove leachate and collect gas from landfills that accept waste with high moisture content.

  12. Municipal solid waste landfill siting using intelligent system

    SciTech Connect

    Al-Jarrah, Omar . E-mail: aljarrah@just.edu.jo; Abu-Qdais, Hani . E-mail: hqdais@just.edu.jo

    2006-07-01

    Historically, landfills have been the dominant alternative for the ultimate disposal of municipal solid waste. This paper addresses the problem of siting a new landfill using an intelligent system based on fuzzy inference. The proposed system can accommodate new information on the landfill site selection by updating its knowledge base. Several factors are considered in the siting process including topography and geology, natural resources, socio-cultural aspects, and economy and safety. The system will rank sites on a scale of 0-100%, with 100% being the most appropriate one. A weighting system is used for all of the considered factors. The results from testing the system using different sites show the effectiveness of the system in the selection process.

  13. Municipal solid waste landfill siting using intelligent system.

    PubMed

    Al-Jarrah, Omar; Abu-Qdais, Hani

    2006-01-01

    Historically, landfills have been the dominant alternative for the ultimate disposal of municipal solid waste. This paper addresses the problem of siting a new landfill using an intelligent system based on fuzzy inference. The proposed system can accommodate new information on the landfill site selection by updating its knowledge base. Several factors are considered in the siting process including topography and geology, natural resources, socio-cultural aspects, and economy and safety. The system will rank sites on a scale of 0-100%, with 100% being the most appropriate one. A weighting system is used for all of the considered factors. The results from testing the system using different sites show the effectiveness of the system in the selection process.

  14. Landfill mining: Giving garbage a second chance

    SciTech Connect

    Cobb, C.C.; Ruckstuhl, K. )

    1988-08-01

    Some communities face the problems of lack of landfill space and lack of landfill cover dirt. In some cases, existing landfills may be mined to reclaim dirt for use as cover material and to recover space for reuse. Such mining also has the potential of recovering recyclables and incinerator fuels. Machinery to reclaim refuse deposits, and their heterogeneous composted ingredients, was successfully tested at two Florida landfills in June 1987. One of the Florida mining tests, at the Collier County landfill near the city of Naples, had goals of demonstrating an economical mechanical system to separate the depository's ingredients into usable or redisposable components, and to see if the method could enable the county to avoid the expenses associated with permanent closure of a full landfill. This paper describes the history of the Collier County landfill, the equipment and feasibility test, economics, the monitoring of odors, landfill gas, and heavy metals, and results of the test.

  15. Two-year performance by evapotranspiration covers for municipal solid waste landfills in northwest Ohio

    SciTech Connect

    Barnswell, Kristopher D.; Dwyer, Daryl F.

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer All ET covers produced rates of percolation less than 32 cm yr{sup -1}, the maximum allowable rate by the Ohio EPA. Black-Right-Pointing-Pointer Dredged sediment provided sufficient water storage and promoted growth by native plant species. Black-Right-Pointing-Pointer Native plant mixtures attained acceptable rates of evapotranspiration throughout the growing season. - Abstract: Evapotranspiration (ET) covers have gained interest as an alternative to conventional covers for the closure of municipal solid waste (MSW) landfills because they are less costly to construct and are expected to have a longer service life. Whereas ET covers have gained acceptance in arid and semi-arid regions (defined by a precipitation (P) to potential evapotranspiration (PET) ratio less than 0.75) by meeting performance standards (e.g. rate of percolation), it remains unclear whether they are suitable for humid regions (P:PET greater than 0.75). The goal of this project is to extend their application to northwest Ohio (P:PET equals 1.29) by designing covers that produce a rate of percolation less than 32 cm yr{sup -1}, the maximum acceptable rate by the Ohio Environmental Protection Agency (OEPA). Test ET covers were constructed in drainage lysimeters (1.52 m diameter, 1.52 m depth) using dredged sediment amended with organic material and consisted of immature (I, plants seeded onto soil) or mature (M, plants transferred from a restored tall-grass prairie) plant mixtures. The water balance for the ET covers was monitored from June 2009 to June 2011, which included measured precipitation and percolation, and estimated soil water storage and evapotranspiration. Precipitation was applied at a rate of 94 cm yr{sup -1} in the first year and at rate of 69 cm yr{sup -1} in the second year. During the first year, covers with the M plant mixture produced noticeably less percolation (4 cm) than covers with the I plant mixture (17 cm). However, during the

  16. CH4/CO2 ratios indicate highly efficient methane oxidation by a pumice landfill cover-soil.

    PubMed

    Pratt, Chris; Walcroft, Adrian S; Deslippe, Julie; Tate, Kevin R

    2013-02-01

    Landfills that generate too little biogas for economic energy recovery can potentially offset methane (CH(4)) emissions through biological oxidation by methanotrophic bacteria in cover soils. This study reports on the CH(4) oxidation efficiency of a 10-year old landfill cap comprising a volcanic pumice soil. Surface CH(4) and CO(2) fluxes were measured using field chambers during three sampling intervals over winter and summer. Methane fluxes were temporally and spatially variable (-0.36 to 3044 mgCH(4)m(-2)h(-1)); but were at least 15 times lower than typical literature CH(4) fluxes reported for older landfills in 45 of the 46 chambers tested. Exposure of soil from this landfill cover to variable CH(4) fluxes in laboratory microcosms revealed a very strong correlation between CH(4) oxidation efficiency and CH(4)/CO(2) ratios, confirming the utility of this relationship for approximating CH(4) oxidation efficiency. CH(4)/CO(2) ratios were applied to gas concentrations from the surface flux chambers and indicated a mean CH(4) oxidation efficiency of 72%. To examine CH(4) oxidation with soil depth, we collected 10 soil depth profiles at random locations across the landfill. Seven profiles exhibited CH(4) removal rates of 70-100% at depths <60 cm, supporting the high oxidation rates observed in the chambers. Based on a conservative 70% CH(4) oxidation efficiency occurring at the site, this cover soil is clearly offsetting far greater CH(4) quantities than the 10% default value currently adopted by the IPCC.

  17. Assessing the use of poplar tree systems as a landfill evapotranspiration barrier with the SHAW model.

    PubMed

    Preston, G M; McBride, R A

    2004-08-01

    The use of poplar tree systems (PTS) as evapotranspiration barriers on decommissioned landfills is gaining attention as an option for leachate management. This study involved field-testing the Simultaneous Heat and Water (SHAW) model for its ability to reliably estimate poplar transpiration, volumetric soil water content, and soil temperature at a landfill located in southern Ontario, Canada. The model was then used to estimate deep drainage and to ascertain the influence of a young PTS on the soil water balance of the landfill cover. The SHAW model tended to underestimate poplar transpiration [mean difference (MD) ranged from 0.33 to 3.55 mm on a daily total basis] and overestimate volumetric soil water content by up to 0.10 m3 m(-3). The model estimated soil temperature very well, particularly in the upper 1 m of the landfill cover (MD ranged from -0.1 to 1.6 x degrees C in this layer). The SHAW model simulations showed that deep drainage decreased appreciably with the presence of a young PTS largely through increased interception of rainfall, and that PTS have a good potential to act as effective evapotranspiration barriers in northern temperate climate zones.

  18. Chemical properties and biodegradability of waste paper mill sludges to be used for landfill covering.

    PubMed

    Zule, Janja; Cernec, Franc; Likon, Marko

    2007-12-01

    Waste paper mill sludges originating from different effluent treatment and de-inking installations are complex mixtures of inorganic and organic particles. Due to their favourable physico-chemical, and microbiological characteristics, they may be conveniently reused for different purposes as such or after appropriate pretreatment. Sludges from the Slovenian paper industry were extensively tested for their chemical, stability and sealing properties. During the biodegradability tests, evolutions of greenhouse gases CO2, CH4 and H2S as well as the concentrations of released volatile organic acids, such as acetic, propionic, butyric, lactic and glycollic acids as the typical degradation products of organic materials, were measured. Some other important parameters of water leachates such as pH, redox potential, content of starch and leachable ions were also evaluated. The results indicate that most of them can be efficiently applied as alternative hydraulic barrier layers for landfill construction and covering instead of the more expensive clay due to their good geomechanical properties, chemical inertness and microbiological stability. Such replacement brings about considerable economical and ecological benefits as the waste is reprocessed as secondary raw material.

  19. A framework for a decision support system for municipal solid waste landfill design.

    PubMed

    Verge, Ashley; Rowe, R Kerry

    2013-12-01

    A decision support system (Landfill Advisor or LFAdvisor) was developed to integrate current knowledge of barrier systems into a computer application to assist in landfill design. The program was developed in Visual Basic and includes an integrated database to store information. LFAdvisor presents the choices available for each liner component (e.g. leachate collection system, geomembrane liner, clay liners) and provides advice on their suitability for different situations related to municipal solid waste landfills (e.g. final cover, base liner, lagoon liner). Unique to LFAdvisor, the service life of each engineered component is estimated based on results from the latest research. LFAdvisor considers the interactions between liner components, operating conditions, and the existing site environment. LFAdvisor can be used in the initial stage of design to give designers a good idea of what liner components will likely be required, while alerting them to issues that are likely to arise. A systems approach is taken to landfill design with the ultimate goal of maximising long-term performance and service life.

  20. Landfill cover revegetation using organic amendments and cobble mulch in the arid southwest

    SciTech Connect

    AGUILAR,RICHARD; DWYER,STEPHEN F.; REAVIS,BRUCE A.; NEWMAN,GRETCHEN CARR; LOFTIN,SAMUEL R.

    2000-02-01

    production in the irrigated control plots over that produced in the non-irrigated control plots. This surprising result was probably due to the cumulative effects of other factors that influenced the initial establishment and production of plants in the plots (e.g., plant species competition, seed germination delay times, differences in nutrient release and availability). Variation within individual plots, and among the three replicate plots associated with each treatment, rendered many of the recorded differences in vegetation establishment and production statistically insignificant. However, after two complete growing seasons the highest total plant foliar cover and the greatest biomass production and plant species diversity occurred in the cobble-mulched plots. These results suggest that cobble-mulch may be the desired amendment in re-vegetated arid landfill covers if the principal objectives are to quickly establish vegetation cover, stabilize the site from erosion, and increase water usage by plants, thereby reducing the potential for leaching and contaminant movement from the landfill's waste-bearing zone.

  1. Mitigation of methane emission from Fakse landfill using a biowindow system

    SciTech Connect

    Scheutz, Charlotte; Fredenslund, Anders M.; Chanton, Jeffrey; Pedersen, Gitte Bukh; Kjeldsen, Peter

    2011-05-15

    Landfills are significant sources of atmospheric methane (CH{sub 4}) that contributes to climate change, and therefore there is a need to reduce CH{sub 4} emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called 'biocovers') to enhance biological oxidation of CH{sub 4}. A full scale biocover system to reduce CH{sub 4} emissions was installed at Fakse landfill, Denmark using composted yard waste as active material supporting CH{sub 4} oxidation. Ten biowindows with a total area of 5000 m{sup 2} were integrated into the existing cover at the 12 ha site. To increase CH{sub 4} load to the biowindows, leachate wells were capped, and clay was added to slopes at the site. Point measurements using flux chambers suggested in most cases that almost all CH{sub 4} was oxidized, but more detailed studies on emissions from the site after installation of the biocover as well as measurements of total CH{sub 4} emissions showed that a significant portion of the emission quantified in the baseline study continued unabated from the site. Total emission measurements suggested a reduction in CH{sub 4} emission of approximately 28% at the end of the one year monitoring period. This was supported by analysis of stable carbon isotopes which showed an increase in oxidation efficiency from 16% to 41%. The project documented that integrating approaches such a whole landfill emission measurements using tracer techniques or stable carbon isotope measurements of ambient air samples are needed to document CH{sub 4} mitigation efficiencies of biocover systems. The study also revealed that there still exist several challenges to better optimize the functionality. The most important challenges are to control gas flow and evenly distribute the gas into the biocovers.

  2. Spatial Variability of Soil Properties and Their Effect on Methane Generation, Oxidation, and Emission from Soils Covering Landfills

    NASA Astrophysics Data System (ADS)

    Imhoff, P. T.; Mei, C.; Yazdani, R.; Han, B.; Mostafid, M.

    2013-12-01

    Soils covering landfills mitigate gas emissions from degrading refuse, particularly emissions of methane, a potent greenhouse gas. To enhance the oxidative capacity of these soils, materials with high organic matter are proposed for landfill covers, e.g., compost and aged greenwaste. We report field tests of these materials in pilot-scale test cells. While moisture conditions and gas transport were initially uniform, after one year significant spatial variability of gas flow developed that was associated with spatially variable dry bulk density and volumetric water content. For a test cell with organic matter content of 38%, a single-domain porous medium model was adequate for describing water retention and continuum modeling was capable of describing spatially variable gas flow and methane oxidation. A second test cell with organic matter of 61% was best described as a dual-domain porous medium, and continuum modeling was inadequate for describing spatially variable gas flow. Here, the dual-domain medium resulted in significant subgrid scale variability in moisture conditions that affected gas transport and methane oxidation. The results from these field tests suggest that proposed one-dimensional models of gas transport and methane oxidation in landfill cover soils may be inadequate for soils composed of high organic matter that require dual-domain models for water retention.

  3. THE USE OF ALTERNATIVE MATERIALS FOR DAILY COVER AT MUNICIPAL SOLID WASTE LANDFILLS. A Project Summary (EPA/600/SR-93/172)

    EPA Science Inventory

    This investigation was conducted to assess the applicability of currently available (ca. 1992) alternative materials for use as daily cover at landfills. Information on characteristics, material and equipment requirements, methods of preparation and application, climatic and ope...

  4. Use of gas push-pull tests for the measurement of methane oxidation in different landfill cover soils.

    PubMed

    Streese-Kleeberg, Jan; Rachor, Ingke; Gebert, Julia; Stegmann, Rainer

    2011-05-01

    In order to optimise methane oxidation in landfill cover soils, it is important to be able to accurately quantify the amount of methane oxidised. This research considers the gas push-pull test (GPPT) as a possible method to quantify oxidation rates in situ. During a GPPT, a gas mixture consisting of one or more reactive gases (e.g., CH(4), O(2)) and one or more conservative tracers (e.g., argon), is injected into the soil. Following this, the mixture of injected gas and soil air is extracted from the same location and periodically sampled. The kinetic parameters for the biological oxidation taking place in the soil can be derived from the differences in the breakthrough curves. The original method of Urmann et al. (2005) was optimised for application in landfill cover soils and modified to reduce the analytical effort required. Optimised parameters included the flow rate during the injection phase and the duration of the experiment. 50 GPPTs have been conducted at different landfills in Germany during different seasons. Generally, methane oxidation rates ranged between 0 and 150 g m(soil air)(-3)h(-1). At one location, rates up to 440 g m(soil air)(-3)h(-1) were measured under particularly favourable conditions. The method is simple in operation and does not require expensive equipment besides standard laboratory gas chromatographs.

  5. Influence of dynamic coupled hydro-bio-mechanical processes on response of municipal solid waste and liner system in bioreactor landfills.

    PubMed

    Reddy, Krishna R; Kumar, Girish; Giri, Rajiv K

    2017-01-03

    A two-dimensional (2-D) mathematical model is presented to predict the response of municipal solid waste (MSW) of conventional as well as bioreactor landfills undergoing coupled hydro-bio-mechanical processes. The newly developed and validated 2-D coupled mathematical modeling framework combines and simultaneously solves a two-phase flow model based on the unsaturated Richard's equation, a plain-strain formulation of Mohr-Coulomb mechanical model and first-order decay kinetics biodegradation model. The performance of both conventional and bioreactor landfill was investigated holistically, by evaluating the mechanical settlement, extent of waste degradation with subsequent changes in geotechnical properties, landfill slope stability, and in-plane shear behavior (shear stress-displacement) of composite liner system and final cover system. It is concluded that for the given specific conditions considered, bioreactor landfill attained an overall stabilization after a continuous leachate injection of 16years, whereas the stabilization was observed after around 50years of post-closure in conventional landfills, with a total vertical strain of 36% and 37% for bioreactor and conventional landfills, respectively. The significant changes in landfill settlement, the extent of MSW degradation, MSW geotechnical properties, along with their influence on the in-plane shear response of composite liner and final cover system, between the conventional and bioreactor landfills, observed using the mathematical model proposed in this study, corroborates the importance of considering coupled hydro-bio-mechanical processes while designing and predicting the performance of engineered bioreactor landfills. The study underscores the importance of considering the effect of coupled processes while examining the stability and integrity of the liner and cover systems, which form the integral components of a landfill. Moreover, the spatial and temporal variations in the landfill settlement, the

  6. Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: A laboratory column study.

    PubMed

    Yargicoglu, Erin N; Reddy, Krishna R

    2017-02-08

    Alternate landfill covers designed to enhance microbial methane (CH4) oxidation and reduce the negative impacts of landfill gas emissions on global climate have recently been proposed and investigated. In this study, the use of biochar as a soil amendment is examined in order to assess the feasibility and effectiveness for enhanced CH4 removal in landfill covers when incorporated under high compaction conditions and relatively low soil moisture. Four different cover configurations were tested in large soil columns for ∼510 days and potential CH4 oxidation rates were determined following long-term incubation in small batch assays. Cover designs tested include: a thin biochar layer at 15-18 cm; 2% mixed soil-biochar layer at 20-40 cm; 2% mixed soil-uncharred wood pellets at 20-40 cm; and soil obtained from intermediate cover at an active landfill site. The placement of a thin biochar layer in the cover significantly impacted moisture distribution and infiltration, which in turn affected CH4 oxidation potential with depth. An increase in CH4 removal rates was observed among all columns over the 500 day incubation period, with steady-state CH4 removal efficiencies ranging from ∼60 to 90% in the final stages of incubation (inlet load ∼80 g CH4 m(-2) d(-1)). The thin biochar layer had the lowest average removal efficiency as a result of reduced moisture availability below the biochar layer. The addition of 2% biochar to soil yielded similar CH4 oxidation rates in terminal assays as the 2% uncharred wood pellet amendment. CH4 oxidation rates in terminal assays were positively correlated with soil moisture, which was affected by the materials' water holding capacity. The high water holding capacity of biochar led to higher oxidation rates within the thin biochar layer, supporting the initial hypothesis that biochar may confer more favorable physical conditions for methanotrophy. Ultimate performance was apparently affected by soil type and CH4 exposure history

  7. Comparison of green-house gas emission reductions and landfill gas utilization between a landfill system and an incineration system.

    PubMed

    Haibin Han; Jisheng Long; Shude Li; Guangren Qian

    2010-04-01

    Electricity generation and greenhouse gas (GHG) reductions were researched by making comparisons between municipal solid waste (MSW) landfill and incineration systems with three different electricity generation efficiencies - 10%, 21%, and 24.7%. For MSW landfill systems, it is shown that the total electricity generation is 198,747 MWh, and the total GHG emission reduction is 1,386,081 tonne CO( 2) during a 21-year operation period. For incineration systems, the total electricity generation is 611,801 MWh, and the total GHG emission reduction is 1,339,158 tonne CO(2) during a 10-year operation period even if the electricity generation efficiency is only 10%. It is also shown that electricity generation increases quicker than the GHG emission reductions with the increase of electricity generation efficiency. However, incineration systems show great superiority in LFG utilisation and GHG emission reductions.

  8. Methane mass balance at three landfill sites: What is the efficiency of capture by gas collection systems?

    SciTech Connect

    Spokas, K. . E-mail: spokas@morris.ars.usda.gov; Bogner, J.; Chanton, J.P.; Morcet, M.; Aran, C.; Graff, C.; Golvan, Y. Moreau-Le; Hebe, I.

    2006-07-01

    Many developed countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings and the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. This paper presents the results of extensive field campaigns at three landfill sites to elucidate the total methane balance and provide field measurements to quantify these pathways. We assessed the overall methane mass balance in field cells with a variety of designs, cover materials, and gas management strategies. Sites included different cell configurations, including temporary clay cover, final clay cover, geosynthetic clay liners, and geomembrane composite covers, and cells with and without gas collection systems. Methane emission rates ranged from -2.2 to >10,000 mg CH{sub 4} m{sup -2} d{sup -1}. Total methane oxidation rates ranged from 4% to 50% of the methane flux through the cover at sites with positive emissions. Oxidation of atmospheric methane was occurring in vegetated soils above a geomembrane. The results of these studies were used as the basis for guidelines by the French environment agency (ADEME) for default values for percent recovery: 35% for an operating cell with an active landfill gas (LFG) recovery system, 65% for a temporary covered cell with an active LFG recovery system, 85% for a cell with clay final cover and active LFG recovery, and 90% for a cell with a geomembrane final cover and active LFG recovery.

  9. Field-Scale Stable-Isotope Probing of Active Methanotrophs in a Landfill-Cover Soil

    NASA Astrophysics Data System (ADS)

    Schroth, M. H.; Henneberger, R.; Chiri, E.

    2012-12-01

    The greenhouse gas methane (CH4) is an important contributor to global climate change. While its atmospheric concentration is increasing, a large portion of produced CH4 never reaches the atmosphere, but is consumed by aerobic methane-oxidizing bacteria (MOB). The latter are ubiquitous in soils and utilize CH4 as sole source of energy and carbon. Among other methods, MOB may be differentiated based on characteristic phospholipid fatty acids (PLFA). Stable-isotope probing (SIP) on PLFA has been widely applied to identify active members of MOB communities in laboratory incubation studies, but results are often difficult to extrapolate to the field. Thus, novel field-scale approaches are needed to link activity and identity of MOB in their natural environment. We present results of field experiments in which we combined PLFA-SIP with gas push-pull tests (GPPTs) to label active MOB at the field-scale while simultaneously quantifying CH4 oxidation activity. During a SIP-GPPT, a mixture of reactive (here 13CH4, O2) and non-reactive tracer gases (e.g., Ar, Ne, He) is injected into the soil at a location of interest. Thereafter, gas flow is reversed and the gas mixture diluted with soil air is extracted from the same location and sampled periodically. Rate constants for CH4 oxidation can be calculated by analyzing breakthrough curves of 13CH4 and a suitable non-reactive tracer gas. SIP-GPPTs were performed in a landfill-cover soil, and feasibility of this novel approach was tested at several locations along a gradient of MOB activity and soil temperature. Soil samples were collected before and after SIP-GPPTs, total PLFA were extracted, and incorporation of 13C in the polar lipid fraction was analyzed. Potential CH4 oxidation rates derived from SIP-GPPTs were similar to those derived from regular GPPTs (using unlabeled CH4) performed at the same locations prior to SIP-GPPTs, indicating that application of 13CH4 did not adversely affect bacterial CH4 oxidation rates. Rates

  10. Modeling the effects of vegetation on methane oxidation and emissions through soil landfill final covers across different climates.

    PubMed

    Abichou, Tarek; Kormi, Tarek; Yuan, Lei; Johnson, Terry; Francisco, Escobar

    2015-02-01

    Plant roots are reported to enhance the aeration of soil by creating secondary macropores which improve the diffusion of oxygen into soil as well as the supply of methane to bacteria. Therefore, methane oxidation can be improved considerably by the soil structuring processes of vegetation, along with the increase of organic biomass in the soil associated with plant roots. This study consisted of using a numerical model that combines flow of water and heat with gas transport and oxidation in soils, to simulate methane emission and oxidation through simulated vegetated and non-vegetated landfill covers under different climatic conditions. Different simulations were performed using different methane loading flux (5-200 g m(-2) d(-1)) as the bottom boundary. The lowest modeled surface emissions were always obtained with vegetated soil covers for all simulated climates. The largest differences in simulated surface emissions between the vegetated and non-vegetated scenarios occur during the growing season. Higher average yearly percent oxidation was obtained in simulations with vegetated soil covers as compared to non-vegetated scenario. The modeled effects of vegetation on methane surface emissions and percent oxidation were attributed to two separate mechanisms: (1) increase in methane oxidation associated with the change of the physical properties of the upper vegetative layer and (2) increase in organic matter associated with vegetated soil layers. Finally, correlations between percent oxidation and methane loading into simulated vegetated and non-vegetated covers were proposed to allow decision makers to compare vegetated versus non-vegetated soil landfill covers. These results were obtained using a modeling study with several simplifying assumptions that do not capture the complexities of vegetated soils under field conditions.

  11. Landfill bioreactor design and operation

    SciTech Connect

    Reinhart, D.R.; Townsend, T.

    1998-12-31

    Landfill Bioreactor Design and Operation covers the history and background of landfill technology, research studies of actual bioreactor landfills, expected leachate and gas yields, specific design criteria, operation guidelines, and reuse of landfill sites to avoid having to establish new sites. For anyone looking for an alternative to large, wasteful landfill sites, this book provides a practical alternative to the problem.

  12. Landfill site selection using geographic information system and analytical hierarchy process: A case study Al-Hillah Qadhaa, Babylon, Iraq.

    PubMed

    Chabuk, Ali; Al-Ansari, Nadhir; Hussain, Hussain Musa; Knutsson, Sven; Pusch, Roland

    2016-05-01

    Al-Hillah Qadhaa is located in the central part of Iraq. It covers an area of 908 km(2) with a total population of 856,804 inhabitants. This Qadhaa is the capital of Babylon Governorate. Presently, no landfill site exists in that area based on scientific site selection criteria. For this reason, an attempt has been carried out to find the best locations for landfills. A total of 15 variables were considered in this process (groundwater depth, rivers, soil types, agricultural land use, land use, elevation, slope, gas pipelines, oil pipelines, power lines, roads, railways, urban centres, villages and archaeological sites) using a geographic information system. In addition, an analytical hierarchy process was used to identify the weight for each variable. Two suitable candidate landfill sites were determined that fulfil the requirements with an area of 9.153 km(2) and 8.204 km(2) These sites can accommodate solid waste till 2030.

  13. Transient design of landfill liquid addition systems.

    PubMed

    Jain, Pradeep; Townsend, Timothy G; Tolaymat, Thabet M

    2014-09-01

    This study presents the development of design charts that can be used to estimate lateral and vertical spacing of liquids addition devices (e.g., vertical well, horizontal trenches) and the operating duration needed for transient operating conditions (conditions until steady-state operating conditions are achieved). These design charts should be used in conjunction with steady-state design charts published earlier by Jain et al. (2010a, 2010b). The data suggest that the liquids addition system operating time can be significantly reduced by utilizing moderately closer spacing between liquids addition devices than the spacing needed for steady-state conditions. These design charts can be used by designers to readily estimate achievable flow rate and lateral and vertical extents of the zone of impact from liquid addition devices, and analyze the sensitivity of various input variables (e.g., hydraulic conductivity, anisotropy, well radius, screen length) to the design. The applicability of the design charts, which are developed based on simulations of a continuously operated system, was also evaluated for the design of a system that would be operated intermittently (e.g., systems only operated during facility operating hours). The design charts somewhat underestimates the flow rate achieved and overestimates the lateral extent of the zone of impact over an operating duration for an intermittently operated system. The associated estimation errors would be smaller than the margin of errors associated with measurement of other key design inputs such as waste properties (e.g., hydraulic conductivity) and wider variation of these properties at a given site due to heterogeneous nature of waste.

  14. Filth flies associated with municipal solid waste and impact of delay in cover soil application on adult filth fly emergence in a sanitary landfill in Pulau Pinang, Malaysia.

    PubMed

    Nurita, A T; Hassan, A Abu

    2013-06-01

    Two types of municipal solid waste (MSW), newly arrived and 2 weeks old, were sampled from a sanitary landfill in Pulau Pinang, Malaysia at a fortnightly interval and kept under field conditions for 2 weeks. A total of 480 kg of each type of MSW was sampled to study species composition and impact of delays in cover soil applications on filth fly emergence. Out of 960 kg of MSW sampled, 9.2 ± 0.5 flies emerged per kilogram. Weekly adult fly emergence rates of newly arrived and 2-week-old waste did not differ significantly and MSW remained suitable for fly breeding for up to 1 month. Eight species of flies emerged from the MSW: namely, Musca domestica, Musca sorbens, Synthesiomyia nudiseta, Hydrotaea chalcogaster, Chrysomya megacephala, Lucilia cuprina, Hemipyrellia ligurriens and Sarcophaga sp. Newly arrived waste was determined to be the main source for M. domestica, C. megacephala and L. cuprina in the landfill owing to significantly higher mean emergence compared with 2-week-old waste. Musca sorbens was found in newly arrived waste but not in 2-week-old waste, suggesting that the species was able to survive transportation to landfill but unable to survive landfill conditions. Hemipyrellia ligurriens, H. chalcogaster and S. nudiseta were not imported into the landfill with MSW and pre-existing flies in and around the landfill itself may be their source. The results show that landfills can be a major source of fly breeding if cover soil or temporary cover is not applied daily or on a regular schedule.

  15. A fully coupled model for water-gas-heat reactive transport with methane oxidation in landfill covers.

    PubMed

    Ng, C W W; Feng, S; Liu, H W

    2015-03-01

    Methane oxidation in landfill covers is a complex process involving water, gas and heat transfer as well as microbial oxidation. The coupled phenomena of microbial oxidation, water, gas, and heat transfer are not fully understood. In this study, a new model is developed that incorporates water-gas-heat coupled reactive transport in unsaturated soil with methane oxidation. Effects of microbial oxidation-generated water and heat are included. The model is calibrated using published data from a laboratory soil column test. Moreover, a series of parametric studies are carried out to investigate the influence of microbial oxidation-generated water and heat, initial water content on methane oxidation efficiency. Computed and measured results of gas concentration and methane oxidation rate are consistent. It is found that the coupling effects between water-gas-heat transfer and methane oxidation are significant. Ignoring microbial oxidation-generated water and heat can result in a significant difference in methane oxidation efficiency by 100%.

  16. Methane oxidation in a neutral landfill cover soil: Influence of moisture content, temperature, and nitrogen-turnover

    SciTech Connect

    Boeckx, P.; Van Cleemput, O.

    1996-01-01

    Well-managed, aerated cover soils can have a mitigating effect on methane emission from landfills. The influence of moisture content, soil temperature, and N on the methane uptake capacity of a neutral landfill cover soil was examined. A soil moisture content of 15% w/w gave the maximum CH{sub 4} oxidation rate (2.36 ng CH{sub 4}{sup -1}g{sup -1} soil). When wetter, CH{sub 4} consumption was slower (e.g., 1.6 ng CH{sub 4} h{sup -1} g {sup -1} at 30% w/w) because of a limited gas diffusion. At lower soil moisture, microbial activity was reduced and consequently the oxidation capacity decreased (e.g., 0.84 ng CH{sub 4} {sup -1} g{sup -1} at 5% w/w). Optimum temperature was between 25 and 30{degrees}C. The calculated activation energy of the CH{sub 4} oxidation was 56.5 kj K{sup -1} mol{sup -1}. After NH4{sub 4}{sup +} addition, a negative linear correlation was found between the methane oxidation rate and the nitrous oxide flux (R{sup 2} = 0.96 Y1 = 2.7 - 0.44 x Y2). Addition of NO{sub 3}{sup -} had no significant effect on CH{sub 4} oxidation. The effect of organic residue amendments depended on their C/N ratios. Crop residues with a high C/N ratio (wheat [Triticum sativum L.] and maize [Zea mays L.] straw) stimulated N-immobilization and did not affect the methane-oxidizing capacity. On the other hand, addition of crop residues with low C/N ratios (potato [Solanum tuberosum L.] and sugar beet [Beta vulgaris cv. Altissima] leaves) stimulated N-mineralization, resulting in a strong inhibition of the methane oxidation. 38 refs., 4 figs., 2 tabs.

  17. Green Remediation Best Management Practices: Landfill Cover Systems & Energy Production

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) Principles for Greener Cleanups outline the Agency's policy for evaluating and minimizing the environmental 'footprint' of activities undertaken when cleaning up a contaminated site.

  18. Municipal solid waste landfill site selection with geographic information systems and analytical hierarchy process: a case study in Mahshahr County, Iran.

    PubMed

    Alavi, Nadali; Goudarzi, Gholamreza; Babaei, Ali Akbar; Jaafarzadeh, Nemat; Hosseinzadeh, Mohsen

    2013-01-01

    Landfill siting is a complicated process because it must combine social, environmental and technical factors. In this study, in order to consider all factors and rating criteria, a combination of geographic information systems and analytical hierarchy process (AHP) was used to determine the best sites for disposal of municipal solid waste (MSW) in Mahshahr County, Iran. In order to the decision making for landfill siting a structural hierarchy formed and the most important criteria: surface water, sensitive ecosystems, land cover, urban and rural areas, land uses, distance to roads, slope and land type were chosen according to standards and regulations. Each criterion was evaluated by rating methods. In the next step the relative importance of criteria to each other was determined by AHP. Land suitability for landfill was evaluated by simple additive weighting method. According to the landfill suitability map, the study area classified to four categories: high, moderate, low and very low suitability areas, which represented 18.6%, 20.3%, 1.6 and 0.8% of the study area respectively. The other 58.7% of the study area was determined to be completely unsuitable for landfill. By considering the parameters, such as the required area for landfill, distance to MSW generation points, and political and management issues, and consulting with municipalities managers in the study area, six sites were chosen for site visiting. The result of field study showed that it is a supplementary, and necessary, step in finding the best candidate landfill site from land with high suitability.

  19. Methane emissions from MBT landfills

    SciTech Connect

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  20. Coupled Environmental Processes and Long-term Performance of Landfill Covers in the northern Mojave Desert

    SciTech Connect

    David Shafer; Michael Young; Stephen Zitzer; Eric McDonald; Todd Caldwell

    2004-05-12

    Evapotransiration (ET) covers have gained widespread acceptance as a closure feature for waste disposal sites, particularly in the arid and semi-arid regions of the southwestern U.S. But as landforms, ET covers are subject to change over time because of processes such as pedogenesis, hydrologic processes, vegetation establishment and change, and biological processes. To better understand the effects of coupled process changes to ET covers, a series of four primary analog sites in Yucca Flat on the Nevada Test Site, along with measurements and observations from other locations in the Mojave Desert, were selected to evaluate changes in ET covers over time. The analog sites, of varying ages, were selected to address changes in the early post-institutional control period, the 1,000-year compliance period for disposal of low-level and mixed low-level waste, and the 10,000-year compliance period for transuranic waste sites.

  1. Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil.

    PubMed

    Wickramarachchi, Praneeth; Kawamoto, Ken; Hamamoto, Shoichiro; Nagamori, Masanao; Moldrup, Per; Komatsu, Toshiko

    2011-12-01

    Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, ρ(b), and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D(p)/D(o), ratio of gas diffusion coefficients in soil and free air) and air permeability (k(a)) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting ρ(b) values ranging from 1.40 to 2.10 g cm(-3). Results showed that D(p) and k(a) values for the '+gravel' fraction (<35 mm) became larger than for the '-gravel' fraction (<2mm) under variably-saturated conditions for a given soil-air content (ε), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D(p) and k(a) was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D(p)/D(f), the ratio of measured D(p) to D(p) in total porosity (f), (ii) for air permeability k(a)/k(a)(,pF4.1), the ratio of measured k(a) to k(a) at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content (ε) to total porosity (f) (air saturation). Based on the normalized parameters, predictive power-law models for D(p)(ε/f) and k(a)(ε/f) models were developed based on a single parameter (water blockage factor M for D(p) and P for k(a)). The water blockage factors, M and P, were found to be linearly correlated to ρ(b) values, and the effects of dry bulk density on D(p) and k(a) for both '+gravel' and '-gravel' fractions were well accounted for by the new models.

  2. Feasibility of biochar application on a landfill final cover-a review on balancing ecology and shallow slope stability.

    PubMed

    Chen, Xun-Wen; Wong, James Tsz-Fung; Ng, Charles Wang-Wai; Wong, Ming-Hung

    2016-04-01

    Due to the increasing concerns on global warming, scarce land for agriculture, and contamination impacts on human health, biochar application is being considered as one of the possible measures for carbon sequestration, promoting higher crop yield and contamination remediation. Significant amount of researches focusing on these three aspects have been conducted during recent years. Biochar as a soil amendment is effective in promoting plant performance and sustainability, by enhancing nutrient bioavailability, contaminants immobilization, and microbial activities. The features of biochar in changing soil physical and biochemical properties are essential in affecting the sustainability of an ecosystem. Most studies showed positive results and considered biochar application as an effective and promising measure for above-mentioned interests. Bio-engineered man-made filled slope and landfill slope increasingly draw the attention of geologists and geotechnical engineers. With increasing number of filled slopes, sustainability, low maintenance, and stability are the major concerns. Biochar as a soil amendment changes the key factors and parameters in ecology (plant development, soil microbial community, nutrient/contaminant cycling, etc.) and slope engineering (soil weight, internal friction angle and cohesion, etc.). This paper reviews the studies on the production, physical and biochemical properties of biochar and suggests the potential areas requiring study in balancing ecology and man-made filled slope and landfill cover engineering. Biochar-amended soil should be considered as a new type of soil in terms of soil mechanics. Biochar performance depends on soil and biochar type which imposes challenges to generalize the research outcomes. Aging process and ecotoxicity studies of biochar are strongly required.

  3. Remediation System Evaluation, Douglas Road Landfill Superfund Site

    EPA Pesticide Factsheets

    The Douglas Road Landfill Superfund Site is located in St. Joseph County just north of Mishawaka,Indiana. The site consists of a 16-acre capped landfill located on an approximately 32-acre lot (includingthe land purchased in 1999 for a wetlands...

  4. Landfill site suitability assessment by means of geographic information system analysis

    NASA Astrophysics Data System (ADS)

    Yazdani, M.; Monavari, S. M.; Omrani, G. A.; Shariat, M.; Hosseini, S. M.

    2015-07-01

    Open dumping is the common procedure for final disposal of municipal solid waste (MSW) in Iran. Several environmental pollution and soil degradation problems were found as a consequence of poor planning of landfills. So recognition of the MSW landfill state is required to prevent environmental problems. The objective of this research was to study the suitability of existing municipal landfill sites using geographic information system methods. Tonekabon city in the west area of Mazandaran province, northern Iran, along the southern coast of the Caspian Sea, was chosen as a case study. In order to carry out this evaluation, two guidelines were used: Minnesota Pollution Control Agency (MPCA) and regional screening guidelines. The results indicate that the landfills were not located in suitable sites and also that there are few suitable locations to install the landfills.

  5. Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability.

    PubMed

    Henneberger, Ruth; Chiri, Eleonora; Bodelier, Paul E L; Frenzel, Peter; Lüke, Claudia; Schroth, Martin H

    2015-05-01

    Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale. In situ CH4 oxidation rates varied between sites and were generally one order of magnitude lower in winter compared with summer. Results from PLFA-SIP and pmoA transcripts were largely congruent, revealing distinct spatial and seasonal clustering. Overall, active MOB communities were highly diverse. Type Ia MOB, specifically Methylomonas and Methylobacter, were key drivers for CH4 oxidation, particularly at a high-activity site. Type II MOB were mainly active at a site showing substantial fluctuations in CH4 loading and soil moisture content. Notably, Upland Soil Cluster-gamma-related pmoA transcripts were also detected, indicating concurrent oxidation of atmospheric CH4 . Spatial separation was less distinct in winter, with Methylobacter and uncultured MOB mediating CH4 oxidation. We propose that high diversity of active MOB communities in this soil is promoted by high variability in environmental conditions, facilitating substantial removal of CH4 generated in the waste body.

  6. Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers

    SciTech Connect

    Albanna, Muna; Warith, Mostafa; Fernandes, Leta

    2010-02-15

    In this experimental program, the effects of non-methane organic compounds (NMOCs) on the biological methane (CH{sub 4}) oxidation process were examined. The investigation was performed on compost experiments incubated with CH{sub 4} and selected NMOCs under different environmental conditions. The selected NMOCs had different concentrations and their effects were tested as single compounds and mixtures of compounds. The results from all experimental sets showed a decrease in CH{sub 4} oxidation capacity of the landfill bio-cover with the increase in NMOCs concentrations. For example, in the experiment using compost with 100% moisture content at 35 deg. C without any NMOCs the V{sub max} value was 35.0 mug CH{sub 4}h{sup -1}g{sub wetwt}{sup -1}. This value was reduced to 19.1 mug CH{sub 4}h{sup -1}g{sub wetwt}{sup -1} when mixed NMOCs were present in the batch reactors under the same environmental conditions. The experimental oxidation rates of CH{sub 4} in the presence of single and mixed NMOCs were modeled using the uncompetitive inhibition model and kinetic parameters, including the dissociation constants, were obtained. Additionally, the degradation rates of the NMOCs and co-metabolic abilities of methanotrophic bacteria were estimated.

  7. Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil

    SciTech Connect

    Wickramarachchi, Praneeth; Kawamoto, Ken; Hamamoto, Shoichiro; Nagamori, Masanao; Moldrup, Per; Komatsu, Toshiko

    2011-12-15

    Highlights: > The effects of soil physical properties on gas transport parameters were investigated. > Higher values of D{sub p} and k{sub a} exhibited in the '+gravel' than the '-gravel' fraction at same soil-air content ({epsilon}). > Recent power law models for D{sub p} (WLR) and k{sub a} (RPL) were modified. > Model parameters were linearly related to easily measurable dry bulk density ({rho}{sub b}). - Abstract: Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, {rho}{sub b}, and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D{sub p}/D{sub o}, ratio of gas diffusion coefficients in soil and free air) and air permeability (k{sub a}) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting {rho}{sub b} values ranging from 1.40 to 2.10 g cm{sup -3}. Results showed that D{sub p} and k{sub a} values for the '+gravel' fraction (<35 mm) became larger than for the '-gravel' fraction (<2 mm) under variably-saturated conditions for a given soil-air content ({epsilon}), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D{sub p} and k{sub a} was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D{sub p}/D{sub f}, the ratio of measured D{sub p} to D{sub p} in total porosity (f), (ii) for air permeability k{sub a}/k{sub a,pF4.1}, the ratio of measured k{sub a} to k{sub a} at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content ({epsilon}) to total porosity (f) (air

  8. A framework for landfill site selection using geographic information systems and multi criteria decision making technique

    NASA Astrophysics Data System (ADS)

    Mat, Nur Azriati; Benjamin, Aida Mauziah; Abdul-Rahman, Syariza; Wibowo, Antoni

    2016-10-01

    The solid waste disposal is one of the facilities which can cause harm to human health and also contribute to severe environmental pollution if it is not properly managed. Therefore, an effective decision on a landfill site selection in order to identify the most suitable area as a new landfill is very important. Since 25 years ago, the integration of geographic information systems (GIS) and multi criteria decision analysis (MCDA) has drawn significant interest among researchers. This integrated technique is commonly used for land use planning and selecting a new landfill site is one of the plan. This paper proposes a framework of landfill site selection with a consideration of resource requirement. This framework is developed by using the integration of GIS and MCDA to identify an appropriate location for landfill siting. A list of selection criteria obtained from the literature considered in selecting the best landfill site is also presented. The results of this study could later be used to help the waste management team in developing an efficient solid waste management system.

  9. Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

    SciTech Connect

    Waugh, W.J.; Kastens, M.K.; Sheader, L.R.L.; Benson, C.H.; Albright, W.H.; Mushovic, P.S.

    2008-07-01

    The U.S. Department of Energy Office of Legacy Management (DOE) and the U.S. Environmental Protection Agency (EPA) collaborated on the design and monitoring of an alternative cover for the Monticello uranium mill tailings disposal cell, a Superfund site in southeastern Utah. Ground-water recharge is naturally limited at sites like Monticello where thick, fine-textured soils store precipitation until evaporation and plant transpiration seasonally return it to the atmosphere. The cover at Monticello uses local soils and a native plant community to mimic the natural soil water balance. The cover is fundamentally an evapotranspiration (ET) design with a capillary barrier. A 3-hectare drainage lysimeter was embedded in the cover during construction of the disposal cell in 2000. The lysimeter consists of a geo-membrane liner below the capillary barrier that directs percolation water to a monitoring system. Soil water storage is determined by integration of point water content measurements. Meteorological parameters are measured nearby. Plant cover, shrub density, and leaf area index (LAI) are monitored annually. The cover performed well over the 7-year monitoring period (2000-2007). The cumulative percolation was 4.2 mm (0.6 mm yr{sup -1}), satisfying an EPA goal of an average percolation of <3.0 mm yr{sup -1}. Almost all percolation can be attributed to the exceptionally wet winter and spring of 2004-2005 when soil water content slightly exceeded the water storage capacity of the cover. The diversity, percent cover, and LAI of vegetation increased over the monitoring period, although the density of native shrubs that extract water from deeper in the cover has remained less than revegetation targets. DOE and EPA are applying the monitoring results to plan for long-term surveillance and maintenance and to evaluate alternative cover designs for other waste disposal sites. (authors)

  10. Systems and methods for measuring a parameter of a landfill including a barrier cap and wireless sensor systems and methods

    DOEpatents

    Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.

    2007-03-06

    A method of measuring a parameter of a landfill including a cap, without passing wires through the cap, includes burying a sensor apparatus in the landfill prior to closing the landfill with the cap; providing a reader capable of communicating with the sensor apparatus via radio frequency (RF); placing an antenna above the barrier, spaced apart from the sensor apparatus; coupling the antenna to the reader either before or after placing the antenna above the barrier; providing power to the sensor apparatus, via the antenna, by generating a field using the reader; accumulating and storing power in the sensor apparatus; sensing a parameter of the landfill using the sensor apparatus while using power; and transmitting the sensed parameter to the reader via a wireless response signal. A system for measuring a parameter of a landfill is also provided.

  11. REQUIREMENTS FOR HAZARDOUS WASTE LANDFILL DESIGN, CONSTRUCTION AND CLOSURE

    EPA Science Inventory

    This publication contains edited versions of the material presented at ten Technology Transfer seminars conducted in 1988 on this subject. Sections are included on design of clay and flexible membrane liners, leachate collector systems, and landfill covers. Construction quality a...

  12. Methane emissions from MBT landfills.

    PubMed

    Heyer, K-U; Hupe, K; Stegmann, R

    2013-09-01

    Within the scope of an investigation for the German Federal Environment Agency ("Umweltbundesamt"), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18-24 m(3)CH(4)/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH(4)/(m(2)h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000-135,000 t CO(2-eq.)/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied

  13. Innovative permeable cover system to reduce risks at a chemical munitions burial site

    SciTech Connect

    Powels, C.C.; Bon, I.; Okusu, N.M.

    1997-12-31

    An innovative permeable sand cover with various integrated systems has been designed to contain and treat the Old O-Field chemical munitions landfill at Aberdeen Proving Ground, Maryland. The 18,200 m{sup 2} (4.5 acre) landfill was used from the mid 1930s to the mid 1950s for the disposal of chemical, incendiary, and explosive munitions from domestic and foreign origins, together with contaminated wastes associated with the development and production of chemical warfare agents (CWA). The site is suspected to be contaminated with white phosphorous (WP) (which when dry, spontaneously burns when exposed to air), shock sensitive picric acid fuses and has the potential to contain large quantities of CWA-filled munitions. Historically, one to three explosions or fires occurred per ten-year period at the landfill. Such events have the potential to cause a CWA release to the environment, which could potentially affect densely populated areas. Recovery and decontamination projects conducted at the site in the late 1940s and early 1950s used large amounts of decontamination chemicals (containing solvents) and fuels which further contaminated the area. The groundwater downgradient of the landfill is contaminated with volatile organic compounds, metals, explosives and CWA degradation compounds and is currently being contained by a groundwater extraction and treatment system. This report describes a remedial action program for the site.

  14. Unusual calcite stromatolites and pisoids from a landfill leachate collection system

    NASA Astrophysics Data System (ADS)

    Maliva, Robert G.; Missimer, Thomas M.; Leo, Kevin C.; Statom, Richard A.; Dupraz, Christophe; Lynn, Matthew; Dickson, J. A. D.

    2000-10-01

    Low-magnesium calcite stromatolites and pisoids were found to have precipitated within the leachate collection system piping of a Palm Beach County, Florida, landfill. The stromatolites and pisoids formed in an aphotic and anoxic environment that was at times greatly supersaturated with calcite. The stromatolites are composed of branching cylindrical bundles of concentrically laminated radial fibrous crystals. The pisoids consist of concentric layers of radial fibrous and microcrystalline calcite. Bacteria, likely sulfate reducing, appear to have acted as catalysts for calcite crystal nucleation, and thus the formation of the stromatolites and pisoids. The leachate system stromatolites provide a recent example of stromatolites that formed largely by cement precipitation. By acting as catalysts for calcite nucleation, bacteria may cause more rapid cementation than would have occurred under purely abiotic conditions. Rapid calcite precipitation catalyzed by bacteria has interfered with the operation of the Palm Beach County landfill leachate collection by obstructing pipes and may be an unrecognized problem at other landfill sites.

  15. Performance-based landfill design: development of a design component selection matrix using GIS and system simulation models

    NASA Astrophysics Data System (ADS)

    Tarhan, Başak; Ünlü, Kahraman

    2005-11-01

    Designing environmentally safe and economically feasible landfills can be a challenging task due to complex interactions that need to be taken into account between landfill size, waste and site characteristics. The main focus of this study is, by interfacing the geographic information systems (GIS) with system simulation models (SSM), to develop a methodology and a landfill design component selection matrix that can enable the determination of landfill design components providing the desired performance with minimal design details. In this paper, the conceptual framework and applications of the developed methodology demonstrating the selection of landfill design components that are suitable for the existing site conditions are presented. The conceptual model defines design variables, performance criteria and design components of a landfill. GIS and SSM are used to handle the site-specific data and to evaluate the landfill performance, respectively. Results indicate that the landfills having the same design characteristics show different performance under different site conditions; therefore, a landfill design that is technically and economically feasible should be selected on the basis of performance.

  16. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    SciTech Connect

    Mønster, Jacob; Samuelsson, Jerker; Scheutz, Charlotte

    2015-01-15

    Highlights: • Quantification of whole landfill site methane emission at 15 landfills. • Multiple on-site source identification and quantification. • Quantified methane emission from shredder waste and composting. • Large difference between measured and reported methane emissions. - Abstract: Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h{sup −1}, corresponding to 0.7–13.2 g m{sup −2} d{sup −1}, with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41–81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y{sup −1}. This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y{sup −1}, which is significantly lower than the 33,300 tons y{sup −1} estimated for the national greenhouse gas inventory for

  17. Regulatory guidance on soil cover systems

    SciTech Connect

    Kane, J.D.

    1991-12-31

    The US Nuclear Regulatory Commission (NRC) in September 1991, completed revisions to 14 sections of the Standard Review Plan (SRP) for the Review of a License Application for a Low-Level Radioactive Waste Disposal Facility. The major purposes of the SRP are to ensure the quality and uniformity of the NRC staff`s safety reviews, and to present a well-defined base from which to evaluate the acceptability of information and data provided in the Safety Analysis Report (SAR) portion of the license application. SRP 3.2, entitled, Design Considerations for Normal and Abnormal/Accident Conditions, was one of the sections that was revised by the NRC staff. This revision was completed to provide additional regulatory guidance on the important considerations that need to be addressed for the proper design and construction of soil cover systems that are to be placed over the LLW. The cover system over the waste is acknowledged to be one of the most important engineered barriers for the long-term stable performance of the disposal facility. The guidance in revised SRP 3.2 summarizes the previous efforts and recommendations of the US Army Corps of Engineers (COE), and a peer review panel on the placement of soil cover systems. NRC published these efforts in NUREG/CR-5432. The discussions in this paper highlight selected recommendations on soil cover issues that the NRC staff considers important for ensuring the safe, long-term performance of the soil cover systems. The development phases to be discussed include: (1) cover design; (2) cover material selection; (3) laboratory and field testing; (4) field placement control and acceptance; and (5) penetrations through the constructed covers.

  18. Field application of nitrogen and phenylacetylene to mitigate greenhouse gas emissions from landfill cover soils: effects on microbial community structure.

    PubMed

    Im, Jeongdae; Lee, Sung-Woo; Bodrossy, Levente; Barcelona, Michael J; Semrau, Jeremy D

    2011-01-01

    Landfills are large sources of CH(4), but a considerable amount of CH(4) can be removed in situ by methanotrophs if their activity can be stimulated through the addition of nitrogen. Nitrogen can, however, lead to increased N(2)O production. To examine the effects of nitrogen and a selective inhibitor on CH(4) oxidation and N(2)O production in situ, 0.5 M of NH(4)Cl and 0.25 M of KNO(3), with and without 0.01% (w/v) phenylacetylene, were applied to test plots at a landfill in Kalamazoo, MI from 2007 November to 2009 July. Nitrogen amendments stimulated N(2)O production but had no effect on CH(4) oxidation. The addition of phenylacetylene stimulated CH(4) oxidation while reducing N(2)O production. Methanotrophs possessing particulate methane monooxygenase and archaeal ammonia-oxidizers (AOAs) were abundant. The addition of nitrogen reduced methanotrophic diversity, particularly for type I methanotrophs. The simultaneous addition of phenylacetylene increased methanotrophic diversity and the presence of type I methanotrophs. Clone libraries of the archaeal amoA gene showed that the addition of nitrogen increased AOAs affiliated with Crenarchaeal group 1.1b, while they decreased with the simultaneous addition of phenylacetylene. These results suggest that the addition of phenylacetylene with nitrogen reduces N(2)O production by selectively inhibiting AOAs and/or type II methanotrophs.

  19. Analysis of a landfill gas to energy system at the municipal solid waste landfill in Gaziantep, Turkey.

    PubMed

    Tercan, Safak Hengirmen; Cabalar, Ali Firat; Yaman, Gokhan

    2015-08-01

    This paper presents an analysis of the electricity generation from municipal solid waste (MSW), via landfill gas valorization technology, at the landfill of Gaziantep City, Turkey. Rapid increase in population, and industrial developments, throughout the world including Turkey results in larger amount of waste materials generated, increased need for energy, and adverse affects on the environment and human health. Turkey plans to produce 1/3 of its electricity demand using renewable energy sources by the year of 2023. It is recommended to use each year around 25 million tonnes of the MSW generated nationwide for a renewable energy supply. In this study, a concise summary of current status of electricity generation from a MSW landfill gas plant (via biogas harnessing) located in Gaziantep City was analyzed as a case study.

  20. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  1. Leaky Landfills.

    ERIC Educational Resources Information Center

    Jones, Linda L. Cronin

    1992-01-01

    Provides background information on landfills and describes an activity where students learn how a modern landfill is constructed and develop an understanding of the reasons for several regulations regarding modern landfill construction. Students design and construct working models of three types of landfills. (PR)

  2. Technology Overview Using Case Studies of Alternative Landfill Technologies and Associated Regulatory Topics

    DTIC Science & Technology

    2003-03-01

    Environment (CDPHE) to evaluate and ultimately approve an alternative final cover system for the eighth largest municipal solid waste landfill in the United...in 1996 to allow the vertical expansion of a pre-Subtitle D municipal solid waste landfill (MSWLF), and in 1998 to further address the vertical...maximum contaminant level MSW municipal solid waste MSWLF municipal solid waste landfill NCDC National Climatic Data Center NOAA National Atmospheric

  3. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  4. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  5. Leakage Performance of the GM + CCL Liner System for the MSW Landfill

    PubMed Central

    Jingjing, Fan

    2014-01-01

    The contaminants in the landfill leachate press pose a grave threat to environment of the soil and the groundwater beneath the landfill. Despite there being strict requirements in relevant provisions of both domestic and foreign countries for the design of the bottom liner system. Pollution of the soil and the groundwater still took place in a number of landfills because of the leakage. To investigate the leakage rate of the liner systems, the minimum design requirements of the liner systems are summarized according to the provisions of four countries, including China, USA, Germany, and Japan. Comparative analyses using one-dimensional transport model are conducted to study the leakage performance of these liner systems composed of geomembrance (GM) and compacted clay layer (CCL) meeting the relevant minimum design requirements. Then parametric analyses are conducted to study the effects of the hydraulic head, the thickness of GM, the hydraulic conductivity of CCL, and so forth on the leakage performance of the liner system. It is concluded that the liner system designed according to the minimum design requirements of Germany provide the best antileakage performance, while that of Japan performs the lowest. The key parameters affecting the failure time of the liner system are summarized. Finally, some suggestions for the design of the liner systems are made according to the analyses. PMID:24719569

  6. Leakage performance of the GM + CCL liner system for the MSW landfill.

    PubMed

    Jingjing, Fan

    2014-01-01

    The contaminants in the landfill leachate press pose a grave threat to environment of the soil and the groundwater beneath the landfill. Despite there being strict requirements in relevant provisions of both domestic and foreign countries for the design of the bottom liner system. Pollution of the soil and the groundwater still took place in a number of landfills because of the leakage. To investigate the leakage rate of the liner systems, the minimum design requirements of the liner systems are summarized according to the provisions of four countries, including China, USA, Germany, and Japan. Comparative analyses using one-dimensional transport model are conducted to study the leakage performance of these liner systems composed of geomembrance (GM) and compacted clay layer (CCL) meeting the relevant minimum design requirements. Then parametric analyses are conducted to study the effects of the hydraulic head, the thickness of GM, the hydraulic conductivity of CCL, and so forth on the leakage performance of the liner system. It is concluded that the liner system designed according to the minimum design requirements of Germany provide the best antileakage performance, while that of Japan performs the lowest. The key parameters affecting the failure time of the liner system are summarized. Finally, some suggestions for the design of the liner systems are made according to the analyses.

  7. 49 CFR 193.2167 - Covered systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Covered systems. 193.2167 Section 193.2167 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS...

  8. 49 CFR 193.2167 - Covered systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Covered systems. 193.2167 Section 193.2167 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS...

  9. Reverse logistics system and recycling potential at a landfill: A case study from Kampala City

    SciTech Connect

    Kinobe, J.R.; Gebresenbet, G.; Niwagaba, C.B.; Vinnerås, B.

    2015-08-15

    Highlights: • Quantifies the different waste streams delivered at the landfill. • Evaluates the amount of potential waste products that enters into the reverse cycle. • Drawing out the reverse logistics activities from Kampala City to Kiteezi landfill. • Identify the storage, collection and transportation mechanisms of products to the various destinations; and finally. • The study suggests efficient measures to improve reverse logistics system. - Abstract: The rapid growing population and high urbanisation rates in Sub-Saharan Africa has caused enormous pressure on collection services of the generated waste in the urban areas. This has put a burden on landfilling, which is the major waste disposal method. Waste reduction, re-use and recycling opportunities exist but are not fully utilized. The common items that are re-used and re-cycled are plastics, paper, aluminum, glass, steel, cardboard, and yard waste. This paper develops an overview of reverse logistics at Kiteezi landfill, the only officially recognised waste disposal facility for Kampala City. The paper analyses, in details the collection, re-processing, re-distribution and final markets of these products into a reversed supply chain network. Only 14% of the products at Kiteezi landfill are channeled into the reverse chain while 63% could be included in the distribution chain but are left out and disposed of while the remaining 23% is buried. This is because of the low processing power available, lack of market value, lack of knowledge and limited value addition activities to the products. This paper proposes possible strategies of efficient and effective reverse logistics development, applicable to Kampala City and other similar cities.

  10. Full-scale leachate-recirculating MSW landfill bioreactor assessments

    SciTech Connect

    Carson, D.A.

    1995-10-01

    The integrated waste management hierarchy philosophy continues to develop as a useful tool to solve solid waste issues in an environmentally responsible manner. Recent statistics indicate that approximately two thirds of municipal solid waste in the United States is disposed in landfills. Current landfill operational technique involves the preparation of a waste containment facility, the filling of the waste unit, installation of the final cover, and the maintenance of the unit. This method of operation has proven to be reasonably effective in waste disposal, effectively minimizing risk by collecting the liquid that percolates through the waste, called leachates, at the bottom of the landfill, and controlling landfill gas with collection systems. Concerns over the longevity of containment systems components present questions that cannot be answered without substantial performance data. Landfills, as currently operated, serve to entomb dry waste. Therefore, the facility must be maintained in perpetuity, consuming funds and ultimately driving up waste collection costs. This presentation will describe a new form of solid waste landfill operation, it is a technique that involves controlled natural processes to break down landfilled waste, and further minimize risk to human health and the environment. A landfill operated in an active manner will encourage and control natural decomposition of landfilled waste. This can be accomplished by collecting leachate, and reinjecting it into the landfilled waste mass. Keeping the waste mass moist will lead to a largely anaerobic system with the capacity to rapidly stabilize the landfilled waste mass via physical, chemical and biological methods. The system has proven the ability to breakdown portions of the waste mass, and to degrade toxic materials at the laboratory scale.

  11. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method.

    PubMed

    Mønster, Jacob; Samuelsson, Jerker; Kjeldsen, Peter; Scheutz, Charlotte

    2015-01-01

    Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h(-1), corresponding to 0.7-13.2 g m(-2)d(-1), with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41-81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y(-1). This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y(-1), which is significantly lower than the 33,300 tons y(-1) estimated for the national greenhouse gas inventory for 2011.

  12. BIOREACTOR LANDFILL DESIGN

    EPA Science Inventory

    Modern landfill design entails many elements including foundations, liner systems, leachate collection systems, stormwater control systems, slope stability considerations, leachate management systems, gas extraction systems, and capping and closure. The use of bioreactor technolo...

  13. Approximation of clogging in a leachate collection system in municipal solid waste landfill in Osecna (Northern Bohemia, Czech Republic).

    PubMed

    Stibinger, Jakub

    2016-09-08

    The research was focused on approximation of clogging in a leachate collection system in municipal solid waste landfill in Osecna, situated near the location Osecna, region Liberec, Northern Bohemia, Czech Republic, by analysis of numerical experiment results. To approximate the clogging of the leachate collection system after fifteen years of landfill operation (1995-2009) were successfully tested modified De Zeeuw-Hellinga transient drainage theory. This procedure allows application of the reduction factors to express clogging of the leachate collection system in Osecna landfill. The results proved that the modified De Zeeuw-Hellinga method with reduction factors can serve as a good tool for clogging approximation in a leachate collection system in Osecna landfill.

  14. The controlling of landfill leachate evapotranspiration from soil-plant systems with willow: Salix amygdalina L.

    PubMed

    Białowiec, Andrzej; Wojnowska-Baryła, Irena; Hasso-Agopsowicz, Marek

    2007-02-01

    The use of willows (Salix amygdalina L) to manage landfill leachate disposal is an effective and cost-effective method due to the high transpiration ability of the willow plants. A 2-year lysimetric experiment was performed to determine an optimum leachate hydraulic loading rate to achieve high evapotranspiration but exert no harmful influence on the plants. The evapotranspiration rate of a soil-plant system planted with the willow was 1.28-5.12-fold higher than the rate measured on a soil surface lacking vegetation, suggesting that soil-willow systems with high volatilization rates are a viable landfill leachate treatment method. Of the soil-willow systems, the one with willow growing on sand amended with sewage sludge soil at an hydraulic loading rate of 1 mm day(-1) performed best, with evapotranspiration ranging from 2.25 to 3.02 mm day(-1) and a biomass yield of 8.0-9.85 Mg dry matter ha(-1). The organic fraction of the soil increased as much as 2.5% of dry matter, due to the sewage sludge input, which exerted a positive effect on the biomass yield as well as on transpiration and evaporation. It was observed that the plants in the sand-and-sewage sludge soil systems displayed higher resistance to toxic effects from the applied landfill leachate relative to plants in the sand-soil systems.

  15. Cleaner Landfills

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Osmotek, Inc. developed the Direct Osmosis treatment system through SBIR funding from Ames Research Center. Using technology originally developed for flight aboard the Space Station, the company brought it to their commercial water purification treatment system, Direct Osmosis. This water purification system uses a direct osmosis process followed by a reverse osmosis treatment. Because the product extracts water from a waste product, Osmotek is marketing the unit for use in landfills. The system can treat leachate (toxic chemicals leached into a water source), by filtering the water and leaving behind the leahcate. The leachate then becomes solidified into substance that can not seep into water.

  16. Optimizing groundwater monitoring systems for landfills with random leaks under heterogeneous subsurface conditions

    NASA Astrophysics Data System (ADS)

    Yenigül, N. B.; Elfeki, A. M. M.; van den Akker, C.; Dekking, F. M.

    2013-12-01

    Landfills are one of the most common human activities threatening the natural groundwater quality. The landfill may leak, and the corresponding plumes may contaminate an area, entailing costly remediation measures. The objective of the installation of monitoring systems at landfill sites is to detect the contaminant plumes before they reach the regulatory compliance boundary in order to enable cost-effective counter measures. In this study, a classical decision analysis approach is linked to a stochastic simulation model to determine the optimal groundwater monitoring system given uncertainties due to the hydrogeological conditions and contaminant source characteristics. A Monte Carlo approach is used to incorporate uncertainties. Hydraulic conductivity and the leak location are the random inputs of the simulation model. The design objectives are to: (1) maximize the detection probability, (2) minimize the area of contamination at the time of detection, and (3) minimize the total cost of the monitoring system. A synthetic test case based on a real-world case in the Netherlands is analyzed. The results show that monitoring systems located close to the source are optimal except for the cases with very high unit installation and sampling cost and/or very cheap unit remediation.

  17. Assessment of methane emission and oxidation at Air Hitam Landfill site cover soil in wet tropical climate.

    PubMed

    Abushammala, Mohammed F M; Basri, Noor Ezlin Ahmad; Elfithri, Rahmah

    2013-12-01

    Methane (CH₄) emissions and oxidation were measured at the Air Hitam sanitary landfill in Malaysia and were modeled using the Intergovernmental Panel on Climate Change waste model to estimate the CH₄ generation rate constant, k. The emissions were measured at several locations using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface CH₄ and carbon dioxide (CO₂) emissions at four monitoring locations were used to estimate the CH₄ oxidation capacity. The temporal variations in CH₄ and CO₂ emissions were also investigated in this study. Geospatial means using point kriging and inverse distance weight (IDW), as well as arithmetic and geometric means, were used to estimate total CH₄ emissions. The point kriging, IDW, and arithmetic means were almost identical and were two times higher than the geometric mean. The CH₄ emission geospatial means estimated using the kriging and IDW methods were 30.81 and 30.49 gm(−2) day(−1), respectively. The total CH₄ emissions from the studied area were 53.8 kg day(−1). The mean of the CH₄ oxidation capacity was 27.5 %. The estimated value of k is 0.138 year(−1). Special consideration must be given to the CH₄ oxidation in the wet tropical climate for enhancing CH₄ emission reduction.

  18. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil.

    PubMed

    Han, Ji-Sun; Ahn, Chang-Min; Mahanty, Biswanath; Kim, Chang-Gyun

    2013-11-01

    Using a methanotrophic consortium (that includes Methylosinus sporium NCIMB 11126, Methylosinus trichosporium OB3b, and Methylococcus capsulatus Bath) isolated from a landfill site, the potential for partial oxidation of methane into methanol through selective inhibition of methanol dehydrogenase (MDH) over soluble methane monooxygenase (sMMO) with some selected MDH inhibitors at varied concentration range, was evaluated in batch serum bottle and bioreactor experiments. Our result suggests that MDH activity could effectively be inhibited either at 40 mM of phosphate, 100 mM of NaCl, 40 mM of NH4Cl or 50 μM of EDTA with conversion ratios (moles of CH3OH produced per mole CH4 consumed) of 58, 80, 80, and 43 %, respectively. The difference between extent of inhibition in MDH activity and sMMO activity was significantly correlated (n = 6, p < 0.05) with resultant methane to methanol conversion ratio. In bioreactor study with 100 mM of NaCl, a maximum specific methanol production rate of 9 μmol/mg h was detected. A further insight with qPCR analysis of MDH and sMMO coding genes revealed that the gene copy number continued to increase along with biomass during reactor operation irrespective of presence or absence of inhibitor, and differential inhibition among two enzymes was rather the key for methanol production.

  19. Landfill Gas Characterization and Leachate Removal at the Alachua County Southwest Landfill, Alachua County, Florida Through Utilization of a Mechanical Gas Collection System

    DTIC Science & Technology

    1994-01-01

    AD-A280 036 LANDFILL GAS CHARACTERIZATION AND LEACHATE REMOVAL AT THE ALACHUA COUNTY SOUTHWEST LANDFILL, ALACHUA COUNTY, FLORIDA THROUGH UTILIZATION...UNIVERSITY OF FLORIDA 1994 94 6 8 131S - &~ i I I LANDFILL GAS CHARACTERIZATION AND LEACHATE REMOVAL AT THE ALACHUA COUNTY SOUTHWEST LANDFILL, ALACHUA...of the Requirements for the Degree of Master of Engineering. LANDFILL GAS CHARACTERIZATION AND LEACHATE REMOVAL AT THE ALACHUA COUNTY SOUTHWEST

  20. Demonstration and Verification of a Turbine Power Generation System Utilizing Renewable Fuel: Landfill Gas

    DTIC Science & Technology

    2013-09-01

    landfills, facilities with anaerobic digesters for wastewater treatment, painting or printing operations, volatile organic compound (VOC) remediation...other similar fuel sources (e.g., digester gas). All assumptions and information sources are fully documented to give credibility to the results and...economics of the FP250 per se. For non-LFG fuel sources such as digester gas, extraction system costs are not relevant. Thus, Southern considers that

  1. Estimation of municipal solid waste landfill settlement

    SciTech Connect

    Ling, H.I.; Leshchinsky, D.; Mohri, Yoshiyuki; Kawabata, Toshinori

    1998-01-01

    The municipal solid waste landfill suffers from large postclosure settlement that occurs over an extended period of time. A large differential settlement may impair foundations, utilities, and other associated facilities constructed on top of a landfill. It may also lead to breakage of the geomembrane and damage of the cover system in a modern municipal solid waste landfill. The waste material exhibits heterogeneous engineering properties that vary over locations and time within a landfill. These factors, combined with the fact that a landfill is not fully saturated, render a traditional soil mechanics approach less attractive for settlement prediction. An empirical approach of expressing settlement rate using logarithmic and power relationships is commonly used in conjunction with an observational procedure. In this paper, validity of these functions is reexamined based on published settlement results from three landfill sites. A hyperbolic function is proposed as an improved tool to simulate the settlement-time relationships, as well as to detect final settlement. The relationships between the parameters of these empirical functions and water content are examined.

  2. The effect of using a geotextile in a monolithic (evapotranspiration) alternative landfill cover on the resulting water balance.

    PubMed

    Sun, Jianlei; Yuen, Samuel T S; Fourie, Andy B

    2010-11-01

    This paper examines the potential effects of a geotextile layer used in a lysimeter pan experiment conducted in a monolithic (evapotranspiration) soil cover trial on its resulting water balance performance. The geotextile was added to the base of the lysimeter to serve as a plant root barrier in order to delineate the root zone depth. Both laboratory data and numerical modelling results indicated that the geotextile creates a capillary barrier under certain conditions and retains more water in the soil above the soil/geotextile interface than occurs without a geotextile. The numerical modelling results also suggested that the water balance of the soil cover could be affected by an increase in plant transpiration taking up this extra water retained above the soil/geotextile interface. This finding has a practical implication on the full-scale monolithic cover design, as the absence of the geotextile in the full-scale cover may affect the associated water balance and hence cover performance. Proper consideration is therefore required to assess the final monolithic cover water balance performance if its design is based on the lysimeter results.

  3. Geohydrology, water quality, and conceptual model of the hydrologic system Saco Landfill area, Saco, Maine

    USGS Publications Warehouse

    Nielsen, M.G.; Stone, J.R.; Hansen, B.P.; Nielsen, J.P.

    1995-01-01

    A geohydrologic study of the Saco Municipal Landfill in Saco, Maine, was done during 1993-94 to provide a preliminary interpretation of the geology and hydrology needed to guide additional studies at the landfill as part of the Superfund Program. The Saco Landfill, which was active from the early 1960's until 1986, includes three disposal areas on a-90-acre parcel. Sandy Brook, a small perennial stream, flows from north to south through the land- fill between the disposal areas. Discharge of leachate from the disposal areas to aquifers and streams has been documented since 1974. The landfill was declared a Superfund site in 1990 by the U.S. Environmental Protection Agency. Multiple lines of evidence are used in this study to indicate areas of ground-water contamination and sources of water flow in Sandy Brook. The geohydrologic system on the east side of Sandy Brook consists of an upper water-table aquifer and a lower aquifer, separated by a thick sequence of glaciomarine silt and clay. Depths to bedrock range from 60 to more than 200 ft (feet), on the basis of data from seismic-refraction studies and drilling. The upper aquifer, which is generally less than 15 ft thick, consists of fine- to medium-grained sand deposited in a shallow postglacial marine environment. The lower aquifer, which was deposited as a series of glaciomarine fans, contains two sediment types: well-sorted sand *and gravel and unsorted sediments called diamict sediments. East of Sandy Brook, the thickness of the lower aquifer ranges from 25 to 100 ft, based on drilling at the landfill. The glaciomarine silts and clays (known as the presumpscot Formation) range from 50 to more than 100 ft thick. West of Sandy Brook, the glaciomarine silt and clay is largely absent, and fractured bedrock is very close to land surface under one of the disposal areas in the northwestern part of the property. The lower aquifer is unconfined in the southwestern side of the study area; bedrock slopes towards the south

  4. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    SciTech Connect

    Morris, Jeremy W.F.; Crest, Marion; Barlaz, Morton A.; Spokas, Kurt A.; Akerman, Anna; Yuan, Lei

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Performance-based evaluation of landfill gas control system. Black-Right-Pointing-Pointer Analytical framework to evaluate transition from active to passive gas control. Black-Right-Pointing-Pointer Focus on cover oxidation as an alternative means of passive gas control. Black-Right-Pointing-Pointer Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society's interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of

  5. Resource recovery from landfill leachate using bioelectrochemical systems: Opportunities, challenges, and perspectives.

    PubMed

    Iskander, Syeed Md; Brazil, Brian; Novak, John T; He, Zhen

    2016-02-01

    Landfill leachate has recently been investigated as a substrate for bioelectrochemical systems (BES) for electricity generation. While BES treatment of leachate is effective, the unique feature of bioelectricity generation in BES creates opportunities for resource recovery from leachate. The organic compounds in leachate can be directly converted to electrical energy through microbial interaction with solid electron acceptors/donors. Nutrient such as ammonia can be recovered via ammonium migration driven by electricity generation and ammonium conversion to ammonia in a high-pH condition that is a result of cathode reduction reaction. Metals in leachate may also be recovered, but the recovery is affected by their concentrations and values. Through integrating membrane process, especially forward osmosis, BES can recover high-quality water from leachate for applications in landscaping, agricultural irrigation or direct discharge. This review paper discusses the opportunities, challenges, and perspectives of resource recovery from landfill leachate by using BES.

  6. Landfills in Jiangsu province, China, and potential threats for public health: Leachate appraisal and spatial analysis using geographic information system and remote sensing

    SciTech Connect

    Yang Kun; Zhou Xiaonong Yan Weian; Hang Derong; Steinmann, Peter

    2008-12-15

    Waste disposal is of growing environmental and public health concern in China where landfilling is the predominant method of disposal. The assessment of potential health hazards posed by existing landfills requires sound information, and processing of a significant amount of spatial data. Geographical information system (GIS) and remote sensing (RS) are valuable tools for assessing health impacts due to landfills. The aims of this study were: (i) to analyze the leachate and gas emissions from landfills used for domestic waste disposal in a metropolitan area of Jiangsu province, China, (ii) to investigate remotely-sensed environmental features in close proximity to landfills, and (iii) to evaluate the compliance of their location and leachate quality with the relevant national regulations. We randomly selected five landfills in the metropolitan areas of Wuxi and Suzhou city, Jiangsu province, established a GIS database and examined whether data were in compliance with national environmental and public health regulations. The leachates of the sampled landfills contained heavy metals (Pb, As, Cr{sup 6+} and Hg) and organic compounds in concentrations considered harmful to human health. Measured methane concentrations on landfill surfaces were low. Spatial analysis of the location of landfills with regard to distance from major water bodies, sensible infrastructure and environmental conditions according to current national legislation resulted in the rejection of four of the five sites as inappropriate for landfills. Our results call for rigorous evaluation of the spatial location of landfills in China that must take into consideration environmental and public health criteria.

  7. Landfill Methane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landfill methane (CH4) accounts for approximately 1.3% (0.6 Gt) of global anthropogenic greenhouse gas emissions relative to total emissions from all sectors of about 49 Gt CO2-eq yr-1. For countries with a history of controlled landfilling, landfills can be one of the larger national sources of ant...

  8. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system

    SciTech Connect

    Scheutz, Charlotte; Pedersen, Rasmus Broe; Petersen, Per Haugsted; Samuelsson, Jerker

    2014-07-15

    Highlights: • An innovative biocover system was constructed on a landfill cell to mitigate the methane emission. • The biocover system had a mitigation efficiently of typically 80%. • The system also worked efficiently at ambient temperatures below freezing. • A whole landfill emission measurement tool was required to document the biocover system efficiency. - Abstract: Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options.

  9. Analysis of the remediation systems on the contaminant plume at the Plainville landfill

    SciTech Connect

    Woodworth, R.L.

    1999-06-01

    The Plainville landfill, located in Plainville, Massachusetts, has been the subject of study by several groups in recent years. A contaminant plume, exiting from the southwest corner of the landfill, is contaminating the groundwater downgradient and may affect drinking water wells located there. A two-phase remediation scheme, consisting of an interim overburden air sparging system and a final proposed pump and treat and air sparging system, has been proposed to mitigate the groundwater contaminant plume. This thesis assesses these remediation systems to determine their ability to remediate the contaminants in the groundwater plume. The interim and final proposed air sparging systems were analyzed using existing quarterly reports and a literature review. A MODFLOW groundwater flow model was used to analyze the pump and treat system. These analyses were then compared to the model utilized to design the remediation scheme. Several discrepancies in the design of the remediation scheme were noted as a result of this analysis. First, the presence of till lenses throughout the remediation zone was not addressed. Also, the extraction of water from the competent bedrock layer appears counterproductive. In addition, the air sparging system was not field tested to ascertain the flow pattern in the subsurface. Finally, the installation of the bedrock air sparging wells appears redundant. These discrepancies, however, will only decrease the projected efficiency of the proposed remediation schemes and increase clean up time. Consequently, the results of this study seem to indicate that the proposed remediation scheme is adequately designed.

  10. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    SciTech Connect

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-06-15

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  11. Pilot-scale comparison of two hybrid-passive landfill leachate treatment systems operated in a cold climate.

    PubMed

    Speer, Sean; Champagne, Pascale; Anderson, Bruce

    2012-01-01

    Hybrid-passive landfill leachate treatment systems employ active pretreatment to remove dissolved inorganic constituents and decrease the oxygen demand of the leachate prior to treatment in a passive system. In a 1-year pilot-scale study, two passive treatment systems - a peat and wood shaving biological trickle filter and a sand and gravel constructed wetland - were installed to treat leachate from the Merrick Landfill in North Bay, Ontario, Canada. Leachate was pretreated in a fixed-film aerobic reactor, which provided reductions in COD (26%), and masses of ammonia (21%), Al (69%), Ca (57%), Fe (73%) and Sr (37%). A comparison of the performance of the hybrid-passive treatment systems indicated different extents of heterotrophic nitrification; the peat and wood shaving filter removed 49% of the ammonia and nitrified 29%, while the constructed wetland removed 99% of the ammonia and nitrified 90%. Hybrid-passive landfill leachate treatment was determined to be feasible in cold climates.

  12. Post-closure care of engineered municipal solid waste landfills.

    PubMed

    Bagchi, Amalendu; Bhattacharya, Abhik

    2015-03-01

    Post-closure care is divided into perpetual care (PPC) and long-term care (LTC). Guidelines for post-closure care and associated costs are important for engineered municipal solid waste (MSW) landfills. In many states in the USA, landfill owners are required to set aside funds for 30-40 years of LTC. Currently there are no guidelines for PPC, which is also required. We undertook a pilot study, using two landfills (note: average landfill capacity 2.5 million MT MSW waste) in Wisconsin, to establish an approach for estimating the LTC period using field data and PPC funding need. Statistical analysis of time versus concentration data of selected leachate parameters showed that the concentration of most parameters is expected to be at or below the preventive action limit of groundwater and leachate volume will be very low, within 40 years of the LTC period. The gas extraction system may need to be continued for more than 100 years. Due to lack of data no conclusion could be made regarding adequacy of the LTC period for the groundwater monitoring system. The final cover must be maintained for perpetuity. The pilot study shows that although technology is available, the financial liability of maintaining a 'Dry Tomb' design for landfills is significantly higher than commonly perceived. The paper will help landfill professionals to estimate realistic post-closure funding and to develop field-based policies for LTC and PPC of engineered MSW landfills.

  13. Field Practices Installation and operations of a landfill gas collection and flare system

    SciTech Connect

    Dellinger, A.S.; Greeb, K.W.

    1995-08-01

    The Sheldon-Arleta Landfill was operated by the City of Los Angeles from 1962 until 1974. Refuse was landfilled in what was formerly a quarry pit and placed prior to development and use of clay and synthetic liner materials. This paper is a continuance of the paper presented at the 17th Annual Landfill Gas Symposium-identifying sources and causes of landfill gas migration hazards, the design for their remediation, and the field construction/implementation of those designs to remediate landfill gas migration hazards.

  14. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 2. Methane oxidation.

    PubMed

    Scheutz, Charlotte; Cassini, Filippo; De Schoenmaeker, Jan; Kjeldsen, Peter

    2017-02-01

    Greenhouse gas mitigation at landfills by methane (CH4) oxidation in engineered biocover systems is believed to be a cost effective technology but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi-passive biocover system was constructed at the AV Miljø Landfill, Denmark. The biocover was fed by landfill gas pumped out of three leachate collection wells. An innovative gas distribution system was used to overcome the often observed uneven gas distribution to the active CH4 oxidation layer resulting in overloaded areas causing CH4 emission hot spot areas in the biocover surface. The whole biocover CH4 oxidation efficiency was determined by measuring the CH4 inlet load and CH4 surface fluxes. In addition, CH4 oxidation was determined for single points in the biocover using two different methods; the carbon mass balance method (based on CH4 and carbon dioxide (CO2) concentrations in the deeper part of the cover and CH4 and CO2 surface flux measurements) and a new-developed tracer gas mass balance method (based on CH4 and tracer inlet fluxes and CH4 and tracer surface flux measurements). Overall, the CH4 oxidation efficiency of the whole biocover varied between 81 and 100% and showed that the pilot plant biocover system installed at AV Miljø landfill was very efficient in oxidizing the landfill CH4. The average CH4 oxidation rate measured at nine campaigns was approximately 13gm(-2)d(-1). Extrapolating laboratory measured CH4 oxidation rates to the field showed that the biocover system had a much larger CH4 oxidation potential in comparison to the tested CH4 load. The carbon mass balance approach compared reasonably well with the tracer gas mass balance approach when applied for quantification of CH4 oxidation in single points at the biofilter giving CH4 oxidation efficiencies in the range of 84 to a 100%. CH4 oxidation rates where however much higher using the

  15. Modelling gas generation for landfill.

    PubMed

    Chakma, Sumedha; Mathur, Shashi

    2016-09-27

    A methodology was developed to predict the optimum long-term spatial and temporal generation of landfill gases such as methane, carbon dioxide, ammonia, and hydrogen sulphide on post-closure landfill. The model incorporated the chemical and the biochemical processes responsible for the degradation of the municipal solid waste. The developed model also takes into account the effects of heterogeneity with different layers as observed at the site of landfills' morphology. The important parameters for gas generation due to biodegradation such as temperature, pH, and moisture content were incorporated. The maximum and the minimum generations of methane and hydrogen sulphide were observed. The rate of gas generation was found almost same throughout the depth after 30 years of landfill closure. The proposed model would be very useful for landfill engineering in the mining landfill gas and proper design for landfill gas management systems.

  16. Bondad Landfill NPDES Permit

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number CO-R050005, Transit Waste, LLC is authorized to discharge from the Bondad Landfill facility in La Plata County, Colorado, to an unnamed tributary of the Animas River.

  17. Environmental performance review and cost analysis of MSW landfilling by baling-wrapping technology versus conventional system

    SciTech Connect

    Baldasano, J.M.; Gasso, S.; Perez, C

    2003-07-01

    This paper first reviews the chemical, physical and biological processes, and the environmental performance of MSW compacted and plastic-wrapped into air-tight bales with low-density polyethylene (LDPE). The baling-wrapping process halts the short and half-term biological activity and consequently the emission of gases and leachates. It also facilitates the handling of the refuse, and considerably reduces the main environmental impacts of a landfill. The main technologies available for baling-wrapping MSW are also presented. Furthermore, a cost analysis comparing a conventional landfill (CL) without baling system versus two landfills using different baling-wrapping technologies (rectangular and cylindrical bales) is carried out. The results are presented comparatively under the conditions of construction, operation and maintenance and postclosure, as required by European Directive 1999/31. A landfill using rectangular plastic-wrapped bales (LRPB) represents an economically competitive option compared to a CL. The increased capacity of the waste disposal zone when using rectangular bales due to the high density of the bales compensates for the increased operating and maintenance (O and M) costs of the method. Landfills using cylindrical plastic-wrapped bales (LCPB's) do not fare so well, mainly because the density within the bales is lower, the cylindrical geometry of the bales does not allow such an efficient use of the space within the landfill, and the processing capacity of the machinery is lower. From the cost model, the resulting unit costs per tonne in a LRPB, a LCPB and a CL for 100,000 t/year of waste, an operation time of 15 years and a landfill depth (H) of 20 m, are 31.52, 43.36 and 31.83 Euro/t, respectively.

  18. Environmental performance review and cost analysis of MSW landfilling by baling-wrapping technology versus conventional system.

    PubMed

    Baldasano, J M; Gassó, S; Pérez, C

    2003-01-01

    This paper first reviews the chemical, physical and biological processes, and the environmental performance of MSW compacted and plastic-wrapped into air-tight bales with low-density polyethylene (LDPE). The baling-wrapping process halts the short and half-term biological activity and consequently the emission of gases and leachates. It also facilitates the handling of the refuse, and considerably reduces the main environmental impacts of a landfill. The main technologies available for baling-wrapping MSW are also presented. Furthermore, a cost analysis comparing a conventional landfill (CL) without baling system versus two landfills using different baling-wrapping technologies (rectangular and cylindrical bales) is carried out. The results are presented comparatively under the conditions of construction, operation and maintenance and postclosure, as required by European Directive 1999/31. A landfill using rectangular plastic-wrapped bales (LRPB) represents an economically competitive option compared to a CL. The increased capacity of the waste disposal zone when using rectangular bales due to the high density of the bales compensates for the increased operating and maintenance (O&M) costs of the method. Landfills using cylindrical plastic-wrapped bales (LCPB's) do not fare so well, mainly because the density within the bales is lower, the cylindrical geometry of the bales does not allow such an efficient use of the space within the landfill, and the processing capacity of the machinery is lower. From the cost model, the resulting unit costs per tonne in a LRPB, a LCPB and a CL for 100,000 t/year of waste, an operation time of 15 years and a landfill depth (H) of 20 m, are 31.52, 43.36 and 31.83 /t, respectively.

  19. Performance evaluation of a hybrid-passive landfill leachate treatment system using multivariate statistical techniques

    SciTech Connect

    Wallace, Jack; Champagne, Pascale; Monnier, Anne-Charlotte

    2015-01-15

    Highlights: • Performance of a hybrid passive landfill leachate treatment system was evaluated. • 33 Water chemistry parameters were sampled for 21 months and statistically analyzed. • Parameters were strongly linked and explained most (>40%) of the variation in data. • Alkalinity, ammonia, COD, heavy metals, and iron were criteria for performance. • Eight other parameters were key in modeling system dynamics and criteria. - Abstract: A pilot-scale hybrid-passive treatment system operated at the Merrick Landfill in North Bay, Ontario, Canada, treats municipal landfill leachate and provides for subsequent natural attenuation. Collected leachate is directed to a hybrid-passive treatment system, followed by controlled release to a natural attenuation zone before entering the nearby Little Sturgeon River. The study presents a comprehensive evaluation of the performance of the system using multivariate statistical techniques to determine the interactions between parameters, major pollutants in the leachate, and the biological and chemical processes occurring in the system. Five parameters (ammonia, alkalinity, chemical oxygen demand (COD), “heavy” metals of interest, with atomic weights above calcium, and iron) were set as criteria for the evaluation of system performance based on their toxicity to aquatic ecosystems and importance in treatment with respect to discharge regulations. System data for a full range of water quality parameters over a 21-month period were analyzed using principal components analysis (PCA), as well as principal components (PC) and partial least squares (PLS) regressions. PCA indicated a high degree of association for most parameters with the first PC, which explained a high percentage (>40%) of the variation in the data, suggesting strong statistical relationships among most of the parameters in the system. Regression analyses identified 8 parameters (set as independent variables) that were most frequently retained for modeling

  20. Water flows of MSW landfills and implications for long-term emissions.

    PubMed

    Huber, Renate; Fellner, Johann; Doeberl, Gernot; Brunner, Paul H

    2004-01-01

    A test landfill served for experiments to describe the water and material household of municipal solid waste (MSW) landfills. Special emphasis was given to the determination of the influence of the water flow on the substance balance. Therefore, a water balance was measured and the discharge was modeled by means of a mathematical model. A model, which separates the landfill into an area of preferential flow and an area of matrix flow fits best water flow data measured from 1987 to 1989 in the Breitenau landfill of 95,000 t MSW. This test landfill consists of three compartments C1, C2 and C3 with different covering systems. Leachate amount was highest in C1 with a permeable cover of silt and gravel. The lowest amount of leachate was found in C3 with a less permeable cover of gravel, humus, and plants. The values for C2 lie in between. An input-output balance for the substances C, N, S, P, Cl, Na, Ca, Fe, Zn, Pb, Cd and Cu was prepared. Contrary to the expectations the output of some substances was higher for C2 than for C1 with more leachate. Possibly a higher flow rate leads to preferential water flows that contact only small parts of the landfill body while most part of the landfill stays more or less dry. The substance balance reveals that most of the substances still remain in the landfill after 15 years of leaching. Hence, focusing on leachate concentrations only results in underestimating the after-care period of MSW landfills. Leachate concentrations reflect just a small part of a landfill. Understanding water flows and measuring substance balances improve considerably the assessment of the long-term emission potentials of landfills.

  1. Overview and implications of U.S. sanitary landfill practice.

    PubMed

    Ham, R K

    1993-02-01

    This paper is a summary of observations and trends regarding landfill practice based on a fifteen state, four-and-a-half month tour of facilities and professionals involved in municipal solid waste management, supplemented by 25 years of experience in the field. Modern landfills tend to be well designed and operated, with an emphasis on containment of waste and products of decomposition through liner systems and cover design, plus good operating practice. Forces leading to our concept of modern landfills are based on a history of inadequate landfills and their impacts, and on long-term liability issues, but also stem from a lack of responsibility by the public and their representatives for handling their own waste. While modern landfills incorporate many improvements over previous facilities, the driving forces shaping landfill design now and in the future are unfortunately not based on sound technical and managerial principals and could lead to future problems. The trend to drier landfills, thereby prolonging decomposition, is of special concern in this regard.

  2. Uncontrolled methane emissions from a MSW landfill surface: influence of landfill features and side slopes.

    PubMed

    Di Trapani, Daniele; Di Bella, Gaetano; Viviani, Gaspare

    2013-10-01

    Sanitary landfills for Municipal Solid Waste (MSW) disposal have been identified as one of the most important anthropogenic sources of methane (CH4) emissions; in order to minimize its negative effects on the environment, landfill gas (LFG) recovery is a suitable tool to control CH4 emissions from a landfill site; further, the measurement of CH4 emissions can represent a good way to evaluate the effectiveness of LFG recovering systems. In general, LFG will escape through any faults in the landfill capping or in the LFG collection system. Indeed, some areas of the capping can be more permeable than others (e.g. portions of a side slope), especially when considering a temporarily capped zone (covered area that is not expected to receive any further waste for a period of at least 3 months, but for engineering reasons does not have a permanent cap yet). These areas, which are characterized by abnormal emissions, are usually defined as "features": in particular, a feature is a small, discrete area or an installation where CH4 emissions significantly differ from the surrounding zones. In the present study, the influence that specific features have on CH4 emissions has been investigated, based on direct measurements carried out in different seasons by means of a flux chamber to the case study of Palermo (IT) landfill (Bellolampo). The results showed that the flux chamber method is reliable and easy to perform, and the contoured flux maps, obtained by processing the measured data were found to be a suitable tool for identifying areas with abnormal (high) emissions. Further, it was found that a relationship between methane emission rates and landfill side slope can be established. Concerning the influence of the temporary HDPE cover system on CH4 recovery efficiency, it contributed to a significant decrease of the free surface area available for uncontrolled emissions; this aspect, coupled to the increase of the CH4 volumes collected by the LFG recovery system, led to a

  3. A laboratory study on migration of K+ in a two-layer landfill liner system.

    PubMed

    Du, Yan Jun; Hayashi, Shigenori

    2005-10-01

    Contaminant transport through the clay liner and the underIying secondary leachate drain layer (SLDL) in landfills was studied through a laboratory test, and analysis method on the transport of K+ in a two-layer soil system. The soils used for this study were Ariake clay and the underlying layer, Shirasu soil from the Kyushu region of Japan, representing the clay liner material and SLDL material, respectively. The effective diffusion coefficients (De) of the selected target chemical species, potassium (K+) for the Ariake clay and Shirasu soil were back-calculated using a computer program, and it was found that values of De derived from this study were consistent with those previously published. The hypothesis that the mechanical dispersion process can be negligible has been proved to be reasonable based on both the observation that the predicted values fit the experimental data and the analyses of two dimensionless parameters. Parametric analysis showed the transport of K+ through the soils is controlled by advection-diffusion rather than diffusion only, whereas at low Darcy velocity (i.e. < or = 10(-9) m s(-1)), transport of K+ would be controlled by diffusion. The test results and parametric analysis may be applied in design of landfill liners and SLDLs, particularly in coastal areas.

  4. Landfill mining: A critical review of two decades of research

    SciTech Connect

    Krook, Joakim; Svensson, Niclas; Eklund, Mats

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We analyze two decades of landfill mining research regarding trends and topics. Black-Right-Pointing-Pointer So far landfill mining has mainly been used to solve waste management issues. Black-Right-Pointing-Pointer A new perspective on landfills as resource reservoirs is emerging. Black-Right-Pointing-Pointer The potential of resource extraction from landfills is significant. Black-Right-Pointing-Pointer We outline several key challenges for realization of resource extraction from landfills. - Abstract: Landfills have historically been seen as the ultimate solution for storing waste at minimum cost. It is now a well-known fact that such deposits have related implications such as long-term methane emissions, local pollution concerns, settling issues and limitations on urban development. Landfill mining has been suggested as a strategy to address such problems, and in principle means the excavation, processing, treatment and/or recycling of deposited materials. This study involves a literature review on landfill mining covering a meta-analysis of the main trends, objectives, topics and findings in 39 research papers published during the period 1988-2008. The results show that, so far, landfill mining has primarily been seen as a way to solve traditional management issues related to landfills such as lack of landfill space and local pollution concerns. Although most initiatives have involved some recovery of deposited resources, mainly cover soil and in some cases waste fuel, recycling efforts have often been largely secondary. Typically, simple soil excavation and screening equipment have therefore been applied, often demonstrating moderate performance in obtaining marketable recyclables. Several worldwide changes and recent research findings indicate the emergence of a new perspective on landfills as reservoirs for resource extraction. Although the potential of this approach appears significant, it is argued that

  5. Evaluation of the geotechnical properties of MSW in two Brazilian landfills.

    PubMed

    Machado, Sandro Lemos; Karimpour-Fard, Mehran; Shariatmadari, Nader; Carvalho, Miriam Fatima; do Nascimento, Julio C F

    2010-12-01

    The characteristics of municipal solid waste (MSW) play a key role in many aspects of waste disposal facilities and landfills. Because most of a landfill is made up of MSW, the overall stability of the landfill slopes are governed by the strength parameters and physical properties of the MSW. These parameters are also important in interactions involving the waste body and the landfill structures: cover liner, leachate and gas collection systems. On the other hand, the composition of the waste, which affects the geotechnical behavior of the MSW, is dependent on a variety of factors such as climate, disposal technology, the culture and habits of the local community. It is therefore essential that the design and stability evaluations of landfills in each region be performed based on the local conditions and the geotechnical characteristic of the MSW. The Bandeirantes Landfill, BL, in São Paulo and the Metropolitan Center Landfill, MCL, in Salvador, are among the biggest landfills in Brazil. These two disposal facilities have been used for the development of research involving waste mechanics in recent years. Considerable work has been made in the laboratory and in the field to evaluate parameters such as water and organic contents, composition, permeability, and shear strength. This paper shows and analyzes the results of tests performed on these two landfills. The authors believe that these results could be a good reference for certain aspects and geotechnical properties of MSW materials in countries with similar conditions.

  6. Generating CO{sub 2}-credits through landfill in situ aeration

    SciTech Connect

    Ritzkowski, M.; Stegmann, R.

    2010-04-15

    Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO{sub 2-eq}. can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83-95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the 'Avoidance of landfill gas emissions by in situ aeration of landfills' (). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction.

  7. Integrated Cryogenic System for CO2 Separation and Lng Production from Landfill Gas

    NASA Astrophysics Data System (ADS)

    Chang, H. M.; Chung, M. J.; Park, S. B.

    2010-04-01

    An integrated cryogenic system to separate carbon dioxide (CO2) and produce LNG from landfill gas is investigated and designed. The main objective of this design is to eliminate the requirement of a standard CO2 removal process in the liquefaction system such distillation or (temperature or pressure) swing adsorption, and to directly separate carbon dioxide as frost at the liquefying channel of methane. Two identical sets of heat exchangers are installed in parallel and switched alternatively with a time period so that one is in separation-liquefaction mode while the other is in CO2 clean-up mode. A thermal regeneration scheme is presented for the purpose of saving energy and avoiding the stoppage of LNG production followed by the flow switching. The switching period is determined from results of a combined heat and mass transfer analysis on the CO2 freeze-out process.

  8. Comparison of air dispersion modeling results with ambient air sampling data: A case study at Tacoma Landfill, a National Priorities List Site

    SciTech Connect

    Griffin, L.R. ); Rutherford, T.L. )

    1994-08-01

    Air dispersion modeling, ambient air sampling, and emissions testing of landfill sources have been performed to evaluate the effects of remedial activities on ambient air surrounding the Tacoma Landfill. In 1983, the Tacoma Landfill was placed on the National Priorities List (NPL) as part of the Commencement Bay/South Tacoma Channel Superfund site. Remedial activities completed, or near completion, at the 190 acre (768,903 m[sup 2]) Tacoma Landfill include a groundwater extraction system and air stripping units used to remove volatile organic compounds (VOCs) from groundwater, landfill gas extraction and flare system to control gas migration from the landfill, landfill liner and leachate collection system for an active section of the landfill, and a landfill cap that covers the inactive portions of the landfill. Dispersion modeling was performed with measured stack emission data using Industrial Source Complex (ISC) to determine the groundlevel concentrations of VOCs from the air stripper, flares, and active portion of the landfill for comparison with the measured ambient air data collected during 1992. 9 refs., 3 figs., 6 tabs.

  9. Applicability of grid-net detection system for landfill leachate and diesel fuel release in the subsurface

    NASA Astrophysics Data System (ADS)

    Oh, Myounghak; Seo, Min Woo; Lee, Seunghak; Park, Junboum

    2008-02-01

    The grid-net system estimating the electrical conductivity changes was evaluated as a potential detection system for the leakage of diesel fuel and landfill leachate. Aspects of electrical conductivity changes were varied upon the type of contaminant. The electrical conductivity in the homogeneous mixtures of soil and landfill leachate linearly increased with the ionic concentration of pore fluid, which became more significant at higher volumetric water contents. However, the electrical conductivity in soil/diesel fuel mixture decreased with diesel fuel content and it was more significant at lower water contents. The electrode spacing should be determined by considering the type of contaminant to enhance the electrode sensitivity especially when two-electrode sensors are to be used. The electrode sensitivity for landfill leachate was constantly maintained regardless of the electrode spacings while that for the diesel fuel significantly increased at smaller electrode spacings. This is possibly due to the fact that the insulating barrier effect of the diesel fuel in non-aqueous phase was less predominant at large electrode spacing because electrical current can form the round-about paths over the volume with relatively small diesel fuel content. The model test results showed that the grid-net detection system can be used to monitor the leakage from waste landfill and underground storage tank sites. However, for a successful application of the detection system in the field, data under various field conditions should be accumulated.

  10. The effectiveness of composite lining systems in controlling the leakage of leachate from sanitary landfills to groundwater.

    PubMed

    Gan, T Y; Friesen, G

    1991-10-01

    Leachate, the hazardous liquid that percolated through the refuse layers of a sanitary landfill, if it leaks through the landfill lining system, can become a serious source of groundwater pollution. In the past, leaks have been detected in many landfills lined with flexible membrane liners (FML) whose failure may be attributed to flaws such as imperfect seaming, rips, and tears of the membrane, or from chemical attack that dissolves the membrane. Recent studies have shown that composite lining systems which include either a clayey subbase or a layer of geotextile in addition to the FML, can substantially reduce the leakage of leachate. Therefore in this study, four different lining systems are proposed and evaluated to determine their effectiveness in controlling leachate flow under various degree of flaws (referred to as leakage fraction LF) in the FML. The Hydrologic Evaluation of Landfill Performance (HELP) computer model of the Environmental Protection Agency of USA, currently the most widely accepted model for predicting the performance of leachate collection systems in that country, is used to evaluate the following lining systems: (1) a single FML or liner, (2) a single FML with a clayey composite, (3) a single FML with a geotextile called Claymax, and (4) a double FML. Based on the climatic conditions and the present lining construction cost of Alaska, the study shows that a single FML or liner is the most economical but it is also the least effective in controlling leachate flow. Design (3), a single FML with a geotextile, costs about 50 percent more but it reduces the leakage of leachate by several orders. Design (2) is also effective but the cost incurred in constructing a 3 feet thick clayey subbase is prohibitive and thus to effectively and economically minimize the hazards of potential groundwater contamination by leachate, Design (3) is recommended as the composite lining system for future landfill sites.

  11. Suitability of shredded tires for use in landfill leachate collection systems.

    PubMed

    Warith, M A; Evgin, E; Benson, P A S

    2004-01-01

    The suitability of shredded tires or "tire chips" for use in the leachate collection drainage layer of a municipal solid waste landfill was investigated in terms of the: (1) compressibility of the tire chips and resulting changes in hydraulic conductivity under varying applied loads, and (2) effect of leachate pH on the shredded tries compressibility and hydraulic conductivity behavior. A constant head hydraulic conductivity apparatus was fabricated to measure the hydraulic conductivity of the tire shred sample under different axial strains. Further, the fabricated assembly was capable of measuring hydraulic conductivity of the sample at various sample locations at a given strain level. One aim of this study was to provide supporting information for permission to use tire chips as an alternative to crushed stone in the leachate collection system of a landfill. Shredded tires from two different sources were used in this study to investigate any differences in the sensitivity of the shredding process to compressibility and hydraulic conductivity responses under varied applied loads. Under applied vertical loads resulting in average vertical stresses of up to 440 kPa, equivalent to over 50 m of waste, the maximum normal strain recorded in each type of tire chip was observed to plateau at a strain level near or slightly greater than 0.5. The results of the permeability testing indicated average hydraulic conductivity values ranging between 0.67 and 13.4 cm/s under average applied normal stresses ranging from approximately 60 to 335 kPa and strain increments between 0.3 and 0.5. These results are one to three orders of magnitude higher than the hydraulic conductivity typically specified for drainage layers in leachate collection systems of 0.01 cm/s. Additional tests were also carried out to identify how landfill leachate and varied pH levels may affect the compressibility and hydraulic conductivity of the shredded tires. Care should be exercised in extending these

  12. Modeling impact of small Kansas landfills on underlying aquifers

    USGS Publications Warehouse

    Sophocleous, M.; Stadnyk, N.G.; Stotts, M.

    1996-01-01

    Small landfills are exempt from compliance with Resource Conservation and Recovery Act Subtitle D standards for liner and leachate collection. We investigate the ramifications of this exemption under western Kansas semiarid environments and explore the conditions under which naturally occurring geologic settings provide sufficient protection against ground-water contamination. The methodology we employed was to run water budget simulations using the Hydrologic Evaluation of Landfill Performance (HELP) model, and fate and transport simulations using the Multimedia Exposure Assessment Model (MULTIMED) for several western Kansas small landfill scenarios in combination with extensive sensitivity analyses. We demonstrate that requiring landfill cover, leachate collection system (LCS), and compacted soil liner will reduce leachate production by 56%, whereas requiring only a cover without LCS and liner will reduce leachate by half as much. The most vulnerable small landfills are shown to be the ones with no vegetative cover underlain by both a relatively thin vadose zone and aquifer and which overlie an aquifer characterized by cool temperatures and low hydraulic gradients. The aquifer-related physical and chemical parameters proved to be more important than vadose zone and biodegradation parameters in controlling leachate concentrations at the point of compliance. ??ASCE.

  13. Aqueous- and solid-phase biogeochemistry of a calcareous aquifer system downgradient from a municipal solid waste landfill (Winterthur, Switzerland)

    SciTech Connect

    Amirbahman, A.; Schoenenberger, R.; Johnson, C.A.; Sigg, L. |

    1998-07-01

    This study addresses the biogeochemical changes that take place in a calcareous aquifer system under and down-gradient from a municipal solid waste landfill. Aqueous-phase chemical analysis of the redox-sensitive species indicates the presence of aerobic respiration, denitrification/NO{sub 3}{sup {minus}} reduction, and Fe(III), Mn(III/IV), and SO{sub 4} reduction processes under the landfill. Because available and released organic matter is limited, reduction processes downgradient from the landfill do not go far beyond aerobic respiration, denitrification, and Mn(III/IV) reduction. Assuming steady-state conditions, STEADYQL computer program has been used to model the biogeochemical processes by taking into account the kinetics of the redox reactions, calcite precipitation and dilution. Dilution has the most significant influence on the concentrations of the dissolved organic and inorganic carbon. Dissolved Mn(II) concentrations in the entire anaerobic zone are controlled by the solubility of rhodocrocite [MnCO{sub 3}(S)]. At selected locations under the landfill where SO{sub 4} reduction takes place, dissolved Fe(II) concentrations are regulated by the solubility of amorphous FeS. Chemical extraction of the aquifer solid phase indicates that the oxidation capacity of this aquifer system is largely controlled by iron(III)(hydr)-oxides.

  14. Leachate treatment system using constructed wetlands, Town of Fenton sanitary landfill, Broome County, New York. Final report

    SciTech Connect

    Not Available

    1993-11-01

    Municipal sanitary landfills generate leachate that New York State regulations require to be collected and treated to avoid contaminating surface water and groundwater. One option for treating leachate is to haul it to municipal wastewater treatment facility. This option may be expensive, may require excessive energy for transportation, and may require pretreatment to protect the receiving facility`s processes. An alternative is on-site treatment and discharge. Personnel from the Town of Fenton, New York; Hawk Engineering, P.C.; Cornell University; and Ithaca College designed, built, and operated a pilot constructed wetland for treating leachate at the Town of Fenton`s municipal landfill. The system, consisting of two overland flow beds and two subsurface flow beds has been effective for 18 months in reducing levels of ammonia (averaging 85% removal by volatilization and denitrification) and total iron (averaging 95% removal by precipitation and sedimentation), two key constituents of the Fenton landfill`s leachate. The system effects these reductions with zero chemical and energy inputs and minimal maintenance. A third key constituent of the leachate, manganese, apparently passes through the beds with minimal removal. Details and wetland considerations are described.

  15. Municipal landfill leachate management

    SciTech Connect

    Kusterer, T.; Willson, R.; Bruce, S.C.; Tissue, E. Lou, P.J.

    1998-12-31

    From 1995 to 1997, the Montgomery County Leachate Pretreatment Facility (MCLPF) has successfully pretreated in excess of 18,000,000 gallons of leachate generated by the county`s municipal solid waste landfill. The collection system directs leachate from the original landfill. The collection system directs leachate from the original landfill, the new lined section, and the ash cell to the leachate pump station. The leachate, prior to being pumped to the leachate pretreatment system, is equalized in two storage lagoons with a combined capacity of more than 5,000,000 gallons. The innovative leachate treatment system, incorporating a biological reactor system equipped with a submerged fixed-film reactor using a patented Matrix Biological Film (MBF) media, continues to provide excellent pretreatment results for the leachate generated at the Oaks Landfill in Montgomery County, Maryland. In 1995 and 1996, the system responded to the substantial challenges imposed by the changing characteristics of the material being landfilled and by the significant amounts of incinerator ash, received in 1995 from the county`s resource recovery facility (RRF), which influenced the influent leachate characteristics.

  16. A GIS-BASED MULTI-CRITERIA EVALUATION SYSTEM FOR SELECTION OF LANDFILL SITES: a case study from Abu Dhabi, United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Issa, S. M.; Shehhi, B. Al

    2012-07-01

    Landfill sites receive 92% of total annual solid waste produced by municipalities in the emirate of Abu Dhabi. In this study, candidate sites for an appropriate landfill location for the Abu Dhabi municipal area are determined by integrating geographic information systems (GIS) and multi-criteria evaluation (MCE) analysis. To identify appropriate landfill sites, eight input map layers including proximity to urban areas, proximity to wells and water table depth, geology and topography, proximity to touristic and archeological sites, distance from roads network, distance from drainage networks, and land slope are used in constraint mapping. A final map was generated which identified potential areas showing suitability for the location of the landfill site. Results revealed that 30% of the study area was identified as highly suitable, 25% as suitable, and 45% as unsuitable. The selection of the final landfill site, however, requires further field research.

  17. Consolidated, multimedia environmental review and licensing of a landfill gas combustion/electrical generation system in Maryland

    SciTech Connect

    Goldstein, D.R.; Brown, D.H.; Ross, J.B.; Mountain, P.D.

    1999-07-01

    To build a power plant or transmission line in the State of Maryland, a company must obtain a Certificate of Public Convenience and Necessity (CPCN) from the Maryland Public Service Commission (PSC). As part of this licensing process, applicants must address a full range of environmental, engineering, socioeconomic, planning, need, and cost issues. The CPCN constitutes permission to construct and operate the facility, and includes issuance of the required air quality and water appropriations permits. The Maryland Power Plant Research Program (PPRP) serves as the lead agency for the consolidated review of CPCN projects. A recent project in Maryland involved the beneficial use of collected landfill gas from a closed municipal solid waste landfill for the generation of up to 4 Megawatts (MW) of electricity. This electrical generation will be continuously fed into the existing transmission system under a power purchase agreement with the local power company. The project is unique is several aspects: the use of former Rolls Royce aircraft engines fitted with generator sets to produce electricity; the beneficial reuse of landfill gas which is currently being flared at the landfill; and the collaborative environmental review that was conducted for this project that resulted in a streamlined licensing approach. This paper will include: a description of the landfill gas combustion/electrical generation system; an explanation of the review process conducted for the project including New Source Review, ambient air impacts assessed through air dispersion modeling, noise generation impacts, and ecological impacts; background on power plant licensing in Maryland; and a discussion of how the collaborative approach led by PPRP proved to be proactive and environmentally beneficial.

  18. Controls on landfill gas collection efficiency: instantaneous and lifetime performance.

    PubMed

    Barlaz, Morton A; Chanton, Jeff P; Green, Roger B

    2009-12-01

    Estimates of landfill gas (LFG) collection efficiency are required to estimate methane emissions and the environmental performance of a solid waste landfill. The gas collection efficiency varies with time on the basis of the manner in which landfills are designed, operated, and regulated. The literature supports instantaneous collection efficiencies varying between 50% and near 100%, dependent on the cover type and the coverage of the LFG collection system. The authors suggest that the temporally weighted gas collection efficiency, which considers total gas production and collection over the landfill life, is the appropriate way to report collection efficiency. This value was calculated for a range of decay rates representative of refuse buried in arid and wet areas (i.e., >63.5 cm precipitation) and for bioreactor landfills. Temporally weighted collection efficiencies ranging from 67 to 91%, 62 to 86%, and 55 to 78% were calculated at decay rates of 0.02, 0.04, and 0.07 yr(-1), respectively. With aggressive gas collection, as would be implemented for a bioreactor landfill, estimated gas collection efficiency ranged from 84 to 67% at decay rates of 0.04 to 0.15 yr(-1), respectively.

  19. Covering the Bases: Exploring Alternative Systems

    ERIC Educational Resources Information Center

    Kurz, Terri L.; Garcia, Jorge

    2015-01-01

    Since the 1950s, the understanding of how the base 10 system works has been encouraged through alternative base systems (Price 1995; Woodward 2004). If high school students are given opportunities to learn other base systems and analyze what they denote, we believe that they will better understand the structure of base 10 and its operations…

  20. Final closure cover for a Hanford radioactive mixed waste disposal facility

    SciTech Connect

    Johnson, K.D.

    1996-02-06

    This study provides a preliminary design for a RCRA mixed waste landfill final closure cover. The cover design was developed by a senior class design team from Seattle University. The design incorporates a layered design of indigenous soils and geosynthetics in a layered system to meet final closure cover requirements for a landfill as imposed by the Washington Administrative Code WAC-173-303 implementation of the Resource Conservation and Recovery Act.

  1. Dynamics of copper and zinc sedimentation in a lagooning system receiving landfill leachate.

    PubMed

    Guigue, Julien; Mathieu, Olivier; Lévêque, Jean; Denimal, Sophie; Steinmann, Marc; Milloux, Marie-Jeanne; Grisey, Hervé

    2013-11-01

    This study characterises the sediment dredged from a lagooning system composed of a settling pond and three lagoons that receive leachates from a municipal solid waste (MSW) landfill in France. Organic carbon, carbonate, iron oxyhydroxides, copper (Cu) and zinc (Zn) concentrations were measured in the sediment collected from upstream to downstream in the lagooning system. In order to complete our investigation of sedimentation mechanisms, leachates were sampled in both dry (spring) and wet (winter) seasonal conditions. Precipitation of calcite and amorphous Fe-oxyhydroxides and sedimentation of organic matter occurred in the settling pond. Since different distributions of Zn and Cu concentrations are measured in sediment samples collected downstream in the lagooning system, it is suggested that these elements were not distributed in a similar way in the leachate fractions during the first stage of treatment in the settling pond, so that their sedimentation dynamics in the lagooning system differ. In the lagoons, it was found that organic carbon plays a major role in Cu and Zn mobility and trapping. The presence of macrophytes along the edges provided an input of organic matter that enhanced Cu and Zn scavenging. This edge effect resulted in a two-fold increase in Cu and Zn concentrations in the sediment deposited near the banks of the lagoons, thus confirming the importance of vegetation for the retention of Cu and Zn in lagooning systems.

  2. Effect of vadose zone on the steady-state leakage rates from landfill barrier systems

    SciTech Connect

    Celik, B. Rowe, R.K. Unlue, K.

    2009-01-15

    Leakage rates are evaluated for a landfill barrier system having a compacted clay liner (CCL) underlain by a vadose zone of variable thickness. A numerical unsaturated flow model SEEP/W is used to simulate the moisture flow regime and steady-state leakage rates for the cases of unsaturated zones with different soil types and thicknesses. The results of the simulations demonstrate that harmonic mean hydraulic conductivity of coarse textured vadose zones is 3-4 orders of magnitude less than saturated hydraulic conductivity; whereas, the difference is only one order of magnitude for fine textured vadose zones. For both coarse and fine textured vadose zones, the effective hydraulic conductivity of the barrier system and the leakage rate to an underlying aquifer increases with increasing thickness of the vadose zone and ultimately reaches an asymptotic value for a coarse textured vadose zone thickness of about 10 m and a fine textured vadose zone thickness of about 5 m. Therefore, the fine and coarse textured vadose zones thicker than about 5 m and 10 m, respectively, act as an effective part of the barrier systems examined. Although the thickness of vadose zone affects the effective hydraulic conductivity of the overall barrier system, the results demonstrated that the hydraulic conductivity of the CCL is the dominant factor controlling the steady-state leakage rates through barrier systems having single low permeability clay layers.

  3. Effect of vadose zone on the steady-state leakage rates from landfill barrier systems.

    PubMed

    Celik, B; Rowe, R K; Unlü, K

    2009-01-01

    Leakage rates are evaluated for a landfill barrier system having a compacted clay liner (CCL) underlain by a vadose zone of variable thickness. A numerical unsaturated flow model SEEP/W is used to simulate the moisture flow regime and steady-state leakage rates for the cases of unsaturated zones with different soil types and thicknesses. The results of the simulations demonstrate that harmonic mean hydraulic conductivity of coarse textured vadose zones is 3-4 orders of magnitude less than saturated hydraulic conductivity; whereas, the difference is only one order of magnitude for fine textured vadose zones. For both coarse and fine textured vadose zones, the effective hydraulic conductivity of the barrier system and the leakage rate to an underlying aquifer increases with increasing thickness of the vadose zone and ultimately reaches an asymptotic value for a coarse textured vadose zone thickness of about 10m and a fine textured vadose zone thickness of about 5m. Therefore, the fine and coarse textured vadose zones thicker than about 5m and 10m, respectively, act as an effective part of the barrier systems examined. Although the thickness of vadose zone affects the effective hydraulic conductivity of the overall barrier system, the results demonstrated that the hydraulic conductivity of the CCL is the dominant factor controlling the steady-state leakage rates through barrier systems having single low permeability clay layers.

  4. Cover crops in vegetable production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current vegetable production systems require an intensive amount Current vegetable production systems require an intensive amount of work and inputs, and if not properly managed could have detrimental effects on soil and the environment. Practices such as intensive tillage, increased herbicide use, ...

  5. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system.

    PubMed

    Scheutz, Charlotte; Pedersen, Rasmus Broe; Petersen, Per Haugsted; Jørgensen, Jørgen Henrik Bjerre; Ucendo, Inmaculada Maria Buendia; Mønster, Jacob G; Samuelsson, Jerker; Kjeldsen, Peter

    2014-07-01

    Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options.

  6. Beneficial uses of recycled asphalt-stabilized products as landfill cover and capping systems

    SciTech Connect

    Camougis, G.

    1996-12-31

    The American Reclamation Corporation (AMREC{reg_sign}) has played a major role in the development of new programs for the recycling of discarded materials from construction, demolition, remediation and manufacturing operations. Excavated petroleum-contaminated soils (oily soils), asphalt paving, concrete rubble, and discarded asphalt roofing shingles have been processed and recycled into beneficially useful construction products. AMREC uses a cold-mix, asphalt-emulsion technology to process many of the recyclables received at its recycling facility in Charlton, MA. Recyclable materials are processed and blended to produce recycled, asphalt-stabilized products. In addition, recycled, asphalt-stabilized products are being investigated and tested for other beneficial uses. This includes their uses as capping materials and as containment materials.

  7. Landfill mining: a critical review of two decades of research.

    PubMed

    Krook, Joakim; Svensson, Niclas; Eklund, Mats

    2012-03-01

    Landfills have historically been seen as the ultimate solution for storing waste at minimum cost. It is now a well-known fact that such deposits have related implications such as long-term methane emissions, local pollution concerns, settling issues and limitations on urban development. Landfill mining has been suggested as a strategy to address such problems, and in principle means the excavation, processing, treatment and/or recycling of deposited materials. This study involves a literature review on landfill mining covering a meta-analysis of the main trends, objectives, topics and findings in 39 research papers published during the period 1988-2008. The results show that, so far, landfill mining has primarily been seen as a way to solve traditional management issues related to landfills such as lack of landfill space and local pollution concerns. Although most initiatives have involved some recovery of deposited resources, mainly cover soil and in some cases waste fuel, recycling efforts have often been largely secondary. Typically, simple soil excavation and screening equipment have therefore been applied, often demonstrating moderate performance in obtaining marketable recyclables. Several worldwide changes and recent research findings indicate the emergence of a new perspective on landfills as reservoirs for resource extraction. Although the potential of this approach appears significant, it is argued that facilitating implementation involves a number of research challenges in terms of technology innovation, clarifying the conditions for realization and developing standardized frameworks for evaluating economic and environmental performance from a systems perspective. In order to address these challenges, a combination of applied and theoretical research is required.

  8. Strength and conformance testing of a GCL used in a solid waste landfill lining system

    SciTech Connect

    Merrill, K.S.; O`Brien, A.J.

    1997-11-01

    This paper describes strength and conformance tests conducted on a Bentomat ST geosynthetic clay liner (GCL) used in a composite lining system for the Cells 4 and 5 expansion of the Anchorage Regional Landfill in Anchorage, Alaska. The Cells 4 and 5 lining system included use of an 80-mil, high-density polyethylene (HDPE) liner overlying a GCL on both the sideslopes and base of the cells. The use of this lining system in a Seismic Zone 4 area on relatively steep side slopes required careful evaluation of both internal shear strength of the GCL and interface friction between the GCL and textured HDPE. Laboratory tests were carried out to evaluate both peak and residual GCL internal strengths at normal loads up to 552 kiloPascals (80 pounds per square inch). Laboratory tests also were conducted to evaluate the interface strength between the GCL and Serrot box and point textured HDPE. Interface strengths between both woven and nonwoven sides of the GCL and the textured HDPE were evaluated. Considerations related to use of peak or residual strengths for various interim stability cases are described in this paper. Stability analyses using stress-dependent interface and internal strengths for the GCL are addressed. The quality assurance and conformance testing program adopted for the project on GCL is discussed also.

  9. Biogeochemical Cycling at Natural System Interfaces at the Norman Landfill, Norman, OK: Living on the Edge

    NASA Astrophysics Data System (ADS)

    McGuire, J. T.; Baez-Cazull, S.; Cozzarelli, I. M.; Voytek, M. A.; Smith, E. W.; Kneeshaw, T. A.; Kirshstein, J. D.

    2006-05-01

    Steep biogeochemical gradients were observed at mixing interfaces in a wetland-aquifer system impacted by landfill leachate in Norman, Oklahoma. The system lies within the reworked alluvial plain of the Canadian River and is characterized by layered low hydraulic conductivity wetland sediments and interbedded sandy aquifer material. Using cm-scale passive diffusion samplers (peepers), water samples were collected to span the interfaces between surface water, wetland sediments, and sandy sediments. Geochemical indicators of terminal electron accepting processes, including low molecular weight fatty acids, were analyzed by capillary electrophoresis and field techniques to maximize low sample volumes. Iron reduction and sulfate reduction appear to coexist at the sediment-water interface. Maximum concentrations of other biogeochemical indicators (ex. acetate (1.80mM, 8.8mM) and ammonium (13mM, 36mM)) were observed at the sediment/water, and wetland sediment/sand interfaces. Findings support the hypothesis that increased biogeochemical cycling occurs at interfaces where limiting electron acceptors and donors mix. The linkages between geochemical gradients and microbiological cycling are being evaluated using in-situ experiments designed to collect microbiological and geochemical data at similar spatial and temporal scales within the aquifer-wetland system.

  10. MATCON MODIFIED ASPHALT COVER CONTAINMENT SYSTEM DEMONSTRATION

    EPA Science Inventory

    In order to make improvements to conventional paving asphalt to make it more suitable for containment applications, Wilder Construction Co. of Everett, WA offers MatCon, a polymer modified asphalt system comprised of proprietary binder, when coupled with a selected aggregate type...

  11. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues.

    PubMed

    Kollikkathara, Naushad; Feng, Huan; Yu, Danlin

    2010-11-01

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.

  12. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues

    SciTech Connect

    Kollikkathara, Naushad; Feng Huan; Yu Danlin

    2010-11-15

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.

  13. Cover crops support ecological intensification of arable cropping systems

    PubMed Central

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-01-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification. PMID:28157197

  14. Cover crops support ecological intensification of arable cropping systems

    NASA Astrophysics Data System (ADS)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  15. A summary of measured mercury emissions from two municipal landfills in Florida

    SciTech Connect

    Lindberg, S.E.; Price, J.L.

    1998-12-31

    Large quantities of mercury have been placed in municipal landfills from a wide array of sources including fluorescent lights, batteries, electrical switches, thermometers, and general waste. Despite its known volatility, longevity, and toxicity in the environment, the fate of this mercury has not been widely studied. Using automated flux chambers and atmospheric sampling, the authors quantified the primary sources of Hg vapor releases to the atmosphere at two municipal landfill operations in south Florida for 8 days in April, 1997. These pathways included landfill gas (LFG) releases from passive and active vent systems, passive emissions from landfill surface covers of different ages (including CH{sub 4} hot spots), and emissions from daily activities on a working face. Mercury vapor was released to the atmosphere at readily detectable rates from all sources measured. Emission rates ranged from {approximately} 1--20 ng m-2 h-1 over aged surface covers, from {approximately} 6--2400 ng/h from LFG vents and flares, and from {approximately} 5--60 mg/h at the working face. In general the fluxes increased from older to newer landfills, from fresh to aged cover, and from passive to active vented systems. They estimate that atmospheric Hg releases from municipal landfill operations in the state of Florida are on the order of 10 kg/y, or <1% of the estimated total anthropogenic Hg releases to air in this region.

  16. Incoherent systems and coverings in finite dimensional Banach spaces

    SciTech Connect

    Temlyakov, V N

    2014-05-31

    We discuss the construction of coverings of the unit ball of a finite dimensional Banach space. There is a well-known technique based on comparing volumes which gives upper and lower bounds on covering numbers. However, this technique does not provide a method for constructing good coverings. Here we study incoherent systems and apply them to construct good coverings. We use the following strategy. First, we build a good covering using balls with a radius close to one. Second, we iterate this construction to obtain a good covering for any radius. We shall concentrate mainly on the first step of this strategy. Bibliography: 14 titles.

  17. System dynamics of the competition of municipal solid waste to landfill, electricity, and liquid fuel in California

    SciTech Connect

    Westbrook, Jessica; Malczynski, Leonard A.; Manley, Dawn Kataoka

    2014-03-01

    A quantitative system dynamics model was created to evaluate the economic and environmental tradeoffs between biomass to electricity and to liquid fuel using MSW biomass in the state of California as a case study. From an environmental perspective, landfilling represents the worst use of MSW over time, generating more greenhouse gas (GHG) emissions compared to converting MSW to liquid fuel or to electricity. MSW to ethanol results in the greatest displacement of GHG emissions per dollar spent compared to MSW to electricity. MSW to ethanol could save the state of California approximately $60 billion in energy costs by 2050 compared to landfilling, while also reducing GHG emissions state-wide by approximately 140 million metric tons during that timeframe. MSW conversion to electricity creates a significant cost within the state's electricity sector, although some conversion technologies are cost competitive with existing renewable generation.

  18. Functional and environmental assessment of the urboecosystems designed in the biologically reclamated landfill with industrial wastes (in Ryazan city)

    NASA Astrophysics Data System (ADS)

    Karyakin, Alexey; Vasenev, Ivan; Karyakina, Svetlana

    2015-04-01

    Regional environmental bodies' ability to understand, model and predict their soil cover environmental functions are especially important in case of landfill reclamation. The special attention has to be done to landfills with industrial wastes created earlier in frame of big city - comparatively closed to their residential areas. Dominated in Ryazan region sandy loam gray forest soils with not so high soil organic matter content and soil exchange capacity determine additional problems with landfill biological reclamation and continuous sustainable vegetation cover development. The modern environmental monitoring system has been developed in the big landfill with tanning industrial wastes from the biggest in Europe tannery to develop recommendation on the environmentally friendly reclamation technologies adapted to concrete landscape conditions and functional features of 2 m fresh soil-ground coating the landfill surface. More detailed monitoring system has to be developed to assess the regulatory environmental functions of the regenerated soil cover to minimize the reclamated landfill' negative impacts on the urban ecosystem air, surface and ground water quality. Obtained result will be useful for similar landfills with tanning industrial wastes environmental impact assessment and smart design.

  19. Management and treatment of landfill leachate by a system of constructed wetlands and ponds in Singapore.

    PubMed

    Sim, C H; Quek, B S; Shutes, R B E; Goh, K H

    2013-01-01

    Lorong Halus, Singapore's first landfill leachate treatment system, consists of a pre-treatment system (8,000 m(2)), five constructed reed beds (38,000 m(2)), five polishing ponds (13,000 m(2)), an education centre and a learning trail for visitors. Eight species of wetland plants (total 160,000 plants) were selected for their ability to uptake nutrients, tolerance to low phosphorus concentrations and resistance to pest infestations. The wetland was launched in March 2011 and water quality monitoring started in April 2011. The removal efficiencies of the pre-treatment system from April 2011 to August 2012 are biochemical oxygen demand (BOD5) 57.4%; chemical oxygen demand (COD) 23.6%; total suspended solids (TSS) 55.1%; ammoniacal nitrogen (NH4-N) 76.8%; total phosphorus (TP) 33.3% and total nitrogen (TN) 60.2%. Removal efficiencies of the reed beds are BOD5 47.0%; COD 42.2%; TSS 57.0%; NH4-N 82.5%; TP 29.3% and TN 83.9%. Plant growth is generally satisfactory, but the lower than designed volume of leachate has adversely affected some sections of plants and resulted in uneven flow distribution in reed beds. The plant management programme includes improving plant regrowth by harvesting of alternate strips of plants and replanting. The treated effluent meets water quality limits for discharge to the public sewer and is subsequently treated by the NEWater treatment system, which recycles water for industrial and indirect potable use.

  20. Effects of landfill gas on subtropical woody plants

    NASA Astrophysics Data System (ADS)

    Chan, G. Y. S.; Wong, M. H.; Whitton, B. A.

    1991-05-01

    An account is given of the influence of landfill gas on tree growth in the field at Gin Drinkers' Bay (GDB) landfill, Hong Kong, and in the laboratory. Ten species ( Acacia confusa, Albizzia lebbek, Aporusa chinensis, Bombax malabaricum, Castanopsis fissa, Liquidambar formosana, Litsea glutinosa, Machilus breviflora, Pinus elliottii, and Tristania conferta), belonging to eight families, were transplanted to two sites, one with a high concentration of landfill gas in the cover soil (high-gas site, HGS) and the other with a relatively low concentration of gas (low-gas site, LGS). Apart from the gaseous composition, the general soil properties were similar. A strong negative correlation between tree growth and landfill gas concentration was observed. A laboratory study using the simulated landfill gas to fumigate seedlings of the above species showed that the adventitious root growth of Aporusa chinensis, Bombax malabaricum, Machilus breviflora, and Tristania confera was stimulated by the gas, with shallow root systems being induced. Acacia confusa, Albizzia lebbek, and Litsea glutinosa were gas-tolerant, while root growth of Castanopsis fissa, Liquidambar formosana, and Pinus elliottii was inhibited. In most cases, shoot growth was not affected, exceptions being Bombax malabaricum, Liquidambar formosana, and Tristania conferta, where stunted growth and/or reduced foliation was observed. A very high CO2 concentration in cover soil limits the depth of the root system. Trees with a shallow root system become very susceptible to water stress. The effects of low O2 concentration in soil are less important than the effects of high CO2 concentration. Acacia confusa, Albizzia lebbek, and Tristania conferta are suited for growth on subtropical completed landfills mainly due to their gas tolerance and/or drought tolerance.

  1. Landfill gas cleanup for fuel cells

    SciTech Connect

    1995-08-01

    EPRI is to test the feasibility of using a carbonate fuel cell to generate electricity from landfill gas. Landfills produce a substantial quantity of methane gas, a natural by-product of decaying organic wastes. Landfill gas, however, contains sulfur and halogen compounds, which are known contaminants to fuel cells and their fuel processing equipment. The objective of this project is to clean the landfill gas well enough to be used by the fuel cell without making the process prohibitively expensive. The cleanup system tested in this effort could also be adapted for use with other fuel cells (e.g., solid oxide, phosphoric acid) running on landfill gas.

  2. System case studies for the removal of heavy metals from landfill leachate

    SciTech Connect

    Kimball, P.V.; Sargavakian, K.L.

    1994-12-31

    The purpose of this paper is to present proven technologies used in the treatment of solid waste landfill leachates. The design considerations include the type of landfill and its contents, leachate collection, leachate water characteristics and effluent limitations. The three technologies presented will include precipitation followed by conventional gravity settling, precipitation followed by crossflow microfiltration and treatment by ion exchange processes. Three case studies will be presented to illustrate the design process and application of the technologies, along with capital and operating costs. The main metals of concern are zinc, iron, lead, copper, chromium and arsenic.

  3. Performance of paper mill sludges as landfill capping material

    SciTech Connect

    Moo-Young, H.K. Jr.; Zimmie, T.F.

    1997-12-31

    The high cost of waste containment has sparked interest in low cost and effective strategies of containing wastes. Paper mill sludges have been effectively used as the impermeable barrier in landfill covers. Since paper mill sludges are viewed as a waste material, the sludge is given to the landfill owner at little or no cost. Thus, when a clay soil is not locally available to use as the impermeable barrier in a cover system, paper sludge barriers can save $20,000 to $50,000 per acre in construction costs. This study looks at the utilization and performance of blended and primary paper sludge as landfill capping material. To determine the effectiveness of paper sludge as an impermeable barrier layer, test pads were constructed to simulate a typical landfill cover with paper sludge and clay as the impermeable barrier and were monitored for infiltration rates for five years. Long-term hydraulic conductivity values estimated from the leachate generation rates of the test pads indicate that paper sludge provides an acceptable hydraulic barrier.

  4. Waste management in the Irkutsk Region, Siberia, Russia: environmental assessment of current practice focusing on landfilling.

    PubMed

    Starostina, Vlada; Damgaard, Anders; Rechberger, Helmut; Christensen, Thomas H

    2014-05-01

    The municipal waste management system of the region of Irkutsk is described and a life cycle assessment (LCA) performed to assess the environmental performance of the system. Annually about 500 000 tons of waste are managed. The waste originates from three sources: household waste (27%), commercial waste (23%) and office & institutional waste (44%). Other waste of unknown composition constitutes 6%. Only 3% of the waste is recycled; 97% of the municipal waste is disposed of at the old Alexandrovsky landfill. The environmental impact from the current system is dominated by the landfill, which has no gas or leachate collection system. The global warming contribution is due to the emission of methane of the order of 420 000 tons CO2-equivalents per year. Collection and transport of the waste are insignificant compared with impacts from the landfill. As the old landfill runs out of capacity in a few years, the LCA modelling showed that introduction of a new and modern landfill with gas and leachate collection could improve the performance of the waste management system significantly. Collection of landfill gas and utilization for 30 years for electricity production (gas turbine) would reduce the global warming completely and result in a net saving of 100 000 CO2-equivalents per year due to storage of biogenic carbon in the landfill beyond 100 years. Considering other first-order degradation rates for the landfilled organic matter did not overtly affect the results, while assumptions about the top cover oxidation of methane significantly affected the results. This shows the importance of controlling the gas escape from the landfill.

  5. Appendix E: Research papers. Analysis of landfills with historic airphotos

    NASA Technical Reports Server (NTRS)

    Liang, T.; Philipson, W. R. (Principal Investigator); Erb, T. L.; Teng, W. L.

    1980-01-01

    The nature of landfill-related information that can be derived from existing, or historic, aerial photographs, is reviewed. This information can be used for conducting temporal assessments of landfill existence, land use and land cover, and the physical environment. As such, analysis of low cost, readily available aerial photographs can provide important, objective input to landfill inventories, assessing contamination or health hazards, planning corrective measures, planning waste collection and facilities, and developing on inactive landfills.

  6. Fluxes of methane between landfills and the atmosphere: Natural and engineered controls

    SciTech Connect

    Bogner, J.; Meadows, M.; Czepiel, P.

    1997-08-01

    Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

  7. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  8. An innovative multistage treatment system for sanitary landfill leachate depuration: Studies at pilot-scale.

    PubMed

    Silva, Tânia F C V; Soares, Petrick A; Manenti, Diego R; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Vilar, Vítor J P

    2017-01-15

    In this work, an innovative methodology for the treatment of landfill leachates, after aerobic lagooning, is proposed and adjusted at pilot-scale. This methodology involves an aerobic activated sludge biological pre-oxidation (ASBO), a coagulation/sedimentation step (240mgFe(3+)/L, at pH4.2) and a photo-oxidation through a photo-Fenton (PF) reaction (60mg Fe(2+), at pH2.8) combining solar and artificial light. The ASBO process applied to a leachate after aerobic lagooning, with high organic and nitrogen content (1.1-1.5gC/L; 0.8-3.0gN/L) and low biodegradability (BOD5/COD =0.07-0.13), is capable to oxidise 62-99% of the ammonium nitrogen, consuming only the affluent alkalinity (70-100%). The coagulation/sedimentation stage led to the humic acids precipitation, promoting a marked change in leachate colour, from dark-brown to yellowish-brown (related to fulvic acids), accompanied by a reduction of 60%, 58% and 88% on DOC, COD and TSS, respectively. The PF system promoted the degradation of the recalcitrant organic molecules into more easily biodegradable ones. According to Zahn-Wellens biodegradability test, a leachate with 419mg DOC/L after coagulation, would have to be photo-oxidized until DOC <256mg/L, consuming 117mM of H2O2 and 10.4kJ/L of accumulated UV energy, to achieve an effluent that can be biologically treated in compliance with the COD discharge limit (150mg O2/L) into water bodies. The biological process downstream from the photocatalytic system would promote a mineralization >60%. The PF step cost to treat 100m(3)/day of leachate was 6.41€/m(3), combining 1339m(2) of CPCs with 31 lamps.

  9. View of steel flume (Irving intake system) that is covered ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of steel flume (Irving intake system) that is covered with old flume stock, flattened to protect from debris, animals and daylight, and is supported by wood trestles, as it continues downhill toward the Irving Powerhouse. Truck in photo provides scale. Looking north - Childs-Irving Hydroelectric Project, Irving System, Intake System, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  10. Physical and numerical modeling of an inclined three-layer (silt/gravelly sand/clay) capillary barrier cover system under extreme rainfall.

    PubMed

    Ng, Charles W W; Liu, Jian; Chen, Rui; Xu, Jie

    2015-04-01

    As an extension of the two-layer capillary barrier, a three-layer capillary barrier landfill cover system is proposed for minimizing rainfall infiltration in humid climates. This system consists of a compacted clay layer lying beneath a conventional cover with capillary barrier effects (CCBE), which is in turn composed of a silt layer sitting on top of a gravelly sand layer. To explore the effectiveness of the new system in minimizing rainfall infiltration, a flume model (3.0 m × 1.0 m × 1.1 m) was designed and set up in this study. This physical model was heavily instrumented to monitor pore water pressure, volumetric water content, surface runoff, infiltration and lateral drainage of each layer, and percolation of the cover system. The cover system was subjected to extreme rainfall followed by evaporation. The experiment was also back-analyzed using a piece of finite element software called CODE_BRIGHT to simulate transient water flows in the test. Based on the results obtained from various instruments, it was found that breakthrough of the two upper layers occurred for a 4-h rainfall event having a 100-year return period. Due to the presence of the newly introduced clay layer, the percolation of the three-layer capillary barrier cover system was insignificant because the clay layer enabled lateral diversion in the gravelly sand layer above. In other words, the gravelly sand layer changed from being a capillary barrier in a convention CCBE cover to being a lateral diversion passage after the breakthrough of the two upper layers. Experimental and back-analysis results confirm that no infiltrated water seeped through the proposed three-layer barrier system. The proposed system thus represents a promising alternative landfill cover system for use in humid climates.

  11. LCA and economic evaluation of landfill leachate and gas technologies.

    PubMed

    Damgaard, Anders; Manfredi, Simone; Merrild, Hanna; Stensøe, Steen; Christensen, Thomas H

    2011-07-01

    Landfills receiving a mix of waste, including organics, have developed dramatically over the last 3-4 decades; from open dumps to engineered facilities with extensive controls on leachate and gas. The conventional municipal landfill will in most climates produce a highly contaminated leachate and a significant amount of landfill gas. Leachate controls may include bottom liners and leachate collection systems as well as leachate treatment prior to discharge to surface water. Gas controls may include oxidizing top covers, gas collection systems with flares or gas utilization systems for production of electricity and heat. The importance of leachate and gas control measures in reducing the overall environmental impact from a conventional landfill was assessed by life-cycle-assessment (LCA). The direct cost for the measures were also estimated providing a basis for assessing which measures are the most cost-effective in reducing the impact from a conventional landfill. This was done by modeling landfills ranging from a simple open dump to highly engineered conventional landfills with energy recovery in form of heat or electricity. The modeling was done in the waste LCA model EASEWASTE. The results showed drastic improvements for most impact categories. Global warming went from an impact of 0.1 person equivalent (PE) for the dump to -0.05 PE for the best design. Similar improvements were found for photochemical ozone formation (0.02 PE to 0.002 PE) and stratospheric ozone formation (0.04 PE to 0.001 PE). For the toxic and spoiled groundwater impact categories the trend is not as clear. The reason for this was that the load to the environment shifted as more technologies were used. For the dump landfill the main impacts were impacts for spoiled groundwater due to lack of leachate collection, 2.3 PE down to 0.4 PE when leachate is collected. However, at the same time, leachate collection causes a slight increase in eco-toxicity and human toxicity via water (0.007 E to 0

  12. Development of a purpose built landfill system for the control of methane emissions from municipal solid waste.

    PubMed

    Yedla, Sudhakar; Parikh, Jyoti K

    2002-01-01

    In the present paper, a new system of purpose built landfill (PBLF) has been proposed for the control of methane emissions from municipal solid waste (MSW), by considering all favourable conditions for improved methane generation in tropical climates. Based on certain theoretical considerations multivariate functional models (MFMs) are developed to estimate methane mitigation and energy generating potential of the proposed system. Comparison was made between the existing waste management system and proposed PBLF system. It has been found that the proposed methodology not only controlled methane emissions to the atmosphere but also could yield considerable energy in terms of landfill gas (LFG). Economic feasibility of the proposed system has been tested by comparing unit cost of waste disposal in conventional as well as PBLF systems. In a case study of MSW management in Mumbai (INDIA), it was found that the unit cost of waste disposal with PBLF system is seven times lesser than that of the conventional waste management system. The proposed system showed promising energy generation potential with production of methane worth of Rs. 244 millions/y ($5.2 million/y). Thus, the new waste management methodology could give an adaptable solution for the conflict between development, environmental degradation and natural resources depletion.

  13. Characterization of landfill gas composition at the Fresh Kills municipal solid-waste landfill

    SciTech Connect

    Eklund, B.; Anderson, E.P.; Walker, B.L.; Burrows, D.B.

    1998-08-01

    The most common disposal method in the US for municipal solid waste (MSW) is burial in landfills. Until recently, air emissions from these landfills were not regulated. Under the New Source Performance Standards and Emission Guidelines for MSW landfills, MSW operators are required to determine the nonmethane organic gas generation rate of their landfill through modeling and/or measurements. This paper summarizes speciated nonmethane organic compound (NMOC) measurement data collected during an intensive, short-term field program. Over 250 separate landfill gas samples were collected from emission sources at the Fresh Kills landfill in New York City and analyzed for approximately 150 different analytes. The average total NMOC value for the landfill was 438 ppmv (as hexane) versus the regulatory default value of 4,000 ppmv (as hexane). Over 70 individual volatile organic compounds (VOCs) were detected and quantified in the landfill gas samples. The typical gas composition for this landfill was determined as well as estimates of the spatial, temporal, and measurement variability in the gas composition. The data for NMOC show that the gas composition within the landfill is equivalent to the composition of the gas exiting the landfill through passive vents and through the soil cover.

  14. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS: PHASE II. PRETREATMENT SYSTEM PERFORMANCE MEASUREMENT

    EPA Science Inventory

    The report describes Phase II of a demonstration of the utilization of commercial phosphoric acid fuel cells to recover energy from landfill gas. This phase consisted primarily of the construction and testing of a Gas Pretreatment Unit (GPU) whose function is to remove those impu...

  15. Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study.

    PubMed

    Yang, Na; Damgaard, Anders; Lü, Fan; Shao, Li-Ming; Brogaard, Line Kai-Sørensen; He, Pin-Jing

    2014-05-01

    An inventory of material and energy consumption during the construction and operation (C&O) of a typical sanitary landfill site in China was calculated based on Chinese industrial standards for landfill management and design reports. The environmental impacts of landfill C&O were evaluated through life cycle assessment (LCA). The amounts of materials and energy used during this type of undertaking in China are comparable to those in developed countries, except that the consumption of concrete and asphalt is significantly higher in China. A comparison of the normalized impact potential between landfill C&O and the total landfilling technology implies that the contribution of C&O to overall landfill emissions is not negligible. The non-toxic impacts induced by C&O can be attributed mainly to the consumption of diesel used for daily operation, while the toxic impacts are primarily due to the use of mineral materials. To test the influences of different landfill C&O approaches on environmental impacts, six baseline alternatives were assessed through sensitivity analysis. If geomembranes and geonets were utilized to replace daily and intermediate soil covers and gravel drainage systems, respectively, the environmental burdens of C&O could be mitigated by between 2% and 27%. During the LCA of landfill C&O, the research scope or system boundary has to be declared when referring to material consumption values taken from the literature; for example, the misapplication of data could lead to an underestimation of diesel consumption by 60-80%.

  16. Treatment of hazardous landfill leachate using Fenton process followed by a combined (UASB/DHS) system.

    PubMed

    Ismail, Sherif; Tawfik, Ahmed

    2016-01-01

    Fenton process for pre-treatment of hazardous landfill leachate (HLL) was investigated. Total, particulate and soluble chemical oxygen demand (CODt, CODp and CODs) removal efficiency amounted to 67%, 47% and 64%, respectively, at pH value of 3.5, molar ratio (H2O2/Fe(2+)) of 5, H2O2 dosage of 25 ml/L and contact time of 15 min. Various treatment scenarios were attempted and focused on studying the effect of pre-catalytic oxidation process on the performance of up-flow anaerobic sludge blanket (UASB), UASB/down-flow hanging sponge (DHS) and DHS system. The results obtained indicated that pre-catalytic oxidation process improved the CODt removal efficiency in the UASB reactor by a value of 51.4%. Overall removal efficiencies of CODt, CODs and CODp were 80 ± 6%, 80 ± 7% and 78 ± 16% for UASB/DHS treating pre-catalytic oxidation effluent, respectively. The removal efficiencies of CODt, CODs and CODp were, respectively, decreased to 54 ± 2%, 49 ± 2% and 71 ± 16% for UASB/DHS system without pre-treatment. However, the results for the combined process (UASB/DHS) system is almost similar to those obtained for UASB reactor treating pre-catalytic oxidation effluent. The DHS system achieved average removal efficiencies of 52 ± 4% for CODt, 51 ± 4% for CODs and 52 ± 15% for CODp. A higher COD fractions removal was obtained when HLL was pre-treated by Fenton reagent. The combined processes provided a removal efficiency of 85 ± 1% for CODt, 85 ± 1% for CODs and 83 ± 8% for CODp. The DHS system is not only effective for organics degradation but also for ammonia oxidation. Almost complete ammonia (NH4-N) removal (92 ± 3.6%) was occurred and the nitrate production amounted to 37 ± 6 mg/L in the treated effluent. This study strongly recommends applying Fenton process followed by DHS system for treatment of HLL.

  17. Evaluation and selection of decision-making methods to assess landfill mining projects.

    PubMed

    Hermann, Robert; Baumgartner, Rupert J; Vorbach, Stefan; Ragossnig, Arne; Pomberger, Roland

    2015-09-01

    For the first time in Austria, fundamental technological and economic studies on recovering secondary raw materials from large landfills have been carried out, based on the 'LAMIS - Landfill Mining Austria' pilot project. A main focus of the research - and the subject of this article - was to develop an assessment or decision-making procedure that allows landfill owners to thoroughly examine the feasibility of a landfill mining project in advance. Currently there are no standard procedures that would sufficiently cover all the multiple-criteria requirements. The basic structure of the multiple attribute decision making process was used to narrow down on selection, conceptual design and assessment of suitable procedures. Along with a breakdown into preliminary and main assessment, the entire foundation required was created, such as definitions of requirements to an assessment method, selection and accurate description of the various assessment criteria and classification of the target system for the present 'landfill mining' vs. 'retaining the landfill in after-care' decision-making problem. Based on these studies, cost-utility analysis and the analytical-hierarchy process were selected from the range of multiple attribute decision-making procedures and examined in detail. Overall, both methods have their pros and cons with regard to their use for assessing landfill mining projects. Merging these methods or connecting them with single-criteria decision-making methods (like the net present value method) may turn out to be reasonable and constitute an appropriate assessment method.

  18. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions.

    PubMed

    Scheutz, Charlotte; Kjeldsen, Peter; Bogner, Jean E; De Visscher, Alex; Gebert, Julia; Hilger, Helene A; Huber-Humer, Marion; Spokas, Kurt

    2009-08-01

    Landfill gas containing methane is produced by anaerobic degradation of organic waste. Methane is a strong greenhouse gas and landfills are one of the major anthropogenic sources of atmospheric methane. Landfill methane may be oxidized by methanotrophic microorganisms in soils or waste materials utilizing oxygen that diffuses into the cover layer from the atmosphere. The methane oxidation process, which is governed by several environmental factors, can be exploited in engineered systems developed for methane emission mitigation. Mathematical models that account for methane oxidation can be used to predict methane emissions from landfills. Additional research and technology development is needed before methane mitigation technologies utilizing microbial methane oxidation processes can become commercially viable and widely deployed.

  19. Landfill gas-fired power plant pays cost of operating landfill

    SciTech Connect

    Wallace, I.P.

    1991-01-01

    This paper reports on recovery of energy from refuse that has become increasingly attractive in the past decade. The continuing urbanization of our society has created major challenges in the disposal of our waste products. Because of public concern over the potential presence of toxins, and for other environmental reasons, management and regulation of active and inactive landfills have become much more stringent and costly. Palos Verdes landfill, owned jointly by the Los Angeles County Sanitation Districts and Los Angeles County, is located about three miles from the Pacific Ocean in the city of Rolling Hills Estates, Calif. The landfill was closed in 1980. The garbage was covered with six to eight feet of soil, and the area was landscaped. Part of this area has already been developed as the South Coast Botanical Gardens and Ernie Howlett Park. The remainder is scheduled to become a golf course. As refuse decays within a landfill, the natural anaerobic biological reaction generates a low-Btu methane gas along with carbon dioxide, known as landfill gas (LFG). The gas also contains other less desirable trace components generated by the decomposing garbage. Uncontrolled, these gases migrate to the surface and escape into the atmosphere where they generate environmental problems, including objectionable odors. The Sanitation Districts have installed a matrix of gas wells and a gas collection system to enable incineration of the gas in flares. This approach reduced aesthetic, environmental and safety concerns. However, emissions from the flares were still a problem. The Sanitation Districts then looked at alternatives to flaring the gas, one of which was electrical generation. Since the Sanitation Districts have no on-site use for thermal energy, power generation for use in the utility grid was deemed the most feasible alternative.

  20. Hanford Site Solid Waste Landfill permit application

    SciTech Connect

    Not Available

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs.

  1. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO{sub 2} levels: The added value of the isotope ({delta}{sup 13}C and {delta}{sup 18}O CO{sub 2}; {delta}{sup 13}C and {delta}D CH{sub 4}) approach

    SciTech Connect

    Widory, D.; Proust, E.; Bellenfant, G.; Bour, O.

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. Black-Right-Pointing-Pointer The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. Black-Right-Pointing-Pointer Isotope tracking of the contribution of the methane oxidation to the CO{sub 2} concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach ({delta}{sup 13}C and {delta}{sup 18}O of CO{sub 2}; {delta}{sup 13}C and {delta}D of CH{sub 4}) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO{sub 2} levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH{sub 4} oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH{sub 4} is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH{sub 4} oxidation by the methanotrophic bacteria. {delta}{sup 13}C of CO{sub 2} samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

  2. Suitability analysis for siting MSW landfills and its multicriteria spatial decision support system: method, implementation and case study.

    PubMed

    Demesouka, O E; Vavatsikos, A P; Anagnostopoulos, K P

    2013-05-01

    Multicriteria spatial decision support systems (MC-SDSS) have emerged as an integration of geographical information systems (GIS) and multiple criteria decision analysis (MCDA) methods for incorporating conflicting objectives and decision makers' (DMs') preferences into spatial decision models. This article presents a raster-based MC-SDSS that combines the analytic hierarchy process (AHP) and compromise programming methods, such as TOPSIS (technique for order preference by similarity to the ideal solution) and Ideal Point Methods. To the best of our knowledge it is the first time that a synergy of AHP and compromise programming methods is implemented in raster-driven GIS-based landfill suitability analysis. This procedure is supported by a spatial decision support system (SDSS) that was developed within a widely used commercial GIS software package. A real case study in the Thrace region in northeast Greece serves as a guide on how to conduct a suitability analysis for a MSW landfill site with the proposed MC-SDSS. Moreover, the procedure for identifying MSW disposal sites is accomplished by performing four computational models for synthesizing the DMs per criterion preferential system. Based on the case study results, a comparison analysis is performed according to suitability index estimations. According to them Euclidean distance metric and TOPSIS present strong similarities. When compared with Euclidean distance metric, TOPSIS seems to generate results closer to that derived by Manhattan distance metric. The comparison of Chebychev distance metric with all the other approaches revealed the greatest deviations.

  3. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein

    1999-01-11

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  4. Reverse logistics system and recycling potential at a landfill: A case study from Kampala City.

    PubMed

    Kinobe, J R; Gebresenbet, G; Niwagaba, C B; Vinnerås, B

    2015-08-01

    The rapid growing population and high urbanisation rates in Sub-Saharan Africa has caused enormous pressure on collection services of the generated waste in the urban areas. This has put a burden on landfilling, which is the major waste disposal method. Waste reduction, re-use and recycling opportunities exist but are not fully utilized. The common items that are re-used and re-cycled are plastics, paper, aluminum, glass, steel, cardboard, and yard waste. This paper develops an overview of reverse logistics at Kiteezi landfill, the only officially recognised waste disposal facility for Kampala City. The paper analyses, in details the collection, re-processing, re-distribution and final markets of these products into a reversed supply chain network. Only 14% of the products at Kiteezi landfill are channeled into the reverse chain while 63% could be included in the distribution chain but are left out and disposed of while the remaining 23% is buried. This is because of the low processing power available, lack of market value, lack of knowledge and limited value addition activities to the products. This paper proposes possible strategies of efficient and effective reverse logistics development, applicable to Kampala City and other similar cities.

  5. The Future Through the Past: The Use of Analog Sites for Design Criteria and Long Term Performance Assessment of Evapotranspiration Landfill Covers

    SciTech Connect

    Shafer, D. S.; Miller, J. J.; Young, M. H.; Edwards, S. C.; Rawlinson, S. E.

    2002-02-26

    There is growing support for using evapotranspiration (ET) covers for closure of low-level waste (LLW) and other types of waste disposal sites, particularly in the lower latitude arid regions of the western United States. At the Nevada Test Site (NTS), monolayer ET covers are the baseline technology for closure of LLW and mixed LLW cells. To better predict the long-term performance of monolayer ET covers, as well as to identify design criteria that will potentially improve their performance, the properties of, and processes occurring on, analog sites for ET covers on the NTS are being studied. The project is funded through the Subsurface Contaminants Focus Area of the U.S. Department of Energy. Four analog sites on the NTS have been selected to predict performance of ET covers over a 1,000-year compliance period. Two sites are relatively recently disturbed (within the last 50 years) and have been selected to evaluate processes and changes on ET covers for the early period after active cover maintenance is discontinued. Two other sites, late to mid-Holocene in age, are intended as analogs for the end of the compliance period (1,000 years or more); both surfaces are abandoned alluvial/colluvial deposits. The history of the early post-institutional control analog sites are being evaluated by an archaeologist to help determine when the sites were last disturbed or modified, and the mode of disturbance to help set baseline conditions. Similar to other ''landforms,'' ET covers will evolve over time because of pedogenic, biotic, and climatic processes. Properties of analog sites that could affect ET water balance performance will be evaluated to help understand ET cover performance over time.

  6. The future through the past: The use of analog sites for design criteria and long-term performance assessment of evapotranspiration landfill covers.

    SciTech Connect

    David Shafer; Julianne Miller; Susan Edwards; Stuart Rawlinson

    2001-10-18

    There is growing support for using evapotranspiration (ET) covers for closure of low-level waste (LLW) and other types of waste disposal sites, particularly in the lower latitude arid regions of the western United States. For the Nevada Test Site (NTS), monolayer ET covers is the baseline technology for closure of LLW and mixed LLW cells. To better predict the long-term performance of monolayer ET covers, as well as to identify design criteria that will potentially improve their performance, the properties of, and processes occurring on, analog sites for ET covers on the NTS are being studied. Four analog sites on the NTS have been selected to predict performance of ET covers over a 1,000-year compliance period. Two are relatively recently disturbed sites (within the last 50 years) and have been selected for the evaluation of processes and changes on ET covers for the early period of post-institutional controls when cover maintenance would be discontinued. Two other sites, late to mid-Holocene in age, are intended as analogs for the end (1,000 years or more) of the compliance period. The late to mid-Holocene surfaces are both abandoned alluvial/colluvial deposits, dated by thermoluminescence analysis. The history of the early post-institutional control analog sites is being evaluated by an archaeologist to help determine when the sites were last disturbed or modified and the mode of disturbance, to help set baseline conditions. Similar to the other ''landforms,'' ET covers will evolve over time because of pedogenic, biotic, and climatic processes. Properties of analog sites that could affect ET water-balance performance will be evaluated to help understand ET cover performance over time. Results of analog site work and resultant modifications to design, monitoring and maintenance of ET covers on the NTS will be compared with results of a similar study being done at Sandia National Laboratories (SNL), where ET cover closures are planned as well. The comparison will

  7. Soil cover by natural trees in agroforestry systems

    NASA Astrophysics Data System (ADS)

    Diaz-Ambrona, C. G. H.; Almoguera Millán, C.; Tarquis Alfonso, A.

    2009-04-01

    The dehesa is common agroforestry system in the Iberian Peninsula. These open oak parklands with silvo-pastoral use cover about two million hectares. Traditionally annual pastures have been grazed by cows, sheep and also goats while acorns feed Iberian pig diet. Evergreen oak (Quercus ilex L.) has other uses as fuelwood collection and folder after tree pruning. The hypothesis of this work is that tree density and canopy depend on soil types. We using the spanish GIS called SIGPAC to download the images of dehesa in areas with different soil types. True colour images were restoring to a binary code, previously canopy colour range was selected. Soil cover by tree canopy was calculated and number of trees. Processing result was comparable to real data. With these data we have applied a dynamic simulation model Dehesa to determine evergreen oak acorn and annual pasture production. The model Dehesa is divided into five submodels: Climate, Soil, Evergreen oak, Pasture and Grazing. The first three require the inputs: (i) daily weather data (maximum and minimum temperatures, precipitation and solar radiation); (ii) the soil input parameters for three horizons (thickness, field capacity, permanent wilting point, and bulk density); and (iii) the tree characterization of the dehesa (tree density, canopy diameter and height, and diameter of the trunk). The influence of tree on pasture potential production is inversely proportional to the canopy cover. Acorn production increase with tree canopy cover until stabilizing itself, and will decrease if density becomes too high (more than 80% soil tree cover) at that point there is competition between the trees. Main driving force for dehesa productivity is soil type for pasture, and tree cover for acorn production. Highest pasture productivity was obtained on soil Dystric Planosol (Alfisol), Dystric Cambisol and Chromo-calcic-luvisol, these soils only cover 22.4% of southwest of the Iberian peninssula. Lowest productivity was

  8. Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers.

    PubMed

    Lee, Sung-Woo; Im, Jeongdae; Dispirito, Alan A; Bodrossy, Levente; Barcelona, Michael J; Semrau, Jeremy D

    2009-11-01

    Methane and nitrous oxide are both potent greenhouse gasses, with global warming potentials approximately 25 and 298 times that of carbon dioxide. A matrix of soil microcosms was constructed with landfill cover soils collected from the King Highway Landfill in Kalamazoo, Michigan and exposed to geochemical parameters known to affect methane consumption by methanotrophs while also examining their impact on biogenic nitrous oxide production. It was found that relatively dry soils (5% moisture content) along with 15 mg NH (4) (+) (kg soil)(-1) and 0.1 mg phenylacetylene(kg soil)(-1) provided the greatest stimulation of methane oxidation while minimizing nitrous oxide production. Microarray analyses of pmoA showed that the methanotrophic community structure was dominated by Type II organisms, but Type I genera were more evident with the addition of ammonia. When phenylacetylene was added in conjunction with ammonia, the methanotrophic community structure was more similar to that observed in the presence of no amendments. PCR analyses showed the presence of amoA from both ammonia-oxidizing bacteria and archaea, and that the presence of key genes associated with these cells was reduced with the addition of phenylacetylene. Messenger RNA analyses found transcripts of pmoA, but not of mmoX, nirK, norB, or amoA from either ammonia-oxidizing bacteria or archaea. Pure culture analyses showed that methanotrophs could produce significant amounts of nitrous oxide, particularly when expressing the particulate methane monooxygenase (pMMO). Collectively, these data suggest that methanotrophs expressing pMMO played a role in nitrous oxide production in these microcosms.

  9. Landfill aeration for emission control before and during landfill mining.

    PubMed

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area.

  10. Analysis of landfills with historic airphotos

    NASA Technical Reports Server (NTRS)

    Erb, T. L.; Philipson, W. R.; Teng, W. L.; Liang, T.

    1981-01-01

    An investigation is conducted regarding the value of existing aerial photographs for waste management, including landfill monitoring. The value of historic aerial photographs for documenting landfill boundaries is shown in a graph in which the expansion of an active landfill is traced over a 40-year period. Historic aerial photographs can also be analyzed to obtain general or detailed land-use and land-cover information. In addition, the photographs provide information regarding other elements of the physical environment, including geology, soils, and surface and subsurface drainage. The value of historic photos is discussed, taking into account applications for inventory, assessing contamination/health hazards, planning corrective measures, planning waste collection and facilities, developing inactive landfills, and research concerning improved land-filling operations.

  11. Identifying suitable sanitary landfill locations in the state of Morelos, México, using a Geographic Information System

    NASA Astrophysics Data System (ADS)

    Marín, Luis E.; Torres, Vicente; Bolongaro, Andrea; Reyna, José A.; Pohle, O.; Hernández-Espriú, A.; Chavarría, Jerónimo; García-Barrios, R.; Tabla, Hugo Francisco Parra

    GIS is a powerful tool that may help to better manage natural resources. In this paper, we present a GIS model developed for the state of Morelos as an aid to determine whether a potential site, Loma de Mejia, met the Mexican Federal Guidelines. The Mexican Government has established federal guidelines for sanitary landfill site selection (NOM-083-SERMARNAT-2003). These guidelines were translated into a water-based Geographic Information System and applied to the state of Morelos, Mexico. For these examples, we used the SIGAM® (Sistema de Información Geográfico del Agua en México; a water-based GIS for Mexico) which has at least 60 layers from the National Water Commission (CONAGUA), the national mapping agency (INEGI; Instituto Nacional de Estadística, Geografía e Informática), NASA, and academic institutions. Results show that a GIS is a powerful tool that may allow federal, state and municipal policy makers to conduct an initial regional site reconnaissance rapidly. Once potential sites are selected, further characterization must be carried out in order to determine if proposed locations are suitable or not for a sanitary landfill. Based on the SIGAM© software, the Loma de Mejia would not comply with the Mexican Federal Guidelines.

  12. Use of shredded tire chips and tire crumbs as packing media in trickling filter systems for landfill leachate treatment.

    PubMed

    Mondal, B; Warith, M A

    2008-08-01

    Scrap tire stockpiles are breeding grounds for pests, mosquitoes and west Nile viruses and, thereby, become a potential health risk. This experimental study was carried out in six stages to determine the suitability of shredded tire materials in a trickling filter system to treat landfill leachate. Biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and NH3-N removals were obtained in the range of 81 to 96%, 76 to 90% and 15 to 68%, respectively. The removal of organics appears to be largely related to total dissolved solids reduction in leachate. A sudden increase, from time to time, in organic content of effluent could be attributed to biomass sloughing and clogging in the trickling filters. However, tire crumbs exhibited more consistent organics removal throughout the experimental program. Due to the high surface area of shredded tire chips and crumbs, a layer of biomass, 1-2 mm thick, was attached to them and was sloughed off at an interval of 21 days. Apart from that, as shredded tires are comparatively cheaper than any other usable packing material, tire chips and tire crumbs appeared to be quite promising as packing media in trickling filters for landfill leachate treatment.

  13. MOLECULAR AND CULTURAL METHODOLOGIES FOR ENUMERATING BACTERIA IN LANDFILL LEACHATES

    EPA Science Inventory

    Landfill bioreactor technology has been under investigation in the field for its potential economic and waste treatment benefits over conventional landfill systems. A better understanding of biological influences on the stabilization process is needed for incorporation into the e...

  14. Growing trees on completed sanitary landfills. [Nyssa sylvatica, Picea abies, Ginkgo biloba

    SciTech Connect

    Leone, I.A.; Gilman, E.F.; Flower, F.B.

    1983-01-01

    A 10-year old completed landfill in New Jersey consisting of 9 m (depth) of refuse covered with 15-25 cm of soil was cleared of debris and vegetation and covered with 30 cm of subsoil and 15-25 cm of topsoil. Nineteen coniferous and broadleaved species were planted on the landfill and on a control site in 1975, and trees were maintained and growth and condition monitored over 4 years. On the basis of shoot length and stem area increase, the most successful of the surviving trees were Nyssa sylvatica, Picea abies and Ginkgo biloba, in decreasing order of tolerance. Tolerance of landfill conditions appeared to be greatest in those species with low water requirements, a slow growth rate, high acid tolerance and a shallow root system. (Refs. 11).

  15. Mitigating methane emissions and air intrusion in heterogeneous landfills with a high permeability layer.

    PubMed

    Jung, Yoojin; Imhoff, Paul T; Augenstein, Don; Yazdani, Ramin

    2011-05-01

    Spatially variable refuse gas permeability and landfill gas (LFG) generation rate, cracking of the soil cover, and reduced refuse gas permeability because of liquid addition can all affect CH(4) collection efficiency when intermediate landfill covers are installed. A new gas collection system that includes a near-surface high permeability layer beneath the landfill cover was evaluated for enhancing capture of LFG and mitigating CH(4) emissions. Simulations of gas transport in two-dimensional domains demonstrated that the permeable layer reduces CH(4) emissions up to a factor of 2 for particular spatially variable gas permeability fields. When individual macrocracks formed in the cover soil and the permeable layer was absent, CH(4) emissions increased to as much as 24% of the total CH(4) generated, double the emissions when the permeable layer was installed. CH(4) oxidation in the cover soil was also much more uniform when the permeable layer was present: local percentages of CH(4) oxidized varied between 94% and 100% across the soil cover with the permeable layer, but ranged from 10% to 100% without this layer for some test cases. However, the permeable layer had a minor effect on CH(4) emissions and CH(4) oxidation in the cover soil when the ratio of the gas permeability of the cover soil to the mean refuse gas permeability ≤ 0.05. The modeling approach employed in this study may be used to assess the utility of other LFG collection systems and management practices.

  16. Landfills in karst terrains

    SciTech Connect

    Hughes, T.H. ); Memon, B.A.; LaMoreaux, P.E. )

    1994-06-01

    State and Federal regulations have established restrictions for location of hazardous waste and municipal, solid waste landfills. Regulations require owners/operators to demonstrate that the hydrogeology has been completely characterized at proposed landfills, and that locations for monitoring wells have been properly selected. Owners/operators are also required to demonstrate that engineering measures have been incorporated in the design of the municipal solid waste landfills, so that the site is not subject to destabilizing events, as a result of location in unstable areas, such as karst terrains. Karst terrains are typically underlain by limestone or dolomite, and may contain a broad continuum of karst features and karst activity. Preliminary investigation of candidate sites will allow ranking of the sites, rejection of some unsuitable sites, and selection of a few sites for additional studies. The complexity of hydrogeologic systems, in karst terrains, mandates thorough hydrogeologic studies to determine whether a specific site is, or can be rendered, suitable for a land disposal facility. Important components of hydrogeologic studies are: field mapping of structural and stratigraphic units; interpretation of sequential aerial photographs; test drilling and geophysical analyses; fracture analyses; seasonal variation in water-levels; spatial variation of hydraulic characteristics of the aquifer and aquiclude; velocity and direction of movement of ground water within aquifers; determination of control for recharge, discharge, and local base level; and evaluation of the effects of man's activities, such as pumping, dewatering and construction.

  17. Phytoremediation of landfill leachate

    SciTech Connect

    Jones, D.L. . E-mail: d.jones@bangor.ac.uk; Williamson, K.L.; Owen, A.G.

    2006-07-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m{sup 3} ha{sup -1} yr{sup -1}. However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

  18. Geosynthetics conquer the landfill law

    SciTech Connect

    Derian, L.; Gharios, K.M. . Solid Waste Management Div.); Kavazanjian, E. Jr.; Snow, M.S. )

    1993-12-01

    Los Angeles' last operating landfill is undergoing a 4 million m[sup 3] expansion using innovative materials in the liner system to overcome difficult site conditions. The design represents the first approved alternative in California -- and perhaps in the nation -- to the Resource Conservation and Recovery Act's Subtitle D regulations for liner systems. This article examines the regulatory journey that led to approval and the liner's design and construction. Steep slopes at Los Angeles' only operating municipal solid-waste landfill (MSW) forced designers to use an innovative geosynthetic liner and leachate collection system. Its use sets a precedent for alternatives to the prescriptive regulations for liner systems present in Subtitle D of the Resource and Conservation Recovery Act (RCRA). To provide uninterrupted service at the landfill, design and construction proceeded concurrently with regulatory approval.

  19. Evapotranspiration (ET) covers.

    PubMed

    Rock, Steve; Myers, Bill; Fiedler, Linda

    2012-01-01

    Evapotranspiration (ET) cover systems are increasingly being used at municipal solid waste (MSW) landfills, hazardous waste landfills, at industrial monofills, and at mine sites. Conventional cover systems use materials with low hydraulic permeability (barrier layers) to minimize the downward migration of water from the surface to the waste (percolation), ET cover systems use water balance components to minimize percolation. These cover systems rely on soil to capture and store precipitation until it is either transpired through vegetation or evaporated from the soil surface. Compared to conventional membrane or compacted clay cover systems, ET cover systems are expected to cost less to construct. They are often aesthetic because they employ naturalized vegetation, require less maintenance once the vegetative system is established, including eliminating mowing, and may require fewer repairs than a barrier system. All cover systems should consider the goals of the cover in terms of protectiveness, including the pathways of risk from contained material, the lifecycle of the containment system. The containment system needs to be protective of direct contact of people and animals with the waste, prevent surface and groundwater water pollution, and minimize release of airborne contaminants. While most containment strategies have been based on the dry tomb strategy of keeping waste dry, there are some sites where adding or allowing moisture to help decompose organic waste is the current plan. ET covers may work well in places where complete exclusion of precipitation is not needed. The U.S. EPA Alternative Cover Assessment Program (ACAP), USDOE, the Nuclear Regulatory Commission, and others have researched ET cover design and efficacy, including the history of their use, general considerations in their design, performance, monitoring, cost, current status, limitations on their use, and project specific examples. An on-line database has been developed with information

  20. Municipal landfill leachate treatment for metal removal using water hyacinth in a floating aquatic system.

    PubMed

    El-Gendy, A S; Biswas, N; Bewtra, J K

    2006-09-01

    Experiments were carried out to investigate the ability of water hyacinth (Eichhornia crassipes) to remove five heavy metals (cadmium, chromium, copper, nickel, and lead) commonly found in leachate. All experiments were conducted in batch reactors in a greenhouse. It was found that living biomass of water hyacinth was a good accumulator for copper, chromium, and cadmium. The plants accumulated copper, chromium, and cadmium up to 0.96, 0.83, and 0.50%, respectively, of their dry root mass. However, lead and nickel were poorly accumulated in water hyacinth. Also, nonliving biomass of water hyacinth dry roots showed ability to accumulate all metals, except Cr(VI), which was added in anionic form. The highest total metal sorption by nonliving dry water hyacinth roots was found to take place at pH 6.4. The current research demonstrates the potential of using water hyacinth for the treatment of landfill leachate containing heavy metals.

  1. Characterization and treatment of Denizli landfill leachate using anaerobic hybrid/aerobic CSTR systems.

    PubMed

    Ağdağ, Osman Nuri

    2011-01-01

    Leachate generated in municipal solid waste landfill contains large amounts of organic and inorganic contaminants. In the scope of the study, characterization and anaerobic/aerobic treatability of leachate from Denizli (Turkey) Sanitary Landfill were investigated. Time-based fluctuations in characteristics of leachate were monitored during a one-year period. In characterization study; chemical oxygen demand (COD), biochemical oxygen demand (BOD) dissolved oxygen, temperature, pH, alkalinity, volatile fatty acids, total nitrogen, NH4-N, BOD5/COD ratio, suspended solid, inert COD, anaerobic toxicity assay and heavy metals concentrations in leachate were monitored. Average COD, BOD and NH4-N concentration in leachate were measured as 18034 mg/l, 11504 mg/l and 454 mg/l, respectively. Generally, pollution parameters in leachate were higher in summer and relatively lower in winter due to dilution by precipitation. For treatment of leachate, two different reactors, namely anaerobic hybrid and aerobic completely stirred tank reactor (CSTR) having effective volumes of 17.7 and 10.5 litres, respectively, were used. After 41 days of start-up period, leachate was loaded to hybrid reactor at 10 different organic loading rates (OLRs). OLR was increased by increasing COD concentrations. COD removal efficiency of hybrid reactor was carried out at a maximum of 91%. A percentage of 96% of residual COD was removed in the aerobic reactor. NH4-N removal rate in CSTR was quite high. In addition, high methane content was obtained as 64% in the hybrid reactor. At the end of the study, after 170 operation days, it can be said that the hybrid reactor and CSTR were very effective for leachate treatment.

  2. Venice Park landfill: Working with the community

    SciTech Connect

    McAdams, C.L.

    1993-09-01

    Venice Park landfill was one of the first sites to be permitted under Michigan's proposed Public Act 641. PA 641 essentially changed the rules and regulations for landfills from the simple design of digging a hole and filling it. It also upgraded standards to those that are more sophisticated, including liners, leachate collection systems, and gas extraction systems. In 1992, methane gas from the landfill was collected into wells drilled into the trash varying in depth from 30-50 feet in depth. A vacuum pulls the gas from the trash into the wells, then through a piping system. The landfill uses about 80-100 kilowatts in-house. The remainder of the gas is sold to Consumers Power Co. which uses landfill gas to supply power to homes.

  3. Landfill Gas Energy

    EPA Pesticide Factsheets

    This guide describes how local governments and communities can achieve energy, environmental, health, and economic benefits by using landfill gas (LFG) recovered from municipal solid waste landfills as a source of renewable energy.

  4. Learning from Landfills.

    ERIC Educational Resources Information Center

    Galus, Pamela

    2000-01-01

    Describes a project in which students developed an all-class laboratory activity called "The Decomposition of Organic and Inorganic Substances in a Landfill". Explores what conditions are necessary to facilitate decomposition in a landfill. (SAH)

  5. Landfills as a biorefinery to produce biomass and capture biogas.

    PubMed

    Bolan, N S; Thangarajan, R; Seshadri, B; Jena, U; Das, K C; Wang, H; Naidu, R

    2013-05-01

    While landfilling provides a simple and economic means of waste disposal, it causes environmental impacts including leachate generation and greenhouse gas (GHG) emissions. With the introduction of gas recovery systems, landfills provide a potential source of methane (CH4) as a fuel source. Increasingly revegetation is practiced on traditionally managed landfill sites to mitigate environmental degradation, which also provides a source of biomass for energy production. Combustion of landfill gas for energy production contributes to GHG emission reduction mainly by preventing the release of CH4 into the atmosphere. Biomass from landfill sites can be converted to bioenergy through various processes including pyrolysis, liquefaction and gasification. This review provides a comprehensive overview on the role of landfills as a biorefinery site by focusing on the potential volumes of CH4 and biomass produced from landfills, the various methods of biomass energy conversion, and the opportunities and limitations of energy capture from landfills.

  6. Mill Seat Landfill Bioreactor Renewable Green Power (NY)

    SciTech Connect

    Barton & Loguidice, P.C.

    2010-01-07

    The project was implemented at the Mill Seat landfill located in the Town of Bergen, Monroe County, New York. The landfill was previously equipped with a landfill gas collection system to collect methane gas produced by the bioreactor landfill and transport it to a central location for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

  7. Superfund record of decision (EPA Region 5): Lauer 1 Sanitary Landfill (Boundary road), Menomonee Falls, WI, March 11, 1996

    SciTech Connect

    1996-06-01

    The Boundary Road Landfill (formerly known as the Lauer 1 Landfill) is located in the northeastern portion of the Village of Menomonee Falls. Construction of a new multi-layer soil cover system over the landfill; installation of leachate extraction measures in the northeastern portion of the site; installation of an active landfill gas extraction system; construction of a new leachate conveyance, likely a forcemain (pressure pipe), to transmit all extracted leachate from the site to the local sanitary sewer system; continued operation and maintenance of an existing slurry cut-off wall and leachate collection system, including conveyance of leachate from the collection system to the new forcemain; implementation of proper institutional controls; installation of new fencing and improvement of existing fencing to restrict site access; long-term monitoring of groundwater, surface water and landfill gas; supplementary studies of groundwater quality and internal landfill leachate elevations; and implementation of additional remedial actions found to be necessary under the additional studies of groundwater quality and internal leachate elevations.

  8. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 1. System design and gas distribution.

    PubMed

    Cassini, Filippo; Scheutz, Charlotte; Skov, Bent H; Mou, Zishen; Kjeldsen, Peter

    2017-01-21

    Greenhouse gas mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology, but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi-passive biocover system was constructed at the AV Miljø Landfill, Denmark. The biocover system was fed by landfill gas pumped out of three leachate collection wells. An innovative gas distribution system was used to overcome the commonly observed surface emission hot spot areas resulting from an uneven gas distribution to the active methane oxidation layer, leading to areas with methane overloading. Performed screening of methane and carbon dioxide surface concentrations, as well as flux measurement using a flux chamber at the surface of the biocover, showed homogenous distributions indicating an even gas distribution. This was supported by results from a tracer gas test where the compound HFC-134a was added to the gas inlet over an adequately long time period to obtain tracer gas stationarity in the whole biocover system. Studies of the tracer gas movement within the biocover system showed a very even gas distribution in gas probes installed in the gas distribution layer. Also the flux of tracer gas out of the biocover surface, as measured by flux chamber technique, showed a spatially even distribution. Installed probes logging the temperature and moisture content of the methane oxidation layer at different depths showed elevated temperatures in the layer with temperature differences to the ambient temperature in the range of 25-50°C at the deepest measuring point due to the microbial processes occurring in the layer. The moisture measurements showed that infiltrating precipitation was efficiently drained away from the methane oxidation layer.

  9. Fact Sheet on Evapotranspiration Cover Systems for Waste Containment

    EPA Pesticide Factsheets

    This Fact Sheet updates the 2003 Fact Sheet on Evapotranspiration Covers and provides information on the regulatory setting for ET covers, general considerations in their design, performance, and monitoring, and status at the time of writing (2011).

  10. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    elimination of methane production and acceleration of waste decomposition. In the first phase of this project a 12-acre module that contains a 9.5-acre anaerobic cell and a 2.5-acre aerobic cell has been constructed and filled with over 220,000 tons of municipal solid waste. Water and leachate addition began in April 2002 and to date less than 200,000 gallons of liquid has been added to the 3.5-acre anaerobic cell. The waste filling phase of the aerobic cell was completed in June of 2002 and a 12-inches soil cover and 12-inches of greenwaste compost cover was placed on top of the cell. A vacuum will be applied to the piping within the waste to draw air through the landfill. Instrumentations have been installed to monitor the following parameters: waste temperature, moisture, leachate volumes, leachate hydraulic head over the primary liner, leachate composition, gas volumes and composition. A supervisory Control and Data Acquisition (SCADA) system has been installed to monitor and control the operation of the bioreactor cells. Waste samples were taken from each cell for laboratory testing in early June 2002.

  11. Degradability of Chlorinated Solvents in Landfill Environment

    NASA Astrophysics Data System (ADS)

    Wang, J. Y.; Litman, M.

    2002-12-01

    The use of landfills as an in situ remediation system represents a cost-effective alternative for groundwater remediation in the source area. This research was conducted to investigate the intrinsic bioattenuation capacity of the landfill ecosystem for chlorinated aliphatic hydrocarbons (CAHs). This research, using excavated refuse samples, studied how the reductive dechlorination of CAHs is linked to the decomposition of solid waste in landfills. Most research effort in groundwater remediation has focused on the contaminant plumes beneath and downgradient from landfills, while the source area remediation has received increasing attention. Bioreactor landfill and leachate recirculation projects have been planned and implemented by the USEPA and some states. However, the use of bioreactor landfill has primarily been considered only to expedite refuse decomposition. This research provides an understanding of the biological fate of CAHs in landfills, an understanding that can lead to the bioreactor landfill system designed to promote the degradation of pollutants right at the source. The research was conducted in two complementary systems: simulated landfill bioreactors and batch degradation experiment in serum bottles. Refuse samples were excavated from a municipal solid waste landfill located in Wayland, Massachusetts, USA. Bioreactors were designed and operated to facilitate refuse decomposition under landfilling conditions. For each reactor, leachate was collected and recirculated back to the reactor and gas was collected into a gas bag and the methane production rate was monitored. Target CAHs, tetrachloroethene (PCE) and trichloroethene (TCE), were added to selected reactors and maintained at about 20 uM each in leachate. The design is to study the effect of long-term exposure of refuse microorganisms to CAHs on the degradation potential of these chemicals in landfills. Changes of biochemical conditions in bioreactors, including leachate pH, leachate COD, and

  12. Space monitoring of municipal solid waste landfills in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Skakova, Olga; Shagarova, Lyudmila

    Municipal solid waste (MSW) landfills are special facilities designed for waste isolation and disposal ensuring sanitary and epidemiological safety of population. A solid waste landfill is a complex object with its own specific features. Modern remote-sensing methods are an indispensable source of information for the analysis of space images of solid waste landfills in Kazakhstan. Space monitoring of solid waste landfills includes the following tasks: 1. Identification and mapping of landfill areas according to the data of remote earth sensing. 2. Studying of energy and structural characteristics of landfills based on remote sensing data. 3. Analysis of the state of landfills based on a comparison of current and archive remote sensing data. Space monitoring of territories of municipal solid waste landfills uses modern computer technologies. They include satellite imagery combined with sub-satellite research, as well as other sources of information used for identification and mapping of landfill territories. Investigation of municipal solid waste landfills requires targeted survey of landfill areas, remote sensing using operational and archival data including theoretical foundations of physical optics and statistical data. Processing of digital satellite information uses methods of pattern recognition, automated image processing and correlation analysis. Based on spectral energy and textural characteristics of municipal solid waste landfills obtained by remote sensing methods, the technology of space monitoring of landfill areas, including landfill recognition and characterization of solid waste landfills from remote observations was developed. Monitoring of MSW landfills uses satellite images of ultrahigh and medium spatial resolution. Medium-resolution images are used to determine temperature, vegetation cover and soil degradation. High-resolution images are used to detect landfills, to determine forms of soil degradation, to calculate geometrical parameters, and

  13. Heavy metals, salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas: determinants for restoring their impact.

    PubMed

    Pastor, J; Hernández, A J

    2012-03-01

    This study was designed to determine the state of polluted soils in the main landfills of the Community of Madrid (central Spain), as part of a continuous assessment of the impacts of urban solid waste (USW) landfills that were capped with a layer of soil 20 years ago. Our analysis of this problem has been highly conditioned by the constant re-use of many of the USW landfills, since they have never been the target of any specific restoration plan. Our periodical analysis of cover soils and soils from discharge areas of the landfills indicates soil pollution has worsened over the years. Here, we examined heavy metal, salts, and organic compounds in soil and surface water samples taken from 15 landfills in the Madrid region. Impacts of the landfill soil covers on nematode and plant diversity were also evaluated. These analyses continue to reveal the presence of heavy metals (Zn, Cu, Cr, Ni, Pb, Cd) in soils, and salts (sulphates, chlorides and nitrates) in soils and surface waters. In addition, non-agricultural organic compounds, mainly aromatic and aliphatic hydrocarbons, often appeared in very high concentrations, and high levels of insecticides such as gamma-HCH (lindane) were also detected in soils. Around 50% of the water samples collected showed chemical demand of oxygen (CDO) values in excess of 150 mg/l. Traces of phenolic compounds were detected in some landfills, some of which exhibited high levels of 2-chlorophenol and pentachlorophenol. All these factors are conditioning both the revegetation of the landfill systems and the remediation of their slopes and terrestrial ecosystems arising in their discharge areas. This work updates the current situation and discusses risks for the health of the ecosystems, humans, domestic animals and wildlife living close to these landfills.

  14. Effect of a solar Fered-Fenton system using a recirculation reactor on biologically treated landfill leachate.

    PubMed

    Ye, Zhihong; Zhang, Hui; Yang, Lin; Wu, Luxue; Qian, Yue; Geng, Jinyao; Chen, Mengmeng

    2016-12-05

    The effects of electrochemical oxidation (EO), Fered-Fenton and solar Fered-Fenton processes using a recirculation flow system containing an electrochemical cell and a solar photo-reactor on biochemically treated landfill leachate were investigated. The most successful method was solar Fered-Fenton which achieved 66.5% COD removal after 120min treatment utilizing the optimum operating conditions of 47mM H2O2, 0.29mM Fe(2+), pH0 of 3.0 and a current density of 60mA/cm(2). The generation of hydroxyl radicals (OH) are mainly from Fered-Fenton process, which is enhanced by the introduction of renewable solar energy. Moreover, Fe(2+)/chlorine and UV/chlorine processes taking place in this system also result in additional production of OH due to the relatively high concentration of chloride ions contained in the leachate. The energy consumption was 74.5kWh/kg COD and the current efficiency was 36.4% for 2h treatment. In addition, the molecular weight (MW) distribution analysis and PARAFAC analysis of excitation emission matrix (EEM) fluorescence spectroscopy for different leachate samples indicated that the organics in the leachate were significantly degraded into either small molecular weight species or inorganics.

  15. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system.

    PubMed

    Qin, Mohan; Molitor, Hannah; Brazil, Brian; Novak, John T; He, Zhen

    2016-01-01

    A microbial electrolysis cell (MEC)-forward osmosis (FO) system was previously reported for recovering ammonium and water from synthetic solutions, and here it has been advanced with treating landfill leachate. In the MEC, 65.7±9.1% of ammonium could be recovered in the presence of cathode aeration. Without aeration, the MEC could remove 54.1±10.9% of ammonium from the leachate, but little ammonia was recovered. With 2M NH4HCO3 as the draw solution, the FO process achieved 51% water recovery from the MEC anode effluent in 3.5-h operation, higher than that from the raw leachate. The recovered ammonia was used as a draw solute in the FO for successful water recovery from the treated leachate. Despite the challenges with treating returning solution from the FO, this MEC-FO system has demonstrated the potential for resource recovery from wastes, and provide a new solution for sustainable leachate management.

  16. Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate.

    PubMed

    Moreira, Francisca C; Soler, J; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-09-15

    The current study has proved the technical feasibility of including electrochemical advanced oxidation processes (EAOPs) in a multistage strategy for the remediation of a sanitary landfill leachate that embraced: (i) first biological treatment to remove the biodegradable organic fraction, oxidize ammonium and reduce alkalinity, (ii) coagulation of the bio-treated leachate to precipitate humic acids and particles, followed by separation of the clarified effluent, and (iii) oxidation of the resulting effluent by an EAOP to degrade the recalcitrant organic matter and increase its biodegradability so that a second biological process for removal of biodegradable organics and nitrogen content could be applied. The influence of current density on an UVA photoelectro-Fenton (PEF) process was firstly assessed. The oxidation ability of various EAOPs such as electro-Fenton (EF) with two distinct initial total dissolved iron concentrations ([TDI]0), PEF and solar PEF (SPEF) was further evaluated and these processes were compared with their analogous chemical ones. A detailed assessment of the two first treatment stages was made and the biodegradability enhancement during the SPEF process was determined by a Zahn-Wellens test to define the ideal organics oxidation state to stop the EAOP and apply the second biological treatment. The best current density was 200 mA cm(-2) for a PEF process using a BDD anode, [TDI]0 of 60 mg L(-1), pH 2.8 and 20 °C. The relative oxidation ability of EAOPs increased in the order EF with 12 mg [TDI]0 L(-1) < EF with 60 mg [TDI]0 L(-1) < PEF with 60 mg [TDI]0 L(-1) ≤ SPEF with 60 mg [TDI]0 L(-1), using the abovementioned conditions. While EF process was much superior to the Fenton one, the superiority of PEF over photo-Fenton was less evident and SPEF attained similar degradation to solar photo-Fenton. To provide a final dissolved organic carbon (DOC) of 163 mg L(-1) to fulfill the discharge limits into the environment after

  17. Black oat cover crop management in watermelon production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black oats (Avena strigosa Schreb.) were sown as a cover crop near Weslaco, Texas (Lat. 26 deg N) in Fall 2010. The cover crop was allowed to senesce naturally and was planted to watermelons in both the spring and in the fall of 2011. Watermelon transplants planted in the spring into mowed black o...

  18. Using cover crops and cropping systems for nitrogen management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reasons for using cover crops and optimized cropping sequences to manage nitrogen (N) are to maximize economic returns, improve soil quality and productivity, and minimize losses of N that might adversely impact environmental quality. Cover crops and cropping systems’ effects on N management are...

  19. A statistical model for landfill surface emissions.

    PubMed

    Héroux, Martin; Guy, Christophe; Millette, Denis

    2010-02-01

    Landfill operators require a rapid, simple, low-cost, and accurate method for estimation of landfill methane surface emissions over time. Several methods have been developed to obtain instantaneous field measurements of landfill methane surface emissions. This paper provides a methodology for interpolating instantaneous measurements over time, taking variations in meteorological conditions into account. The goal of this study was to determine the effects of three factors on landfill methane surface emissions: air temperature, pressure gradient between waste and atmosphere, and soil moisture content of the cover material. On the basis of a statistical three-factor and two-level full factorial design, field measurements of methane emissions were conducted at the City of Montreal landfill site during the summer of 2004. Three areas were measured: test area 1 (4800 m2), test area 2 (1400 m2), and test area 3 (1000 m2). Analyses of variance were performed on the data. They showed a significant statistical effect of the three factors and the interaction between temperature and soil moisture content on methane emissions. Analysis also led to the development of a multifactor correlation, which can be explained by the underlying processes of diffusive and advective flow and biological oxidation. This correlation was used to estimate total emissions of the three test areas for July and August 2004. The approach was validated using a second dataset for another area adjacent to the landfill.

  20. Effective monitoring of landfills: flux measurements and thermography enhance efficiency and reduce environmental impact

    NASA Astrophysics Data System (ADS)

    Battaglini, Raffaele; Raco, Brunella; Scozzari, Andrea

    2013-12-01

    This work presents a methodology for estimating the behaviour of a landfill system in terms of biogas release to the atmosphere. Despite the various positions towards the impact of methane on global warming, there is a general agreement about the fact that methane from landfill represents about 23% of the total anthropogenic CH4 released to the atmosphere. Despite the importance of this topic, no internationally accepted protocol exists to quantify the leakage of biogas from the landfill cover. To achieve this goal, this paper presents a field method based on accumulation chamber flux measurements. In addition, the results obtained from a nine-year-long monitoring activity on an Italian municipal solid waste (MSW) landfill are presented. The connection between such flux measurements of biogas release and thermal anomalies detected by infrared radiometry is also discussed. The main overall benefit of the presented approach is a significant increase in the recovered energy from the landfill site by means of an optimal collection of biogas, which implies a reduction of the total anthropogenic methane originated from the disposal of waste.

  1. EVALUATION OF THE TEMPORARY TENT COVER TRUSS SYSTEM AP PRIMARY VENT SYSTEM

    SciTech Connect

    HAQ MA

    2009-12-31

    The purpose of this calculation is to evaluate a temporary ten cover truss system. This system will be used to provide weather protection to the workers during replacement of the filter for the Primary Ventilation System in AP Tank Farm. The truss system has been fabricated utilizing tubes and couplers, which are normally used for scaffoldings.

  2. An Integrated Approach to Determine Ground-water Surface Water Flux in a Contaminated Aquifer-Wetland System at the Norman Landfill Research Site, Oklahoma

    NASA Astrophysics Data System (ADS)

    Mendoza-Sanchez, I.; Phanikumar, M.; McGuire, J. T.; Masoner, J.; Cozzarelli, I.

    2008-12-01

    An area of research in progress at the Norman Landfill Research Site in Oklahoma involves a small wetland that overlies a landfill leachate plume. The wetland-aquifer system actively exchanges contaminants and nutrients. These chemicals move from the wetland to the aquifer and vice versa depending on the ground- water/surface-water exchange rate and flow direction. The ground-water/surface-water flow has to be quantified in order to better understand the influence of contaminants and nutrients on the transport and fate of landfill leachates. Different types of data have been collected at the site over a period of ten years including isotopic composition of water samples, ion concentrations, water levels, evaporative and seepage fluxes and meteorological variables. After identifying key processes influencing the water exchange between the wetland and ground-water based on time series analysis, we used process-based modeling to determine the ground-water/surface-water flow rates in the system using an integrated water balance model. Other methods used to constrain processes and parameters in the study include: (a) ground-water inflow calculation with stable environmental isotopes mass balance (b) ground-water input to the wetland with solute mass balance, and (c) Darcy's flow calculation of ground-water/surface-water exchange based on measurements from a network of piezometers. Preliminary results show that it is possible to differentiate between regional and local ground-water influences, as well as precipitation and evapotranspiration contributions in the exchange behavior.

  3. Factors concerned with sanitary landfill site selection: General discussion

    NASA Technical Reports Server (NTRS)

    Graff, W. J.; Stone, L. J.

    1972-01-01

    A general view of factors affecting site selection for sanitary landfill sites is presented. Examinations were made of operational methods, possible environment pollution, types of waste to be disposed, base and cover materials, and the economics involved in the operation.

  4. Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI

    SciTech Connect

    Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

    2006-08-29

    A bioreactor landfill cell with 1.2-acre footprint was constructed, filled, operated, and monitored at Northern Oaks Recycling and Disposal Facility (NORDF) at Harrison, MI. With a filled volume of 74,239 cubic yards, the cell contained approximately 35,317 tons of municipal solid waste (MSW) and 20,777 tons of cover soil. It was laid on the slope of an existing cell but separated by a geosynthetic membrane liner. After the cell reached a design height of 60 feet, it was covered with a geosynthetic membrane cap. A three-dimensional monitoring system to collect data at 48 different locations was designed and installed during the construction phase of the bioreactor cell. Each location had a cluster of monitoring devices consisting of a probe to monitor moisture and temperature, a leachate collection basin, and a gas sampling port. An increase in moisture content of the MSW in the bioreactor cell was achieved by pumping leachate collected on-site from various other cells, as well as recirculation of leachate from the bioreactor landfill cell itself. Three types of leachate injection systems were evaluated in this bioreactor cell for their efficacy to distribute pumped leachate uniformly: a leachate injection pipe buried in a 6-ft wide horizontal stone mound, a 15-ft wide geocomposite drainage layer, and a 60-ft wide geocomposite drainage layer. All leachate injection systems were installed on top of the compacted waste surface. The distribution of water and resulting MSW moisture content throughout the bioreactor cell was found to be similar for the three designs. Water coming into and leaving the cell (leachate pumped in, precipitation, snow, evaporation, and collected leachate) was monitored in order to carry out a water balance. Using a leachate injection rate of 26 – 30 gal/yard3, the average moisture content increased from 25% to 35% (wet based) over the period of this study. One of the key aspects of this bioreactor landfill study was to evaluate bioreactor

  5. A Citizen's Guide to Evapotranspiration Covers

    EPA Pesticide Factsheets

    This guide explains Evapotranspiration Covers which are Evapotranspiration (ET) covers are a type of cap placed over contaminated material, such as soil, landfill waste, or mining tailings, to prevent water from reaching it.

  6. Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic-aerobic moving-bed biofilm reactor system.

    PubMed

    Chen, Sheng; Sun, Dezhi; Chung, Jong-Shik

    2008-01-01

    The performance of a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic arrangement was investigated to treat landfill leachate for simultaneous removal of COD and ammonium. It was found that the anaerobic MBBR played a major role in COD removal due to methanogenesis, and the aerobic MBBR acted as COD-polishing and ammonium removal step. The contribution of the anaerobic MBBR to total COD removal efficiency reached 91% at an organic loading rate (OLR) of 4.08 kgCOD/(m3d), and gradually decreased to 86% when feed OLR was increased to 15.70 kgCOD/(m3d). Because of the complementary function of the aerobic reactor, the total COD removal efficiency of the system had a slight decrease from 94% to 92% even though the feed OLR was increased from 4.08 to 15.70 kgCOD/(m3d). Hydraulic retention time (HRT) had a significant effect on NH+4-N removal; more than 97% of the total NH+4-N removal efficiency could be achieved when the HRT of the aerobic MBBR was more than 1.25 days. The anaerobic-aerobic system had a strong tolerance to shock loading. A decrease in COD removal efficiency of only 7% was observed when the OLR was increased by four times and shock duration was 24 h, and the system could recover the original removal efficiency in 3 days. The average sludge yield of the anaerobic reactor was estimated to be 0.0538 gVSS/gCOD rem.

  7. Removal of ammonia nitrogen from leachate of Muribeca municipal solid waste landfill, Pernambuco, Brazil, using natural zeolite as part of a biochemical system.

    PubMed

    Lins, Cecilia Maria M S; Alves, Maria Cristina M; Campos, Juacyara C; Silva, Fabrícia Maria S; Jucá, José Fernando T; Lins, Eduardo Antonio M

    2015-01-01

    The inadequate disposal of leachate is one of the key factors in the environmental impact of urban solid waste landfills in Brazil. Among the compounds present in the leachates from Brazilian landfills, ammonia nitrogen is notable for its high concentrations. The purpose of this study was to assess the efficiency of a permeable reactive barrier filled with a natural zeolite, which is part of a biochemical system for the tertiary treatment of the leachate from Muribeca Municipal Solid Waste Landfill in Pernambuco, Brazil, to reduce its ammonia nitrogen concentration. This investigation initially consisted of kinetic studies and batch equilibrium tests on the natural zeolite to construct the sorption isotherms, which showed a high sorption capacity, with an average of 12.4 mg NH4+.L(-1), a value close to the sorption rates found for the aqueous ammonium chloride solution. A permeable reactive barrier consisting of natural zeolite, as simulated by the column test, was efficient in removing the ammonia nitrogen present in the leachate pretreated with calcium hydroxide. Nevertheless, the regenerated zeolite did not satisfactorily maintain the sorption properties of the natural zeolite, and an analysis of their cation-exchange properties showed a reduced capacity of 54 meq per 100 g for the regenerated zeolite compared to 150 meq per 100 g for the natural zeolite.

  8. On the current state of the Hydrologic Evaluation of Landfill Performance (HELP) model.

    PubMed

    Berger, Klaus U

    2015-04-01

    The Hydrologic Evaluation of Landfill Performance (HELP) model is the most widely applied model to calculate the water balance of cover and bottom liner systems for landfills. The paper summarizes the 30 year history of the model from HELP version 1 to HELP 3.95 D and includes references to the three current and simultaneously available versions (HELP 3.07, Visual HELP 2.2, and HELP 3.95 D). A sufficient validation is an essential precondition for the use of any model in planning. The paper summarizes validation approaches for HELP 3 focused on cover systems in the literature. Furthermore, measurement results are compared to simulation results of HELP 3.95 D for (1) a test field with a compacted clay liner in the final cover of the landfill Hamburg-Georgswerder from 1988 to 1995 and (2) a test field with a 2.3m thick so-called water balance layer on the landfill Deetz near Berlin from 2004 to 2011. On the Georgswerder site actual evapotranspiration was well reproduced by HELP on the yearly average as well as in the seasonal course if precipitation data with 10% systematic measurement errors were used. However, the increase of liner leakage due to the deterioration of the clayey soil liner was not considered by the model. On the landfill Deetz HELP overestimated largely the percolation through the water balance layer resulting from an extremely wet summer due to an underestimation of the water storage in the layer and presumably also due to an underestimation of the actual evapotranspiration. Finally based on validation results and requests from the practice, plans for improving the model to a future version HELP 4 D are described.

  9. Report: management problems of solid waste landfills in Kuwait.

    PubMed

    Al-Yaqout, Anwar F; Hamoda, Mohamed F

    2002-08-01

    This paper evaluates current operational practices in municipal solid waste landfills in Kuwait to provide existing knowledge on uncontrolled landfilling and associated problems of solid waste disposal in developing countries. The current landfilling practices are safe neither for humans nor for the environment. The landfill sites receive all kinds of wastes such as food wastes, oil products, debris, dead animals, agricultural wastes, chemical wastes, wastewater and sewage sludge. The wastes are dumped, spread and compacted in an uncontrolled manner and cover material is not applied regularly. Dust created within the landfill site and gas emissions cause a public nuisance. The characteristics of leachate formed indicate high organic content and presence of heavy metals, salts and nutrients. There are no provisions for leachate or landfill gas collection at the landfill sites. Recommendations for adjustment in landfill operation have been made in recognition of the transition period that is experienced in proceeding from the past and present to the future management of landfills in Kuwait to safeguard the public health and protect the environment.

  10. Bioreactor landfill technology in municipal solid waste treatment: an overview.

    PubMed

    Kumar, Sunil; Chiemchaisri, Chart; Mudhoo, Ackmez

    2011-03-01

    In recent years, due to an advance in knowledge of landfill behaviour and decomposition processes of municipal solid waste, there has been a strong thrust to upgrade existing landfill technologies for optimizing these degradation processes and thereafter harness a maximum of the useful bioavailable matter in the form of higher landfill gas generation rates. Operating landfills as bioreactors for enhancing the stabilization of wastes is one such technology option that has been recently investigated and has already been in use in many countries. A few full-scale implementations of this novel technology are gaining momentum in landfill research and development activities. The publication of bioreactor landfill research has resulted in a wide pool of knowledge and useful engineering data. This review covers leachate recirculation and stabilization, nitrogen transformation and corresponding extensive laboratory- and pilot-scale research, the bioreactor landfill concept, the benefits to be derived from this bioreactor landfill technology, and the design and operational issues and research trends that form the basis of applied landfill research.

  11. Hydrogeology and simulation of ground-water flow near the Lantana Landfill, Palm Beach County, Florida

    USGS Publications Warehouse

    Russell, G.M.; Wexler, E.J.

    1993-01-01

    The Lantana landfill in Palm Beach County has a surface that is 40 to 50 feet above original ground level and consists of about 250 acres of compacted garbage and trash. Parts of the landfill are below the water table. Surface-resistivity measurements and water-quality analyses indicate that leachate-enriched ground water along the eastern perimeter of the landfill has moved about 500 feet eastward toward an adjacent lake. Concentrations of chloride and nutrients within the leachate-enriched ground water were greater than background concentrations. The surficial aquifer system in the area of the landfill consists primarily of sand of moderate permeability, from land surface to a depth of about 68 feet deep, and consists of sand interbedded with sandstone and limestone of high permeability from a depth of about 68 feet to a depth of 200 feet. The potentiometric surface in the landfill is higher than that in adjacent areas to the east, indicating ground-water movement from the landfill toward a lake to the east. Steady-state simulation of ground-water flow was made using a telescoping-grid technique where a model covering a large area is used to determine boundaries and fluxes for a finer scale model. A regional flow model encompassing a 500-square mile area in southeastern Palm Beach County was used to calculate ground-water fluxes in a 126.5-square mile subregional area. Boundary fluxes calculated by the subregional model were then used to calculate boundary fluxes for a local model of the 3.75-square mile area representing the Lantana landfill site and vicinity. Input data required for simulating ground-water flow in the study area were obtained from the regional flow models, thus, effectively coupling the models. Additional simulations were made using the local flow model to predict effects of possible remedial actions on the movement of solutes in the ground-water system. Possible remedial actions simulated included capping the landfill with an impermeable layer

  12. The role of terrestrial snow cover in the climate system

    NASA Astrophysics Data System (ADS)

    Vavrus, Steve

    2007-07-01

    Snow cover is known to exert a strong influence on climate, but quantifying its impact is difficult. This study investigates the global impact of terrestrial snow cover through a pair of GCM simulations run with prognostic snow cover and with all snow cover on land eliminated (NOSNOWCOVER). In this experiment all snowfall over land was converted into its liquid-water equivalent upon reaching the surface. Compared with the control run, NOSNOWCOVER produces mean-annual surface air temperatures up to 5 K higher over northern North America and Eurasia and 8-10 K greater during winter. The globally averaged warming of 0.8 K is one-third as large as the model’s response to 2 × CO2 forcing. The pronounced surface heating propagates throughout the troposphere, causing changes in surface and upper-air circulation patterns. Despite the large atmospheric warming, the absence of an insulating snow pack causes soil temperatures in NOSNOWCOVER to fall throughout northern Asia and Canada, including extreme wintertime cooling of over 20 K in Siberia and a 70% increase in permafrost area. The absence of snow melt water also affects extratropical surface hydrology, causing significantly drier upper-layer soils and dramatic changes in the annual cycle of runoff. Removing snow cover also drastically affects extreme weather. Extreme cold-air outbreaks (CAOs)—defined relative to the control climatology—essentially disappear in NOSNOWCOVER. The loss of CAOs appears to stem from both the local effects of eliminating snow cover in mid-latitudes and a remote effect over source regions in the Arctic, where -40°C air masses are no longer able to form.

  13. Multi-well sample plate cover penetration system

    DOEpatents

    Beer, Neil Reginald [Pleasanton, CA

    2011-12-27

    An apparatus for penetrating a cover over a multi-well sample plate containing at least one individual sample well includes a cutting head, a cutter extending from the cutting head, and a robot. The cutting head is connected to the robot wherein the robot moves the cutting head and cutter so that the cutter penetrates the cover over the multi-well sample plate providing access to the individual sample well. When the cutting head is moved downward the foil is pierced by the cutter that splits, opens, and folds the foil inward toward the well. The well is then open for sample aspiration but has been protected from cross contamination.

  14. Mining landfills for recyclables

    SciTech Connect

    Spencer, R.

    1991-02-01

    The New York State Energy Research and Development Authority (NYSERDA) and the Department of Environmental Conservation (DEC) began a landfill reclamation experiment in Edinburgh, NY, a rural community in the Adirondack Park. According to NYSERDA's Fact Sheet about the project, landfill reclamation is a process of excavating a landfill using conventional surface mining technology to recover metals, glass, plastics and combustibles, soils, and the land resource itself. The recovered site can then be either upgraded into a state-of-the-art landfill, if appropriate, closed or redeveloped for some other suitable purpose. As an energy-related public benefit corporation, NYSERDA is particularly interested in the potential energy value of combustible material reclaimed from landfills. With an energy content of over 11 million BTUs per ton, this translates to the energy equivalent of 275 million barrels of oil.

  15. Operating a fuel cell using landfill gas

    SciTech Connect

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  16. A novel forward osmosis system in landfill leachate treatment for removing polycyclic aromatic hydrocarbons and for direct fertigation.

    PubMed

    Li, Jing; Niu, Aping; Lu, Chun-Jiao; Zhang, Jing-Hui; Junaid, Muhammad; Strauss, Phyllis R; Xiao, Ping; Wang, Xiao; Ren, Yi-Wei; Pei, De-Sheng

    2017-02-01

    Landfill leachate (LL) is harmful to aquatic environment because it contains high concentrations of dissolved organic matter, inorganic components, heavy metals, and other xenobiotics. Thus, the remediation of LL is crucial for environmental conservation. Here, a potential application of the forward osmosis (FO) filtration process with ammonium bicarbonate (NH4HCO3) as a draw solution (DS) was investigated to remediate membrane bioreactor-treated LL (M-LL). After the leachate treatment, the toxicity and removal efficiencies of polycyclic aromatic hydrocarbons (PAHs) were evaluated using zebrafish and cultured human cells. The water recovery rate was improved using the current protocol up to 86.6% and 91.6% by both the pressure retarded osmosis (PRO) mode and the forward osmosis (FO) mode. Water flux increased with the increasing DS concentrations, but solution velocities decreased with the operation time. Toxicity tests revealed that the M-LL treated by NH4HCO3 had no toxic effect on zebrafish and human cells. Moreover, green fluorescent protein (GFP) expression in the transgenic zebrafish Tg(cyp1a:gfp) induced by PAHs was very weak compared to the effects induced by untreated M-LL. Since the diluted DS met local safety requirements of liquid fertilizer, it could be directly applied as the liquid fertilizer for fertigation. In conclusion, this novel FO system using NH4HCO3 as the DS provides a cheap and efficient protocol to effectively remove PAHs and other pollutants in LL, and the diluted DS can be directly applied to crops as a liquid fertilizer, indicating that this technique is effective and eco-friendly for the treatment of different types of LL.

  17. Necessity to adapt land use and land cover classification systems to readily accept radar data

    NASA Technical Reports Server (NTRS)

    Drake, B.

    1977-01-01

    A hierarchial, four level, standardized system for classifying land use/land cover primarily from remote-sensor data (USGS system) is described. The USGS system was developed for nonmicrowave imaging sensors such as camera systems and line scanners. The USGS system is not compatible with the land use/land cover classifications at different levels that can be made from radar imagery, and particularly from synthetic-aperture radar (SAR) imagery. The use of radar imagery for classifying land use/land cover at different levels is discussed, and a possible revision of the USGS system to more readily accept land use/land cover classifications from radar imagery is proposed.

  18. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    SciTech Connect

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but

  19. Analysis of diffusion-adsorption equivalency of landfill liner systems for organic contaminants.

    PubMed

    Xie, Haijian; Chen, Yunmin; Ke, Han; Tang, Xiaowu; Chen, Renpeng

    2009-01-01

    The equivalence between multilayered barriers regarding diffusion and adsorption was studied. The bottom boundary of the liner system is defined by assuming concentration continuous and flux continuous conditions of the contaminant between the bottom liner layer and the underlying soil. Five different liner systems were compared in terms of solute breakthrough time. The results of the analysis showed that breakthrough time of the hydrophobic organic compounds for a 2-meter-thick compacted clay liner (CCL) could be 3-4 orders of magnitude is greater than the breakthrough time for a geosynthetic clay liner (GCL) composite liner. The GM/GCL and GM/CCL composite liner systems provide a better diffusion barrier for the hydrophilic organic compounds than that for the hydrophobic compounds due to their different Henry's coefficient. The calculated breakthrough times of the organic contaminants for the Chinese standard liner systems were found to be generally greater than those for the GCL alternatives, for the specific conditions examined. If the distribution coefficient increases to 2.8 for the hydrophobic compounds or 1.0 for the hydrophilic compounds, the thickness of the attenuation layer needed to achieve the same breakthrough time as the standard liner systems can be reduced by a factor of about 1.9-2.4. As far as diffusive and adsorption contaminant transport are concerned, GM or GCL is less effective than CCL.

  20. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill.

    PubMed

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-12

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability.

  1. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    PubMed Central

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  2. Landfill mining: Developing a comprehensive assessment method.

    PubMed

    Hermann, Robert; Wolfsberger, Tanja; Pomberger, Roland; Sarc, Renato

    2016-11-01

    In Austria, the first basic technological and economic examinations of mass-waste landfills with the purpose to recover secondary raw materials have been carried out by the 'LAMIS - Landfill Mining Österreich' pilot project. A main focus of its research, and the subject of this article, is the first conceptual design of a comprehensive assessment method for landfill mining plans, including not only monetary factors (like costs and proceeds) but also non-monetary ones, such as the concerns of adjoining owners or the environmental impact. Detailed reviews of references, the identification of influences and system boundaries to be included in planning landfill mining, several expert workshops and talks with landfill operators have been performed followed by a division of the whole assessment method into preliminary and main assessment. Preliminary assessment is carried out with a questionnaire to rate juridical feasibility, the risk and the expenditure of a landfill mining project. The results of this questionnaire are compiled in a portfolio chart that is used to recommend, or not, further assessment. If a detailed main assessment is recommended, defined economic criteria are rated by net present value calculations, while ecological and socio-economic criteria are examined in a utility analysis and then transferred into a utility-net present value chart. If this chart does not support making a definite statement on the feasibility of the project, the results must be further examined in a cost-effectiveness analysis. Here, the benefit of the particular landfill mining project per capital unit (utility-net present value ratio) is determined to make a final distinct statement on the general benefit of a landfill mining project.

  3. Photovoltaics on Landfills in Puerto Rico

    SciTech Connect

    Salasovich, J.; Mosey, G.

    2011-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the

  4. Demonstration and Verification of a Turbine Power Generation System Utilizing Renewable Fuel: Landfill Gas

    DTIC Science & Technology

    2013-09-01

    demonstrated at Ft. Benning, the LFG is diluted with ambient air and aspirated directly into the turbine’s compressor with minimal pretreatment (see section...2.1). Some alternative fuel sources (e.g., spent solvent vapors) may require additional gas cleaning, cooling, or pretreatment to avoid excessive...in the air plenum. • Ener-Core reviewed whether flame detectors on the startup system duct burners (E401 warmer and combustor) were required to

  5. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    SciTech Connect

    Not Available

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  6. 10 CFR 1304.115 - Systems of records covered by exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Systems of records covered by exemptions. 1304.115 Section 1304.115 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.115 Systems of records covered by exemptions. The Board currently has no exempt systems of records....

  7. 4 CFR 200.15 - Systems of records covered by exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Systems of records covered by exemptions. 200.15 Section 200.15 Accounts RECOVERY ACCOUNTABILITY AND TRANSPARENCY BOARD PRIVACY ACT OF 1974 § 200.15 Systems of records covered by exemptions. The Board currently has no exempt systems of records....

  8. 10 CFR 1304.115 - Systems of records covered by exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Systems of records covered by exemptions. 1304.115 Section 1304.115 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.115 Systems of records covered by exemptions. The Board currently has no exempt systems of records....

  9. 10 CFR 1304.115 - Systems of records covered by exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Systems of records covered by exemptions. 1304.115 Section 1304.115 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.115 Systems of records covered by exemptions. The Board currently has no exempt systems of records....

  10. 10 CFR 1304.115 - Systems of records covered by exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Systems of records covered by exemptions. 1304.115 Section 1304.115 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.115 Systems of records covered by exemptions. The Board currently has no exempt systems of records....

  11. 10 CFR 1304.115 - Systems of records covered by exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Systems of records covered by exemptions. 1304.115 Section 1304.115 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.115 Systems of records covered by exemptions. The Board currently has no exempt systems of records....

  12. A COMPARISON OF MOLECULAR AND CULTURAL METHODOLOGIES FOR ENUMERATING BACTERIA IN LANDFILL LEACHATES

    EPA Science Inventory

    Landfill bioreactor technology has been under investigation in the field for its potential economic and waste treatment benefits over conventional landfill systems. A better understanding of biological influences on the stabilization process is needed for incorporation into the e...

  13. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional

  14. COMMERCIAL-SCALE AEROBIC-ANAEROBIC BIOREACTOR LANDFILL OPERATIONS

    EPA Science Inventory

    A sequential aerobic-anaerobic treatment system has been applied at a commercial scale (3,000 ton per day) municipal solid waste landfill in Kentucky, USA since 2001. In this system, the uppermost layer of landfilled waste is aerated and liquid waste including leachate, surface w...

  15. Lancaster Landfill Solar Facility

    SciTech Connect

    Pacheco, Orlando

    2014-06-12

    The Town of Lancaster constructed a 500KWH Solar Array on our landfill parcel, that using other financial mechanisms in the deregulated Massachusetts Electric Market would allow the Town to obtain free electricity.

  16. Estimation of volatile compounds emission rates from the working face of a large anaerobic landfill in China using a wind tunnel system

    NASA Astrophysics Data System (ADS)

    Liu, Yanjun; Lu, Wenjing; Li, Dong; Guo, Hanwen; Caicedo, Luis; Wang, Chi; Xu, Sai; Wang, Hongtao

    2015-06-01

    Municipal solid waste landfills are one of the major sources of odor complaints. The determination of volatile compounds (VCs) emissions and their rates is a necessary prerequisite to calculate and study VCs dispersion and control. In this study a wind tunnel system has been introduced to investigate the VCs emission rates from the working face of a large anaerobic landfill in China. The VCs in gas samples were characterized by gas-chromatograph-mass-spectrometer. The emission rates of VCs increased linearly with sweeping velocity (0.1 m·s-1 to 0.5 m·s-1), and 0.28 m·s-1 was selected as the recommended practical operation sweeping velocity. The VCs emission rates on the working face at the landfill site were investigated during the course of a day. 31 chemical species divided into six chemical groups were quantified with the following emission rates: oxygenated compounds: 205.73-750.00 μg·m-2·s-1, hydrocarbons: 61.82-220.37 μg·m-2·s-1, aromatics: 15.55-40.11 μg·m-2·s-1, halogenated compounds: 11.71-31.57 μg·m-2·s-1, terpenes: 2.71-18.70 μg·m-2·s-1, and sulfur compounds: 1.29-10.84 μg·m-2·s-1. The highest average emission rates of VCs were found from midnight to dawn (1:00-7:00). These results provide key input parameters to users of VCs dispersion models to calculate buffer distances.

  17. Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills.

    PubMed

    Azadi, Sama; Amiri, Hamid; Rakhshandehroo, G Reza

    2016-09-01

    Waste burial in uncontrolled landfills can cause serious environmental damages and unpleasant consequences. Leachates produced in landfills have the potential to contaminate soil and groundwater resources. Leachate management is one of the major issues with respect to landfills environmental impacts. Improper design of landfills can lead to leachate spread in the environment, and hence, engineered landfills are required to have leachate monitoring programs. The high cost of such programs may be greatly reduced and cost efficiency of the program may be optimized if one can predict leachate contamination level and foresee management and treatment strategies. The aim of this study is to develop two expert systems consisting of Artificial Neural Network (ANN) and Principal Component Analysis-M5P (PCA-M5P) models to predict Chemical Oxygen Demand (COD) load in leachates produced in lab-scale landfills. Measured data from three landfill lysimeters, including rainfall depth, number of days after waste deposition, thickness of top and bottom Compacted Clay Liners (CCLs), and thickness of top cover over the lysimeter, were utilized to develop, train, validate, and test the expert systems and predict the leachate COD load. Statistical analysis of the prediction results showed that both models possess good prediction ability with a slight superiority for ANN over PCA-M5P. Based on test datasets, the mean absolute percentage error for ANN and PCA-M5P models were 4% and 12%, respectively, and the correlation coefficient for both models was greater than 0.98. Developed models may be used as a rough estimate for leachate COD load prediction in primary landfill designs, where the effect of a top and/or bottom liner is disputed.

  18. Evaluation of the Collier County, Florida landfill mining demonstration. Final report

    SciTech Connect

    von Stein, E.; Savage, G.

    1993-09-01

    The report describes the landfill mining process as demonstrated under the U.S. EPA, Risk Reduction Engineering Laboratory's Municipal Waste Innovative Technology Evaluation (MITE) Program by the Collier County (Florida) Solid Waste Management Department. Landfill mining is the recovery of useful resources (e.g., cover soil) from previously landfilled solid wastes. During the two week demonstration 265 MT (292 tons) of excavated material was mechanically processed. The characteristics of the recovered soil fraction were similar to a low-grade MSW compost. State regulators have approved the use of the soil fraction as landfill cover. Based on the demonstration period, the unit cost was $127/MT ($115/ton) of material mined.

  19. Integrated multi-criteria decision making techniques AHP with Geographic Information System for Modelling of suitable Landfill location: a case study in Keraniganj of Dhaka city, Bangladesh.

    NASA Astrophysics Data System (ADS)

    Iqbal, M.

    2015-12-01

    This study is approaches a GIS based multi-criteria decision making technique to select potential land fill in Keraniganj of Dhaka city in Bangladesh. Site selection of landfill for Municipal solid waste is an important concern for the urban government in whole world. Dhaka city is highly dense populated city in Bangladesh and municipal solid waste generation rate is increase rapidly day by day. These large amount of generated municipal waste needs appropriate landfill considering environmental, geological, social and technical aspect of the region. The traditional process of site selection process is much difficult, time consuming and costly and needs to replace by a new approaches. An integration of Geographical Information System (GIS) and Multi-criteria Evaluation (MCE) method is best combination to solve complex decision and used to select suitable site. Analytical Hierarchy process (AHP) is world widely most popular decision making MCE technique. In this study AHP used as a multi-criteria decision making to compare five suitability attributes with each other and evaluate weight according to attributes potentiality. Various type raster map layer created using GIS tool for this study. Five suitability raster was assigned with the AHP calculated weight value. A combined weighted spatial layer obtained name as suitability map which is overlapped with a restriction raster map, as result a final suitable map was obtained. The result shows that 12.2% of the area is suitable for constructing landfill site where 4.9% is very high suitable, 2.6% is moderate suitable and 4.7% is low suitable. The final site is constructed after detail field investigation, other technical investigation, land ownership status and public acceptancy. Suitable site selection for non-hazardous landfill is not easy and its needs to consider many environmental factor at time. GIS tool combining with many decision making tool such as multi-criteria evaluation can solve this problem. A combining

  20. A localized ELF magnetic field exposure system for microscope cover-slips.

    PubMed

    Wang, Paul K C

    2014-07-01

    In extremely low frequency (ELF) magnetic field exposure systems for the inverted microscope stage where the cells grown on the entire microscope cover-slip are exposed to the magnetic field, the effects of variations in cell characteristics from one cover-slip to another on the experimental data cannot be readily identified. To overcome this drawback, a localized ELF magnetic field exposure system for cells grown on cover-slips was designed. The basic idea is to expose only a marked portion of the cover-slip to the magnetic field so that the effect of the ELF magnetic field on the cells grown on the same cover-slip can be observed under a microscope. A prototype system was built and tested. Experimental test results pertaining to the prototype system performance validate the proposed design approach. The paper concludes with a discussion of alternative approaches to the design of localized ELF magnetic field exposure systems.

  1. Procedures to cover Spillage of Classified Information Onto Unclassified Systems

    EPA Pesticide Factsheets

    The purpose of this is to implement the security control requirements and outline actions required when responding to electronic spillage of classified national security information (classified information) onto unclassified information systems or devices.

  2. The new Waste Law: Challenging opportunity for future landfill operation in Indonesia.

    PubMed

    Meidiana, Christia; Gamse, Thomas

    2011-01-01

    The Waste Law No. 18/2008 Article 22 and 44 require the local governments to run environmentally sound landfill. Due to the widespread poor quality of waste management in Indonesia, this study aimed to identify the current situation by evaluating three selected landfills based on the ideal conditions of landfill practices, which are used to appraise the capability of local governments to adapt to the law. The results indicated that the local governments have problems of insufficient budget, inadequate equipment, uncollected waste and unplanned future landfill locations. All of the selected landfills were partially controlled landfills with open dumping practices predominating. In such inferior conditions the implementation of sanitary landfill is not necessarily appropriate. The controlled landfill is a more appropriate solution as it offers lower investment and operational costs, makes the selection of a new landfill site unnecessary and can operate with a minimum standard of infrastructure and equipment. The sustainability of future landfill capacity can be maintained by utilizing the old landfill as a profit-oriented landfill by implementing a landfill gas management or a clean development mechanism project. A collection fee system using the pay-as-you-throw principle could increase the waste income thereby financing municipal solid waste management.

  3. TEST RESULTS FOR FUEL-CELL OPERATION ON LANDFILL GAS

    EPA Science Inventory

    Test results from a demonstration of fuel-cell (FC) energy recovery and control of landfill gas emissions are presented. The project addressed two major issues: (i) the design, construction, and testing of a landfill-gas cleanup system; and (ii) a field test of a commercial phos...

  4. DEVELOPMENT OF AN EMPIRICAL MODEL OF METHANE EMISSIONS FROM LANDFILLS

    EPA Science Inventory

    The report gives results of a field study of 21 U.S. landfills with gas recovery systems, to gather information that can be used to develop an empirical model of methane (CH4) emissions. Site-specific information includes average CH4 recovery rate, landfill size, tons of refuse (...

  5. Numerical simulation of landfill gas pressure distribution in landfills.

    PubMed

    Xi, Yonghui; Xiong, Hao

    2013-11-01

    Landfill gas emissions are recognized as one of the three major concerns in municipal solid waste landfills. There are many factors that affect the generation of landfill gas when the landfill is capped. In this article, a model has been developed based on the theory of porous media flow. The model could predict the pressure distribution of landfill gas in landfill, coupling the effect of landfill settlement. According to the simulation analysis of landfill, it was found that: (a) the landfill gas pressure would reach a peak after 1.5 years, then begin to decline, and the rate of decay would slow down after 10 years; (b) the influence radius of the gas wells is limited; (c) the peak value of landfill gas pressure is larger, it appears later and the rate of decay is slower when the landfill settlement is considered in the model; (d) the calculation of excess gas pressure in landfill under different negative pressures of the extraction well is compared between this model and another model, and the results show that the relative pressure distribution form and range are almost the same.

  6. Observations on the methane oxidation capacity of landfill soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field data and two independent models indicate that landfill cover methane (CH4) oxidation should not be considered as a constant 10% or any other single value. Percent oxidation is a decreasing exponential function of the total methane flux rate into the cover and is also dependent on climate and c...

  7. A Centralized Regional Database for Winter Cover Crops in Annual Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops have the potential to reduce erosion, minimize losses of nitrogen and phosphorus, and increase soil carbon in annual cropping systems in the Midwest. Public support, however, for incentives to farmers to adopt cover crops is minimal. Therefore, development of location-specific rec...

  8. The effects of combined cover crop termination and planting in a cotton no-till system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One method to save resources while positively impacting the environment is combining agricultural field operations. In no-till systems, cover crop termination and cash crop planting can be performed simultaneously utilizing a tractor as a single power source. A no-till field experiment merging cover...

  9. Grazing winter rye cover crop in a cotton no-till system: yield and economics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crop adoption in conservation management systems continues to be limited in the US but could be encouraged if establishment costs could be offset. A 4-yr field experiment was conducted near Watkinsville, Georgia in which a rye (Secale cereale L.) cover crop was either grazed by catt...

  10. Cover crop impact on weed dynamics in an organic dry bean system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops have the potential to enhance crop rotations by increasing diversity and enriching agroecosystems. Weed suppression, nutrient provisoning, and enhancements to soil biota and structure are benefits of cover crops in cropping systems, including organic dry bean production. The late spring ...

  11. Utilizing cover crop mulches to reduce tillage in organic systems in the southeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic sytems in the southeast offer unique challenges and solutions due to regional soil and climate characterized by highly weather soil types, high precipitation, and the capacity to grow cover crops in the winter. Recently high-residue cover crops and conservation tillage systems have increased...

  12. Utilizing Cover Crop Mulches to Reduce TIllage in Organic Systems in the Southeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crop roller-crimper trials have been conducted across the southeastern U.S. during the past decade. Regional climatic conditions make the system particularly attractive but also pose their own challenges. Winter annual cover crops productivity can exceed 8 Mg ha-1 (dry weight) for rye (Secale ...

  13. Managing cover crops in no-till organic systems using rolling technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years use of cover crops in no-till organic production systems without incorporating them into the soil has been steadily increasing. This increase is associated with important benefits from cover crops left on the soil surface which improve soil properties and enhance main crop growth. Ro...

  14. Baghdad Municipal Solid Waste Landfill

    DTIC Science & Technology

    2006-10-19

    SOLID WASTE LANDFILL SIGIR PA... Solid Waste Landfill 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...Municipal Solid Waste Landfill , Baghdad, Iraq (Report Number SIGIR-PA-06-067) We are providing this project assessment report for your information

  15. The influence of atmospheric pressure on landfill methane emissions.

    PubMed

    Czepiel, P M; Shorter, J H; Mosher, B; Allwine, E; McManus, J B; Harriss, R C; Kolb, C E; Lamb, B K

    2003-01-01

    Landfills are the largest source of anthropogenic methane (CH4) emissions to the atmosphere in the United States. However, few measurements of whole landfill CH4 emissions have been reported. Here, we present the results of a multi-season study of whole landfill CH4 emissions using atmospheric tracer methods at the Nashua, New Hampshire Municipal landfill in the northeastern United States. The measurement data include 12 individual emission tests, each test consisting of 5-8 plume measurements. Measured emissions were negatively correlated with surface atmospheric pressure and ranged from 7.3 to 26.5 m3 CH4 min(-1). A simple regression model of our results was used to calculate an annual emission rate of 8.4 x 10(6) m3 CH4 year(-1). These data, along with CH4 oxidation estimates based on emitted landfill gas isotopic characteristics and gas collection data, were used to estimate annual CH4 generation at this landfill. A reported gas collection rate of 7.1 x 10(6) m3 CH4 year(-1) and an estimated annual rate of CH4 oxidation by cover soils of 1.2 x 10(6) m3 CH4 year(-1) resulted in a calculated annual CH4 generation rate of 16.7 x 10(6) m3 CH4 year(-1). These results underscore the necessity of understanding a landfill's dynamic environment before assessing long-term emissions potential.

  16. PROOF OF CONCEPT TEST OF A UNIQUE GASEOUS PERFLUROCARBON TRACER SYSTEM FOR VERIFICATION AND LONG TERM MONITORING OF CAPS AND COVER SYSTEMS CONDUCTED AT THE SAVANNAH RIVER SITE BENTONITE MAT TEST FACILITY.

    SciTech Connect

    HEISER,J.; SULLIVAN,T.; SERRATO,M.

    2002-02-24

    be used as a non-invasive method (if injection ports are emplaced prior to cover emplacement) on new covers or a minimally invasive method on existing covers. PFT verification will be useful at all buried waste sites using a cover system (e.g., treated or untreated chemical waste landfills) including DOE, commercial, and private sector sites. This paper discusses the initial field trial of the PFT cover monitoring system performed at the Savannah River Site (SRS) in FY01. The experiments provided a successful proof-of-principle test of the PFT technology in monitoring caps and covers. An injection and sampling array was installed in the Bentomat test cap at the SRS Caps Test Facility. This system contained 6 feet of sandy soil beneath a 1/2 inch geosynthetic clay liner covered by an HDPE liner which was covered by 2 feet of clayey top soil. PFTs were injected into the sandy soil though a pre-existing system of access pipes below the cap and soil gas samples were taken on top of the cap. Mid-way into the injection period a series of 1 1/2 inch holes were punched into the cap (through the geomembrane) to provide a positive breach in the cap. Data will be presented that shows the initial cap was fairly tight and leak free and that the artificially induced leaks were detectable within two hours of occurrence.

  17. Assessment of Performance for Alternative Cover Systems on a Waste Rock Storage Area

    NASA Astrophysics Data System (ADS)

    Argunhan, C.; Yazicigil, H.

    2015-12-01

    A cover is usually applied to the top of the mining wastes to prevent exposure of sulphide minerals in the waste to water and oxygen ingress in order to mitigate the unwanted consequences such as acid rock drainage. Hence, the selection and design of the appropriate cover system by considering the climatic conditions, local unsaturated and saturated properties and the availability of the cover materials become an important issue. This study aims to investigate the performance of various cover systems and designs for the North Waste Rock Storage Area in Kışladağ Gold Mine located in Uşak in Western Turkey. SEEP/W and VADOSE/W softwares are used to model the flow in unsaturated and saturated zones and to assess the performance of various cover systems. The soil water characteristics and parameters used in the model for saturated and unsaturated conditions were taken from field tests and literature. Accuracy of input data is checked during calibration for steady state conditions with SEEP/W. Then, bedrock, waste rock and cover alternatives are modeled under transient conditions for 20 years using daily climatic data. The effectiveness of the various cover systems for minimizing the ingress of water and air that cause acid rock drainage is evaluated and recommendations are made so that the impacts to groundwater from the waste rock storage areas during closure period are minimized.

  18. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    PubMed Central

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3—N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems. PMID:26600462

  19. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    PubMed

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row

  20. Comparison of models for predicting landfill methane recovery. Final report

    SciTech Connect

    Vogt, W.G.; Augenstein, D.

    1997-03-01

    Landfill methane models are tools used to project methane generation over time from a mass of landfilled waste. These models are used for sizing landfill gas (LFG) collection systems, evaluations and projections of LFG energy uses, and regulatory purposes. The objective of this project was to select various landfill methane models and to provide a comparison of model outputs to actual long-term gas recovery data from a number of well managed and suitable landfills. Another objective was to use these data to develop better estimates of confidence limits that can be assigned to model projections. This project assessed trial model forms against field data from available landfills where methane extraction was maximized, waste filling history was well-documented, and other pertinent site information was of superior quality. Data were obtained from 18 US landfills. Four landfill methane models were compared: a zero-order, a simple first order, a modified first order, and a multi-phase first order model. Models were adjusted for best fit to field data to yield parameter combinations based on the minimized residual errors between predicted and experienced methane recovery. The models were optimized in this way using two data treatments: absolute value of the differences (arithmetic error minimization) and absolute value of the natural log of the ratios (logarithmic error minimization).

  1. LEACHATE CLOGGING ASSESSMENT OF GEOTEXTILE AND SOIL LANDFILL FILTERS

    EPA Science Inventory

    The liquids management strategy for any municipal or hazardous waste landfill requires a knowledgeable design strategy for the leachate collection system located at the base of the waste mass. Such leachate collection systems generally consist of sumps, perforated pipes, drainag...

  2. Energy potential of modern landfills

    SciTech Connect

    Bogner, J.E.

    1990-01-01

    Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable energy resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable energy resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.

  3. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE.

    PubMed

    Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  4. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE

    SciTech Connect

    Kirkeby, Janus T.; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H.

    2007-07-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  5. Environmental risks and problems of the optimal management of an oil shale semi-coke and ash landfill in Kohtla-Järve, Estonia.

    PubMed

    Vallner, Leo; Gavrilova, Olga; Vilu, Raivo

    2015-08-15

    The main wastes of the Estonian shale oil industry - oil shale semi-coke and ashes - are deposited in landfills. The Kohtla-Järve oil shale semi-coke and ash landfill, which is likely the largest of its kind in the World, was started in 1938. The environmental risks connected with the landfill were assessed and prioritized. The most significant hazard to human health is emission of harmful landfill gases and the water contamination in the local river network is harmful for aqueous organisms. The spatial expansion of subsurface contamination predicted by the groundwater transport model completed is practically insignificant from the viewpoint of health services. The landfill's leachates must be captured and purified, and the closed part of the landfill should be covered by greenery. The partial landfill capping recently executed is useless. The EU Landfill Directive requirements imposed on the hydraulic resistance of geological barriers cannot prevent the leakage of contaminants from a landfill.

  6. [Nitrous oxide emissions from municipal solid waste landfills and its measuring methodology: a review].

    PubMed

    Jia, Ming-Sheng; Wang, Xiao-Jun; Chen, Shao-Hua

    2014-06-01

    Nitrous oxide (N2O) is one of three major greenhouse gases and the dominant ozone-depleting substance. Landfilling is the major approach for the treatment and disposal of municipal solid waste (MSW), while MSW landfills can be an important anthropogenic source for N2O emissions. Measurements at lab-scale and full-scale landfills have demonstrated that N2O can be emitted in substantial amounts in MSW landfills; however, a large variation in reported emission values exists. Currently, the mechanisms of N2O production and emission in landfills and its contribution to global warming are still lack of sufficient studies. Meanwhile, obtaining reliable N2O fluxes data in landfills remains a question with existing in-situ measurement techniques. This paper summarized relevant literature data on this issue and analyzed the potential production and emission mechanisms of N2O in traditional anaerobic sanitary landfill by dividing it into the MSW buried and the cover soil. The corresponding mechanisms in nitrogen removal bioreactor landfills were analyzed. Finally, the applicability of existing in-situ approaches measuring N2O fluxes in landfills, such as chamber and micrometeorological methods, was discussed and areas in which further research concerning N2O emissions in landfills was urgently required were proposed as well.

  7. USING PERFLUOROCARBON TRACERS FOR VERIFICATION OF CAP AND COVER SYSTEMS PERFORMANCE.

    SciTech Connect

    HEISER,J.; SULLIVAN,T.

    2001-11-01

    The Department of Energy (DOE) Environmental Management (EM) office has committed itself to an accelerated cleanup of its national facilities. The goal is to have much of the DOE legacy waste sites remediated by 2006. This includes closure of several sites (e.g., Rocky Flats and Fernald). With the increased focus on accelerated cleanup, there has been considerable concern about long-term stewardship issues in general, and verification and long-term monitoring (LTM) of caps and covers, in particular. Cap and cover systems (covers) are vital remedial options that will be extensively used in meeting these 2006 cleanup goals. Every buried waste site within the DOE complex will require some form of cover system. These covers are expected to last from 100 to 1000 years or more. The stakeholders can be expected to focus on system durability and sustained performance. DOE EM has set up a national committee of experts to develop a long-term capping (LTC) guidance document. Covers are subject to subsidence, erosion, desiccation, animal intrusion, plant root infiltration, etc., all of which will affect the overall performance of the cover. Very little is available in terms of long-term monitoring other than downstream groundwater or surface water monitoring. By its very nature, this can only indicate that failure of the cover system has already occurred and contaminants have been transported away from the site. This is unacceptable. Methods that indicate early cover failure (prior to contaminant release) or predict approaching cover failure are needed. The LTC committee has identified predictive monitoring technologies as a high priority need for DOE, both for new covers as well as existing covers. The same committee identified a Brookhaven National Laboratory (BNL) technology as one approach that may be capable of meeting the requirements for LTM. The Environmental Research and Technology Division (ERTD) at BNL developed a novel methodology for verifying and monitoring

  8. Mathematical modelling of landfill gas migration in MSW sanitary landfills.

    PubMed

    Martín, S; Marañón, E; Sastre, H

    2001-10-01

    The laws that govern the displacement of landfill gas in a sanitary landfill are analysed. Subsequently, a 2-D finite difference flow model of a fluid in a steady state in a porous medium with infinite sources of landfill gas is proposed. The fact that landfill gas is continuously generated throughout the entire mass of the landfill differentiates this model from others extensively described in the literature and used in a variety of different applications, such as oil recovery, groundwater flow, etc. Preliminary results are then presented of the application of the model. Finally, the results obtained employing data from the literature and experimental assays carried out at the La Zoreda sanitary landfill (Asturias, Spain) are discussed and future lines of research are proposed.

  9. Analysis of the contaminants released from municipal solid waste landfill site: A case study.

    PubMed

    Samadder, S R; Prabhakar, R; Khan, D; Kishan, D; Chauhan, M S

    2017-02-15

    Release and transport of leachate from municipal solid waste landfills pose a potential hazard to both surrounding ecosystems and human populations. In the present study, soil, groundwater, and surface water samples were collected from the periphery of a municipal solid waste landfill (located at Ranital of Jabalpur, Madhya Pradesh, India) for laboratory analysis to understand the release of contaminants. The landfill does not receive any solid wastes for dumping now as the same is under a landfill closure plan. Groundwater and soil samples were collected from the bore holes of 15m deep drilled along the periphery of the landfill and the surface water samples were collected from the existing surface water courses near the landfill. The landfill had neither any bottom liner nor any leachate collection and treatment system. Thus the leachate generated from the landfills finds paths into the groundwater and surrounding surface water courses. Concentrations of various physico-chemical parameters including some toxic metals (in collected groundwater, soil, and surface water samples) and microbiological parameters (in surface water samples) were determined. The analyzed data were integrated into ArcGIS environment and the spatial distribution of the metals and other physic- chemical parameter across the landfill was extrapolated to observe the distribution. The statistical analysis and spatial variations indicated the leaching of metals from the landfill to the groundwater aquifer system. The study will help the readers and the municipal engineers to understand the release of contaminants from landfills for better management of municipal solid wastes.

  10. System for reducing heat losses from indoor swimming pools by use of automatic covers. Report No. 3

    SciTech Connect

    Not Available

    1994-09-30

    This progress report covers the period July 1, 1994 through September 30, 1994, and summarizes continuing work on developing deloyable covers for indoor swimming pools. This work includes design and development of motor controllers to deploy and roll up pool covers, reels, cover material of polyethylene and foam filled laminates, and plans for field deployment of a system, where energy savings can be monitored.

  11. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, Prabhakar; George, Raymond A.

    1999-01-01

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

  12. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, P.; George, R.A.

    1999-07-27

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

  13. Assessment of a reclamation cover system for phosphogypsum stacks in Central Alberta, Canada.

    PubMed

    Hallin, Ingrid L; Naeth, M Anne; Chanasyk, David S; Nichol, Connie K

    2010-01-01

    Phosphogypsum (PG), a byproduct of the phosphate fertilizer industry, was produced and stockpiled at the Agrium Fort Saskatchewan facility from 1965 to 1991. Upon decommissioning, the outer slopes of the PG stacks were reclaimed by applying 15 cm of topsoil and planting a non-native seed mix. Physical, chemical, and hydrologic evaluations of the cover system confirmed that plants were successfully growing in various soil capping depths and were often rooting more than 200 mm into the PG. Percolation past the substrate into PG during a typical storm event was low (< 10 mm), and runoff from the stacks was negligible. Runoff quality met most guidelines, but some parameters, including fluoride, were up to 18 times higher than provincial or federal guidelines for soil and water quality. However, the cover system, when applied appropriately, does meet basic reclamation objectives. The exceedances are found in areas where the cover system has been compromised by erosion or mixing or in areas where the cover system has not been fully applied, such as roads or the inner basin. In areas where the cover system has been applied successfully, basic reclamation requirements are met.

  14. Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles.

    PubMed

    de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson

    2015-04-01

    The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness.

  15. Feasibility study for utilization of landfill gas at the Royalton Road Landfill, Broadview Heights, Ohio. Final report

    SciTech Connect

    1983-09-01

    The technical viability of landfill gas recovery has been previously demonstrated at numerous sites. However, the economics of a full scale utilization system are dependent on proper market conditions, appropriate technologies, landfill gas quantity and quality, and public/purchaser acceptance. The specific objectives of this feasibility study were to determine: The available markets which might purchase landfill gas or landfill gas derived energy products; An extraction system concept design and to perform an on-site pumping test program; The landfill gas utilization technologies most appropriate for the site; Any adverse environmental, health, safety, or socioeconomic impacts associated with the various proposed technologies; The optimum project economics, based on markets and processes examined. Findings and recommendations were presented which review the feasibility of a landfill gas utilization facility on the Royalton Road Landfill. The three identified utilization alternatives are indeed technically feasible. However, current market considerations indicate that installation of a full scale system is not economically advisable at this time. This final report encompasses work performed by SCS Engineers from late 1980 to the present. Monitoring data from several extraction and monitoring wells is presented, including pumping rates and gas quality and quantity analysis. The Market Analysis Data Form, local climatological data, and barometric pressure data are included in the appendix section. 33 figures, 25 tables.

  16. Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) Global Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; Scharfen, Greg R.

    2000-01-01

    Following the 1999 launch of the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), the capability exists to produce global snow-cover maps on a daily basis at 500-m resolution. Eight-day composite snow-cover maps will also be available. MODIS snow-cover products are produced at Goddard Space Flight Center and archived and distributed by the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. The products are available in both orbital and gridded formats. An online search and order tool and user-services staff will be available at NSIDC to assist users with the snow products. The snow maps are available at a spatial resolution of 500 m, and 1/4 degree x 1/4 degree spatial resolution, and provide information on sub-pixel (fractional) snow cover. Pre-launch validation work has shown that the MODIS snow-mapping algorithms perform best under conditions of continuous snow cover in low vegetation areas, but can also map snow cover in dense forests. Post-launch validation activities will be performed using field and aircraft measurements from a February 2000 validation mission, as well as from existing satellite-derived snow-cover maps from NOAA and Landsat-7 Enhanced Thematic Mapper Plus (ETM+).

  17. ETV REPORT & STATEMENT: EVALUATION OF THE KCH SERVICES, INC. AUTOMATED COVERED TANK SYSTEM FOR ENERGY CONSERVATION

    EPA Science Inventory

    KCH Services, Inc. manufacturers a commercial-ready energy conserving automatic covered tank system for use in the metal finishing industry. The ACTSEC technology is a system designed to provide an efficient removal of air contaminants from the workplace at a reasonable cost and ...

  18. Effects of cover cropping on soil and rhizosphere microbial community structure in tomato production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black polyethylene film is frequently used in vegetable farming systems to promote rapid warming of the soil in spring, conserve soil moisture, and suppress weeds. Alternative systems have been developed using cover cropping with legumes to provide a weed-suppressive mulch while also fixing nitrogen...

  19. Tree cover bistability in the MPI Earth system model due to fire-vegetation feedback

    NASA Astrophysics Data System (ADS)

    Lasslop, Gitta; Brovkin, Victor; Kloster, Silvia; Reick, Christian

    2015-04-01

    The global distribution of tree cover is mainly limited by precipitation and temperature. Within tropical ecosystems different tree cover values have been observed in regions with similar climate. Satellite data even revealed a lack of ecosystems with tree coverage around 60% and dominant tree covers of 20% and 80%. Conceptual models have been used to explain this tree cover distribution and base it on a bistability in tree cover caused by fire-vegetation interactions or competition between trees and grasses. Some ecological models also show this property of multiple stable tree covers, but it remains unclear which mechanism is the cause for this behaviour. Vegetation models used in climate simulations usually use simple approaches and were criticised to neglect such ecological theories and misrepresent tropical tree cover distribution and dynamics. Here we show that including the process based fire model SPITFIRE generated a bistability in tree cover in the land surface model JSBACH. Previous model versions showed only one stable tree cover state. Using a conceptual model we can show that a bistability can occur due to a feedback between grasses and fire. Grasses and trees are represented in the model based on plant functional types. With respect to fire the main difference between grasses and trees is the fuel characteristics. Grass fuels are smaller in size, and have a higher surface area to volume ratio. These grass fuels dry faster increasing their flammability which leads to a higher fire rate of spread. Trees are characterized by coarse fuels, which are less likely to ignite and rather suppress fire. Therefore a higher fraction of grasses promotes fire, fire kills trees and following a fire, grasses establish faster. This feedback can stabilize ecosystems with low tree cover in a low tree cover state and systems with high tree cover in a high tree cover state. In previous model versions this feedback was absent. Based on the new JSBACH model driven with

  20. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    NASA Astrophysics Data System (ADS)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  1. Claymax landfill cap

    SciTech Connect

    Selby, C.L.

    1989-12-15

    A commercial product called Claymax'' consisting of one-quarter inch of bentonite clay between two geotextile sheets is a candidate landfill cap to replace kaolin caps. A permeability apparatus incorporating a 20 foot water head was operated for 56 days to estimate a Claymax permeability of 2 {times} 10{sup {minus}9} cm/sec compared with 10{sup {minus}8}, the EPA max for a burial site cap. 1 fig.

  2. Making Safe Surgery Affordable: Design of a Surgical Drill Cover System for Scale.

    PubMed

    Buchan, Lawrence L; Black, Marianne S; Cancilla, Michael A; Huisman, Elise S; Kooyman, Jeremy J R; Nelson, Scott C; OʼHara, Nathan N; OʼBrien, Peter J; Blachut, Piotr A

    2015-10-01

    Many surgeons in low-resource settings do not have access to safe, affordable, or reliable surgical drilling tools. Surgeons often resort to nonsterile hardware drills because they are affordable, robust, and efficient, but they are impossible to sterilize using steam. A promising alternative is to use a Drill Cover system (a sterilizable fabric bag plus surgical chuck adapter) so that a nonsterile hardware drill can be used safely for surgical bone drilling. Our objective was to design a safe, effective, affordable Drill Cover system for scale in low-resource settings. We designed our device based on feedback from users at Mulago Hospital (Kampala, Uganda) and focused on 3 main aspects. First, the design included a sealed barrier between the surgical field and hardware drill that withstands pressurized fluid. Second, the selected hardware drill had a maximum speed of 1050 rpm to match common surgical drills and reduce risk of necrosis. Third, the fabric cover was optimized for ease of assembly while maintaining a sterile technique. Furthermore, with the Drill Cover approach, multiple Drill Covers can be provided with a single battery-powered drill in a "kit," so that the drill can be used in back-to-back surgeries without requiring immediate sterilization. The Drill Cover design presented here provides a proof-of-concept for a product that can be commercialized, produced at scale, and used in low-resource settings globally to improve access to safe surgery.

  3. Site Specific Landfill CH4 Emissions: Shortcomings of National GHG Inventory Guidelines and a New Process-Based Approach Linked to Climate and Soil Microclimate

    NASA Astrophysics Data System (ADS)

    Bogner, J. E.; Spokas, K.; Corcoran, M.

    2012-12-01

    Current (2006) IPCC national GHG inventory guidelines for landfill CH4, which estimate CH4 generation from the mass of waste in place, have high uncertainties, cannot be reliably related to measured emissions at specific sites, and lack comprehensive field validation. Moreover, measured landfill CH4 emissions vary over a wide range from >1000 g/m2/d down to negative values (uptake of atmospheric CH4). Literature over the last decade has emphasized that the major factors controlling emissions in these highly managed soil systems are gaseous transport rates as affected by the thickness and physical properties of cover soils, methanotrophic CH4 oxidation in cover materials as a function of seasonal soil microclimate. and the presence or absence of engineered gas extraction. Thus we developed and field validated a new site specific annual inventory model that incorporates specific soil profile properties and soil microclimate modeling coupled to 0.5° scale global climatic models. Based on 1D diffusion, CALMIM (California Landfill Methane Inventory Model) is a freely available JAVA tool which models a typical annual cycle for CH4 emissions from site specific daily, intermediate, and final landfill cover designs. This new approach, which is compliant with IPCC Tier III criteria, was originally field validated at two California sites (Monterey County; Los Angeles County), with limited field validation at three additional California sites. In addition to regional defaults for inventory purposes, CALMIM permits user selectable parameters and boundary conditions for more rigorous site specific applications where detailed CH4 emissions, meteorological, and soil microclimate data exist. We report here on improvements and expanded international field validation for CALMIM 5.2 in collaboration with research groups in the U.S., Europe, Africa, Asia, and Australia.odeled and measured annual cycle of landfill CH4 emissions for Austrian site. Cover consists of 50 cm sand & gravel

  4. Mathematical numeric models for assessing the groundwater pollution from Sanitary landfills

    NASA Astrophysics Data System (ADS)

    Petrov, Vasil; Stoyanov, Nikolay; Sotinev, Petar

    2014-05-01

    Landfills are among the most common sources of pollution in ground water. Their widespread deployment, prolonged usage and the serious damage they cause to all of the elements of the environment are the reasons, which make the study of the problem particularly relevant. Most dangerous of all are the open dumps used until the middle of the twentieth century, from which large amounts of liquid emissions flowed freely (landfill infiltrate). In recent decades, the problem is solved by the construction of sanitary landfills in which they bury waste or solid residue from waste utilization plants. The bottom and the sides of the sanitary landfills are covered with a protective waterproof screen made of clay and polyethylene and the landfill infiltrate is led outside through a drainage system. This method of disposal severely limits any leakage of gas and liquid emissions into the environment and virtually eliminates the possibility of contamination. The main topic in the conducted hydrogeological study was a quantitative assessment of groundwater pollution and the environmental effects of re-landfilling of an old open dump into a new sanitary landfill, following the example of the municipal landfill of Asenovgrad, Bulgaria. The study includes: 1.A set of drilling, geophysical and hydrogeological field and laboratory studies on: -the definition and designation of the spatial limits of the main hydrogeological units; -identification of filtration parameters and migration characteristics of the main hydrogeological units; -clarifying the conditions for the sustentation and drainage of groundwater; -determininng the structure of the filtration field; -identifying and assessing the size and the extent of groundwater contamination from the old open dump . 2.Mathematical numeric models of migration and entry conditions of contaminants below the bottom of the landfill unit, with which the natural protection of the geological environment, the protective effect of the engineering

  5. Evaluation of landfill gas decay constant for municipal solid waste landfills operated as bioreactors.

    PubMed

    Tolaymat, Thabet M; Green, Roger B; Hater, Gary R; Barlaz, Morton A; Black, Paul; Bronson, Doug; Powell, Jon

    2010-01-01

    Prediction of the rate of gas production from bioreactor landfills is important for the optimization of energy recovery and for estimating greenhouse gas emissions. To improve the predictability of gas production, landfill gas (LFG) composition and flow rates were monitored for 4 yr from one conventional and two bioreactor landfill cells at the Outer Loop Landfill in Louisville, KY. The ultimate methane yield (L(o)) was estimated from the biochemical methane (CH4) potential of freshly buried refuse and the decay rate constant (k) was estimated from measured CH4 collection. The site-specific L(o) was estimated to be 48.4 m3-CH4 wet Mg(-1). The estimated decay rate in the conventional cell (0.06 yr(-1)) was comparable to the AP-42 default value of 0.04 yr(-1), whereas estimates for the two bioreactor cells were substantially higher (approximately 0.11 yr(-1)). The data document the ability of the bioreactor operation to enhance landfill CH4 generation, although the estimated decay rate is sensitive to the selected L(o). The more rapid decomposition in the bioreactor cells reduces the length of time over which gas will be produced and emphasizes the importance of having a LFG collection system operational once the waste receives added moisture.

  6. The effectiveness of resistivity surveying in cell characterization within a municipal solid waste landfill

    NASA Astrophysics Data System (ADS)

    England, Janette Elizabeth

    Electrical resistivity methods were used to characterize features within the Nacogdoches Landfill in Nacogdoches, Texas. The Geometrics OhmMapper System, a noninvasive capacitively coupled resistivity instrument, was used to collect resistivity data over three landfill cells. Through data processing, 2D images were produced to characterize cell features such as unsaturated versus saturated zones, gas accumulation in void space, low permeability horizons, cell cover system, and contact with cell boundary and bedrock. Information gathered was useful in determining relative rates of compaction with time, evolution of cell characteristics, and the effects different construction regulations have had on cell development. Although successful in surveying shallow subsurface features, depth of investigation was limited to approximately 6 m; therefore lower portions of cells were not imaged. The results provided gain better insight into stability of cell structure. This method of geophysical surveying can be useful in the 30 year post closure monitoring of cells required by the USEPA by offering a relative low cost and time saving method for landfill characterization.

  7. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  8. EPA Facility Registry Service (FRS): LANDFILL

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of non-hazardous waste sites that link to the Landfill dataset. The Landfill dataset provides detailed operating statistics, geographic locations, and facility information for waste processing and disposal operations in the United States, compiled by the Waste Business Journal, Directory of Non-Hazardous Waste Sites (Date Published: November 5th, 2007). FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated sites that link to the Landfill dataset once the Landfill data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs

  9. Colloids in the vicinity of landfills

    NASA Astrophysics Data System (ADS)

    Baumann, T.; Fruhstorfer, P.; Klein, T.; Niessner, R.

    2003-04-01

    Waste disposals without adequate landfill liner system are a source of contaminants and colloids. In order to assess the effects of the presence of colloids on the transport of heavy metal ions, the colloids at three landfill sites were characterized with regard to their chemical and mineralogical composition, their size distribution, and the concentration of heavy metal ions associated to the colloids. It can be shown that the pattern of the colloids inside and outside of the landfill is different in all examined parameters, e.g. inside of the disposal we find organic colloids and salt particles, whereas the groundwater downstream of the disposal contains mainly iron-colloids and carbonatic particles. Therefore a direct transfer of colloids from the landfill to the aquifer seems unlikely. Changes of the hydrochemical (mainly redox) and hydrodynamic conditions contribute to this behaviour. The association of heavy metal ions to colloids shows an interesting pattern: High concentrations are present in solution and associated to smaller (< 10 nm) and larger (> 1 μm) colloids, whereas the colloids in between show only small concentrations. This finding has some impact on the assessment of colloidal transport processes, since it suggests, that the more mobile colloids do not carry high concentrations of heavy metal ions.

  10. Landfill Gas Energy Project Data and Landfill Technical Data

    EPA Pesticide Factsheets

    This page provides data from the LMOP Database for U.S. landfills and LFG energy projects in Excel files, a map of project and candidate landfill counts by state, project profiles for a select group of projects, and information about Project Expo sites.

  11. Potential application of biocover soils to landfills for mitigating toluene emission.

    PubMed

    Su, Yao; Pei, Junshen; Tian, Baohu; Fan, Fengxi; Tang, Mengling; Li, Wei; He, Ruo

    2015-12-15

    Biocover soils have been demonstrated to be a good alternative cover material to mitigate CH4 emission from landfills. To evaluate the potential of biocover soil in mitigating emissions of non-methane volatile organic compounds (NMVOCs) from landfills, simulated cover soil columns with the influx of toluene (chosen as typical of NMVOCs) concentrations of 102-1336 mg m(-3) in the presence or absence of the major landfill gas components (i.e., CH4 and CO2) were conducted in this study. In the two experimental materials (waste biocover soils (WBS) and landfill cover soils (LCS)), higher toluene reduction was observed in WBS with respect to LCS. After the introduction of landfill gas, an increase of microbial diversity and relative abundance of toluene-degrading bacteria and methanotrophs occurred in WBS. To illustrate the role of toluene-degrading activity in mitigating toluene emissions through landfill covers, an analytical model was developed by incorporating the steady-state vapor transport with the first-order kinetics of aerobic biodegradation limited by O2 availability. This study demonstrated that biocover soils have great potential in applying to landfills for mitigating toluene emission to the atmosphere.

  12. Sustainable sanitary landfills for neglected small cities in developing countries: The semi-mechanized trench method from Villanueva, Honduras

    SciTech Connect

    Oakley, Stewart M.; Jimenez, Ramon

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Open dumping is the most common form of waste disposal in neglected small cities. Black-Right-Pointing-Pointer Semi-mechanized landfills can be a sustainable option for small cities. Black-Right-Pointing-Pointer We present the theory of design and operation of semi-mechanized landfills. Black-Right-Pointing-Pointer Villanueva, Honduras has operated its semi-mechanized landfill for 15 years. Black-Right-Pointing-Pointer The cost of operation is US$4.60/ton with a land requirement of 0.2m{sup 2}/person-year. - Abstract: Open dumping is the most common practice for the disposal of urban solid wastes in the least developed regions of Africa, Asia and Latin America. Sanitary landfill design and operation has traditionally focused on large cities, but cities with fewer than 50,000 in population can comprise from 6% to 45% of a given country's total population. These thousands of small cities cannot afford to operate a sanitary landfill in the way it is proposed for large cities, where heavy equipment is used to spread and compact the waste in daily cells, and then to excavate, transport and apply daily cover, and leachate is managed with collection and treatment systems. This paper presents an alternative approach for small cities, known as the semi-mechanized trench method, which was developed in Villanueva, Honduras. In the semi-mechanized trench method a hydraulic excavator is used for 1-3 days to dig a trench that will last at least a month before it is filled with waste. Trucks can easily unload their wastes into the trench, and the wastes compact naturally due to semi-aerobic biodegradation, after which the trenches are refilled and covered. The exposed surface area is minimal since only the top surface of the wastes is exposed, the remainder being covered by the sides and bottom of the trench. The surplus material from trench excavation can be valorized for use as engineering fill onsite or off. The landfill in Villanueva

  13. Groundwater impacts associated with landfill gas migration at municipal solid waste landfill sites

    SciTech Connect

    Clister, W.; Janechek, A.; Hibbs, S.

    1998-07-01

    Many older municipal solid waste (MSW) landfills are unlined and subsequently have become a source of local groundwater contamination. However, the adverse impact on the groundwater quality at such sites is not necessarily limited to that caused by leachate contamination of the underlying aquifer but also may include the effects of landfill gas (LFG) migration. Absorption of certain LFG components, particularly volatile organic compounds (VOCs), may occur at offsite locations when a LFG excursion front migrates into adjacent soils. When LFG management systems are installed at such sites, this problem is often eliminated.

  14. Development of computer simulations for landfill methane recovery

    SciTech Connect

    Massmann, J.W.; Moore, C.A.; Sykes, R.M.

    1981-12-01

    Two- and three-dimensional finite-difference computer programs simulating methane recovery systems in landfills have been developed. These computer programs model multicomponent combined pressure and diffusional flow in porous media. Each program and the processes it models are described in this report. Examples of the capabilities of each program are also presented. The two-dimensional program was used to simulate methane recovery systems in a cylindrically shaped landfill. The effects of various pump locations, geometries, and extraction rates were determined. The three-dimensional program was used to model the Puente Hills landfill, a field test site in southern California. The biochemical and microbiological details of methane generation in landfills are also given. Effects of environmental factors, such as moisture, oxygen, temperature, and nutrients on methane generation are discussed and an analytical representation of the gas generation rate is developed.

  15. Cover crops alter phosphorus soil fractions and organic matter accumulation in a Peruvian cacao agroforestry system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many tropical soils, excessive weathering of primary minerals confounded by intense agricultural production has resulted in the depletion of organic matter and plant available forms of phosphorus (P). Long-term growth of cover crops in tropical agroforestry systems have been shown to influence nu...

  16. Multiple rolling/crimping effects on termination of two summer cover crops in a conservation system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field experiment was initiated in the 2015 growing season at the USDA-NSDL to determine the effectiveness of a prototype two-stage roller/crimper in mechanical termination of two summer cover crops intended for organic systems. The experiment was a randomized complete block design with four replic...

  17. Cover Crop and Liquid Manure Effects on Soil Quality Indicators in a Corn Silage System.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to a lack of surface residue and organic matter inputs, continuous corn (Zea mays L.) silage production is one of the most demanding cropping systems imposed on our soil resources. In this study, our objective was to determine if using cover/companion crops and/or applying low-solids liquid dair...

  18. Changing face of the landfill

    SciTech Connect

    1995-10-01

    Integrated approach at Oregon landfill diverts wood and yard trimmings, while turning methane into power for 1,800 homes. Opened in the 1940`s as an open burn dump, Coffin Butte has evolved over the years into a sophisticated waste management facility incorporating ambitious recovery programs. While some of this change has been driven by regulatory demands, many of Valley Landfill`s innovations have come in response to market opportunities. Valley Landfill`s Processing and Recovery Center (PRC) is located a half mile down the road from the landfill site. Opened in 1990, the facility recycles urban wood waste, yard trimmings and street sweepings. The heart of this operation is a 500 hp horizontal feed, fixed-hammer grinder. Although this machine is typically used only for wood grinding, PRC was able to adapt it to handle both wood and yard trimmings by installing special feed roll assembly to compress green waste passing over the infeed belt. The facility handles approximately 40,000 cubic yards of loose green material and produces 15,000 to 18,000 yards of compost. The finished product is run through a trommel with a 5/8 inch mesh screen. Most of the compost is sold in bulk to area garden centers. A portion is processed through a 3/8 inch shaker screen and sold to a local company for use in bagged soil products. Valley Landfill is a partner in an ambitious project to generate electricity from landfill biogas.

  19. Stabilizing Waste Materials for Landfills

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1977

    1977-01-01

    The test procedures used to evaluate the suitability of landfilled materials of varying stability and to determine the leachate from such materials are reviewed. A process for stabilizing a mixture of sulfur dioxide sludge, fly ash, and bottom ash with lime and other additives for deposition in landfills is detailed. (BT)

  20. Micrometeorological measurements of N2O and CH4 emissions from a municipal solid waste landfill.

    PubMed

    McBain, Matthew C; Warland, Jon S; McBride, Raymond A; Wagner-Riddle, Claudia

    2005-10-01

    Micrometeorological measurements of methane (CH4) and nitrous oxide (N2O) emissions were made at the decommissioned Park Road Landfill in Grimsby, Ontario, Canada between June and August 2002. The influence of precipitation, air temperature, wind speed and barometric pressure on the temporal variability of landfill biogas emissions was assessed. Gas flux measurements were obtained using a micrometeorological mass balance measurement technique [integrated horizontal flux (IHF)] in conjunction with two tunable diode laser trace gas analyser (TDLTGA) systems. This method allows for continuous, non-intrusive measurements of gas flux at high temporal resolution. Mean fluxes of N2O were negligible over the duration of the study (-0.23 to 0.02 microg m(-2) s(-1)). In contrast, mean emissions of CH4 were much greater (80.4 to 450.8 microg m(-2) s(-1)) and varied both spatially and temporally. Spatial variations in CH4 fluxes were observed between grass kill areas (biogas 'hot spots') and the densely grass-covered areas of the landfill. Temporal variations in CH4 fluxes were also observed, due at least in part to barometric pressure, wind speed and precipitation effects.

  1. Development of numerical model for predicting heat generation and temperatures in MSW landfills.

    PubMed

    Hanson, James L; Yeşiller, Nazli; Onnen, Michael T; Liu, Wei-Lien; Oettle, Nicolas K; Marinos, Janelle A

    2013-10-01

    A numerical modeling approach has been developed for predicting temperatures in municipal solid waste landfills. Model formulation and details of boundary conditions are described. Model performance was evaluated using field data from a landfill in Michigan, USA. The numerical approach was based on finite element analysis incorporating transient conductive heat transfer. Heat generation functions representing decomposition of wastes were empirically developed and incorporated to the formulation. Thermal properties of materials were determined using experimental testing, field observations, and data reported in literature. The boundary conditions consisted of seasonal temperature cycles at the ground surface and constant temperatures at the far-field boundary. Heat generation functions were developed sequentially using varying degrees of conceptual complexity in modeling. First a step-function was developed to represent initial (aerobic) and residual (anaerobic) conditions. Second, an exponential growth-decay function was established. Third, the function was scaled for temperature dependency. Finally, an energy-expended function was developed to simulate heat generation with waste age as a function of temperature. Results are presented and compared to field data for the temperature-dependent growth-decay functions. The formulations developed can be used for prediction of temperatures within various components of landfill systems (liner, waste mass, cover, and surrounding subgrade), determination of frost depths, and determination of heat gain due to decomposition of wastes.

  2. Are closed landfills free of CH_{4} emissions? A case study of Arico's landfill, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Barrancos, José; Cook, Jenny; Phillips, Victoria; Asensio-Ramos, María; Melián, Gladys; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    Landfills are authentic chemical and biological reactors that introduce in the environment a wide amount of gas pollutants (CO2, CH4, volatile organic compounds, etc.) and leachates. Even after years of being closed, a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as non-controlled emission. The study of the spatial-temporal distribution of diffuse emissions provides information of how a landfill degassing takes place. The main objective of this study was to estimate the diffuse uncontrolled emission of CH4 into the atmosphere from the closed Arico's landfill (0.3 km2) in Tenerife Island, Spain. To do so, a non-controlled biogenic gas emission survey of nearly 450 sampling sites was carried out during August 2015. Surface gas sampling and surface landfill CO2 efflux measurements were carried out at each sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Landfill gases, CO2 and CH4, were analyzed using a double channel VARIAN 4900 micro-GC. The CH4 efflux was computed combining CO2 efflux and CH4/CO2 ratio in the landfill's surface gas. To quantify the total CH4 emission, CH4 efflux contour map was constructed using sequential Gaussian simulation (sGs) as interpolation method. The total diffuse CH4 emission was estimated in 2.2 t d-1, with CH4 efflux values ranging from 0-922 mg m-2 d-1. This type of studies provides knowledge of how a landfill degasses and serves to public and private entities to establish effective systems for extraction of biogas. This aims not only to achieve higher levels of controlled gas release from landfills resulting in a higher level of energy production but also will contribute to minimize air pollution caused by them.

  3. Passive drainage and biofiltration of landfill gas: results of Australian field trial.

    PubMed

    Dever, Stuart A; Swarbrick, Gareth E; Stuetz, Richard M

    2011-05-01

    A field scale trial was undertaken at a landfill site in Sydney, Australia (2004-2008), to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions from low to moderate gas generation landfill sites. The objective of the trial was to evaluate the effectiveness of a passive landfill gas drainage and biofiltration system at treating landfill gas under field conditions, and to identify and evaluate the factors that affect the behaviour and performance of the system. The trial results showed that passively aerated biofilters operating in a temperate climate can effectively oxidise methane in landfill gas, and demonstrated that maximum methane oxidation efficiencies greater than 90% and average oxidation efficiencies greater than 50% were achieved over the 4 years of operation. The trial results also showed that landfill gas loading was the primary factor that determined the behaviour and performance of the passively aerated biofilters. The landfill gas loading rate was found to control the diffusion of atmospheric oxygen into the biofilter media, limiting the microbial methane oxidation process. The temperature and moisture conditions within the biofilter were found to be affected by local climatic conditions and were also found to affect the behaviour and performance of the biofilter, but to a lesser degree than the landfill gas loading.

  4. Landfill to Learning Facility

    NASA Astrophysics Data System (ADS)

    Venner, L.; Lewicki, S.

    2008-11-01

    Engaging ``K-to-Gray'' audiences (children, families, and older adults) in scientific exploration and discovery is the main goal of the New Jersey Meadowlands Commission (NJMC) Center for Environmental and Scientific Education (CESE) and the William D. McDowell Observatory located in Lyndhurst, NJ and operated by Ramapo College of New Jersey. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED--certified building (certification pending) and William D. McDowell observatory brings hands-on scientific experiences to the ˜25,000 students and ˜15,000 visitors that come to our site from the NY/NJ region each year.

  5. Superfund Record of Decision (EPA Region 3): Coker's Sanitation Service landfills, Kent County, DE. (First remedial action), September 1990. Final report

    SciTech Connect

    Not Available

    1990-09-28

    The Coker's Sanitation Service Landfills site is comprised of two inactive landfills in Kent County, Delaware. Each landfill contains approximately 45,000 cubic yards of latex sludge waste in addition to the contaminated soil/waste. From 1969 to 1977, latex rubber waste sludge was disposed of at Landfill No. 1 into unlined trenches, which were topped off with local soil when nearly filled with sludge. From 1976 to 1980, latex sludge was also disposed of in lined trenches at Landfill No. 2. Excess levels of styrene and ethylbenzene were found in the waste trenches of both landfills and in the leachate collection system of landfill No. 2. The Record of Decision (ROD) addresses contamination in both landfills and in the leachate collection system at Landfill No. 2. The primary contaminants of concern affecting the soil and sludge are VOCs including benzene and metals.

  6. The international geosphere biosphere programme data and information system global land cover data set (DIScover)

    USGS Publications Warehouse

    Loveland, T.R.; Belward, A.S.

    1997-01-01

    The International Geosphere Biosphere Programme Data and Information System (IGBP-DIS), through the mapping expertise of the U.S. Geological Survey and the European Commission's Joint Research Centre, recently guided the completion of a 1-km resolution global land cover data set from advanced very high resolution radiometer (AVHRR) data. The 1-km resolution land cover product, 'DISCover,' was based on monthly normalized difference vegetation index composites from 1992 and 1993. The development of DISCover was coordinated by the IGBP-DIS Land Cover Working Group as part of the IGBP-DIS Focus 1 activity. DISCover is a 17-class land cover data set based on the scientific requirements of IGBP elements. The mapping used unsupervised classification and postclassification refinement using ancillary data. The development of this data set was motivated by the need for global land cover data with higher spatial resolution, improved temporal specificity, and known classification accuracy. The completed DISCover data set will soon be validated to determine the accuracy of the global classification.

  7. Superfund Record of Decision (EPA Region 5): Tri County/Elgin Landfill Site, Elgin, IL. (First remedial action), September 1992. Final report

    SciTech Connect

    Not Available

    1992-09-30

    The 66-acre Tri County Landfill (TCL) site comprises two former landfills the Tri County Landfill and the Elgin Landfill, located near the junction of Kane, Cook and DuPage Counties, Illinois. The two disposal operations overlapped to the point where the two landfills were indistinguishable. Land use in the area is predominantly agricultural. The local residents and businesses use private wells as their drinking water supply. Prior to the 1940's, both landfills were used for gravel mining operations. From 1968 to 1976, the TCL received liquid and industrial waste. State and county inspection reports revealed that open dumping, area filling, and dumping into the abandonded gravel quarry had occurred at the site. In addition, confined dumping, inadequate daily cover, blowing litter, fires, lack of access restrictions, and leachate flows were typical problems reported. In 1981, the landfill was closed with a final cover.

  8. The economic and social aspects of sanitary landfill site selection

    NASA Technical Reports Server (NTRS)

    Graff, W. J.; Rogers, J. R.

    1972-01-01

    The factors involved in the selection of suitable sites for sanitary land fills are discussed. The economic considerations and problems of social acceptance are considered the most important. The subjects discussed are: (1) accessibility of land, (2) availability of cover material, (3) expected capacity of site, (4) cover material and compaction, (5) fire protection, (6) site location with respect to residential and industrial areas, and (7) land usage after landfill completion.

  9. A process-based inventory model for landfill CH4 emissions inclusive of seasonal soil microclimate and CH4 oxidation

    NASA Astrophysics Data System (ADS)

    Spokas, K.; Bogner, J.; Chanton, J.

    2011-12-01

    We have developed and field-validated an annual inventory model for California landfill CH4 emissions that incorporates both site-specific soil properties and soil microclimate modeling coupled to 0.5° scale global climatic models. Based on 1-D diffusion, CALMIM (California Landfill Methane Inventory Model) is a freely available JAVA tool which models a typical annual cycle for CH4 emissions from site-specific daily, intermediate, and final landfill cover designs. Literature over the last decade has emphasized that the major factors controlling emissions in these highly managed soil systems are the presence or absence of engineered gas extraction, gaseous transport rates as affected by the thickness and physical properties of cover soils, and methanotrophic CH4 oxidation in cover materials as a function of seasonal soil microclimate. Moreover, current IPCC national inventory models for landfill CH4 emissions based on theoretical gas generation have high uncertainties and lack comprehensive field validation. This new approach, which is compliant with IPCC "Tier III" criteria, has been field-validated at two California sites (Monterey County; Los Angeles County), with limited field validation at three additional California sites. CALMIM accurately predicts soil temperature and moisture trends with emission predictions within the same order of magnitude as field measurements, indicating an acceptable initial model comparison in the context of published literature on measured CH4 emissions spanning 7 orders of magnitude. In addition to regional defaults for inventory purposes, CALMIM permits user-selectable parameters and boundary conditions for more rigorous site-specific applications where detailed CH4 emissions, meteorological, and soil microclimate data exist.

  10. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    SciTech Connect

    Storey, John Morse; Theiss, Timothy J; Kass, Michael D; FINNEY, Charles E A; Lewis, Samuel; Kaul, Brian C; Besmann, Theodore M; Thomas, John F; Rogers, Hiram; Sepaniak, Michael

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  11. Metal levels in sugar cane (Saccharum spp.) samples from an area under the influence of a municipal landfill and a medical waste treatment system in Brazil.

    PubMed

    Segura-Muñoz, S I; da Silva Oliveira, A; Nikaido, M; Trevilato, T M B; Bocio, A; Takayanagui, A M M; Domingo, J L

    2006-01-01

    In July 2003, duplicated samples of roots, stems and leaves of sugar cane (Saccharum spp.) were collected in 25 points of an area under direct influence of the municipal landfill site (MLS) and medical waste treatment system (MWTS) of Ribeirao Preto, São Paulo, Brazil. Cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), lead (Pb) and zinc (Zn) were determined by atomic absorption spectrophotometry. The following concentrations (mg/kg) were found in roots: Cd, 0.22+/-0.12; Cr, 64.3+/-48.7; Cu, 140.6+/-27.7; Hg, 0.04+/-0.02; Mn, 561.6+/-283.3; Pb, 7.9+/-2.1 and Zn, 177.4+/-64.9. For some metals, these levels are higher than the concentrations previously reported for different plants, reaching, in some cases, values that might be considered toxic for vegetables. Metal levels in stems were 80-90% of those found in roots, while the concentrations detected in leaves were significantly lower than those in roots. The present results suggest that MLS and MWTS activities might have been increasing metal concentrations in edible tissues of sugar cane grown in the area under their influence. Moreover, the traditional agricultural practices in the production of sugar cane could be also another determinant factor to reach the current metal levels. The results of this study indicate that sugar cane is a crop that is able to grow in areas where metals in soils are accumulated.

  12. The role of ERTS in the establishment and of a nationwide land cover information system

    NASA Technical Reports Server (NTRS)

    Abram, P.; Tullos, J.

    1974-01-01

    The economic potential of utilizing an ERTS type satellite in the development, updating, and maintenance of a nation-wide land cover information system in the post-1977 time frame was examined. Several alternative acquisition systems were evaluated for land cover data acquisition, processing, and interpretation costs in order to determine, on a total life cycle cost basis, under which conditions of user demand (i.e., area of coverage, frequency of coverage, timeliness of information, and level of information detail) an ERTS type satellite would be cost effective, and what the annual cost savings benefits would be. It was concluded that a three satellite system with high and low altitude aircraft and ground survey team utilizing automatic interpretation and classification techniques is an economically sound proposal.

  13. Estimation of runoff mitigation by morphologically different cover crop root systems

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Loiskandl, Willibald; Kaul, Hans-Peter; Himmelbauer, Margarita; Wei, Wei; Chen, Liding; Bodner, Gernot

    2016-07-01

    Hydrology is a major driver of biogeochemical processes underlying the distinct productivity of different biomes, including agricultural plantations. Understanding factors governing water fluxes in soil is therefore a key target for hydrological management. Our aim was to investigate changes in soil hydraulic conductivity driven by morphologically different root systems of cover crops and their impact on surface runoff. Root systems of twelve cover crop species were characterized and the corresponding hydraulic conductivity was measured by tension infiltrometry. Relations of root traits to Gardner's hydraulic conductivity function were determined and the impact on surface runoff was estimated using HYDRUS 2D. The species differed in both rooting density and root axes thickness, with legumes distinguished by coarser axes. Soil hydraulic conductivity was changed particularly in the plant row where roots are concentrated. Specific root length and median root radius were the best predictors for hydraulic conductivity changes. For an intensive rainfall simulation scenario up to 17% less rainfall was lost by surface runoff in case of the coarsely rooted legumes Melilotus officinalis and Lathyrus sativus, and the densely rooted Linum usitatissimum. Cover crops with coarse root axes and high rooting density enhance soil hydraulic conductivity and effectively reduce surface runoff. An appropriate functional root description can contribute to targeted cover crop selection for efficient runoff mitigation.

  14. A web-based system for supporting global land cover data production

    NASA Astrophysics Data System (ADS)

    Han, Gang; Chen, Jun; He, Chaoying; Li, Songnian; Wu, Hao; Liao, Anping; Peng, Shu

    2015-05-01

    Global land cover (GLC) data production and verification process is very complicated, time consuming and labor intensive, requiring huge amount of imagery data and ancillary data and involving many people, often from different geographic locations. The efficient integration of various kinds of ancillary data and effective collaborative classification in large area land cover mapping requires advanced supporting tools. This paper presents the design and development of a web-based system for supporting 30-m resolution GLC data production by combining geo-spatial web-service and Computer Support Collaborative Work (CSCW) technology. Based on the analysis of the functional and non-functional requirements from GLC mapping, a three tiers system model is proposed with four major parts, i.e., multisource data resources, data and function services, interactive mapping and production management. The prototyping and implementation of the system have been realised by a combination of Open Source Software (OSS) and commercially available off-the-shelf system. This web-based system not only facilitates the integration of heterogeneous data and services required by GLC data production, but also provides online access, visualization and analysis of the images, ancillary data and interim 30 m global land-cover maps. The system further supports online collaborative quality check and verification workflows. It has been successfully applied to China's 30-m resolution GLC mapping project, and has improved significantly the efficiency of GLC data production and verification. The concepts developed through this study should also benefit other GLC or regional land-cover data production efforts.

  15. Design of landfill leachate-collection filters

    SciTech Connect

    Koerner, G.R.; Koerner, R.M.; Martin, J.P. )

    1994-10-01

    Geotextile-filter design for the leachate-collection system in a municipal solid-waste landfill is quite different from that of a geotextile-filter design for other conventional geotechnical drainage applications. This is primarily due to the nature of the permeating liquid. Clearly, leachate is not ground water. Leachate has high suspended solids as well as high organic content. As a result, filters can excessively clog when permeated with leachate over long periods of time. The essential question, which is answered in this paper, is what defines excessive clogging. A design equation for geotextile filters or graded granular soils used in landfill leachate-collection systems is proposed in the paper.

  16. Trends in sustainable landfilling in Malaysia, a developing country.

    PubMed

    Fauziah, S H; Agamuthu, P

    2012-07-01

    In Malaysia, landfills are being filled up rapidly due to the current daily generation of approximately 30,000 tonnes of municipal solid waste. This situation creates the crucial need for improved landfilling practices, as sustainable landfilling technology is yet to be achieved here. The objective of this paper is to identify and evaluate the development and trends in landfilling practices in Malaysia. In 1970, the disposal sites in Malaysia were small and prevailing waste disposal practices was mere open-dumping. This network of relatively small dumps, typically located close to population centres, was considered acceptable for a relatively low population of 10 million in Malaysia. In the 1980s, a national programme was developed to manage municipal and industrial wastes more systematically and to reduce adverse environmental impacts. The early 1990s saw the privatization of waste management in many parts of Malaysia, and the establishment of the first sanitary landfills for MSW and an engineered landfill (called 'secure landfill' in Malaysia) for hazardous waste. A public uproar in 2007 due to contamination of a drinking water source from improper landfilling practices led to some significant changes in the government's policy regarding the country's waste management strategy. Parliament passed the Solid Waste and Public Cleansing Management (SWPCM) Act 2007 in August 2007. Even though the Act is yet to be implemented, the government has taken big steps to improve waste management system further. The future of the waste management in Malaysia seems somewhat brighter with a clear waste management policy in place. There is now a foundation upon which to build a sound and sustainble waste management and disposal system in Malaysia.

  17. Landfilling of waste: accounting of greenhouse gases and global warming contributions.

    PubMed

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas H; Scharff, Heijo

    2009-11-01

    Accounting of greenhouse gas (GHG) emissions from waste landfilling is summarized with the focus on processes and technical data for a number of different landfilling technologies: open dump (which was included as the worst-case-scenario), conventional landfills with flares and with energy recovery, and landfills receiving low-organic-carbon waste. The results showed that direct emissions of GHG from the landfill systems (primarily dispersive release of methane) are the major contributions to the GHG accounting, up to about 1000 kg CO(2)-eq. tonne( -1) for the open dump, 300 kg CO(2)-eq. tonne( -1) for conventional landfilling of mixed waste and 70 kg CO(2)-eq. tonne(-1) for low-organic-carbon waste landfills. The load caused by indirect, upstream emissions from provision of energy and materials to the landfill was low, here estimated to be up to 16 kg CO(2)-eq. tonne(-1). On the other hand, utilization of landfill gas for electricity generation contributed to major savings, in most cases, corresponding to about half of the load caused by direct GHG emission from the landfill. However, this saving can vary significantly depending on what the generated electricity substitutes for. Significant amounts of biogenic carbon may still be stored within the landfill body after 100 years, which here is counted as a saved GHG emission. With respect to landfilling of mixed waste with energy recovery, the net, average GHG accounting ranged from about -70 to 30 kg CO(2)-eq. tonne(- 1), obtained by summing the direct and indirect (upstream and downstream) emissions and accounting for stored biogenic carbon as a saving. However, if binding of biogenic carbon was not accounted for, the overall GHG load would be in the range of 60 to 300 kg CO(2)-eq. tonne( -1). This paper clearly shows that electricity generation as well as accounting of stored biogenic carbon are crucial to the accounting of GHG of waste landfilling.

  18. Applications systems verification and transfer project. Volume 1: Operational applications of satellite snow cover observations: Executive summary. [usefulness of satellite snow-cover data for water yield prediction

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1981-01-01

    Both LANDSAT and NOAA satellite data were used in improving snowmelt runoff forecasts. When the satellite snow cover data were tested in both empirical seasonal runoff estimation and short term modeling approaches, a definite potential for reducing forecast error was evident. A cost benefit analysis run in conjunction with the snow mapping indicated a $36.5 million annual benefit accruing from a one percent improvement in forecast accuracy using the snow cover data for the western United States. The annual cost of employing the system would be $505,000. The snow mapping has proven that satellite snow cover data can be used to reduce snowmelt runoff forecast error in a cost effective manner once all operational satellite data are available within 72 hours after acquisition. Executive summaries of the individual snow mapping projects are presented.

  19. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong.

    PubMed

    Woon, K S; Lo, Irene M C

    2013-08-01

    The burgeoning of municipal solid waste (MSW) disposal issue and climate change have drawn massive attention from people. On the one hand, Hong Kong is facing a controversial debate over the implementation of proposed landfill extension (LFE) and advanced incineration facility (AIF) to curb the MSW disposal issue. On the other hand, the Hong Kong Special Administrative Region Government is taking concerted efforts to reduce the carbon intensity in this region. This paper discusses the greenhouse gas (GHG) emissions from four proposed waste disposal scenarios, covering the proposed LFE and AIF within a defined system boundary. On the basis of the data collected, assumptions made, and system boundary defined in this study, the results indicate that AIF releases less GHG emissions than LFE. The GHG emissions from LFE are highly contributed by the landfill methane (CH4) emissions but offset by biogenic carbon storage, while the GHG emissions from AIF are mostly due to the stack discharge system but offset by the energy recovery system. Furthermore, parametric sensitivity analyses show that GHG emissions are strongly dependent on the landfill CH4 recovery rate, types of electricity displaced by energy recovery systems, and the heating value of MSW, altering the order of preferred waste disposal scenarios. This evaluation provides valuable insights into the applicability of a policy framework for MSW management practices in reducing GHG emissions.

  20. Sour landfill gas problem solved

    SciTech Connect

    Nagl, G.; Cantrall, R.

    1996-05-01

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  1. Nitrous oxide emissions in cover crop-based corn production systems

    NASA Astrophysics Data System (ADS)

    Davis, Brian Wesley

    Nitrous oxide (N2O) is a potent greenhouse gas; the majority of N2O emissions are the result of agricultural management, particularly the application of N fertilizers to soils. The relationship of N2O emissions to varying sources of N (manures, mineral fertilizers, and cover crops) has not been well-evaluated. Here we discussed a novel methodology for estimating precipitation-induced pulses of N2O using flux measurements; results indicated that short-term intensive time-series sampling methods can adequately describe the magnitude of these pulses. We also evaluated the annual N2O emissions from corn-cover crop (Zea mays; cereal rye [Secale cereale], hairy vetch [Vicia villosa ], or biculture) production systems when fertilized with multiple rates of subsurface banded poultry litter, as compared with tillage incorporation or mineral fertilizer. N2O emissions increased exponentially with total N rate; tillage decreased emissions following cover crops with legume components, while the effect of mineral fertilizer was mixed across cover crops.

  2. Assessing methods to estimate emissions of non-methane organic compounds from landfills.

    PubMed

    Saquing, Jovita M; Chanton, Jeffrey P; Yazdani, Ramin; Barlaz, Morton A; Scheutz, Charlotte; Blake, Don R; Imhoff, Paul T

    2014-11-01

    The non-methane organic compound (NMOC) emission rate is used to assess compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA). A recent USEPA Report (EPA/600/R-11/033) employed a ratio method to estimate speciated NMOC emissions (i.e., individual NMOC emissions): speciated NMOC emissions=measured methane (CH4) emission multiplied by the ratio of individual NMOCs concentration relative to CH4 concentration (C(NMOCs)/C(CH4)) in the landfill header gas. The objectives of this study were to (1) evaluate the efficacy of the ratio method in estimating speciated NMOC flux from landfills; (2) determine for what types of landfills the ratio method may be in error and why, using recent field data to quantify the spatial variation of (C(NMOCs)/C(CH4)) in landfills; and (3) formulate alternative models for estimating NMOC emissions from landfills for cases in which the ratio method results in biased estimates. This study focuses on emissions through landfill covers measured with flux chambers and evaluates the utility of the ratio method for estimating NMOC emission through this pathway. Evaluation of the ratio method was performed using CH4 and speciated NMOC concentration and flux data from 2012/2013 field sampling of four landfills, an unpublished landfill study, and literature data from three landfills. The ratio method worked well for landfills with thin covers (<40 cm), predicting composite NMOC flux (as hexane-C) to within a factor of 10× for 13 out of 15 measurements. However, for thick covers (⩾40 cm) the ratio method overestimated NMOC emissions by ⩾10× for 8 out of 10 measurements. Alternative models were explored incorporating other chemical properties into the ratio method. A molecular weight squared (MW)(2)-modified ratio equation was shown to best address the tendency of the current ratio method to overestimate NMOC fluxes for thick covers. While these analyses were only performed using NMOC fluxes

  3. Land-cover observations as part of a Global Earth Observation System of Systems (GEOSS): Progress, activities, and prospects

    USGS Publications Warehouse

    Herold, M.; Woodcock, C.E.; Loveland, Thomas R.; Townshend, J.; Brady, M.; Steenmans, C.; Schmullius, C. C.

    2008-01-01

    The international land-cover community has been working with GEO since 2005 to build the foundations for land-cover observations as an integral part of a Global Earth Observation System of Systems (GEOSS). The Group on Earth Observation (GEO) has provided the platform to elevate the societal relevance of land cover monitoring and helped to link a diverse set of global, regional, and national activities. A dedicated 2007-2009 GEO work plan task has resulted in achievements on the strategic and implementation levels. Integrated Global Observations of the Land (IGOL), the land theme of the Integrated Global Observation Strategy (IGOS), has been approved and is now in the process of transition into GEO implementation. New global land-cover maps at moderate spatial resolutions (i.e., GLOBCOVER) are being produced using guidelines and standards of the international community. The Middecadal Global Landsat Survey for 2005-2006 is extending previous 1990 and 2000 efforts for global, high-quality Landsat data. Despite this progress, essential challenges for building a sustained global land-cover-observing system remain, including: international cooperation on the continuity of global observations; ensuring consistency in land monitoring approaches; community engagement and country participation in mapping activities; commitment to ongoing quality assurance and validation; and regional networking and capacity building.

  4. Remedial design of the Fultz Landfill Site, Byesville, Ohio

    SciTech Connect

    Rajaram, V.; Riesing, R.; Bloom, T.

    1994-12-31

    The Fultz Landfill Superfund (Fultz) site is a 30-acre hazardous waste landfill located near Byesville, Ohio. The site is approximately 75 miles east of Columbus and 3 miles southwest of Cambridge, the largest city in Guernsey County, Ohio. The landfill is situated on the north slope of a ridge that overlies abandoned coal mines in the Upper Freeport Coal seam. The north half of the landfill lies in an unreclaimed strip mine in the Upper Freeport Coal seam, where saturated portions of surface mine spoils and natural soils form the ``shallow aquifer``. The south half of the landfill lies 40 to 50 feet (ft.) above an abandoned, flooded deep mine in the same coal seam. The flooded deep mine forms an aquifer referred to as the ``coal mine aquifer``. This paper presents the results of design studies completed by PRC Environmental Management, Inc. (PRC), during 1993, and the remedial design (RD) of the components specified by the US Environmental Protection Agency (EPA) Record of Decision (ROD) for the Fultz site (EPA 1991). The remedy specified in the ROD includes a multilayer landfill cap that is compliant with Resource Conservation and Recovery Act (RCRA) Subtitle C guidelines, a leachate collection and groundwater extraction and treatment system, and stabilizing mine voids underlying the southern portion of the site. Vinyl chloride is the only contaminant exceeding a maximum contaminant limit (MCL) in the coal mine aquifer.

  5. Reutilization of industrial sedimentation plants as a domestic landfill

    SciTech Connect

    Viehweg, M.; Duetsch, M.; Wagner, J.; Edelmann, F.

    1995-12-31

    The methods and the investigation results for evaluation of the risk potential emanating from the mixed waste landfill Steinsee in Johanngeorgenstadt are described for the protected commodities of water, soil and air. The peculiarity of this mixed waste landfill is its layered structure (17th to 19th century near-surface mineworkings, granite weathering zone at the base of the landfill, washed-in tailings, and refuse dump). A network of measuring points has been installed in and around the landfill, and selective investigations have been made to ascertain the risk potential from the landfill. Based on the investigation results, it can be estimated that the continued use of the landfill is justifiable from the geological, hydrogeological and hydrological viewpoints, provided that permanent and continuous control is ensured by a monitoring system and that the overall situation can be improved in the short term by suitable technical measures. The waste being deposited now consists of domestic refuse, bulky refuse, sewage sludge, building rubble, excavated earth, broken up road surfacing, waste containing asbestos, industrial waste and power station ash.

  6. Permitting of Landfill Bioreactor Operations: Ten Years after ...

    EPA Pesticide Factsheets

    Prior to promulgation of the Rule, there were approximately 20 full-scale bioreactor projects in North America, including one in Canada. Of these, six were permitted by EPA (four Project XL sites and two projects listed separately under a cooperative research agreement at the Outer Loop Landfill in Kentucky). In March 2014, there were about 40 bioreactor projects reported, including 30 active RD&D projects in 11 approved states and one project on tribal lands. Wisconsin features the largest number of projects at 13, due primarily to the fact that landfill owners in the state must either eliminate landfill disposal of biodegradable materials or to achieve the complete stabilization of deposited organic waste at MSW landfills within 40 years after closure. Most landfill operators have selected a bioreactor approach to attempt to achieve the latter goal. In summary, only 16 of 50 (32%) states have currently adopted the Rule, meaning that development of RD&D permitting procedures that are consistent with EPA’s requirements has generally not occurred. The predominant single reason cited for not adopting the Rule was lack of interest amongst landfill facilities in the state. Subtitle D and its state derivatives already allow leachate recirculation over prescriptive (i.e., minimum technology) liner systems, which is often the primary goal of site operators seeking to control leachate treatment costs. Other reasons related to concerns over increased time, cost

  7. Estimates of solid waste disposal rates and reduction targets for landfill gas emissions

    NASA Astrophysics Data System (ADS)

    Powell, Jon T.; Townsend, Timothy G.; Zimmerman, Julie B.

    2016-02-01

    Landfill disposal of municipal solid waste represents one of the largest anthropogenic global methane emission sources, and recent policy approaches have targeted significant reductions of these emissions to combat climate change in the US (ref. ). The efficacy of active gas collection systems in the US was examined by analysing performance data, including fire occurrence, from more than 850 landfills. A generalized linear model showed that the operating status of a landfill--open and actively receiving waste or closed--was the most significant predictor of collection system performance. Gas collection systems at closed landfills were statistically significantly more efficient (p < 0.001) and on average 17 percentage points more efficient than those at open landfills, but open landfills were found to represent 91% of all landfill methane emissions. These results demonstrate the clear need to target open landfills to achieve significant near-term methane emission reductions. This observation is underscored by landfill disposal rates in the US significantly exceeding previously reported national estimates, with this study reporting 262 million tonnes in the year 2012 compared with 122 million tonnes in 2012 as estimated by the US Environmental Protection Agency.

  8. Astronomy on a Landfill

    NASA Astrophysics Data System (ADS)

    Venner, L.

    2008-11-01

    Engaging ``K-to-Gray'' audiences (children, families, and older adults) in astronomical activities is one of the main goals of the New Jersey Meadowlands Commission Center for Environmental and Scientific Education (CESE) and the William D. McDowell Observatory located in Lyndhurst, NJ, operated by Ramapo College of New Jersey. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED--certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of the International Year of Astronomy 2009 (IYA2009) to the ˜25,000 students and ˜15,000 visitors that visit our site from the NY/NJ region each year.

  9. 40 CFR 258.21 - Cover material requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.21 Cover material requirements. (a..., for any owners or operators of MSWLFs that dispose of 20 tons of municipal solid waste per day or...

  10. Design of a covered lagoon methane recovery system for a flush dairy

    SciTech Connect

    Williams, D.W.; Moser, M.; Smith, J.

    1996-12-31

    A lagoon-type methane recovery system was designed for the Cal Poly Dairy, which milks 130 cows with a total population of 296 animals. Most of the herd is housed in freestall barns where the manure is deposited on concrete and flushed with fresh or recycled water to an existing lagoon with a volume of 19,300 cubic meters. The design includes a new, primary covered lagoon of 17,000 cubic meters volume. The floating cover will be made of very low density polyethylene (VLDPE), with an area of 4,500 square meters. The predicted output of the lagoon is an average of over 310 cubic meters of biogas per day containing 60 percent methane. The methane production from the covered lagoon is adequate to produce 18 to 24 kW on a continuous basis from the present cow population. In order to account for future herd size increases, a 40 kW engine generator was specified to operate in parallel with the utility system at a varying level of output controlled by the biogas supply. The non-economic benefits of this covered lagoon include the demonstration of its operation to the students and visitors at Cal Poly which in turn will serve the California Dairy Community. Odor control is the most important non-economic benefit. Conversion of volatile solids to biogas and recovery and use of the biogas limits odor to surrounding areas. The economic benefits of the methane recovery system include the approximately 160,000 kWh of electricity produced annually, worth almost $13,000. Financial analyses for the project showed a payback of 13.7 years with a 4% internal rate of return.

  11. Arc Jet Testing of the TIRS Cover Thermal Protection System for Mars Exploration Rover

    NASA Technical Reports Server (NTRS)

    Szalai, Christine E.; Chen, Y.-K.; Loomis, Mark; Hui, Frank; Scrivens, Larry

    2002-01-01

    This paper summarizes the arc jet test results of the Mars Exploration Rover (MER) Silicone Impregnated Reusable Ceramic Ablator (SIRCA) Transverse Impulse Rocket System (TIRS) Cover test series in the Panel Test Facility (PTF) at NASA Ames Research Center (ARC). NASA ARC performed aerothermal environment analyses, TPS sizing and thermal response analyses, and arc jet testing to evaluate the MER SIRCA TIRS Cover design and interface to the aeroshell structure. The primary objective of this arc jet test series was to evaluate specific design details of the SIRCA TIRS Cover interface to the MER aeroshell under simulated atmospheric entry heating conditions. Four test articles were tested in an arc jet environment with various sea] configurations. The test condition was designed to match the predicted peak flight heat load at the gap region between the SIRCA and the backshell TPS material, SLA-561S, and resulted in an over-test (with respect to heat flux and heat load) for the apex region of the SIRCA TIRS Cover. The resulting pressure differential was as much as twenty times that predicted for the flight case, depending on the location, and there was no post-test visual evidence of over-heating or damage to the seal, bracket, or backshell structure. The exposed titanium bolts were in good condition at post-test and showed only a small amount of oxidation at the leading edge locations. Repeatable thermocouple data were obtained and SIRCA thermal response analyses were compared to applicable thermocouple data. For the apex region of the SIRCA TIRS Cover, a one-dimensional thermal response prediction proved overly conservative, as there were strong multi-dimensional conduction effects evident from the thermocouple data. The one-dimensional thermal response prediction compared well with the thermocouple data for the leading edge "lip" region at the bolt location. In general, the test results yield confidence in the baseline seal design to prevent hot gas ingestion at the

  12. A land use and land cover classification system for use with remote sensor data

    USGS Publications Warehouse

    Anderson, James R.; Hardy, Ernest E.; Roach, John T.; Witmer, Richard E.

    1976-01-01

    The framework of a national land use and land cover classification system is presented for use with remote sensor data. The classification system has been developed to meet the needs of Federal and State agencies for an up-to-date overview of land use and land cover throughout the country on a basis that is uniform in categorization at the more generalized first and second levels and that will be receptive to data from satellite and aircraft remote sensors. The proposed system uses the features of existing widely used classification systems that are amenable to data derived from remote sensing sources. It is intentionally left open-ended so that Federal, regional, State, and local agencies can have flexibility in developing more detailed land use classifications at the third and fourth levels in order to meet their particular needs and at the same time remain compatible with each other and the national system. Revision of the land use classification system as presented in U.S. Geological Survey Circular 671 was undertaken in order to incorporate the results of extensive testing and review of the categorization and definitions.

  13. Tests for the evaluation of ammonium attenuation in MSW landfill leachate by adsorption into bentonite in a landfill liner.

    PubMed

    Pivato, A; Raga, R

    2006-01-01

    Uncontrolled leachate emissions are one of the key factors in the environmental impact of municipal solid waste (MSW) landfills. The concentration of ammonium, given the anaerobic conditions in traditional landfills, can remain significantly high for a very long period of time, as degradation does not take place and volatilisation is not significant (the pH is not high enough to considerably shift the equilibrium towards un-ionised ammonia). Recent years have witnessed a continuous enhancement of landfill technology in order to minimize uncontrolled emissions into the environment; bottom lining systems have been improved and more attention has been devoted to the study of the attenuation of the different chemicals in leachate in case of migration through the mineral barrier. Different natural materials have been considered for use as components of landfill liners in the last years and tested in order to evaluate the performance of the different alternatives. Among those materials, bentonite is often used, coupled with other materials in two different ways: in addition to in situ soil or in geocomposite clay liner (GCL). A lab-scale test was carried out in order to further investigate the influence of bentonite on the attenuation of ammonium in leachate passing through a landfill liner. Two different tests were conducted: a standardized batch test with pulverized bentonite and a batch test with compacted bentonite. The latter was proposed in order to better simulate the real conditions in a landfill liner. The two tests produced values for the partition coefficient K(d) higher than the average measured for other natural materials usually utilized as components of landfill liners. Moreover, the two tests showed similar results, thus providing a further validation of the suitability of the standard batch test with pulverized bentonite. A thorough knowledge of attenuation processes of ammonium in landfill liners is the basis for the application of risk analysis models

  14. Landfill CH{sub 4}: Rates, fates, and role in global carbon cycle

    SciTech Connect

    Bogner, J.; Spokas, K.

    1991-12-31

    Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

  15. Landfill CH sub 4 : Rates, fates, and role in global carbon cycle

    SciTech Connect

    Bogner, J.; Spokas, K.

    1991-01-01

    Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

  16. Sanitary landfill groundwater monitoring report

    SciTech Connect

    Not Available

    1993-02-01

    The Sanitary Landfill at the Savannah River Site (SRS) is composed of the original 32-acre landfill, plus expansion areas to the north and south that added 16 and 22 acres, respectively, to the facility. The landfill is subject to the requirements of the Resource Conservation and Recovery Act and currently operates under South Carolina Department of Health and Environmental Control (SCDHEC) Domestic Waste Permit 87A. Fifty-seven wells of the LFW series monitor the groundwater quality in Steed Pond Aquifer (formerly Aquifer Zone I/IIC[sub 2]) (Water Table) beneath the Sanitary Landfill. These wells are sampled quarterly for certain indicator parameters, inorganics, metals, radionuclides, volatile organics, and other constituents as part of the SRS Groundwater Monitoring Program and to comply with the SCDHEC domestic waste permit. This report reviews the 1992 activities of the SRS Groundwater Monitoring Program.

  17. Landfill Gas Energy Benefits Calculator

    EPA Pesticide Factsheets

    This page contains the LFG Energy Benefits Calculator to estimate direct, avoided, and total greenhouse gas reductions, as well as environmental and energy benefits, for a landfill gas energy project.

  18. Where Should the Landfill Go?

    ERIC Educational Resources Information Center

    Fazio, Rosario P.; McFaden, Dennis

    1993-01-01

    Describes a project where students were involved in finding the most suitable site for a landfill in their community. This two-month project was conducted using team teaching. Two twelfth grade geoscience classes were involved. (PR)

  19. A pyrometric feedback system covering the entire temperature program for electrothermal atomization-atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Herber, R. F. M.; Pieters, H. J.; Roelofsen, A. M.; Van Deijck, W.

    A new pyrometric temperature feedback control system for ETA-AAS is introduced which controls the entire temperature range needed for analysis. The system consists of a single infrared sensitive detector and independent feedback control circuitry for the three separate heating stages of a Varian CRA 63 or CRA 90 power supply to which it was added. The temperature region covered by the system encompassed from 300 to 3300 K. The precision of the temperature control amounts to ±20 K at 330 K., ±5 K at 700 K and ±2 K at 2300 K. In order to test the performance of the system, lead in blood and cadmium in urine were determined. Substantial improvements as compared to the conventional system were obtained with respect to optimization of the temperature program, precision and sensitivity. Patent pending.

  20. Landfill Gas Energy Cost Model Version 3.0 (LFGcost-Web V3 ...

    EPA Pesticide Factsheets

    To help stakeholders estimate the costs of a landfill gas (LFG) energy project, in 2002, LMOP developed a cost tool (LFGcost). Since then, LMOP has routinely updated the tool to reflect changes in the LFG energy industry. Initially the model was designed for EPA to assist landfills in evaluating the economic and financial feasibility of LFG energy project development. In 2014, LMOP developed a public version of the model, LFGcost-Web (Version 3.0), to allow landfill and industry stakeholders to evaluate project feasibility on their own. LFGcost-Web can analyze costs for 12 energy recovery project types. These project costs can be estimated with or without the costs of a gas collection and control system (GCCS). The EPA used select equations from LFGcost-Web to estimate costs of the regulatory options in the 2015 proposed revisions to the MSW Landfills Standards of Performance (also known as New Source Performance Standards) and the Emission Guidelines (herein thereafter referred to collectively as the Landfill Rules). More specifically, equations derived from LFGcost-Web were applied to each landfill expected to be impacted by the Landfill Rules to estimate annualized installed capital costs and annual O&M costs of a gas collection and control system. In addition, after applying the LFGcost-Web equations to the list of landfills expected to require a GCCS in year 2025 as a result of the proposed Landfill Rules, the regulatory analysis evaluated whether electr

  1. Assessment of cover systems at the Grand Junction, Colorado, uranium mill tailings pile: 1987 field measurements

    SciTech Connect

    Gee, G.W.; Campbell, M.D.; Freeman, H.D.; Cline, J.F.

    1989-02-01

    Four Pacific Northwest Laboratory (PNL) scientists and a technician conducted an onsite evaluation of radon gas exhalation, water content profiles, and plant and animal intrusion for a series of cover systems located on the uranium mill tailings pile at Grand Junction, Colorado. These six plots were sampled extensively down to the radon control layer (e.g., asphalt or wet clay) for soil moisture content and permeability. Radon gas emission through the surface was measured. Soil samples were collected and analyzed in the lab for particle-size distribution, particle density, bulk density, and ambient water content. Prairie dog burrows were excavated to discover the extent to which they penetrated the barriers. Plant type, density, and cover characteristics were measured.

  2. Modelling nitrate transport under row intercropping system: Vines and grass cover

    NASA Astrophysics Data System (ADS)

    Tournebize, J.; Gregoire, C.; Coupe, R. H.; Ackerer, P.

    2012-05-01

    SummaryIn the context of reduction of agricultural non-point source pollution, an associated crop system often presents several advantages. The difficulty resides in the characterisation of each species' contribution (dominant and dominated). This paper deals with the particular case of voluntary grass cover management between rows in a vine plot. We evaluate the spatial and temporal changes in the development of both crops: vine/grass cover system, in their ecological functioning and in the influences on water and nitrogen balances. We modify the SWMS_3D model to incorporate separate distribution of water and nitrogen demands for the two coexisting plant species. The parameterized model is then assessed using the measured data (water content, matrix potential and nitrogen content of the soil solution at depths of 30, 60, 90 and 120 cm) acquired from two monitored vine plots (vine "Tockay-Pinot Gris" plot grass covered every second row compared to a control plot that was chemically weeded vine "Riesling" plot, France, Alsace, Rouffach) between October 1998 and September 2000. The main results are the following. The vine's mean total transpiration over the two growing seasons of 1998/1999 and 1999/2000 is simulated of 355 ± 9 mm per season. The matrix potential is reproduced accurately especially improving with depth and under the interrow. Despite a high variability due to soil heterogeneity, the nitrogen mass variations between measurements and simulations with the adapted model are coherent. Nevertheless we note that the model slightly underestimates the nitrogen mass for both types of observed cropping patterns, however the ratio between the two itineraries remains similar, yielding a reduction in nitrogen loss by at least 4-fold in favour of grass cover every second row plot during the period observed from 10/01/1998 to 09/30/2000.

  3. Smaller cities can now benefit from landfill gas

    SciTech Connect

    Not Available

    1984-01-01

    Florence, Alabama, population 38,000, has developed a system with the help of the Monsanto company, to use the gas generated in it's 21 acre landfill of household waste. A compressor and prism separator system is used to separate methane from the gas generated under anaerobic conditions in the waste. The methane is then piped into the city's gas distribution system and a number of it's vehicles have been equipped to run on natural gas. Payback for the prism system is reckoned at five years, but is site specific although it is well adapted for landfills of various sizes.

  4. PRACTICE REVIEW OF FIVE BIOREACTOR/RECIRCULATION LANDFILLS

    EPA Science Inventory

    Six bioreactor landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor landfills from conventional landfills. Five of the bioreactor landfills were anaerobic and one was aerated. In one case, nearly identical cells e...

  5. Closed landfills to solar energy power plants: Estimating the solar potential of closed landfills in California

    NASA Astrophysics Data System (ADS)

    Munsell, Devon R.

    Solar radiation is a promising source of renewable energy because it is abundant and the technologies to harvest it are quickly improving. An ongoing challenge is to find suitable and effective areas to implement solar energy technologies without causing ecological harm. In this regard, one type of land use that has been largely overlooked for siting solar technologies is closed or soon to be closed landfills. Utilizing Geographic Information System (GIS) based solar modeling; this study makes an inventory of solar generation potential for such sites in the state of California. The study takes account of various site characteristics in relation to the siting needs of photovoltaic (PV) geomembrane and dish-Stirling technologies (e.g., size, topography, closing date, solar insolation, presence of landfill gas recovery projects, and proximity to transmission grids and roads). This study reaches the three principal conclusions. First, with an estimated annual solar electricity generation potential of 3.7 million megawatt hours (MWh), closed or soon to be closed landfill sites could provide an amount of power significantly larger than California's current solar electric generation. Secondly, the possibility of combining PV geomembrane, dish-Stirling, and landfill gas (LFG) to energy technologies at particular sites deserves further investigation. Lastly, there are many assumptions, challenges, and limitations in conducting inventory studies of solar potential for specific sites, including the difficulty in finding accurate data regarding the location and attributes of potential landfills to be analyzed in the study. Furthermore, solar modeling necessarily simplifies a complex phenomenon, namely incoming solar radiation. Additionally, site visits, while necessary for finding details of the site, are largely impractical for a large scale study.

  6. Application of simulation models to the diagnosis of MSW landfills: an example.

    PubMed

    García de Cortázar, Amaya Lobo; Tejero Monzón, Iñaki

    2007-01-01

    Among the landfill simulation programs being developed by several research groups around the world as tools for the management of sanitary landfills is MODUELO, whose second version, MODUELO 2, has been presented elsewhere. It reproduces the operational history of the landfill and its hydrologic and biodegradation processes, allowing the estimation of the flow and pollutants emitted in the leachate and the generated landfill gas over time. This program has been used for a diagnosis study of an existing European MSW landfill. The construction and calibration of the facility's hydrologic model, based on the available data, allowed the detection and quantification of two sources increasing the flows reaching the leachate collection system: a small portion (6-7%) of the runoff over the landfill surface and the contribution of water coming from external hillsides of the same watershed that represent a total surface area of around 20ha. The contrast of the leachate quality (COD, BOD, NH(4)-N and TKN) simulation results and measured data showed the potential of these models for the assessment of other significant aspects in landfill operation such as the potential harnessing of the landfill gas. Nonetheless, in this case as in many others, the accuracy of the simulation results was limited by the scant quality of the available data, which highlights the need for implementing continuous monitoring and characterizing protocols to take advantage of these programs as a tool for landfill optimization.

  7. Perpetual landfilling through aeration of the waste mass; lessons from test cells in Georgia (USA).

    PubMed

    Read, A D; Hudgins, M; Phillips, P

    2001-01-01

    Municipal solid waste (MSW) landfills worldwide are experiencing the consequences of conventional landfilling techniques, whereby anaerobic conditions are created within the landfilled waste. Under anaerobic conditions within a landfill site slow stabilization of the waste mass occurs, producing methane, (an explosive 'green house' gas) and leachate (which can pollute groundwater) over long periods of time. As a potential solution, it was demonstrated that the aerobic degradation of MSW within a landfill can significantly increase the rate of waste decomposition and settlement, decrease the methane production and leachate leaving the system, and potentially increase the operational life of the site. Readily integrated into the existing landfill infrastructure, this approach can safely and cost-effectively convert a MSW landfill from anaerobic to aerobic degradation processes, thereby effectively composting much of the organic portions (one of the potentially polluting elements in a conventional landfill site) of the waste. This paper summarizes the successful results of two separate aerobic landfill projects located in Georgia (USA) and discusses the potential economic and environmental impacts to worldwide solid waste management practices.

  8. ETV/ESTCP Demonstration Plan - Demonstration and Verification of a Turbine Power Generation System Utilizing Renewable Fuel: Landfill Gas

    EPA Science Inventory

    This Test and Quality Assurance Plan (TQAP) provides data quality objections for the success factors that were validated during this demonstration include energy production, emissions and emission reductions compared to alternative systems, economics, and operability, including r...

  9. System for reducing heat losses from indoor swimming pools by use of automatic covers. Report No. 1

    SciTech Connect

    Not Available

    1994-04-25

    This is a progress report for the period October 1, 1993 through March 31, 1994, for a project to develop cover systems for indoor swimming pools with the objective of reducing energy consumption. Effort has included evaluation of cover materials, development of brakes to tension deployment ropes, better limit of motion switches, reel systems, drive systems for the take up spool, and drive tensioning systems.

  10. Sky cover

    NASA Astrophysics Data System (ADS)

    Gerth, Jordan J.

    Of all of the standard meteorological parameters collected and observed daily, sky cover is not only one of the most complex, but the one that is fairly ambiguously defined and difficult to quantify. Despite that, the implications of how cloud fraction and sky cover are understood not only impact daily weather forecasts, but also present challenges to assessing the state of the earth's climate system. Part of the reason for this is the lack of observational methods for verifying the skill of clouds represented and parameterized in numerical models. While human observers record sky cover as part of routine duties, the spatial coverage of such observations in the United States is relatively sparse. There is greater spatial coverage of automated observations, and essentially complete coverage from geostationary weather satellites that observe the Americas. A good analysis of sky cover reconciles differences between manual observations, automated observations, and satellite observations, through an algorithm that accounts for the strengths and weaknesses of each dataset. This work describes the decision structure for trusting and weighting these similar observations. Some of the issues addressed include: human and instrument error resulting from approximations and estimations, a deficiency in high cloud detectability using surface-based ceilometers, poorly resolved low cloud using infrared channels on space-based radiometers during overnight hours, and decreased confidence in satellite-detected cloud during stray light periods. Using the blended sky cover analysis as the best representation of cloudiness, it is possible to compare the analysis to numerical model fields in order to assess the performance of the model and the parameterizations therein, as well as confirm or uncover additional relationships between sky cover and pertinent fields using an optimization methodology. The optimizer minimizes an affine expression of adjusted fields to the "truth" sky cover

  11. Quantifying spatial and temporal variability of methane emissions from a complex area source: case study of a central Indiana landfill

    EPA Science Inventory

    strengths, limitations, and uncertainties of these two approaches. Because US landfills are highly-engineered and composed of daily, intermediate, and final cover areas with differing thicknesses, composition, and implementation of gas recovery, we also expected different emissi...

  12. Town of Edinburg landfill reclamation demonstration project

    SciTech Connect

    Not Available

    1992-05-15

    Landfill reclamation is the process of excavating a solid waste landfill to recover materials, reduce environmental impacts, restore the land resource, and, in some cases, extend landfill life. Using conventional surface mining techniques and specialized separation equipment, a landfill may be separated into recyclable material, combustible material, a soil/compost fraction and residual waste. A landfill reclamation demonstration project was hosted at the Town of Edinburg municipal landfill in northwest Saratoga County. The report examines various separation techniques employed at the site and appropriate uses for reclaimed materials. Specifications regarding engineered work plans, health and safety monitoring, and contingency preparedness are discussed. Major potential applications and benefits of using landfill reclamation technology at existing landfills are identified and discussed. The research and development aspect of the report also examines optimal screening technologies, site selection protocol and the results of a test burn of reclaimed waste at a waste-to-energy facility. Landfill reclamation costs are developed, and economic comparisons are made between reclamation costs and conventional landfill closure costs, with key criteria identified. The results indicate that, although dependent on site-specific conditions and economic factors, landfill reclamation can be a technically and economically feasible alternative or companion to conventional landfill closure under a range of favorable conditions. Feasibility can be determined only after an investigation of the variety of landfill conditions and reclamation options.

  13. Estimating water content in an active landfill with the aid of GPR.

    PubMed

    Yochim, April; Zytner, Richard G; McBean, Edward A; Endres, Anthony L

    2013-10-01

    Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2m at both landfills, the difference between GPR and lab measured water contents were reasonable at 33.9% for the drier landfill and 18.1% for the wetter landfill. Infiltration experiments also showed the potential to measure small increases in water content.

  14. Landfill to Learning Facility

    NASA Astrophysics Data System (ADS)

    Venner, Laura

    2008-05-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in scientific exploration and discovery is the main goal of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will bring hands-on scientific experiences to the 25,000 students and 3,000 adults that visit our site from the NY/NJ region each year. Our programs adhere to the New Jersey Core Curriculum Content Standards and are modified for accessibility for the underserved communities that visit us, specifically those individuals that have mobility, sensory, and/or cognitive ability differences. The programs are conducted in a classroom setting and are designed to nourish the individual's inquisitive nature and provide an opportunity to function as a scientist by, making observations, performing experiments and recording data. We have an $850,000, three year NSF grant that targets adults with disabilities and older adults with age related limitations in vision, hearing, cognition and/or mobility. From dip netting in the marsh to astronomical investigation of the cosmos, the MEC/CESE remains committed to reaching the largest audience possible and leaving them with a truly exceptional scientific experience that serves to educate and inspire.

  15. STEADY-STATE DESIGN OF VERTICAL WELLS FOR LIQUIDS ADDITION AT BIOREACTOR LANDFILLS

    EPA Science Inventory

    This paper presents design charts that a landfill engineer can use for the design of a vertical well system for liquids addition at bioreactor landfills. The flow rate and lateral and vertical zones of impact of a vertical well were estimated as a function of input variables su...

  16. Thermal inactivation of Bacillus anthracis surrogate spores in a bench-scale enclosed landfill gas flare.

    PubMed

    Tufts, Jenia A McBrian; Rosati, Jacky A

    2012-02-01

    A bench-scale landfill flare system was designed and built to test the potential for landfilled biological spores that migrate from the waste into the landfill gas to pass through the flare and exit into the environment as viable. The residence times and temperatures of the flare were characterized and compared to full-scale systems. Geobacillus stearothermophilus and Bacillus atrophaeus, nonpathogenic spores that may serve as surrogates for Bacillus anthracis, the causative agent for anthrax, were investigated to determine whether these organisms would be inactivated or remain viable after passing through a simulated landfill flare. High concentration spore solutions were aerosolized, dried, and sent through a bench-scale system to simulate the fate of biological weapon (BW)-grade spores in a landfill gas flare. Sampling was conducted downstream of the flare using a bioaerosol collection device containing sterile white mineral oil. The samples were cultured, incubated for seven days, and assessed for viability. Results showed that the bench-scale system exhibited good similarity to the real-world conditions of an enclosed standard combustor flare stack with a single orifice, forced-draft diffusion burner. All spores of G. stearothermophilus and B. atrophaeus were inactivated in the flare, indicating that spores that become re-entrained in landfill gas may not escape the landfill as viable, apparently becoming completely inactivated as they exit through a landfill flare.

  17. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... treatment system equipment; (2) Collect gas from each area, cell, or group of cells in the landfill in which... device, the landfill gas stream shall be introduced into the flame zone. (2) The control device shall be... operating parameters to be monitored are specified in § 60.756; (C) Route the collected gas to a...

  18. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... treatment system equipment; (2) Collect gas from each area, cell, or group of cells in the landfill in which... device, the landfill gas stream shall be introduced into the flame zone. (2) The control device shall be... operating parameters to be monitored are specified in § 60.756; (C) Route the collected gas to a...

  19. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... treatment system equipment; (2) Collect gas from each area, cell, or group of cells in the landfill in which... device, the landfill gas stream shall be introduced into the flame zone. (2) The control device shall be... operating parameters to be monitored are specified in § 60.756; (C) Route the collected gas to a...

  20. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... treatment system equipment; (2) Collect gas from each area, cell, or group of cells in the landfill in which... device, the landfill gas stream shall be introduced into the flame zone. (2) The control device shall be... operating parameters to be monitored are specified in § 60.756; (C) Route the collected gas to a...

  1. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... treatment system equipment; (2) Collect gas from each area, cell, or group of cells in the landfill in which... device, the landfill gas stream shall be introduced into the flame zone. (2) The control device shall be... operating parameters to be monitored are specified in § 60.756; (C) Route the collected gas to a...

  2. 40 CFR 270.21 - Specific part B information requirements for landfills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... each landfill or landfill cell; (b) Detailed plans and an engineering report describing how the... provided by § 264.301(b) of this chapter, submit detailed plans, and engineering and hydrogeological... engineering report explaining the leak detection system design and operation, and the location of...

  3. 40 CFR 270.21 - Specific part B information requirements for landfills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... each landfill or landfill cell; (b) Detailed plans and an engineering report describing how the... provided by § 264.301(b) of this chapter, submit detailed plans, and engineering and hydrogeological... engineering report explaining the leak detection system design and operation, and the location of...

  4. Hydrologic Evaluation of Landfill Performance (HELP) Model: B (Set Includes, A- User's Guide for Version 3 w/disks, B-Engineering Documentation for Version 3

    EPA Science Inventory

    The Hydrologic Evaluation of Landfill Performance (HELP) computer program is a quasi-two-dimensional hydrologic model of water movement across, into, through and out of landfills. The model accepts weather, soil and design data. Landfill systems including various combinations o...

  5. Ground cover rice production systems increase soil carbon and nitrogen stocks at regional scale

    NASA Astrophysics Data System (ADS)

    Liu, M.; Dannenmann, M.; Lin, S.; Saiz, G.; Yan, G.; Yao, Z.; Pelster, D. E.; Tao, H.; Sippel, S.; Tao, Y.; Zhang, Y.; Zheng, X.; Zuo, Q.; Butterbach-Bahl, K.

    2015-08-01

    Rice production is increasingly limited by water scarcity. Covering paddy rice soils with films (so-called ground cover rice production system: GCRPS) can significantly reduce water demand as well as overcome temperature limitations at the beginning of the growing season, which results in greater grain yields in relatively cold regions and also in those suffering from seasonal water shortages. However, it has been speculated that both increased soil aeration and temperature under GCRPS result in lower soil organic carbon and nitrogen stocks. Here we report on a regional-scale experiment conducted in Shiyan, a typical rice-producing mountainous area of China. We sampled paired adjacent paddy and GCRPS fields at 49 representative sites. Measured parameters included soil carbon (C) and nitrogen (N) stocks (to 1 m depth), soil physical and chemical properties, δ15N composition of plants and soils, potential C mineralization rates, and soil organic carbon (SOC) fractions at all sampling sites. Root biomass was also quantified at one intensively monitored site. The study showed that: (1) GCRPS increased SOC and N stocks 5-20 years following conversion from traditional paddy systems; (2) there were no differences between GCRPS and paddy systems in soil physical and chemical properties for the various soil depths, with the exception of soil bulk density; (3) GCRPS increased above-ground and root biomass in all soil layers down to a 40 cm depth; (4) δ15N values were lower in soils and plant leaves indicating lower NH3 volatilization losses from GCRPS than in paddy systems; and (5) GCRPS had lower C mineralization potential than that observed in paddy systems over a 200-day incubation period. Our results suggest that GCRPS is an innovative production technique that not only increases rice yields using less irrigation water, but that it also increases SOC and N stocks.

  6. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    EPA Science Inventory

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  7. Landfill methane oxidation response to vegetation, fertilization, and liming

    SciTech Connect

    Hilger, H.A.; Wollum, A.G.; Barlaz, M.A.

    2000-02-01

    Landfills are the fourth largest global source and the largest US source (USDOE, 1997) of anthropogenic CH{sub 4} emissions. Since gram-for-gram, CH{sub 4} has 21 times the 100-yr global-warming potential of CO{sub 2} (USEPA, 1990). CH{sub 4} release into the atmosphere has important implications for global climate change. This study was conducted to evaluate the effects of vegetation, N fertilizers, and lime addition on landfill CH{sub 4} oxidation. Columns filled with compacted sandy loam and sparged with synthetic landfill gas were used to simulate a landfill cover. Grass-topped and bare-soil columns reduced inlet CH{sub 4} by 47 and 37%, respectively, at peak uptake; but the rate for both treatments was about 18% at steady state. Nitrate and NH{sub 4} amendments induced a more rapid onset of CH{sub 4} oxidation relative to KCl controls. However, at steady state, NH{sub 4} inhibited CH{sub 4} oxidation in bare columns but not in grassed columns. Nitrate addition produced no inhibitory effects. Lime addition to the soil consistently enhanced CH{sub 4} oxidation. In all treatments, CH{sub 4} consumption increased to a peak value, then declined to a lower steady-state value; and all gassed columns developed a pH gradient. Neither nutrient depletion nor protozoan grazing could explain the decline from peak oxidation levels. Ammonium applied to grassed cover soil can cause transient reductions in CH{sub 4} uptake, but there is no evidence that the inhibition persists. The ability of vegetation to mitigate NH{sub 4} inhibition indicates that results from bare-soil tests may not always generalize to vegetated landfill caps.

  8. Landfill mining for resource recovery

    SciTech Connect

    Reith, C.C.

    1997-12-31

    Landfills are repositories of subeconomic resources. Landfill mining is an important enterprise that will someday return these resources to productive use, closing the loop on finite resources and stimulating economic development in communities near landfills. Secondary development of interred resources (landfill waste) will become economically viable as the environmental externalities of primary resource development -- e.g., the destruction of pristine habitat -- are more fully accounted for in programs of ecological design and design for environment. It is important to take an integrated and holistic approach to this new endeavor, which will be a complex assemblage of disciplines. Component disciplines include: resource economics, characterization, and excavation; contaminant control, and protection of environmental safety and health; material sorting, blending, and pretreatment; resource conversion, recovery, storage, and distribution; and reclamation for long-term land use. These technical elements must be addressed in close combination with compelling social issues such as environmental justice that may be especially critical in economically depressed communities surrounding today`s landfills.

  9. Effect of roller/crimper designs in terminating rye cover crop in small-scale conservation systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, use of cover crops in no-till organic production systems has steadily increased. When cover crops are terminated at an appropriate growth stage, the unincorporated residue mulch protects the soil from erosion, runoff, soil compaction, and weed pressure, and conserves soil water. In ...

  10. Sanitary landfills. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    This bibliography contains citations concerning refuse disposal in sanitary landfills. Among the topics reviewed are site selection criteria, leachate analysis and treatment, and economic and management aspects. Hydrologic studies pertaining to contaminant transport, and the use of liners and covers are discussed. Considerable attention is given to gas generation and recovery, and specific operations are described. Citations pertaining specifically to hazardous and industrial waste materials are excluded. (Contains 250 citations and includes a subject term index and title list.)

  11. Final construction quality assurance report for the Y-12 Industrial Landfill V, Area 2, Oak Ridge, Tennessee

    SciTech Connect

    Bessom, W.H.

    1996-11-01

    Lockheed Martin Energy Systems (LMES) has finished construction of Area 2 of the Y-12 Plant Industrial Landfill (ILF-V), classified as a Class 2 Landfill. This final Construction Quality Assurance (CQA) Report provides documentation that Area 2 was constructed in substantial compliance with the Tennessee Department of Environment and Conservation (TDEC) approved design, as indicated and specified in the permit drawings, approved changes, and specifications. This report applies specifically to the Area 2 excavation, compacted clay soil liner, geomembrane liner, granular leachate collection layer, protective soil cover, and the leachate collection system. An ``As-Built`` survey was performed and is included. The drawings provide horizontal and vertical information for Area 2, the anchor trench, the leachate collection pipe, the temporary access road, and cross-sections of Area 2. This report provides documentation of the following items: the excavation activities of Area 2; the maximum recompacted coefficient of hydraulic conductivity or permeability of the soil is less than 1 {times} 10{sup {minus}7} centimeters per second (cm/sec); the total thickness of the compacted clay soil liner equals a minimum of 2 feet; a 40 mil impermeable geomembrane (polypropylene) flexible membrane liner (FML) and 16 oz. geotextile fabric was placed in direct contact with the compacted clay soil liner; a 12 inch granular leachate collection layer was installed and covered with a 8 oz. geotextile separation fabric; the installation of the leachate collection piping; and the two foot protective clay soil cover.

  12. Enhanced cover methods for surface coal refuse reclamation

    SciTech Connect

    Gentile, L.F.; Cargill, K.W.; McGarvie, S.D.

    1997-12-31

    Controlling acid rock drainage (ARD) can be a major component of surface mining reclamation. An enhanced reclamation cover system is being constructed to control infiltration of rain water and generation of ARD from coal-refuse disposal areas at a closed mine in southern Illinois. Development of the mine reclamation plan required consideration of ARD generation in coal refuse disposal areas located adjacent to an alluvial aquifer used for public water supply. An integrated site characterization was performed at the mine to provide information to develop and support the enhanced reclamation plan. The enhanced cover system is similar to covers required for municipal solid waste landfills by the Resource Conversation and Recovery Act (RCRA), Subtitle D regulations. The system comprises a graded and compacted gob layer, overlain by a compacted clay liner, and a protective soil cover. The results of infiltration modeling and analyses showed that the standard reclamation cover is effective in reducing infiltration by about 18 percent compared to an unreclaimed coal-refuse surface. The modeling results showed that the inhanced cover system should reduce infiltration by about 84 percent. The geochemical modeling results showed that the reduction in infiltration would help minimize ARD generation and contribute to an earlier reclamation of the mine site.

  13. Plant functional type classification for earth system models: results from the European Space Agency's Land Cover Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Poulter, B.; MacBean, N.; Hartley, A.; Khlystova, I.; Arino, O.; Betts, R.; Bontemps, S.; Boettcher, M.; Brockmann, C.; Defourny, P.; Hagemann, S.; Herold, M.; Kirches, G.; Lamarche, C.; Lederer, D.; Ottlé, C.; Peters, M.; Peylin, P.

    2015-07-01

    Global land cover is a key variable in the earth system with feedbacks on climate, biodiversity and natural resources. However, global land cover data sets presently fall short of user needs in providing detailed spatial and thematic information that is consistently mapped over time and easily transferable to the requirements of earth system models. In 2009, the European Space Agency launched the Climate Change Initiative (CCI), with land cover (LC_CCI) as 1 of 13 essential climate variables targeted for research development. The LC_CCI was implemented in three phases: first responding to a survey of user needs; developing a global, moderate-resolution land cover data set for three time periods, or epochs (2000, 2005, and 2010); and the last phase resulting in a user tool for converting land cover to plant functional type equivalents. Here we present the results of the LC_CCI project with a focus on the mapping approach used to convert the United Nations Land Cover Classification System to plant functional types (PFTs). The translation was performed as part of consultative process among map producers and users, and resulted in an open-source conversion tool. A comparison with existing PFT maps used by three earth system modeling teams shows significant differences between the LC_CCI PFT data set and those currently used in earth system models with likely consequences for modeling terrestrial biogeochemistry and land-atmosphere interactions. The main difference between the new LC_CCI product and PFT data sets used currently by three different dynamic global vegetation modeling teams is a reduction in high-latitude grassland cover, a reduction in tropical tree cover and an expansion in temperate forest cover in Europe. The LC_CCI tool is flexible for users to modify land cover to PFT conversions and will evolve as phase 2 of the European Space Agency CCI program continues.

  14. APPROACH FOR ESTIMATING GLOBAL LANDFILL METHANE EMISSIONS

    EPA Science Inventory

    The report is an overview of available country-specific data and modeling approaches for estimating global landfill methane. Current estimates of global landfill methane indicate that landfills account for between 4 and 15% of the global methane budget. The report describes an ap...

  15. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    EPA Science Inventory

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  16. Mining landfills for space and fuel

    SciTech Connect

    Flosdorf, H.W.; Alexieff, S.

    1993-03-01

    Lancaster County, Pennsylvania`s experiments with landfill reclamation are helping the county remain self-sufficient in managing its solid waste stream. Landfill mining is proving to be a worthwhile approach to extending landfill life and obtaining fuel for the county`s waste-to-energy plant.

  17. BIOREACTOR LANDFILLS, THEORETICAL ADVANTAGES AND RESEARCH CHALLENGES

    EPA Science Inventory

    Bioreactor landfills are municipal solid waste landfills that utilize bulk liquids in an effort to accelerate solid waste degradation. There are few potential benefits for operating a MSW landfill as a bioreactor. These include leachate treatment and management, increase in the s...

  18. Astronomy on a Landfill

    NASA Astrophysics Data System (ADS)

    Venner, Laura

    2008-09-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 15,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.

  19. Astronomy on a Landfill

    NASA Astrophysics Data System (ADS)

    Venner, Laura

    2008-05-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 3,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.

  20. Sustainable treatment of landfill leachate

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd. Suffian; Aziz, Hamidi Abdul; Hung, Yung-Tse

    2015-06-01

    Landfill leachate is a complex liquid that contains excessive concentrations of biodegradable and non-biodegradable products including organic matter, phenols, ammonia nitrogen, phosphate, heavy metals, and sulfide. If not properly treated and safely disposed, landfill leachate could be an impending source to surface and ground water contamination as it may percolate throughout soils and subsoils, causing adverse impacts to receiving waters. Lately, various types of treatment methods have been proposed to alleviate the risks of untreated leachate. However, some of the available techniques remain complicated, expensive and generally require definite adaptation during process. In this article, a review of literature reported from 2008 to 2012 on sustainable landfill leachate treatment technologies is discussed which includes biological and physical-chemical techniques, respectively.

  1. Gradient packing bed bio-filter for landfill methane mitigation.

    PubMed

    Obulisamy, Parthiba Karthikeyan; Sim Yan May, Jane; Rajasekar, Balasubramanian

    2016-10-01

    We assessed the suitability of various biogenic materials for development of a gradient packed bed bio-filter to mitigate the methane (CH4) emission from landfills. Five different biogenic materials (windrow compost-WC; vermicompost-VC; landfill top cover-LTC; landfill bottom soil-LBS; and river soil sediment-SS) were screened. Among these materials, the VC showed a better CH4 oxidation potential (MOP) of 12.6μg CH4 gdw(-1)h(-1). Subsequently, the VC was used as a packing material along with wood chips in proto-type bio-filters. Wood chips were mixed at 5-15% to form three distinct gradients in a test bio-filter. Under the three different CH4 loading rates of 33, 44 and 55 gCH4 m(-3)h(-1), the achieved MOPs were 31, 41, and 47gCH4 m(-3)h(-1), respectively. The gradient packed bed bio-filter is effective for landfill CH4 mitigation than the conventional bio-filter as the latter shows gas channeling effects with poor MOPs.

  2. Subsurface investigation in Sarimukti landfill using DC resistivity

    <